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ABSTRACT
Stream programs represent an important class of high-performance
computations. Defined by their regular processing of sequences
of data, stream programs appear most commonly in the context
of audio, video, and digital signal processing, though also in net-
working, encryption, and other areas. In order to develop effective
compilation techniques for the streaming domain, it is important
to understand the common characteristics of these programs. Prior
characterizations of stream programs have examined legacy imple-
mentations in C, C++, or FORTRAN, making it difficult to extract
the high-level properties of the algorithms.

In this work, we characterize a large set of stream programs that
was implemented directly in a stream programming language, al-
lowing new insights into the high-level structure and behavior of
the applications. We utilize the StreamIt benchmark suite, con-
sisting of 65 programs and 33,600 lines of code. We characterize
the bottlenecks to parallelism, the data reference patterns, the in-
put/output rates, and other properties. The lessons learned have
implications for the design of future architectures, languages and
compilers for the streaming domain.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications—data-
flow languages; parallel languages; D.2.11 [Software Engineer-
ing]: Software Architectures—domain-specific architectures; D.3.4
[Programming Languages]: Processors—compilers; optimization

General Terms
Languages, Design, Experimentation, Performance

1. INTRODUCTION
The domain of stream programs has attracted interest because

it stands at the intersection of recent application and architectural
trends. By encompassing applications such as audio, video, and
digital signal processing, stream programs are following the expan-
sion of desktop computing to the mobile and embedded space. And
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by virtue of their structure – a set of independent processing stages
that operate on regular sequences of data – stream programs are a
natural fit for multicore architectures. The interest in streaming ap-
plications has spawned a number of programming languages that
target the streaming domain, including StreamIt [53], Brook [9],
StreamC/KernelC [28], Cg [36], Baker [12], SPUR [58] and Spi-
dle [14].

In the case of streaming as well as other domains, the design of a
programming language is deeply influenced by one’s understanding
of the application space. Only by characterizing the common-case
behaviors can one provide the functionality and performance that
is important in practice. Typically this understanding is gleaned
via inspection of benchmarks that are representative of the domain.
However, in the case of stream programs, existing benchmarks are
implemented in von-Neumann languages that often obscure the un-
derlying parallelism and communication patterns. While collec-
tions such as MediaBench [32], ALPBench [34], Berkeley Multi-
media Workload [46], HandBench [15], MiBench [22], and Net-
Bench [38] (and to a lesser extent SPEC [48], Splash-2 [57], PAR-
SEC [5], and Perfect Club [2]) include several examples of stream
programs, they are all written in C, C++, or FORTRAN. Any char-
acterization of these benchmarks thus conflates the issue of under-
standing the streaming patterns with the more difficult question of
extracting those patterns from a low-level description of the algo-
rithm.

In this paper, we present the first characterization of a streaming
benchmark suite that was developed directly in a stream program-
ming language. This enables a new understanding of the funda-
mental properties of stream programs, without struggling to extract
those properties from a general-purpose programming model. We
utilize the StreamIt language [53], a mature system that is rooted
in the synchronous dataflow model [33] and has been used as a
research infrastructure for many projects outside of the StreamIt
group [13, 23, 24, 25, 26, 35, 41, 45, 47, 55, 56]. Our bench-
mark suite consists of 65 programs and 33,600 lines of code, which
were developed by 22 programmers during the last 8 years. The
suite spans many sub-domains of streaming, including video pro-
cessing, audio processing, signal processing, bit-level processing,
and scientific processing. To isolate the study from any perfor-
mance artifacts of the StreamIt compiler, we limit our attention to
architecture-independent program characteristics that are inherent
properties of the algorithm rather than its mapping to any given ma-
chine. We assess the characteristics along three axes, in each case
summarizing the impact of our observations on the design of future
programming languages.

Our first axis of inquiry aims to identify the potential barriers
to parallelizing stream programs. While stream programs are un-
derstood to be rich in data parallelism, there also exist sequential



bottlenecks, some of which can be averted via appropriate language
design. Our results are as follows:

1. Sliding windows are common. The language must expose the
parallelism in sliding windows or they become bottlenecks to
the parallel throughput.

2. Startup behaviors often differ from steady-state behaviors.
The compiler must recognize such behaviors to avoid a through-
put bottleneck.

3. Sequential (stateful) filters are required in one quarter of our
benchmarks. Further state could be eliminated via new lan-
guage constructs, compiler analyses, or programmer inter-
ventions.

4. Feedback loops are uncommon in our benchmarks, but rep-
resent significant throughput bottlenecks when present.

The second axis concerns the scheduling characteristics of stream
programs. Because stream programs execute in parallel, constrained
only by the availability of data items on communication channels,
all scheduling decisions are made by the compiler and runtime sys-
tem. Our observations are:

1. Neighboring filters often have matched I/O rates. This re-
duces the opportunity and impact of advanced scheduling
strategies proposed in the literature.

2. It is not useful for filters to divide their atomic execution step
into a cycle of smaller steps. However, multiple execution
steps are important for scatter/gather stages.

3. Dynamic I/O rates are necessary for expressing several ap-
plications.

The third axis of characterization examines the programming
style of the benchmarks. These results reflect our experience in
observing and coaching over 20 programmers as they developed
large benchmarks within the stream programming model:

1. It is useful and tractable to write programs using structured
streams, in which all modules have a single input and a single
output. However, structured streams are occasionally unnat-
ural and, in rare cases, insufficient.

2. Programmers can accidentally introduce unnecessary sequen-
tial bottlenecks (mutable state) in filters.

The lists above also serve as a detailed outline for the paper. Af-
ter describing the StreamIt language (Section 2) and the benchmark
suite (Section 3), we present each axis of characterization (Sections
4, 5, and 6) as well as related work (Section 7). We conclude (Sec-
tion 8) by reflecting on the impact that this characterization would
have had on our own direction, if it were available at the start of
the StreamIt project. We hope that this paper has similar relevance
for future design and evaluation of architectures, languages, and
compilers for the streaming domain.

2. THE STREAMIT LANGUAGE
StreamIt is an architecture-independent language for high-perfor-

mance stream programming [53]. The compiler is publicly avail-
able [49] and includes backends for multicore architectures, clus-
ters of workstations, and the MIT Raw architecture.

The model of computation in StreamIt is grounded in (but not
limited to) synchronous dataflow [33]. In this model, the program-
mer implements independent actors, or filters, which translate data

float->float pipeline Main {
add Source(); // code for Source not shown
add FIR();
add Output(); // code for Output not shown

}

Source

FIR

Output

float->float filter FIR (float sampRate, int N) {
float[N] weights;

init {
weights = calcImpulseResponse(sampRate, N);

}

prework push N-1 pop 0 peek N {
for (int i=1; i<N; i++) {

push(doFIR(i));
}

}

work push 1 pop 1 peek N {
push(doFIR(N));
pop();

}

float doFIR(int k) {
float val = 0;
for (int i=0; i<k; i++) {

val += weights[i] * peek(k-i-1);
}
return val;

}

handler changeWeights(float[N] newWeights) {
weights = newWeights;

}
}

Figure 1: Example StreamIt program with FIR filter.

items from input channels to output channels. Filters are composed
into graphs that represent the overall computation. The key prop-
erty of synchronous dataflow is that the number of items consumed
and produced during each execution of a filter is known at compile
time, allowing the compiler to perform static scheduling and op-
timization. The StreamIt language also allows filters to declare a
dynamic data rate, which requires the support of a runtime system.

