
PetaBricks
A Language and Compiler for Algorithmic Choice

Jason Ansel Cy Chan Yee Lok Wong Marek Olszewski
Qin Zhao Alan Edelman Saman Amarasinghe

MIT - CSAIL

June 16, 2009

Jason Ansel (MIT) PetaBricks June 16, 2009 1 / 47

Introduction Motivating Example

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 2 / 47

Introduction Motivating Example

Algorithmic choice

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

InsertionsortMergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

Insertionsort

Radixsort

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@15N=2

STL Algorithm

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Niagra (8 cores)
@75

@1461

@2400

N=2,4,8,16

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Niagra (8 cores)
@75

@1461

@2400

N=2,4,8,16

Core 2 (2 cores)

@150

@600

@1295

N=2,4,8

@
38400

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

Algorithmic choice

Quicksort

QuicksortQuicksort

QuicksortQuicksort Quicksort

QuicksortQuicksort

QuicksortQuicksort

Insertionsort

Radixsort

Mergesort
(N-way)

@
9

8

@75

N
=

4

Xeon (1 core)

Optimized For:

@
1420 @

6
0

0

N
=

2

Xeon (8 cores)

Niagra (8 cores)
@75

@1461

@2400

N=2,4,8,16

Core 2 (2 cores)

@150

@600

@1295

N=2,4,8

@
38400

Jason Ansel (MIT) PetaBricks June 16, 2009 3 / 47

Introduction Motivating Example

The PetaBricks language

The case for autotuning is obvious

How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct
Autotuning performed by the compiler
Automatically parallelized

Jason Ansel (MIT) PetaBricks June 16, 2009 4 / 47

Introduction Motivating Example

The PetaBricks language

The case for autotuning is obvious

How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct
Autotuning performed by the compiler
Automatically parallelized

Jason Ansel (MIT) PetaBricks June 16, 2009 4 / 47

Introduction Motivating Example

The PetaBricks language

The case for autotuning is obvious

How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct
Autotuning performed by the compiler
Automatically parallelized

Jason Ansel (MIT) PetaBricks June 16, 2009 4 / 47

Introduction Motivating Example

The PetaBricks language

The case for autotuning is obvious

How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct

Autotuning performed by the compiler
Automatically parallelized

Jason Ansel (MIT) PetaBricks June 16, 2009 4 / 47

Introduction Motivating Example

The PetaBricks language

The case for autotuning is obvious

How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct
Autotuning performed by the compiler

Automatically parallelized

Jason Ansel (MIT) PetaBricks June 16, 2009 4 / 47

Introduction Motivating Example

The PetaBricks language

The case for autotuning is obvious

How should the programmer represent choice?

We present the PetaBricks programming language and compiler:

Choice as a fundamental language construct
Autotuning performed by the compiler
Automatically parallelized

Jason Ansel (MIT) PetaBricks June 16, 2009 4 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Motivating Example

Sort in PetaBricks

1 transform S o r t
2 from A [n]
3 to B [n]

4 {
5 from (A a) to (B b) {
6 tunable WAYS;
7 /∗ M e r g e s o r t ∗/

8 } or {
9 /∗ I n s e r t i o n s o r t ∗/

10 } or {
11 /∗ R a d i x s o r t ∗/

12 } or {
13 /∗ Q u i c k s o r t ∗/

14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 5 / 47

Introduction Language & Compiler Overview

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 6 / 47

Introduction Language & Compiler Overview

The PetaBricks compiler

Sort is compiled into a autotuning binary

Trained on target architecture

Structured genetic tuner
Trained with full number of threads
Under 1 minute for Sort

Results fed back into the compiler

Final binary created

Jason Ansel (MIT) PetaBricks June 16, 2009 7 / 47

Introduction Language & Compiler Overview

The PetaBricks compiler

Sort is compiled into a autotuning binary

Trained on target architecture

Structured genetic tuner
Trained with full number of threads
Under 1 minute for Sort

Results fed back into the compiler

Final binary created

Jason Ansel (MIT) PetaBricks June 16, 2009 7 / 47

Introduction Language & Compiler Overview

The PetaBricks compiler

Sort is compiled into a autotuning binary

Trained on target architecture

Structured genetic tuner

Trained with full number of threads
Under 1 minute for Sort

Results fed back into the compiler

Final binary created

Jason Ansel (MIT) PetaBricks June 16, 2009 7 / 47

Introduction Language & Compiler Overview

The PetaBricks compiler

Sort is compiled into a autotuning binary

Trained on target architecture

Structured genetic tuner
Trained with full number of threads

Under 1 minute for Sort

Results fed back into the compiler

Final binary created

Jason Ansel (MIT) PetaBricks June 16, 2009 7 / 47

Introduction Language & Compiler Overview

The PetaBricks compiler

Sort is compiled into a autotuning binary

Trained on target architecture

Structured genetic tuner
Trained with full number of threads
Under 1 minute for Sort

