
Ubiquitous Memory Introspection

Qin Zhao1,2 Rodric Rabbah3

Saman Amarasinghe1,4 Larry Rudolph1,4 Weng-Fai Wong1,2

1 Singapore-MIT Alliance
2 National University of Singapore

3 IBM T.J. Watson Research Center
4 Massachusetts Institute of Technology

Abstract

Modern memory systems play a critical role in the per-
formance of applications, but a detailed understanding of
the application behavior in the memory system is not trivial
to attain. It requires time consuming simulations and de-
tailed modeling of the memory hierarchy, often using long
address traces. It is increasingly possible to access hard-
ware performance counters to count relevant events in the
memory system, but the measurements are coarse-grained
and better suited for performance summaries than provid-
ing instruction level feedback. The availability of a low
cost, online, and accurate methodology for deriving fine-
grained memory behavior profiles can prove extremely use-
ful for runtime analysis and optimization of programs.

This paper presents a new methodology for Ubiqui-
tous Memory Introspection (UMI). It is an online and
lightweight methodology that uses fast mini-simulations to
analyze short memory access traces recorded from fre-
quently executed code regions. The simulations provide pro-
filing results at varying granularities, down to that of a sin-
gle instruction or address. UMI naturally complements run-
time optimizations and enables new opportunities for online
memory specific optimizations.

We present a prototype runtime system implementing
UMI. The prototype has an average runtime overhead of
14%. This overhead is only 1% more than a state of the
art binary instrumentation tool. We used 32 benchmarks,
including the full suite of SPEC CPU2000 benchmarks, for
evaluation. We show that the mini-simulations accurately
reflect the cache performance of two existing memory sys-
tems, an Intel Pentium 4 and an AMD Athlon MP (K7). We
also demonstrate that UMI predicts delinquent load instruc-
tions with an 88% rate of accuracy for applications with a
relatively high number of cache misses, and 61% overall.
The online profiling results are used at runtime to imple-
ment a simple software prefetching strategy that achieves
an overall speedup of 64% in the best case.

1. Introduction

The migration from offline to runtime optimizations pro-
vides the unique ability to perform workload-specific opti-
mizations that are tailored to end-user scenarios. This pa-
per presents a practical simulation-based profiling method-
ology for use in an online setting. The methodology calls
for i) identifying frequently executed program regions dur-
ing execution, ii) selectively instrumenting some of their
operations and profiling their execution, and iii) period-
ically triggering a fast online mini-simulator to analyze
the recorded profiles and derive detailed performance sum-
maries, all while the application is running. It is not un-
common for offline simulators to use similar techniques to
reduce simulation time with sampling and functional fast
forwarding [4]. A key observation inspiring this work is
that similar ideas and even simpler heuristics are possible at
runtime.

The paper is focused on delivering detailed profiles of the
application behavior in the memory hierarchy, at the level
of individual instructions and addresses. Virtually all op-
timizations that attempt to mitigate the memory bottleneck
rely on accurate application-specific profiles of the mem-
ory hierarchy performance. For example, data prefetching
techniques are up to 60% more effective when they are tar-
geted at high miss rate memory references. Similarly, local-
ity enhancing optimizations can significantly benefit from
accurate measurements of the working sets size and char-
acterization of their predominant reference patterns. Ubiq-
uitous Memory Introspection (UMI) provides online and
application-specific profiling information that is necessary
for runtime memory-centric optimizations. As a result and
for the first time, UMI makes it possible for traditionally
offline simulation-based optimizations to run online.

1.1. Common Practice

It is not uncommon to use simulators to model the mem-
ory system behavior of benchmarks and application codes.

Table 1. Running time for a range of HW counter sample sizes, compared to UMI.
Sample Size 0 (native) 1 (UMI) 10 100 1K 10K 100K 1M
Time (s) 35.88 35.90 773.81 152.71 48.21 39.20 36.30 36.24
% Slowdown – 0.06 2056.66 325.61 34.36 9.25 1.17 1.00

Simulators are versatile and malleable, and can provide a
wide range of profiling detail. They are however invari-
ably slow, and often prohibitively time consuming for large
and realistic applications. For example, Cachegrind [20]
requires days to fully simulate the SPEC benchmark suite
using the reference input workloads. As a result, detailed
simulations are used for offline performance tuning and op-
timizations. They remain impractical for runtime memory
optimizations whether in a virtual machine, or in a general-
purpose code manipulation environment.

1.2. Worst Case Scenario For HW Counters

Increasingly, researchers have turned to hardware per-
formance counters to quickly generate performance profiles
that identify opportunities for optimizations. The counters
are extra logic added to the processor to track events (e.g.,
cache misses) with little overhead. Many existing proces-
sors provide hardware counters, and because of their low
overhead, they may naturally complement online optimiza-
tion systems. However counters are designed to provide
coarse summaries that span thousands of instructions. They
add significant overhead to provide context-specific infor-
mation, and gathering profiles at instruction granularity is
an order of magnitude more expensive. This is because the
counters generate interrupts when they saturate at a speci-
fied limit known as the sample size. The runtime overhead
of using a counter increases dramatically as the sample size
is decreased. A case study using one of the more memory
intensive applications from the SPEC CPU2000 benchmark
suite shows a 20× slowdown compared to native execution
when operating at near instruction level granularity. Table 1
summarizes the benchmark running time for 181.mcf op-
erating on its training input, with a single counter for mea-
suring the number of primary cache misses it suffers. The
sample size is varied from an allowed minimum size of 10
to an arbitrary maximum of 1M. The results were collected
using PAPI [23] on a 2.2GHz Intel Xeon processor.

It is readily apparent from the results that hardware coun-
ters are not well suited for the extraction of fine-grained de-
tails such as context information surrounding a cache miss
(e.g., an address sequence leading to a cache miss for indi-
vidual instructions).

1.3. Practical Alternative

UMI offers the intriguing alternative of observing short
runtime sequences of memory references, and analyzing

them using online mini-simulations to reasonably approx-
imate the memory system behavior of the host architecture.
The simulations can provide results to guide heuristics used
in online performance tuning mechanisms.

Ubiquitous memory introspection is carried out by judi-
ciously instrumenting hot code regions to profile the mem-
ory references that occur while the code executes. The
emphasis on frequently executed code applies the same in-
sight at the heart of existing virtual machines and binary in-
strumentation and optimization systems. The instrumented
code regions run periodically, and in bursts, to produce very
short memory reference profiles. The profiles provide a
brief history of the memory reference patterns. They are
periodically analyzed using simple heuristics that are effec-
tive and practical for an online setting.

The analysis can provide a high level of detail, compara-
ble to offline simulators. For example, a fast cache simula-
tor can process the profiles to identify load instructions that
are often likely to miss in the cache. Alternatively, a profile
may record the sequence of addresses referenced by a single
instruction, and then used to discover patterns suitable for
prefetching. UMI provides a level of profiling detail that is
not possible with hardware counters. Table 2 contrasts UMI
to existing profiling methodologies.

Table 2. Tradeoffs in profiling methodologies.
Simulators HW counters UMI

Overhead very high very low low
Detail Level very high very low high
Versatility very high very low high

1.4. Contributions

We present in this paper a conceptual framework for
ubiquitous memory introspection. We also present an im-
plementation of UMI that is transparent, fully automatic,
and lightweight. It is adaptive, accurate, inter-procedural in
nature, and yields context and flow sensitive profiling infor-
mation.

