
Can Silhouette Execution mitigate VM Boot

Storms?

by

Syed Aunn Hasan Raza

S.B., Computer Science and Engineering, M.I.T., May 2010

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 1, 2011

Certified by. .
Dr. Saman P. Amarasinghe

Professor
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Can Silhouette Execution mitigate VM Boot Storms?

by

Syed Aunn Hasan Raza

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Server virtualization enables data centers to run many VMs on individual hosts – this
reduces costs, simplifies administration and facilitates management. Improvement in
hardware and virtualization technology, coupled with the use of virtualization for
desktop machines with modest steady-state resource utilization, is expected to allow
individual hosts to run thousands of VMs at the same time. Such high VM densities
per host would allow data centers to reap unprecedented cost-savings in the future.

Unfortunately, unusually high CPU and memory pressure generated when many
VMs boot up concurrently can cripple hosts that can otherwise run many VMs. Over
provisioning hardware to avoid prohibitively high boot latencies that result from these
– often daily – boot storms is clearly expensive.

The aim of this thesis is to investigate whether a hypervisor could theoretically
exploit the overlap in the instruction streams of concurrently booting VMs to reduce
CPU pressure in boot storms. This idea, which we name silhouette execution, would
allow hypervisors to use the CPU in a scalable way, much like transparent page sharing
allows a hypervisor to use its limited memory in a scalable fashion.

To evaluate silhouette execution, we studied user-space instruction streams from
a few Linux services using dynamic instrumentation. We statistically profiled the
extent of nondeterminism in program execution, and compiled the reasons behind any
execution differences. Though there is significant overlap in the user-mode instruction
streams of Linux services, our simple simulations show that silhouette execution would
increase CPU pressure by 13% for 100 VMs and 6% for 1000 VMs. To remedy this, we
present a few strategies for reducing synthetic differences in execution in user-space
programs. Our simulations show that silhouette execution can reduce CPU pressure
on a host by a factor of 8× for 100 VMs and a factor of 19× for 1000 VMs once these
strategies are used. We believe that the insights provided in this thesis on controlling
execution differences in concurrently booting VMs via dynamic instrumentation are
a prelude to a successful future implementation of silhouette execution.

Thesis Supervisor: Dr. Saman P. Amarasinghe
Title: Professor

3

4

Acknowledgments

I would like to thank Professor Saman Amarasinghe for his huge role in both this

project and my wonderful undergraduate experience at MIT. Saman was my professor

for 6.005 (Spring 2008), 6.197/6.172 (Fall 2009) and 6.035 (Spring 2009). These three

exciting semesters convinced me of his unparalleled genius and inspired my interest

in computer systems. Over the past year, as I have experienced the highs and lows

of research, I have really benefited from Saman’s infinite insight, encouragement and

patience.

As an M-Eng student, I have been blessed to work with two truly inspirational

and gifted people from the COMMIT group: Marek Olszewski and Qin Zhao. Their

expertise and brilliance is probably only eclipsed by their humility and helpfulness. I

have learned more from Marek and Qin than I probably realize, and their knowledge of

operating systems and dynamic instrumentation is invaluable and, frankly, immensely

intimidating. I hope to emulate (or even approximate) their excellence some day.

This past year, I have also had the opportunity to work with Professor Srini

Devadas, Professor Fraans Kaashoek, and Professor Dina Katabi as a TA for 6.005

and 6.033. It has been an extraordinarily rewarding experience, and I have learned

tremendously from simply interacting with these peerless individuals. Professor Dina

Katabi was especially kind to me for letting me work in G916 over the past few

months.

I would like to thank Abdul Munir, whom I have known since my first day at MIT;

I simply don’t deserve the unflinchingly loyal and supportive friend I have found in

him. I am also indebted to Osama Badar, Usman Masood, Brian Joseph, and Nabeel

Ahmed for their unrelenting support and encouragement; this past year would have

been especially boring without our never-ending arguments and unproductive ‘all-

nighters’. I also owe a debt of gratitude to my partners-in-crime Prannay Budhraja,

Ankit Gordhandas, Daniel Firestone, Maciej Pacula, who have been great friends and

collaborators over the past few years.

5

I am humbled by the countless sacrifices made by my family in order for me to be

where I am today. My father has been the single biggest inspiration and support in my

life since childhood. He epitomizes, for me, the meaning of selflessness and resilience.

This thesis, my work and few achievements were enabled by – and dedicated to –

him, my mother and my two siblings Ali and Zahra. Ali has been a calming influence

during my years at MIT; the strangest (and most unproductive) obsessions unite us,

ranging from Chinese Wuxia fiction to, more recently, The Game of Thrones. Zahra’s

high-school math problems have been a welcome distraction over the past year; they

have also allowed me to appear smarter than I truly am.

Finally, I would like to thank my wife Amina for her unwavering love and support

throughout my stay at MIT, for improving and enriching my life every single day since

I have known her, and for knowing me better than even I know myself. Through her,

I have also met two exceptional individuals, Drs. Fatima and Anwer Basha, whom I

have already learnt a lot from.

“It is impossible to live without failing at something, unless you live so

cautiously that you might as well not have lived at all – in which case, you

fail by default.”

J.K. Rowling, Harvard Commencement Speech 2008

6

Contents

1 Introduction 13

1.1 Motivation . 13

1.2 Goal of Thesis . 16

1.3 Contributions . 17

1.4 Importance of Deterministic Execution 18

1.5 Thesis Organization . 20

2 Execution Profile of Linux Services 21

2.1 The Linux Boot Process . 21

2.2 Data Collection Scheme . 25

2.2.1 Measuring Nondeterminism in a Simple C Program 26

2.2.2 Quantifying Nondeterminism 31

2.3 Results for Linux services . 33

2.4 Summary . 37

3 Sources of Nondeterminism in Linux services 39

3.1 Linux Security Features . 39

3.2 Randomization Schemes . 41

3.3 Process Identification Layer . 42

3.4 Time . 44

3.5 File I/O . 45

3.6 Network I/O . 46

3.7 Scalable I/O Schemes . 47

7

3.8 Signals . 49

3.9 Concurrency . 49

3.10 Architecture Specific Instructions . 50

3.11 Procfs: The /proc/ directory . 50

3.12 Summary . 51

4 Silhouette Execution 53

4.1 What is Silhouette execution? . 53

4.2 Silhouette Execution for Linux Services 54

4.2.1 Precise Silhouetting . 57

4.2.2 Optimistic Silhouetting (excluding control flow) 58

4.2.3 Optimistic Silhouetting (including control flow) 59

4.3 Evaluation Scheme . 61

4.3.1 Computed Metrics . 63

4.3.2 Caveats . 64

4.3.3 Initial Results . 69

4.4 Improving Silhouette Execution . 73

4.4.1 Modified Data Collection Scheme 73

4.4.2 Reducing Execution Differences across Instances 73

4.5 Evaluation of Improved Silhouette Execution 84

4.5.1 acpid . 86

4.5.2 anacron . 89

4.5.3 cron . 92

4.5.4 cupsd . 95

4.5.5 ntpd . 98

4.6 Limitations of Deterministic Execution 99

4.7 Summary . 102

5 Conclusion 103

5.1 Future Work . 104

8

List of Figures

1-1 Transparent Page Sharing . 14

1-2 Ballooning and Hypervisor Swapping 14

2-1 CPU utilization profile for a sample Ubuntu VM during boot and post-

boot. 23

2-2 Disk utilization and throughput profile for a sample Ubuntu VM during

boot and post-boot. 24

2-3 A summary of the actions performed by init for a booting VM . . . 25

2-4 Steps involved in measuring execution nondeterminism 26

2-5 A “Hello, world!” program in C. 27

2-6 Excerpts from the log files generated by the execution tracing layer . 28

2-7 Excerpts from the side-by-side diff files generated by the analysis script 29

2-8 Visualization of “Hello, world!” program execution 31

2-9 The cascade and propagation effects in measuring nondeterminism. . 32

2-10 Visualization of ntpd program execution (14 iterations) 35

2-11 Visualization of execution differences in cron (20 iterations). 36

4-1 Silhouette execution is analogous to Page Sharing. 55

4-2 Modeling CPU overhead from precise silhouetting 65

4-3 Modeling CPU overhead from optimistic silhouetting (excluding con-

trol flow) . 66

4-4 Modeling CPU overhead from optimistic silhouetting (excluding con-

trol flow) . 67

4-5 Simulation of Silhouette Execution in a boot storm scenario 74

9

4-6 Virtualizing the process ID layer using Pin 78

4-7 Reordering I/O events using Pin . 81

4-8 Improvements in A after controlling nondeterminism in Linux services. 85

4-9 For acpid, A as a function of N (highly conservative ~K) 86

4-10 For acpid, A as a function of N (moderately conservative ~K) 88

4-11 For anacron, A as a function of N (highly conservative ~K) 89

4-12 For anacron, A as a function of N (moderately conservative ~K) . . . 91

4-13 For cron, A as a function of N (highly conservative ~K) 92

4-14 For cron, A as a function of N (moderately conservative ~K) 94

4-15 For cupsd, A as a function of N (highly conservative ~K) 95

4-16 For cupsd, A as a function of N (moderately conservative ~K) 97

4-17 For ntpd, A as a function of N (highly conservative ~K) 98

4-18 For ntpd, A as a function of N (moderately conservative ~K) 100

10

List of Tables

2.1 Nondeterminism profile of “Hello, world!” program (ASLR disabled) . 30

2.2 Nondeterminism profile of Linux services and daemons (ASLR dis-

abled).

The average reported here is weighted-average computed based on the

number of instructions executed by each program. The period over

which the programs were profiled was selected to be representative

of their execution typically till the login screen is shown. Typically,

the programs ran for 3-5 true (i.e without instrumentation overhead)

minutes. 33

2.3 Measuring burstiness of nondeterminism in Linux services.

The table shows the maximum number of consecutive instructions that

conflict in their side-effects or control-flow as a fraction of the total in-

structions of a program. These numbers are only a small fraction of

the 12% conflicting instructions in a program (see Table 2.2), which

establishes that execution differences are short-lived in our sample pro-

grams. 37

11

4.1 Preliminary Results from Modeling Precise Silhouetting.

A, the advantage ratio is calculated by TO

TS
. TO is the total instructions

that would be executed in the status quo whereas TS is the total in-

structions that would be executed under precise silhouetting. ~K (not

shown in the table), represents overhead constants and was selected

conservatively to be (20, 1000, 20). M is the number of system calls

and memory operations made by the leader before the first active fork-

point; F is the number of latent fork-points before the first active

fork-point. p = 100P/I is the prefix ratio of the execution. 70

4.2 Preliminary Results for Optimistic Silhouetting (Excluding Control

Flow).

A, the advantage ratio is calculated by TO

TS
. The variables TO, TS, M ,

F are the same as before (see Table 4.1). d = 100D/I is the portion

of the execution before the first control-flow divergence. 71

4.3 Preliminary Results for Optimistic Silhouetting (Including Control Flow).

We exclude acpid because it had no control flow differences. A, the

advantage ratio is calculated by TO

TS
. The variables TO, TS, M , F are

the same as before (see Table 4.2). d = D/I is the portion of the

execution before the first control-flow divergence. C and LC represent

the number of control-flow divergences and their average length re-

spectively. d = 100D/I the portion of the execution before permanent

execution divergence. 72

4.4 Improvements in A for Linux services when N = 1000 and ~K is picked

conservatively i.e. ~K = (20, 1000, 20, 40, 1000). 84

4.5 Improvements in A for Linux services when N = 1000 and ~K is picked

less conservatively i.e. ~K = (10, 100, 5, 20, 50). 84

12

Chapter 1

Introduction

1.1 Motivation

Large organizations increasingly use virtualization to consolidate server applications

in data centers, reduce operating costs, simplify administrative tasks and improve

performance scalability. As a key enabling technology behind Cloud Computing,

virtualization is shaping how computers will be used in the future.

An important reason for the success of server virtualization is that it resolves

the tension between typically conflicting goals of high isolation and effective resource

utilization. Ideally, organizations would assign dedicated machines for individual

server applications to isolate them. However, this approach is inefficient because each

application tends to utilize only a modest fraction of the underlying hardware. With

the development of virtualization technology, applications can be assigned dedicated

virtual machines (VMs), while many such VMs can be hosted on the same physical

host for high resource utilization.

The ability to host many VMs on the same physical machine is so important to

the success of server virtualization that many companies aggressively try to increase

VM density per host by designing hypervisors for scalability. For instance, transparent

page sharing, ballooning and hypervisor swapping (see Figures 1-1 and 1-2) allow a

host to use memory overcommit i.e. run VMs with combined memory requirements

that exceed the total underlying physical memory available [18].