Results fed back into the compiler

Final binary created

Jason Ansel (MIT) PetaBricks June 16, 2009 7 / 47

Introduction Language & Compiler Overview

The PetaBricks compiler

Sort is compiled into a autotuning binary

Trained on target architecture

Structured genetic tuner
Trained with full number of threads
Under 1 minute for Sort

Results fed back into the compiler

Final binary created

Jason Ansel (MIT) PetaBricks June 16, 2009 7 / 47

Introduction Language & Compiler Overview

Sort algorithm timings1

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort

1On an 8-way Xeon E7340 system
Jason Ansel (MIT) PetaBricks June 16, 2009 8 / 47

Introduction Language & Compiler Overview

Sort algorithm timings1

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort
QuickSort

1On an 8-way Xeon E7340 system
Jason Ansel (MIT) PetaBricks June 16, 2009 8 / 47

Introduction Language & Compiler Overview

Sort algorithm timings1

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort
QuickSort
MergeSort

1On an 8-way Xeon E7340 system
Jason Ansel (MIT) PetaBricks June 16, 2009 8 / 47

Introduction Language & Compiler Overview

Sort algorithm timings1

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort
QuickSort
MergeSort
RadixSort

1On an 8-way Xeon E7340 system
Jason Ansel (MIT) PetaBricks June 16, 2009 8 / 47

Introduction Language & Compiler Overview

Sort algorithm timings1

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort
QuickSort
MergeSort
RadixSort
Autotuned

1On an 8-way Xeon E7340 system
Jason Ansel (MIT) PetaBricks June 16, 2009 8 / 47

Introduction Language & Compiler Overview

Timings on different architectures

Trained on
Mobile Xeon 1-way Xeon 8-way Niagara

R
u

n
on

Mobile - 1.09x 1.67x 1.47x
Xeon 1-way 1.61x - 2.08x 2.50x
Xeon 8-way 1.59x 2.14x - 2.35x

Niagara 1.12x 1.51x 1.08x -

Jason Ansel (MIT) PetaBricks June 16, 2009 9 / 47

Introduction Language & Compiler Overview

Timings on different architectures

Trained on
Mobile Xeon 1-way Xeon 8-way Niagara

R
u

n
on

Mobile - 1.09x 1.67x 1.47x
Xeon 1-way 1.61x - 2.08x 2.50x
Xeon 8-way 1.59x 2.14x - 2.35x

Niagara 1.12x 1.51x 1.08x -

Jason Ansel (MIT) PetaBricks June 16, 2009 9 / 47

Introduction Language & Compiler Overview

Timings on different architectures

Trained on
Mobile Xeon 1-way Xeon 8-way Niagara

R
u

n
on

Mobile - 1.09x 1.67x 1.47x
Xeon 1-way 1.61x - 2.08x 2.50x
Xeon 8-way 1.59x 2.14x - 2.35x

Niagara 1.12x 1.51x 1.08x -

Jason Ansel (MIT) PetaBricks June 16, 2009 9 / 47

Introduction Why choices

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 10 / 47

Introduction Why choices

Early compilers

Code
Gen

Parsing

Constrained
Input
Language
(No choices)

Early computers (and compilers) were weak

Parsing and code generation dominated compilation

Needed a constrained input language to simplify
compilation

Jason Ansel (MIT) PetaBricks June 16, 2009 11 / 47

Introduction Why choices

Early compilers

Code
Gen

Parsing

Constrained
Input
Language
(No choices)

Early computers (and compilers) were weak

Parsing and code generation dominated compilation

Needed a constrained input language to simplify
compilation

Jason Ansel (MIT) PetaBricks June 16, 2009 11 / 47

Introduction Why choices

Early compilers

Code
Gen

Parsing

Constrained
Input
Language
(No choices)

Early computers (and compilers) were weak

Parsing and code generation dominated compilation

Needed a constrained input language to simplify
compilation

Jason Ansel (MIT) PetaBricks June 16, 2009 11 / 47

Introduction Why choices

Current compilers

Code
Gen

Parsing

Exposing
Choices

Decisions

Constrained
Input
Language
(No choices) Current computers are much more powerful

Compilers can do a lot more

Input language is still constraining

Compilation dominated by exposing choices

Input language specifies only one
Algorithmic choice
Iteration order choice
Parallelism strategy choice
Data layout choice