An example StreamIt program appears in Figure 1. It is based
on an FIR filter, which contains three stages of execution. The
most important is the work function, which represents the steady-
state execution step and is called repeatedly by the runtime system.
Within the work function, a filter may peek at a given element on
the input tape, pop an item off the input tape, or push an item to
the output tape. The total number of items peeked, popped, and
pushed are declared as part of the work function. Note that if the
peek rate exceeds the pop rate, it represents a sliding window com-
putation in which some input elements are accessed across multiple
invocations of the filter.

In addition to the work function, a filter may declare an init
function to initialize internal data structures, as well as a prework
function to perform specialized processing of data items prior to
the steady state. The prework function is needed in cases where
the initial processing has a different input or output rate than the
steady-state processing.

In addition to supporting steady-state flows of data, the StreamIt
language also provides a mechanism for sending out-of-band con-
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(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 2: Hierarchical stream structures supported by
StreamIt.

trol information between actors. Termed teleport messaging, this
feature allows1 filters to deliver messages that are timed with re-
spect to the data items in the stream, even if they are not embedded
in the stream itself [52]. For example, a distant filter could invoke
the changeWeights handler in the FIR filter in order to adjust the
weights in the filter. All message senders and message latencies
are known at compile time to avoid non-deterministic outcomes.
Due to space limitations, we refer the reader to an accompanying
report for a characterization of teleport messaging [52].

As depicted in Figure 2, StreamIt provides three hierarchical
primitives for composing filters into stream graphs. A pipeline rep-
resents a sequential composition of streams, in which the output of
one stream feeds into the input of the next. A splitjoin represents a
parallel set of streams, which diverge from a common splitter and
converge to a common joiner. The types of splitters and joiners
are predefined by the StreamIt language; they encompass duplica-
tion and weighted round-robin behaviors. Finally, a feedbackloop
represents a cycle in the stream graph.

Because pipelines, splitjoins, and feedbackloops are all single-
input and single-output, they can be hierarchically composed. By
analogy to structured control flow, we designate these primitives as
structured streams.

3. BENCHMARK SUITE
An overview of the StreamIt benchmark suite appears in Table 1.

At the time of this writing, the suite consists of 65 programs, in-
cluding 30 realistic applications, 4 graphics rendering pipelines, 23
libraries and kernels, and 8 sorting routines. Benchmarks range
in size from 31 lines (VectAdd) to over 4,000 lines (MPEG2 en-
coder), with a total of 33,600 non-comment, non-blank lines in the
suite2 Twenty two people contributed to the suite, including 6 from
outside our group. Almost all benchmarks were based on a refer-
ence version in C or MATLAB, which we obtained from real-world
sources such as DARPA (GMTI, FAT, SAR), industrial partners
(3GPP, OFDM), or international standards (MPEG2, MP3, JPEG,
HDTV, etc.) The benchmark suite is broadly representative of the
streaming domain, as it spans video processing (MPEG, HDTV,
etc.), audio processing (MP3, FMRadio, etc.), signal processing
(GMTI, SAR, etc.), bit-level processing (DES, Serpent, etc.) and
scientific processing (MatMul, Cholesky, etc.)

Graphical depictions of the stream graphs for each benchmark
can be found in an accompanying report [52]. A subset of the
benchmarks have also been released on the StreamIt website [49].

1While fully supported by the StreamIt language, teleport messag-
ing and dynamic rates have only basic, unoptimized support under
our current compiler infrastructure.
2Counting commented lines (8,100) and blank lines (7,300), the
benchmark suite comes to 49,000 lines.

At the time of this writing, some of the larger benchmarks (MPEG2,
GMTI, Mosaic, FAT, HDTV) are not fully supported by the com-
piler. However, their functional correctness has been verified in the
Java runtime for the StreamIt language.

It is important to recognize that most of the benchmarks are pa-
rameterized, and we study only one assignment of those parameters
in our quantitative evaluation. Table 1 details the parameterization
of the StreamIt benchmarks. In two-thirds (44) of the benchmarks,
the parameters affect the structure of the stream graph, often by in-
fluencing the length of pipelines, the width of splitjoins, the depth
of recursion hierarchies, or the absence or presence of given filters.
The same number of benchmarks contain parameters that affect the
I/O rates of filters (e.g., the length of an FIR filter), but do not
necessarily affect the structure of the graph. Changes to the I/O
rates also imply changes to the schedule and possibly the balance
of work across filters. In selecting values for these parameters, our
primary goal was to faithfully represent a real-life application of
the algorithm. In some cases we also decreased the sizes of the pa-
rameters (e.g., sorting 16 elements at a time) to improve the com-
prehensibility of the stream graph. For benchmarking purposes,
researchers may wish to scale up the parameters to yield larger
graphs, or to vary the ratio between parameters to obtain graphs
of varying shapes and work distributions.

More detailed properties of the filters and streams within each
benchmark are given in Table 2. In terms of size, benchmarks de-
clare (on average) 12 filter types and instantiate them 65 times in
the stream graph. GMTI contains the most filters, with 95 static
types and 1,111 dynamic instances; it also contains 1,757 instances
of the Identity filter, to assist with data reordering.

4. THROUGHPUT BOTTLENECKS
As stream programs are a prime target for parallelization, it is im-

portant to understand the real and artificial bottlenecks to achieving
high parallel throughput. In this section, we use the term “stateful”
to refer to filters that retain mutable state from one execution to the
next; filters containing only read-only state are classified as “state-
less”. Stateless filters are amenable to data parallelism, as they
can be replicated any number of times to work on different parts
of the input stream [20]. However, stateful filters must be run in
a serial fashion, as there is a dependence from one iteration to the
next. While separate stateful filters can be run in a task-parallel
or pipeline-parallel mode, the serial nature of each individual filter
represents an eventual bottleneck to the parallel computation.

4.1 Sliding windows are common. The language
must expose the parallelism in sliding windows or
they become bottlenecks to the parallel throughput.

Twenty one benchmarks – and 57% of the realistic applications
– contain at least one filter that peeks. (That is, these filters de-
clare a peek rate larger than their pop rate, and thus implement a
sliding window computation; such filters re-read the same input
items on successive invocations of the filter.) In von-Neumann lan-
guages, peeked items are typically stored as internal states to the fil-
ter and appear as serializing dependences across iterations, though
in StreamIt, the peek primitive avoids storing the items and allows
the parallelism between iterations to be exposed. Benchmarks con-
tain up to 4 filter types that peek; in programs with any peeking, an
average of 10 peeking filters are instantiated.