13

Host Physical Memory

VM 1 VM 2 VM 3

Guest Virtual Memory

Guest Physical Memory

Host Physical Memory

VM 1 VM 2 VM 3

Guest Virtual Memory

Guest Physical Memory

Before Page Sharing:

During idle CPU cycles, the VMM compares hashes of allocated pages to

identify the pages with identical content, and then refactors them as shared,

read-only pages.

After Page Sharing:

Figure 1-1: Transparent Page Sharing

Guest Memory

Balloon

Guest Memory

Balloon

Guest Memory

Balloon

Virtual Disk

Virtual Disk

INFLATE

DEFLATE

may page out

may page in

The VMM controls a balloon module running in the guest, and directs it to allocate guest pages

and pin them in physical memory. These balloon pages can be reclaimed by the VMM.

Inflating the balloon can simulate increased memory pressure in the guest, forcing it to use its

own memory management routines and possibly page data out to its virtual disk.

If ballooning does not help the host reduce memory pressure, it can use hypervisor swapping

and transfer some guest memory from physical memory to a swap file.

Figure 1-2: Ballooning and Hypervisor Swapping

14

Apart from improvements in virtualization technology, two additional trends are

expected to boost the attainable VM density per host in the future:

• improvements in hardware available i.e. hosts with more available memory and

processor cores [3], and

• the anticipated use of Virtual Desktop Infrastructures (VDIs) [17].

In a Virtual Desktop Infrastructure (or a VDI), user desktops are hosted in VMs

that reside in a data center. Users – typically company employees – access their virtual

desktops via a remote display protocol. VDIs provide simplicity in administration and

management: applications on these VMs can be centrally added, deleted, upgraded

and patched. Organizations are increasingly investing in VDIs to reap the same

benefits that are offered by server virtualization.

VDI deployments promise even higher VM densities per host than those achieved

via server virtualization because desktop virtual machines typically require consid-

erably less resources than server virtual machines. Because of VDIs, hundreds or

thousands of identical VMs already are – or soon will be – hosted on individual hosts

within data centers. This is possible because of the low steady-state CPU usage of a

single virtual desktop and the aggressive use of memory overcommit.

While the steady-state behavior of desktop VMs allows many of them to be hosted

on a single machine, correlated spikes in the CPU/memory usage of many VMs can

suddenly cripple host machines. For instance, a boot storm [3, 5, 8, 14, 16] can

occur after some software is installed or updated, requiring hundreds or thousands of

identical VMs to reboot at the same time. Boot storms can be particularly frequent

in VDIs because users typically show up to work at roughly the same time in the

morning each day. Concurrently booting VMs create unusually high I/O traffic,

generate numerous disk and memory allocation requests, and can saturate the host

CPU. Without any idle CPU cycles, the host cannot use transparent page sharing,

which also increases memory pressure. Many data centers thus simply cannot sustain

a high VM density per host during boot storms without incurring prohibitively high

boot latencies that result from saturated CPUs and stressed hardware.

15

To mitigate boot storms, data centers usually boot VMs in a staggered fashion, or

invest in specialized, expensive and/or extra-provisioned hardware [4, 5]. Anecdotal

evidence suggests that VDI users sometimes leave their desktop computers running

overnight to prevent morning boot storms; this practice represents an unnecessary

addition to already exorbitant data center energy bills [13]. While data deduplication

[2] can mitigate the stress on the storage layer in a boot storm, lowered memory

latency can in turn overwhelm the CPU, fiber channel, bus infrastructure or controller

resources and simply turn them into bottlenecks instead [9].

With the spread of virtualization, we believe that it is important to address the

boot storm problem in a way that does not skirt around the issue and enables data

centers to sustain a high VM density per host even during boot storms. Page sharing is

effective in general because many VMs access similar pages during execution. Inspired

by this idea, we pose a few simple questions: if many identical VMs concurrently boot

up on the same host, do they execute the same set of instructions? Even if there are

some differences in the instructions executed, are they caused by controllable sources

of nondeterminism? Ultimately, if there is a way to ensure that concurrently booting

VMs execute mostly the same set of instructions, one way to retain a high VM density

per host in boot storms may be remarkable simple in essence: the hypervisor could

identify the overlap in the instruction streams of the VMs to avoid repetitive execution

and reduce CPU pressure. Just like page sharing (i.e. eliminating page duplication)

allows hosts to use memory resources in a scalable fashion in the steady-state, perhaps

silhouette execution (i.e. eliminating instruction duplication) will allow hosts to use

CPUs in a more scalable fashion during boot storms.

1.2 Goal of Thesis

This thesis aims to address the following questions:

1. When identical VMs boot up at the same time, how similar are the sets of

instructions executed? What is the statistical profile of any differences in the

executed instructions?

16

2. What are the source(s) of any differences in the multiple instruction streams of

concurrently booting VMs?

3. Are there ways to minimize the execution differences (or nondeterminism) across

multiple booting VMs?

The answers to these questions are clearly crucial in determining the feasibility of

silhouette execution as a possible solution to the boot storm problem.

1.3 Contributions

For this work, we used Pin [6], a dynamic instrumentation framework, to study user-

mode instruction streams from a few Linux services at boot-time. Specifically, we:

1. quantify nondeterminism in Linux services, and show that it is bursty and rare;

2. document the sources of nondeterminism in Linux services – both obvious and

obscure;

3. mathematically model the effectiveness of silhouette execution in user-space.

Using simulations, we provide conservative estimates for the possible change in

the number of instructions executed in user-space by a host CPU when many

VMs boot up with silhouette execution than without it;

4. propose several simple techniques (e.g. I/O and signal alignment, process ID

virtualization) to reduce the overhead in silhouette execution from controllable

nondeterminism.

Through our simple models, we estimate that silhouette execution increases the

number of instructions executed in user-space by 13% for 100 VMs and 6% for 1000

VMs over the status-quo. However, after we use our proposed strategies to reduce

synthetic execution differences between VMs in our simulations, silhouette execution

reduces the number of instructions executed by a factor of 8× for 100 VMs and 19×

for 1000 VMs over the status-quo.

17

Strategies to achieve deterministic execution have been proposed at the operating

system layer [1] before, but they require modifications to Linux. Nondeterminism

in multi-threaded programs can be reduced via record-and-replay approaches [12] or

deterministic logical clocks [11]. Our study has different goals from from either ap-

proach: we wish to avoid changing existing software (to ease adoption); we also wish

to make several distinct – and potentially different – executions overlap as much as

possible, rather than replay one execution over and over. In our case, we do not know

a priori whether two executions will behave identically or not. That the behavior

of system calls or signals in Linux can lead to different results or side-effects across

multiple executions of an application is well known: what is not documented is the

application context in which these sources of nondeterminism originate, which we had

to investigate to identify ways to improve silhouette execution.

To the best of our knowledge,

• this is the first attempt to study the statistical profile and context of execution

nondeterminism across multiple instances of Linux services during boot;

• exploiting overlap in instruction streams to reduce CPU pressure (i.e. silhouette

execution) is a novel design idea, and we are the first to introduce it and model

its effectiveness.

Ultimately, we hope that the insights in our work will be the foundation for an

implementation of silhouette execution, and in turn, a long-term solution to the VM

boot storm problem.

1.4 Importance of Deterministic Execution

While our study of nondeterminism was driven by a very specific goal, deterministic

execution can be beneficial in a variety of scenarios. The motivations for deterministic

multithreading listed in [11, 12] apply to our work as well.

18

Silhouette Execution

Controlling nondeterminism in the execution of concurrently booting VMs greatly

improves silhouette execution, because the hypervisor can hypothetically exploit the

greater overlap or redundancy across distinct instruction streams to use the CPU in

a scalable way during boot storms.

Transparent Page Sharing

Idle CPU cycles in the hypervisor are necessary for transparent page sharing to be

effective in the background. Thus, reducing CPU pressure through determinism and

silhouette execution clearly facilitates transparent page sharing during boot storms.

More generally, removing synthetic differences due to controllable nondeterminism in

the execution of concurrently running VMs can improve transparent page sharing as

well, because the contents of data accessed/written are more likely to be similar when

minor differences due to e.g. process IDs, timestamps or execution statistics across

VMs are eliminated.

Mainstream Computing, Security and Performance

If distinct executions of the same program can be expected to execute similar sets of

instructions, then significant deviations can be used to detect security attacks. Run-

time detection of security attacks through the identification of anomalous executions

is the focus of mainstream computing [15], and deterministic execution obviously helps

in reducing false positives. Anomalous executions can also be flagged for performance

debugging.

Testing

Deterministic execution in general facilitates testing, because outputs and internal

state can be checked at certain points with respect to expected values. Sometimes, a

particularly strong test case may be necessary for safety-critical systems: a program

must execute the exact same instructions across different executions (for the same

inputs).

19

Debugging

Erroneous behavior can be more easily reproduced via deterministic execution, which

helps with debugging. Deterministic execution has much lower storage overhead than

traditional record-and-replay approaches.

1.5 Thesis Organization

In what follows, Chapter 2 presents an overview of the Linux boot process, along

with the dynamic instrumentation techniques we used to profile nondeterminism in

Linux services. Chapter 3 presents a summary of the sources of nondeterminism

discovered in this work. Chapter 4 introduces silhouette execution, outlines the simple

simulations we used to model and evaluate its feasibility in user-space, and presents

simple design strategies to improve its effectiveness. Finally, Chapter 5 concludes this

thesis and discusses future work.

20

Chapter 2

Execution Profile of Linux Services

This chapter provides some background on the Linux startup process (Section 2.1).

It then describes how we collected user-level instruction streams from some Linux

services via dynamic instrumentation to measure nondeterminism in the Linux boot

process (Section 2.2). Finally, it summarizes our results on the statistical nature of

nondeterminism in Linux services (Section 2.3).

2.1 The Linux Boot Process

When a computer boots up:

1. The BIOS (Basic Input/Output System) gets control and performs startup tasks

for the specific hardware platform.

2. Next, the BIOS reads and executes code from a designated boot device that

contains part of a Linux boot loader. Typically, this smaller part (or phase 1)

loads the bulk of the boot loader code (phase 2).

3. The boot loader may present the user with options for which operating system to

load (if there are multiple available options). In any case, the boot loader loads

and decompresses the operating system into memory; it sets up system hardware

and memory paging; finally, it transfers control to the kernel’s start kernel()

function.

21

4. The start kernel() function performs the majority of system setup (including

interrupts, remaining memory management, device initialization) before spawn-

ing the idle process, the scheduler and the user-space init process.

5. The scheduler effectively takes control of system management, and kernel stays

idle from now on unless externally called.

6. The init process executes scripts that set up all non-operating system services

and structures in order to allow a user environment to be created, and then

presents the user with a login screen.

Figures 2-1 and 2-2 illustrate the CPU usage and disk activity of an Ubuntu 10.10

VM that takes about 22 seconds to complete the sixth step of the boot process (i.e.

spawn the init process to set up the user environment). The Linux kernel version

is 2.6.35-27-generic and the VM is configured with a single core processor with 2048

Mb RAM. Generated using the Bootchart utility [7], the figures illustrate that the

booting process involves high memory and CPU overhead (Figures 2-1a and 2-2a);

they also illustrate the well-known fact that memory and CPU overhead typically

diminishes greatly after the boot process is completed and the machine reaches its

steady-state (Figures 2-1b and 2-2b). This disparity in CPU/memory usage is the

source of the boot storm problem; a single host can handle many VMs in steady-state

usage but gets crippled when the same VMs boot up concurrently.

In the last step of the booting process (step 6), init typically runs many scripts

located in specific directories (such as /etc/rc or /etc/init.d/). While different

Linux distributions typically have their own variants of init binaries (e.g. SysV,

systemd or Upstart), the init process always directly or indirectly launches several

services and daemons to initialize the user desktop environment. Figure 2-3 provides

a summary of the specific actions performed by init (through the subprocesses or

daemons it launches) for the same Ubuntu VM used for Figures 2-1 and 2-2. The init

process actually launched 361 children processes (directly and indirectly) over the 25

second period summarized by Figure 2-3. Most of them were ephemeral processes;

several processes were repeatedly launched in different contexts (e.g. getty or grep).

22

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

CPU

I/O Waiting

Usage (% age)

Time (seconds)

(a) CPU utilization immediately after init is started.

0

10

20

30

40

50

60

70

80

90

100

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

CPU

I/O Waiting

Usage (% age)

Time (seconds)

(b) CPU utilization 5 minutes after init is started.