Compiler must perform heroic analysis to reconstruct
other choices

Jason Ansel (MIT) PetaBricks June 16, 2009 12 / 47

Introduction Why choices

Current compilers

Code
Gen

Parsing

Exposing
Choices

Decisions

Constrained
Input
Language
(No choices) Current computers are much more powerful

Compilers can do a lot more

Input language is still constraining

Compilation dominated by exposing choices

Input language specifies only one
Algorithmic choice
Iteration order choice
Parallelism strategy choice
Data layout choice

Compiler must perform heroic analysis to reconstruct
other choices

Jason Ansel (MIT) PetaBricks June 16, 2009 12 / 47

Introduction Why choices

Current compilers

Code
Gen

Parsing

Exposing
Choices

Decisions

Constrained
Input
Language
(No choices) Current computers are much more powerful

Compilers can do a lot more

Input language is still constraining

Compilation dominated by exposing choices

Input language specifies only one
Algorithmic choice
Iteration order choice
Parallelism strategy choice
Data layout choice

Compiler must perform heroic analysis to reconstruct
other choices

Jason Ansel (MIT) PetaBricks June 16, 2009 12 / 47

Introduction Why choices

Current compilers

Code
Gen

Parsing

Exposing
Choices

Decisions

Constrained
Input
Language
(No choices) Current computers are much more powerful

Compilers can do a lot more

Input language is still constraining

Compilation dominated by exposing choices

Input language specifies only one
Algorithmic choice
Iteration order choice
Parallelism strategy choice
Data layout choice

Compiler must perform heroic analysis to reconstruct
other choices

Jason Ansel (MIT) PetaBricks June 16, 2009 12 / 47

Introduction Why choices

Current compilers

Code
Gen

Parsing

Exposing
Choices

Decisions

Constrained
Input
Language
(No choices) Current computers are much more powerful

Compilers can do a lot more

Input language is still constraining

Compilation dominated by exposing choices

Input language specifies only one
Algorithmic choice
Iteration order choice
Parallelism strategy choice
Data layout choice

Compiler must perform heroic analysis to reconstruct
other choices

Jason Ansel (MIT) PetaBricks June 16, 2009 12 / 47

Introduction Why choices

PetaBricks compiler

Code
Gen

Parsing

Exploring Choices
&

Making Decisions

Rich
Input
Language
(w/ choices)

We propose explicit choices in the language

The programmer defines the space of legal

Algorithmic choices
Iteration orders (include parallel)
Data layouts

Allow compilers to focus on exploring choices

Compiler no longer needs to reconstruct choices

Jason Ansel (MIT) PetaBricks June 16, 2009 13 / 47

Introduction Why choices

PetaBricks compiler

Code
Gen

Parsing

Exploring Choices
&

Making Decisions

Rich
Input
Language
(w/ choices)

We propose explicit choices in the language

The programmer defines the space of legal

Algorithmic choices
Iteration orders (include parallel)
Data layouts

Allow compilers to focus on exploring choices

Compiler no longer needs to reconstruct choices

Jason Ansel (MIT) PetaBricks June 16, 2009 13 / 47

Introduction Why choices

PetaBricks compiler

Code
Gen

Parsing

Exploring Choices
&

Making Decisions

Rich
Input
Language
(w/ choices)