We used DynamoRIO [5] to build our prototype system,
although implementations in similar binary instrumentation
and optimization tools such as Pin [18] or Valgrind [20],
or in a Java virtual machine, are also feasible. The pro-
totype inherits DynamoRIO properties, and can be readily
applied to programs running on existing commodity hard-
ware. It does not require any programmer or user inter-
vention, nor does it require any modification or knowledge

of the program source code and symbol information, and
hence it works on any general-purpose program, legacy and
third party binaries. As an example, we successfully used
the prototype to profile several commonly used Linux desk-
top and server applications.

Our main observations and results are summarized as
follows:

• Periodic online mini-simulations of short memory ref-
erence profiles recorded from hot code regions are
sufficient to yield actionable profiling information for
runtime memory performance optimizers.

• We present a full prototype of a system implementing
UMI. We show that the average runtime overhead is
14% for the entire SPEC CPU2000 benchmark suite
using the reference input workloads. This overhead is
only 1% greater than existing state of the art binary
instrumentation tools.

• We show that for our two evaluation platforms (Intel
Pentium 4 and AMD Athlon K7), there is a strong cor-
relation between cache miss rates measured using UMI
and hardware counters.

• We also show that UMI leads to high correlation with
offline cache simulations. It identifies high miss rate
load instructions with 61% accuracy compared to the
Cachegrind cache simulator. The prediction accuracy
is significantly higher (88%) for applications that are
memory intensive. The profiling results are used in
an online optimization scenario to implement a sim-
ple software prefetcher that outperforms the Pentium 4
hardware prefetcher in the best case.

UMI offers a practical and versatile alternative to ex-
isting profiling methodologies. It naturally complements
runtime optimizations, and provides opportunities for new
kinds of online optimizations that are otherwise largely in-
feasible. Optimizations that use UMI can replace or en-
hance hardware techniques such as prefetchers and cache
replacement policies. UMI also provides opportunities to
introduce novel, dynamic, and adaptive optimization tech-
niques. As a radical example, UMI can be used to quickly
evaluate speculative optimizations that consider multiple
what-if scenarios. This can complement existing online
compilers, and may create opportunities for online learning-
based compilation and optimization systems.

1.5. Paper Organization

We present a conceptual overview of UMI in Section 2
and implementation details in Sections 3-5. In Section 6
we present an evaluation of our prototype in terms of its

runtime performance, and present empirical correlation be-
tween mini-simulations and hardware counters. In Sec-
tion 7 we show a more detailed correlation study that mea-
sures how well UMI predicts high miss rate load instruc-
tions. In Section 8 we demonstrate how to use the on-
line profiling information to implement a simple software
prefetcher. Sections 9 and 10 present related work and con-
clude the paper with final remarks.

2. Conceptual Framework

The thesis for this work is that online mini-simulations
using short memory reference profiles from hot code re-
gions can characterize memory system performance with
sufficient detail. The key insight enabling UMI is that nu-
merous virtual machines and binary instrumentation and
optimization systems already exist, and they provide a nat-
ural setting for online introspection and profile-driven opti-
mizations.

There are three basic components to a system that im-
plements ubiquitous memory introspection: the region se-
lector, the instrumentor, and the profile analyzer.

Region Selector. The first component is the hot code re-
gion selector. It dynamically identifies representative code
regions to instrument. Typically such regions are frequently
executed code fragments in an application. They may en-
compass loops or entire methods in a Java Virtual Machine,
or sequences of basic blocks promoted to an instruction
trace in binary code manipulation systems such as Pin or
DynamoRIO. Virtually all runtime code manipulation sys-
tems provide some form of hot code selection. We believe
they are readily amenable for UMI, and in essence provide
this first component for free.

We further refine the hot code region selector using a
sample-based methodology. This serves to further bias the
profiling toward frequently occurring instructions, and in-
creases the likelihood that UMI overhead is amortized well.
Sampling also provides a natural mechanism to adapt the
introspection according to the various phases of the appli-
cation lifetime. There are two sampling strategies. The
first uses a regular sampling period, and the second is
event driven. In either case, the region selector maintains
a counter for each hot code region. With each sample, the
program counter is inspected to determine its parent code
trace, and the counter for that trace is incremented. A code
region is selected for instrumentation when its counter sat-
urates at the frequency threshold. The counter is then reset
in anticipation of future sampling periods.

Instrumentor. The second component is the instrumen-
tor. It operates on a selected hot region to insert new in-

structions that instrument and profile the code. The appli-
cation alternates between instrumented and native code re-
gions. When the instrumented code is run, it generates short
profiles that record instruction addresses and the memory
locations they reference. The instrumentor is commissioned
with filtering the instructions in a code region such that only
informative operations are instrumented. The instrumentor
also determines the frequency with which to trigger the pro-
file analyzer.

Profile Analyzer. The profile analyzer or mini-simulator
is the third and final component in a system implementing
UMI. It analyzes the recorded memory reference profiles to
provide various forms of information relevant to an online
optimizer. It is customizable and in this paper we present
an example use of the analyzer as a fast cache simulator. It
can perform simple hit and miss accounting as a hardware
counter does. It may also simulate the hit and miss behavior
for individual instructions to identity those that are more
likely to miss. Such information is useful for optimizations
that dynamically perform data prefetching.

3. Prototype System

We extended DynamoRIO to perform UMI. Dy-
namoRIO is a dynamic binary rewriting framework for run-
time instrumentation and optimization [5]. The prototype
performs bursty profiling on running applications to collect
short memory reference sequences for frequently executed
code regions, and then uses a fast cache simulator to col-
lect cache statistics dynamically. While our prototype was
implemented in DynamoRIO, UMI can be realized in other
similar systems or Java virtual machines.

DynamoRIO is a general-purpose runtime code manip-
ulation system designed for transparency and efficiency. It
can run large real world applications on off-the-shelf IA-
32 hardware. DynamoRIO executes the input application
by copying the user code, one basic block at a time, into
a code cache before executing the code there. All run-
time control flow is directed through the cache to pro-
vide a programmable mechanism for instrumentation, pro-
filing, and optimizations. DynamoRIO reduces its over-
head by directly linking blocks that are joined with di-
rect branches, and using a fast lookup to transition be-
tween blocks that are linked with indirect branches. The
system performs other optimizations that remove uncondi-
tional branches, and stitches together frequently executed
sequences of blocks into traces, also called code fragments.
The traces are kept in the trace cache with fast lookups for
indirect branches.

DynamoRIO initially executes all user code from the
basic block cache, until some set of blocks is considered
hot. At that point, the blocks are inlined into a single-entry,

Start basic block builder trace builder

dispatch

context switch

indirect branch
lookup

BASIC BLOCK
CACHE

TRACE CACHE

non-control-flow
instructions

non-control-flow
instructions

Instrumentor

indirect branch
stays on trace?

Profile
Analyzer

select

Figure 1. DynamoRIO and extensions for UMI.

multiple-exits trace, and placed in the trace cache via the
trace builder.

The trace builder implicitly serves as the UMI region se-
lector. It is reinforced by our sample-based selection. We
use the program counter sampling utility in DynamoRIO to
implement a time-based sampling strategy with a sampling
period of 10 milliseconds, and a default frequency thresh-
old of 64. We added two new components to DynamoRIO
to implement the instrumentor and profile analyzer. They
are highlighted in Figure 1. The figure also shows the other
main components of DynamoRIO.

The instrumentor performs the following tasks for every
selected code trace T :

1. It creates a clone Tc of the trace. The clone allows us
to quickly turn the profiling on and off.

2. The instrumentor then scans T and filters out certain
memory operations. The filtering serves to reduce the
profiling overhead. The selected memory operations
are instrumented for profiling.

