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ABSTRACT
A compressed-domain transformation is one that operates directly
on the compressed format, rather than requiring conversion to an
uncompressed format prior to processing. Performing operations in
the compressed domain offers large speedups, as it reduces the vol-
ume of data processed and avoids the overhead of re-compression.

While previous researchers have focused on compressed-domain
techniques for lossy data formats, there are few techniques that ap-
ply to lossless formats. In this paper, we present a general tech-
nique for transforming lossless data as compressed with the sliding-
window Lempel Ziv algorithm (LZ77). We focus on applications
in video editing, where our technique supports color adjustment,
video compositing, and other operations directly on the Apple An-
imation format (a variant of LZ77).

We implemented a subset of our technique as an automatic pro-
gram transformation. Using the StreamIt language, users write a
program to operate on uncompressed data, and our compiler trans-
forms the program to operate on compressed data. Experiments
show that the technique offers speedups roughly proportional to
the compression factor. For our benchmark suite of 12 videos in
Apple Animation format, speedups range from 1.1x to 471x, with
a median of 15x.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications–Data-
flow languages; D.3.4 [Programming Languages]: Processors–
Compilers, Optimization; I.4.2 [Compression]; H.5.1 [Multimedia
Information Systems]

General Terms
Algorithms, Design, Experimentation, Languages, Performance

1. INTRODUCTION
In order to accelerate the process of editing compressed data, re-

searchers have identified specific transformations that can be mapped
into the compressed domain—that is, they can operate directly on
the compressed data format rather than on the uncompressed for-
mat [4, 12, 22, 28]. In addition to avoiding the cost of the decom-
pression and re-compression, such techniques greatly reduce the
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total volume of data processed, thereby offering large savings in
both execution time and memory footprint. However, existing tech-
niques for operating directly on compressed data are largely limited
to lossy compression formats such as JPEG [6, 8, 14, 19, 20, 23]
and MPEG [1, 5, 15, 27, 28]. While these formats are used perva-
sively in the distribution of image and video content, they are rarely
used during the production of such content. Instead, professional
artists and filmmakers rely on lossless compression formats (BMP,
PNG, Apple Animation) to avoid accumulating artifacts during the
editing process. Given the computational intensity of professional
video editing, there is a large demand for new techniques that could
accelerate operations on lossless formats.

In this paper, we present a technique for translating a specific
class of computations to operate directly on losslessly-compressed
data. We consider compression formats that are based on LZ77, a
compression algorithm that is utilized by ZIP and fully encapsu-
lates common formats such as Apple Animation, Microsoft RLE,
and Targa. Our transformation applies to a restricted class of pro-
grams, termed stream programs [26], that operate on continuous
streams of data. The transformation is most efficient when each el-
ement of the stream is transformed in a uniform way (e.g., adjusting
the brightness of each pixel). However, it also applies to cases in
which multiple items are processed at once (e.g., averaging pixels)
or in which multiple streams are split or combined (e.g., composit-
ing frames). The precise coverage of our transformation is defined
in Section 2.

The key idea behind our technique can be understood in simple
terms. In LZ77, compression is achieved by indicating that a given
part of the data stream is a repeat of a previous part of the stream. If
a program is transforming each element of the stream in the same
way, then any repetitions in the input will necessarily be present
in the output as well. Thus, while new data sequences need to be
processed as usual, any repeats of those sequences do not need to
be transformed again. Rather, the repetitions in the input stream
can be directly copied to the output stream, thereby referencing the
previously-computed values. This preserves the compression in the
stream while avoiding the cost of decompression, re-compression,
and computing on the uncompressed data.

In this paper, we extend this simple idea to encompass a broad
class of programs that can be expressed in the StreamIt program-
ming language [26]. We have implemented a subset of our gen-
eral technique in the StreamIt compiler. The end result is a fully-
automatic system in which the user writes programs that operate
on uncompressed data, and our compiler emits an optimized pro-
gram that operates directly on compressed data. Our compiler gen-
erates plugins for two popular video editing tools (MEncoder and
Blender), allowing the optimized transformations to be used as part
of a standard video editing process.

Using a suite of 12 videos (screencasts, animations, and stock
footage) in Apple Animation format, our transformation offers a
speedup roughly proportional to the compression factor. For trans-
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Figure 1: Example of LZ77 decompression.

formations that adjust a single video (brightness, contrast, color
inversion), speedups range from 2.5x to 471x, with a median of
17x. For transformations that combine two videos (overlays and
mattes), speedups range from 1.1x to 32x, with a median of 6.6x.
We believe this is the first demonstration of compressed-domain
techniques for losslessly compressed video content.

To summarize, this paper makes the following contributions:

• An algorithm for mapping an arbitrary stream program to
operate directly on lossless LZ77-compressed data. In ad-
dition to transforming a single stream, programs may inter-
leave and de-interleave multiple streams while maintaining
compression (Sections 2-3).

• An implementation of a subset of our techniques in the StreamIt
compiler. Starting from videos in the Apple Animation for-
mat, our implementation supports transformation and com-
bination of individual pixel streams (Section 4).

• An experimental evaluation of our system, demonstrating that
automatic translation to the compressed domain can speedup
realistic operations in popular video editing tools. Across our
benchmarks, the median speedup is 15x (Section 5).

The paper concludes with related work (Section 6) and conclu-
sions (Section 7).

2. PROGRAM REPRESENTATION
Our transformation requires a specific representation for com-

pressed data, as well as for programs that transform the data. The
data must be compressed with LZ77, while the transformation must
be expressed in the cyclo-static dataflow model (e.g., in the StreamIt
language).

