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ABSTRACT
Dynamic instrumentation systems are gaining popularity
as means of constructing customized program profiling and
analysis tools. However, dynamic instrumentation based
analysis tools still suffer from performance problems. The
overhead of such systems can be broken down into two com-
ponents – the overhead of dynamic instrumentation and the
time consumed in the user-defined analysis tools. While im-
portant progress has been made in reducing the performance
penalty of the dynamic instrumentation itself, less attention
has been paid to the user-defined component. In this paper,
we present PiPA – Pipelined Profiling and Analysis, which is
a novel technique for parallelizing dynamic program profiling
and analysis by taking advantage of multi-core systems. We
implemented a prototype of PiPA using the dynamic instru-
mentation system DynamoRIO. Our experiments show that
PiPA is able to speed up the overall profiling and analysis
tasks significantly. Compared to the more than 100x slow-
down of Cachegrind and the 32x slowdown of Pin dcache,
we achieved a mere 10.5x slowdown on an 8-core system.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
patterns (pipeline); D.3.4 [Programming Languages]: Pro-
cessors—run-time environments

General Terms
Design, Experimentation, Performance

Keywords
Profiling, Analysis, Dynamic Instrumentation, Pipelining,
Parallel Cache Simulation, Multi-core Systems

1. INTRODUCTION
The knowledge of dynamic program behavior is invaluable

in many research areas such as computer architectural design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CGO’08, April 5–10, 2008, Boston, Massachusetts, USA.
Copyright 2008 ACM 978-1-59593-978-4/08/04 ...$5.00.

and software development. However, collecting the details of
a program’s execution is a tedious process that often requires
running the application-under-examination at a significantly
slower speed. Many analysis require runs over a large data
set or a substantial native execution time in order to over-
come initial start-up or transient effects. The collected pro-
files of such runs are often too large to be stored away for
off-line analysis. The reference input run of SPEC 2000’s
172.mgrid has about 4 × 1011 memory references. Assum-
ing that 8 bytes (4 for the PC and 4 for the memory address)
are needed for each reference, then more than 1 TB of stor-
age would be required. The reference runs of SPEC 2006
are significantly longer. The only option is to perform the
analysis on the fly while profiling, which further worsens the
runtime overhead.

Dynamic instrumentation systems have been proven to
be very effective tools that allow users to construct cus-
tomized dynamic program profiling and analysis tools. Un-
fortunately, dynamic instrumentation based analysis tools
suffer from the performance problems mentioned above. Be-
sides the slowdown arising from the dynamic instrumenta-
tion system itself, the overhead attributable to user-specific
analysis can significantly worsen performance. For instance,
the dynamic instrumentation system, Valgrind, causes an
average 5x slowdown due to its translation between x86 in-
structions and U-code compared to native execution. If a
complete profile of the memory accesses by instruction fetch-
ing and data referencing is required, the runtime slowdown
increases to 20x. When running with a cache simulator
(Cachegrind), the slowdown goes up further to more than
100x on average.

Multi-core systems allow multiple threads or processes to
run simultaneously. The proliferation of such systems has
encouraged researchers to explore new approaches for off-
loading parts of the profiling and analysis tasks onto spare
hardware execution cores in order to improve performance.
One such proposal is parallelized slice profiling [9, 14]. The
application-under-examination first starts running without
instrumentation. It then periodically forks off new pro-
cesses to execute slices of original application code. These
slices are instrumented with profiling and analysis code, and
execute in parallel with the main application. This novel
approach comes with several technical challenges, including
how to guarantee that the slices’ executions are identical to
the main application, how to handle multi-threaded applica-
tions, and how to merge the final analysis results. In addi-
tion, this approach is only suitable for independent tasks like
instruction counting, but has difficulties in performing more



complex tasks such as branch prediction and cache simula-
tion. This seriously restricts the utility of this approach.

In this paper we exploit another form of parallelism, namely
pipelining. We propose a novel technique for parallel pro-
filing and analysis that we called PiPA1 (Pipelined Profiling
and Analysis). Essentially, in PiPA, threads form a pipeline
for collecting and processing profiles. Rather than a sim-
ple pipeline, a better analogy to PiPA would be the out-of-
order instruction processing pipelines of superscalar proces-
sors. The application-under-examination acts as the source
of the pipeline. The processing of the collected profile is fur-
ther divided up into several pipeline stages. At some of these
stages, there could be more than one thread simultaneously
processing parts of the profile. It should be noted that for
reasons such as the isolation of the memory spaces, threads
may be replaced by operating system processes with inter-
process communication acting as communication mechanism
between pipeline stages.

PiPA has the same goal as the parallelized slice profil-
ing approach (i.e. reducing the profiling overhead through
parallelization), and can be considered a complementary
approach to the latter. However, it has several advantages
over the previous techniques. Firstly, it is a straight-forward
model making it easier for users to understand and build
customized analysis tools. Secondly, it avoids many tech-
nical difficulties and heuristics that are required in the im-
plementation of parallelized slice profiling (e.g. system call
handling and signature detection [14]). Some desirable pro-
perties (for example preserving exact ordering in the profile),
can be achieved much easier in PiPA because of these char-
acteristics. Furthermore, PiPA can handle multithreaded
applications without any difficulty by having one pipeline
for each application thread.