3. A prolog is added to T in order to update various book-
keeping counters, and to determine when to trigger the
profile analyzer.

The profile analyzer is a fast cache simulator. When
triggered, it performs a context switch to save the applica-
tion state, and then simulates the cache behavior using the
recorded memory reference profiles as input. At this stage,
we can obtain detailed memory behavior information at in-
struction granularity.

After simulation, control is relinquished to DynamoRIO,
the instrumented code fragment (T) is replaced with its
clone (Tc), and the application continues to execute with-
out profiling. The context switch from the analyzer back to
DynamoRIO provides a natural boundary to replace a trace
with a newly optimized one, i.e., before replacing T with
Tc, one can perform optimizations on Tc based on the mini-
simulation results.

Table 3. Profiling statistics.
Static Static Profiled Profiles Analyzer

Benchmark Loads Stores Operations % Profiled Collected Invocations

168.wupwise 6416 5148 1739 15.04% 285 36
171.swim 6285 4246 2688 25.52% 279 38
172.mgrid 5651 3615 2691 29.04% 318 27
173.applu 12277 6753 5578 29.31% 379 62
177.mesa 7163 5411 2050 16.30% 272 34

178.galgel 27306 18402 13951 30.52% 1226 331
179.art 3601 2254 1178 20.12% 188 73

183.equake 5571 3270 1950 22.06% 293 47
187.facerec 10166 6798 3586 21.14% 581 67
188.ammp 7027 4198 3084 27.47% 388 82
189.lucas 8179 4016 1963 16.10% 158 41

191.fma3d 16109 16506 4043 12.40% 756 119
200.sixtrack 22033 28204 9349 18.61% 1358 110

301.apsi 16303 11545 8531 30.63% 1027 94
164.gzip 3607 2745 931 14.66% 264 42
175.vpr 10937 8501 2359 12.14% 525 89
176.gcc 84642 69350 35079 22.78% 11188 254
181.mcf 3785 2377 1554 25.22% 237 60

186.crafty 23669 16237 6541 16.39% 1468 88
197.parser 18399 13916 10081 31.20% 3337 197

252.eon 20026 30287 5934 11.79% 579 56
253.perlbmk 34748 27951 12149 19.38% 3513 98

254.gap 26032 20489 11256 24.20% 2560 292
255.vortex 38264 56499 9120 9.62% 2307 83
256.bzip2 4956 3490 1619 19.17% 378 65
300.twolf 20059 12544 8289 25.42% 1498 220

em3d 1435 812 410 18.25% 69 22
health 2008 1270 322 9.82% 75 19

mst 1327 828 140 6.50% 29 10
treeadd 1220 713 224 11.59% 41 10

tsp 1832 1092 374 12.79% 58 12
ft 1871 1156 489 16.15% 87 18

4. Instrumentor

The instrumentor carefully manages the instrumentation
overhead so that the introspection remains practical. First,
we describe a filtering step designed to reduce the number
of memory operations to profile, and then we describe some
important implementation details.

4.1. Operation Filtering

Some architectures such as the Intel x86 platform allow
most instructions to directly access memory. As a result,
profiling all instructions that access memory is prohibitively
expensive. The instrumentor uses two simple heuristics to
prune the set of memory operations that are profiled.

The first is straightforward: only frequently executed
code is instrumented. This is easily achieved by instrument-
ing only hot code regions. In DynamoRIO, these are the in-
struction traces that are formed from smaller basic blocks.

The second heuristic excludes from instrumentation any
instructions that reference the stack or static addresses. The
underlying assumption is that such references typically ex-
hibit good locality. In x86 architectures, stack references
use the esp or ebp registers. Hence, any memory access-
ing instruction whose operands are either a static address
(e.g., a label with a literal offset), esp or ebp is ignored.

These simple heuristics reduce the set of candidate in-
structions for instrumentation by nearly 80%, as shown in
Table 3. Each row shows the total number of static instruc-
tions that perform loads or stores, and the number of in-
structions selected for profiling, averaging 19.42%. The re-
sulting reduction in profiled operations significantly lowers

the profiling and analysis overhead. The last two columns
of Table 3 show the number of collected profiles (i.e., mem-
ory reference sequences) and the total number of analyzer
invocations. The results in Table 3 are in the absence of
sample-based reinforcement, and hence provide an empiri-
cal upper bound on the instrumentation overhead.

4.2. Instrumentation Details

There are two parts to the instrumentation code. The first
is a prolog that conditionally triggers the analyzer (mini-
simulator). The second consists of profiling instructions
that create a record of accessed memory locations. Mem-
ory references are recorded in a two-level data structure. A
unique address profile is associated with each code trace.
The address profile is two-dimensional, with each row cor-
responding to a single execution of the trace. The columns
are organized such that each records the sequence of mem-
ory addresses referenced by an individual operation in the
code fragment, spanning multiple executions of the trace.
The two-dimensional representation simultaneously cap-
tures trace and instruction level profiling information, and
is useful for various optimizations. On every trace entry, a
record is allocated in a trace profile to point to a new row in
the address profile. The sequence of addresses referenced
during that execution of the trace is recorded in the corre-
sponding row of the address profile.

The prolog code initiates the analyzer when either the
trace profile or the address profile is full. The prolog re-
quires two conditional jumps. We reduce this overhead to
a single conditional jump by observing that in the common
case, the cap on the size of address profile triggers the ana-
lyzer. The trace profile is recorded in a buffer that is guarded
by a protected memory page. When the buffer is full, the an-
alyzer is automatically triggered as writes are not allowed
to the protected page. This allows the prolog code to only
check for available slots in the address profile.

The length of the trace profile is 8,192 entries by default.
The address profile has a default limit of 256 operations and
256 entries per operation (i.e., 256 executions of the code
trace). In the worst case, the space overhead is 32 KB of
storage for the trace profile, and 256 KB for each address
profile. Another 64 KB are needed for the analyzer, lead-
ing to a total space overhead of 2 GB if all 8,192 distinct
profiles are live simultaneously. In our experiments, we
found that an average of 3 trace profile entries are used at
any given time, with an average of 5 instrumented instruc-
tions per code fragment. Thus, our scheme adds between
80 KB-128 KB of memory overhead, including the 64 KB
required for profile analysis.

A naive injection of instrumentation code to record the
memory reference information is potentially too expensive.
A memory reference is the tuple (pc, address), and to

record this information requires nine operations in a straight
forward approach. We implemented a number of optimiza-
tions to reduce the overhead to between four to six opera-
tions. These details are omitted here.

5. Profile Analyzer

The analyzer for this paper is a fast cache simulator. It is
configured to match the number of sets, the line size, and the
associativity of the secondary cache on the host machine.
The simulator implements an LRU replacement policy al-
though other schemes are possible. The mini-simulation re-
sults were observed to be far more dependent on the length
of the address profiles, than on the actual configuration of
the simulated cache. We observed statistically insignificant
variations in our results when simulating caches that are
much smaller than that of the host machine. This is not sur-
prising since mini-simulations span much shorter address
spaces compared to longer or full simulations.

The simulator is similar to the one used in
Cachegrind [20]. It tracks the miss ratios for individual
operations, and also maintains coarser level performance
details. During simulation, each reference is mapped to its
corresponding set. The tag is compared to all tags in the
set. If there is a match, the recorded time of the matching
line is updated. Otherwise, an empty line, or the oldest
line, is selected to store the current tag. We use a counter to
simulate time.