While peeking is used for many purposes, there are a few com-
mon patterns. The most common is that of an FIR filter, where a
filter peeks at N items, pops one item from the input, and pushes
a weighted sum to the output. FIR filters account for slightly less
than half (15 out of 34) of the peeking filter declarations. They are



Benchmark Description Parameters and default values

MPEG2 encoder MPEG2 video encoder (Drake, 2006) image size (320x240) 4041
MPEG2 decoder MPEG2 vivdeo decoder (Drake, 2006) image size (320x240) 3961
GMTI Ground moving target indicator over 50 parameters 2707
Mosaic Mosaic imaging with RANSAC algorithm (Aziz, 2007) frame size (320x240) 2367
MP3 subset MP3 decoder (excluding parsing + huffman coding)  -- 1209
MPD Median pulse compression doppler radar (Johnsson et al., 2005) FFT size (32); rows (104); cols (32) 1027

Realistic Apps (30):

Lines
of

Code1

JPEG decoder JPEG decoder image size (640x480) 1021
JPEG transcoder JPEG transcoder (decode, then re-encode at higher compression) image size (640x480) 978
FAT Feature-aided tracker2 15 parameters, mostly matrix dimensions 865
HDTV HDTV encoder/decoder2 trellis encoders (12); interleave depth (5) 845
H264 subset 16x16 intra-prediction stage of H264 encoding image size (352x288) 788
SAR Synthetic aperture radar over 30 parameters 698
GSM GSM decoder  -- 691
802.11a 802.11a transmitter  -- 690
DES DES encryption number of rounds (16) 567
Serpent Serpent encryption number of rounds (32); length of text (128) 550
Vocoder Phase vocoder, offers independent control over pitch and speed (Seneff, 1980) pitch & speed adjustments, window sizes 513
RayTracer Raytracer (ported from Intel's) no parameters, though data read from file 407
3GPP 3GPP radio access protocol - physical layer matrix dimensions Q, W, N, K (2, 2, 4, 8) 387
Radar (coarse) Radar array front end (coarse-grained filters, equivalent functionality) channels (12); beams (4); others (see [52]) 203
Radar (fine) Radar array front end (fine-grained filters, equivalent functionality) channels (12); beams (4); others (see [52]) 201
Audiobeam Audio beamformer, steers channels into a single beam channels (15) 167
FHR (feedback loop) Frequency hopping radio (using feedback loop for hop signal) window size (256) 161
OFDM Orthogonal frequency division multiplexer (Tennenhouse and Bose, 1996) decimation rates (825, 5); others (see [52]) 148
ChannelVocoder Channel voice coder number of filters (16); others (see [52]) 135
Filterbank Filter bank for multi-rate signal processing bands (8); window size (128) 134
TargetDetect Target detection using matched filters and threshold window size (300) 127
FMRadio FM radio with equalizer bands (7); win size (128); others (see [52]) 121
FHR (teleport messaging) Frequency hopping radio (using teleport messaging for hop signal) window size (256) 110
DToA Audio post-processing and 1-bit D/A converter window size (256) 100

Graphics Pipelines (4):
GP - reference version General-purpose rendering pipeline: 6 vertex shaders, 15 pixel pipes3  -- 641
GP phong shading Phong shading rendering pipeline: 1 vertex shader 12 two part pixel pipelines 649GP - phong shading Phong shading rendering pipeline: 1 vertex shader, 12 two-part pixel pipelines -- 649
GP - shadow volumes Shadow volumes rendering pipeline: 1 vertex shader, 20 rasterizers  -- 460
GP - particle system Particle system pipeline: 9 vertex shaders, 12 pixel pipelines, split triangle setup  -- 631

Libraries / Kernels (23):
Autocor Produce auto-correlation series vector length (32); autocor series length (8) 29
Cholesky NxN cholesky decomposition matrix size (16x16) 85
CRC CRC encoder using 32-bit generator polynomial  -- 131
DCT (float) N-point, one-dimensional DCT (floating point) window size (16) 105
DCT2D (NxM float) NxM DCT (floating point) window size (4x4) 115DCT2D (NxM, float) NxM DCT (floating point) window size (4x4) 115
DCT2D (NxN, int, reference) NxN DCT (IEEE-compliant integral transform, reference version) window size (8x8) 59
IDCT (float) N-point, one-dimensional IDCT (floating point) window size (16) 105
IDCT2D (NxM, float) NxM IDCT (floating point) window size (4x4) 115
IDCT2D (NxN, int, reference) NxN IDCT (IEEE-compliant integral transform, reference version) window size (8x8) 60
IDCT2D (8x8, int, coarse) 8x8 IDCT (IEEE-compliant integral transform, optimized version, coarse-grained)  -- 139
IDCT2D (8x8, int, fine) 8x8 IDCT (IEEE-compliant integral transform, optimized version, fine-grained)  -- 146
FFT (coarse - default) N-point FFT (coarse-grained) window size (64) 116
FFT (medium) N-point FFT (medium-grained butterfly, no bit-reverse) window size (64) 53
FFT (fine 1) N-point FFT (fine-grained butterfly, coarse-grained bit-reverse) window size (64) 139FFT (fine 1) N-point FFT (fine-grained butterfly, coarse-grained bit-reverse) window size (64) 139
FFT (fine 2) N-point FFT (fine-grained butterfly, fine-grained bit-reverse window size (64) 90
Lattice Ten-stage lattice filter number of stages (10) 58
MatrixMult (fine) Fine-grained matrix multiply matrix dims NxM, MxP (12x12, 9x12) 79
MatrixMult (coarse) Blocked matrix multiply matrix dims (same as above); block cuts (4) 120
Oversampler 16x oversampler (found in many CD players) window size (64) 69
RateConvert Audio down-sampler, converts rate by 2/3 expand / contract rates (2, 3); win size (300) 58
TDE Time-delay equalization (convolution in frequency domain) number of samples (36); FFT size (64) 102
Trellis Trellis encoder/decoder system, decodes blocks of 8 bytes2 frame size (5) 162
VectAdd Vector-vector addition -- 31VectAdd Vector-vector addition -- 31

Sorting Routines (8):
BitonicSort (coarse) Bitonic sort (coarse-grained) number of values to sort (16) 73
BitonicSort (fine, iterative) Bitonic sort (fine-grained, iterative) number of values to sort (16) 121
BitonicSort (fine, recursive) Bitonic sort (fine-grained, recursive) number of values to sort (16) 80
BubbleSort Bubble sort number of values to sort (16) 61
ComparisonCounting Compares each element to every other to determine n'th output number of values to sort (16) 67
InsertionSort Insertion sort number of values to sort (16) 61
MergeSort Merge sort number of values to sort (16) 66g g ( )
RadixSort Radix sort number of values to sort (16) 52

Table 1: Overview of the StreamIt benchmark suite.



Benchmark

MPEG2 encoder4 35 113 30 - - - 9 11 N/A 15 - -
MPEG2 decoder4 25 49 13 - - - 7 10 N/A 8 - -
GMTI 95 1111 1757 - - - - - - 764 - -
Mosaic 62 176 17 2 2 N/A 7 7 N/A 20 1 N/A
MP3 subset 10 98 36 2 4 8.6% - - - 23 - -

OTHER CONSTRUCTS
Feedback

Loops
Splitjoins

PEEKING FILTERS
Types Instances

Realistic Apps (30):

TOTAL FILTERS
Work in
F. Loop6

STATEFUL FILTERS5

Types InstancesTypes Instances
(Identity)

Instances
(non-Iden.)