2.1 LZ77 Compression
LZ77 is a lossless, dictionary-based compression algorithm that

is asymptotically optimal [29]. LZ77 forms the basis for many pop-
ular compression formats, including ZIP, GZIP and PNG, and also
serves as a generalization of simpler encodings such as Apple Ani-
mation, Microsoft RLE, and Targa.

The basic idea behind LZ77 is to utilize a sliding window of re-
cently encoded values as the dictionary for the compression algo-
rithm. In the compressed data stream, there are two types of tokens:
values and repeats. A value indicates a token that should be copied
directly to the output of the decoded stream. A repeat 〈d, c〉 con-
tains two parts: a distance d and a count c. It indicates that the

struct rgb {
byte r, g, b;

}

rgb->rgb pipeline HalfSize {
add splitjoin {

split roundrobin(WIDTH,WIDTH);
add Identity<rgb>();
add Identity<rgb>();
join roundrobin(1,1);

}
add AveragePixels(4);

}

rgb->rgb filter AveragePixels(int N) {
work push 1 pop N {

rgb out; int r, g, b;
for (int i=0; i<N; i++) {

rgb in = pop();
r += in.r; g += in.g; b += in.b;

}
out.r = r/N; out.g = g/N; out.b = b/N;
push(out);

}
}

rgb->rgb filter InvertColor() {
work push 1 pop 1 {

rgb pixel = pop();
pixel.r = 255 – pixel.r;
pixel.g = 255 – pixel.g;
pixel.b = 255 – pixel.b;
push(pixel);

}
}

void->void pipeline Toplevel() {
add ReadRGB();
add HalfSize();
add InvertColor();
add WriteRGB();

}

ReadRGB

InvertColor

WriteRGB

HalfSize

AveragePixels

IdentityIdentity

roundrobin(W,W)

roundrobin(1,1)

Figure 2: Example StreamIt program.

decoder should start at offset d from the end of the decoded stream
and copy a sequence of c values to the output. It is important to
note that the count may exceed the distance, in which case some of
the values produced by a repeat operation are also copied by that
operation. For example, a value A followed by a repeat 〈1, 3〉 re-
sults in an output of “A A A”. An additional example is given in
Figure 1.

2.2 Cyclo-Static Dataflow
The basic idea behind cyclo-static dataflow [3, 10] is to repre-

sent a program as a block diagram, in which independent compo-
nents (called actors) communicate over FIFO data channels (see
Figure 2). One can think of an actor as a function (called repeat-
edly by the runtime system) that consumes items from the input
tapes and produces items on the output tapes. Actors must declare
how many items they will produce and consume on each execu-
tion; these I/O rates must either be constant across all executions,
or must follow a fixed cycle. In this paper, actors may not retain
internal state between executions.

We use the StreamIt language [26] to express cyclo-static dataflow
programs. An example StreamIt program appears in Figure 2. It
reads lines of an RGB image from a file, shrinks the image by a
factor of two, inverts the color of each pixel, then writes the data to
a file. There are three kinds of actors in StreamIt, and our analysis
handles each one separately:

• Filters have a single input stream and a single output stream,
and perform general-purpose computation. For example, in
the InvertColor filter, the work function specifies the
atomic execution step; it declares that on each execution, it
pops (inputs) 1 item from the input tape and pushes (outputs)
1 item to the output tape.



Execute a filter in the compressed domain, given that it consumes
n items and produces m items on each execution.
EXECUTE-COMPRESSED-FILTER (int n, int m) {

while true {
/* pass-uncompressed */
if input endswith n values then

execute one call to uncompressed filter

/* pass-compressed */
else if input endswith 〈d, c〉 and d%n = 0 and c ≥ n then

replace 〈d, c〉 with 〈d, c%n〉 on input
push 〈m d/n, m (c − c%n)/n〉 to output

else
let 〈d, c〉 = last repeat on input

/* coarsen-repeat */
let L = LCM(d, n)
if d < L < c then

replace 〈d, c〉 with 〈c − (L − d)〉, 〈d,L − d〉 on input

/* expand */
else if c > 0 then

decode 〈d, c〉 into 〈d, c − 1〉, V on input

/* prune */
else /* c = 0 */

remove 〈d, c〉 from input
}

}

Figure 3: Translation of filters into the compressed domain. We
use % to denote a modulo operation.

• Joiners interleave multiple input streams into a single out-
put stream. Items are interleaved in a roundrobin pattern ac-
cording to a set of weights; for example, weights of (n1, n2)
indicate that the first n1 items are drawn from the first in-
put stream, and the next n2 items are drawn from the second
input stream. In Figure 2, the joiner reads one pixel at a
time from each input stream, serving to interleave the pixels
from neighboring lines. Once the pixels are interleaved, each
group of 4 pixels is averaged together in order to decrease the
picture width by two.

• Splitters have a single input stream and multiple output streams.
They may perform either roundrobin distribution, or dupli-
cate distribution. In Figure 2, the splitter sends WIDTH pix-
els in each direction, distributing the lines of the image across
alternate streams.

3. MAPPING TO COMPRESSED DOMAIN
Our technique allows any cyclo-static dataflow program to op-

erate directly on LZ77-compressed data. Rather than modifying
the code within the actors, our transformation treats actors as black
boxes and wraps them in a new execution layer. The transforma-
tion attempts to preserve as much compression as possible without
ever performing an explicit re-compression step. While there exist
cases in which the output data will not be as compressed as pos-
sible, under certain conditions the output is guaranteed to be fully
compressed (relative to the compression of the input). We quantify
this issue later.

To describe the mapping into the compressed domain, we con-
sider each StreamIt construct in turn. An alternate formulation (in
terms of an operational semantics) is available elsewhere [25].

char->char filter HyphenatePairs {
work pop 2 push 3 {

push(‘~’);
push(pop());
push(pop());

}   }

output
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(c) Compressed-domain execution

Figure 4: Example execution of a filter in the uncompressed
and compressed domains.