We propose explicit choices in the language

The programmer defines the space of legal

Algorithmic choices
Iteration orders (include parallel)
Data layouts

Allow compilers to focus on exploring choices

Compiler no longer needs to reconstruct choices

Jason Ansel (MIT) PetaBricks June 16, 2009 13 / 47

Introduction Why choices

Future-proof programs

The result: programs can adapt to their environment

Choices make programs less brittle

Programs change with architecture, available cores, inputs, etc

Jason Ansel (MIT) PetaBricks June 16, 2009 14 / 47

Introduction Why choices

Future-proof programs

The result: programs can adapt to their environment

Choices make programs less brittle

Programs change with architecture, available cores, inputs, etc

Jason Ansel (MIT) PetaBricks June 16, 2009 14 / 47

Introduction Why choices

Future-proof programs

The result: programs can adapt to their environment

Choices make programs less brittle

Programs change with architecture, available cores, inputs, etc

Jason Ansel (MIT) PetaBricks June 16, 2009 14 / 47

PetaBricks Language Key Ideas

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 15 / 47

PetaBricks Language Key Ideas

Algorithmic choice in the language

Algorithmic choice is the key aspect of PetaBricks

Programmer can define multiple rules to compute the same data

Compiler re-use rules to create hybrid algorithms

Can express choices at many different granularities

Jason Ansel (MIT) PetaBricks June 16, 2009 16 / 47

PetaBricks Language Key Ideas

Algorithmic choice in the language

Algorithmic choice is the key aspect of PetaBricks

Programmer can define multiple rules to compute the same data

Compiler re-use rules to create hybrid algorithms

Can express choices at many different granularities

Jason Ansel (MIT) PetaBricks June 16, 2009 16 / 47

PetaBricks Language Key Ideas

Algorithmic choice in the language

Algorithmic choice is the key aspect of PetaBricks

Programmer can define multiple rules to compute the same data

Compiler re-use rules to create hybrid algorithms

Can express choices at many different granularities

Jason Ansel (MIT) PetaBricks June 16, 2009 16 / 47

PetaBricks Language Key Ideas

Algorithmic choice in the language

Algorithmic choice is the key aspect of PetaBricks

Programmer can define multiple rules to compute the same data

Compiler re-use rules to create hybrid algorithms

Can express choices at many different granularities

Jason Ansel (MIT) PetaBricks June 16, 2009 16 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?

By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?

Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Key Ideas

Synthesized outer control flow

Outer control flow synthesized by compiler

Another choice that the programmer should not make

By rows?
By columns?
Diagonal? Reverse order? Blocked?
Parallel?

Instead programmer provides explicit
producer-consumer relations

Allows compiler to explore choice space

Jason Ansel (MIT) PetaBricks June 16, 2009 17 / 47

PetaBricks Language Compilation Example

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 18 / 47

PetaBricks Language Compilation Example

Simple example program

1 transform Rol l ingSum
2 from A [n]
3 to B [n]

4 {
5 // r u l e 0 : use the p r e v i o u s l y computed v a l u e
6 B . c e l l (i) from (A . c e l l (i) a ,
7 B . c e l l (i −1) l e f t S u m) {
8 return a+l e f t S u m ;
9 }

10
11 // r u l e 1 : sum a l l e l ement s to the l e f t
12 B . c e l l (i) from (A . reg ion (0 , i) i n) {
13 return sum (i n) ;
14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 19 / 47

PetaBricks Language Compilation Example

Simple example program

1 transform Rol l ingSum
2 from A [n]
3 to B [n]

4 {
5 // r u l e 0 : use the p r e v i o u s l y computed v a l u e
6 B . c e l l (i) from (A . c e l l (i) a ,
7 B . c e l l (i −1) l e f t S u m) {
8 return a+l e f t S u m ;
9 }

10
11 // r u l e 1 : sum a l l e l ement s to the l e f t
12 B . c e l l (i) from (A . reg ion (0 , i) i n) {
13 return sum (i n) ;
14 }
15 }

Jason Ansel (MIT) PetaBricks June 16, 2009 19 / 47

PetaBricks Language Compilation Example

Simple example program

...

5 // r u l e 0 : use the p r e v i o u s l y computed v a l u e
6 B . c e l l (i) from (A . c e l l (i) a ,
7 B . c e l l (i −1) l e f t S u m) {
8 return a+l e f t S u m ;
9 }

...

A:

B:

Jason Ansel (MIT) PetaBricks June 16, 2009 20 / 47

PetaBricks Language Compilation Example

Simple example program

A:

B:

...

11 // r u l e 1 : sum a l l e l ement s to the l e f t
12 B . c e l l (i) from (A . reg ion (0 , i) i n) {
13 return sum (i n) ;
14 }

...

Jason Ansel (MIT) PetaBricks June 16, 2009 21 / 47

PetaBricks Language Compilation Example

Applicable regions

Compilation Process
Applicable regions Choice grids Choice dependency graph

// r u l e 0 : use the p r e v i o u s l y computed v a l u e
B. c e l l (i) from (A . c e l l (i) a ,

B . c e l l (i −1) l e f tSum) {
r e t u rn a+le f tSum ;

}

Applicable where 1 ≤ i < n

// r u l e 1 : sum a l l e l ement s to the l e f t
B. c e l l (i) from (A . r eg i on (0 , i) i n) {

r e t u rn sum(i n) ;
}

Applicable where 0 ≤ i < n

Jason Ansel (MIT) PetaBricks June 16, 2009 22 / 47

PetaBricks Language Compilation Example

Applicable regions

Compilation Process
Applicable regions Choice grids Choice dependency graph

// r u l e 0 : use the p r e v i o u s l y computed v a l u e
B. c e l l (i) from (A . c e l l (i) a ,

