
PetaBricks
A Language and Compiler for Algorithmic Choice

Jason Ansel Cy Chan Yee Lok Wong Marek Olszewski
Qin Zhao Alan Edelman Saman Amarasinghe

MIT - CSAIL

June 16, 2009

Jason Ansel (MIT) PetaBricks June 16, 2009 1 / 47



Introduction Motivating Example

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 2 / 47



Introduction Motivating Example

Algorithmic choice

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

InsertionsortMergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

Insertionsort

Radixsort

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@15N=2

STL Algorithm

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Niagra (8 cores)
@75

@1461

@2400

N=2,4,8,16

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Niagra (8 cores)
@75

@1461

@2400

N=2,4,8,16

Core 2 (2 cores)

@150

@600

@1295

N=2,4,8

@
38400

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

Algorithmic choice

Quicksort

QuicksortQuicksort

QuicksortQuicksort Quicksort

QuicksortQuicksort

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Niagra (8 cores)
@75

@1461

@2400

N=2,4,8,16

Core 2 (2 cores)

@150

@600

@1295

N=2,4,8

@
38400

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47



Introduction Motivating Example

The PetaBricks language
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How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct
Autotuning performed by the compiler
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Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space
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PetaBricks Language Compilation Example

Simple example program

1 transform Rol l ingSum
2 from A [ n ]
3 to B [ n ]

4 {
5 // r u l e 0 : use the p r e v i o u s l y computed v a l u e
6 B . c e l l ( i ) from (A . c e l l ( i ) a ,
7 B . c e l l ( i −1) l e f t S u m ) {
8 return a+l e f t S u m ;
9 }

10
11 // r u l e 1 : sum a l l e l ement s to the l e f t
12 B . c e l l ( i ) from (A . reg ion ( 0 , i ) i n ) {
13 return sum ( i n ) ;
14 }
15 }
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PetaBricks Language Compilation Example

Simple example program

...

5 // r u l e 0 : use the p r e v i o u s l y computed v a l u e
6 B . c e l l ( i ) from (A . c e l l ( i ) a ,
7 B . c e l l ( i −1) l e f t S u m ) {
8 return a+l e f t S u m ;
9 }

...

A:

B:
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Simple example program

A:

B:

...

11 // r u l e 1 : sum a l l e l ement s to the l e f t
12 B . c e l l ( i ) from (A . reg ion ( 0 , i ) i n ) {
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PetaBricks Language Compilation Example

Applicable regions

Compilation Process
Applicable regions Choice grids Choice dependency graph
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PetaBricks Language Compilation Example

Choice grids

Compilation Process
Applicable regions Choice grids Choice dependency graph

Divide data space into symbolic regions with common sets of choices

In this simple example:

A: Input (no choices)
B: [0, 1) = rule 1
B: [1, n) = rule 0 or rule 1

0 1 n

R1 R0 or R1

Applicable regions map rules → symbolic data

Choice grids map symbolic data → rules
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PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47



PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47



PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47



PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47



PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns

Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47



PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47



PetaBricks Language Compilation Example

Code generation

Autotuning
Binary

PetaBricks Compiler

Final
Binary

Choice Configuration File

PetaBricks Source Code

1 PetaBricks source code is
compiled

2 An autotuning binary is created

3 Autotuning occurs creating a
choice configuration file

4 Choices are fed back into the
compiler to create a final binary
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PetaBricks Language Compilation Example

Autotuning

Based on two building blocks:

A genetic tuner
An n-ary search algorithm

Flat parameter space

Compiler generates a dependency graph describing this parameter
space

Entire program tuned from bottom up
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PetaBricks Language Compilation Example

Parallel Runtime Library

Task-based parallel runtime

Thread-local decks of runnable tasks

Use a work-stealing algorithm similar to that of Cilk
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PetaBricks Language Other Language Features

More PetaBricks features

Automatic consistency checking

The tunable keyword

Call external code

Custom training data generators

Matrix versions for iterative algorithms

Rule priorities

where (clause for limiting applicable regions)

Template transforms
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Results Benchmarks

Eigenvector Solve

Bisection

QR decomposition

Divide and conquer

Jason Ansel (MIT) PetaBricks June 16, 2009 31 / 47



Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000

T
im

e 
(s

)

Input Size

Bisection

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47



Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000

T
im

e 
(s

)

Input Size

Bisection
DC

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47



Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000

T
im

e 
(s

)

Input Size

Bisection
DC
QR

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47



Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000

T
im

e 
(s

)

Input Size

Bisection
DC
QR

Autotuned

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47



Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000

T
im

e 
(s

)

Input Size

Bisection
DC
QR

Autotuned
Cutoff 25

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47



Results Benchmarks

Matrix Multiply

Basic

Recursive decompositions

Strassen’s algorithm

Iteration order (blocking)

Transpose
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Results Variable Accuracy

Variable accuracy

Most algorithms produce exact solutions

Large class of algorithms can produce
approximate solutions

Iterative convergence
Grid coarsening
Others

Compiler/autotuner should be aware of variable
accuracy

Compiler can examine optimal frontier of
algorithms
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Results Variable Accuracy

Poisson’s equation

A variable accuracy benchmark

Accuracy level expressed as a template parameter

Autotuner exploits variable accuracy in a general way

Choices:

Direct solve
Jacobi iteration
Successive over relaxation
Multigrid
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Results Variable Accuracy

Choices in Multigrid
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SOR is an iterative algorithm

Multigrid changes grid coarseness to speed up convergence

Many standard shapes: V-Cycle,

W-Cycle, etc

Direct solver

Different shapes = different algorithms
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Results Variable Accuracy

Autotuned V-cycle shapes for different accuracy
requirements
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Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒ Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level
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Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

T
im

e 
(s

)

Input Size

Direct

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47



Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

T
im

e 
(s

)

Input Size

Direct
Jacobi

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47



Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

T
im

e 
(s

)

Input Size

Direct
Jacobi

SOR

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47



Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

T
im

e 
(s

)

Input Size

Direct
Jacobi

SOR
Multigrid

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47



Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  10  100  1000

T
im

e 
(s

)

Input Size

Direct
Jacobi

SOR
Multigrid

Autotuned

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47



Conclusion Final thoughts

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 44 / 47



Conclusion Final thoughts

Related work

Languages

Sequoia

Libraries & domain specific tuners

STAPL
ATLAS
FFTW
SPARSITY
SPIRAL
...
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For more information

PetaBricks makes programs future-proof, by allowing them to adapt
to new architectures

We plan to released PetaBricks at the end of summer

Sign up for our mailing list to be notified

For more information see:
http://projects.csail.mit.edu/petabricks/

Questions?
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Thank you!
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