3.1 Filters
The procedure for translating a filter into the compressed domain

is given in Figure 3, and an example appears in Figure 4. The
behavior of the compressed-domain filter can be considered in two
pieces. The first piece consists of the simple case (annotated pass-
uncompressed in the code) in which the upcoming inputs to the
filter are uncompressed values. In this case, the original filter is
called with those inputs, transforming n input items to m output
items. The rest of the code deals with repeat tokens, attempting to
translate them across the filter with the minimum decompression
needed.

The key idea of the paper is encapsulated in the pass-compressed
case in Figure 3. This case specifies how to translate a repeat to-
ken directly from a filter’s input tape to a filter’s output tape without
invoking the filter’s computation. This translation is possible when-
ever the repeat distance d is a multiple of the filter’s input rate n.
In other words, the repeat is aligned with the execution boundaries
of the actor, so invoking the actor would produce the same results
as before. In transferring the repeat token to the output tape, two
adjustments are made: 1) the distance and count are scaled by a
factor of m/n, since the repeat now refers to the m outputs of the
filter rather than the n inputs, and 2) if the count is not an even
multiple of the input rate, then some leftover items (c%n, where %
represents the modulo operation) are left on the input tape.

In cases where the repeat distance does not match the granular-
ity of the actor, the distance can sometimes be adjusted to allow
compressed-domain processing. The coarsen-repeat logic in Fig-
ure 3 represents such an adjustment. Consider that a filter inputs



two items at a time, but encounters a long repeat with distance three
and count 100. That is, the input stream contains a regular pattern
of values with periodicity three. Though consecutive executions of
the filter are aligned at different offsets in this pattern, every third
filter execution (spanning six values) falls at the same alignment.
In general, a repeat with distance d can be exploited by a filter with
input rate n by expanding the distance to LCM(d, n). In order to
perform this expansion, the count must be greater than the distance,
as otherwise the repeat references old data that may have no peri-
odicity. Also, the stream needs to be padded with LCM − d values
before the coarsened repeat can begin; this padding takes the form
of a shorter repeat using the original distance.

A second way to adjust a repeat token for compressed-domain
processing is by changing its count rather than its distance (case
expand in Figure 3). This case applies if a repeat has a count less
than n, if it is unaligned with the boundaries of an actor’s execution,
or if its distance is not a multiple of n (and cannot be coarsened
appropriately). The expand logic decodes a single value from a
repeat token, thereby decreasing its count by one; the rest of the
repeat may become aligned later. If the count of a repeat reaches
zero, it is eliminated in the prune case.

Note that the expand logic requires partial decompression of the
data stream. In order to perform this decompression, it may be nec-
essary to maintain an auxiliary data structure–separate from the fil-
ter’s input stream–that holds a complete window of decompressed
data. This auxiliary structure is needed because the sliding-window
dictionary of LZ77 makes it difficult to decode one element with-
out decoding others. However, even if the stream is fully decom-
pressed in parallel with the main computation, our technique retains
many benefits because the filters still operate on the compressed
stream; the volume of data processed is reduced, and the cost of
re-compression is averted. For general algorithms such as gzip,
compression can be up to 10x slower than decompression [30].

3.2 Splitters
Duplicate splitters are trivial to transform to the compressed do-

main, as all input tokens (both values and repeats) are copied di-
rectly to the output streams. For roundrobin splitters, the central
concern is that a repeat token can only be transferred to a given
output tape if the items referenced are also on that tape. If the
items referenced by the repeat token were distributed to another
tape, then the repeat must be decompressed.

The rest of this section focuses on roundrobin splitters. To sim-
plify the presentation, we consider a splitter with only two output
streams, distributing m1 and m2 items to each respective stream.
This case captures all of the fundamental ideas; extension to addi-
tional streams is straightforward. In addition, we use the following
notations:

• As mentioned previously, splitters adopt a fine-grained cyclo-
static execution model, in which each execution step trans-
fers only one item from the input tape. That is, a roundrobin(m1,
m2) splitter has m1 + m2 distinct execution steps. We refer
to every group of m1 + m2 steps as an execution cycle.

• The pseudocode for our algorithm assumes, without loss of
generality, that the next execution step of the splitter will
write to the first output stream (output1).

• We use pos to denote the number of items (in terms of the
uncompressed domain) that have already been written to the
current output stream (output1) in the current execution cy-
cle. For brevity, the pseudocode does not maintain the value
of pos, though it is straightforward to do so.

Execute a roundrobin splitter in the compressed domain, given that
it outputs m1 items to output1 and m2 items to output2 on each
execution cycle.
EXECUTE-COMPRESSED-SPLITTER (int m1, int m2) {

while true {
/* pass-uncompressed */
if input endswith value then

transfer value from input to output1

else
let 〈d, c〉 = end of input
let offset = d%(m1 + m2)

/* pass-compressed-long */
if offset = 0 then

let (L1, L2) = SPLIT-TO-BOTH-STREAMS(c)
pop 〈d, c〉 from input
push 〈dm1/(m1 + m2), L1〉 to output1
push 〈dm2/(m1 + m2), L2〉 to output2

/* pass-compressed-short */
else if SPLIT-TO-ONE-STREAM(d,c) > 0 then

let offset’ = if offset ≤ pos then offset else offset − m2

let L = SPLIT-TO-ONE-STREAM(d, c)
replace 〈d, c〉 with 〈d, c − L〉 on input
push 〈m1 floor(d/(m1 + m2)) + offset’, L〉 to output1

/* expand */
else /* SPLIT-TO-ONE-STREAM(d,c) = 0 */

decode 〈d, c〉 into 〈d, c − 1〉, V on input

/* prune */
if input endswith 〈d, 0〉 then

pop 〈d, 0〉 from input
}

}

Figure 5: Translation of splitters into the compressed domain.