Figure 2-1: CPU utilization profile for a sample Ubuntu VM during boot and post-
boot.

23

0

20

40

60

80

100

120

140

160

180

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Throughput
(Mbps)

Disk Utilization

Disk Throughput
Usage (% age)

Time (seconds)

(a) Disk utilization and throughput immediately after init is started.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

10

20

30

40

50

60

70

80

90

100

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

Throughput
(Mbps)

Disk Utilization

Disk Throughput
Usage (% age)

Time (seconds)

(b) Disk utilization and throughput 5 minutes after init is started.

Figure 2-2: Disk utilization and throughput profile for a sample Ubuntu VM during
boot and post-boot.

24

Start communication with SCSI device(s); load device drivers. (udevd, scsi_id, blkid, modprobe)

Read hostname; configure hardware clock; mount, check file-system; print, check distribution information.

(udevadm, hostname, hwclock, ureadahead, mountall, fsck, lsb_release)

Load disk device drivers; setup console keyboard and font; check and set power settings.

(udevd, modprobe, console-setup, setfont, edd_id, on_ac_power, hdparm)

Setup firewall; configure IPv4LL; start system-wide logging service. (udevadm, avahi-autoipd, rsyslogd)

Launch message bus daemon: activate DBUS interfaces for mobile broadband (e.g. GSM) cards, real-time

scheduling requests and storage devices; start IEEE 802.11 supplicant; setup notification mechanisms for

changes to users/sessions/seats/system power state(s).

(dbus-daemon, modem-manager, console-kit-dae, wpa_supplicant, upowerd, rtkit-daemon, polkitd, udisks-daemon)

Start daemon for network discovery of chat peers, network printers, shared network files; launch service that

manages internet connections and reports connection changes; configure DHCP.

(avahi-daemon, NetworkManager, dhclient)

Start display manager and X windows server; play login music; setup GNOME power manager; begin

GNOME session; start SSH security agent; show GNOME panel; start Bluetooth applet.

(gdm-binary, Xorg, canberra-gtk-play, gnome-session, ssh-agent, gnome-panel, bluetooth-applet)

Launch standard Linux services (including print scheduler, ACPI event daemon, task schedulers,

GNOME keyring, user-space virtual file-system). Also start and load VMware virtualization tools.

(cupsd, acpid, anacron, cron, atd, gvfsd, gnome-keyring-daemon, vmwaretools)

0 5 10 15 20 25

Time (seconds)

Figure 2-3: A summary of the actions performed by init for a booting VM; this
figure has the same time line (0-25 seconds) as Figures 2-1a and 2-2a.

The processes singled out in Figure 2-3 are the ones that either stayed alive through

most of the boot process till the end, performed important boot actions, or spawned

many sub-processes themselves.

2.2 Data Collection Scheme

Pin and DynamoRio are runtime frameworks that enable inspection and arbitrary

transformation of user-mode application code as it executes. We used both Pin and

DynamoRio to study the behavior of Linux services independently; this allowed us to

verify the accuracy of our results. However, we relied on Pin more than DynamoRio

because it gets injected into application code earlier than DynamoRio and therefore

provides greater instruction coverage for our purpose. Figure 2-4 shows the simple

steps involved in collecting data on nondeterminism using dynamic instrumentation.

25

Instance 1

Execution logs (each file is usually of

size between 1-5 gigabytes)

Execution Tracing Layer (Pin or DynamoRio Tool)

Instance 2 Instance N

Analysis Script

The analysis script uses the Linux diff

utility to perform a pairwise

comparison on the execution logs

collected.

Visualization Script

The visualization script parses the

output of the analysis script, collects

statistics on the differences between

logs, and graphs these differences.

Figure 2-4: Steps involved in measuring execution nondeterminism.

The next section explains each of these steps in detail, using a simple “Hello, world!”

program as an illustrative example.

2.2.1 Measuring Nondeterminism in a Simple C Program

This section outlines the data collection scheme described in Figure 2-4 in detail with

the help of an example: the simple “Hello, world!” program outlined in Figure 2-5.

For this example, we disabled ASLR (Address Space Layout Randomization) on the

Ubuntu VM described in section 2.1 by using sysctl kernel randomize va space=0.

Execution Tracing Layer

As shown in Figure 2-4, the first step in data collection involves running the target

program a few times across identical VMs. Ideally, these different executions are

scheduled concurrently or as close as possible in time to model the boot storm scenario

26

1 #include <s t d i o . h>
2

3 int
4 main (int argc , char∗ argv [])
5 {
6 p r i n t f (‘ ‘ Hel lo , world !\n ’ ’) ;
7 return 0 ;
8 }

Figure 2-5: A “Hello, world!” program in C.

accurately. As part of the execution tracing layer, we wrote a Pin tool that:

1. logs each x86 instruction executed by the target process, along with the new

values of any affected registers,

2. records values written to or read from memory,

3. intercepts all signals received, and records the instruction counts corresponding

to the timing of any signals, and

4. monitors all system calls made by the target process, and logs any corresponding

side-effects to memory or registers.

For simplicity, our Pin tool traces the main process or thread for an application and

does not follow any child processes or threads that it spawns. This prevents us from

including the user-mode instructions executed from child processes in our traces, but

we get sufficiently high coverage to get a good understanding of the target program’s

behavior. We treat spawned child processes as part of the outside world, and trace

their interactions with the original process (e.g. via signals or pipes).

Implementation of the execution tracing layer required a close examination of the

Linux system call interface; we had to identify the side-effects of each system call.

Figure 2-6 shows an excerpt from a trace generated by our Pin tool while running the

“Hello, World” program. Our tool records every instruction executed in user-space by

the process for the target application once Pin gets control; this allows us to include

program initialization and library code in our analysis.

27

_dl_make_stack_executable 0xb7ff6210 pop edx edx = 0xb7ff1040, esp = 0xbffff29c

 Read 0xbffff2d4 = *(UINT32*)0xbffff29c

_dl_make_stack_executable 0xb7ff6211 mov ecx, [esp] ecx = 0xbffff2d4

_dl_make_stack_executable 0xb7ff6214 mov [esp], eax

 Write *(UINT32*)0xbffff29c = 0xb6415b90

 Read 0xbfff8f8 = *(UINT32*)0xbffff2a0

_dl_make_stack_executable 0xb7ff6217 mov eax, [esp+0x4] eax = 0xbffff8f8

 Read 0xb6415b90 = *(UINT32*)0xbffff29c

_dl_make_stack_executable 0xb7ff621b ret 0xc esp = 0xbffff2ac

__libc_start_main 0xb6145b90 push ebp esp = 0xbffff2a8

 Write *(UINT32*)0xbffff2a8 = 0

mmap2() called

 addr = 0 length = 4096 prot = 3 flags = 34

 fd = -1 pgoffset = 0

 ret_val = 0xb62dd000

mmap2() returned

write() called

 fd = 1

 pbuf = 0xb62dd000

 count = 14

 bytes written = 14

 buf contents:

 buf[0] = H buf[1] = e buf[2] = l buf[3] = l

 buf[4] = o buf[5] = , buf[6] = buf[7] = w

 buf[8] = o buf[9] = r buf[10] = l buf[11] = d

 buf[12] = ! buf[13] = .

write() returned

Figure 2-6: Excerpts from the log files generated by the execution tracing layer. The
top half shows x86 instructions executed in user-space by the “Hello, world!” process,
including instruction addresses, limited symbolic information, affected register values
and memory addresses. The lower half shows part of the system call log.

Analysis Script

The analysis script uses the Linux diff utility to perform pairwise comparisons of

the log files generated by multiple executions of the target application. Using the

suppress-common, side-by-side and minimal flags, the analysis script produces

two output files:

1. A delta file that contains only instructions that were either conflicting between

the two logs or missing in one log, and

2. A union file that contains all instructions executed in the two logs, but distin-

guishes instructions included in the delta file from others.

Figure 2-7 shows an excerpt from the union and delta files generated for the “Hello,

world!” program. Given several traces, the delta and union files can be constructed

from the two executions that are the most different or have the median difference.

28

 Read 0xcb37 = *(UINT16*)0xbffff41b | Read 0xedf8 = *(UINT16*)0xbffff41b

.text 0xb7fe4dfe movzx edx, word ptr [eax] edx = 0xcb37 | .text 0xb7fe4dfe movzx edx, word ptr [eax] edx = 0xedf8

 Write *(UINT16*)0xbffff10d = 0xcb37 | Write *(UINT16*)0xbffff10d = 0xedf8

 Read 0x49 = *(UINT8*)0xbffff41d | Read 0x25 = *(UINT8*)0xbffff41d

.text 0xb7fe4e05 movzx eax, byte ptr [eax+0x2] eax = 0x49 | .text 0xb7fe4e05 movzx eax, byte ptr [eax+0x2] eax = 0x25

 Write *(UINT8*)0xbffff10f = 0x49 | Write *(UINT8*)0xbffff10f = 0x25

 Read 0x49cb3700 = *(UINT32*)0xbffff10c | Read 0x25edf800 = *(UINT32*)0xbffff10c

.text 0xb7fe4dea mov dword ptr [ebp-0x4], edi .text 0xb7fe4dea mov dword ptr [ebp-0x4], edi

 Write *(UINT32*)0xbffff118 = 0xb7fff524 Write *(UINT32*)0xbffff118 = 0xb7fff524

.text 0xb7fe4ded mov dword ptr [ebp-0x10], 0x0 .text 0xb7fe4ded mov dword ptr [ebp-0x10], 0x0

 Write *(UINT32*)0xbffff10c = 0 Write *(UINT32*)0xbffff10c = 0

 Read 0xbffff41b = *(UINT32*)0xb7ffef24 Read 0xbffff41b = *(UINT32*)0xb7ffef24

.text 0xb7fe4df4 mov eax, dword ptr [ebx-0xd0] eax = 0xbffff41b .text 0xb7fe4df4 mov eax, dword ptr [ebx-0xd0] eax=0xbffff41b

.text 0xb7fe4dfa test eax, eax eflags = 0x286 .text 0xb7fe4dfa test eax, eax eflags = 0x286

.text 0xb7fe4dfc jz 0xb7fe4e51 .text 0xb7fe4dfc jz 0xb7fe4e51

 Read 0xcb37 = *(UINT16*)0xbffff41b | Read 0xedf8 = *(UINT16*)0xbffff41b

.text 0xb7fe4dfe movzx edx, word ptr [eax] edx = 0xcb37 | .text 0xb7fe4dfe movzx edx, word ptr [eax] edx = 0xedf8

.text 0xb7fe4e01 mov word ptr [ebp-0xf], dx .text 0xb7fe4e01 mov word ptr [ebp-0xf], dx

 Write *(UINT16*)0xbffff10d = 0xcb37 Write *(UINT16*)0xbffff10d = 0xedf8

 Read 0x49 = *(UINT8*)0xbffff41d | Read 0x25 = *(UINT8*)0xbffff41d

.text 0xb7fe4e05 movzx eax, byte ptr [eax+0x2] eax = 0x49 | .text 0xb7fe4e05 movzx eax, byte ptr [eax+0x2] eax = 0x25

.text 0xb7fe4e09 mov byte ptr [ebp-0xd], al .text 0xb7fe4e09 mov byte ptr [ebp-0xd], al

 Write *(UINT8*)0xbffff10f = 0x49 | Write *(UINT8*)0xbffff10f = 0x25

 Read 0x49cb3700 = *(UINT32*)0xbffff10c | Read 0x25edf800 = *(UINT32*)0xbffff10c

Figure 2-7: Excerpts from the diff files generated by the analysis script. The top half
shows instructions from the delta file; these all have different side-effects in the two
logs (as indicated by the |). The bottom half shows instructions from the union file.
Conflicting instructions are highlighted; others are found in both logs.

The much smaller size of the delta file makes it suitable for diagnosing sources of

nondeterminism in an application.

Visualization Script

The visualization script reads the union file to compute statistics on the extent of

any differences in the original logs, and generates diagrams to capture the different

execution traces of the program.

In particular, it derives three key metrics after processing the union file:

1. Length of Common Prefix (P): This is the number of instructions common to

both logs starting from the beginning and up to the point of first divergence.

2. Longest Common Substring (LS): This is the longest sequence of consecutive

instructions that are common to both logs.

29

3. Longest Common Subsequence (LCS): Intuitively, this is the “overlap” in the

logs; it is the length of the longest sequence of identical instructions in both

logs. Instructions in the LCS must be in the same order in both logs, but they

are not required to be adjacent.