B . c e l l (i −1) l e f tSum) {
r e t u r n a+le f tSum ;

}

Applicable where 1 ≤ i < n

// r u l e 1 : sum a l l e l ement s to the l e f t
B. c e l l (i) from (A . r eg i on (0 , i) i n) {

r e t u rn sum(i n) ;
}

Applicable where 0 ≤ i < n

Jason Ansel (MIT) PetaBricks June 16, 2009 22 / 47

PetaBricks Language Compilation Example

Applicable regions

Compilation Process
Applicable regions Choice grids Choice dependency graph

// r u l e 0 : use the p r e v i o u s l y computed v a l u e
B. c e l l (i) from (A . c e l l (i) a ,

B . c e l l (i −1) l e f tSum) {
r e t u r n a+le f tSum ;

}

Applicable where 1 ≤ i < n

// r u l e 1 : sum a l l e l ement s to the l e f t
B. c e l l (i) from (A . r eg i on (0 , i) i n) {

r e t u r n sum(i n) ;
}

Applicable where 0 ≤ i < n

Jason Ansel (MIT) PetaBricks June 16, 2009 22 / 47

PetaBricks Language Compilation Example

Choice grids

Compilation Process
Applicable regions Choice grids Choice dependency graph

Divide data space into symbolic regions with common sets of choices

In this simple example:

A: Input (no choices)
B: [0, 1) = rule 1
B: [1, n) = rule 0 or rule 1

0 1 n

R1 R0 or R1

Applicable regions map rules → symbolic data

Choice grids map symbolic data → rules

Jason Ansel (MIT) PetaBricks June 16, 2009 23 / 47

PetaBricks Language Compilation Example

Choice grids

Compilation Process
Applicable regions Choice grids Choice dependency graph

Divide data space into symbolic regions with common sets of choices

In this simple example:

A: Input (no choices)
B: [0, 1) = rule 1
B: [1, n) = rule 0 or rule 1

0 1 n

R1 R0 or R1

Applicable regions map rules → symbolic data

Choice grids map symbolic data → rules

Jason Ansel (MIT) PetaBricks June 16, 2009 23 / 47

PetaBricks Language Compilation Example

Choice grids

Compilation Process
Applicable regions Choice grids Choice dependency graph

Divide data space into symbolic regions with common sets of choices

In this simple example:

A: Input (no choices)
B: [0, 1) = rule 1
B: [1, n) = rule 0 or rule 1

0 1 n

R1 R0 or R1

Applicable regions map rules → symbolic data

Choice grids map symbolic data → rules

Jason Ansel (MIT) PetaBricks June 16, 2009 23 / 47

PetaBricks Language Compilation Example

Choice grids

Compilation Process
Applicable regions Choice grids Choice dependency graph

Divide data space into symbolic regions with common sets of choices

In this simple example:

A: Input (no choices)
B: [0, 1) = rule 1
B: [1, n) = rule 0 or rule 1

0 1 n

R1 R0 or R1

Applicable regions map rules → symbolic data

Choice grids map symbolic data → rules

Jason Ansel (MIT) PetaBricks June 16, 2009 23 / 47

PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47

PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47

PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47

PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47

PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns

Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47

PetaBricks Language Compilation Example

Choice dependency graph

Compilation Process
Applicable regions Choice grids Choice dependency graph

B.region(1, n)
 Choices: r0, r1

(r0,=,-1)

B.region(0, 1)
 Choices: r1

(r0,=,-1)A.region(0, n)
(r1,<=),(r0,=)

(r1,<=),(r0,=)

Adds dependency edges between symbolic regions

Edges annotated with directions and rules

Many compiler passes on this IR to:

Simplify complex dependency patterns
Add choices

Jason Ansel (MIT) PetaBricks June 16, 2009 24 / 47

PetaBricks Language Compilation Example

Code generation

Autotuning
Binary

PetaBricks Compiler

Final
Binary

Choice Configuration File

PetaBricks Source Code

1 PetaBricks source code is
compiled

2 An autotuning binary is created

3 Autotuning occurs creating a
choice configuration file

4 Choices are fed back into the
compiler to create a final binary

Jason Ansel (MIT) PetaBricks June 16, 2009 25 / 47

PetaBricks Language Compilation Example

Code generation

Autotuning
Binary

PetaBricks Compiler

Final
Binary

Choice Configuration File

PetaBricks Source Code

1 PetaBricks source code is
compiled

2 An autotuning binary is created

3 Autotuning occurs creating a
choice configuration file

4 Choices are fed back into the
compiler to create a final binary

Jason Ansel (MIT) PetaBricks June 16, 2009 25 / 47

PetaBricks Language Compilation Example

Code generation

Autotuning
Binary

PetaBricks Compiler

Final
Binary

Choice Configuration File

PetaBricks Source Code

1 PetaBricks source code is
compiled

2 An autotuning binary is created

3 Autotuning occurs creating a
choice configuration file

4 Choices are fed back into the
compiler to create a final binary

Jason Ansel (MIT) PetaBricks June 16, 2009 25 / 47

PetaBricks Language Compilation Example

Code generation

Autotuning
Binary

PetaBricks Compiler

Final
Binary

Choice Configuration File

PetaBricks Source Code

1 PetaBricks source code is
compiled

2 An autotuning binary is created

3 Autotuning occurs creating a
choice configuration file

4 Choices are fed back into the
compiler to create a final binary

Jason Ansel (MIT) PetaBricks June 16, 2009 25 / 47

PetaBricks Language Compilation Example

Autotuning

Based on two building blocks:

A genetic tuner
An n-ary search algorithm

Flat parameter space

Compiler generates a dependency graph describing this parameter
space

Entire program tuned from bottom up

Jason Ansel (MIT) PetaBricks June 16, 2009 26 / 47

PetaBricks Language Compilation Example

Autotuning

Based on two building blocks:

A genetic tuner
An n-ary search algorithm

Flat parameter space

Compiler generates a dependency graph describing this parameter
space

Entire program tuned from bottom up

Jason Ansel (MIT) PetaBricks June 16, 2009 26 / 47

PetaBricks Language Compilation Example

Autotuning

Based on two building blocks:

A genetic tuner
An n-ary search algorithm

Flat parameter space

Compiler generates a dependency graph describing this parameter
space

Entire program tuned from bottom up

Jason Ansel (MIT) PetaBricks June 16, 2009 26 / 47

PetaBricks Language Compilation Example

Parallel Runtime Library

Task-based parallel runtime

Thread-local decks of runnable tasks

Use a work-stealing algorithm similar to that of Cilk

Jason Ansel (MIT) PetaBricks June 16, 2009 27 / 47

PetaBricks Language Compilation Example

Parallel Runtime Library

Task-based parallel runtime

Thread-local decks of runnable tasks

Use a work-stealing algorithm similar to that of Cilk

Jason Ansel (MIT) PetaBricks June 16, 2009 27 / 47

PetaBricks Language Other Language Features

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 28 / 47

PetaBricks Language Other Language Features

More PetaBricks features

Automatic consistency checking

The tunable keyword

Call external code

Custom training data generators

Matrix versions for iterative algorithms

Rule priorities

where (clause for limiting applicable regions)

Template transforms

Jason Ansel (MIT) PetaBricks June 16, 2009 29 / 47

PetaBricks Language Other Language Features

More PetaBricks features

Automatic consistency checking

The tunable keyword

Call external code

Custom training data generators

Matrix versions for iterative algorithms

Rule priorities

where (clause for limiting applicable regions)

Template transforms

Jason Ansel (MIT) PetaBricks June 16, 2009 29 / 47

PetaBricks Language Other Language Features

More PetaBricks features

Automatic consistency checking

The tunable keyword

Call external code

Custom training data generators

Matrix versions for iterative algorithms

Rule priorities

where (clause for limiting applicable regions)

Template transforms

Jason Ansel (MIT) PetaBricks June 16, 2009 29 / 47

PetaBricks Language Other Language Features

More PetaBricks features

Automatic consistency checking

The tunable keyword

Call external code

Custom training data generators

Matrix versions for iterative algorithms

Rule priorities

where (clause for limiting applicable regions)

Template transforms

Jason Ansel (MIT) PetaBricks June 16, 2009 29 / 47

Results Benchmarks

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 30 / 47

Results Benchmarks

Eigenvector Solve

Bisection

QR decomposition

Divide and conquer

Jason Ansel (MIT) PetaBricks June 16, 2009 31 / 47

Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Bisection

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47

Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Bisection
DC

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47

Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Bisection
DC
QR

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47

Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Bisection
DC
QR

Autotuned

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47

Results Benchmarks

Eigenvector Solve

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Bisection
DC
QR

Autotuned
Cutoff 25

Jason Ansel (MIT) PetaBricks June 16, 2009 32 / 47

Results Benchmarks

Matrix Multiply

Basic

Recursive decompositions

Strassen’s algorithm

Iteration order (blocking)