In this paper, we describe the design and implementation
of a prototype of PiPA in DynamoRIO [3]. We evaluated the
performance of PiPA on several multi-core systems. The ex-
perimental results show significant speedup over traditional
approaches. We summarize the contribution of this paper
as follows:

• We propose PiPA, a novel approach for parallel pro-
gram profiling and analysis;

• We introduce REP (Runtime Execution Profile), a com-
pact profile format for storing detailed execution pro-
files that is amenable to fast recovery;

• We propose a set of optimizations for collecting run-
time execution information that are useful for both
serial and parallel profiling;

• We present a way to parallelize trace-driven cache si-
mulation using PiPA.

The remainder of the paper is organized as follows: Sec-
tion 2 provides the background of dynamic instrumenta-
tion, program profiling and analysis. Section 3 presents the
overview of the design and implementation of PiPA. Sec-
tion 4 describes the format of REP, and the collection, opti-
mization and recovery of REP in PiPA. Section 5 discusses
how a trace-driven analysis like cache simulation can be par-
allelized in PiPA. Experimental results using PiPA are pre-
sented and discussed in Section 6, which is followed by the
conclusion and future work in Section 7.

1The pipa is an ancient Chinese string musical instrument.

2. BACKGROUND

2.1 Runtime Code Manipulation Systems
Runtime code manipulation is a powerful technique for

runtime program introspection. There are many runtime
code manipulation systems, and most of them have similar
internal engines. Modified copies of the original application
are executed in a code cache that preserves frequently exe-
cuted blocks of code for future use. These runtime code ma-
nipulation systems can be categorized into different groups
based on their applications. Dynamo [2], DynamoRIO [3]
and ADORE [4] are dynamic optimization systems that are
designed to speedup program execution by taking advan-
tage of runtime information that is not available at compile
time. Dynamic instrumentation systems like Pin [8] and
Valgrind [10] can be used to build customized program ana-
lysis tools. There are other applications of runtime code ma-
nipulation such as for dynamic translation [5], security [6],
and reliability [11]

As an example of how such a system works we provide
here a brief description of DynamoRIO’s operation. Dy-
namoRIO [3] is a dynamic instrumentation and optimiza-
tion framework implemented for both IA-32 Windows and
Linux. This system runs an application by copying it one
basic block at a time into a code cache. After some modifi-
cations, the block is executed natively from there. Blocks in
the cache are linked together via direct jumps or fast lookup
tables so as to reduce the number of context switches to
the DynamoRIO runtime system. In addition, DynamoRIO
stitches sequences of hot code together to create single-entry
multiple-exit traces that are stored in a separate trace cache
for further optimization. DynamoRIO allows users to build
DynamoRIO clients using the APIs provided. These clients
can manipulate the application code by supplying hook func-
tions which are called by DynamoRIO before the code is
placed in either caches.

2.2 Profiling
Profiling is a common technique used by compilers and

application developers to understand the behavior of a pro-
gram. Some common types of profiling are path profiling,
hot data stream profiling and value profiling.

Larus [7] proposed a scheme called Whole Program Path
(WPP) to capture the entire dynamic control flow in a com-
pact fashion by using the Sequitur compression algorithm.
Tallam et. al. [13] extended WPPs to also encode the me-
mory dependencies, but their scheme incurs a large time
and space overhead. Zhao et. al. [16] proposed the Detailed
Execution Profile (DEP) as a more efficient method of col-
lecting both control flow and memory reference information
in a single pass. Instead of storing the memory reference
addresses, DEP records and keeps track of the updates of
the registers that are used for memory references. DEP re-
duces the profile size, but the process of reconstructing the
memory reference information is more complicated making
it more suitable for off-line analysis.

One of the major challenges in profiling is the substan-
tial execution overhead caused by the extra profiling code.
There have been a number of proposals to minimize this
overhead. Sampling is a common technique that signifi-
cantly reduces the runtime overhead. However, it fails when
detailed continuous information is needed. Arnold and Ry-
der [1] proposed a general framework that utilizes bursty
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Figure 1: The PiPA pipeline.

tracing to reduce the profiling overhead. A similar idea
was used in Ubiquitous Memory Introspection [15], where
a sampling-based method is used to select hot code regions
for profiling and optimization. The insight is that frequently
executed short memory profiles can be sufficient to reason-
ably approximate the real memory system’s behavior.

