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by
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Submitted to the Department of Electrical Engineering and Computer Science
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Cell architecture is a heterogeneous, distributed-memory multicore architecture
that features a novel on-chip communication network. Stream programs are particu-
larly well-suited for execution on Cell.

This thesis implements a runtime library on Cell specifically designed to sup-
port streaming applications and streaming language compilers. The runtime library
abstracts the details of Cell’s communication network and provides facilities that sim-
plify the task of scheduling stream actors. The library is designed in the context of
the StreamIt programming language.

This library is used to implement a dynamic scheduling framework. The pro-
grammability of high-level schedulers with and without the library is analyzed. We
observe that the library does not add significant overhead, provides a number of
useful features for schedulers, and greatly simplifies the code required to implement
schedulers.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

Multicore architectures have become the rule rather than the exception in the chang-

ing computing landscape. With single-core performance limited by power consump-

tion, memory latency, and circuit complexity, almost all new architectures (certain

mobile and embedded applications excepted) are branching into more cores rather

than better cores. Exploiting parallelism has already become absolutely critical if

applications wish to make full use of current and future architectures.

Compilers for traditional imperative languages are faced with a daunting task

when attempting to aid the programmer in this regard: it is very difficult to auto-

matically extract parallelism from a sequential program written in a low-level lan-

guage such as C. Much of the time, the task of parallelizing a program remains in

the hands of the programmer, who must manually convert a single-threaded sequen-

tial program into a multithreaded parallel one. While doing so, he must contend

with issues specific to the architecture he is targeting, limiting portability, and worry

about introducing race conditions or other bugs that typically plague multithreaded

programs. Programmers do have access to a number of frameworks such as MPI and

OpenMP; however, parallelization of sequential programs remains a difficult process.

The Cell architecture is a novel multicore architecture that differs significantly

from traditional SMP architectures: it is both a heterogeneous architecture and one

that does not use shared memory. Compared to traditional SMP architectures, the

design of Cell is a trade-off for computing power, ease of manufacture, and low power
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consumption at the cost of programming complexity. To a programmer writing an

application that runs on Cell, this only leaves him with additional complications.

Streaming languages such as StreamIt [10] provide a way to alleviate the bur-

den of manually parallelizing applications. In a streaming language, the programmer

defines actors that operate on streams of data; the programmer then composes ac-

tors and streams into the program. The structure that is explicitly expressed by a

streaming language exposes rather than hides the parallelism present in a program,

making it much easier for the compiler to automatically extract parallelism. For the

programmer, many applications fit within the streaming model, and can be naturally

expressed in StreamIt or other streaming languages.

Ideally, a compiler for a streaming language would like to be able to focus on

high-level scheduling issues: finding parallelism and scheduling actors to obtain the

best possible utilization of available computation resources. However, when presented

with a heterogeneous, distributed-memory architecture like Cell, the compiler must

instead first contend with numerous low-level issues.

The goal of this thesis is to create a runtime framework for streaming applications

on the Cell architecture. The framework is geared towards compilers rather than

programmers. Just as a programmer manually parallelizing a sequential program has

access to frameworks like MPI that abstract certain low-level operations, the goal

of the streaming framework for Cell is to provide similar functionality to streaming

language compilers and schedulers that target the Cell architecture.

To this end, this thesis contributes the following:

1. A runtime library that provides compilers with higher-level primitives than bare

Cell hardware.

2. A dynamic scheduler implemented on top of the runtime library that dynami-

cally schedules a stream graph.

3. An analysis of the amount of code required when a compiler or programmer

targets the library compared to Cell hardware directly. The library is shown to

14



significantly simply scheduler implementation without adding significant over-

head.

The runtime library and dynamic scheduler were designed with the StreamIt lan-

guage and the StreamIt compiler explicitly in mind. StreamIt constructs and exe-

cution patterns map naturally to the framework; however, the framework is general

enough that it should also be able to accommodate other streaming languages.

Chapters 2 presents basic background information and related work on streaming

languages and parallelization frameworks, and describes the StreamIt language and

the Cell architecture in detail. Chapter 3 presents the runtime library along with a

discussion of design decisions and implementation issues. Chapter 4 describes how

common scheduling patterns a compiler or programmer might generate can be mapped

to the library, and compares code complexity and flexibility to programming for Cell

directly. Chapter 5 discusses the dynamic scheduler. Chapter 6 gives a brief analysis

of the performance of the framework on a test benchmark. Chapter 7 concludes with

a discussion of future work and extensions.
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Chapter 2

Background and Related Work

Streaming languages provide an attractive alternative to sequential languages for

many applications. In a streaming language, the programmer defines actors that

operate on data streams and composes programs by connecting actors. Many com-

mon high-performance applications, especially those involving signal, audio, image,

and video processing, have explicit block diagram structure and are most easily con-

ceptualized in that manner, making streaming languages a natural choice for these

applications.

Because programs written in streaming languages are explicitly structured as com-

municating actors, they typically expose a high degree of parallelism. This allows

streaming language compilers to easily analyze stream programs and efficiently par-

allelize them. Compared to sequential languages, streaming languages free the pro-

grammer from the burden of having to explicitly write parallelized code for specific

architectures, allowing him to focus on expressing the high-level semantics of the

algorithm in a natural way.

Recent developments in streaming languages include Brook [4], Cg [18], and

StreamC/KernelC [14].

17



2.1 The StreamIt Programming Language

StreamIt [10] is a high-performance streaming language developed at MIT. StreamIt

is based on the Synchronous Dataflow model of streaming computation. In the SDF

model [17], actors are constrained to known, fixed communication rates. This restric-

tion makes it easier for compilers to analyze the stream graph and schedule actors for

efficient parallel execution. StreamIt further extends the SDF model with additional

language elements that impose hierarchical structure on the stream graph and pro-

vide additional expressive power. The StreamIt language also places a high degree

of emphasis on code reuse. All of these features serve to increase programmer pro-

ductivity; complex applications have been written in StreamIt, including an MPEG2

encoder and decoder [7] and image-based motion estimation [2].

The structure and parallelism exposed by StreamIt programs allows the StreamIt

compiler to perform a large set of optimizations and efficiently execute programs on

parallel architectures. The compiler targets a number of architectures, including stan-

dard unicore and multicore processors, computing clusters, and the Raw processor.1

2.1.1 Filters

The basic unit of a StreamIt program is the filter. This construct represents an actor

that reads data items from a single input tape, processes them, and writes data items

to a single output tape. Filters are allowed to pop items from the input tape, push

items onto the output tape, and peek at items on the input tape without removing

them. Individual filters are independent and communicate only through the data

items on their tapes. Each filter must define a work function that specifies the work

done by each iteration of the actor; work functions are written in a general-purpose

sequential language that resembles Java in syntax. Work functions are required to

be annotated with pop, peek, and push rates, which (for the purposes of this thesis)

must be static and fully known at compile time.

1A Cell backend is currently under development; the work done in this thesis directly contributes

to that.
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Filters can also define constants and arbitrary helper functions. In addition, filters

may declare mutable fields; this creates state that is maintained across work function

iterations. Filters can be declared with parameters that are provided when filters are

instantiated, creating significant opportunities for code reuse.

2.1.2 Composing Streams: Pipelines and Splitjoins

StreamIt provides the pipeline and splitjoin constructs to compose StreamIt con-

structs in a hierarchical manner. Each StreamIt construct has a single input tape

and single output tape, allowing for arbitrarily deep hierarchical composition.

The pipeline construct connects multiple child streams (which may be filters,

pipelines, or splitjoins) in a pipeline, with the input tape of each stream connected

to the output tape of the previous stream in the pipeline.

The splitjoin construct splits a stream into multiple child tasks. At the top of a

splitjoin, a splitter splits the single input tape into multiple tapes. StreamIt allows

two types of splitters: duplicate splitters, which copy every item on the input tape

to every output tape, and round-robin splitters, which send each item on the input

tape to a different output tape in weighted round-robin fashion. The child streams of

the splitjoin have their input tapes connected to the outputs of the splitter. At the

bottom of the splitjoin, a joiner joins the outputs of the child streams into a single

output tape. Joiners always operate in weighted round-robin fashion.

2.1.3 Execution Model and Compiler Optimizations

A full StreamIt program consists of a top-level stream (a filter, pipeline, or splitjoin)

that defines a hierarchical stream graph. At the leaves of the hierarchy are individual

filters, connected by channels. When a StreamIt program executes, the top-level

stream is implicitly wrapped in an infinite loop.

A steady state is a repetition of each filter such that when the steady state is

executed, the amount of data in all channels remains unchanged. The StreamIt

compiler performs optimizations and execution in terms of the steady state.
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The stream graph of a StreamIt program exposes three types of coarse-grained

parallelism:

• Task parallelism: parallelism explicitly defined by the stream graph. For in-

stance, the child streams of a splitjoin are task-parallel; they have no depen-

dencies on each other, and can be run in parallel.

• Data parallelism. Filters that are stateless are data-parallel; different iterations

of a data-parallel filter have no dependencies on each other, and thus multiple

instances of a data-parallel filter can be simultaneously run to process data from

different iterations of the stream graph.

• Pipeline parallelism: parallelism exposed by filters connected in a pipeline.

Pipeline parallelism can be exploited by using coarse-grained software pipelin-

ing. [9] An initialization schedule is first run to set up sufficient data in all channels.

Thereafter, whenever the steady state schedule is run, there are no longer any de-

pendencies between different filters in the steady state, allowing multiple filters to be

executed in parallel.

The StreamIt compiler uses all three types of parallelism to achieve optimal perfor-

mance on parallel architectures. The compiler can also fuse multiple filters together,

producing a single filter. This fused filter typically has a lower communication–

computation ratio than the original filters. When stateless filters that do not perform

peeking are fused, the result is also a stateless (and hence data-parallel) filter that

does not peek.

2.1.4 Extensions

The full StreamIt language provides a number of additional features beyond the basic

model described above. In particular, StreamIt supports i) an additional feedbackloop

construct, which defines a feedback loop that introduces a cycle into the stream graph,

ii) filters with dynamic rates that need not be fixed or known at compile time, and

iii) teleport messaging for out-of-band communication between filters [22]. These
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language features greatly increase the power of language, allowing more complex

applications to be more easily written.

The StreamIt compiler is also able to perform cache-aware [21] and domain-

specific [16, 1] optimizations.

2.2 The Cell Architecture

The Cell architecture [13, 6, 11, 12] is a novel multicore architecture designed for

high-performance computing. Compared to a standard SMP architecture, Cell has

two major differences:

• Cell is a heterogeneous architecture consisting of nine cores per physical pro-

cessor. One core, the Power Processing Element (PPE), is a general-purpose

processor. The other eight cores are Synergistic Processing Elements (SPEs)

that are dedicated for computation.

• Cell is not a shared-memory architecture. SPEs can only directly address their

own limited local store. Programmers have explicit control over DMA opera-

tions to copy data between local store and memory.

2.2.1 PPE

The PPE is a 64-bit, two-way SMT, PowerPC-compatible processor.2 All system

code is run on the PPE. The PPE also contains additional facilities for supporting

and controlling SPEs.