Max
Work6

Max
Work6

MPD 42 110 33 1 11 1.9% 5 7 2.0% 11 - -
JPEG decoder 17 66 13 1 3 0.00% - - - 11 - -
JPEG transcoder 12 126 8 2 6 0.00% - - - 20 - -
FAT 27 143 4 - - - - - - 5 - -
HDTV 20 94 - 1 12 <0.01% 4 38 N/A 28 - -
H264 subset 28 33 20 - - - - - - 16 1 97%
SAR 22 42 - - - - - - - 1 - -
GSM 17 40 3 1 1 4.7% 3 3 42.4% 6 1 25%
802.11a 28 61 35 1 2 7.6% - - - 18 - -
DES 21 117 16 - - - - - - 32 - -
Serpent 13 135 33 - - - - - - 33 - -
Vocoder 30 96 4 4 32 8.0% 3 45 0.3% 8 - -
RayTracer 4 4 - - - - - - - - - -
3GPP 13 60 72 1 8 0.1% - - - 41 - -
Radar (coarse) 6 73 - - - - - - - 2 - -
Radar (fine) 6 49 - - - - 1 28 3.9% 2 - -
Audiobeam 3 18 - 1 15 4.4% - - - 1 - -
FHR (feedback loop) 9 26 1 - - - 1 1 5.1% 1 1 80%
OFDM 6 14 - 1 4 0.1% 1 4 12.2% 1 - -
ChannelVocoder 5 53 - 3 34 5.2% - - - 1 - -
Filterbank 9 67 - 2 32 3.1% - - - 9 - -
TargetDetect 7 10 - 4 4 25% - - - 1 - -
FMRadio 7 29 - 2 14 7.6% - - - 7 - -
FHR (teleport messaging) 7 23 3 - - - 1 1 4.2% 1 - -
DToA 7 14 - 1 5 67% - - - - 1 0.7%

Graphics Pipelines (4):
GP reference version 6 54 1 15 N/A 2GP - reference version 6 54 - - - - 1 15 N/A 2 - -
GP - phong shading 7 52 - - - - 1 12 N/A 1 - -
GP - shadow volumes 5 44 - - - - 1 20 N/A 1 - -
GP - particle system 7 37 - - - - 1 12 N/A 2 - -

Libraries / Kernels (23):
Autocor 3 10 - - - - - - - 1 - -
Cholesky 5 35 15 - - - - - - 15 - -
CRC 4 48 2 - - - - - - - 1 99%
DCT (float) 6 31 7 - - - - - - 14 - -DCT (float) 6 31 7 - - - - - - 14 - -
DCT2D (NxM, float) 6 42 8 - - - - - - 18 - -
DCT2D (NxN, int, reference) 3 20 - - - - - - - 2 - -
IDCT (float) 6 48 7 - - - - - - 21 - -
IDCT2D (NxM, float) 6 50 8 - - - - - - 26 - -
IDCT2D (NxN, int, reference) 3 20 - - - - - - - 2 - -
IDCT2D (8x8, int, coarse) 2 4 - - - - - - - - - -
IDCT2D (8x8, int, fine) 2 18 - - - - - - - 2 - -
FFT (coarse - default) 4 13 - - - - - - - - - -
FFT (medium) 5 20 6 - - - - - - 12 - -FFT (medium) 5 20 6 - - - - - - 12 - -
FFT (fine 1) 4 195 - - - - - - - 44 - -
FFT (fine 2) 4 99 64 - - - - - - 96 - -
Lattice 4 18 10 - - - - - - 9 - -
MatrixMult (fine) 4 14 30 - - - - - - 5 - -
MatrixMult (coarse) 4 4 25 - - - - - - 7 - -
Oversampler 5 10 - 1 4 52.7% - - - - - -
RateConvert 5 5 - 1 1 97.6% - - - - - -
TDE 7 29 - - - - - - - - - -
Trellis 14 12 1 1 1 N/A 2 2 N/A 1 - -Trellis 14 12 1 1 1 N/A 2 2 N/A 1 - -
VectAdd 3 4 - - - - - - - 1 - -

Sorting Routines (8):
BitonicSort (coarse) 4 6 - - - - - - - - - -
BitonicSort (fine, iterative) 3 82 - - - - - - - 44 - -
BitonicSort (fine, recursive) 3 62 16 - - - - - - 37 - -
BubbleSort 3 18 - 1 16 5.9% 1 16 5.9% - - -
ComparisonCounting 4 19 1 - - - - - - 1 - -
InsertionSort 3 6 - - - - - - - - - -
MergeSort 3 17 - - - - - - - 7 - -
RadixSort 3 13 - - - - - - - - - -

Table 2: Properties of filters and other constructs in StreamIt benchmarks.



int->int filter DifferenceEncoder_Stateless {

prework push 1 peek 1 {
push(peek(0));

}

work push 1 pop 1 peek 2 {
push(peek(1)-peek(0));
pop();

}
}

Figure 3: Stateless version of a difference encoder, using peek-
ing and prework.

responsible for all of the peeking in 7 benchmarks (3GPP, OFDM,
Filterbank, TargetDetect, DToA, Oversampler, RateConvert) and
some of the peeking in 3 others (Vocoder, ChannelVocoder, FMRa-
dio).

A second pattern of peeking is when a filter peeks at exactly
one item beyond its pop window. An example of this filter is a
difference encoder, as used in the JPEG transcoder and Vocoder
benchmarks. On its first execution, this filter’s output is the same
as its first input; on subsequent executions, it is the difference be-
tween neighboring inputs. As illustrated in Figure 3, a difference
encoder can be written as a stateless filter using peeking (and pre-
work, as described later). Otherwise, the filter is forced to main-
tain internal state, as illustrated in Figure 4. Across our benchmark
suite, this pattern accounts for almost one third (10 out of 34) of
the peeking filter declarations. It accounts for all of the peeking
in 4 benchmarks (Mosaic, JPEG decode, JPEG transcode, HDTV,
BubbleSort) and some of the peeking in 2 others (Vocoder, FMRa-
dio). It should be noted that the operation performed on the two
items is sometimes non-linear; for example, Mosaic determines the
correlation between successive frames, FMRadio performs an FM
demodulation, and HDTV performs an XOR.

The remaining peeking filters (9 out of 34) perform various sliding-
window functions. For example, MP3 reorders and adds data across
large (>1000 item) sliding windows; 802.11 and Trellis do short
(3-7 item) bit-wise operations as part of an error-correcting code;
Vocoder and Audiobeam use peeking to skip N items (by default
1-14), analogous to an inverse delay; ChannelVocoder performs
a sliding autocorrelation and threshold across N items (by default
100).

Without peeking, the filters described above would have to be
written in a stateful manner, as the locations peeked would be con-
verted to internal states of the filter. This inhibits parallelization, as

1Only non-comment, non-blank lines of code are counted. Line
counts do not include libraries used, though other statistics do con-
sider both the application and its libraries.
2Some helper functions in FAT, HDTV, and Trellis remain untrans-
lated from the Java-based StreamIt syntax.
3The graphics pipelines are described in more detail else-
where [11].
4Due to the large size of MPEG2, splitjoins replicating a single
filter are automatically collapsed by the compiler prior to gathering
statistics.
5Source and sink nodes that generate synthetic input, check pro-
gram output, or perform file I/O are not counted as stateful.
6Work is given as an estimated fraction of the overall program, as
calculated by a static analysis. Actual runtimes may differ by 2x
or more. Work estimates are not available (N/A) given dynamic
rates (MPEG2, Mosaic, Graphics pipelines) or external Java rou-
tines (HDTV, Trellis).

int->int filter DifferenceEncoder_Stateful {
int state = 0;

work push 1 pop 1 {
push(peek(0)-state);
state = pop();

}
}

Figure 4: Stateful version of a difference encoder, using inter-
nal state.

there is a dependence between successive filter executions. To es-
timate the resulting performance impact, Figure 2 lists the approx-
imate amount of work in the most computationally-heavy peeking
filter in each benchmark. For 11 benchmarks, this work represents
a significant fraction of the program load (minimum 3.1%, median
8%, maximum 97.6%) and would represent a new bottleneck in a
parallel computation. For 7 benchmarks, the state that would be
introduced by peeking is dwarfed by state already present for other
reasons. For the remaining 3 benchmarks, the peeking filters rep-
resent a negligible (0.1%) fraction of work.