More recent research has focused on utilizing the increas-
ingly popular multi-core systems to reduce the overhead of
profiling by off-loading profiling tasks to spare hardware
cores. Shadow profiling [9] runs the original uninstrumented
application in parallel with instrumented slices to perform
sampled profiling. SuperPin [14] uses a similar approach,
but tries to replicate the full program execution. Slices are
periodically forked by the uninstrumented main process, ei-
ther when a system call is encountered or on a timeout. It
then uses a signature heuristic to detect when such a slice
should end so that it does not overlap with the next slice.
This approach reduces the runtime overhead on profiling sig-
nificantly. However, it is not suitable for analysis tasks that
have state dependencies such as cache simulation and branch
prediction simulation. These will require a large amount of
communication between slices in order to maintain the de-
pendencies between profiles.

Compared to Shadow Profiling and SuperPin, PiPA uses
a different approach. It performs a very low overhead pro-
filing in the same thread of application to produce compact
profiles, and uses multiple threads as different stages of a
pipeline to reconstruct the full profiles for analysis. Because
the profiles are contiguous and processed in the same or-
der as they are collected, PiPA is able to perform complex
analysis that SuperPin cannot easily do. Furthermore, un-
like Shadow Profiling, PiPA does not rely on sampling for
achieving efficiency and, thus, provides 100% accurate ana-
lysis results

3. PIPELINED PROFILING AND ANALYSIS
3.1 Design

Figure 1 depicts how PiPA works. Each horizontal bar
represents a thread working as a unit in a pipeline stage. The
application-under-examination is instrumented with profil-
ing code and executed in stage 0 of the pipeline. The col-
lected profiles are passed to the thread at stage 1. This
thread manipulates and re-organizes the profiles into spe-
cific formats for analysis in the later stages. In our example,
it splits the profiles into 4 sub-profiles. These sub-profiles
are fed into four threads at stage 2 that perform parallel
analysis.

It should be noted that any of the threads can be easily
replaced with an operating system process. For example, the
threads in the first two stages can be in the same process as
the application that outputs the profile in a desired format.
The threads in stage 2 can be organized into one or several
analyzer processes to perform parallel analysis.

There are three key challenges in PiPA design:

• Minimizing the profiling overhead in the application-
under-examination.

• Minimizing the communication overhead between dif-
ferent pipeline stages.

• Coming up with efficient parallel analysis algorithms.

How fast the profiles can be produced is one of the most
important constraints in the efficiency of PiPA. No matter
how good the parallel analysis algorithm is, it cannot run
faster than the rate at which the profiles are produced. The
latter is determined by the speed of the application and the
overhead involved in profiling it. As the application-under-
examination is given, in order to maximize the rate of profile
production, the profiling overhead must be minimal. There
are two keys for achieving low profiling overhead. The first
is double-buffering. Profiling information is first collected in
the first buffer with minimal processing. When this buffer is
full, profile collection continues with a second buffer. Mean-
while, the first buffer is passed to the next stage of pro-
cessing. Simple inlined code is used for filling the buffers.
When a buffer is full, slightly more complex code is executed
to hand the buffer over to the next processing stage. The
second key is to have a profile format that is suitable for
online profiling. An ideal profile format is able to reduce
the profiling overhead by executing fewer instrumentation
instructions. In the next section, we will introduce a profile
format named REP (Runtime Execution Profile).

The second challenge is the reduction of the communica-
tion overhead when passing profiles between threads in dif-
ferent stages. Double-buffering also helps to reduce the num-
ber of synchronizations between threads. In addition, shared
buffers are used so as to avoid data copying, further redu-
cing the communication overhead. There are two buffers
that are accessible to the producer and consumer threads in
two consecutive stages. Accessibility to each buffer is con-
trolled by a lock variable. The producer thread first fills one
buffer while the consumer waits on that buffer lock. When
the buffer is full, the producer continues on the other buffer,
while the consumer obtains the first buffer lock and starts



processing the filled buffer. In this way, the producer and
consumer threads work on different buffers at the same time.
The overhead of communication is therefore limited to ac-
quiring the buffer locks. In the case where the producer is
running significantly faster than the consumer, we can add
more buffers and more consumers to parallelize profile con-
sumption.

Parallelizing the analysis algorithm depends on what is
done in the analysis. In this paper, we will consider cache
simulation. In particular, the simulation of set associative
caches (the prevalent type of caches nowadays) can be par-
allelized by splitting the memory reference profiles into dif-
ferent sub-profiles based on the sets that each reference will
access. Thus several cache simulators can execute in parallel
to process different sub-profiles independently. The results
can be easily merged after the execution. Further details
will be discussed in Section 5.

Profiling and analyzing multi-threaded applications re-
quires no significant change in PiPA’s design, especially if
the instrumentation system uses thread-private code caches.
The profiling code is embedded in each thread of the appli-
cation in order to extract the real execution trace of the
thread, which is then fed to an analysis pipeline. There-
fore, one pipeline would be used for each application thread.
Some thread synchronization information may have to be
recorded for analysis purposes.

3.2 Implementation
In order to demonstrate the effectiveness and efficiency of

PiPA, we implemented a two-stage PiPA prototype using
DynamoRIO. Note that it is entirely possible to use other
dynamic instrumentation frameworks to implement PiPA.