The PPE is designed as a control processor, and is not optimized for computation.

It has a simplified in-order pipeline with no dynamic branch prediction. In addition,

many instructions on the PPE (such as integer multiply and divide) are not pipelined.

2The word size on Cell is considered to be 32 bits. A common unit of data is the quadword,

which is 16 bytes.
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2.2.2 SPEs

SPEs are designed to act as dedicated computation units. Each SPE has a large

128-entry register file; all registers are 128-bit SIMD registers that can be treated as

short vectors of any of the standard integer or floating point data types. Each register

can also be treated as the scalar value that occupies the first element of the vector.

SPEs have a separate instruction set from the PPE; all computation instructions are

SIMD and operate on all elements of a register, with different forms provided for each

supported data type. However, SPEs are optimized for single-precision floating-point

operations.

SPEs also have a simplified in-order pipeline without dynamic branch prediction.

The SPE pipeline supports dual-issue of certain pairs of instructions. In general, the

design of the SPE moves the task of instruction scheduling from the processor to the

compiler or programmer.

Each SPE has its own 256 KB local store (LS).3 SPE load and store instructions

can only directly access local store; all code and data that an SPE uses must be

located in its local store. Loads and stores can only be done on a 16-byte granularity;

loading a scalar that is not aligned on a quadword boundary requires an additional

rotate instruction, and storing a scalar requires a read-modify-write operation. SPEs

have no cache; however, loads and stores have short 5-cycle latencies and are fully

pipelined (in effect, the local store acts as a software-controlled cache).

SPEs do not have paging or protection facilities, and all code running on an SPE

is application code. In order to read or write data in memory, SPE programs must

explicitly use special instructions to initiate DMA operations. Each SPE contains a

Memory Flow Controller (MFC) that handles DMA transfers; once an SPE program

has started a transfer, the MFC carries it out in the background while the SPE

continues to execute and access local store. The SPE can poll or elect to receive

interrupts when DMA operations complete. The MFC supports up to 16 concurrent

DMA transfers.

3We will sometimes use the term SPE to refer to the SPE’s local store, and PPE to refer to

memory; the usage should be clear from the context.
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The MFC uses the page tables on the PPE to perform address translation; thus,

SPEs can access the entire virtual address space of the program through DMA. Each

SPE’s local store, as well as special communication channels, is mapped into the

virtual address space; the PPE can access an SPE’s local store directly and other

SPEs can access its local store or communication channels through DMA.

SPEs provide two facilities for communicating small messages with the PPE and

other SPEs: mailboxes and signal notification registers. They are mapped into the

program’s virtual address space as MMIO registers, and other processors (either the

PPE or other SPEs) can access them through the corresponding memory addresses.

Mailboxes are 32-bit FIFOs. Each SPE provides an inbound mailbox with 4 entries

for receiving messages from other processors, an outbound mailbox (1 entry) for

sending messages to other processors, and an outbound mailbox (1 entry) for sending

messages to the PPE (messages written to this mailbox generate interrupts on the

PPE).

Each SPE provides two 32-bit signal notification registers that other processors

can write to. Each bit in a signal notification register “latches” the highest bit received

until the register is read by the SPE. SPEs can poll for mailbox messages and signals,

or elect to receive interrupts.

2.2.3 DMA

The PPE and SPEs are connected to each other and to memory by a high-bandwidth

communication bus. The startup cost of a typical DMA operation is around 100 to

150 ns; [15] afterwards, 8 bytes can be transferred per SPE cycle. The communication

bus provides extremely high bandwidth: each processor has access to 25.6 GB/s of

bandwidth, and the bus can theoretically support a peak bandwidth of over 200 GB/s.

DMA transfers have specific alignment requirements: transfers must be 1, 2, 4, 8,

16, or a multiple of 16 bytes, up to 16 KB. Transfers less than a quadword must be

between memory and LS addresses that are naturally aligned;4 larger transfers require

addresses that are quadword-aligned. DMA transfers are most efficient when memory

4That is, aligned on a multiple of the transfer size.
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and LS addresses have the same offset in a 128-byte block; the author experimen-

tally determined that transfers that do not effectively have only half the maximum

bandwidth.

2.2.4 Performance and Programmability

IBM provides an SDK that contains separate C/C++ compilers to target the PPE

and SPEs. C intrinsics are provided to access the unique facilities defined on the Cell

processor.

The initial version of the Cell processor has a clock speed of 3.2 GHz. The SPE in-

struction set contains a fully pipelined SIMD single-precision floating-point multiply-

add instruction, which performs 8 FLOP in a single cycle. Thus, a single SPE is

theoretically capable of 25.6 GFLOPS; the entire Cell processor is capable of 204.8

GFLOPS using only the eight SPEs. A standard general-purpose processor with a

SIMD unit, running at the same clock speed, has the same theoretical maximum

performance as only a single SPE.

Achieving good performance on Cell requires a number of considerations. It is

important to make heavy use of SIMD instructions and carefully schedule instructions

to maximize utilization of the SPE pipeline. For instance, a sample single-threaded

application5 that operates on scalar data, when compiled for different processors using

GCC with standard compiler optimizations (-O3; no vectorization was performed),

produces runtimes given in figure 2-1 (SPE time does not include communication).

Runtime (ms)
PPE, 3.2 GHz 220

1 SPE, 3.2 GHz 400
Pentium 4, 1.8 GHz 200

Xeon, 2.2 GHz 170

Figure 2-1: Runtimes for FFT on different processors.

Compared to the PPE, the better performance of the Intel processors, which have

significantly lower clock speeds, can be attributed to the latter’s incorporation of

5This is the FFT benchmark, described more fully in chapter 4.
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out-of-order and superscalar execution logic. The significantly worse performance of

the SPE is due to the additional rotate instructions necessary to operate on scalar

data. Compared to general-purpose architectures that have complex out-of-order,

superscalar pipelines, the Cell architecture requires more work from the compiler or

programmer to generate code that executes efficiently.

Obviously, performance on any parallel architecture requires being able to discover

and execute multiple parallel tasks in an application. On Cell, the data used by

individual tasks that execute on SPEs must be sized for the limited local store, and

their memory access patterns must be tuned for coarse-grained bulk DMA transfers,

potentially requiring reorganizing the program or reorganizing data layout. While

frameworks exist that provide software-managed caches for SPEs, [13] it is ultimately

simpler and more efficient if memory access patterns by SPE programs can be kept

as local as possible.

Finally, it is important to leverage the communication–computation concurrency

provided by Cell’s asynchronous DMA model by performing computation while data

for future work is being fetched. If double-buffering is done properly, SPEs will be

able to spend a majority of their time performing useful computation.

All three of the issues above must be carefully considered for an application to

obtain maximum performance from the Cell architecture. Some applications, such as

matrix multiplication, can be aggressively optimized for Cell to achieve close to peak

performance. [6]

2.3 Parallelization Frameworks

MPI and OpenMP are probably the two most well-known and widely used paralleliza-

tion frameworks for computing clusters and traditional SMP architectures. These two

programming APIs represent opposite ends of a spectrum: MPI defines a language-

independent, low-level network communication API, while OpenMP defines a set of

language-specific, high-level annotations that programs can use to cause compatible

compilers to generate multithreaded code.
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The streaming runtime library for Cell developed in this thesis is intended to

provide the same kind of low-level functionality as MPI, with two major differences: i)

it is specific to Cell instead of networks, and ii) it is specific to streaming applications

and provides additional control functionality.

Several languages and parallelization frameworks have been designed specifically

for Cell; see [5] for a review. RapidMind [19] and MPI Microtask [20] follow a “task-

based” approach by providing runtime systems that help schedule program-defined

tasks, or kernels. CellSs [3] takes this a degree further by automatically generating

tasks from annotations to linear code. Sequoia [8] is a language that exposes an

abstract hierarchical memory model and allows the programmer to define communi-

cation and local computation; its compiler and runtime system can efficiently execute

Sequoia programs on Cell.
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Chapter 3

The Streaming Runtime Library

for Cell

The Cell architecture provides an excellent target for streaming language compilers

for a number of reasons:

• Individual SPEs are optimized for computation.

• The limited local store available on SPEs is not a severe limitation for actors

in a stream program, which are independent, have extremely local data-access

patterns, and generally have small code sizes. In an SDF model such as the

basic StreamIt model, known static rates further simplify scheduling.

• The high-bandwidth, low-latency on-chip communication network enables a

large number of scheduling options which would not be feasible for other targets,

such as computing clusters.

The natural division of work on the Cell architecture maps computation to SPEs,

which perform DMA operations to copy input and output data to/from local store. In

this model, the PPE functions mainly as a control processor, possibly also performing

small amounts of computation that are too small to dispatch to an SPE.

Using this model, a streaming language compiler (or programmer) must address

four major issues:
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1. Generating highly-SIMDized code in the limited SPE instruction set. SIMD is

required to make full use of an SPE’s execution units. In addition, code that

operates only on vectors avoids rotate instructions needed to load scalar values

from local store, in effect producing a greater performance improvement than

would be expected.

2. Generating code that performs DMA operations. This code also needs to

double-buffer input and output to make full use of Cell’s asynchronous com-

munication model.

3. Organizing all needed code and sufficient buffering to fit into limited SPE local

store. This is particularly a problem for larger applications, for which the total

code size for all filters leaves little room for buffering, or may exceed the size of

local store entirely.

4. Performing high-level optimizations and scheduling. At a high level, compil-

ers would typically be interested in balancing workload among available SPEs,

avoiding excess communication, transforming code to improve efficiency, and

other such topics.

The purpose of the streaming runtime library for Cell is to abstract (2) and provide

facilities that simplify (3) and (4). The library frees a compiler or programmer from

needing to deal with the details of Cell’s communication model, allowing it to focus

on exploring high-level optimization and scheduling choices. The two main functions

of the library are:

• Providing high-level facilities in place of explicit DMA operations between SPE

local stores and memory.

• Providing the user 1 with a generic framework for controlling and dispatching

computation to SPEs that simplifies scheduling operations.

1User refers to all non-library code running on the PPE; typically, most of this performs schedul-

ing. Code for filter work functions and auxiliary functions will always be referred to separately.
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While the library was designed with StreamIt constructs in mind, it is not specific

to that language. The library can be used with filters and stream graphs that follow

a basic set of specifications, regardless of the original streaming language.

3.1 Library Constructs

The library defines several constructs for the SPEs and PPE. Most facilities provided

by the library operate on one or more of these constructs.

3.1.1 SPE Constructs: Filters and Buffers

Two basic constructs are defined for SPEs: filters and buffers.

Filters have similar semantics as StreamIt filters, but are more generalized. A

filter represents a generic actor that exposes a work function which is conceptually

run infinitely. Filters may be stateful and can read from multiple input tapes and

write to multiple output tapes. While a library filter can correspond directly to a

single filter in a StreamIt program, a compiler can also perform optimizations, such as

fusing multiple StreamIt filters into a single library filter. Work functions are opaque

to the library and the library does not perform any SIMDization; that task is left to

the compiler or programmer.