4.2 Startup behaviors often differ from steady-state
behaviors. The compiler must recognize such
behaviors to avoid a throughput bottleneck.

The prework function allows a filter to have different behavior
on its first invocation. This capability is utilized by 15 benchmarks,
in 20 distinct filter declarations (results not shown in table).

The most common use of prework is for implementing a delay;
on the first execution, the filter pushes N placeholder items, while
on subsequent executions it acts like an Identity filter. A delay is
used in 8 benchmarks (MPD, HDTV, Vocoder, 3GPP, Filterbank,
DToA, Lattice, and Trellis). Without prework, the delayed items
would need to be buffered within the filter, introducing a stateful
bottleneck to the computation.

Other benchmarks use prework for miscellaneous startup con-
ditions. As mentioned previously, the difference encoder in Fig-
ure 3 relies on prework (used in JPEG transcoder and Vocoder),
as does the analogous difference decoder (used in JPEG decoder).
The MPEG2 encoder and decoder use prework in filters relating to
picture reordering, while GSM and CRC use prework for functions
analogous to delays. Prework is also used for initialization in MPD,
HDTV, and 802.11.

4.3 Sequential (stateful) filters are required in one
quarter of our benchmarks. Further state could be
eliminated via new language constructs, compiler
analyses, or programmer interventions.

After effective use of peeking and prework primitives, one quar-
ter (17 out of 65) of the benchmarks still contain one or more filters
with mutable state. There are 49 stateful filter types in the StreamIt
benchmark suite, representing approximately 6% of the total filters.
The heaviest stateful filter in each benchmark ranges from 0.3% to
42.4% (median 4.7%) of the overall work, representing an eventual
bottleneck to parallelization.

Of the stateful filters, at least 22 (about 45%) represent funda-
mental feedback loops that are an intrinsic part of the underly-
ing algorithm. Filters in this category include the bit-alignment
stage of MPEG encoding, which performs data-dependent updates
to the current position; reference frame encoding in MPEG en-
coder, which sometimes stores information about a previous frame;
the parser in MPEG decoder, which suspends and restores its cur-



rent control flow position in order to maintain a constant output
rate; the motion prediction, motion vector decode, and picture re-
ordering stages of MPEG decoder, which contain data-dependent
updates of various buffers; the pre-coding and Ungerboeck encod-
ing stages of HDTV, which are simple feedback loops; the Unger-
boeck decoding stage of HDTV (and analogously in Trellis) which
mutates a persistent lookup table; multiple feedback loops in GSM;
an accumulator, adaptive filter, and feedback loop in Vocoder; in-
cremental phase correction in OFDM; and persistent screen buffers
in the graphics pipelines.

The remaining filters classified as stateful may be amenable to
additional analyses that either eliminate the state, or allow restricted
parallelism even in the presence of state. The largest category of
such filters are those in which the state variables are modified only
by message handlers. Whether such messages represent a genuine
feedback loop depends on whether the filter sending the message is
data-dependent on the outcome of the filter receiving the message.
Even if a feedback loop does exist, it may be possible to exploit
bounded parallelism due to the intrinsic delay in that loop, or spec-
ulative parallelism due to the infrequent arrival of most teleport
messages. In our benchmarks, there are 16 filters in which the state
is mutated only by message handlers; they originate from MPEG
encoder, MPEG decoder, Mosaic, and both versions of FHR. There
are also 4 additional filters (drawn from MPEG encoder, MPEG de-
coder, and Mosaic) in which message handlers account for some,
but not all, of the state.

A second category of state which could potentially be removed is
that of induction variables. Several filters keep track of how many
times they have been invoked, in order to perform a special action
every N iterations. For example, MPEG encoder counts the frame
number in assigning the picture type; MPD and Radar (fine grained
version) count the position within a logical vector while perform-
ing FIR filtering; and Trellis includes a noise source that flips a bit
every N items. Other filters keep track of a logical two-dimensional
position, incrementing a column counter on every iteration and only
incrementing the row counter when a column is complete. Filters
in this category include motion estimation from MPEG encoder,
and two filters from MPD. Other filters in MPD contain more com-
plex induction variables; an accumulator is reset when a different
counter wraps-around to zero. Taken together, there are a total of
9 filters that could become stateless if all induction variables could
be converted to a closed form.

There are two approaches for eliminating induction variables
from filter state. The first approach is to recognize them auto-
matically in the compiler. While this is straightforward for simple
counters, it may prove difficult for nested counters (tracking both
row and column) or co-induction variables (periodically reseting
one variable based on the value of another). The second approach
is to provide a new language primitive that automatically returns
the current iteration number of a given filter. This information can
easily be maintained by the runtime system without inhibiting par-
allelization; shifting the burden from the programmer to the com-
piler would improve both programmability and performance.

The third and final category of state that could potentially be re-
moved is that which results from writing a logically coarse-grained
filter at a fine level of granularity. This can result in a filter in which
state variables are reset every N executions, corresponding to one
coarse-grained execution boundaries. Such filters can be re-written
in a stateless manner by moving state variables to local variables in
the work function, and scaling up the execution of the work func-
tion to represent N fine-grained iterations. Such coarsening would
eliminate the state in bubble sort, which is reset at boundaries be-
tween data sets, as well as a complex periodic filter (LMaxCalc)

in MPD. It would also eliminate many of the induction variables
described previously, as they are also periodic. This approach pro-
vides a practical solution for eliminating state, and was employed in
translating Radar from the original fine-grained version to a coarse-
grained alternative (both of which appear in our benchmark suite).
The drawbacks of this transformation are the effort required from
the programmer and also the increased size of the resulting filter.
Coarse-grained filters often incur a larger code footprint, a longer
compile time, and a less natural mapping to fine-grained architec-
tures such as FPGAs. While the StreamIt language aims to be ag-
nostic with respect to the granularity of filters, in some cases the
tradeoff between writing stateless filters and writing fine-grained
filters may need to be iteratively explored to achieve the best per-
formance.