For instance, if the first instance of a program executes the instruction sequence

I1 = [A,B,C,D,E, F], and the second instance of the same program executes the

instruction sequence I2 = [A,B,X,D,E, F, Y], then: the common prefix is [A,B];

the longest common substring is [D,E, F], and the longest common subsequence is

[A,B,D,E, F].

In general, the longest common subsequence (LCS) of two traces is arguably the

best indicator of the extent of determinism in two executions of a program; we thus

use LCS and “Determinism” interchangeably from now on. The other two metrics are

important for evaluating the feasibility of silhouette execution a solution to the boot

storm problem. In general, we want the common prefix (P) and the longest common

substring (LS) of the two logs to be as large as possible to ensure that concurrently

booting VMs do not need to branch execution or communicate with each other too

quickly (see Chapter 4).

For the “Hello, world!” program, if ASLR is enabled, the two logs have very

little overlap (< 1%), and the common prefix and longest common substring are on

the order of 10 instructions. With ASLR disabled, one may expect the two traces

to look identical (because of the simplicity of the program), but there is still some

nondeterminism in the instruction sequences (see Table 2.1 and Figure 2-8).

Common Prefix 21.49 percent
Longest Common Substring 67.70 percent
Longest Common Subsequence 99.98 percent
Conflict Ratio (i.e. 1− LCS) 0.02 percent
Conflicting Instructions 32

Table 2.1: Nondeterminism profile of “Hello, world!” program (ASLR disabled)

30

Figure 2-8 shows divergences in program execution over time. This representation

allows us to visually inspect the union file and figure out the distribution and nature

of conflicting instructions. For the “Hello, world!” program, we can see that while

divergences were spread out near the beginning and end of the program, they were

bursty and short-lived (as indicated by the thin black lines). This is a common trend,

even for complex programs such as Linux services, as discussed in Section 2.3.

0 20000 40000 60000 80000 100000 120000 140000
Instructions Executed

Instance 1

Instance 2

Total Determinism : 99.98%.

Common Prefix : 21.49%. Longest Common Substring : 67.70%.

Program Execution Visualization

Figure 2-8: Visualization of “Hello, world!” program execution. The thin black lines
represent conflicts between the two instances of the program.

2.2.2 Quantifying Nondeterminism

As mentioned in the previous section, we use the common prefix (P), the longest com-

mon subsequence (LCS), the longest substring (LS) and the distribution of conflicting

instructions in separate instruction streams to measure nondeterminism.

31

While the conflict ratio measured by our analysis script is usually quite small (e.g.

0.02% for “Hello, world!”), its importance and impact is disproportionately larger. As

shown in Figure 2-9, the analysis script ignores the cascade effect and only considers

instructions that originate or actively propagate nondeterminism in calculating the

conflict ratio.

mov eax, [edx] $ eax = 0x141 mov eax, [edx] $ eax = 0x171

mov ecx, [ebx] $ ecx = 0x241fb4 mov ecx, [ebx] $ ecx = 0x241fb4

add ecx, 1 $ ecx = 0x241fb5 add ecx, 1 $ ecx = 0x241fb5

<N other instructions that do not read/write to eax> <N other instructions that do not read/write to eax>

mov eax edx $ eax = 0x1 mov eax edx $ eax = 0x1

mov eax, [edx] $ eax = 0x141 mov eax, [edx] $ eax = 0x171

mov ecx, eax $ ecx = 0x141 mov ecx, eax $ ecx = 0x171

add ecx, 1 $ ecx = 0x142 add ecx, 1 $ ecx = 0x172

Figure 2-9: The top image shows an example of the cascade effect: the red instruction
represents a real conflict in eax. The light-blue instructions have the same side-effects
across the two logs because they do not touch eax. Despite this, the value of eax is
different in the blue instructions and converges only after it is written by the green
instruction. The cascade effect refers to the nondeterministic register state that
results in the light-blue instructions because of an earlier conflict, even though the
instructions themselves are not reading or writing any nondeterministic values. If
we included the cascade effect, the measured conflict ratio in this trace excerpt is
(N + 3)/(N + 4) instead of the 1/(N + 4) we will report.

The bottom image shows an example of the propagation effect: the red instruction
again represents a conflict in eax. The light-blue instructions do not generate any
nondeterminism themselves, but they have conflicting side-effects because they read
eax. In this case, we report a conflict ratio of 1.

Ignoring the cascade effect while including the propagation effect effectively simulates

a form of taint analysis [10] on register and memory contents to measure the true

impact of any nondeterminism in a program. Our approach automatically groups

instructions that generate and propagate nondeterminism in the delta files, making

32

it easier for us to diagnose the sources of nondeterminism.

One element missing from our study of nondeterminism is that we do not account

for timing-related nondeterminism directly. For instance, two programs that execute

precisely the same set of instructions but take different amounts of time doing so (e.g.

due to variable latency of blocking system calls) are fully deterministic according to

our definition. We deliberately exclude timing considerations because it is acceptable

for some VMs to lag behind others in the boot storm scenario, as long as the same

instructions are executed. When timing-related nondeterminism affects program exe-

cution e.g. through differences in signal delivery, I/O ordering or time-related system

calls (see Chapter 3), it automatically gets factored in our analysis.

2.3 Results for Linux services

Table 2.2 shows the results from applying our data collection scheme on a set of Linux

services and daemons that are typically launched at boot.

Application Prefix (P) Longest Substring (LS) Determinism (LCS)

acpid, 20 loop iterations 20.99% 66.84% 99.98%
anacron, 7 loop iterations 0.65% 87.27% 99.21%
cupsd, 10 loop iterations 0.44% 12.87% 85.08%
cron, 5 loop iterations 1.54% 57.11% 99.94%
ntpd, 30 loop iterations 2.46% 4.74% 81.66%

Weighted Average 0.84% 26.41% 87.89%

Table 2.2: Nondeterminism profile of Linux services and daemons (ASLR disabled).
The average reported here is weighted-average computed based on the number of
instructions executed by each program. The period over which the programs were
profiled was selected to be representative of their execution typically till the login
screen is shown. Typically, the programs ran for 3-5 true (i.e without instrumentation
overhead) minutes.

33

We can immediately see that:

1. The common prefix (P) in our sample of Linux services is on average about

1%, which is quite small and indicates that nondeterminism typically surfaces

relatively early in program execution.

2. The longest substring (LS), usually close to 26%, is substantially larger than the

common prefix (P). This shows that execution typically does not permanently

diverge after the initial differences.

3. The longest common subsequence (LCS) or general determinism is in general

much higher – about 88% on average – which indicates that a large majority of

instructions in the Linux services overlap across different executions.

Given the discussion in Section 2.2.2, a conflict ratio of about 12% on average hints

that there is little but non-trivial nondeterminism in our sample programs, despite a

very high average LCS.

The distribution of the 12% conflicting instructions is surprisingly similar across

different programs. Figure 2-10, an execution profile of ntpd (for the first 14 out of 30

iterations) is representative of most execution traces. Generally, conflicting instruc-

tions are spread throughout the traces but tend to occur more frequently towards

the end. Nondeterminism does not seem to cause permanent execution divergences,

even though there is significant control-flow divergence in some programs. In fact,

execution seems to diverge and re-converge very frequently (i.e. nondeterminism is

bursty). The execution profile of cron is somewhat unique because it has a higher

LCS and LS than other traces. It is difficult to reconcile the low measured conflict

ratio for cron (less than 2%), with the higher conflict ratio visually suggested by Fig-

ure 2-11a. Figure 2-11b explains this discrepancy: it shows that while the absolute

number of conflicting instructions is small, these conflicts occur in bursts and visually

group together. While the bursty nature of nondeterminism is particularly prominent

in Figure 2-11b, it is common to all the services we profiled. Table 2.3 shows that

the longest control flow divergence or the longest string of consecutive conflicts is

typically very small (i.e. << 1%) for most of our sample programs.

34

Figure 2-10: Visualization of ntpd program execution (14 iterations). The thin black
lines represent conflicts between the two instances of the program, whereas the thin
blue or red lines represent control flow divergences.

35

(a) The thin black lines represent conflicts between the two instances of the program.

24x Zoom

(b) Looking closely at the cron program execution reveals that conflicts
occur in short bursts that visually group together.

Figure 2-11: Visualization of execution differences in cron (20 iterations).

36

Application Max. Consecutive Conflicts Max. Control Flow Divergence

acpid, 20 loop iterations 0.0000% 0.0019%
anacron, 7 loop iterations 0.0335% 0.0021%
cupsd, 10 loop iterations 0.0120% 1.8500%
cron, 5 loop iterations 0.0004% 0.0002%
ntpd, 30 loop iterations 0.0523% 0.3223%

Weighted Average 0.0185% 1.290%

Table 2.3: Measuring burstiness of nondeterminism in Linux services.
The table shows the maximum number of consecutive instructions that conflict in
their side-effects or control-flow as a fraction of the total instructions of a program.
These numbers are only a small fraction of the 12% conflicting instructions in a
program (see Table 2.2), which establishes that execution differences are short-lived
in our sample programs.

2.4 Summary

This chapter presented a brief overview of the Linux boot process, and demonstrated

our methodology for both quantifying and measuring nondeterminism in programs

using dynamic instrumentation. By analyzing user-mode instructions executed by

Linux boot services and daemons, we offered evidence that Linux services execute

highly overlapping instruction sequences across different runs. We also showed that

any conflicts or nondeterminism in such services occurs in bursts; nondeterminism

does not cause executions to permanently diverge; divergence and convergence occur

very quickly and repeatedly in our traces.

Chapters 3 will offer insight into the sources of nondeterminism behind these

statistics. Chapter 4 will look at the implications of our results for the feasibility of

silhouette solution as a solution to the boot storm problem.

37

38

Chapter 3

Sources of Nondeterminism in

Linux services

In this chapter, we describe the sources of nondeterminism discovered using the data

collection scheme described in Chapter 2. This study of nondeterminism reveals

subtle interactions between user-mode applications, commonly used system libraries

(e.g. the libc library), the Linux operating system and the external world. While our

results are derived from analyzing a small set of complex programs, they include all

sources of application-level nondeterminism that have been described in literature.

Unlike existing work, however, we cover the various interfaces between user-mode

programs and the Linux kernel in considerably more detail.

3.1 Linux Security Features

Address Space Layout Randomization (ASLR)

Address Space Layout Randomization (ASLR) involves random arrangement of key

memory segments of an executing program. When ASLR is enabled, virtual addresses

for the base executable, shared libraries, the heap, and the stack are different across

multiple executions. ASLR hinders several kinds of security attacks in which attackers

have to predict program addresses in order to redirect execution (e.g. return-to-libc

attacks).

39

As mentioned earlier, two execution traces of even a simple program in C are almost

entirely different when ASLR is enabled because of different instruction and memory

addresses.

Canary Values and Stack Protection

Copying a canary – a dynamically chosen global value – onto the stack before each

function call can help detect buffer overflow attacks, because an attack that overwrites

the return address will also overwrite a copy of the canary. Before a ret, a simple

comparison of the global (and unchanged) canary value with the (possibly changed)

stack copy can prevent a buffer overflow attack.

In 32-bit Linux distributions, the C runtime library, libc, provides a canary value

in gs:0x14. If Stack Smashing Protection (SSP) is enabled on compilation, gcc gen-

erates instructions that use the canary value in gs:0x14 to detect buffer overflow

attacks. Because Pin gets control of the application before libc initializes gs:0x14,

multiple execution traces of a program will diverge when gs:0x14 is initialized and

subsequently read. The manner in which the canary value in gs:0x14 is initialized

depends on the libc version. If randomization is disabled, libc will store a fixed ter-

minator canary value in gs:0x14; this does not lead to any nondeterminism. When

randomization is enabled, however, some versions of libc store an unpredictable

value in gs:0x14 by reading from /dev/urandom or by using the AT RANDOM bytes

provided by the kernel (see Section 3.2).

Pointer Encryption

Many stateless APIs return data pointers to clients that the clients are supposed

to supply as arguments to subsequent function calls. For instance, the setjmp and

longjmp functions can be used to implement a try-catch block in C: setjmp uses a

caller-provided, platform-specific jmp buf structure to store important register state

that longjmp later reads to simulate a return from setjmp. Since the jmp buf instance

is accessible to clients of setjmp and longjmp, it is possible that the clients may

advertently or inadvertently overwrite the return address stored in it and simulate a

40

buffer-overflow attack when longjmp is called.