The procedure for executing a roundrobin splitter in the com-
pressed domain appears in Figure 5, while an example appears in
Figure 6. As mentioned previously, a repeat token can be trans-
ferred to an output tape so long as the items referenced also appear
on that tape. However, the repeat may need to be fragmented (into
several repeats of a lesser count), depending on the repeat distance.
There are two cases to consider.

The first case, called pass-compressed-long in Figure 5, distributes
an entire repeat token to both output tapes without any fragmenta-
tion. This is only possible when the repeat can be cleanly separated
into two independent sequences, one offset by m1 and the next off-
set by m2. In other words, the repeat distance must be a multiple
of m1 + m2. In this case, the repeat token is moved to the output
streams. The repeat distance is scaled down to match the weight of
each stream, and the count is divided according to the current po-
sition of the splitter (a simple but tedious calculation implemented
by SPLIT-TO-BOTH-STREAMS in Figure 7).

The second case, called pass-compressed-short, is when the re-
peat distance is mis-aligned with the splitter’s execution cycle, and
thus the repeat (if it is long enough) eventually references items that
are distributed to a different output tape. Nonetheless, part of the
repeat may be eligible to pass through, so long as the items refer-
enced refer to the current output tape. This judgment is performed
by SPLIT-TO-ONE-STREAM (Figure 9) by comparing the repeat
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Figure 6: Example execution of splitters and joiners in the compressed domain. As illustrated by the input/output pairs in Figure 8,
the example performs a transpose of a 2x5 matrix. When the matrix is linearized as shown here, the input stream traverses the
elements row-wise while the output stream traverses column-wise. Due to redundancy in the matrix, this reordering can be done
largely in the compressed domain.

Given that c items are available on input stream of a splitter,
returns the number of items that can be written to each output
stream before the input is exhausted. Assumes that the splitter is
currently writing to the first output stream, to which pos items have
previously been written in the current execution cycle.
SPLIT-TO-BOTH-STREAMS (int c) returns (int, int) {

// the number of complete splitter cycles, and the leftover
let total_cycles = floor(min(c1/n1, c2/n2))
let total_leftover = c%(m1 + m2)

// the last partial cycle may end in three regions:
if total_leftover ≤ m1 − pos then

// 1. in writing to the first output stream
L1 = total_leftover
L2 = 0

else if total_leftover ≤ m1 − pos + m2 then
// 2. in subsequent writing to the second output stream
L1 = m1 − pos
L2 = total_leftover − m1 − pos

else
// 3. in wrap-around writing to the first output stream
L1 = total_leftover − m2

L2 = m2

return (m1 ∗ total_cycles + L1, m2 ∗ total_cycles + L2)
}

Figure 7: The SPLIT-TO-BOTH-STREAMS function is called
during compressed splitter execution. In the case where an in-
put token can be split across both output streams, it calculates
the maximum numbers of items that can be written to the out-
puts before the input is exhausted.

distance to the current position in the output stream. If one or more
of the repeated values are in range, the valid segment of the repeat
(of length actual_repeat) is moved to the output tape. As before,
the repeat distance needs to be scaled according to the weights of
the splitter, and an extra offset is needed if the repeat distance wraps
around to reference the end of a previous cycle.
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char->char splitjoin Transpose2x5 {
split roundrobin(5,5);
add Identity<char>();
add Identity<char>();
join roundrobin(1,1);

}

o o o oo
o o o ox

Figure 8: Example splitter and joiner in StreamIt, which com-
bine to form a Transpose. Translation to the compressed do-
main is illustrated in Figure 6.

Given a repeat token with distance d and count c that is input to a
splitter, and that is not possible to divide across both output streams
of the splitter, returns the maximum count of a repeat token that
could safely be emitted to the current output stream of the splitter.
SPLIT-TO-ONE-STREAM (int d, int c) returns int {

let offset = d%(m1 + m2)
if offset ≤ pos then

// repeat for remainder of this execution cycle
return min(c, m1 − pos)

else if offset > m2 + pos then
// repeat until referenced data goes out of range
return min(c, offset − (m2 + pos))

else
// referenced data is on the other output stream
return 0

}

Figure 9: The SPLIT-TO-ONE-STREAM function is called dur-
ing compressed splitter execution. In the case where an input
token cannot be split across both output streams, it calculates
the maximum number of items that can be passed to a single
output stream.

If neither of the above transfers apply, then the input stream
needs to be partially decompressed (according to the expand case)
because the current repeat token references items that will be sent
to the wrong output tape. The prune case is also needed to clear
empty repeats generated by expand.



Execute a roundrobin joiner in the compressed domain, given that
it inputs n1 items from input1 and n2 items from input2 on each
execution cycle.
EXECUTE-COMPRESSED-JOINER (int n1, int n2) {

while true {
/* pass-uncompressed */
if input1 endswith value then

transfer value from input1 to output

/* pass-compressed-long */
else if input1 endswith 〈d1, c1〉 and d1%n1 = 0

and input2 endswith 〈d2, c2〉 and d2%n2 = 0
and d1/n1 = d2/n2 then

let (L1, L2) = JOIN-FROM-BOTH-STREAMS(c1, c2)
replace 〈d1, c1〉 with 〈d1, c1 − L1〉 on input1
replace 〈d1, c2〉 with 〈d2, c2 − L2〉 on input2
push 〈d1(n1 + n2)/n1, L1 + L2〉 to output

/* pass-compressed-short */
else /* input1 endswith 〈d, c〉 and c > 0 */

let offset = if d%n1 ≤ pos then pos else d%n1 + n2

let L = JOIN-FROM-ONE-STREAM(d, c))
replace 〈d, c〉 with 〈d, c − L〉 on input1
push 〈(n1 + n2) floor(d/n1) + offset, L〉 to output

/* prune */
if input1 endswith 〈d, 0〉 then

pop 〈d, 0〉 from input1
if input2 endswith 〈d, 0〉 then

pop 〈d, 0〉 from input2
}

}

Figure 10: Translation of joiners into the compressed domain.