Buffers are contiguous regions of SPE local store that are reserved for temporarily

storing data that is on an input or output tape. All buffers are circular, and the library

maintains head and tail pointers for each buffer that indicate where data begins and

ends. Conceptually, a buffer has front and back ends; data towards the front of a

buffer originated earlier in the execution of the program.

Conceptually, a filter consists of two major components, code and state, as well

as basic properties that describe its work function such as the number of input and

output tapes. Code is a single contiguous block of arbitrary data that may contain

constant data and instructions that define multiple functions; the library only re-

quires that it contain a function with a specific signature, which is used as the work

function. Code for a filter is intended to be a single modular component that can
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be easily relocated to different local store addresses on different SPEs. As such, it

should not reference any absolute addresses, such as in absolute branches or loads, or

modify itself.2 The latter constraint means that code should not contain any global

variables; instead, all global variables should be declared and accessed through fields

in the filter’s state. State contains all mutable data that must be maintained across

iterations of the work function. State for different filters is disjoint, and filter code

should not access mutable global state. Although a filter’s code and state must reside

in SPE local store when the filter’s work function is running, every filter must have a

permanent store for them in memory. The library provides facilities for loading code

onto SPEs and copying state between local store and memory.

A filter’s work function typically accesses its tapes by reading from the front of

its input buffers and writing to the back of its output buffers. This is not enforced

by the library and filters can have other data access patterns; however, the library is

designed to expect this pattern and the user must take special care otherwise. Filter

work functions do not need to have static rates, and the library is agnostic to a filter’s

rates.

Before a filter can be run on an SPE, it must be loaded onto the SPE through

the library. The user provides the library with the properties of the filter and the LS

address of its work function; the library initializes a control block that describes the

loaded filter in local store, the LS address of which identifies the loaded filter in all

future operations. If the filter is stateful, the library also copies its state into local

store from its permanent store in memory. Code for the filter must be separately

copied into local store through the library, but can be located anywhere as long as

the correct work function address is provided to the library. When the user is done

with a loaded filter, it can unload the filter through the library, causing the library to

copy the filter’s state back to its permanent store in memory. Stateful filters can be

loaded on at most one SPE at any time, while stateless filters can be simultaneously

loaded on any number of SPEs.

2If the user can accept limitations, such as not being able to relocate filter code or tying code to

a single SPE, these suggestions can be ignored.
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This separation of code and state allows the user additional control over how and

when SPE local store is used. Since code is constant, the user can preload the code of

a filter onto an SPE even while the filter is loaded on another SPE (and thus its state

is owned by that SPE) in preparation for loading it on the first SPE in the future.

If multiple (possibly stateful) filters have identical code, only one copy of it needs to

reside in memory or an SPE’s local store and it can be shared. When a filter is not

being run, its code does not need to be present in SPE local store, leaving more space

free for buffering (local store management is discussed in more detail below).

The library provides similar facilities for allocating buffers on SPEs. The size of a

buffer must be a power of two, to allow wrap-around computations to be done with

a single AND instruction. Buffers are identified by the LS address that their data

region starts at in SPE local store; when allocating a buffer, the library initializes a

control block located immediately before the data region that stores the buffer’s head

and tail pointers and participates in data transfers. As an additional step required

before a loaded filter can be run, the user must specify which buffers the filter’s input

and output tapes refer to.

The library does not provide memory management for SPE local store; when

filter code, filter control blocks, and buffers are allocated, the user must manually

specify their LS addresses and ensure that the regions used by different constructs

do not overlap.3 This does not create as many difficulties as may appear, as any

memory management algorithm that can be implemented internally by the library

can just as easily be duplicated by the user on the PPE. Moreover, allowing the user

to explicitly manage local store allows it to implement far more complex algorithms

as desired. Additionally, in this scheme, buffers and space occupied by filter code and

filter control blocks for stateless filters never need to be explicitly deallocated – the

user can simply reuse the local store region for other constructs after it is certain that

they are no longer in use.

Theoretically, the number of filters loaded and buffers allocated on an SPE is

limited only by available local store. However, there is generally no useful purpose in

3The library handles all resulting communication, such as copying filter code and state.
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keeping more than two filters and their associated buffers on an SPE at any time.

3.1.2 PPE Constructs

The library does not define a filter construct for the PPE. However, because all

memory is addressable by PPE code, the user can easily create similar behavior.

The library defines a PPE or memory buffer construct that is an extension of the

SPE buffer. PPE buffers are not required to be circular, and buffers that are non-

circular have no size limitations. PPE buffers are identified by the address of their

control block, and multiple buffers can refer to the same data region, with different

head and tail pointers. This is used to implement certain StreamIt features with

minimal overhead, such as duplicate splitters and data-parallel execution. Because of

the limited size of SPE local store, this functionality was considered unnecessary for

SPE buffers.

Conceptually, data produced during the execution of a program is contained in

exactly one buffer (which may be an SPE or PPE buffer) until it is consumed. The

library provides facilities for moving data between buffers on different processors.

3.2 Library Commands

Under the library, SPEs only execute library code and filter code. User code on the

PPE dispatches work items to SPEs by issuing library commands, and is notified

when SPEs complete them. Each library command encapsulates a specific action to

be performed, and has parameters that are specified by the user. Commands can be

divided into three main types:

• Filter commands: commands to load or unload filters, copy filter code into local

store, attach tapes to buffers, and run filters.

• Buffer commands: commands to allocate buffers.

• Data transfer commands: commands to move data between buffers in the local

stores of different SPEs, or local store and memory.
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As an example, the filter run command, which runs a loaded filter, takes two

parameters: the LS address of a loaded filter’s control block, and the number of

iterations to run the work function for. The user is responsible for ensuring that

there is sufficient data in input buffers and sufficient space in output buffers for all

specified iterations. Other commands have similar requirements. For a complete

description of all commands, see appendix A.3.

The amount of work specified by a single command varies depending on param-

eters to the command. Typically, filter run commands do not take more than a few

hundred microseconds to complete; some other commands are auxiliary commands

and complete almost immediately. This allows the user to quickly change scheduling

decisions and avoids tying an SPE into any specific long-term action.

When the user issues a command to an SPE, it assigns the command an ID that

must be unique among all commands previously issued to that SPE that have not

completed. This ID is used to notify the user when the SPE finishes executing the

command.

3.2.1 Dependencies

In order to keep SPEs supplied with work at all times, it is necessary to limit round-

trips between the PPE and SPEs during which the SPEs have no commands to

execute. The library provides a general facility for queuing and ordering commands

on individual SPEs by allowing each command to specify a set of command IDs on

that SPE that it depends on. Commands issued to an SPE are queued and executed

only after all dependencies have finished.

At any time, a command that has been issued to an SPE can be either queued (a

command with unfinished dependencies), active (a command with all dependencies

satisfied and currently being executed), or completed (a command for which all work

has been done, but the user has not yet been notified). From the perspective of

the user, all commands that are active on an SPE are run “concurrently”. When a

command is issued, all dependency IDs that have not been issued are considered to

have already completed and are ignored.
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In effect, each SPE maintains a small dependency graph of commands that rep-

resents a small subset in time and space of the entire schedule the user executes a

program with. User code on the PPE continually adds commands to the dependency

graph, while the SPE continually processes commands that have their dependencies

satisfied. To make full use of an SPE, it is only necessary for the PPE to ensure the

dependency graph on the SPE is never empty. The user cannot remove commands

once issued, but if it keeps the dependency graph low-depth, it can quickly change the

pattern of work done by an SPE simply by issuing a different set of new commands.

3.2.2 Command Groups

Each command has a small amount of data associated with it, consisting of command-

specific parameters in addition to generic ID and dependency information. Typically,

the user will be issuing sets of related commands at once. To avoid the overhead

of issuing each command individually, the user can organize commands into groups;

the library only allows entire command groups to be issued.4 Each group specifies

a sequence of commands; until a group is explicitly cleared, commands in the group

are saved and can be reissued in the future.

Since SPE local store is managed by the user, the user must provide the library

with an LS address where command data will be copied to when it issues a command

group. For dependency purposes, SPEs treat commands in a group as having been

issued in the order they appear in the group. Although commands are issued in

groups, the user is notified when individual commands complete.

3.2.3 User Interface

Commands issued to different SPEs are completely independent; the dependency

graph on each SPE is strictly local. User code on the PPE thus serves as the main

point of synchronization between SPEs by adjusting the commands it issues to an

SPE in response to command completion notifications from all SPEs.

4To issue a single command, the user can create a group containing only that command.
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User code on the PPE is mainly callback-driven. The user registers a callback

function with the library that is called whenever a command issued to an SPE com-

pletes. The library maintains a per-SPE bitmap of command IDs that have com-

pleted; the user can query this bitmap in the callback to determine which commands

have completed and respond accordingly. Bits in the bitmap are set until explicitly

acknowledged by the user. After an ID has been acknowledged, it can be reused for

new command issued to the SPE.

The library does not maintain a dependency graph on the PPE. Some SPE com-

mands have equivalents on the PPE provided as library functions, which are run

immediately when called.

Appendix A contains complete specifications for the interface provided by the

library to user code.

3.2.4 Data Transfer

Data transfer commands indirectly result in additional points of synchronization be-

tween processors. A data transfer conceptually moves data from the front of a source

buffer to the back of a destination buffer, and requires two commands: a command

to transfer data out of the source buffer, issued to the processor containing the source

buffer, and a command to transfer data into the destination buffer, issued to the pro-

cessor containing the destination buffer. Where either buffer is located in memory,

the user instead calls a library function.

Splitting data transfers into a pair of commands with one on each processor pro-

vides the user with explicit control over when the data transfer occurs with respect

to both processors. The library ensures that the transfer does not occur until both

commands become active on their respective processors. The user must ensure, via

the dependency graphs on SPEs or manually on the PPE, that when a data transfer

command becomes active on a processor, the local buffer has sufficient data or space

to fulfill the transfer.

Data transfers impose minor alignment requirements on the buffers involved due

to limitations of Cell’s underlying DMA model. There are no restrictions on the

35



size of a data transfer (except for the size of the buffers involved), but the same size

must be specified by both commands in the pair. Each data transfer command also

specifies the address and size of the opposing buffer, since this is information the user

will know in advance; however, buffer head and tail pointers, which are more difficult

to track in advance, are handled by the library. In addition, data transfer commands

have additional inter-SPE requirements that the user must ensure are met across all

SPEs. When a data transfer command becomes active on an SPE, the opposing buffer

must already be allocated on the opposing SPE. As well, for any buffer, at most one

data transfer in command and one data transfer out command specifying it as the

opposing buffer can be active at any time across all processors.

This “decoupling” of data transfers simplifies the information the user needs to

keep track of. When issuing commands to one SPE, the user usually does not need to

be concerned with the state of other SPEs; as long as pairs of data transfer commands

are eventually issued with the correct parameters and dependencies, the library will

handle synchronization between buffers.

3.3 Filter Code

The interface provided by the library for writing filter code consists of a set of C

header files that define a collection of preprocessor macros that simplify state and

tape access. StreamIt code can be converted almost directly to code for a library

filter. For complete specifications, see appendix B.