Transpose

Jason Ansel (MIT) PetaBricks June 16, 2009 33 / 47

Results Benchmarks

Matrix Multiply

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic

Jason Ansel (MIT) PetaBricks June 16, 2009 34 / 47

Results Benchmarks

Matrix Multiply

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic
Blocking

Jason Ansel (MIT) PetaBricks June 16, 2009 34 / 47

Results Benchmarks

Matrix Multiply

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic
Blocking

Transpose

Jason Ansel (MIT) PetaBricks June 16, 2009 34 / 47

Results Benchmarks

Matrix Multiply

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic
Blocking

Transpose
Recursive

Jason Ansel (MIT) PetaBricks June 16, 2009 34 / 47

Results Benchmarks

Matrix Multiply

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic
Blocking

Transpose
Recursive

Strassen 256

Jason Ansel (MIT) PetaBricks June 16, 2009 34 / 47

Results Benchmarks

Matrix Multiply

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic
Blocking

Transpose
Recursive

Strassen 256
Autotuned

Jason Ansel (MIT) PetaBricks June 16, 2009 34 / 47

Results Scalability

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 35 / 47

Results Scalability

Scalability

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Autotuned Matrix Multiply

Jason Ansel (MIT) PetaBricks June 16, 2009 36 / 47

Results Scalability

Scalability

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Autotuned Matrix Multiply
Autotuned Sort

Jason Ansel (MIT) PetaBricks June 16, 2009 36 / 47

Results Scalability

Scalability

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Autotuned Matrix Multiply
Autotuned Sort

Autotuned Poisson

Jason Ansel (MIT) PetaBricks June 16, 2009 36 / 47

Results Scalability

Scalability

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Autotuned Matrix Multiply
Autotuned Sort

Autotuned Poisson
Autotuned Eigenvector Solve

Jason Ansel (MIT) PetaBricks June 16, 2009 36 / 47

Results Variable Accuracy

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 37 / 47

Results Variable Accuracy

Variable accuracy

Most algorithms produce exact solutions

Large class of algorithms can produce
approximate solutions

Iterative convergence
Grid coarsening
Others

Compiler/autotuner should be aware of variable
accuracy

Compiler can examine optimal frontier of
algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 38 / 47

Results Variable Accuracy

Variable accuracy

Most algorithms produce exact solutions

Large class of algorithms can produce
approximate solutions

Iterative convergence
Grid coarsening
Others

Compiler/autotuner should be aware of variable
accuracy

Compiler can examine optimal frontier of
algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 38 / 47

Results Variable Accuracy

Variable accuracy

Most algorithms produce exact solutions

Large class of algorithms can produce
approximate solutions

Iterative convergence
Grid coarsening
Others

Compiler/autotuner should be aware of variable
accuracy

Compiler can examine optimal frontier of
algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 38 / 47

Results Variable Accuracy

Variable accuracy

Most algorithms produce exact solutions

Large class of algorithms can produce
approximate solutions

Iterative convergence
Grid coarsening
Others

Compiler/autotuner should be aware of variable
accuracy

Compiler can examine optimal frontier of
algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 38 / 47

Results Variable Accuracy

Variable accuracy

Most algorithms produce exact solutions

Large class of algorithms can produce
approximate solutions

Iterative convergence
Grid coarsening
Others

Compiler/autotuner should be aware of variable
accuracy

Compiler can examine optimal frontier of
algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 38 / 47

Results Variable Accuracy

Poisson’s equation

A variable accuracy benchmark

Accuracy level expressed as a template parameter

Autotuner exploits variable accuracy in a general way

Choices:

Direct solve
Jacobi iteration
Successive over relaxation
Multigrid

Jason Ansel (MIT) PetaBricks June 16, 2009 39 / 47

Results Variable Accuracy

Choices in Multigrid

G
rid

 S
iz

e
1
2
8

SOR Iteration

Time

6
4

3
2

1
6

SOR is an iterative algorithm

Multigrid changes grid coarseness to speed up convergence

Many standard shapes: V-Cycle,

W-Cycle, etc

Direct solver

Different shapes = different algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 40 / 47