3.3 Joiners
The procedure for executing a joiner in the compressed domain

appears in Figure 10, while an example appears in Figure 6. Our
formulation for joiners uses analogous notations as our formulation
for splitters:

• A roundrobin(n1 , n2) joiner has n1+n2 execution steps. We
refer to every group of n1 + n2 steps as an execution cycle.

• We assume, without loss of generality, that the next execu-
tion step of the joiner will read from the first input stream
(input1).

• We use pos to denote the number of items (in terms of the
uncompressed domain) that have already been read from the
current input stream (input1) in the current execution cycle.

There are two ways to pass repeat tokens through a joiner. If
the input streams contain compatible repeat tokens, then they can
be combined into a long repeat that spans multiple execution cy-
cles; otherwise, a shorter repeat is extracted from only one of the
streams.

The first and most powerful way to execute joiners in the com-
pressed domain is to combine repeat tokens from both input streams
(case pass-compressed-long in Figure 10). For this to be possible,
both repeat distances must be the same multiple of their respec-
tive joiner weight (n1 or n2); the combined token has a repeat
distance that is a multiple of n1 + n2. The JOIN-FROM-BOTH-
STREAMS routine (detailed in Figure 11) calculates the maximum

Given that c1 and c2 compressed items are available on the first
and second input streams of a joiner, returns the number of items
that can be read from each input before one of them is exhausted.
Assumes that the joiner is currently reading from the first input
stream, from which pos items have previously been consumed in
the current execution cycle.
JOIN-FROM-BOTH-STREAMS (int c1, int c2) returns (int, int) {

// the number of complete joiner cycles, and the leftovers
let total_cycles = floor(c/(n1 + n2))
let leftover1 = c1 − total_cycles ∗ n1

let leftover2 = c2 − total_cycles ∗ n2

// the last partial cycle may end in three regions:
if leftover1 ≤ n1 − pos then

// 1. in reading from the first input stream
L1 = leftover1
L2 = 0

else if leftover2 ≤ n2 then
// 2. in subsequent reading from the second input stream
L1 = n1 − pos
L2 = leftover2

else
// 3. in wrap-around reading from the first input stream
L1 = leftover1
L2 = n2

return (n1 ∗ total_cycles + L1, n2 ∗ total_cycles + L2)
}

Figure 11: The JOIN-FROM-BOTH-STREAMS function is
called during compressed joiner execution. In the case where
the input tokens to the joiner have compatible repeat distances,
it calculates the maximum repeat lengths that can be passed to
the output.

Given a repeat token with distance d and count c on the current
input stream of a joiner, and that cannot be combined with a token
on the other input of the joiner, returns the maximum count of a
repeat token that could safely be emitted to the output stream.
JOIN-FROM-ONE-STREAM (int d, int c) returns int {

let offset = d%n1

if offset ≤ pos then
// repeat for remainder of this execution cycle
return min(c, n1 − pos)

else
// repeat until referenced data goes out of range
return min(c, offset − pos)

}

Figure 12: The JOIN-FROM-ONE-STREAM function is called
during compressed joiner execution. In the case where the in-
put tokens to the joiner have incompatible repeat distances, it
calculates the maximum length of the current token that may
be passable to the output.

repeat length depending on the current position of the joiner and
the repeat lengths of the inputs.

The second mode of compressed joiner execution (pass-compressed-
short) inputs only a single repeat token, extracting the maximum
length that can safely move to the output. The JOIN-FROM-ONE-
STREAM routine (detailed in Figure 12) determines how much of
the repeat can be moved to the output before the data referenced
would have originated from a different input stream.



COMPRESSION
VIDEO DESCRIPTION SOURCE DIMENSIONS FRAMES SIZE (MB) FACTOR
screencast-demo Online demo of an authentication generator Software website 691 x 518 10621 38 404.8
screencast-ppt Powerpoint presentation screencast Self-made 691 x 518 13200 26 722.1
logo-head Animated logo of a small rotating head Digital Juice 691 x 518 10800 330 46.8
logo-globe Animated logo of a small rotating globe Digital Juice 691 x 518 10800 219 70.7
anim-scene1 Rendered indoor scene Elephant's Dream 720 x 480 1616 10 213.8
anim-scene2 Rendered outdoor scene Elephant's Dream 720 x 480 1616 65 34.2
anim-character1 Rendered toy character Elephant's Dream 720 x 480 1600 161 13.7
anim-character2 Rendered human characters Elephant's Dream 720 x 480 1600 108 20.6
digvid-background1 Full-screen background with lateral animation Digital Juice 720 x 576 300 441 1.1
digvid-background2 Full-screen background with spiral animation Digital Juice 720 x 576 300 476 1.0
digvid-matte-frame Animated matte for creating new frame overlays Digital Juice 720 x 576 300 106 4.7
digvid-matte-third Animated matte for creating new lower-third overlays Digital Juice 720 x 576 300 51 9.7
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Table 1: Characteristics of the video workloads.