Since not all memory references are profiled, the simu-
lated results are approximations of the application behavior.
Furthermore, because only a small fraction of the memory
references is simulated, the simulator must be tuned to ac-
count for the high number of compulsory misses, and the
low number of conflict and capacity misses that would oth-
erwise arise. Thus, in order to improve the simulated re-
sults, cache miss accounting only starts after the first few
accesses in the address profile, typically two executions of
the trace. This has the effect of warming up the cache,
and is akin to functional warming in offline cache simu-
lations that use fast forwarding. We also use a single logi-
cal cache to analyze all of the recorded address profiles. In
other words, the state of the cache is carried over from the
analysis of one profile to the next. We periodically flush
the cache state to avoid long term contamination. In our
experiments, the flush occurs whenever the analyzer is trig-
gered and more than 1M processor cycles (obtained using
rdtsc) have elapsed since it last ran.

6. Experimental Methodology and Analysis

We ran the experiments on a 3.06 GHz Intel Pentium 4
with 1 GB of RAM. The operating system is Linux Fedora

Core 1. The memory hierarchy consists of an 8-way asso-
ciative L1 instruction cache, with a capacity to hold 12 K
micro instructions. The L1 data cache is an 8 KB 4-way as-
sociative cache with 64-byte cache lines. The L2 cache is a
512 KB, 8-way associative unified cache with 64-byte cache
lines. The benchmarks are x86 binaries compiled with gcc
version 3.3 using the -O3 flag. We used all of the bench-
marks from SPEC CPU2000 and their reference input work-
loads.

We also selected em3d, health, mst, treeadd, and
tsp from Olden [21], and ft from the Ptrdist [3] bench-
mark suite. Olden and Ptrdist are commonly used in the
literature when evaluating dynamic memory optimizations.
The other benchmarks from these suites have too short a
running time (less than 5 seconds) for meaningful measure-
ments, and were therefore omitted.

We repeated many of the experiments on an older AMD
Athlon MP 1400+ (1.2 GHz K7 architecture). It has a
64 KB, 2-way associative L1 data cache, a 64 KB L1 in-
struction cache, and a 256 KB L2 unified cache that is
16-way associative. Both cache levels have 64-byte cache
lines.

6.1. UMI Runtime Overhead

Figure 2 shows the overhead of our system compared to
native execution. The 14 SPEC CFP2000 benchmarks are
shown first, followed by the 12 SPEC CINT2000 bench-
marks. The Olden and Ptrdist codes appear last. In native
execution, the application is compiled with -O3 and exe-
cuted without DynamoRIO. The first bar shows the relative
running time of the application running with DynamoRIO.
A value greater than one implies performance degradation,
and a value less than one implies a speedup. The second bar
shows the relative performance for UMI (i.e., application
running time with DynamoRIO augmented with our profil-
ing and analysis) when no sampling is used. The third bar
accounts for the sampling overhead as well.

In general, sampling reduces the running time for ap-
plications that spend the bulk of their execution iterating
through a small set of traces. This is the case for 179.art,
181.mcf, and 256.bzip2 for example. Sampling also
leads to lower runtime overhead because it effectively de-
lays the instrumentation of certain code fragments until it
appears more profitable to do so, and it may even pre-
vent the process altogether. This effect is most prominent
in 176.gcc which spends less than 70% of its execution
running from the trace cache. As a result, the overheads
from trace formation, instrumentation, and profile analysis
are not amortized well in 176.gcc, leading to a signifi-
cant slowdown in the absence of sampling. For comparison,
many of the other benchmarks execute from the code cache
more than 95% of the time.

0.80

1.00

1.20

1.40

1.60

1.80

2.00

16
8.w

up
wise

17
1.s

wim

17
2.m

gr
id

17
3.a

pp
lu

17
7.m

es
a

17
8.g

alg
el

17
9.a

rt

18
3.e

qu
ak

e

18
7.f

ac
er

ec

18
8.a

mmp

18
9.l

uc
as

19
1.f

ma3
d

20
0.s

ixt
ra

ck

30
1.a

ps
i

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

ra
fty

19
7.p

ar
se

r

25
2.e

on

25
3.p

er
lbm

k

25
4.g

ap

25
5.v

or
tex

25
6.b

zip
2

30
0.t

wolf

em
3d

he
alt

h
mst

tre
ea

dd tsp ft

Ave
ra

ge

DynamoRIO

UMI no sampling

UMI with sampling

ru
nn

in
g

tim
e

re
la

tiv
e

to
 n

at
iv

e
ex

ec
ut

io
n

Figure 2. Runtime overhead on Pentium 4 with hardware prefetching enabled.

It is evident from the data that DynamoRIO has little
overhead in general, with an average slowdown that mea-
sures less than 13%. Some benchmarks actually run faster
with DynamoRIO because they benefit from code place-
ment and trace optimizations performed by DynamoRIO.
The system performance suffers most in the case of the
CINT2000 benchmarks because of their control intensive
nature. The overhead incurred for UMI (i.e., region selector,
instrumentor, and analyzer) averages to a 14% slowdown
overall. This slowdown is only 1% more than DynamoRIO
alone. These results suggest that online mini-simulations
and detailed introspection will become increasingly practi-
cal since the performance of binary instrumentation tools
like DynamoRIO have steadily improved over the years.

6.2. Correlation to Hardware Counters

We evaluate the mini-simulations by comparing the sim-
ulated cache miss rates to the actual miss rates measured
using the Pentium 4 and AMD K7 hardware performance
counters. The miss rates reported by the mini-simulations
will differ from the actual rates reported by the hardware
counters, but a strong correlation between the two is im-
portant because it implies that relative observations derived
using UMI accurately reflect actual phenomena.

We divide the benchmarks into three groups: CFP2000,
CINT2000 and Olden (which includes ft for convenience).
The group coefficient of correlation C(s, h) is calculated
using the equation

C(s, h) =

∑

i
(si − s̄)(hi − h̄)

√

∑

i
(si − s̄)2(hi − h̄)2

where si equals the simulated cache miss ratio for each
benchmark i in the group, hi equals the cache miss ratio
obtained using the hardware performance counters, and s̄

and h̄ equal the average miss ratios calculated respectively

Table 4. Coefficients of correlation.
Cachegrind UMI

Platform CFP2000 CINT2000 Olden CFP2000 CINT2000 Olden All
Pentium 4

without HW 0.997 1.000 0.992 0.929 0.782 0.920 0.883
prefetching
Pentium 4
with HW 0.992 0.999 0.957 0.896 0.796 0.861 0.852

prefetching
AMD K7 — — — 0.825 0.689 0.909 0.828

from all si and hi in the group. The miss ratios are obtained
by dividing the number of L2 miss counts by the number of
L2 references, for both loads and stores.

The results are reported in Table 4. The Pentium 4 in-
cludes two hardware prefetchers, and so we measured the
miss ratios under two scenarios. In the first, we disabled
both prefetchers. The correlation between UMI and the
hardware counters is 0.883 when all the benchmarks are
grouped into a single category. The correlation is high-
est for the CFP2000 and Olden groups, and lowest for the
CINT2000 group. The former are loop intensive applica-
tions, and we expect simulations from short memory pro-
files to extrapolate well to the application as a whole. The
CINT2000 benchmarks are more control intensive with ir-
regular access patterns that require longer simulations to
improve the correlation.