When the application-under-examination starts executing
under DynamoRIO, we first allocate n > 1 profile buffers,
and spawn n recovery threads. These threads work as func-
tional units in stage 1 of PiPA and have the task of re-
constructing the profile from the information recorded in
the buffers. Each thread is bound to one buffer, and in
order to access this buffer it communicates with the ap-
plication thread via two associated semaphores. This n-
way buffering implementation is slightly different from the
double-buffering design described above, but it simplifies the
communication between the threads.

As the application executes under DynamoRIO, profiling
code is inserted into any application code that DynamoRIO
copies into its basic block code cache. The profiling code
records basic block and memory reference execution infor-
mation into the current profile buffer. The instrumented
code is optimized when frequently executed basic blocks are
upgraded into DynamoRIO’s trace cache. In addition, a con-
ditional check is also inserted to trigger a handler when the
buffer is full. The handler releases the current buffer to the
associated thread, and then tries to acquire the next empty
buffer to act as the next active fill buffer.

As the application thread fills the buffers one at a time
with profiling information, the recovery threads wait on their
associated buffers’ semaphore. When a buffer is released by
the application thread, the corresponding recovery thread
will reconstruct the information from it for analysis. After
the entire buffer is processed, the recovery thread will re-
lease the buffer back to the application. If the analysis is
simple (e.g. instruction counting), the analysis code can be
implemented in the recovery thread directly. Alternatively,
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Figure 2: An example of REP.

the recovery thread can write the reconstructed information
into a shared buffer to be processed by another analyzer
thread.

4. PROFILING
The efficiency of profiling hinges on a well designed profile

format and carefully crafted instrumentation code. We will
show in Section 6 that a naive raw format performs very
poorly. In this section, we first describe a novel profile for-
mat REP (Runtime Execution Profile), then discuss how to
efficiently collect REP and finally show how full control flow
and memory reference information can be extracted from
REP.

4.1 Runtime Execution Profile
REP is a profile format designed for fast profiling, small

profile size, and easy information extraction, making it suit-
able for online profiling and analysis.

Figure 2 shows an example of a REP. A REP is pointed to
by a base pointer. It consists of a number of contiguous pro-
file buffers separated by special ‘canary’ zones. These canary
zones are initialized with the value 0xf0f0f0f0 and their
purpose is to detect when the limit of a buffer is reached.
Each profile buffer consists of a sequence of data units and
each unit consists of a number of slots. A REP unit reflects
the execution of a basic block and it stores the static and
dynamic information associated to that execution using two
types of slots: REPS and REPD, which are detailed below.
A unit would start with a single REPS slot followed by a
variable number of REPD slots. The next available unit is
pointed to by a profile counter.

• The REPS is a pointer to a data structure that stores
static information about the associated basic block, in-
cluding a tag that distinctly identifies the basic block,
the number of REPD slots following the REPS slot,
the number of memory references in the basic block,
and a pointer to a second level structure. This se-
cond level structure holds information regarding each
memory reference, including the type of the reference,



the size of the reference (if known statically), the con-
stant offset, the slot number of the REPD slot to be
used in the address computation, and the REPD slot
number that holds the dynamic size of the reference.

• Each REPD slot stores some dynamic information col-
lected during the basic block’s execution. These may
include the contents of registers, memory reference ad-
dresses, and memory reference sizes that are not stati-
cally known. It should be noted that the same register
may be saved multiple times in the same unit if it is
used for different memory references and is overwritten
between them. Because each basic block has a differ-
ent amount of dynamic information to be stored, the
number of REPD slots varies.

The size_slot field in REPS is used when the size of a
reference can only be determined at runtime. In the case
of the x86 architecture this happens for string instructions.
For example, the instruction rep movs will move a number
of bytes from the address [esi] to the address [edi]. The
number of copied bytes is given by the value of register ecx.
In this case, the value of ecx will be saved in a REPD slot
and size_slot will contain the slot number associated with
it. If the size of a reference is known statically, this field will
contain the value -1.

From REPS and REPD, we can reconstruct the full con-
trol flow and data access information of an execution in-
stance of a basic block through a symbolic execution of the
basic block. As an example, suppose we want to find the
memory address referenced by the pop instruction in bb1 of
Figure 2. Following bb1’s REPS , we find that the pop in-
struction corresponds to the second memory reference of the
block. The field value_slot informs us that the value of the
register to be used in the address computation is found in
slot 2 – where the esp was stored. The value in this slot is
added with offset to get the memory reference address.

For different analysis, different kinds of information are
required. REPD can be customized for the analysis one
has in mind. For instance, when studying dynamic control
flow information, REPD is empty as REPS is enough to re-
construct the entire dynamic control flow. When studying
memory reference behavior, for example, a naive approach
is to use REPD to store all of the memory reference ad-
dresses and reference sizes. Using this approach, it is easy
to reconstruct the full memory reference information (i.e.
<pc, address, type, size>), as follows: pc, type and size

(if static) are obtained from REPS , while address and any
dynamic size can be read from REPD. Alternatively, a
smaller profile size can be achieved if we modify the way
addresses are stored and recovered. For instance, to profile
the instruction mov 0 -> [eax+16], 16 is stored in offset,
and we only need to store the value of register eax in REPD.
This removes the need to do address calculation in the in-
strumentation code, further removing the need to steal an
extra register (which would be needed for this computation).