4. IMPLEMENTATION
As an initial demonstration of the potential benefits of mapping

into the compressed domain, we implemented a core subset of our
transformations as part of the StreamIt compiler. Our current im-
plementation supports two computational patterns: 1) transforming
each individual element of a stream (via a pop-1, push-1 filter), and
2) combining the elements of two streams (via a roundrobin(1,1)
joiner and a pop-2, push-1 filter). The program can contain any
number of filters that perform arbitrary computations, so long as
the I/O rates match these patterns. While we look forward to per-
forming a broader implementation in the future, these two building
blocks are sufficient to express a number of useful programs and to
characterize the performance of the technique.

Our implementation supports videos compressed with the Ap-
ple Animation codec. Supported as part of the Quicktime .mov
format, Apple Animation serves as an industry standard for ex-
changing lossless computer animations and digital video content
before they are rendered to lossy formats for final distribution [2,
p. 106][9, p. 284] [11, p. 367][18, p. 280]. The Animation codec
represents a restricted form of LZ77 in which repeat distances are
limited to two values: a full frame or a single pixel. A repeat
across frames indicates that a stretch of pixels did not change from
one frame to the next, while a repeat across pixels indicates that a
stretch of pixels has the same color within a frame.

To build a practical toolchain for video editing, we configured
StreamIt to output plugins for two popular video editing tools: MEn-
coder and Blender. In the final workflow, the programmer authors
StreamIt source code to operate on pixels from each frame of a
video; the StreamIt compiler maps the computation into the com-
pressed domain; and the compiler emits executable plugins for the
tools, which can be used as part of a normal editing process.

5. EXPERIMENTAL EVALUATION
Our evaluation focuses on applications in digital video editing.

Our benchmarks fall into two categories: 1) pixel transformations,
such as brightness, contrast, and color inversion, which adjust pix-
els within a single video, and 2) video compositing, in which one
video is combined with another as an overlay or mask.

The main results of our evaluation are:

• Operating directly on compressed data offers a speedup roughly
proportional to the compression factor in the resulting video.

• For pixel transformations, speedups range from 2.5x to 471x,
with a median of 17x. Output sizes are within 0.1% of input
sizes and about 5% larger (median) than a full re-compression.

• For video compositing, speedups range from 1.1x to 32x,
with a median of 6.6x. Output files retain a sizable compres-

sion ratio (1.0x to 44x) and are about 52% larger (median)
than a full re-compression.

5.1 Video Workloads
Our evaluation utilizes a suite of 12 video workloads that are de-

scribed in Table 1 and detailed further in an extended report [24];
some of the videos are also pictured in Figure 14. The suite repre-
sents three common usage scenarios for lossless video formats: In-
ternet screencasts, computer animation, and digital television pro-
duction. While videos in each area are often rendered to a lossy for-
mat for final distribution, lossless codecs are preferred during the
editing process to avoid accumulating compression artifacts. All of
our source videos are in the Apple Animation format (described in
Section 4), which is widely used by video editing professionals [2,
p. 106] [9, p. 284] [11, p. 367] [18, p. 280]. The Apple Anima-
tion format is also popular for capturing video from the screen or
camera, as the encoder is relatively fast.

5.2 Pixel Transformations
The pixel transformations adjust the color of each pixel in a uni-

form way. We evaluated three transformations:

• Brightness adjustment, which increases each RGB value by
a value of 20 (saturating at 255).

• Contrast adjustment, which moves each RGB value away
from the center (128) by a factor of 1.2 (saturating at 0 and
255).

• Color inversion, which subtracts each RGB value from 255
(useful for improving the readability of screencasts or for re-
versing the effect of video mattes).

We implemented each transformation as a single StreamIt filter
that transforms one pixel to another. Because the filter has a pop
rate of one, it does not incur any alignment overhead.

5.2.1 Setup
The pixel transformations were compiled into plugins for MEn-

coder, a popular command-line tool (bundled with MPlayer) for
video decoding, encoding, and filtering. MEncoder relies on the
FFMPEG library to decode the Apple Animation format; as FFM-
PEG lacked an encoder for this format, the authors implemented
one. Additionally, as MEncoder lacks an interface for toggling only
brightness or contrast, the baseline configuration was implemented
by the authors.

The baseline configuration performs decompression, pixel trans-
formations, then re-compression. Because the main video frame is
updated incrementally by the decoder, the pixel transformations are
unable to modify the frame in place (otherwise pixels present across



VIDEO Brightness Contrast Inverse Brightness Contrast Inverse Brightness Contrast Inverse
screencast-demo 137.8x 242.3x 154.7x 1.00 1.00 1.00 0.90 0.90 1.00
screencast-ppt 201.1x 470.6x 185.1x 1.00 1.00 1.00 0.75 0.74 1.00
logo-head 27.0x 29.2x 25.2x 1.00 1.00 1.00 0.87 0.86 1.00
logo-globe 35.7x 46.4x 36.6x 1.00 1.00 1.00 1.00 0.64 1.00
anim-scene1 66.4x 124.3x 58.5x 1.00 0.98 1.00 0.99 0.92 1.00
anim-scene2 19.3x 27.9x 20.5x 1.00 1.00 1.00 0.99 0.85 1.00
anim-character1 11.5x 12.2x 11.2x 1.00 1.00 1.00 0.96 0.90 1.00
anim-character2 15.6x 15.3x 14.8x 1.00 1.00 1.00 0.95 0.88 1.00
digvid-background1 4.6x 2.6x 4.6x 1.00 1.00 1.00 1.00 0.88 1.00
digvid-background2 4.1x 2.5x 4.7x 1.00 1.00 1.00 0.92 0.91 1.00
digvid-matte-frame 6.3x 5.3x 6.5x 1.00 1.00 1.00 0.98 0.64 1.00
digvid-matte-third 7.5x 6.9x 8.9x 1.00 1.00 1.00 0.83 0.35 1.00

OUPUT SIZE / INPUT SIZE
(Uncompress, Compute, Re-Compress)
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OUTPUT SIZE / INPUT SIZE
(Compute on Compressed Data)SPEEDUP

Table 2: Results for pixel transformations.

frames would be transformed multiple times). Thus, the baseline
transformation writes to a separate location in memory. The opti-
mized configuration performs pixel transformations directly on the
compressed data, avoiding data expansion implied by decompres-
sion and multiple frame buffers, before copying the data to the out-
put file.