For comparison, we also present the correlation between
the hardware counters and Cachegrind, a cache profiler and
simulator distributed with Valgrind [20]. Cachegrind sim-
ulates the memory hierarchy using a complete trace. It
adds a runtime overhead between 20×-100×. With the Pen-
tium 4 prefetcher disabled, Cachegrind achieves a near per-
fect overall correlation of 0.994. The correlation for the
CFP2000 and Olden groups is lower than the CINT2000
group. This is likely caused by a mismatch in the way
floating-point values that cross multiple cache lines are han-
dled in the simulator versus hardware.

In the second scenario, we measure the miss ratios when
the Pentium 4 prefetchers are enabled. In this case, the UMI
and Cachegrind miss ratios are unchanged since they ignore

Table 5. SPEC2006 coefficients of correlation.
CFP2006 CINT2006 SPEC2006

Pentium 4 with HW prefetching 0.94 0.79 0.85

any prefetching side effects. The hardware measured miss
ratios however are relatively lower, although the prefetch-
ing impact on the number of misses varies with each appli-
cation. In general, the overall Cachegrind correlation de-
creases to 0.952, and the UMI correlation reduces to 0.852
since neither simulates prefetching side effects, which typi-
cally reduce miss rates.

In addition to the Pentium 4, we also measured the cor-
relation between UMI and the AMD K7 hardware counters.
The overall correlation is 0.828, which is lower than the
correlation measured on the Pentium 4. The UMI mini-
simulator does not simulate an instruction cache, and the
impact of instruction caching may be magnified on the
AMD K7 architecture since its unified L2 cache is half the
size of the unified cache on the Pentium 4. The Cachegrind
simulations on the Pentium 4 required a week to complete,
and were not repeated for the slower AMD K7.

6.3. Other Benchmarks and Applications

We used our prototype to profile many more bench-
marks than the ones reported here. Our extended
benchmark collection includes the SPEC CPU2006 suite
and several commonly used Linux applications such
as Adobe Acrobat, Apache, MEncoder, and MySQL.
We found the HW measured miss ratios to be very low
for the Linux applications. Of the CPU2006 bench-
marks, we evaluated the following subset which does not
overlap with CPU2000: 433.milc, 435.gromacs,
444.namd, 450.soplex, 453.povray, 470.lbm,
and 482.sphinx3 from CFP2006, and 445.gobmk,
456.hmmer, 458.sjeng, 462.libquantum,
464.h264ref, 471.omnetpp, 473.astar, and
483.xalancbmk from CINT2006. The correlation for
these benchmarks is summarized in Table 5.

7. UMI for Delinquent Load Identification

In addition to the coarse-grained mini-simulation results,
we can use UMI to identify high miss ratio load instructions
in a given program. Such profiling information can greatly
improve the performance of data prefetching strategies as
it helps to focus the optimizations on memory references
that are likely to miss in the cache. For example in our
own work, we were able to implement a simple software
prefetcher that achieved an average speedup of 11% on two
different architectures, with a best case performance gain
of 64%. It is worthwhile to note that information of such

fine granularity is hitherto only available through full cache
simulation or with specialized hardware.

We used Cachegrind as a baseline for evaluating the
quality of our online analysis. We modified Cachegrind to
report the number of cache misses for individual memory
references rather than for each line of code in the source
program. We define the set of delinquent load instructions,
C, as the minimal set of instructions that account for at least
x percent of the total number of load misses. We report
results for x = 90%. We can calculate C by sorting the
instructions in descending order of their total number of L2
load misses, as reported by Cachegrind. Then, starting with
the first instruction, we add instructions to the set until the
number of misses in the set is at least 90% of the total num-
ber of misses reported for the entire application.

An offline technique that identifies delinquent loads in
this manner uses global information about all memory ref-
erences in the application. In contrast, a runtime system
with memory introspection needs immediate profiling re-
sults that it can readily act on for optimizations. Therefore,
it must predict delinquent loads with only local knowledge.
Let P be the set of memory load instructions predicted by
UMI as delinquent. In our prototype, at the end of a mini-
simulation, the profile analyzer labels memory load instruc-
tions with a miss ratio higher than a delinquency threshold
α as delinquent loads.

7.1. Summary of Results

Table 6 reports the quality of the results. The size of C
is |C|, and the size of P is |P|. The set P ∩ C represents
loads found to be delinquent by exhaustive simulation and
online introspection. The miss coverage of P represents the
fraction of the total number of misses in the application that
members of the set P account for. Similarly, the miss cov-
erage of P ∩ C is the fraction of the total number of misses
in the application that the members of the set P ∩C account
for. We use the recall and false positive measures (last two
columns) to quantify the accuracy of the predictions. The
recall is the ratio of the number of correctly identified delin-
quent loads (|P ∩C|) to the total number of delinquent loads
(|C|). The false positive measure is the ratio of the number
of incorrect predictions (|P −C|) to the total number of pre-
dictions |P|. Ideally, the recall is 100% with a 0% false
positive ratio.

The miss coverage is 86.15% for benchmarks with a L2
miss ratio greater than 1%, and 40.13% for all others. It is
greater than 65% for the benchmarks overall, with some no-
table exceptions: 164.gzip, 176.gcc, and 252.eon.
These benchmarks have very low miss ratios as indicated in
the second column. In 164.gzip, one instruction causes
more than 90% of the cache misses. It performs a byte-by-
byte memory copy and has a 2% miss ratio as reported by

Table 6. Quality of delinquent load prediction.
L2 Cache Ratio of P 90% delinquency

Benchmark Miss Ratio |P| |P| to total Miss P ∩ C |P ∩ C| |P − C|

(Cachegrind) # of loads Coverage |C| |P ∩ C| Miss Coverage |C| |P|

168.wupwise 0.82% 20 0.31% 74.94% 11 7 70.33% 63.64% 65.00%
171.swim 4.71% 64 1.02% 99.80% 32 32 90.23% 100.00% 50.00%
172.mgrid 1.30% 48 0.85% 95.37% 18 18 90.59% 100.00% 62.50%
173.applu 1.26% 137 1.12% 76.17% 75 50 73.49% 66.67% 63.50%
177.mesa 0.02% 20 0.28% 22.86% 10 2 22.85% 20.00% 90.00%

178.galgel 1.93% 78 0.29% 93.19% 10 8 87.89% 80.00% 89.74%
179.art 27.13% 81 2.25% 94.26% 43 41 88.79% 95.35% 49.38%

183.equake 3.83% 56 1.01% 68.00% 34 26 63.83% 76.47% 53.57%
187.facerec 0.83% 38 0.37% 87.92% 12 8 81.12% 66.67% 78.95%
188.ammp 1.48% 136 1.94% 88.33% 101 80 84.61% 79.21% 41.18%
189.lucas 1.12% 230 2.81% 94.82% 70 66 87.84% 94.29% 71.30%

191.fma3d 1.73% 117 0.73% 84.54% 45 42 78.00% 93.33% 64.10%
200.sixtrack 0.12% 6 0.03% 19.72% 37 2 17.95% 5.41% 66.67%

301.apsi 1.07% 142 0.87% 90.16% 69 59 85.00% 85.51% 58.45%
164.gzip 0.06% 4 0.11% 0.00% 1 0 0.00% 0.00% 100.00%
175.vpr 0.92% 45 0.41% 89.70% 26 23 87.34% 88.46% 48.89%
176.gcc 0.48% 1 0.00% 0.00% 293 0 0.00% 0.00% 100.00%
181.mcf 20.10% 54 1.43% 97.67% 15 15 90.24% 100.00% 72.22%