There are some additional aggressive optimizations that
can further reduce the size of REPD. In the case where
there are several references accessing different members of
the same data structure, only the base address of the data
structure needs to be recorded. Also, the memory reference
addresses of a sequence of push or pop can be reconstructed
from a single stack pointer value recorded in the REPD.
This last optimization is illustrated in the example given in

Figure 2 where only one esp value was saved for the two
stack references done by the pop and return instructions of
bb1.

4.2 Instrumentation
There are five tasks to do in the instrumentation code:

(1) context switching so as to preserve the correctness of
the execution of the application-under-examination; (2) cal-
culating the address of a memory reference; (3) recording
the address into a profile buffer; (4) updating the profile
counter; and (5) checking if the buffer is full. A carefully
crafted instrumentation code for each of the above tasks
can significantly reduce the profiling overhead. This section
presents several optimizations that can be used for this pur-
pose. Some of the proposed optimizations specifically target
the x86 architecture that was employed in our experiments.

Context switching consists of saving and restoring the va-
lues of the registers that are used by the instrumentation
code. One of the goals of our optimizations is to minimize
the number of these registers in order to reduce the overhead.

Firstly, in most cases, only register values are stored in
the REP. This removes the need to perform memory ad-
dress calculation. Therefore, in these cases, only one re-
gister is needed for holding the profile counter. Otherwise,
an extra register is required for storing the computed me-
mory reference address. In order to be fast, such an address
computation is done using the x86 lea instruction. This
instruction computes efficiently the effective address of the
source operand (a memory reference specified using one of
the processor’s addressing modes), and stores it in a desti-
nation register.

Secondly, the same lea instruction is used instead of add
to update the profile counter. More specifically, add reg

update -> reg can be replaced with lea [reg + update]

-> reg. Unlike the add instruction, the lea instruction does
not change the eflags. Doing away with the need to save
and restore eflags significantly improves the overhead due
to context switches.

Thirdly, instead of modifying the profile counter on each
profile update, all the changes are combined into a single
update when recording the REPS data structure.

The buffer full check is performed when the profile counter
is updated. As described in the previous section, the end of
each profile buffer is guarded by a special canary zone con-
sisting of the value 0xf0f0f0f0. Because there are several
buffers in use, to check for a full buffer using the profile
counter would require first locating and fetching the cor-
responding buffer limit. Therefore, instead of checking the
profile counter’s value, it is more efficient to check if a canary
value was hit. If so, then the buffer is full.

The buffer full handler performs two tasks. First the
handler signals the recovery thread to start working on the
filled buffer by performing a V-operation on the associated
semaphore. Next, it switches to the next empty buffer, re-
turning when it successfully acquired one. The buffers are
switched by simply changing the profile counter’s value.

There are several other well-known optimizations that can
reduce the profiling overhead. First, to perform fast context
switches, a one-time register liveness analysis for each basic
block is performed to discover if there are registers that can
be used without stealing. The second optimization combines
profile updates. Several profile updates can be combined
together if the register values that must be saved are not



overwritten. The total number of instructions needed to
steal the necessary registers can thus be reduced.

More aggressive optimization can be performed when Dy-
namoRIO upgrades frequently executed basic blocks into
traces. By taking advantage of the single entry multi-exits
format of a trace, the check for a full buffer in consecutive
basic blocks of a trace can be removed. To do this, the size
of the canary zone at the end of a buffer is chosen such that
it is greater than the amount of information any one trace
may write in the buffer. This way, if a check at the begin-
ning of a trace tells us that the buffer is not yet full, then
no trace’s execution will exceed the canary zone.

4.3 Profile Recovery
As mentioned in Section 3.2, every profile buffer is associ-

ated with a recovery thread that waits for it to be full. When
a buffer is full and the instrumented application thread re-
leases it, the recovery thread will start performing the re-
construction task by scanning the REP units in the buffer
one by one.

Let us use the recovery of memory references as an ex-
ample. The recovery thread first gets the REPS pointer to
retrieve the static information of the basic block. For each
memory reference, we are able to obtain the instruction pro-
gram counter (pc), the reference type (read or write), the
access size and the offset value. From the corresponding slot
in REPD, we obtain the dynamic value of the base register.
In some cases of more complex addressing, the actual ad-
dress is calculated during profiling and stored instead. The
offset then would be zero. The addition of the offset and
the REPD value gives the memory reference address. Hav-
ing recovered all the memory reference information for the
current basic block instance, we move on to the next REP
unit by using the stride information of the current unit.

After the entire profile buffer is processed, the canary zone
is reset, and the buffer is released back to the application
thread. Before the application-under-examination exits, it
will notify all the recovery threads by writing a special word
at the end of each buffer. Each recovery thread will process
whatever that is in its buffer and exit.