Simple encryption schemes can detect mangled data structures. For instance, in

32-bit Linux, libc provides a pointer guard in gs:0x18. The idea behind the pointer

guard is the following: to encrypt a sensitive address p, a program can compute s = p

⊕ gs:0x18, optionally add some bit rotations, and store it in a structure that gets

passed around. Decryption can simply invert any bit rotations, and then compute

p = s ⊕ gs:0x18 back. Any blunt writes to the structure from clients will be detected

because decryption will likely not produce a valid pointer. Pointer encryption is a

useful security feature for some APIs and is used by some versions of libc to protect

addresses stored in jmp buf structures.

The libc pointer guard has different values across multiple runs of a program,

just like the canary value. Initialization of the libc pointer guard can therefore be a

source of nondeterminism in program execution. In some versions of libc, the value

of gs:0x18 is the same as the value of gs:0x14 (the canary). In others, the value

of gs:0x18 is computed by XORing gs:0x14 with a random word (e.g. the return

value of the rdtsc x86 instruction), or reading other AT RANDOM bytes provided by

the kernel (Section 3.2).

3.2 Randomization Schemes

As already clear from Section 3.1, randomization schemes can lead to significant

nondeterminism in programs. Applications generally employ pseudo-random number

generators (PRNGs), so they need only a few random bytes to seed PRNGs. These

few random bytes are usually read from one of few popular sources:

• The /dev/urandom special file. Linux allows running processes to access a

random number generator through this special file. The entropy generated from

environmental noise (including device drivers) is used in some implementations

of the kernel random number generator.

41

• AT RANDOM bytes. Using open, read and close system-calls to read only a

few random bytes from /dev/urandom can be computationally expensive. To

remedy this, some recent versions of the Linux kernel supply a few random

bytes to all executing programs through the AT RANDOM auxiliary vector. ELF

auxiliary vectors are pushed on the program stack before a program starts

executing below command-line arguments and environmental variables.

• The rdtsc instruction. The rdtsc instruction provides an approximate number

of ticks since the computer was last reset, which is stored in a 64-bit register

present on x86 processors. Computing the difference between two successive

calls to rdtsc can be used for timing whereas a single value returned from

rdtsc lacks any useful context. The instruction has low-overhead, which makes

it suitable for generating a random value instead of reading from /dev/urandom.

• The current time or process ID. System calls that return the current process ID

(Section 3.3) or time (Section 3.4) generate unpredictable values across execu-

tions, and are commonly used to seed PRNGs.

• Miscellaneous: There are several creative ways to seed PRNGs, including using

www.random.org or system-wide performance statistics. Thankfully, we have

not observed them in our analysis of Linux services.

Randomization-related nondeterminism thus usually originates from any external

sources used to seed PRNGs; if the seeds are different across multiple executions,

PRNGs further propagate this nondeterminism.

3.3 Process Identification Layer

In the absence of a deterministic operating system layer, process IDs for programs

are generally not predictable. For instance, a nondeterministic scheduler (Section 3.9)

could lead to several possible process creation sequences and process ID assignments

when a VM boots up.

42

Given the unpredictability of process IDs, system calls that directly or indirectly

interact with the process identification layer can cause divergences across distinct

executions of the same program. For instance, system calls that return a process ID

e.g. getpid (get process ID), getppid (get parent process ID), fork/clone (create a

child process), wait (wait for a child process to terminate) return conflicting values

across distinct executions. System calls that take process IDs directly as arguments

such as kill (send a signal to a specific process), waitpid (wait for a specific child

process to terminate) can similarly propagate any nondeterminism. In fact, libc

stores a copy of the current process ID in gs:0x48, so reads from this address also

propagate execution differences.

Apart from system calls, there are other interfaces between the Linux kernel and

executing user-mode programs where process IDs also show up:

• Signals: If a process registers a signal handler with the SA SIGINFO bit set, then

the second argument passed to the signal handler when a signal occurs is of type

siginfo t*. The member siginfo t.si pid will be set if another process sent

the signal to the original process (Section 3.8).

• Kernel messages: The Linux kernel will sometimes use process IDs to indicate

the intended recipients of its messages. For instance, Netlink is a socket-

like mechanism for inter process communications (IPC) between the kernel and

user-space processes. Netlink can be used to pass networking information

between kernel and user-space, and some of its APIs use process IDs to identify

communication end-points (Section 3.6).

Nondeterminism arising from the unpredictability of process IDs can be further

propagated when an application uses process IDs to seed PRNGs (Section 3.2), ac-

cess the /proc/[PID] directory (Section 3.11), name application-specific files (e.g.

myapp-[pid].log) or log some information to files (e.g. process [pid] started at

[04:23]) (Section 3.5).

43

3.4 Time

Concurrent runs of the same program will typically execute instructions at (slightly)

different times. Clearly, any interactions of a program with timestamps can cause

nondeterminism. For instance:

• The time, gettimeofday and clock gettime system calls return the current

time.

• The times or getrusage system calls return process and CPU time statistics

respectively.

• The adjtimex system call is used by clock synchronization programs (e.g. ntpd)

and returns a kernel timestamp indirectly via a timex structure.

• Programs can access the hardware clock through /dev/rtc and read the current

time through the RTC RD TIME ioctl operation.

• Many system calls that specify a timeout for some action (e.g. select, sleep

or alarm) inform the caller of any unused time from the timeout interval if they

return prematurely.

• The stat family of system calls returns file modification timestamps; also, many

application files typically contain timestamps; network protocols use headers

with timestamps as well (Sections 3.5 and 3.6).

Apart from nondeterminism arising from timestamps, timing differences can arise

between distinct executions because of variable system-call latencies or unpredictable

timing of external events relative to program execution (Sections 3.8 and 3.7).

44

3.5 File I/O

File contents

If two executions of the same program read different file contents (e.g. cache files),

then there will naturally be execution divergence. For concurrently executing Linux

services, differences in file contents typically arise from process IDs (Section 3.3) or

timestamps (Section 3.4) rather than semantic differences. Once those factors are

controlled, file contents rarely differ for identical VMs. Of course, there would be

significant nondeterminism in programs whenever file content for input or configu-

ration files is semantically different. In our experiments, however, we used identical

configuration files; file contents only differed because of external sources.

File Modification Times

Apart from minor differences in file contents, nondeterminism can arise from distinct

file modification (mtime), access (atime) or status-change (ctime) timestamps. The

stat system call is usually made for almost every file opened by a program; the time

values written by the system call invariably conflict between any two executions. Most

of the time, these timestamps are not read by programs, so there is little propagation.

On occasion, however, a program will use these timestamps to determine whether a

file is more recent than another, or whether a file has changed since it was last read.

File Size

When a program wishes to open a file in append-mode, it uses lseek with SEEK END

to move the file cursor to the end, before any writes take place. The return value of

lseek is the updated cursor byte-offset into the file. Clearly, if the length of a file is

different across multiple executions of a program, then lseek will return conflicting

values. Many Linux services maintain log files which can have different lengths due

to conflicts in an earlier execution; lseek further propagates them. To overcome

such nondeterminism, older log files must be identical at the beginning of program

execution and other factors that cause nondeterminism must be controlled.

45

3.6 Network I/O

Network Configuration Files

The libc network initialization code loads several configuration files into memory (e.g.

/etc/resolv.conf). Differences in the content, timestamps or lengths of such config-

uration files can clearly cause nondeterminism. Background daemons (e.g. dhclient

for /etc/resolv.conf) usually update these files periodically in the background.

Calls to libc functions such as getaddrinfo use stat to determine if relevant con-

figuration files (e.g. /etc/gai.conf) have been modified since they were last read.

In our experiments, typically the file modification timestamps – and not the actual

contents – of these configuration files vary between different executions.

DNS Resolution

In our experiments, IP addresses are resolved identically by concurrently executing

services. However, if DNS-based load-balancing schemes are used, the same server

can appear to have different IP addresses.

Socket reads

Bytes read from sockets can differ between executions for a variety of reasons. For

instance, different timestamps in protocol headers, or different requests/responses

from the external world would be reflected in conflicting socket reads. By studying

application behavior, it is possible to distinguish between these different scenarios

and identify the seriousness of any differences in the bytes read.

In our experiments, we observed nondeterminism in reads from Netlink sockets.

As mentioned in Section 3.3, Netlink sockets provide a mechanism for inter-process

communications (IPC) between the kernel and user-space processes. This mechanism

can be used to pass networking information between kernel and user space. Netlink

sockets use process IDs to identify communication endpoints, which can differ between

executions (Section 3.3). Similarly, some implementations of libc use timestamps to

assign monotonically increasing sequence numbers to Netlink packets (Section 3.4).

46

Nondeterminism can also arise from sockets of the NETLINK ROUTE family, which re-

ceive routing and link updates from the kernel; libc receives RTM NEWLINK messages

when new link interfaces in the computer are detected. When an interface gets dis-

covered or reported, the kernel supplies interface statistics to libc such as packets

sent, dropped or received. These statistics will obviously vary across different pro-

gram instances.

Ephemeral Ports

A TCP/IPv4 connection consists of two end-points; each end-point consists of an IP

address and a port number. An established client-server connection can be thought

of as the 4-tuple (server IP, server port, client IP, client port). Usually three of

these four are readily known: a client must use its own IP, and the pair (server IP,

server port) is fixed. What is not immediately evident is that the client-side of the

connection uses a port number. Unless a client program explicitly requests a specific

port number, an ephemeral port is used. Ephemeral ports are temporary ports that

are assigned from a dedicated range by the machine IP stack. An ephemeral port

can be recycled when a connection is terminated. Since the underlying operating

system is not deterministic, ephemeral port numbers used by Linux services tend to

be different across multiple runs.

3.7 Scalable I/O Schemes

Polling Engines

Complex programs like Linux services have many file descriptors open at a given time.

Apart from regular files, these special file descriptors could correspond to:

• Pipes: Pipes are used for one-way interprocess communication (IPC). Many

Linux services spawn child processes; these child processes communicate with

the main process (e.g. for status updates) through pipes.

47

• A listener socket: If the program is a server, this is the socket that accepts

incoming connections.

• Client-handler sockets: If this program is a server, new requests from already

connected clients would arrive through these sockets.

• Outgoing sockets: If the program is a client for other servers, it would use these

sockets to send requests to them.

The classic paradigm for implementing server programs is one thread or process

per client because I/O operations are traditionally blocking in nature. This approach

scales poorly as the number of clients – or equivalently, the number of open special

file descriptors – increases. As an alternative, event-based I/O is increasingly used

by scalable network applications. In such designs, the main event-thread specifies

a set of file descriptors it cares about, and then waits for “readiness” notifications

from the operating system on any of these file descriptors by using a system call

such as epoll, poll, select or kqueue. For instance, a client socket would be ready

for reading if new data was received from a client, and an outgoing socket would be

ready for writing if an output buffer was flushed out or if the connection request was

accepted. The event-thread invokes an I/O handler on each received event, and then

repeats the loop to process the next set of events. This approach is often used for

design simplicity because it reduces the threads or processes needed by an application;

recent kernel implementations (e.g. epoll) are also efficient because they return the

set of file descriptors that are ready for I/O, preventing the need for the application

to iterate through all its open file descriptors.

Event-based I/O can be a source of nondeterminism in programs because the

timing of I/O events with respect to each other can be different across multiple ex-

ecutions. Even if I/O events are received in the same order, the same amount of

data may not be available from ready file descriptors. Furthermore, when a timeout

interval is specified by the application for polling file descriptors, select may be

completed or interrupted prematurely. In that case, select returns the remaining

48

time interval, which can differ between executions (Section 3.4).

Asynchronous I/O Systems

Asynchronous I/O APIs (e.g. the Kernel Asynchronous I/O interface in some Linux

distributions) allow even a single application thread to overlap I/O operations with

other processing tasks. A thread can request an I/O operation (e.g. aio read), and

later query the operating system for its status or ask to be notified when the I/O

operation has been completed (e.g. aio return). While such APIs are in limited us-

age, they introduce nondeterminism because of the variable latency and unpredictable

relative timing of I/O events.

3.8 Signals

A signal is an event generated by Linux in response to some condition, which may

cause a process to take an action in response. Signals can be generated by error

conditions (e.g. memory segment violations), terminal interrupts (e.g. from the shell),

inter-process communication (e.g. parent sends kill to child process), or scheduled

alarms. Processes register handlers (or function callbacks) for specific signals of

interest in order to respond to them.

Signals are clearly external to instructions executed by a single process, as such,

they create nondeterminism much the same way as asynchronous I/O: signals can be

delivered to multiple executions of the same program in different order; even if signals

are received in the same order between different executions, they can be received at

different times into the execution of a program.