186.crafty 0.03% 2 0.01% 31.28% 25 2 31.28% 8.00% 0.00%
197.parser 0.50% 72 0.39% 60.90% 117 34 60.52% 29.06% 52.78%

252.eon 0.00% 7 0.03% 0.00% 47 0 0.00% 0.00% 100.00%
253.perlbmk 0.15% 5 0.01% 33.23% 81 5 33.23% 6.17% 0.00%

254.gap 0.33% 20 0.08% 59.88% 10 1 59.87% 10.00% 95.00%
255.vortex 0.19% 2 0.07% 20.48% 21 2 20.48% 9.52% 0.00%
256.bzip2 0.89% 19 0.38% 76.88% 27 14 76.88% 51.85% 26.32%
300.twolf 1.78% 117 0.58% 98.07% 38 38 90.29% 100.00% 67.52%

em3d 24.49% 6 0.42% 99.75% 3 3 94.76% 100.00% 50.00%
health 12.44% 16 0.80% 86.92% 3 2 78.35% 66.67% 87.50%

mst 7.53% 7 0.53% 99.41% 5 5 94.75% 100.00% 28.57%
treeadd 1.90% 3 0.25% 99.98% 2 2 99.97% 100.00% 33.33%

tsp 1.12% 6 0.33% 72.32% 7 3 77.32% 42.86% 50.00%
ft 49.63% 1 0.05% 99.84% 1 1 99.84% 100.00% 0.00%

Average
(miss ratio <1.00%) 19 0.17% 41.27% 51 7 40.13% 25.63% 58.83%

Average
(miss ratio ≥1.00%) 72 0.96% 91.03% 32 27 86.15% 87.80% 55.16%

Average
(all benchmarks) 49 0.62% 69.26% 40 18 66.02% 60.60% 56.76%

Cachegrind. In 176.gcc, the cache misses are distributed
across 293 memory references, each having a very low miss
ratio. Lastly, 252.eon is computationally intensive and
exhibits very good reference locality. Other benchmarks
with low coverage (e.g., 186.crafty, 253.perlbmk,
treeadd and tsp) exhibit similar characteristics.

The recall and false positives are dependent on the delin-
quency threshold. A high delinquency threshold means rel-
atively few loads are labeled as delinquent. This reduces
the false positives, but may also reduce the recall. If it is
set too low, then it leads to many false positives but also
improves the recall. We found that dynamically tuning the
delinquency threshold can significantly reduce the number
of false positives. This is accomplished by assigning each
code trace a unique delinquency threshold, initially equal
at 0.90. This threshold is reduced by 0.10 following ev-
ery profile analyzer invocation that the trace is responsible
for, down to a minimum threshold of 0.10. This approach,
compared to a singular global delinquency threshold, signif-
icantly reduces the false positives from 82.61% to 56.76%
overall, and marginally increases the recall from 86.81% to
87.80% for benchmarks with a L2 miss ratio greater than
1%. A straightforward comparison to Moshovos et al.’s
work [19] shows that we report 18× fewer false positives.
Most other papers report only performance speedups and
prevent a direct comparison. We believe that for delinquent
load identification, UMI delivers the best results so far rela-
tive to all published data we found.

7.2. Sensitivity Analysis

There are many instrumentation and profile analysis pa-
rameters that can impact the mini-simulation results. For
example, we use a frequency threshold (Section 2) of 64
for the sample-based reinforcement, but a lower threshold
can potentially increase the recall since it admits a greater
number of code traces for instrumentation and profiling. A
higher threshold has the opposite effect of reducing the re-
call, while also reducing the false positive ratio. The default
frequency threshold was observed to work well for the col-
lection of benchmarks we used. Future work may explore
adaptively tuning the threshold according to the application
and trace characteristics.

We performed two case studies to provide some in-
sight as to the relationship between the frequency thresh-
old, recall, and false positive ratio. We used 181.mcf and
197.parser as representative benchmarks. The former
is memory intensive with a 20% L2 miss ratio, and the lat-
ter has a miss ratio of 0.50%. We increased the frequency
threshold by powers of two, from a minimum of 1 to a max-
imum of 1024, and observed the following trends which af-
firm intuition. As the threshold increased, the recall rate
generally decreased. For 181.mcf, the recall was constant
for thresholds of 1-256, and then dropped to 87%, and then
again to 73% as the threshold reached 512 and 1024, re-
spectively.

For 197.parser, the loss in recall was more dramatic,
falling exponentially with each threshold increase from a

maximum of 100% for a threshold of 1, down to 0% for a
threshold of 512 and 1024. The contrast between the two
benchmarks is largely due to their execution patterns. In
181.mcf, execution spans a few memory intensive and
long running loops, and is mostly insensitive to variations
in the sampling frequency. In contrast 197.parser has a
much more dynamic control flow, and many loops run for
only a few iterations. As a result, recall is best when the
frequency threshold is at its lowest value. The low thresh-
old admits virtually all code traces for instrumentation and
profiling, but has the undesirable side effect of an 88% false
positive ratio. The runtime overhead for both benchmarks
was constant for a frequency threshold greater than 32.

In general, the recall is inversely related to the frequency
threshold. However the relationship between the recall and
the length of the simulated address profile is less obvious.
In 181.mcf, varying the length of the address profile has
no effect on the recall, and only marginally improves the
false positive rate. We varied the length of the address
profile from a minimum of 64 trace executions to a max-
imum of 32K executions (in powers of two). The actual
length of the recorded address sequence is proportional to
the number of trace executions and the number of memory
references in each trace iteration. Hence increasing the size
of the address profile increases the length of the recorded
memory reference sequence. In 197.parser, the same
experiment reduced the recall significantly from 34% at the
minimum address profile size, to less than 17% for address
profiles of 4K iterations or more. In 197.parser, as in
other benchmarks with a low overall miss ratio, the longer
simulations have the effect of rapidly lowering the miss ra-
tio of individual instructions, and at a faster rate than we
tune the delinquency threshold. As a result fewer instruc-
tions are identified as delinquent, thus reducing the recall.
The false positive ratio however is affected more favorably,
with a ratio of 36% at 8K iterations, and 23% at 16K iter-
ations. The overall runtime overhead is largely unchanged
for the two benchmarks, ranging up to 3% for 181.mcf,
and 27-30% for 197.parser.

In order to systematically reduce the false positive ratio,
it may prove necessary to eventually weigh in the collec-
tive effects of multiple memory operations, rather than la-
bel each operation independent of any other, as we do in the
current runtime system.

8. Example Runtime Optimization Using UMI

We illustrate an example use scenario for UMI by im-
plementing a simple stride prefetching optimization in soft-
ware. The optimization issues L2 prefetch requests for
loads labeled as delinquent by the introspection phase. We
modified the profile analyzer to also calculate the stride dis-
tance between successive memory references for individual

loads. The profiling information is used online to modify
the instruction code trace to inject prefetch requests. Of
the 32 benchmarks in our suite, we discovered prefetch-
ing opportunities for 11 of them. The results are shown
in Figures 3 and 4 for the Pentium 4 and AMD K7 proces-
sors respectively. The figures report the normalized running
time compared to native execution. The first bar shows the
running time when the introspection is carried out and no
optimizations performed. The runtime is normalized to na-
tive execution (with hardware prefetching turned off), hence
lower values indicate a greater speedup. The second bar in-
dicates the normalized running time with online introspec-
tion and software prefetching. The results show an 11%
average performance improvement on both processors.