5. PARALLEL CACHE SIMULATION
This section uses cache simulation as an example to dis-

cuss how parallel analysis algorithms can be implemented
using PiPA.

Minimizing inter-thread communication is an important
way of obtaining good performance in parallel programs.
In the context of cache simulation, one simple approach to
achieve this is to split the address trace into different groups
that are independent. The dependence here refers to the de-
pendencies between updates of the cache simulator’s state.
For instance, in a set associative based cache, two memory
references that access two different sets of the cache are not
dependent on each other. This simple observation gives an
effective way to parallelize a cache simulator: the sets of the
cache are partitioned and simulated by independent simu-
lators. Each of these simulators are fed from address sub-
traces obtained by segregating addresses in the main trace
using their set indexes. The simulators do not need to com-
municate with one another except at the end of the simula-
tion when their results have to be combined.

Most memory reference analysis, for example memory de-
pendence analysis, can benefit from similar parallelization

techniques. Branch prediction simulation can also be paral-
lelized by appropriately segregating the PC value of branch
instructions.

In order to evaluate the benefits of such parallelization,
we implemented a parallel cache simulator as a stand-alone
process that communicates with PiPA via semaphores and
shared memory. The simulator works in a master-slave mode.
The master thread communicates with PiPA to obtain the
segregated memory reference profiles, and dispatches them
to slave threads. Each slave thread is an independent cache
simulator that simulates a partition of the cache. The ex-
perimental results are presented in Section 6.3.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of PiPA. We

ran the experiments on the three different multi-core systems
listed in Table 1. We used the full SPEC CPU2000 [12] suite
of benchmarks, which were compiled with gcc 4.0 using the
‘-O3’ flags. All the runs were conducted using the reference
input sets of the respective benchmarks.

No. of Cores 2 4 8

CPU Model 1 x Dual Core 2 x Dual Core 2 x Quad Core
Intel Pentium D AMD Opteron Intel Xeon

CPU Frequency 3.2 GHz 2.4 GHz 1.8 GHz

L2 Cache Size/Core 1 MB 1 MB 4 MB

Memory Size 2 GB 4 GB 4 GB

Operating 32-bit Linux 64-bit Linux 64-bit Linux
System 2.6.17 2.6.15 2.6.21

Table 1: Multi-core systems used in experiments.

6.1 Profiling Overhead
In the first set of experiments we assessed the runtime

overhead of collecting REP profiles. There are two major
factors that impact the profiling performance, namely the
execution of the instrumented code and the size of the profile
buffer.

We first fixed the profile buffer size to 16MB, and evalu-
ated the profiling overhead of our profile code optimizations.
The results for runs on the 8-core system are shown in Fig-
ure 3. The bars show the execution times of un-optimized
and optimized profiling normalized to that of native exe-
cution. By ‘native execution’ we mean running the bench-
mark binaries as they are without profiling, DynamoRIO or
any instrumentation. ‘Optimized profiling’ means using the
optimizations described in Section 4.2, while ‘un-optimized
profiling’ refers to collecting REP without any of the pro-
posed optimizations. Our optimizations clearly improve the
profiling overhead significantly.

Table 2 shows the average profiling performance on the
three different systems. The profiling code runs in the same
thread as the application-under-examination. Differences in
the slowdown shown in the table are therefore mainly due
to the different CPU models, not the number of cores. The
results are normalized to the native execution time. For all
experiments described from here on, we will use the opti-
mized instrumentation code.

In the next experiment, we studied how the profiling over-
head is affected by the size of the profile buffer. We varied
the profile buffer size from 1KB to 16MB. The average nor-
malized execution times for different profile buffer sizes on
the three systems are shown in Figure 4. A similar pattern
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Figure 3: Profiling overhead on 8-core system with and without instrumentation optimization.

Systems SPECint SPECfp SPEC2000

opt w/o opt opt w/o opt opt w/o opt

2-core 3.60 7.28 1.98 5.13 2.27 6.13

4-core 4.20 8.27 2.27 5.79 3.16 6.94

8-core 4.99 9.90 2.80 6.94 3.81 8.30

Table 2: Profiling performance with and without
optimization.
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Figure 4: Performance on the various multi-core sys-
tems when profile buffer size is varied.

can be observed. As the profile buffer size is increased, per-
formance initially improves. This is due mainly to the reduc-
tion in the total number of invocations of the buffer full han-
dler, and hence the number of buffer switches. Performance
stabilizes after the buffer size is increased to 16KB. After cer-
tain points, (64KB in systems with 1M cache, and 256KB in
the system with 4M cache), performance degrades. We at-
tribute this to cache effects. Most likely, the large buffer in-
terfered with the working set of the application. After signif-
icantly exceeding the L2 cache’s size, the performance again
becomes stable since the situation cannot get any worse.