3.9 Concurrency

Multiple possible instruction-level interleavings of threads within a single program,

or of different processes within a single operating system are undoubtedly significant

sources of nondeterminism in programs. Nondeterminism due to multi-threading has

49

been extensively documented and can cause significant control flow differences across

different executions of the same program.

Nondeterminism in the system scheduler is external to program execution, and

manifests itself in different timing or ordering of inter-process communication e.g.

through pipes (Section 3.7), signals (Section 3.8), or values written to shared files or

logs (Section 3.5).

3.10 Architecture Specific Instructions

Architecture specific instructions such as rdtsc and cpuid can return different results

across program executions. As mentioned before (Section 3.2), the rdtsc instruction

provides the number of ticks since the computer was last reset, which will differ across

executions. The cpuid instruction can return conflicting hardware information too.

3.11 Procfs: The /proc/ directory

Instead of relying on system-calls, user-space programs can access kernel data much

more easily using procfs, a hierarchical directory mounted at /proc/. This directory is

an interface to kernel data and system information that would otherwise be available

via system calls (if at all); thus, many of the sources of nondeterminism already

described can be propagated through it.

For instance, /proc/uptime contains time statistics about how long the system

has been running; /proc/meminfo contains statistics about kernel memory manage-

ment; /proc/net/ contains statistics and information for system network interfaces;

/proc/diskstats/ contains statistics about any attached disks. These files will differ

across multiple executions of a program because of nondeterminism in the underlying

operating system.

Apart from accessing system-wide information, a process can access information

about its open file descriptors through /proc/[PID]/fdinfo (e.g. cursor offsets and

status). Similarly, /proc/[PID]/status contains process-specific and highly unpre-

50

dictable statistics, e.g. number of involuntary context switches, memory usage, and

parent process ID. Performing a stat on files in /proc/[PID]/ can reveal the process

creation time.

3.12 Summary

This chapter described sources of nondeterminism in Linux services discovered through

our experimentation. Chapter 4 describes how knowledge about the sources of non-

determinism in these services can be used to theoretically increase the effectiveness

of silhouette execution.

51

52

Chapter 4

Silhouette Execution

In the previous two chapters, we identified how and why multiple executions of the

same Linux service can diverge in behavior. In light of our results, this chapter

introduces a novel design strategy that aims to mitigate the boot storm problem:

silhouette execution (Section 4.1). For the sake of evaluation, this chapter presents

some design sketches for silhouette execution for user-mode programs (Section 4.2).

It also describes the simple simulation techniques we used to model the effectiveness

of silhouette execution using our design sketches (Section 4.3). From the results

of our simulations, we present strategies to improve the effectiveness of silhouette

execution (Section 4.4) and evaluate them (Section 4.5). Our simulations show that

the proposed designs can be successful in mitigating the boot storm problem.

4.1 What is Silhouette execution?

The previous few chapters showed that distinct executions of the same Linux service

generally execute the same number of instructions across identical VMs when they

start up. If the number of booting VMs for the same physical host is large (as is

the case in VDI deployments), then executing many instructions over and over again

during boot represents a waste of scarce CPU cycles. Silhouette execution, in essence,

targets redundant execution of the same instructions across distinct but identical

virtual machines in order to reduce CPU pressure in boot storm scenarios.

53

As shown in Figure 4-1, silhouette execution is analogous to page sharing: both

design ideas aim to use hardware resources effectively to improve VM density per

host in virtualization scenarios. While page sharing reduces pressure on the memory

subsystem by identifying and refactoring overlapping memory contents, silhouette

execution identifies overlapping instruction streams and refactors execution to reduce

pressure on the CPU. Like memory overcommit, the ultimate aim is to allow a host to

support VMs that together require more hardware resources than are really available

in the host.

To the best of our knowledge, silhouette execution is a novel design idea that has

not been suggested or implemented before. To study whether this approach can be

effective in reducing CPU pressure in concurrently booting VMs, we present some

design sketches for implementing silhouette execution for Linux services in the rest

of this chapter. Admittedly, user-mode instruction streams from Linux services cap-

ture a subset of instructions executed by a booting VM. However, we focus on Linux

services as a first step in studying the feasibility of silhouette execution. After all, as

outlined Section 2.1, booting VMs can saturate host CPUs when they launch many

identical user-space processes. For a complete solution, proposed design sketches need

to be generalized to the execution of entire VMs themselves; this would require us

to precisely identify the execution differences that can arise from all software layers

inside a VM.

4.2 Silhouette Execution for Linux Services

For user-mode Linux services, our proposed design skeletons for silhouette execution

use information recorded from one executing program – the leader – to bypass ex-

ecution steps of subsequent instances of the program – the silhouettes. Ideally, the

leader executes all instructions from the program, while the silhouettes execute a

much smaller subset of these instructions.

54

Guest Virtual Memory

Guest Physical Memory

Host Physical Memory

Page Sharing exploits the overlap in the content of memory pages across different VMs to

reduce the memory footprint of concurrently running VMs.

These savings enable Memory Overcommit, a situation where a host can seemingly provide

more memory to VMs than is physically available (i.e. 𝑀𝑖 >𝑖 𝐻, where 𝑀𝑖 is the memory

requirement of VM 𝑖 and 𝐻 is the host physical memory).

VM1 VM2

VM1 Virtual CPU Host CPU VM2 Virtual CPU

Silhouette execution exploits the overlap in the executing instructions across different VMs to

reduce the CPU footprint of concurrently running VMs.

Conserving the CPU should allow many more VMs to boot at the same time without saturating the

host.

time time

Figure 4-1: Silhouette execution is analogous to Page Sharing.

55

To maintain correctness in user-space, silhouettes need only execute:

• instructions that can potentially cause the leader’s execution to differ from the

silhouettes (e.g. the rdtsc instruction);

• instructions that propagate any earlier differences in execution;

• instructions that write to memory;

• system calls that have side-effects to entities outside a user-space program (e.g.

the read system call mutates hidden operating system state associated with file

descriptors).

If there are no differences between the leader’s execution and a silhouette’s, then

the silhouette would only execute the system calls and store instructions executed

by the leader until the login screen is shown. Executing all the memory writes from

the leader in the silhouettes ensures that the address space and memory contents

of the two instances evolves in an identical manner. Executing all the system calls

with the same arguments also ensures that the silhouette’s execution is faithful to its

semantics, that is, the side-effects to the underlying operating system are maintained

till the end. After we restore the register contents, a silhouette can simply continue

execution independently of the leader. When the number of system calls and memory

writes is a small fraction of the leader’s execution, this approach can theoretically

reduce the stress placed on the host CPU.

More generally, when there are instructions with conflicting side-effects in the

leader and a silhouette, then these instructions need to be executed by each silhouette

independently. This ensures that the silhouette’s execution semantics are retained.

It is not known a priori which instructions in the two instances of the same program

will behave differently or not. Our detailed analysis of the various interfaces between

application programs and the operating system allows us to identify such potential

sources of execution divergence via dynamic program inspection.

56

Note that silhouette execution for user-space programs is fundamentally different

from record-and-replay approaches because it does not semantically alter subsequent

executions of a program by emulating the leader’s execution. In fact, silhouettes are

independent executions of a program that can potentially branch from the leader’s

execution at any point.

The next few subsections outline a few design sketches for implementing silhouette

execution on individual user-space programs such as Linux services. We have not

implemented these designs. Instead, we present them here to evaluate the effectiveness

of silhouette execution in user-space.

4.2.1 Precise Silhouetting

Here is a simple design that uses silhouette execution to refactor execution in a user-

mode program:

1. We run one program instance – the leader – slightly ahead of all other program

instances – the silhouettes.

2. Using dynamic inspection techniques on the leader, we

• precisely identify instructions where other instances of the program could

potentially diverge. We call these instructions fork-points.

• collect an execution signature that summarizes the leader’s execution be-

tween successive fork-points. For a user-space program, this includes a

record of memory operations and deterministic system calls.

3. When a leader reaches a fork-point, it sends its own execution signature from the

previous fork-point (or the beginning of the program) till the current fork-point

to all other silhouettes.

4. The silhouettes do not execute all the instructions that the leader executes. In

fact, each silhouette bypasses execution between two fork-points by executing

only the memory operations and system calls from the execution signature sent

by the leader, and restoring the register state at the end.

57

5. When a silhouette reaches a fork-point, it independently executes the forking

instruction and observes its side-effects. The forking instruction may or may

not behave differently in a silhouette than the leader.

• If the forking instruction does have different side-effects in a silhouette,

the silhouette branches execution and executes instructions independently

from that point onwards. We call this instruction an active fork-point.

• Otherwise, we call this instruction a latent fork-point. We return to step 4:

the silhouette waits for the leader’s next execution signature for bypassing

execution to the next fork-point.

We name this design precise silhouetting because it cannot tolerate any differences

in execution between the multiple instances of a program: silhouettes completely

branch execution after executing a forking instruction that disagrees with the leader

(i.e. an active fork-point). Our description of precise silhouetting implies that the

leader executes concurrently with the silhouettes – albeit slightly ahead – but this

is not necessary. This approach would work even if we run the leader to completion

before we run any silhouettes. The silhouettes, of course, would only execute system

calls and memory operations between successive fork-points that the leader recorded

earlier until execution diverges.

4.2.2 Optimistic Silhouetting (excluding control flow)

Optimistic silhouetting essentially follows the same overall design principles as precise

silhouetting, except that it allows silhouettes to tolerate minor execution differences

before branching execution completely. In this design:

1. The leader executes slightly ahead of the silhouettes. The leader identifies fork-

points and sends execution signatures to silhouettes. The silhouettes bypass

execution by only executing the load/store instructions and system calls made

by the leader, and restoring register contents at the end of each fork-point. This

is what happens in precise silhouetting before the first active fork-point.

58

2. Unlike the previous design, when the leader reaches any fork-point, it always

waits for the silhouettes to catch up with it. All the instances execute a forking

instruction in sync and compare its side-effects.

3. If a forking instruction has different side-effects in a silhouette than the leader

(i.e. at an active fork-point):

• the silhouette does not immediately branch execution completely;

• the leader tracks the register or memory values that are written differently

in the multiple instances by marking them as tainted;

• the leader treats any subsequent instructions that read tainted values as

fork-points as well;

• the silhouettes do not overwrite the values in any tainted registers with

those contained in the leader’s execution signature.

4. When fork-points become too frequent, or when control flow diverges (e.g. a

tainted value is compared to a constant to determine control flow), a silhouette

starts executing instructions independently and branches off from the leader.

This approach does require that that the leader and its silhouettes execute fork-points

at the same time and communicate their results. This is necessary so that the leader

can identify subsequent instructions that propagate any earlier nondeterminism (e.g.

read a tainted value) as fork points.

4.2.3 Optimistic Silhouetting (including control flow)

This design is similar in essence to the version of optimistic silhouetting described

above, but it can also tolerate minor control flow differences between the leader and

the silhouettes. In this design:

1. As before, the leader and the silhouettes must execute fork-points concurrently.

The leader transmits execution signatures to silhouettes, and uses dynamic taint

propagation to tolerate minor differences in instruction side-effects.

59

2. Unlike before, silhouettes do not branch off permanently from the leader at the

sign of the first control flow divergence:

• The leader uses dynamic instrumentation to create a dynamic control flow

graph for the program execution.

• When the leader and a silhouette reach a control flow fork-point with

divergence (e.g. when a tainted value is read to determine control flow),

the leader uses the dynamic control flow graph to determine the immediate

post-dominator of the block where execution has diverged.

• The silhouette branches off temporarily (rather than permanently) and

executes independently to the point of control flow convergence. The sil-

houette and the leader log any memory values written or any system calls

made during this branch interval.

• The leader and the silhouette compare their current register state, along

with the system calls made or memory values written during the branch

interval.

• An analysis engine figures out whether the two executions are reconcilable

or not based on what happened in the branch interval.

3. If the two executions can be reconciled, any conflicting state (e.g memory ad-

dresses or register values are marked by the leader) as tainted, and the silhou-

ettes start waiting for execution signatures from the leader again.

4. If the two executions cannot be reconciled, or when fork-points become too

frequent, execution branches permanently.

Reconciling Executions

The notion of whether two distinct execution strands from a branch interval can be

reconciled is a new one. If two instances do not execute any system calls or memory

operations during the branch interval, then execution can be simply reconciled by

marking any different register values as tainted. If two instances do execute some

60

memory load/store operations, then different memory contents can be marked as

tainted as well to reconcile them.