We investigate the efficacy of the prefetching further
by comparing against the hardware prefetching strategies
available on the Pentium 4. It implements two prefetching
algorithms for its L2 cache. They are adjacent cache line
prefetching and stride prefetching [14]. The latter can track
up to 8 independent prefetch streams. The prefetchers can
be disabled independently but for our experiments, adjacent
line prefetching is always on. The AMD K7 does not have
any documented hardware prefetching mechanisms.

Figure 5 shows the running time for the same bench-
marks when the Pentium 4 hardware prefetchers are en-
abled. The performance is normalized to native execution
and no prefetching. The first bar shows the performance
of UMI with our software prefetching scheme. The sec-
ond bar shows the performance of the hardware prefetcher,
and the third bar combines UMI with software and hard-
ware prefetching. We note from the data that while soft-
ware prefetching is effective on its own, the combination
with the hardware prefetcher does not lead to cumulative
gains for many of the benchmarks. It is plausible that the
software and hardware prefetchers are occasionally redun-
dant. In other words, the software prefetcher requests the
same references as the hardware prefetcher.

We examine if this is the case using the hardware coun-
ters to measure the number of L2 misses on the Pentium 4.
This provides a measure of prefetching coverage. The re-
sults are reported in Figure 6. The data shows the number
of misses normalized to native execution, with lower ra-
tios indicating a greater reduction in misses. We observe
that there is a cumulative effect in reducing the number
of cache misses. In other words, the combination of soft-
ware and hardware prefetching leads to a greater reduction
in the number of L2 cache misses. This is observed for
most of the benchmarks, with an average of 62% reduction
in misses compared to 71% and 69% for software and hard-
ware prefetching alone. Since the results show the com-
bination of prefetching schemes lead to fewer misses, it is
likely that the combination also increases contention for re-
sources, and affects timeliness.

UMI UMI with software prefetching

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

18
1.

m
cf

17
1.

sw
im

17
2.

m
gr

id

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

19
1.

fm
a3

d

30
1.

ap
si

em
3d m

st ft

A
ve

ra
ge

ru
n

n
in

g
 t

im
e
 n

o
rm

a
li
z
e
d

to
 n

a
ti

v
e
 e

x
e
c
u

ti
o

n

Figure 3. Running time on Pentium 4 with
hardware prefetching disabled.

UMI UMI with software prefetching

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

18
1.

m
cf

17
1.

sw
im

17
2.

m
gr

id

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

19
1.

fm
a3

d

30
1.

ap
si

em
3d m

st ft

A
ve

ra
ge

ru
n

n
in

g
 t

im
e
 n

o
rm

a
li
z
e
d

 t
o

 n
a
ti

v
e
 e

x
e
c
u

ti
o

n

Figure 4. Running time on AMD K7.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

18
1.

m
cf

17
1.

sw
im

17
2.

m
gr

id

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

19
1.

fm
a3

d

30
1.

ap
si

em
3d m

st ft

A
ve

ra
ge

ru
n

n
in

g
 t

im
e
 n

o
rm

a
li
z
e
d

 t
o

 n
a
ti

v
e
 e

x
e
c
u

ti
o

n

UMI with software prefetching HW prefetching Combined

Figure 5. Running time on Pentium 4 with
hardware prefetching enabled.

UMI with software prefetching HW prefetching Combined

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

18
1.

m
cf

17
1.

sw
im

17
2.

m
gr

id

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

19
1.

fm
a3

d

30
1.

ap
si

em
3d m

st ft

A
ve

ra
ge

L
2
 m

is
s
e
s
 n

o
r
m

a
li
z
e
d

 t
o

 n
a
ti

v
e
 e

x
e
c
u

ti
o

n

Figure 6. L2 misses on Pentium 4.

We attempted the same coverage experiment on the
AMD K7, but determined that we cannot distinguish be-
tween refills due to L2 misses and those due to prefetching.
As a result we observed no significant differences in the re-
fill counts when software prefetching was enabled.

We probed further into the performance of ft and found
that it was very sensitive to the choice of prefetch distances.
It turns out that UMI was able to pick a prefetch distance
that is closer to the optimal prefetching distance compared
to the hardware prefetcher. This highlights an important
advantage of UMI, namely that a more detailed analysis of
the access patterns is possible in software than is usually
feasible in hardware.

The goal of this paper is not to champion a better soft-
ware prefetching algorithm. We present these results only
as a demonstration of the potency of the information af-
forded by UMI. We believe other performance enhancing
mechanisms can also benefit from UMI.

9. Background and Related Work

Cache Modeling and Evaluation. There are three ap-
proaches for evaluating or modeling the performance of
memory systems: hardware monitoring, software simula-
tion, and analytical modeling. Hardware monitoring has
the advantages of being accurate with relatively low runtime
overhead. There are a number of proposals for architectures
to monitor cache behavior [8, 25]. However, hardware-
based approaches lack generality because they require non-
trivial architectural changes. Modern processors support
a restricted set of mechanisms that sample and count cer-
tain hardware events. This form of sampling lacks contex-
tual information, and is generally only suitable for comput-
ing statistical summaries, rather than fine-grained analysis
of individual memory access operations. Some researchers
have successfully used the performance monitoring units to
collect performance profiles and identify delinquent loads

on specific processors [16, 17]. Such schemes however are
generally not portable across platforms.

Software simulators such as SimpleScalar [6],
Cachegrind [20] and Dinero [12] are able to simulate
detailed cache behaviors. However, the associated over-
head is often too significant to evaluate realistic workloads.
Often it takes hours to complete the entire process, even
for medium-sized workloads. So it is hard to scale this
approach to large real-world applications. We have already
successfully used our UMI prototype to profile several
commonly used Linux desktop and server applications.

There is a large body of work on analytical cache models
(see [1] and [15] and for examples). These models are built
on probabilistic assumptions that may not hold in practice,
and often require entire address traces to be stored for anal-
ysis. The models are typically used to reason about general
trends, and do not provide fine-grained details.

Delinquent Load Identification. Nearly all prefetching
techniques necessitate some form of delinquent load identi-
fication. Typically this is done using profiling and complete
cache simulations, both of which are very time and resource
consuming, and can only be used offline as part of a profile-
guided optimization framework.

A common strategy to reduce the overhead relies on pe-
riodic sampling of the memory references [2]. An imple-
mentation in Jalapeño achieved an average overhead of 3%.
Hirzel and Chilimbi [13] implemented the same scheme for
x86 binaries and found the average overhead to be between
6-35%. They managed to reduce the overhead to 3-18%
by coalescing dispatchers, but their scheme requires some
static code analysis. Neither approach explored the idea of
recording traces and using online mini-simulations.

Others have proposed static techniques [24] to iden-
tify delinquent operations without simulation, while some
schemes use profiling to improve accuracy [22]. These
strategies require suitable training data that are represen-
tative of real workloads. To reduce the overhead, many
hardware based delinquent load identification and prefetch
schemes were proposed [9, 7, 10, 19, 11], but they suffer
from the need of specific hardware support.

In contrast to previous work, UMI is well suited for run-
time optimizers and virtual machines. It does not require
any static analysis of the source code, and can be readily ap-
plied to large programs running on off-the-shelf hardware,
without any modifications to the application code.

10. Concluding Remarks

This paper contributes a lightweight and practical alter-
native to offline profiling with simulators, and performance
tuning using hardware counters. We introduced Ubiquitous
Memory Introspection (UMI) as a new methodology that

provides online and application-specific profiling informa-
tion necessary for runtime memory-centric optimizations.