3.4 User Code Examples

As an example, we will illustrate the commands required to set up and run a sample

filter on an SPE. For simplicity, this filter has a single input tape, single output tape,

and static rates: its work function pops i, peeks i+e, and pushes o bytes per iteration.

Before the filter can be run, it must be loaded, its input and output buffers must

allocated, and the filter’s tapes must be attached to the buffers. The commands that
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perform this are illustrated in figure 3-1.

buffer_alloc
Allocate input buffer at Ai

buffer_alloc
Allocate output buffer at Ao

filter_load
Place control block at Af

filter_attach_input
Use buffer Ai for input of Af

filter_attach_output
Use buffer Ao for output of Af

Figure 3-1: Commands to load a filter and allocate and attach input and output
buffers. Lines between commands represent dependencies that must be specified to
the library when the commands are issued. These commands may be issued in one
or multiple groups. See appendix A for detailed information on setting up commands
and dependencies.

In addition, input data must be transferred into the input buffer before the filter

can be run, and output data must eventually be transferred out of the output buffer.

With an initially empty input buffer, the commands to transfer in n iterations of

input, run the filter for n iterations, and then transfer out n iterations of output

(assuming that the input and output buffers were sized appropriately) are shown in

figure 3-2.

dt_in
ni + e bytes

filter_run
n iters

dt_out
no bytes

Figure 3-2: Commands to run a filter for the first n iterations, including transferring
input and output. The corresponding data transfer commands on other SPEs or the
PPE are not shown.

To run the filter for a larger number of iterations, a sequence of commands is

required due to the limited buffer space available in SPE local store. This is illustrated

in figure 3-3.

Provided that the input buffer is at least 2ni+ e bytes and the output buffer is at

least 2no bytes, the dependencies among the commands in the sequence ensure that:

• When a dt in command becomes active, there are at most ni + e bytes of data

in the input buffer, and thus enough space to transfer in an additional ni bytes.
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dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

dt_in
ni bytes

filter_run
n iters

dt_in
ni + e bytes

0

3 4

0 1 2

3 4 5

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

0 1 2

3 4 5

g0

g1

dt_in
ni bytes

filter_run
n iters

dt_out
no bytes

0 1 2

filter_run
n iters

dt_out
no bytes

4 5

dt_out
no bytes

2

Figure 3-3: Sequence of commands to run a filter for a large number of iterations.
Command IDs are indicated in the upper right. Each row is issued as a different
group.

• When a dt out command becomes active, there are at least no bytes of data in

the output buffer, and thus enough data to transfer out.

• When a filter run command becomes active, there are at least ni + e bytes of

data in the input buffer and at most no bytes of data in the output buffer. This

is enough input data and output space to run the filter for n iterations.
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This sequence of commands effectively “pipelines” the basic operation from fig-

ure 3-2. Double-buffering is accomplished when the data transfer commands in a

group complete before the filter run does. In this case, the following filter run has

no outstanding dependencies once the current filter run completes, and can become

active immediately.

The user can keep the SPE continually supplied with work by initially issuing

the first two groups, thereafter issuing the next group whenever a group completes.

In this case, the SPE almost always has two groups of commands issued, with one

group active and the other queued. In addition, with the exception of the first two

and last two groups, the command parameters, IDs and dependencies in every other

group are identical. This allows the user to initially set up two groups (g0 and g1 in

figure 3-3) and repeatedly issue them for a majority of the execution. If executions

are relatively long, the overhead of the first and last group, where no filter is being

run, will be amortized effectively. Alternatively, the user can load another filter and

run it during those gaps.

In practice, situations such as the above, where a static-rate filter is run for a large

number of iterations and large amounts of input and output data are transferred, are

very common. To avoid requiring the user to manually issue groups and deal with

command completion callbacks in every such case, the library also provides extended

operations that encapsulate this pattern. In an extended operation, the user provides

the library with filter rates, the addresses of opposing buffers on other processors for

data transfers, and the number of groups to run for; the library issues and responds to

all commands internally and notifies the user when the entire operation is complete.

Where one or both opposing buffers are located in memory, the library also handles

the PPE side of data transfers internally. Extended operations greatly simplify setting

up pipelines of any length where all filters in the pipeline have static rates.
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3.5 Library Implementation

The library is implemented as three separate components: i) runtime code for SPEs,

ii) basic runtime code for the PPE, and iii) runtime code for the PPE that handles

extended operations.

3.5.1 PPE Implementation

For each SPE, the library maintains a fixed table of command groups in memory.

Each entry in the table represents a group and stores command data for commands

in the group. When the user issues a group to an SPE, the library sends a mailbox

message to the SPE to notify it of the entry in the table that contains the group

and the LS address to copy command data to; the use of a fixed table is directly

necessary to be able to pack all required fields into a single 32-bit mailbox message.

After receiving the mailbox message, library code on the SPE initiates DMA to copy

command data into local store.

When commands are completed by an SPE, library code on the SPE sends a

bitmap of the command ID(s) to the PPE via the outbound mailbox. If the mailbox

is full (the PPE has not had time to respond to the previous message), the bitmap is

queued and sent when the mailbox is empty. The size of a mailbox message (32 bits)

currently imposes a strict limit on the range of valid command IDs.

Library code on the PPE continually polls the outbound mailboxes of all SPEs in

round-robin order for command completion messages. When a message is received,

it is processed by the library, which eventually runs the user-registered callback.

Interrupts were not used as each interrupt requires approximately 7 µs of kernel time

to process. Although this may be negligible when only a single SPE is involved, it

can become significant when multiple SPEs are all generating interrupts. In general,

it is the author’s opinion that the Cell architecture’s focus on directly using SPEs to

run small pieces of application code is not suited for the additional system overhead

of interrupts.

One major drawback of the continuous polling approach is that it severely con-
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strains any other work that the PPE is able to perform unless the user is willing to

call the library function that performs polling at regular intervals. This is not a prob-

lem when the PPE is used solely as a control processor; most control computations

are in response to command completion messages from SPEs and can be done in the

callback.

The sequence of events that occurs on the PPE and an SPE between the time the

user issues a group of commands and the user being notified of the completion of a

command in the group via callback is illustrated in figure 3-4. In actuality, because i)

each SPE is issued multiple commands and ii) the PPE is controlling multiple SPEs,

there will typically be many different copies of this sequence interleaved within each

other, for both the same and different SPEs.

3.5.2 SPE Implementation

To execute multiple active commands concurrently on an SPE, the library implements

what is effectively a simple co-operatively multitasked “operating system”. Each

type of command has an associated handler function that processes it, and all active

commands on an SPE act as separate “threads” executing at separate points in their

handler functions, using command data to store temporary state in lieu of a separate

stack.

The library maintains a run list that contains all active commands in a circular

linked list. At the top level, the library cycles through each command in the run list

and calls its handler. Each handler performs a small amount of work, typically only

part of the work the command specifies, and then returns to the run list to allow other

commands to execute. For example, the handler for the filter run command runs the

filter’s work function for one iteration5 and then returns, relinquishing control of the

SPE to other commands; in total, the filter’s work function is run once for every cycle

through the run list. More complex command handlers, such as those for data transfer

5To reduce library overhead for filters that have small work functions, the command actually

accepts an additional parameter that specifies the number of iterations to run the work function in

each cycle through the run list. Alternatively, the compiler can coarsen the work function directly.

41



PPE SPE

Continually polls for command

completion messages from SPEs.

Continually polls for mailbox mes-

sages while running active com-

mands.

(1) User creates new group and adds

commands. Command data is writ-

ten to entry in groups table.

User issues group. Sends mailbox

message to SPE.

Receives and unpacks mailbox mes-

sage. Copies command data (us-

ing DMA) from table entry to local

store at specified LS address.

After copying command data, adds

new commands to dependency

graph.

· · ·

When command(s) complete,

writes bitmap of completed ID(s)

to PPE.

Receives command completion mes-

sage and calls user-defined callback.

Inside callback, user sets up and is-

sues new groups if desired. Repeats

from (1).

Figure 3-4: SPE control protocol. Italicized text represents actions performed by user

code. All other actions are performed by library code.
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commands, implement a simple state machine, storing state variables in temporary

space in command data. Commands that are queued (have dependencies that have

not yet completed) are not placed on the run list and incur no overhead for commands

that are running; this allows the user to queue commands according to convenience,

with no penalty.

Commands that perform DMA, such as data transfer commands, can wait for

DMA operations to complete after starting them. While waiting, the command is re-

moved from the run list, incurring no overhead for commands that are still running.

The SPE continues to run other active commands while the DMA is in progress,

providing communication–computation concurrency. Once the DMA operation com-

pletes, the command is re-added to the run list and the state machine in the command

handler will continue where it left off.

DMA completions and inbound mailbox messages are checked via polling instead

of interrupts. The library framework allows this internal functionality to be imple-

mented simply as other commands:

• A command that polls for DMA completions and wakes other commands. This

command also sends queued command completion messages to the PPE.

• A command that polls the inbound mailbox for new command groups from the

PPE. This command must perform DMA to copy command data for the group

into local store, and does so using the standard mechanism.

The library framework causes polling to be done once every cycle through the run

list.

From an implementation perspective, the framework does not seem to add sig-

nificant complexity. In particular, the handlers for data transfer commands have

a number of states and consist of a large outer switch statement. However, data

transfers, which involve waits, would be fairly complex in any case, and the only ob-

fuscation forced by the framework is that the otherwise linear structure of the handler

function is broken up by switch cases. The framework has the advantage of treating

all commands uniformly – any command handler can perform a data transfer – and
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thus it allows the library to be easily extended with new commands.

From an efficiency perspective, the run list involves multiple branches that cannot

be predicted and does add some overhead to an SPE’s main task of running filter

work functions. However, this is generally a small fraction of the time spent in even

slightly computation-intensive work functions. The run list framework is also not

fair in scheduling multiple filter run commands: instead of sharing the SPE equally,

they are given time proportional to the time spent in a single iteration of their work

functions. However, even a single active filter run command makes full use of an

SPE, and there is commonly only a single running filter (in addition to data transfer

commands).

The library completely avoids interrupts, and consequently relies on co-operative

multitasking. This was done for a number of reasons. Foremost, the granularity of

a filter work function, which typically performs a small amount of work, provides a

natural unit of time for switching between commands. SPEs have no timer interrupt;

regardless, no timer interrupt could provide the granularity required: a work function

of a typical filter might take tens of microseconds to run. In addition, the large

number of registers on SPEs makes register saving and restoring time-consuming if

interrupts were to be used for DMA completions and inbound mailbox messages. The

current framework also avoids any possibility of race conditions when implementing

data transfer commands that access buffers: when a data transfer command handler

is executing, all filters are between work function iterations and it is the only code

accessing the buffer’s head and tail pointers.

Since polling is done only at one specific point in the run list, additional latency

is introduced into commands that perform DMA. However, this has no effect as long

as the user can overlap data transfer commands with computation.