6.2 Profile Recovery Overhead
In the second set of experiments, we evaluated the full

PiPA framework performance in which both profiling and
recovery are done in parallel on the multi-core systems. The

small medium large
(64k) (1M) (16M)

SPECInt 8.43 7.52 5.56

SPECFP 5.08 4.39 3.51

SPEC2000 6.62 5.84 4.45

Table 3: Normalized profiling and recovery overhead
on 8-core system with different profile buffer size.

# thr 0 2 4 6 8

SPECInt 19.35 13.76 6.64 5.99 5.56

SPECFP 13.39 9.63 4.36 3.76 3.51

SPEC2000 16.14 11.54 5.41 4.79 4.45

Table 4: Normalized profiling and recovery overhead
on 8-core system with different number of recovery
threads.

application thread collects the REP profiles. The recovery
threads count the total number of memory references, and
reconstruct the detailed reference information into the form
of a <pc, addr, size, type> tuple, which is then copied
into a thread-private non-local data structure. This copying
is necessary to avoid the recovery code from being optimized
away by the compiler.

We studied three factors that may affect performance,
namely the size of the profile buffer, the number of reco-
very threads, and the number of available CPU cores.

We first assessed how buffer size changes can affect the
performance on the 8-core system. The number of recovery
threads is set to 8 in this experiment to make sure there is
enough parallelism. We chose three buffer sizes, one small
(64KB), one medium (1MB) and one large (16MB). The
total buffer sizes are therefore 512KB, 8MB and 128MB,
respectively. The results in Table 3 show that the larger the
buffer size, the better the performance is. That is because
large buffer sizes allow the recovery threads to spend more
time on consuming the profiles in buffers and less time on
communication and synchronization.

Next, we fixed the buffer size to 16M, and varied the num-
ber of recovery threads. This set of experiments was exe-
cuted on the 8-core system which had the maximum amount
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Figure 5: Runtime overhead of three profiling approaches on 8-core system.

Normalized to Normalized to
native exec. profiling

# cores 2 4 8 2 4 8

SPECInt 7.01 5.02 5.56 1.95 1.20 1.11

SPECFP 4.45 2.96 3.51 2.25 1.30 1.25

SPEC2000 5.63 3.91 4.45 2.07 1.24 1.17

Table 5: Profiling and recovery overhead with dif-
ferent number of CPU cores.

of hardware resources. The number of recovery threads is
set to 0, 2, 4, 6, and 8. In the case of zero recovery threads,
the profiling thread also has to perform recovery using a
single buffer. In the other cases, there is exactly one buffer
for each recovery thread. The results are shown in Table 4.
As more recovery threads are added, performance improves
due to the parallelism. From 6 to 8 threads, marginal utility
sets in as the speed of profile production limits the overall
performance.

We also studied how well PiPA performs on different multi-
core systems. In this experiment, we used 8 recovery threads,
and 16M profile buffers, to make sure they can take advan-
tage of any available hardware resources in all of the three
systems. On the left of Table 5, the execution times normal-
ized to native execution are shown. The sequential version
of recovery on the 2-core system has an average slowdown of
16.60 for SPECint, 12.56 for SPECfp, and 14.42 overall. In
contrast, the parallel version of PiPA running on two cores
halved the execution time. Surprisingly, the 4-core system
did better than the 8-core system. However, because the two
systems are different, the profiling overhead on each is also
different. If we normalize execution time against profiling
time, rather than native execution time, we can see that on
the 8-core system, because of more available parallel hard-
ware, recovery can be done more efficiently.

We next studied the impact of using REP in PiPA. We
implemented a version of PiPA to collect the naive memory
reference information tuple (i.e. <pc, addr, size, type>).
We also used Pin to collect this tuple format. Again, me-
mory references are counted, and the profile is copied to a
thread-private non-local data structure.2

2We also tried to run this experiment using SuperPin, but
we failed to get it to work properly with the released Pin
tool set. Therefore, we were unable to compare PiPA with
SuperPin.

As shown in Figure 5, PiPA using REP performs signifi-
cantly better than the PiPA or Pin using the naive format.
It should be noted that PiPA-REP and PiPA-Naive were
implemented in DynamoRIO. There are two reasons why
REP performs much better than the naive profile. First, as
mentioned before, REP enables several optimizations that
lower the profiling overhead compared to the naive profile
collection, even though several common optimizations were
applied to both. The lower profiling overhead allows profiles
to be produced much faster than the recovery threads can
consume them. The other reason is that REP is more com-
pact. For each memory reference, there are around 4 bytes
on average used, in contrast to the naive format which re-
quires 16 bytes. The smaller profile size allows for more
references to be stored in a given profile buffer, thereby im-
proving the recovery threads’ computation to communica-
tion ratio. The cache effects caused by the profile buffers
meant that naive profile collection by PiPA is even slower
than the serial naive profile collection of Pin.