4.4 Feedback loops are uncommon in our
benchmarks, but represent significant throughput
bottlenecks when present.

While our discussion thus far has focused on stateful filters, six
benchmarks also contain explicit feedback loops in the graph struc-
ture. Three additional benchmarks (MPEG2 encoder, Mosaic, and
FHR) contain implicit loops due to teleport messages that are sent
upstream (see [52] for details). Of the explicit feedback loops, three
represent significant bottlenecks to parallelization (FHR feedback,
H264 subset, CRC), with workloads ranging from 80% to 99% of
the overall execution. The loop in GSM is shadowed by a stateful
filter; the loop in DToA represents only 0.7% of the runtime; and
the loop in Mosaic, while likely a bottleneck, is difficult to quan-
tify due to dynamic rates. Unlike some of the stateful filters, these
feedback loops are all intrinsic to the algorithm and are not subject
to automatic removal. However, feedback loops can nonetheless
afford opportunities for parallelism due to the delay in the loop –
that is, if items are enqueued along the feedback path at the start
of execution, then they can be processed in parallel. Further anal-
ysis of these delays is needed to assess the potential parallelism of
feedback loops in our benchmark suite.

5. SCHEDULING CHARACTERISTICS
The semantics of a stream program is that all filters execute con-

currently, limited only by the availability of data on the input chan-
nels (and the availability of space on the output channels). Thus, it
is the role of the compiler to schedule the actual sequence of filter
executions on a given target. This section describes the constraints
and opportunities of the scheduling process, as informed by our
benchmark suite.

5.1 Neighboring filters often have matched I/O rates.
This reduces the opportunity and impact of advanced
scheduling strategies proposed in the literature.

Many of the advanced scheduling strategies for synchronous dataflow
graphs have the highest payoff when the input and output rates
of neighboring filters are mismatched. For example, the CD-DAT
benchmark (shown in Figure 5) is used in many studies [3, 4, 10,
31, 39, 40, 50]; it converts compact disk auto (sampled at 44.1 khz)
to digital audio tape (sampled at 48 khz). Performing this con-
version in stages improves efficiency [39]. However, neighboring
filters have different communication rates which share no common
factors, resulting in a large steady-state schedule3.

3A steady-state schedule is a sequence of filter firings that pre-
serves the number of items buffered between each pair of filters.
It can be repeated infinitely without risking buffer overflow or un-
derflow.



Stage1 Stage2 Stage3 Stage4

1 2 3 2 7 8 7 5

147 98 28 32

Figure 5: The CD-DAT benchmark [40] exhibits unusually mis-
matched I/O rates. Nodes are annotated with the number of
items pushed and popped per execution, as well as their execu-
tion multiplicity in the steady state. Since neighboring filters
produce different numbers of items, each filter has a large mul-
tiplicity in the steady state. This demands clever scheduling
strategies to avoid extremely large buffer sizes.

In our benchmark suite, mismatched communication rates as seen
in CD-DAT are rare. The common case is that the entire benchmark
is operating on a logical frame of data which is passed through the
entire application. Sometimes there are differences in the input and
output rates for filters that operate at different levels of granular-
ity; for example, processing one frame at a time, one macroblock
at a time, or one pixel at a time. However, these rates have a small
common multiple (i.e., the frame size) and can be accommodated
without growing the steady state schedule. The JPEG transcoder
provides an example of this; Figure 6 illustrates part of the stream
graph that operates on a single 8x8 macroblock.

To provide a quantitative assessment of the number of matched
rates in our benchmark suite, Figure 7 summarizes the key prop-
erties of the steady state schedule derived for each program. We
consider the minimal steady state schedule, which executes each
filter the minimum number of times so as to consume all of the
items produced by other filters in the graph. We count the number
of times that each filter executes in this schedule, which we refer
to as the multiplicity for the filter. The table illustrates, for each
benchmark, the minimum multiplicity, the mode multiplicity, and
the percentage of filters that have the mode multiplicity (the mode
frequency).

The most striking result from the table is that 89% (58 out of 65)
of the benchmarks have a minimum filter multiplicity of 1. That
is, there exists at least one filter in the program that executes only
once in the steady state schedule. This filter defines the logical
frame size for the execution; all other filters are simply scaled up
to satisfy the input or output requirements of the filter.

The second highlight from the table is that, on average, 63%
of the filters in a program share the same multiplicity. For over
two-thirds of the benchmarks (44 out of 65), the most common
multiplicity is 1; in these benchmarks, an average of 72% of the fil-
ters also have a multiplicity of 1. The mode multiplicity can grow
higher than 1 in cases where one filter operates at a coarse gran-
ularity (e.g., a frame), but the majority of filters operate at a fine
granularity (e.g., a pixel). In these benchmarks, 46% of the filters
still share the same multiplicity.

The prevalence of matched rates in our benchmark suite also
led to unexpected results in some research papers. For example,
phased scheduling is an algorithm that reduces the buffer require-
ments needed to execute a synchronous dataflow graph [29]. The
space saved on CD-DAT is over 14x. However, the median sav-
ings across our benchmark suite at the time (a subset of the suite
presented here) is less than 1.2x. The reason is that the potential
savings on most benchmarks is extremely small due to matched in-
put and output rates; simply executing each node once often gives
the minimal possible buffering. This result emphasizes the impor-
tance of optimizing the common case in realistic programs, rather
than restricting attention to small examples.
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Figure 6: This excerpt from the JPEG transcoder illustrates
matched I/O rates, as found in many benchmarks. The graph
is transforming pixels from an 8x8 macroblock. Nodes are an-
notated with the number of items pushed and popped per ex-
ecution, as well as their execution multiplicity in the steady
state. Since neighboring filters often produce the same num-
ber of items on each execution, all filters except for Identity
and Adder execute exactly once in the steady state. This offers
less flexibility to optimize the schedule, and affords less benefit
from doing so.

5.2 It is not useful for filters to divide their atomic
execution step into a cycle of smaller steps. How-
ever, multiple execution steps are important for scat-
ter/gather stages.

At one point in the StreamIt project, we embraced the cyclo-
static dataflow model [6, 42] for all filters. Under this model, the
programmer can define multiple work functions that are executed
under a specified pattern. By dividing execution into more fine-
grained units, cyclo-static dataflow can offer lower latency than
synchronous dataflow, and can also avoid deadlock in tightly con-
strained loops.

However, for general filters, we did not find any compelling ap-
plication of cyclic execution steps across our benchmark suite. The
concept of multiple execution steps was confusing to programmers,
who often interpreted the steps as belonging to different filters, or as
being interchangeable with a normal function call. For this reason,
we eventually changed course and removed cyclo-static dataflow
from the StreamIt language.

Multiple execution steps did prove to be important to the se-
mantics of splitters and joiners, which would have an unreasonably
large granularity if they were forced to transfer a full cycle of data at
a single time. For example, a feedback loop in the GSM benchmark
requires fine-grained splitting and joining to avoid deadlock [29].
Because StreamIt relies on a few built-in primitives for splitting
and joining, the subtlety of this execution semantics could be hid-
den from the programmer.



Benchmark
Min Mode

MPEG2 encoderc 7 1 960 17%
MPEG2 decoderc 1 1 990 19%
GMTI - 1 1 56%
Mosaic 5 2 2 27%
MP3 subset - 1 18 52%
MPD - 1 416 25%

Mode
Freq.