Library code occupies approximately the first 16 KB of local store. The remainder

is available for use by filter code, filter state, buffers, and the stack.
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3.5.3 Data Transfer Implementation

Data transfer between two buffers on different processors involves additional synchro-

nization between the processors. In particular, the source processor communicates to

the destination SPE (SPE to memory data transfer will be discussed later later) i)

that data is available in the source buffer and ii) the value of the source buffer’s head

pointer, so the destination buffer knows where to copy data from. The interaction

between a pair of corresponding data transfer commands is given in figure 3-5:

Source Destination

Writes head pointer (using DMA)

to destination buffer’s control

block.

Polls for head pointer from source

processor.

Polls for acknowledgement from

destination SPE.

After receiving head pointer, starts

DMA for actual data.

After copying all data, writes ac-

knowledgement to source buffer’s

control block.

After receiving acknowledgement,

completes.

After write completes, completes.

Figure 3-5: SPE–SPE data transfer protocol.

The actual copying of data is done in a “pull” manner by the destination SPE. The

entire transfer may require more than one DMA operation when the total transfer

size is larger than Cell’s maximum 16 KB DMA size, or when either buffer wraps

around. After starting a single DMA operation, the destination SPE waits for it to

complete before starting the next (during this time, the command is removed from

the run list and incurs no overhead).

Polling on both processors is done by checking the control block in the command
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handler and, if not successful, immediately returning to the run list. The next poll

occurs when the command handler is run again the next time through the run list.

Transfers where the source buffer is located in memory (and thus handled by the

PPE) differ slightly from the protocol presented above. The PPE can use the comple-

tion of the data transfer command on the destination SPE as the acknowledgement.

Transfers where the destination buffer is located in memory require separate han-

dling. Although the PPE can start DMA operations from SPE local store, PPE-

initiated DMA is less efficient and having PPE code handle transfers places an addi-

tional load on the PPE, which must service all SPEs. Instead, transfers to memory

are performed in a “push” manner that is approximately the reverse of the protocol

described above. The PPE uses the completion of the data transfer command on

the source SPE as the acknowledgement; in this manner, polling other than for com-

mand completion messages is completely avoided on the PPE and multiple transfers

to/from memory place no extra overhead on the PPE.

A single active data transfer command on an SPE does not make full use of the

MFC, since it starts a single DMA operation and waits for it to complete before start-

ing another. However, this is offset by two considerations: i) there should typically

be at least two active data transfer commands, one for the input and one for the

output buffers and ii) when double-buffering is done via the dependency graph, the

slight increase in data transfer latency should have no effect.

For double-buffering to be successful, a filter run command that is active concur-

rently with data transfer commands must return to the run list enough times for the

data transfer commands to be able to run completely. As a consequence, filter run

commands should specify at least three or four iterations. In practice, most filter

work functions produce and consume relatively small amounts of data per iteration,

and this can be easily met even with relatively small buffer sizes.
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Unaligned Data Transfers

Data transfers that do not begin on a quadword boundary6 require special handling,

since the Cell architecture requires DMA operations of quadword size or larger to

be quadword-aligned. It is not safe to DMA the entire quadword that contains the

source buffer’s head pointer directly into the destination buffer, since this overwrites

data before the end of the destination buffer with data from before the front of the

source buffer, which may be invalid (figure 3-6a). Treating the unaligned portion

of this quadword as a series of 1-, 2-, 4-, and 8-byte DMA operations (figure 3-6b)

produces a large amount of DMA overhead and is a poor use of Cell’s communication

network.

Instead, the destination SPE DMAs the quadword from the source buffer into the

destination buffer’s control block, instead of directly into the buffer. When the DMA

completes, the destination SPE writes only the valid portion of quadword into the

destination buffer.7 This is illustrated in figure 3-6c. The library uses intrinsics to

avoid an expensive for loop. For transfers to a destination buffer located in memory,

the source SPE DMAs the quadword to the destination buffer’s control block and the

PPE writes the valid portion of the quadword into the destination buffer using VMX

intrinsics after the source command completes.

6Where the head pointer of the source buffer and the tail pointer of the destination buffer are

not aligned on a quadword.
7This is actually a read-modify-write operation, but it is done by the SPU, not the MFC.
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Destination Source

quadword boundary

tail head

SPU

DMA

(a)

(b)

(c)

Figure 3-6: Different ways of handling unaligned data transfers. (a) is incorrect, since
it overwrites data in the destination buffer with invalid data from the source buffer.
(b) is correct but involves many DMA operations, and is less efficient. (c) is the
actual method implemented.
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Chapter 4

Mapping StreamIt Patterns to the

Runtime Library

There are a number of common execution patterns that can be used to run a StreamIt

program (see section 2.1.3). To illustrate how these patterns can be mapped to

the runtime library for Cell, we will refer to the FFT StreamIt benchmark as a

concrete example. This program performs a 256-element fast Fourier transform. The

program’s stream graph (figure 4-1) consists of a single pipeline of 15 filters. Every

filter in the pipeline is stateless (and hence data-parallel) and does not peek. A single

complete execution of the stream graph processes a single set of 256 input elements

(512 floats), producing the same number of output elements.

Data-parallel filters are the simplest to map to the library. The entire FFT pipeline

can be fused into a single data-parallel filter that pops and pushes 512 floats per work

function iteration. The fused filter can be data-parallelized over many SPEs: pseu-

docode to do this is illustrated in figure 4-2. The ext ppu spu ppu ex library function

starts an extended operation that loads the filter, allocates its buffers, and runs it for

a large number of iterations.1 The line containing spulib poll while synchronizes all

SPEs; it returns only when all SPEs have finished and the callback has been run for

each SPE.

1The user still specifies all major parameters – for example, the addresses to allocate buffers at

and how many iterations each filter run command runs for.
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Figure 4-1: Stream graph for 256-element FFT. A single execution of the stream
graph pops and pushes 512 floats, since each element is a complex number whose
components are interleaved on tapes.
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int busy; 

void callback(int tag) { 
busy--; 

}

initialize rate structure with filter rates 
for (int i = 0; i < num_spu; i++) { 

initialize layout structure with LS addresses of filter and buffers for 
this SPE 

ext_ppu_spu_ppu_ex(&layout, &rates, input_buffer, output_buffer,
iters, &callback, arbitrary_tag);

}
busy = num_spu;
spulib_poll_while(busy != 0); 

f f f

SPEs

tim
e

Figure 4-2: Pseudocode for running a data-parallel filter. The figure on the right
represents the state of each SPE as time passes. The horizontal line indicates syn-
chronization by the PPE.

Course-grained software pipelining [9] can be implemented similarly. Typically,

the user will have assigned each filter in the steady state to an SPE and allocated

and populated a buffer in memory for each channel. Pseudocode to execute a single

iteration of the steady state is illustrated in figure 4-3. Again, the line containing

spulib poll while synchronizes all SPEs; this is necessary to ensure that sufficient in-

put data has been produced for every filter in the next steady state iteration. For

efficiency, the steady state should be sufficiently coarsened to amortize the overhead

while SPEs are switching between filters and thus not performing any computation.

Both patterns presented so far involve no direct SPE–SPE communication. An al-

ternative implementation for FFT partially fuses the 15 filters in the StreamIt pipeline

into a number of library filters, which are simultaneously run on different SPEs (fig-

ure 4-4). These SPEs can transfer data between local stores directly, taking advantage

of Cell’s on-chip communication network and avoiding the extra latency to memory,

as well as preventing memory from possibly becoming a bottleneck. Pseudocode to

do this is illustrated in figure 4-5.

More complex scheduling choices require the user to provide more complex call-

back functions. For example, the communication overhead of loading a new filter

onto an SPE can be hidden if the load is performed while the old filter is still running

its last iterations.
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int busy; 

void callback(int spe_id) { 
if (finished all filters on this SPE) { 

busy--; 
} else { 

ext_ppu_spu_ppu_ex(next filter on this SPE, &callback, spe_id); 
}

}

for (int i = 0; i < num_spu; i++) { 
ext_ppu_spu_ppu_ex(first filter on this SPE, &callback, i); 

}
busy = num_spu;
spulib_poll_while(busy != 0); 

f00

f01

f0i

f10

f11

f20

f21

f1j

f2k

SPEs

tim
e

Figure 4-3: Pseudocode for running a course-grained software pipeline. The figure on
the right represents the state of each SPE as time passes. Horizontal lines indicate
synchronization by the PPE.

The library allows the user to treat filters as individual schedulable entities, instead

of having to consider complex lower-level operations. The pseudocode in figure 4-2

can be compared to the SPE code required to execute the same pattern (a single

fused data-parallel filter) without using the library, illustrated in figure 4-6.

This code is not overly complex, and will always be more efficient than using the

library. However, this code is also specific to the filter and the execution pattern.

The fused filter in FFT does not peek, and conveniently produces and consumes

amounts of data that are compatible with Cell’s DMA alignment requirements. The

code would have to be significantly changed if a filter with slightly different rates

were substituted. If multiple filters need to be run on an SPE, the code would then

acquire additional logic to switch between filters. To run filters in an SPE–SPE

pipeline, additional code would be needed to synchronize between SPEs. Using the

library, the user does not need to deal with any of this.
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FFTReorderSimple_512
FFTReorderSimple_256
FFTReorderSimple_128

FFTReorderSimple_64
FFTReorderSimple_32
FFTReorderSimple_16

FFTReorderSimple_8
CombineDFT_4
CombineDFT_8

CombineDFT_16
CombineDFT_32

CombineDFT_64
CombineDFT_128

CombineDFT_256
CombineDFT_512

memory

Figure 4-4: Pipelining FFT over six SPEs.

int busy; 

void callback(int tag) { 
busy--; 

}

for (int i = 0; i < num_spu; i++) { 
initialize layout structure with i) LS addresses of filter and buffers on this SPE and ii) addresses 

of opposing buffers on previous and next processors in pipeline 
initialize rate structure with filter rates 
ext_spu(&layout, &rates, iters, &callback, arbitrary_tag);

}
busy = num_spu;
spulib_poll_while(busy != 0); 

Figure 4-5: Pseudocode for setting up an SPE–SPE pipeline.