Results Variable Accuracy

Choices in Multigrid

G
rid

 S
iz

e
1
2
8

SOR Iteration

Time

6
4

3
2

1
6

SOR is an iterative algorithm

Multigrid changes grid coarseness to speed up convergence

Many standard shapes: V-Cycle,

W-Cycle, etc

Direct solver

Different shapes = different algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 40 / 47

Results Variable Accuracy

Choices in Multigrid

G
rid

 S
iz

e
1
2
8

SOR Iteration

Time

6
4

3
2

1
6

SOR is an iterative algorithm

Multigrid changes grid coarseness to speed up convergence

Many standard shapes: V-Cycle, W-Cycle, etc

Direct solver

Different shapes = different algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 40 / 47

Results Variable Accuracy

Choices in Multigrid

G
rid

 S
iz

e
1
2
8

SOR Iteration

Time

6
4

3
2

1
6

Direct Solve

SOR is an iterative algorithm

Multigrid changes grid coarseness to speed up convergence

Many standard shapes: V-Cycle, W-Cycle, etc

Direct solver

Different shapes = different algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 40 / 47

Results Variable Accuracy

Choices in Multigrid

G
rid

 S
iz

e
1
2
8

SOR Iteration

Time

6
4

3
2

1
6

Direct Solve

SOR is an iterative algorithm

Multigrid changes grid coarseness to speed up convergence

Many standard shapes: V-Cycle, W-Cycle, etc

Direct solver

Different shapes = different algorithms

Jason Ansel (MIT) PetaBricks June 16, 2009 40 / 47

Results Variable Accuracy

Autotuned V-cycle shapes for different accuracy
requirements

10
1

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

Jason Ansel (MIT) PetaBricks June 16, 2009 41 / 47

Results Variable Accuracy

Autotuned V-cycle shapes for different accuracy
requirements

10
1

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

10
3

Jason Ansel (MIT) PetaBricks June 16, 2009 41 / 47

Results Variable Accuracy

Autotuned V-cycle shapes for different accuracy
requirements

10
1

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

10
3

10
5

Jason Ansel (MIT) PetaBricks June 16, 2009 41 / 47

Results Variable Accuracy

Autotuned V-cycle shapes for different accuracy
requirements

10
1

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

10
3

10
5

10
7

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

Jason Ansel (MIT) PetaBricks June 16, 2009 41 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒ Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒ Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒ Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒ Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒ Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒

Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒
Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒
Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Dynamic programming technique for autotuning Multigrid

Grid size i

⇒
Grid size 2i

Partition accuracy space into discrete levels

Base space of candidate algorithms on optimal algorithms from
coarser level

Jason Ansel (MIT) PetaBricks June 16, 2009 42 / 47

Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(s

)

Input Size

Direct

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47

Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(s

)

Input Size

Direct
Jacobi

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47

Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(s

)

Input Size

Direct
Jacobi

SOR

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47

Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(s

)

Input Size

Direct
Jacobi

SOR
Multigrid

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47

Results Variable Accuracy

Poisson’s Equation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(s

)

Input Size

Direct
Jacobi

SOR
Multigrid

Autotuned

Jason Ansel (MIT) PetaBricks June 16, 2009 43 / 47

Conclusion Final thoughts

Outline

1 Introduction
Motivating Example
Language & Compiler Overview
Why choices

2 PetaBricks Language
Key Ideas
Compilation Example
Other Language Features

3 Results
Benchmarks
Scalability
Variable Accuracy

4 Conclusion
Final thoughts

Jason Ansel (MIT) PetaBricks June 16, 2009 44 / 47

Conclusion Final thoughts

Related work

Languages

Sequoia

Libraries & domain specific tuners

STAPL
ATLAS
FFTW
SPARSITY
SPIRAL
...

Jason Ansel (MIT) PetaBricks June 16, 2009 45 / 47

Conclusion Final thoughts

For more information

PetaBricks makes programs future-proof, by allowing them to adapt
to new architectures

We plan to released PetaBricks at the end of summer

Sign up for our mailing list to be notified

For more information see:
http://projects.csail.mit.edu/petabricks/

Questions?

Jason Ansel (MIT) PetaBricks June 16, 2009 46 / 47

http://projects.csail.mit.edu/petabricks/

Conclusion Final thoughts

Thank you!

Jason Ansel (MIT) PetaBricks June 16, 2009 47 / 47

	Introduction
	Motivating Example
	Language & Compiler Overview
	Why choices

	PetaBricks Language
	Key Ideas
	Compilation Example
	Other Language Features

	Results
	Benchmarks
	Scalability
	Variable Accuracy

	Conclusion
	Final thoughts