Filter Execs per Steady StatebDynamic
Rate Filtersa

Realistic Apps (30):

JPEG decoder 2 1 4800 72%
JPEG transcoder 2 1 1 85%
FAT - 1 1 24%
HDTV - 20 1380 38%
H264 subset - 17 396 26%
SAR - 1 1 95%
GSM - 1 1 65%
802.11a - 1 1 14%
DES - 1 1 62%
Serpent - 1 1 40%
Vocoder - 1 1 88%
RayTracer - 1 1 100%
3GPP - 1 9 48%
Radar (coarse) - 1 1 38%
Radar (fine) - 1 1 49%
Audiobeam - 1 1 94%
FHR (feedback loop) - 1 1 26%
OFDM - 1 1 57%
ChannelVocoder - 1 50 66%
Filterbank - 1 8 64%
TargetDetect - 1 1 90%
FMRadio - 1 1 97%
FHR (teleport messaging) - 1 1 23%
DToA - 1 16 43%

Graphics Pipelines (4):
GP - reference version 15 1 2 85%
GP phong shading 12 1 1 94%GP - phong shading 12 1 1 94%
GP - shadow volumes 20 1 1 93%
GP - particle system 12 1 36 70%

Libraries / Kernels (23):
Autocor - 1 1 80%
Cholesky - 1 1 70%
CRC - 1 1 98%
DCT (float) - 1 1 79%
DCT2D (NxM float) - 1 1 84%DCT2D (NxM, float) - 1 1 84%
DCT2D (NxN, int, reference) - 1 1 80%
IDCT (float) - 1 1 85%
IDCT2D (NxM, float) - 1 1 83%
IDCT2D (NxN, int, reference) - 1 1 80%
IDCT2D (8x8, int, coarse) - 1 64 50%
IDCT2D (8x8, int, fine) - 1 1 89%
FFT (coarse - default) - 1 1 23%
FFT (medium) - 32 32 92%
FFT (fine 1) - 1 1 99%FFT (fine 1) - 1 1 99%
FFT (fine 2) - 1 1 98%
Lattice - 1 1 100%
MatrixMult (fine) - 9 108 30%
MatrixMult (coarse) - 9 12 31%
Oversampler - 1 1 20%
RateConvert - 2 2 40%
TDE - 1 15 24%
Trellis - 1 40 46%
VectAdd - 1 1 100%VectAdd - 1 1 100%

Sorting Routines (8): -
BitonicSort (coarse) - 1 1 67%
BitonicSort (fine, iterative) - 1 1 100%
BitonicSort (fine, recursive) - 1 1 95%
BubbleSort - 1 1 100%
ComparisonCounting - 1 1 85%
InsertionSort - 1 1 67%
MergeSort - 1 1 88%g
RadixSort - 1 1 85%

Figure 7: Scheduling statistics for StreamIt benchmarks.

5.3 Dynamic I/O rates are necessary for
expressing several applications.

Support for dynamic rates was introduced years after the ini-
tial StreamIt release, leading to less widespread usage within our
benchmarks than might be expected for the streaming domain as a
whole.

As illustrated in Figure 7, dynamic rates are utilized by only 9
of our benchmarks, but are absolutely necessary to express these
benchmarks in StreamIt. Though there are a total of 76 dynamic-
rate filters instantiated across the benchmarks, these instantiations
correspond to only 14 filter types that perform a set of related func-
tions. In JPEG and MPEG2, dynamic-rate filters are needed to
parse and also create both the BMP and MPEG formats. MPEG2
encoder also requires a dynamic-rate filter to reorder pictures (putting
B frames in the appropriate place). All of these filters have un-
bounded push, pop, and peek rates, though in JPEG and MPEG2
decoder there is a minimum rate specified.

In Mosaic, dynamic rates are used to implement a feedback loop
(in the RANSAC algorithm) that iterates an unpredictable number
of times; the signal to stop iteration is driven by a teleport mes-
sage [1]. The entry to the loop pops either 0 or 1 items, while the
exit from the loop pushes either zero or one items. Mosaic also
contains three parameterized filters, in which the input and output
rates are governed by the number of points of interest as determined
by the algorithm. The count is established via a teleport message,
thus fixing the input and output rates prior to a given iteration.

In the graphics pipelines, the only dynamic-rate filters are the
rasterizers, which expand each triangle into an unknown number of
pixels.

6. PROGRAMMING STYLE
In addition to our observations about the benchmark character-

istics, we also offer some lessons learned from developers’ experi-
ences in implementing stream programs. The StreamIt benchmarks
were developed by 22 different people; all but one of them were stu-
dents, and half of them were undergraduates or M.Eng students at
MIT. As the developers were newcomers to the StreamIt language,
we expect that their experience would reflect that of a broader user
population; their coding style was not influenced by the intent of
the original language designers.

6.1 It is useful and tractable to write programs us-
ing structured streams, in which all modules have a
single input and a single output. However, struc-
tured streams are occasionally unnatural and, in
rare cases, insufficient.

Overall, we found structured streams – the hierarchical compo-
sition of pipelines, splitjoins, and feedbackloops – to be a good
match for the applications in our benchmark suite. Splitjoins ap-
pear in over three quarters (51 out of 65) of the benchmarks, with
a median of 8 instantiations per benchmark. Roundrobin splitters

aFigures represent the number of runtime instances of dynamic-
rate filters. Number of corresponding static filter types are provided
in the text.
bDynamic rate filters are replaced with push 1, pop 1 filters for
calculation of the steady state. Splitters and joiners are not included
in the counts.
cDue to the large size of MPEG2, splitjoins replicating a single
filter are automatically collapsed by the compiler prior to gathering
statistics.
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Figure 8: Example of refactoring a stream graph to fit a struc-
tured programming model. Both graphs achieve equivalent
communication between filters.

account for 65% of the instantiations, while the other splitters are
of duplicate type. (All joiners are of roundrobin type.) While the
developer sometimes had to refactor an unstructured block diagram
into structured components, the result was nonetheless a viable way
to represent the application.

One shortcoming of structure is that it can force programmers to
multiplex and demultiplex conceptually-distinct data streams into
a single channel. The underlying cause of this hazard is illustrated
in Figure 8. Because filters C and D are running in parallel, their
input streams must converge at a common splitter under a struc-
tured programming model. However, this implies that the auxiliary
communication from A to D must also pass through the splitter, in
a manner that is interleaved with the output of B. An extra splitjoin
(at the top of Figure 8b) is needed to perform this interleaving. The
3GPP benchmark represents a more realistic example of this haz-
ard; see our full report for details [52, p.48].

Needless to say, this pattern of multiplexing and demultiplexing
adds considerable complexity to the development process. It re-
quires the programmer to maintain an unwritten contract regarding
the logical interleaving of data streams on each physical channel.
Moreover, the addition of a new communication edge in the stream
graph may require modification to many intermediate stages.

While there is no perfect solution to this problem, we have some-
times embraced two imperfect workarounds. First, the data items in
the multiplexed streams can be changed from a primitive type to a
structure type, allowing each logical stream to carry its own name.
This approach would benefit from a new kind of splitter and joiner
which automatically packages and un-packages structures from ad-
joining data channels. The second approach is to employ teleport
messaging, which allows point-to-point communication and avoids
interleaving stream data. However, since it is designed for irregular
control messages, it does not expose information about the steady-
state dataflow to the compiler.

In practice, we have chosen to tolerate the occasional complex-
ity of stream multiplexing rather than to fall back on an unstruc-
tured programming model. However, it may be valuable to con-
sider a natural syntax for unstructured components of the stream
graph – the analog of break and continue statements (or even a rare
GOTO statement) in structured control flow. It is important to note,
however, that there is no overhead introduced by adding splitters
and joiners to the stream graph; the StreamIt compiler analyzes
the communication (via an analysis known as synchronization re-
moval) to recover the original unstructured communication [19].