4.1 Splitters and Joiners

In general, the type of fine-grained data reorganization performed by round-robin

splitters and joiners cannot be directly implemented using Cell’s DMA mechanism,

which has strict alignment requirements. However, since the library supports filters

with multiple input and/or output tapes, a compiler can simply define separate filters
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float buf[4][8][512] __attribute__((aligned(128))); 

int n = spu_read_in_mbox() >> 3; 

unsigned int addr = spu_read_in_mbox(); 
mfc_get(&fft_constants, addr, sizeof(fft_constants), 0, 0, 0); 
mfc_write_tag_mask(1); 
mfc_read_tag_status_all(); 

addr = spu_read_in_mbox(); 
unsigned int inaddr = addr, outaddr = addr; 
int inslot = 0, runslot = 0, outslot = 3; 

mfc_get(buf[inslot], inaddr, sizeof(buf[0]), inslot, 0, 0); inaddr += 8 * 2048; n--; 

mfc_write_tag_mask(1 << inslot); inc(inslot); 
mfc_get(buf[inslot], inaddr, sizeof(buf[0]), inslot, 0, 0); inaddr += 8 * 2048; n--; 
mfc_read_tag_status_all(); 
for (int i = 0; i < 8; i++) work(&fft_constants, buf[runslot][i], buf[runslot][i]); 
inc(runslot); 

while (n != 0) { 
 mfc_write_tag_mask((1 << inslot) | (1 << outslot)); inc(inslot); inc(outslot); 
 mfc_get(buf[inslot], inaddr, sizeof(buf[0]), inslot, 0, 0); inaddr += 8 * 2048; n--; 
 mfc_put(buf[outslot], outaddr, sizeof(buf[0]), outslot, 0, 0); outaddr += 8 * 2048; 
 mfc_read_tag_status_all(); 

for (int i = 0; i < 8; i++) work(&fft_constants, buf[runslot][i], buf[runslot][i]); 
 inc(runslot); 
}

mfc_write_tag_mask((1 << inslot) | (1 << outslot)); inc(outslot); 
mfc_put(buf[outslot], outaddr, sizeof(buf[0]), outslot, 0, 0); outaddr += 8 * 2048; 
mfc_read_tag_status_all(); 
for (int i = 0; i < 8; i++) work(&fft_constants, buf[runslot][i], buf[runslot][i]); 

inc(outslot);
mfc_put(buf[outslot], outaddr, sizeof(buf[0]), outslot, 0, 0); 

mfc_write_tag_mask(0xf); 
mfc_read_tag_status_all(); 
spu_write_out_mbox(0); 

Figure 4-6: SPE code for hand-coded implementation of data-parallel fused FFT.
The three bolded calls to work actually run the fused work function; the rest of the
code performs double-buffered data transfers.

for each splitter and joiner. A compiler can also fuse a splitter or joiner with the

upstream or downstream filter, respectively; the resulting filter has a much lower

communication–computation ratio than an independent splitter or joiner.

The user can ignore duplicate splitters as long as the output of the upstream

filter is buffered into memory. Because multiple PPE buffers can refer to the same

data region, no duplication of data in memory is necessary. However, if the filters

downstream of the splitter run on different SPEs, the same data must be copied to
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the local store of each SPE.

4.2 Runtime Checks

The library implements a number of runtime checks that can be enabled or disabled

at compile time. When enabled, the library validates buffers accesses to ensure that

they contain sufficient data/space, and performs additional checks to ensure that

issued commands are consistent. While this cannot identify all bugs in a schedule or

filter work function, it has nonetheless been very useful during the development of

the library, the dynamic scheduler, and test programs; it has often exposed bugs that

would otherwise only appear as a hung program or incorrect output.

4.3 Filter Code Limitations

To the author’s knowledge, in general GCC is unable to easily generate filter code

that contains no absolute loads or branches. As a result, currently code for all filters

must permanently occupy space in SPE local store. This does not significantly affect

most FFT implementations, since the program’s work functions are quite small.
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Chapter 5

Dynamic Scheduling Using the

Runtime Library

The dynamic scheduler is implemented as a layer on top of the runtime library. Like

the library, it is designed for but not specific to StreamIt: it can schedule any acyclic

stream graph where all filters have static rates, subject to some additional limita-

tions.1 A StreamIt program can be converted filter-by-filter into input to the dynamic

scheduler, or a compiler can first perform high-level optimizations that modify the

original stream graph.

We first discuss the advantages offered by a dynamic scheduling approach in sec-

tion 5.1 before discussing the interface and implementation of the actual scheduler in

sections 5.2 and 5.3.

5.1 Dynamic Scheduling vs. Static Scheduling

For stream graphs that are “well-behaved”, dynamic scheduling generally does not

present any advantages over static scheduling. Dynamic scheduling inevitably involves

additional communication and scheduling overhead due to extra filter loading and

unloading, buffer management, and scheduling computation. When all filters in a

program are data-parallel, a static scheduler can make full use of all SPEs by simply

1The dynamic scheduler places a maximum limit on the degree of any node in the stream graph.
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executing each filter in turn on all SPEs, with a sufficient coarsening of the steady

state to amortize filter load/unload and SPE synchronization overhead. The optimal

situation results when the compiler can fuse all filters into a single data-parallel filter;

this produces the minimum possible communication.

Even when filters are stateful and thus cannot be data-parallelized, static software

pipelining techniques [9] can make full use of SPEs when the compiler has an accurate

static work estimator and can divide filters in a steady state evenly across SPEs.2 In

addition, no “unpredictable” cache misses or lengthy communication delays that can

skew a static work estimate are possible on the Cell architecture.

Dynamic scheduling becomes beneficial when filters are not “well-behaved”: when

it is difficult to statically balance load across SPEs, difficult to estimate the amount of

work done by filter work functions, or work functions perform widely varying amounts

of work through the execution of the program. In these situations, dynamic scheduling

may be able to deliver better load-balancing than static scheduling.

A dynamically scheduled program can be run on varying numbers of processors

without requiring recompilation or the reanalysis that complex static schedulers would

need to perform, and is also tolerant of changes in the availability of processors while

the program is running. In addition, for stream graphs that contain filters with

dynamic rates, it may not be possible to statically predict how many times filters

will be run, and the balance of work in the stream graph may change as the program

is run. In this case, only dynamic scheduling is able to shift workload to different

portions of the stream graph as needed.3

5.2 User Interface

The user provides as input to the dynamic scheduler a complete description of the

stream graph, specifying filters and the channels that connect them. Rates for all

filters must be specified. Duplicate splitters can be handled by setting parameters of

2A single stateful filter with a heavily imbalanced work function creates a bottleneck, but dynamic

schedulers are also faced with this problem.
3However, the current dynamic scheduler implementation does not support dynamic rates.
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channels; round-robin splitters and joiners must be defined as separate filters.

5.3 Implementation

The Cell architecture’s communication network provides very high memory band-

width. The design of the dynamic scheduler assumes that memory will never be a

bottleneck (a hypothesis that was confirmed by experiments; see chapter 6), and the

dynamic scheduler buffers all output produced on SPEs to memory. The scheduler

performs dynamic course-grained software pipelining on the stream graph; if suffi-

cient data can be buffered in all channels at all times, pipeline stalls can be avoided

and all SPEs can be fully utilized. While SPE–SPE communication is more efficient

than SPE–memory communication, SPE local store is generally too limited to store

the buffering needed for software pipelining, and thus the scheduler never executes

SPE–SPE pipelines; this avoids having to deal with work imbalances between pairs

of adjacent filters. At any time, any two SPEs will typically be operating on data

from widely separated iterations of the program.

At startup, the dynamic scheduler allocates a large4 buffer in memory for each

channel; this is used to buffer the output of the upstream filter to provide input for the

downstream filter. At any time, for any specific filter, the amount of data available

in its input channels and amount of space available in its output channels, along with

its rates, determines the maximum number of iterations that the filter can be run for.

The scheduler selects filters to run on SPEs based on a metric computed from

the maximum number of iterations and certain filter properties (see below). When a

filter is selected to run on an SPE, it is scheduled for a limited but fairly large number

of iterations in order to amortize the cost of loading it. Filters run for their entire

allotment of iterations; however, allotments are kept small to allow the scheduler to

quickly schedule another filter if necessary in response to the changing state in the

stream graph.

A replacement filter for an SPE is selected when the current filter scheduled on

41 MB in the current implementation, but this can be adjusted.
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the SPE has almost finished running for all of its allotted iterations. While the

current filter is still running, the scheduler issues additional commands to load the

new filter, allocate its buffers, and transfer data into its input buffers from memory;

this communication is overlapped with the computation done by the current filter.

When the replacement filter is the same as the current filter, this additional work

can be avoided. Finally, the first command to run the new filter is queued after the

last command to run the current filter. When the replacement filter is selected early

enough, it will be set up on the SPE before the current filter finishes running, ensuring

that it can start running as soon as the current filter finishes. When the current filter

has completed all of its allotted iterations, it is unloaded and can then be scheduled

on another SPE.

The dynamic scheduler can run multiple instances of data-parallel filters on mul-

tiple SPEs at the same time. A data-parallel filter is still selected by the same metric

as other filters; it will only be run on more than one SPE at once if it is significantly

better than other filters.

The current metric implemented is very simple: it prioritizes filters based on the

amount of data the state of their input and output channels allow them to consume

and produce, respectively. However, the filter that is currently running on an SPE

is prioritized when considered for scheduling on the same SPE; this effectively causes

filters to be run for as long as possible on an SPE, with no load overhead, while

no other filters are significantly better. Other more complex metrics can be easily

substituted.

When the dynamic scheduler encounters a pipeline, the filter selection metric

quickly causes all filters in the pipeline to be run sufficiently to generate some data

in every channel buffer. Thereafter, the sequence of filter executions selected by the

scheduler appears to perform software pipelining, although without a recognizable

steady state.

60



Chapter 6

Performance

Performance evaluation for the runtime library and dynamic scheduler was conducted

by comparing different implementations of the FFT StreamIt program described in

chapter 4. Six different implementations were tested:

1. FFT pipeline fused to single filter. All other infrastructure hand-coded and

optimized.

2. Single fused filter, executed data-parallel using the library.

3. Full FFT pipeline, executed using dynamic scheduler, filters not specified as

data-parallel.

4. Full FFT pipeline, executed using dynamic scheduler, filters specified as data-

parallel.

5. Single fused filter, executed using dynamic scheduler, specified as data-parallel.

6. FFT pipeline partially fused to six filters, pipelined across six SPEs with direct

SPE–SPE communication.

The resulting programs were executed on PlayStation 3 hardware, which only pro-

vides six usable SPEs. During each execution, a program processed 10,000 iterations

of data (approximately 20 MB). Each program iteration performs 16,384 floating
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point operations, for a total of 164 MFLOP. Runtimes for one and six SPEs are given

in figure 6-1 (file I/O time is excluded).

1 SPE 6 SPEs
Time Run % Work % Time Run % Work % Speedup

1 396.1 66.6 5.95
2 401.0 100.0 99.2 67.2 99.7 98.8 5.97
3 545.9 99.6 91.8 91.7 99.2 91.4 5.95
4 91.9 99.0 91.2
5 401.0 100.0 99.2 67.6 99.7 98.8 5.93
6 86.2 95.9 92.2

Figure 6-1: Performance of different implementations of FFT.

The Time column gives the total time SPEs ran for, excluding one-time initial-

ization done at the start of the program. Times are in milliseconds. For the five

implementations that used the library, additional statistics maintained by the library

are given. The Run % column gives the percentage of total time the SPE had an

active filter run command. The remainder is overhead due to either i) durations when

SPEs do not have useful work to do (such as when waiting for filters to be loaded) or

ii) inadequate double-buffering of input or output data. In both cases, the scheduler

(or the nature of the program) creates insufficient communication–computation con-

currency. The Work % column gives the percentage of total time actually spent in

the work function. The remainder represents the total overhead added by the library

or caused by the scheduling algorithm. The large number of iterations tests ran for

smoothes out any one-time execution startup overhead. For the tests involving six

SPEs, the percentages given are for the SPE that reported the greatest work percent-

age. The Speedup column gives the speedup relative to the same implementation on

one SPE, where applicable.