Our evaluation platform is a dual-processor Intel Xeon (2.2 GHz)
with 2 GB of RAM. As all of our applications are single-threaded,
the second processor is not utilized.

5.2.2 Results
Detailed results for the pixel transformations appear in Table 2.

As illustrated in Figure 13, the speedups range from 2.5x to 471x
and are closely correlated with the compression factor in the origi-
nal video.

There are two distinct reasons for the speedups observed. First,
by avoiding the decompression stage, computing on compressed
data reduces the volume of data that needs to be stored, manip-
ulated, and transformed. This savings is directly related to the
compression factor and is responsible for the upwards slope of the
graph in Figure 13. Second, computing on compressed data elim-
inates the algorithmic complexity of re-compression. For the Ap-
ple Animation format, the cost of compressing a given frame does
not increase with the compression factor (if anything, it decreases
as fewer pixels need a fine-grained encoding). Thus, the baseline
devotes roughly constant runtime to re-compressing each video,
which explains the positive intercept in the graph of Figure 13.

The impact of re-compression is especially evident in the dig-
ital television examples. Despite a compression factor of 1.0 on
digvid-background2, our technique offers a 4.7x speedup on
color inversion. Application profiling confirms that 73% of the
baseline runtime is spent in the encoder; as this stage is absent
from the optimized version, it accounts for 1/(1 − 0.73) = 3.7x
of the speedup. The remaining speedup in this case is due to the
extra frame buffer (and associated memory operations) in the de-
compression stage of the baseline configuration.

Another important aspect of the results is the size of the output
files produced. Apart from the first frame of a video1, performing
pixel transformations directly on compressed data will never in-
crease the size of the file. This is illustrated in the middle columns
of Table 2, in which the output sizes are mostly equal to the in-
put sizes (up to 2 decimal places). The only exception is contrast
1In the Apple Animation format, the first frame is encoded as if the
previous frame was black. Thus, adjusting the color of black pixels
in the first frame may increase the size of the file, as it removes
inter-frame redundancy.
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Figure 13: Speedup vs. compression factor for all transforma-
tions.

adjustment on anim-scene1, in which the output is 2% smaller
than the input due to variations in the first frame; for the same rea-
son, some cases experience a 0.1% increase in size (not visisble in
the table).

Though computing on compressed data has virtually no effect
on the file size, there are some cases in which the pixel transfor-
mation increases the redundancy in the video and an additional re-
compression step could compress the output even further than the
original input. This potential benefit is illustrated in the last three
columns of Table 2, which track the output size of the baseline
configuration (including a re-compression stage) versus the origi-
nal input. For the inverse transformation, no additional compres-
sion is possible because inverse is a 1-to-1 transform: two pixels
have equal values in the output file if and only if they have equal
values in the input file. However, the brightness and contrast trans-
formations may map distinct input values to the same output value,
due to the saturating arithmetic. In such cases, the re-compression
stage can shrink the file to as low as 0.75x (brightness) and 0.35x
(contrast) its original size. These are extreme cases in which many
pixels are close to the saturating point; the median re-compression
(across brightness and contrast) is only 10%.

To achieve the minimal file size whenever possible, future work
could explore integrating a lightweight re-compression stage into
the compressed processing technique. Because most of the com-
pression is already in place, it should be possible to improve the
compression ratio without running the full encoder (e.g., run-length
encoded regions can be extended without being rediscovered).



VIDEO COMPOSITE EFFECT SPEEDUP
screencast-demo + logo-head alpha-under 20.46x 34 52 1.55
screencast-demo + logo-globe alpha-under 27.96x 44 61 1.39
screencast-ppt + logo-head alpha-under 22.99x 39 54 1.38
screencast-ppt + logo-globe alpha-under 31.88x 55 64 1.18
anim-scene1 + anim-character1 alpha-under 6.72x 7.7 12 1.57
anim-scene1 + anim-character2 alpha-under 9.35x 14 19 1.39
anim-scene2 + anim-character1 alpha-under 4.96x 6.4 10 1.49
anim-scene2 + anim-character2 alpha-under 6.45x 10 13 1.32
digvid-background1 + digvid-matte-frame mul 1.23x 1.0 2.2 2.28
digvid-background2 + digvid-matte-third mul 1.13x 1.0 5.6 5.42
digvid-background2 + digvid-matte-frame mul 1.38x 1.0 1.8 1.84
digvid-background2 + digvid-matte-third mul 1.16x 1.0 4.8 4.91
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Table 3: Results for composite transformations.

5.3 Video Compositing
In video compositing, two videos are combined using a specific

function to derive each output pixel from a pair of input pixels (see
Figure 14). In the case of subtitling, animated logos, and com-
puter graphics, an alpha-under transformation is common; it over-
lays one video on top of another using the transparency information
in the alpha channel. In applying an animated matte, the videos
are combined with a multiply operation, thereby masking the out-
put according to the brightness of the matte. For our experiments,
we generated composites using each foreground/background pair
within a given application area, yielding a total of 12 composites.

In StreamIt, we implemented each compositing operation as a
roundrobin(1,1) joiner (to interleave the streams) followed by a fil-
ter (to combine the pixel values). The intuition of the compressed-
domain execution is that if both streams have the same kind of
repeat (inter-frame or intra-frame), then the repeat is copied di-
rectly to the output. If they have different kinds of repeats, or if
one stream is uncompressed, then both streams are uncompressed.