Figure 9: A communication pattern unsuitable for structured
streams. This pattern can arise in video compression, where
each block informs its neighbors of its motion prediction before
the next processing step.

.

Finally, there are rare cases in which the structured primitives in
StreamIt have been inadequate for representing a streaming com-
munication pattern. Figure 9 illustrates an example from video
compression, where each parallel filter performs a motion predic-
tion for a fixed area of the screen. Between successive frames, each
filters shares its prediction with its neighbors on either side. While
this could be represented with a feedback loop around the entire
computation, there would be complicated interleaving involved.

6.2 Programmers can accidentally introduce
unnecessary sequential bottlenecks (mutable state)
in filters.

Filters that have no mutable state are attractive because they can
be run in a data-parallel fashion. Unfortunately, the performance
cost of introducing state is not exposed in the current StreamIt lan-
guage. Thus, we found that several programmers, when faced with
two alternative implementations of an algorithm, would sometimes
choose the one that includes mutable state. Figure 4 gives a pedan-
tic example of this problem, while our accompanying report [52,
p.51] illustrates a realistic case from MPD. Prior to conducting
our performance evaluations, we examined all stateful filters in the
benchmarks and rewrote them as stateless filters when it was nat-
ural to do so. In future stream languages, it may be desirable to
require an extra type modifier on stateful filters, such as a stateful
keyword in their declaration, to force programmers to be cognizant
of any added state and to avoid it when possible.

7. RELATED WORK
While other researchers have characterized benchmark suites that

overlap the domain of stream programs [2, 5, 15, 22, 32, 34, 38, 46,
48, 57], our work differs in two key respects: 1) we examine pro-
grams written in a stream programming language, rather than a gen-
eral purpose language, and 2) we characterize high-level program-
ming patterns and their implications for programming language de-
sign, rather than low-level statistics (instruction mix, branch be-
havior, etc.) that influence architectural design. Concurrently to
this publication, Gordon also published an in-depth analysis of the
“StreamIt Core benchmarks”, a set of 12 programs that has served
as the focus of performance optimizations in the StreamIt group [19].
Separate publications are also devoted to the StreamIt implementa-
tions of MPEG2 [16], Mosaic [1], MPD [27], and FHR [54].

The MediaBench suite [32] consists of multimedia applications
that (with the exception of GhostScript) can also be considered as
stream programs. Three of the applications (JPEG, MPEG, and
GSM) overlap with our benchmarks. MediaBench (which is writ-
ten in C) has been shown to have different caching behavior than



SPECint [32]. Researchers have further characterized MediaBench
along architectural axes such as instruction mix, branch predic-
tion rates, working set sizes, locality, and instruction level paral-
lelism [7, 18]. Recently, MediaBench II has been released with
a focus on video workloads; the authors utilize similar character-
ization metrics [17]. We are unaware of any characterization of
multimedia applications that focuses on high-level programming
patterns or uses a stream programming language.

The STREAM benchmark is a small kernel designed to assess
memory bandwidth [37]. Available in C and FORTRAN, it mea-
sures performance on four long vector operations. VersaBench [43]
includes embedded streaming benchmarks in addition to four other
domains; the stream programs were drawn from the StreamIt bench-
mark suite, including FM Radio and Radar as described in this
paper. VersaBench has been characterized according to instruc-
tion mix, temporal and spatial locality, and instruction level paral-
lelism [43].

There are a number of stream programming languages in ad-
dition to StreamIt, including Brook [9], StreamC/KernelC [28],
Cg [36], Baker [12], SPUR [58] and Spidle [14]. The authors of
Brook and StreamC/KernelC point to data parallelism, arithmetic
intensity, and (in the case of StreamC/KernelC) lack of data reuse
as defining aspects of the streaming domain [9, 30], though we are
unaware of a quantitative characterization.

Perhaps most closely related to StreamIt is the Brook language,
which provides an architecture-independent representation and has
been mapped to graphics processors [9]. A set of Brook programs
are available as part of a public release [8]. While we would expect
most of our findings to extend to these programs, some differences
would be evident due to differences in the languages. Brook pro-
grams would exhibit higher data parallelism, as stateful filters are
prohibited by the language. Brook programs would also show a
higher prevalence of dynamic rates, which were incorporated ear-
lier into Brook than into StreamIt. The presence of explicit I/O
rates and startup conditions in StreamIt makes it easier to study
scheduling characteristics in StreamIt than in Brook. Also, primi-
tives such as structured streams and teleport messaging are unique
to StreamIt. It would be interesting to undertake a deeper compari-
son of the Brook and StreamIt benchmark suites in future work.

8. CONCLUSIONS
To the best of our knowledge, this paper represents the first char-

acterization of a benchmark suite that was authored in a stream
programming language. By starting from a streaming representa-
tion, we can focus on the underlying properties of the streaming
algorithms, rather than fighting to extract those algorithms from a
general-purpose programming language.

The characterization described in this paper has had a significant
impact on the direction of the StreamIt project. Lessons learned
from the benchmark suite caused us to do the following:

1. Optimize parallelization of sliding windows [19], based on
their prevalence in our suite (Section 4.1).

2. Introduce prework functions to support observed startup be-
haviors (Section 4.2).

3. Migrate our parallelization algorithm from one that favors
pipeline parallelism [21] to one that favors data parallelism [20],
based on the observed scarcity of stateful filters (Section 4.3).

4. Curtail pursuit of sophisticated scheduling optimizations that
apply to large steady-state schedules [29], given that most
programs have small steady states in practice (Section 5.1).

5. Remove support for multi-phase filters from the language
and compiler, given that they were unnecessary and confus-
ing (Section 5.2).

In addition, the characterization highlights several opportunities
for further improving the StreamIt language. Based on lessons
learned in this paper, in the future we hope to:

1. Exploit parallelism that is hidden behind benign stateful de-
pendences, including message handlers, induction variables,
and artifacts of filter granularity (Section 4.3).

2. Provide constructs for programmers to simplify expression
of unstructured data flows in a structured programming model
(Section 6.1).

3. Introduce mechanisms (such as a stateful annotation) to pre-
vent programmers from accidentally introducing mutable state
(Section 6.2).

It is important to emphasize that one must exercise care in gener-
alizing our results, as all of our benchmarks are written in a single
stream programming language (StreamIt) and the choice of pro-
gramming language can often influence the expression of an algo-
rithm. For example, as described in Section 4.3, some of the state
observed in StreamIt filters could be eliminated via different lan-
guage constructs and compiler analyses. However, we also believe
that most of the patterns described in this paper are fundamental
to streaming algorithms; for example, sliding windows, startup vs.
steady state, and I/O rates are inseparable from the underlying al-
gorithm, and would be present in one form or another in any pro-
gramming language. Many of these properties could actually be
inferred from a block diagram of the algorithm (e.g., the MPEG2
specification); however, we gain precision and completeness by an-
alyzing a real implementation. We hope that future researchers will
also undertake characterizations of stream programs in other stream
languages, to better understand the benefits and drawbacks of vari-
ous points in the design space.
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