If the two instances make different system calls during the branch interval, then

execution may or may not be reconcilable. If the system calls are stateless (e.g.

time), then execution can clearly be reconciled. On the other hand, if one execution

strand makes system calls that change the operating system state, then the leader

must know how to identify any subsequent system calls that depend on the changed

state. For instance, if a silhouette does an extra open to a file in the branch interval,

the leader must treat each subsequent open as a fork point, because the returned file

descriptors will now be different. The leader may have previously assumed that all

files to be opened were present on the identical VMs and thus not treated the open

system call as a fork-point by default.

There is a clear trade-off in the complexity in the dynamic instrumentation layer

in the leader that tracks dependencies across system calls and the extent to which we

can prolong silhouette execution. For simplicity, we will assume that if any instance

executes a system call in its branch interval that mutates some external state, then

the executions are irreconcilable.

4.3 Evaluation Scheme

The data collection scheme described in Chapter 2 does not actually implement sil-

houette execution in user-space because multiple instances execute all application

instructions independently. This section describes how we can still mathematically

simulate silhouette execution by comparing execution traces from our data collection

scheme.

61

There are several factors to consider in determining the effectiveness of silhouette

execution. Ideally, we would like the following conditions to be true:

• The first forking instruction with conflicting side-effects (i.e. the first active

fork-point) should occur as late as possible into the leader’s execution. This

is especially important for precise silhouetting, because silhouettes branch-off

permanently after the first active fork-point.

• The number of fork-points should be much smaller than the total number of

instructions executed by the leader. All the instances have to analyze the side

effects of each forking instruction to determine whether execution has diverged

or not, which represents a serious design overhead.

• The number of active fork-points must be small. Fewer active fork-points would

create fewer tainted memory locations, and thus reduce the overhead in the

leader associated with dynamic taint propagation.

• The number of control flow divergences should be very small. Any control

flow divergences should preferably be short-lived, and have few system calls

or memory operations. This reduces the overhead associated with reconciling

executions after branch intervals and creating dynamic control flow graphs in

the leader.

• The fork-points must be separated by very many instructions so that memory

access logs can be compressed. We could forget intermediate values of memory

locations and only remember their final values instead.

• Programs should have a high ratio of user-mode instructions to system-calls

and memory operations so that silhouettes execute few instructions compared

to the leader when they are bypassing execution.

62

4.3.1 Computed Metrics

For our data collection scheme, we can identify fork-points by simply parsing the

traces collected by our Pin tool and looking for the sources of potential execution

differences cataloged in the previous chapter. Once we can identify individual fork-

points, we can compute:

• The number and distribution of fork-points – both latent and active – in a

program,

• The number and distribution of control flow divergences in a program,

• The proportion of memory and system-call instructions between successive fork-

points,

• Size estimates for execution trace files that need to be communicated between

the leader and its silhouettes.

Using simple mathematical models, we can compute the number of user-space instruc-

tions the host CPU has to execute without silhouette execution (TO), and the number

of user-space instructions the host CPU has to execute under silhouette execution

(TS) We measure the advantage conferred by silhouette execution, A, as:

A(~K,N) =
TO

TS

. (4.1)

A is parameterized by ~K = (k1, k2, k3...) and N . ~K represents the constants associ-

ated with the overhead of various aspects of silhouette execution and N is the number

of concurrently running instances of a program.

A value of A > 1 implies that silhouette execution is effective in reducing CPU

overhead from concurrent program execution on the host in user-space. Generally,

A should increase as N increases (holding everything else constant), and A should

decrease as individual entries in ~K increase (holding everything else constant). TO is

easily computed: TO = NI, where N is the total instances of a program to be run,

and I is the number of instructions each instance must execute. Typically, I is the

63

number of instructions necessary to model the start of a program or a service. For

many Linux programs, a few iterations of the main scheduler loop of the program is

sufficiently representative of execution before a login screen is shown. The value of

TS depends on which version of silhouette execution is being used.

Precise Silhouetting

Given multiple traces, instructions that are in the common prefix (P) broadly repre-

sent savings from precise silhouetting. Figure 4-2 summarizes how TS and ~K can be

computed for precise silhouetting.

Optimistic Silhouetting (Excluding Control Flow)

Instructions in the longest common subsequence (LCS) of multiple traces before a

control flow divergence broadly represent the savings from this variant of optimistic

silhouetting. Figure 4-3 summarizes how TS and ~K can be computed for this variant

of optimistic silhouetting.

Optimistic Silhouetting (Including Control Flow)

Instructions in the longest common subsequence (LCS) of multiple traces before

execution diverges permanently represent the savings from this variant of optimistic

silhouetting. Figure 4-4 summarizes how TS and ~K can be computed for this design.

4.3.2 Caveats

Before we present our results, we note a few limitations of our methods for evaluating

silhouette execution:

• We estimate the advantage (A) of silhouette execution on user-space programs

purely in terms of the number of instructions executed on the host CPU. We

do not model latency for silhouette execution. It would be interesting to study

whether the delays introduced by dynamic inspection of program execution

and inter-instance communication can eclipse the potential latency reduction

64

𝑀
(Number of Memory Ops or System Calls)

𝑁
(Number of Instances)

𝐹
(Number of Fork-Points)

Without Silhouette Execution:

 Total # of Instructions to be executed 𝑇𝑂 = 𝑁𝐼

With Silhouette Execution:

 Total # of Instructions to be executed 𝑇𝑆 =

 𝐼 − 𝑃 𝑁 + 1 + 𝑘1 𝑃 + 𝑘2 𝑁 − 1 𝐹
+ 𝑘3 𝑁 − 1 𝑀

 𝐼 − 𝑃 𝑁 instructions are executed by all instances

after silhouettes branch off completely.

1 + 𝑘1 𝑃 instructions are executed by leader. 𝑘1 is

a constant that represents dynamic instrumentation

overhead from identifying fork points and recording

the execution signature.

𝑘2 𝑁 − 1 𝐹 instructions are executed by the

silhouettes at forking instructions to determine whether

execution has diverged or not. 𝑘2 represents overhead.

𝑘3 𝑁 − 1 𝑀 instructions are executed by the

silhouettes in emulating system calls and memory

operations between fork-points. 𝑘3 represents

overhead.

𝑃
(Common

Prefix)

Key

 memory op/system call

 fork-point 𝐼
(Total Instructions)

Figure 4-2: A simple way to model CPU overhead from precise silhouetting. We can
compare the user-space instructions executed from running a program multiple times
in the status quo versus the number of instructions executed when precise silhouetting
is used for the same scenario. k1, k2 and k3 are constants that represent overheads
associated with this approach.

65

𝑀
(Number of Memory Ops or System Calls)

𝑃
(Common

Prefix)

𝑁
(Number of Instances)

𝐹
(Number of Fork-Points)

𝐼
(Total Instructions)

Without Silhouette Execution:

 Total # of Instructions to be executed 𝑇𝑂 = 𝑁𝐼

With Silhouette Execution:

 Total # of Instructions to be executed 𝑇𝑆 =

 𝐼 − 𝐷 𝑁 + 1 + 𝑘1 𝑃 + 1 + 𝑘2 𝐷 − 𝑃
+ 𝑘3 𝑁 − 1 𝐹 + 𝑘4 𝑁 − 1 𝑀

 𝐼 − 𝐷 𝑁 instructions are executed by all instances

after silhouettes branch off completely.

1 + 𝑘1 𝑃 instructions are executed by leader in the

common prefix. 𝑘1 is a constant that represents dynamic

instrumentation overhead from identifying fork points and

recording the execution signature.

1 + 𝑘2 (𝐷 − 𝑃) instructions are executed by leader after

the common prefix but before the control flow divergence.

𝑘2 is a constant that represents dynamic instrumentation

overhead from identifying fork points and recording the

execution signature and dynamic taint propagation.

𝑘3 𝑁 − 1 𝐹 instructions are executed by the silhouettes

at forking instructions to determine whether

execution has diverged or not. 𝑘3 represents overhead.

𝑘4 𝑁 − 1 𝑀 instructions are executed by the silhouettes

in emulating system calls and memory operations between

fork-points. 𝑘4 represents overhead.

Key

 memory op/system call

 fork-point

𝐷
(Execution

Divergence

Prefix)

Figure 4-3: A simple way to model CPU overhead from optimistic silhouetting (ex-
cluding control flow). We can compare the user-space instructions executed from
running a program multiple times in the status quo versus the number of instructions
executed when optimistic silhouetting is used for the same scenario. k1, k2, k3, and
k4 are constants that represent overheads associated with this approach.

66

𝑀
(Number of Memory Ops or System Calls)

𝑃
(Common

Prefix)

𝑁
(Number of Instances)

𝐹
(Number of Fork-Points)

𝐼
(Total Instructions)

Without Silhouette Execution:

 Total # of Instructions to be executed 𝑇𝑂 = 𝑁𝐼

With Silhouette Execution:

 Total # of Instructions to be executed 𝑇𝑆 =
 𝐼 − 𝐷 𝑁 + 1 + 𝑘1 𝑃 + 1 + 𝑘2 𝐷 − 𝑃 + 𝑘3 𝑁 − 1 𝐹

+ 𝑘4 𝑁 − 1 𝑀 + k5 N C LC

 𝐼 − 𝐷 𝑁 instructions are executed by all instances after

silhouettes branch off completely.

1 + 𝑘1 𝑃 instructions are executed by leader in the common

prefix. 𝑘1 is a constant that represents dynamic instrumentation

overhead from identifying fork points and recording the execution

signature.

1 + 𝑘2 (𝐷 − 𝑃) instructions are executed by leader after the

common prefix but before the control flow divergence. 𝑘2 is a

constant that represents dynamic instrumentation overhead from

identifying fork points and recording the execution signature and

dynamic taint propagation.

𝑘3 𝑁 − 1 𝐹 instructions are executed by the silhouettes at

forking instructions to determine whether

execution has diverged or not. 𝑘3 represents overhead.

𝑘4 𝑁 − 1 𝑀 instructions are executed by the silhouettes in

emulating system calls and memory operations between fork-

points. 𝑘4 represents overhead.

𝑘5 𝑁 𝐶 𝐿𝐶 instructions are executed by the instances when

control flow diverges in order to record execution stages and use

them to reconcile execution. 𝑘5 represents overhead.

Key

 memory op/system call

 control flow divergence

 fork-point

𝐷
(Execution

Divergence

Prefix)

𝐶
(Number of Control-Flow divergences)

𝐿𝐶
(Average Control-Flow divergence

Length)

Figure 4-4: A simple way to model CPU overhead from optimistic silhouetting (in-
cluding control flow). We can compare the user-space instructions executed from
running a program multiple times in the status quo versus the number of instructions
executed when optimistic silhouetting is used for the same scenario. k1, k2, k3, k4
and k5 are constants that represent overheads associated with this approach.

67

from reduced CPU load and bypassing execution in silhouette execution or not.

In practice, the hypervisor layer rather than a dynamic instrumentation layer

would implement silhouette execution, to reduce performance overhead.

• Our dynamic instrumentation tool can only inspect user-mode instructions of

the main process hosting an application, so we cannot consider code executed

by lower software layers or other children processes in computing A. Overall,

the number of instructions we consider may be a fraction of all the instruc-

tions computed on the host CPU, which would add a dampening factor to our

computed value of A.

• The values we use for ~K are conservatively guessed, and we assume the over-

heads from various aspects of silhouette execution are linear in nature. These

assumptions, while reasonable, may understate the CPU-load reduction practi-

cally attainable by silhouette execution in user-space.

• We do not factor the storage and I/O overhead associated with the transmission

of execution signatures, though our experience suggest that signature files are

typically very small (i.e. only a few megabytes) so they should fit in host

memory.

• While we collect traces from many different silhouettes, we simply pick the worst

trace (i.e. the one with the most difference from a leader) for computing TS.

Thus, our models may be overly conservative because they assume that all sil-

houettes are as different from a leader as the worst silhouette. This assumption

simplifies the design and evaluation complexity related from the leader having

to handle silhouettes with varying levels of divergence from the leader.

Despite these limitations, we believe that our model offers valuable insight into the

feasibility of silhouette execution in user space because we instrument and evaluate

silhouette execution on large user-mode instruction streams from Linux services, and

conservatively factor in the possible overhead from silhouette execution.

68

4.3.3 Initial Results

Precise Silhouetting

Table 4.1 shows the results of modeling precise silhouetting on a few Linux services.

For simplicity, we treat all system calls as fork-points. This assumption increases the

number of fork-points (F); it also increases the overhead associated with determining

if execution has diverged or not after a fork-point because the inspection layer has

to presumably understand the logic of each system call to determine its side effects

(k2). However, this assumption reduces k1 because an overwhelming majority of

instructions that only use register operands are easily excluded from fork-points.