Not surprisingly, hand-coded implementation (1) demonstrates almost perfect lin-

ear speedup on six SPEs.

Comparing results for implementation (2) to (1), the overhead added by the library

is around 1%. Run % is high, although not exactly 100% due to the overhead of

starting a long-term filter execution (loading the filter and allocating and attaching
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buffers). For both (1) and (2), statistics for all SPEs were almost identical; this is

not surprising given that the fused filter’s work function performs a constant amount

of work per iteration.

For implementations (3) and (4), which involved the full pipeline on the dynamic

scheduler, all six SPEs reported similar statistics (both absolute and percentage),

indicating that the scheduler can make equal use of all available SPEs. Compared

to implementation (2), these implementations are 36% slower. However, a large part

of this can be accounted for by the observation that the total time spent in work

functions in these implementations is 26% greater. This is due to slightly more

efficient code that is generated for the fused filter.

Run % is slightly lower than in implementation (2), but still fairly close to 100%,

and speedup on six SPEs is still almost perfectly linear; this indicates that the dy-

namic scheduler has no difficulties keeping all SPEs supplied with work. Moreover,

it validates the critical assumption made in the design of the dynamic scheduler: the

Cell architecture’s memory bandwidth is indeed sufficient to perform all buffering to

memory, avoiding SPE–SPE communication entirely. However, the lower Work %

indicates that the additional commands issued to SPEs by the dynamic scheduler to

constantly switch filters do create a noticeable overhead: 8.6% of total time, compared

to 1.2% for the data-parallel, fused, statically-scheduled implementation.

Not surprisingly, the almost identical results for implementations (5) and (2) in-

dicate that the dynamic scheduler can execute a single fused data-parallel filter just

as efficiently as a static schedule.

Implementation (6), which pipelines multiple filters across SPEs, produces differ-

ent results than the others. In this case, a single filter/SPE in the middle of the

pipeline is a significant bottleneck; this is not surprising, since 15 filters were fused

into six. Although total runtime is significantly worse than the hand-coded or fused

data-parallel implementations, no SPE except for the bottleneck was fully utilized:

two other SPEs had Work % around 60%. In general, this illustrates the difficulty

of performing SPE–SPE pipelining. Although this implementation keeps communi-

cation on-chip (except for input and output to the pipeline), work imbalances make
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it difficult to fully utilize all SPEs.
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Chapter 7

Conclusions

Streaming languages such as StreamIt provide an excellent way to target new multi-

core architectures while placing minimal parallelization burden on the programmer.

The Cell architecture is designed to offer high peak performance, and is very suited

for streaming applications. This thesis described a runtime framework for streaming

applications on Cell consisting of i) a runtime library that provides high-level prim-

itives for schedulers and ii) a dynamic scheduler for stream graphs. The framework

greatly simplifies the task of a streaming language compiler or scheduler.

The real benefit provided by the framework, in particular the runtime library,

is that it allows a scheduler to think directly in terms of filters and how they are

scheduled instead of lower-level architecture-specific details. It requires far less code

to implement scheduling patterns on top of the library than directly on Cell hardware,

and the library also allows far more complex patterns to be implemented. The runtime

library running the data-parallel fused FFT benchmark produces a reasonably small

amount of overhead (1.2%), and the dynamic scheduler running the pipelined version

of the benchmark produces an acceptable amount of overhead (8.6%).

7.1 Future Work

The runtime library currently provides two orthogonal branches that can be further

developed. First, it is important to reduce the 9% overhead observed in the pipelined
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FFT tests involving the dynamic scheduler. This overhead is entirely due to the cost

of the run list when many commands are active, and it can probably be significantly

reduced by optimizing library code, although it is also likely that doing so would

make the SPE library implementation, especially the run list, much more specialized.

In addition, the library currently lacks real support for filters with dynamic rates –

the library simply leaves the responsibility of tracking rates to the scheduler entirely.

Feedback from the library on how much data filters have produced and consumed

would be very useful for schedulers; ultimately, the library should have some way of

running filters with unbounded dynamic rates. The latter would require a general

mechanism to suspend dynamic rate filters in the middle of executing their work

functions.

The dynamic scheduler can be extended in many directions. The simplest addi-

tions involve adjusting the metric used for selecting filters to test and improve the

performance of the dynamic scheduler as work becomes more and more imbalanced

between filters. In addition, an important advantage of dynamic scheduling in general

is the ability to react to dynamic rate filters and the runtime distribution of work in

the stream graph; implementing robust support for dynamic rate filters in the stream

graph would drastically increase its usefulness.
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Appendix A

Runtime Library Interface for User

Code

This appendix describes in detail the interface the runtime library provides to user
code on the PPE. In particular, section A.3 gives a full list of library commands and
section A.4 discusses how groups are set up and issued.

SPEs are identified by ID, starting from 0.

A.1 Addresses

On the SPEs, the library occupies a small amount of space at the bottom of local
store. The remainder is a single contiguous region that the user can use for filter
code, filter state, and buffers. (The user must manually ensure that enough space is
left for the stack, which grows downward from the top of local store.)

With respect to a particular SPE, the library uses three types of addresses:

• Memory addresses (type void *), for objects anywhere in the program’s address
space (including the local store of other SPEs). When unqualified, the term
address refers to a memory address.

• Local store (LS) addresses (type LS ADDRESS), for objects in the SPE’s local
store.

• User addresses (type SPU ADDRESS), for objects in the SPE’s local store, rel-
ative to the start of the data region available to the user.

Internally, the library uses only memory and LS addresses. For ease of use, the
external interface largely uses user addresses in place of LS addresses. The library
provides functions to convert between these addresses:

spu lsa(spu id, user addr) : LS ADDRESS
Converts a user address on an SPE to a LS address.

spu addr(spu id, user addr) : void *
Converts a user address on an SPE to a memory address.
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A.2 PPE Buffers

The control block for a PPE buffer is represented by a BUFFER CB structure. This
must be quadword-aligned. Important fields in this structure include:

head, tail: Head and tail pointers (offsets into the data region).

data : void *: Pointer to data region.

Library functions that deal with buffers include:

alloc buffer(size, circular, data offset) : BUFFER CB *
Allocates memory for a buffer. The buffer must be freed by calling dealloc buffer.

size: Size of buffer in bytes.

circular : bool: Whether buffer is circular; if so, size must be power of two.

data offset: Initial value of buffer’s head/tail pointers.

malloc aligned(size, alignment) : void *
Allocates memory with a specific alignment. The memory must be freed by
calling free aligned.

size: Number of bytes to allocate.

alignment: Alignment in bytes (must be power of two).

init buffer(buf, buf data, size, circular, data offset)
Initializes a buffer control block.

buf : BUFFER CB *: Pointer to an existing buffer control block.

buf data : void *: Pointer to the data region for the buffer. If this is NULL, mem-
ory will be allocated for buffer data which must be freed with free aligned.

size, circular, data offset: Same as alloc buffer.

duplicate buffer(dest buf, src buf)
Makes a copy of a buffer control block. The destination buffer shares the same
data region as the source buffer and initially has the same head/tail pointers.

dest buf : BUFFER CB *: Pointer to destination buffer.

src buf : BUFFER CB *: Pointer to source buffer.

A.3 Commands

This section provides a full description of all commands that can be issued to an SPE.
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A.3.1 Filter Commands

load data Copies arbitrary data into the SPE’s local store. Can be used to copy
filter code onto the SPE.

dest da: User address to place data.

src addr: Address of the data in memory.

num bytes: Size of data in bytes.

All addresses and size must be quadword-aligned and -padded.

filter load Loads a filter onto the SPE.

filt: User address of the filter. Must be quadword-aligned.

The library places the control block for the loaded filter at this address,
and the filter’s state immediately after. There must be at least 128 bytes
in addition to the size of the state free.

desc: Pointer to a SPU FILTER DESC structure describing properties of the
filter.

The SPU FILTER DESC structure has the following fields:

work func: LS address of the filter’s work function in SPE local store.

state size: Size of the filter’s state. Must be quadword-padded.

state addr: Address of the permanent store for the filter’s state in memory.
Must be quadword-aligned. (Ignored if state size is 0.)

num inputs, num outputs: The number of input and output tapes the filter has,
respectively.

A structure for each filter can be initialized once at the beginning of the program
and reused for each filter load command (with modifications to the work func
field as filter code is moved around).

When this command becomes active, for stateful filters, the filter must not
be loaded on another SPE. The library is responsible for copying state from
memory. Stateless filters can be simultaneously loaded on multiple SPEs.

The filter’s code does not need to have been copied into local store at this time,
but it must reside in local store when the filter is run.

filter unload Unloads a loaded filter.

filt: User address of the filter.

For stateful filters, the library is responsible for writing state back to memory.
Unloading a filter does not affect its attached buffers.
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filter attach input, filter attach output Attaches an input or output tape of a loaded
filter to a buffer. Input and output tapes are separately 0-indexed.

filt: User address of the filter.

tape id: Index of the tape.

buf data: User address of the buffer.

filter run Runs a loaded filter for a specific number of iterations.

filt: User address of the filter.

iters: Total number of iterations to run.

loop iters: Number of iterations to run in one cycle through the run list, if
possible. (iters does not have to be a multiple of loop iters.)

This parameter scales up the work done by small work functions to reduce
library overhead. Increasing this until iters

loop iters
is around 5 should reduce

overhead while still leaving enough time to process other active commands.

When this command becomes active, the filter’s tapes must all be attached to
buffers and there must be sufficient data/space in the input and output buffers
for all specified iterations. While this command is active, it “uses” the front
ends of the input buffers and the back ends of the output buffers; the user must
ensure that no other commands (data transfer commands or another filter run
command) try to use those ends of those buffers.

A.3.2 Buffer Commands

buffer alloc Allocates a buffer on the SPE.

buf data: User address of the buffer. Must be aligned on 128 bytes.

The data region for the buffer starts at this address. The library places
the control block immediately before; there must be 128 bytes free before
this address in addition to size bytes after.

size: Size of buffer in bytes, must be power of two.

data offset: Initial values of buffer’s head/tail pointers.

buffer align Resets head and tail pointers of an empty buffer. This is typically done
in preparation for future data transfers to/from different opposing buffers (see
the data transfer commands).

buf data: User address of the buffer.

data offset: New values of buffer’s head/tail pointers.

The buffer must be empty when the command becomes active.
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A.3.3 Data Transfer Commands

Data transfer commands1 always occur in pairs. The number of bytes specified by
both commands in a pair generally must be the same (see section A.6 for exceptions).
The user must initialize buffer head/tail pointers such that after both commands in
a pair become active (on different processors), the head pointer of the source buffer
and the tail pointer of the destination buffer have the same offset in a 128-byte block.

Locally, when a dt in or dt out command becomes active, there must be sufficient
space or data in the buffer for the entire transfer, respectively. An active data transfer
command “uses” that end of the buffer and no other commands can try to use it.

In addition, for a specific processor, buffer on that processor, and end of that
buffer, the user must ensure that at any time there is at most active one data transfer
command over all other processors that involves that end of the buffer.

dt out front Source half of a command pair. Transfers data from the front of a buffer
on this SPE to a destination buffer on another SPE.

buf data: User address of the source buffer on this SPE.

dest buf data: Memory address of the destination buffer, which must be on
another SPE.

num bytes: Number of bytes to transfer out.