6.3 Cache Simulation
Finally, we evaluated the effectiveness of PiPA in paral-

lel cache simulation by comparing it against the Pin dcache

simulator. To be fair, we used the same cache simulator pro-
vided in the Pin toolkit, with some modifications to handle
our profile format. We used 8 recovery threads in PiPA, 8
slave cache simulator threads, 16MB of profile buffer, and
two pieces of 2MB shared memory to feed each slave thread.

We tested the simulations on the 4-core and 8-core sys-
tems. Figure 6 shows the normalized execution times of
PiPA cache simulator and Pin dcache simulator on the 8-
core system, while Figure 7 shows the speedups of PiPA
over Pin dcache on both 4-core and 8-core systems. It can
be easily observed that PiPA outperforms Pin dcache sig-
nificantly on both systems. On average, PiPA reduces the
slowdown by a factor of three. In the best case (301.apsi),
PiPA’s speedup over dcache exceeds 5x. In general the 8-
core achieves slightly better speedups than the 4-core. How-
ever, there are a few benchmarks which exhibit a lower
speedup when run under PiPA on the 8-core system com-
pared to the 4-core. We believe this is due to the archi-
tectural differences between the two experimental systems,
especially the size of L2 cache. Pin dcache does not use
large buffers as PiPA does, and thus is more sensitive to
the size of this cache. Therefore, some benchmarks (e.g.
171.swim, 189.lucas, 197 parser) ran with Pin dcache
have a better cache locality on the 8-core. In contrast, the
same benchmarks running under the PiPA based cache simu-
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Figure 6: Cache simulation overhead for PiPA and Pin dcache on 8-core system.
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Figure 7: PiPA speedup over Pin dcache on 4-core and 8-core systems.

lator benefit little from the large L2 cache, and thus PiPA’s
speedup over sequential dcache is lower on this machine.

Ideally, the cache simulator should be speeded up by 8x on
a 8-core system. However, there are several reasons that pre-
vent the PiPA cache simulator from achieving that speedup.
Firstly, PiPA introduces extra work in filling and reading the
profile buffers and shared buffers. Secondly, we have already
noted the cache effects that come with large buffer sizes.
Another cause for this phenomenon is workload imbalance,
encountered in the case when the profiles are biased towards
some partitions. In such cases the corresponding cache sim-
ulators will have a heavier workload than the others. This is
the case in 188.ammp and 189.lucas. Also, different bench-
marks may attain different profiling speeds, and, in some,
profile production cannot keep up with the consumption by
the cache simulators. As a result, most benchmarks can only
achieve a 2x to 5x speedup relative to a sequential cache
simulator (i.e. Pin dcache). Still, as a whole, the aver-
age slowdown for cache simulation was reduced from 32x to
10.5x.

7. CONCLUSION AND FUTURE WORK
In this paper, we introduced PiPA, a technique for per-

forming parallel program profiling and analysis that takes
advantage of multi-core systems and drastically reduces the
program analysis time. We implemented PiPA using the
dynamic instrumentation framework DynamoRIO. In addi-
tion, we proposed REP, a novel profile format. For maximal
efficiency, the design of the trace buffer data structure is cru-
cial. This data structure has to (i) require the minimal in-
strumentation code thereby reducing the profiling overhead;
(ii) be compact so that the buffer holds as much of the trace
as possible before filling up; and (iii) make it easy for the
next pipeline stages to recover the full trace. REP meets

these requirements. We also described an approach for par-
allelizing trace driven analysis, and demonstrated it using a
parallel cache simulator. Other types of program analysis,
such as memory dependence analysis and branch prediction
simulation can be parallelized in a similar manner.

We have conducted a comprehensive set of experiments
to assess PiPA’s performance on actual multi-core systems.
These include assessing the efficiency of REP profiling, me-
mory reference recovery, and parallel cache simulation using
PiPA. The experimental results show that PiPA improves on
the performance of both profiling and analysis, and, there-
fore, is an effective technique for parallelizing program ana-
lysis in practice. We believe that the success of PiPA opens
up a new approach for parallel program analysis.

The next step is to extend PiPA by designing APIs and
library templates for certain types of usage models. For
instance, the communication and synchronization between
different pipeline stages is similar for most types of analy-
sis. By carefully crafting the API this communication can
be hidden away from the programmer who should only be
concerned with the instrumentation and analysis that must
be done in each stage. This would significantly ease the task
of developing new PiPA tools.

To further improve the efficiency of PiPA there are two
major future directions that can be explored. The first
is parallel profiling. Because in the current implementa-
tion, profiling is performed in the same application thread,
a bottleneck can occur if the profiles cannot be produced
fast enough to satisfy the demands of the parallel reco-
very threads. This will limit the scalability of the recovery
and analysis processes especially on many-core systems. We
would like to explore other approaches like SuperPin for par-
allel profiling. The second direction is workload monitoring.
A balanced workload is important for achieving good perfor-
mance in PiPA. However it is hard to discover if the workload



is balanced, locate bottle-necks, and dynamically re-balance
it. More research is needed for automatic approaches that
dynamically monitor the workload and the progress of each
thread so that adjustments can be made at runtime to ba-
lance the system.
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