5.3.1 Setup
The compositing operations were compiled into plugins for Blender,

a popular tool for modeling, rendering, and post-processing 3-D
animations. As Blender already includes support for video com-
positing, we use its implementation as our baseline. The composit-
ing operations have already been hand-tuned for performance; the
implementation of alpha-under includes multiple shortcuts and un-
rolled loops. We further improved the baseline performance by
patching other parts of the Blender source base, which were de-
signed around 3-D rendering and are more general than needed for
video editing. We removed two redundant vertical flips for each
frame, two redundant BGRA-RGBA conversions, and redundant
memory allocation/deallocation for each frame.

Our optimized configuration operates in the compressed domain.
Outside of the auto-generated plugin, we patched three frame-copy
operations in the Blender source code to copy only the compressed
frame data rather than the full frame dimensions.

5.3.2 Results
Full results for the compositing operations appear in Table 3;

speedups range from 1.1x to 32x. As for the pixel transformations,
the speedups are closely correlated with the compression factor of
the resulting videos, a relationship depicted in Figure 13.

As in the case of the pixel transformations, the composite videos
produced by the compressed processing technique would some-
times benefit from an additional re-compression stage. The last

anim-scene1 + anim-character2 = video composite

(a) Computer animation composite (alpha-under)

digvid-background1 + digvid-matte-frame = video composite

(b) Digital television composite (multiply)

Figure 14: Examples of video compositing operations.

three columns in Table 3 quantify this benefit by comparing the
compression factors achieved by compressed processing and nor-
mal processing (including a re-compression step). For screencasts
and computer animations, compressed processing preserves a siz-
able compression factor (7.7x-44x), though the full re-compression
can further reduce file sizes by 1.2x to 1.6x. For digital television,
the matting operations introduce considerable redundancy (black
regions), thereby enabling the re-compression stage to shrink the
file by 1.8x to 5.4x over the compressed processing technique.

6. RELATED WORK
Several other researchers have pursued the idea of operating di-

rectly on compressed data formats. The novelty of our work is
two-fold: first, in its focus on lossless compression formats, and
second, in its ability to map a flexible stream program, rather than
a single predefined operation, into the compressed domain.

Most of the previous work on mapping algorithms into the com-
pressed domain has focused on formats such as JPEG that utilize
a Discrete Cosine Transform (DCT) to achieve spatial compres-
sion [1, 5, 6, 8, 14, 15, 19, 20, 23, 27]. This task requires a
different analysis, with particular attention given to details such
as the blocked decomposition of the image, quantization of DCT
coefficients, zig-zag ordering, and so-on. Because there is also a
run-length encoding stage in JPEG, our current technique might
find some application there; however, it appears that techniques de-
signed for JPEG have limited application to formats such as LZ77.



There has been some interest in performing compressed pro-
cessing on lossless encodings of black-and-white images. Shoji
presents the pxy format for performing transpose and other affine
operations [21]; the memory behavior of the technique was later
improved by Misra et al. [13]. The pxy format lists the (x, y) coor-
dinate pairs at which a black-and-white image changes color dur-
ing a horizontal scan. As illustrated in Figure 6, our technique can
also preserve a certain amount of compression during a transpose,
though we may achieve less compression than the pxy format due
to our one-dimensional view of the data.

Researchers have also considered the problem of pattern match-
ing on compressed text. A randomized algorithm has been devel-
oped for LZ77 [7] while deterministic strategies exist for LZ78 and
LZW [16, 17]. These solutions are specialized to searching text;
they do not apply to our transformations, and our technique does
not apply to theirs.

7. CONCLUSIONS AND FUTURE WORK
In order to accelerate operations on compressible data, this pa-

per presents a general technique for translating stream programs
into the compressed domain. Given a natural program that operates
on uncompressed data, our transformation outputs a program that
directly operates on the compressed data format. We support loss-
less compression formats based on LZ77. In the general case, the
transformed program may need to partially decompress the data to
perform the computation, though this decompression is minimized
throughout the process and significant compression ratios are pre-
served without resorting to an explicit re-compression step.

We implemented some of our transformations in the StreamIt
compiler and demonstrated excellent speedups. Across a suite of
12 videos in Apple Animation format, computing directly on com-
pressed data offers a speedup roughly proportional to the com-
pression ratio. For pixel transformations (brightness, contrast, in-
verse) speedups range from 2.5x to 471x, with a median of 17x;
for video compositing operations (overlays and mattes) speedups
range from 1.1x to 32x, with a median of 6.6x. While previous re-
searchers have used special-purpose compressed processing tech-
niques to obtain speedups on lossy, DCT-based codecs, we are un-
aware of a comparable demonstration for lossless video compres-
sion. As digital films and animated features have embraced lossless
formats for the editing process, the speedups obtained may have
practical value.

In the future, it would be desirable to extend our technique to
support codecs other than Apple Animation. We would expect
to achieve comparable performance on Flic Video and Microsoft
RLE, which are very similar to Apple Animation. Targa images
(sometimes used to store each video frame) utilize run-length en-
coding, which can be exploited by our technique. Our technique
could also offer gains for the Planar RGB and OpenEXR formats;
however, they re-arrange data (by color for Planar RGB, by high/low
bytes in OpenEXR) that would prevent general transformations from
achieving comparable speedups. General-purpose formats such as
ZIP and GZIP are based on LZ77, but also perform Huffman cod-
ing which would have to be undone prior to the application of our
technique. Unfortunately our technique would not apply directly to
most PNG images, which include a delta encoding prior to LZ77
compression. Further details on extending our technique to other
formats are available in our extended report [24].
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