The user must ensure that the destination buffer has been allocated on the
destination SPE by the time this command becomes active.

dt out front ppu Source half of a command pair. Transfers data from the front of a
buffer on this SPE to a destination buffer in memory.

buf data: User address of the source buffer on this SPE.

dest buf: Address of the destination PPE buffer.

num bytes: Number of bytes to transfer out.

When this command is set up (see section A.4), the destination buffer must
already be allocated.

dt in back Destination half of a command pair. Transfers data into the back of a
buffer on this SPE from a source buffer on another SPE.

buf data: User address of the destination buffer on this SPE.

src buf data: Memory address of the source buffer, which must be on another
SPE.

src buf size: Size of the source buffer in bytes.

num bytes: Number of bytes to transfer in.

1This includes data transfer functions on the PPE.
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dt in back ppu Destination half of a command pair. Transfers data into the back of
a buffer on this SPE from a source buffer in memory.

buf data: User address of the destination buffer on this SPE.

src buf data: Address of the source PPE buffer.

num bytes: Number of bytes to transfer in.

When this command is set up, the source buffer must already be allocated.

dt out front ppu ex Special version of dt out front ppu (see section A.6). Additional
parameters:

tail overlaps : bool: See section A.6.

A.3.4 Miscellaneous Commands

null This command does nothing and completes immediately. Its main purpose is to
allow the user to add nodes to the dependency graph to simplify keeping track
of dependencies, such as when there is large fan-in/fan-out.

call func Executes an arbitrary function on the SPE (code for the function must
already be in local store). The function must have signature void ()(void).

func: LS address of the function.

A.4 Groups

The library provides 32 groups per SPE, numbered from 0 to 31. The following
functions are provided to set up and issue groups:

spu new group(spu id, group id) : SPU CMD GROUP *
Returns a pointer that identifies the specified group. Any existing commands
in the group are first cleared.

spu get group(spu id, group id) : SPU CMD GROUP *
Returns a pointer that identifies the specified group, without clearing existing
commands in it.

spu issue group(spu id, group id, user addr)
Issues all commands in the specified group. user addr specifies the user address
in the SPE’s local store that command data will be copied to. Command data
occupies a maximum of 64 bytes per command.

Each of the commands named in section A.3 can be added to a group by calling
the function:
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spu name(SPU CMD GROUP *, [command parameters, ]command ID,
number of dependencies[, list of dependency IDs])

: SPU CMD HEADER *

Command parameters are those listed for the command, in the given order. The
function returns a pointer to a SPU CMD HEADER structure that provides fields
that can be used to set dependencies directly:

num back deps: The number of dependencies this command has.

deps[]: Array of dependency IDs.

Most commands can have a maximum of 7 dependencies. The filter load, filter run,
and null commands can have a maximum of 15 dependencies.

Dependencies are specified as a list of command IDs. Dependencies are “resolved”
by an SPE when the group is issued, not when commands are added to the group.
However, the order in which commands are added to the group determines the order
that the SPE will consider individual commands to be issued in for dependency
purposes when the group is issued.

A.5 Command Completion

The user can choose to be notified via callback when commands issued to SPEs
complete. This callback must have the signature:

void ()(uint32 t spu id, uint32 t new completed, uint32 t all completed)

When the callback is called, new completed contains a bitmap of completed command
IDs that arrived in the most recent message from the SPE and all completed contains
a bitmap of all completed command IDs.

The user can retrieve a bitmap of all completed command IDs by calling:

spu get completed(spu id)

The user must acknowledge completed IDs before new commands with those IDs can
be issued by calling:

spu ack completed(spu id, bitmap)

The user can set callbacks individually for SPEs by writing to the field:

spu info[spu id ].spu complete cb

The function:

spulib poll()
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polls for command completion messages from SPEs. It returns after receiving a
command completion message (after running the user callback), or after having polled
all SPEs once in round-robin order. Typically, the user first issues commands to all
SPEs, then polls repeatedly until a flag is set, performing all work in the callback.

The library defines a second type of callback with the signature:

void ()(uint32 t tag)

This callback is used for PPE data transfer operations. The tag parameter is an
arbitrary tag the user specifies when starting the original operation.

A.6 PPE Data Transfers

The library provides two functions that are the PPE equivalents of the dt out front
and dt in back commands:

dt out front(buf, dest spu, dest buf data, num bytes, spu cmd id, tag)
Source half of a command pair. Transfers data from the front of a PPE buffer
to a destination buffer on an SPE.

buf: Address of the source PPE buffer.

dest spu: ID of the SPE containing the destination buffer.

dest buf data: User address of the destination buffer on the destination SPE.

num bytes: Number of bytes to transfer out.

spu cmd id: ID of the command on the destination SPE that handles the
opposing data transfer command.

The opposing command does not need to be currently issued. However,
no other command with this ID can be currently issued or issued before
that command.

tag: Arbitrary tag for the callback.

dt in back(buf, src spu, src buf data, num bytes, spu cmd id, tag)
Destination half of a command pair. Transfers data into the back of a PPE
buffer from a source buffer on an SPE. Parameters are similar as above.

The user can choose to be notified via callback when the PPE side of data transfers
completes by writing to the field:

spu info[spu id ].ppu dt complete cb

The tag received in the callback is whatever tag the user specified when starting
the operation. The callback for the PPE data transfer will always occur before the
callback for the completion of the opposing SPE command.

Because PPE buffers can be very large, the library provides two functions to
perform “extended” data transfers:
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dt out front ex(buf, dest spu, dest buf data, num bytes)

dt in back ex(buf, src spu, src buf data, num bytes)

The transfer size specified in these functions can correspond to the total transfer size
specified by a sequence of opposing data transfer commands issued to the SPE. The
PPE buffer must still have sufficient data/space for the entire extended transfer at
the time these functions are called. These functions do not result in callbacks.

For dt in back ex, after the last corresponding SPE data transfer command has
completed, the user must call:

finish dt in back ex head(buf, tail overlaps)

to write any unaligned data at the front of the transfer into the buffer. tail overlaps : bool
specifies whether unaligned data at the end of the transfer was handled “carefully”
and also needs to be written into the buffer. This is necessary when multiple SPEs
are writing to different parts of a shared data region. If so, the user must also call:

finish dt in back ex tail(buf)

75



76



Appendix B

Runtime Library Interface for

Filter Code

This appendix describes the interface provided by the library for writing filter code.
The interface consists of a set of C preprocessor macros for accessing filter state and
tapes. Throughout this appendix, the term user refers to the compiler or programmer
that is producing filter code.

B.1 Defining Filters

Each filter in a program must be assigned a unique name that identifies it. Code
for each filter should be placed in a separate source file to allow it to be compiled
separately (however, see section B.4 for limitations).

Inside the source file, the user must define the following preprocessor macros:

FILTER NAME: The name of the filter (must be a valid C identifier, except may start
with a digit).

HAS STATE
This is defined iff the filter is stateful. In order to use the provided macros to
access state fields, the user must define a structure that contains all state fields,
and typedef it to FILTER name STATE.

NUM INPUT TAPES, NUM OUTPUT TAPES: The number of input tapes and out-
put tapes the filter has, respectively. If either is not defined, it defaults to
1.

INPUT ITEM TYPE, OUTPUT ITEM TYPE: The C type for data items on all input
tapes and all output tapes, respectively.

Data items can be the standard integer or floating point data types, or struc-
tures. If data items are structures, their size should be a power of two to avoid
splitting a structure due to wrap-around.

All filter code is then emitted between:
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#include “beginfilter.h”

and

#include “endfilter.h”

The filter’s work function is defined by enclosing the body of the work function
between:

BEGIN WORK FUNC

and

END WORK FUNC

The C preprocessor expands these macros to a function with the proper signature for
the library.

B.2 State and Tape Access

Code within the work function has access to the filter’s state and tapes. Fields defined
in the state structure are accessed using the expression:

state.field

Input tape(s) can be accessed using the following macros. The t parameter is
specified iff the filter has more than one input tape to indicate which tape to access;
input tapes are 0-indexed.

pop([t])
Pops the item at the front of an input tape.

peek([t, ]n)
Returns the nth item from the front of an input tape. Items are 0-indexed; the
first item is item 0.

popn([t, ]n)
Removes the first n items at the front of an input tape and returns the last item
removed. Note that this returns the same item as peek([t, ]n − 1).

get input([t]) : INPUT ITEM TYPE *
Returns a pointer to the front of an input buffer. The user can treat this as an
array and read from it directly if its accesses do not require a wrap-around.

advance input([t, ]n)
Increments the head pointer of an input buffer by n items.

Output tape(s) can be accessed using the following macros. Output tapes are
separately 0-indexed.
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push([t, ]item)
Pushes an item onto the back of an output tape.

get output([t]) : OUTPUT ITEM TYPE *
Returns a pointer to the back of an output buffer. The user can treat this as
an array and write to it directly if its accesses do not require a wrap-around.

advance output([t, ]n)
Increments the tail pointer of an output buffer by n items.

B.3 Helper Functions

Helper functions that have access to a filter’s state and tapes are defined by enclosing
the body of the function between:

BEGIN FUNC(name, return type[, formal parameter list])

and

END FUNC

Functions defined this way can be called from any other function that has state and
tape access with:

CALL FUNC(name[, actual parameter list])

If necessary, functions can be declared before use with:

DECLARE FUNC(name, return type[, formal parameter list])

These macros are expanded by the C preprocessor into additional parameters that
pass along state and tape pointers.

Names for helper functions are decorated, so each filter has its own “namespace”.
Helper functions defined by one filter cannot be called from other filters.

Auxiliary functions that do not need to access a filter’s state or tapes can be
defined and called like normal C functions. To preserve the modularity of filter code,
each filter should have its own copy of these functions (however, see section B.4 for
limitations).

B.4 Additional Notes

Currently, restrictions in the C compiler force code for all filters to be statically com-
piled into SPE programs and permanently resident in local store. This relaxes many
of the recommendations given previously; for example, sharing auxiliary functions
between multiple filters becomes beneficial. Multiple filters can also be defined in a
single source file.

The user can either use the same set of filters on all SPEs, or define a unique set
of filters for each SPE. LS addresses of filter work functions are exported to user code
on the PPE as symbols named wf name, where name is the name of the filter.
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B.5 Example

The following code illustrates a filter that convert integers to floating-point numbers.
The filter has a single input tape and single output tape. In one iteration, it consumes
one integer and produces one float.

#define FILTER_NAME int_to_float

// #define HAS_STATE // stateless

#define NUM_INPUT_TAPES 1 // not necessary

#define NUM_OUTPUT_TAPES 1 // not necessary

#define INPUT_ITEM_TYPE int

#define OUTPUT_ITEM_TYPE float

#include "beginfilter.h"

BEGIN_WORK_FUNC

{

push(pop());

}

END_WORK_FUNC

#include "endfilter.h"

In practice, a compiler would probably scale up the filter’s work function many
times, or fuse it with other filters.
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