UMI is based on the insight that bursty online profiling
and mini-simulations of short memory reference traces can
reasonably approximate the underlying memory system be-
havior. UMI permits the development of online memory op-
timizations that have the new capability of inspecting mem-
ory performance at its finest granularity (instructions and
addresses). Runtime optimizers have the unique advantage
of customizing optimization plans in a workload-specific
manner, and can lessen the impact of offline performance
tuning that may have used training workloads that do not
accurately reflect actual use scenarios. UMI fills a gap be-
tween time consuming profiling using offline simulations
and hardware counters designed for medium to large gran-
ularity performance monitoring.

Our implementation of UMI has a 14% overhead com-
pared to native execution. This cost is only 1% greater than
an existing state of the art binary instrumentation and op-
timization tool. We presented three applications of UMI
that we can verify against actual systems. First, we showed
that UMI can accurately model the cache performance on
existing memory systems for 32 benchmarks, including the
full suite of SPEC CPU2000 benchmarks. On a Pentium 4
and an AMD K7, we observed strong correlation between
the mini-simulation miss rates, and the hardware measured
miss rates.

Second, we presented an application of UMI at a much
finer level. We showed how to use UMI to identify delin-
quent load instructions in a program. We validated our re-
sults against full cache simulations. We showed that we
can accurately identify 88% of the delinquent loads for pro-
grams with relatively high miss rates, and 61% overall. Al-
though the false positive ratio is 57%, we believe it is suffi-
ciently low to make some optimizations practical. We con-
tinue to look for ways to reduce the number of false posi-
tives. We believe refinements to our methodology will sig-
nificantly improve accuracy and utility.

Third, we used the results of the introspection to imple-
ment an example runtime optimization. We implemented
a simple online software prefetcher. Its performance was
competitive with a hardware prefetcher, achieving an 11%
performance gain. In the best case, the software prefetcher
discovered a prefetching opportunity that outperformed the
Pentium 4 prefetcher. We believe there are many other
memory optimizations that can use UMI, and this is an ac-
tive area of research that we are pursuing. We also believe
UMI presents new opportunities in the context of emerging
multicore architectures where memory performance poses a
serious challenge to performance scalability.

Acknowledgements

This research was sponsored in part by the Singapore-
MIT Alliance, NUS Research Grant R-252-000-248-112,
and DARPA through the Department of the Interior Na-
tional Business Center under grant numbers NBCH104009,
PCA-F29601-03-2-0065 and HPCA/PERCS-W0133890.
We thank Martin Hirzel and the anonymous reviewers for
their valuable comments on earlier drafts of this paper.

References

[1] A. Agarwal, J. Hennessy, and M. Horowitz. An analyti-
cal cache model. ACM Trans. Comput. Syst., 7(2):184–215,
1989.

[2] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. In PLDI ’01: Proceedings of the
ACM SIGPLAN 2001 conference on Programming language
design and implementation, pages 168–179, New York, NY,
USA, 2001. ACM Press.

[3] T. Austin. Pointer-intensive benchmark suite.
http://www.cs.wisc.edu/˜austin/ptr-dist.html.

[4] K. Barr. Summarizing Multiprocessor Program Execution
with Versatile, Microarchitecture-Independent Snapshots.
PhD thesis, Massachusetts Institute of Technology, Septem-
ber 2006.

[5] D. Bruening. Efficient, Transparent, and Comprehen-
sive Runtime Code Manipulation. PhD thesis, Mas-
sachusetts Institute of Technology, September 2004.
http://www.cag.csail.mit.edu/rio/.

[6] D. Burger and T. Austin. The SimpleScalar Tool Set, Ver-
sion 2.0. Technical report, University of Wisconsin-Madison
Computer Science Department, 1997.

[7] J. D. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer
cache assisted prefetching. In MICRO 35: Proceedings
of the 35th annual ACM/IEEE international symposium on
Microarchitecture, pages 62–73, Los Alamitos, CA, USA,
2002. IEEE Computer Society Press.

[8] J. D. Collins and D. M. Tullsen. Runtime identification of
cache conflict misses: The adaptive miss buffer. ACM Trans.
Comput. Syst., 19(4):413–439, 2001.

[9] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dy-
namic speculative precomputation. In MICRO 34: Pro-
ceedings of the 34th annual ACM/IEEE international sym-
posium on Microarchitecture, pages 306–317, Washington,
DC, USA, 2001. IEEE Computer Society.

[10] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. Speculative precomputation: long-
range prefetching of delinquent loads. SIGARCH Comput.
Archit. News, 29(2):14–25, 2001.

[11] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless,
content-directed data prefetching mechanism. In ASPLOS-
X: Proceedings of the 10th international conference on Ar-
chitectural support for programming languages and oper-
ating systems, pages 279–290, New York, NY, USA, 2002.
ACM Press.

[12] J. Edler and M. Hill. Dinero IV Trace-Driven Uniprocessor
Cache Simulator.
http://www.cs.wisc.edu/˜markhill/DineroIV.

[13] M. Hirzel and T. M. Chilimbi. Bursty tracing: A framework
for low-overhead temporal profiling. In ACM Workshop on
Feedback-Directed and Dynamic Optimization, 2001.

[14] Intel Corporation. IA-32 Intel Architecture Optimization
Reference Manual.

[15] S. Laha, J. H. Patel, and R. K. IYER. Accurate low-cost
methods for performance evaluation of cachememory sys-
tems. IEEE Transactions on Computers, 37(11):1325–1336,
Nov 1988.

[16] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew,
and D.-Y. Chen. The performance of runtime data cache
prefetching in a dynamic optimization system. In MICRO
36: Proceedings of the 36th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, page 180, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[17] J. Lu, A. Das, W.-C. Hsu, K. Nguyen, and S. G. Abraham.
Dynamic helper threaded prefetching on the sun ultrasparc
cmp processor. In MICRO 38: Proceedings of the 38th an-
nual IEEE/ACM International Symposium on Microarchi-
tecture, pages 93–104, Washington, DC, USA, 2005. IEEE
Computer Society.

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In Programming Language Design and Im-
plementation, pages 190–200, Chicago, IL, June 2005.

[19] A. Moshovos, D. N. Pnevmatikatos, and A. Baniasadi. Slice-
processors: an implementation of operation-based predic-
tion. In ICS ’01: Proceedings of the 15th international con-
ference on Supercomputing, pages 321–334, New York, NY,
USA, 2001. ACM Press.

[20] N. Nethercote. Dynamic Binary Analysis and Instrumenta-
tion. PhD thesis, University of Cambridge, November 2004.
http://valgrind.org/.

[21] OLDEN benchmark suite.
http://www.cs.princeton.edu/˜mcc/olden.html.

[22] V.-M. Panait, A. Sasturkar, and W.-F. Wong. Static identi-
fication of delinquent loads. In CGO ’04: Proceedings of
the international symposium on Code generation and op-
timization, page 303, Washington, DC, USA, 2004. IEEE
Computer Society.

[23] PAPI: Performance application programmer interface.
http://icl.cs.utk.edu/papi/.

[24] Y. K. Toshihiro Ozawa and S. Nishizaki. Cache miss
heuristics and preloading techniques for general-purpose
programs. In Micro28: Proceedings of the 28th Interna-
tional Symposium on Microarchitecture, pages 243 – 248,
1995.

[25] C. Zilles and G. Sohi. A programmable co-processor for
profiling. In HPCA ’01: Proceedings of International Sym-
posium on High Performance Computer Architecture, 2001.