Instructions that are system calls are also easily identifiable (i.e. int 0x80 or call

*gs:0x10); instructions with memory operands need their memory addresses to be

compared to tainted addresses (e.g. gs:0x14 or gs:0x18) to determine whether they

are fork points or not. For our evaluation, we chose k1 = 20, k2 = 1000 and k3 = 20

as reasonably conservative values for the overhead constants.

Table 4.1 shows that precise silhouetting has values for A that are less than 1 for

all of the Linux services we sampled. In fact, A is less than 1 regardless of whether

we consider 8, 128 or 1024 instances. The value of A is close to 0.90 on average which

represents a degradation on CPU load i.e. precise silhouetting would execute more

instructions in user-space than the status quo. Note that:

• Because p is very small on average for our sample of Linux services, execution

diverges very quickly in the simulation. This explains why, for small values of

p, we get values of A that are very close to 1. There is little difference between

precise silhouetting with a small value of p than the status quo.

• The higher the value of p, the greater the degradation on CPU load. Thus,

the longer precise silhouetting remains active, the worse results we get. For

instance, acpid has a higher value of p than the other services, and its value of

A is correspondingly smaller. This means that precise silhouetting is ineffective

in reducing CPU load because of the high overhead from executing the memory

operations and fork-points.

69

Program N I TO p M F TS A

acpid 8 1.69E5 1.35E6 20.9% 4838 55 2.88E6 0.469
acpid 128 1.69E5 2.16E7 20.9% 4838 55 3.72E7 0.581
acpid 1024 1.69E5 1.73E8 20.9% 4838 55 2.94E8 0.589

anacron 8 5.47E6 4.38E7 0.649% 4686 50 4.52E7 0.967
anacron 128 5.47E6 7.00E8 0.649% 4686 50 7.14E8 0.979
anacron 1024 5.47E6 5.60E9 0.649% 4686 50 5.71E9 0.967

cron 8 2.31E6 1.84E7 1.54% 6329 60 2.02E7 0.912
cron 128 2.31E6 2.96E8 1.54% 6329 60 3.15E8 0.937
cron 1024 2.31E6 2.37E9 1.54% 6329 60 2.46E9 0.938

cupsd 8 2.45E7 1.96E8 0.445% 20114 139 2.01E8 0.974
cupsd 128 2.45E7 3.14E9 0.445% 20114 139 3.19E9 0.982
cupsd 1024 2.45E7 2.51E10 0.445% 20114 139 2.56E10 0.983

ntpd 8 3.61E6 2.88E7 2.54% 11255 72 3.22E7 0.897
ntpd 128 3.61E6 4.62E8 2.54% 11255 72 4.91E8 0.939
ntpd 1024 3.61E6 3.69E9 2.54% 11255 72 3.92E9 0.942

Table 4.1: Preliminary Results from Modeling Precise Silhouetting.
A, the advantage ratio is calculated by TO

TS
. TO is the total instructions that would be

executed in the status quo whereas TS is the total instructions that would be executed
under precise silhouetting. ~K (not shown in the table), represents overhead constants
and was selected conservatively to be (20, 1000, 20). M is the number of system calls
and memory operations made by the leader before the first active fork-point; F is
the number of latent fork-points before the first active fork-point. p = 100P/I is the
prefix ratio of the execution.

• The scheme exhibits some, but very limited scalability, again because of the

small values of p. As the number of instances goes up, the values of A increase

a little. For acpid, A increases from 0.469 to 0.589 as the number of instances

increases from 8 to 1024. However, for most services, the scalability is very

limited and A increases by very little as the number of instances goes up from

128 to 1024.

Thus, precise silhouetting, from our first evaluation, causes CPU load degradation.

We need to find a way to reduce the overhead from memory operations and fork-

points, and increase the prefix ratio p to improve the values for A and the scalability

of A with respect to N , the number of instances.

70

Optimistic Silhouetting (Excluding Control Flow)

Table 4.2 shows the results of modeling optimistic silhouetting (without control flow)

on our sample of Linux services. As before, we treat all system calls as fork-points. We

use the same values of k1 = 20, k3 = 1000, k4 = 20 to model overheads from detection

of fork-points in the leader, comparisons of side-effects of forking instructions and

emulation of system calls and memory writes in silhouettes respectively. We use

k2 = 40 to model the additional overhead from taint propagation after the first

active fork-point.

Program N I TO d M F TS A

acpid 8 1.69E5 1.35E6 100% 16323 102 9.22E6 0.146
acpid 128 1.69E5 2.16E7 100% 16323 102 6.08E7 0.356
acpid 1024 1.69E5 1.73E8 100% 16323 102 4.45E8 0.388

anacron 8 5.47E6 4.38E7 6.11% 36095 309 6.15E7 0.714
anacron 128 5.47E6 7.03E8 6.11% 36095 309 8.05E8 0.874
anacron 1024 5.47E6 5.63E9 6.11% 36095 309 6.36E9 0.886

cron 8 2.31E6 1.84E7 98.12% 320075 814 1.43E8 0.129
cron 128 2.31E6 2.96E8 98.12% 320075 814 1.01E9 0.292
cron 1024 2.31E6 2.37E9 98.12% 320075 814 7.52E9 0.315

cupsd 8 2.45E7 1.96E8 34.21% 1037608 1176873 8.85E9 0.022
cupsd 128 2.45E7 3.14E9 34.21% 1037608 1176873 1.54E11 0.020
cupsd 1024 2.45E7 2.51E10 34.21% 1037608 1176873 1.24E12 0.020

ntpd 8 3.61E6 2.88E7 15.08% 59853 3201 7.58E7 0.380
ntpd 128 3.61E6 4.62E8 15.08% 59853 3201 9.71E8 0.475
ntpd 1024 3.61E6 3.69E9 15.08% 59853 3201 7.65E9 0.482

Table 4.2: Preliminary Results for Optimistic Silhouetting (Excluding Control Flow).
A, the advantage ratio is calculated by TO

TS
. The variables TO, TS, M , F are the same

as before (see Table 4.1). d = 100D/I is the portion of the execution before the first
control-flow divergence.

Because d in Table 4.2 is significantly larger on average than p in Table 4.1, we no

longer get values of A that are close to 1.0. The values of A seen are much lower

than 1.0 (as low as 0.022 for cupsd); this indicates that this version of optimistic

silhouetting would lead to significant CPU performance degradation. This is largely

because of the increase in fork-points that result from tainted memory accesses, and

the high volume of memory operations that silhouettes have to emulate.

71

Optimistic Silhouetting (Including Control Flow)

Table 4.3 shows the results of modeling optimistic silhouetting (including control flow)

on our sample of Linux services. As before, we treat all system calls as fork-points.

We use the same values of k1 = 20, k2 = 40, k3 = 1000, k4 = 20 to model overheads

from detection of fork-points in the leader, taint propagation, comparisons of forking

instructions and bypassing execution in silhouettes respectively. We use k5 = 20 to

model the additional overhead from execution reconciliation after a branch interval.

Program N I TO d M F C LC TS A

anacron 8 5.47E6 4.38E7 100% 7.2E5 26923 299 4 5.15E8 0.085
anacron 128 5.47E6 7.03E8 100% 7.2E5 26923 299 4 5.49E9 0.128
anacron 1024 5.47E6 5.63E9 100% 7.2E5 26923 299 4 4.26E10 0.132

cron 8 2.31E6 1.84E7 100% 320075 1454 5 1 1.49E8 0.124
cron 128 2.31E6 2.96E8 100% 320075 1454 5 1 1.09E9 0.271
cron 1024 2.31E6 2.37E9 100% 320075 1454 5 1 8.14E9 0.291

cupsd 8 2.45E7 1.96E8 100% 3.05E6 3.53E6 1432 89 2.62E10 0.008
cupsd 128 2.45E7 3.14E9 100% 3.05E6 3.53E6 1432 89 4.59E11 0.007
cupsd 1024 2.45E7 2.51E10 100% 3.05E6 3.53E6 1432 89 3.69E12 0.007

ntpd 8 3.61E6 2.88E7 100% 4.25E5 6.06E5 812 68 4.49E9 0.006
ntpd 128 3.61E6 4.62E8 100% 4.25E5 6.06E5 812 68 7.89E10 0.005
ntpd 1024 3.61E6 3.69E9 100% 4.25E5 6.06E5 812 68 6.35E11 0.005

Table 4.3: Preliminary Results for Optimistic Silhouetting (Including Control Flow).
We exclude acpid because it had no control flow differences. A, the advantage ratio
is calculated by TO

TS
. The variables TO, TS, M , F are the same as before (see Table

4.2). d = D/I is the portion of the execution before the first control-flow divergence.
C and LC represent the number of control-flow divergences and their average length
respectively. d = 100D/I the portion of the execution before permanent execution
divergence.

Because there is no permanent execution divergence, d is 100% for our sample services.

However, the values of A are much lower than 1 partly because of the same factors

as before: the number of memory writes and fork-points is very high, leading to

prohibitively high overhead. Furthermore, the overhead from bursty control flow

divergences can also be a problem (as is the case for cupsd and ntpd).

72

4.4 Improving Silhouette Execution

When we analyzed the execution traces collected by our data collection scheme, we

found that several causes of execution divergence across our sample of Linux services

were synthetic i.e. they were an artefact of external sources of nondeterminism rather

than semantic differences in program execution. We thus decided to introduce a

deterministic execution layer to our previous designs to eliminate as many sources of

fork-points as possible and to improve the feasibility of silhouette execution.

4.4.1 Modified Data Collection Scheme

We modified our data collection scheme from Chapter 2 (shown in Figure 2-4) to

simulate and evaluate silhouette execution in the boot storm scenario.

As shown by Figure 4-5, we run one instance of the program – the leader – before

all others. For the leader, we generate an execution log, as before, but we also augment

the log by summarizing information about the sources of nondeterminism described

in Chapter 3. For instance, we record information about signal timing, process IDs,

time-related system calls in the trace signature file. Our Pin tool uses the trace

signature of the leader to modify the instruction sequences executed by subsequent

executions (the silhouettes) and reduce the number of fork-points as much as possible.

We run the leader to completion before the silhouettes. As before, we also do not

bypass instructions in silhouettes so our modified data collection scheme still requires

us to analyze these traces to simulate and evaluate silhouette execution.

4.4.2 Reducing Execution Differences across Instances

We now describe how we attempt to reduce the source of execution differences from

the sources described in Chapter 3. While we modify the instances that execute after

the leader, in practice many of our techniques eliminate fork-points altogether i.e.

the leader can continue execution past the forking instruction, or avoid control flow

differences by navigating around variability of I/O timing and latency.

73

Instance 1

Execution Tracing Layer (Pin or

DynamoRio Tool)

Deterministic Execution Layer (Pin or DynamoRio Tool)

Instance 2 Instance N

Analysis Script

Visualization Script

Execution log (usually of size between

1-5 gigabytes)

Execution signature (usually of size

between 1-50 megabytes)

Execution logs of other

instances.

The visualization script parses the output of the

analysis script, collects statistics on the differences

between logs, and graphs these differences.

The analysis script uses the Linux diff utility

to perform a pairwise comparison on the

execution logs collected.

The deterministic execution tracing layer generates an execution log and

an execution signature for the first instance. The execution signature

summarizes information about possible sources of nondeterrminism

(e.g. signals received, output of time system calls).

Silhouettes

Leader

Figure 4-5: Simulation of Silhouette Execution in a boot storm scenario. We use
dynamic instrumentation to generate a trace signature file for the leader. While we
do not bypass execution in the silhouettes, try to reduce the number of fork-points
and record information about them. Our analysis and visualization scripts allow us
to simulate and evaluate the effectiveness of silhouette execution.

74

Canary and Pointer Guard Values

The values of the canary (gs:0x14) and the pointer guard (gs:0x18) are initialized

in user-space, so dynamic instrumentation can be used to force these values to agree

across distinct executions of the same program: instructions that initialize them

can be modified or replaced; the sources used to compute these values (e.g. rdtsc,

/dev/urandom or AT RANDOM) bytes can be intercepted as well.

For a real implementation of silhouette execution, this means that a leader can

simply choose to not treat the instructions that initialize gs:0x14 or gs:0x18 as fork-

points and simply treat them as normal memory writes instead. The silhouettes will

follow the leader’s execution signature and store the same canary or pointer guard as

the leader into memory. All subsequent instructions that load the canary or pointer

guard values from memory will also be identical and thus will not be fork-points.

Randomization

To overcome execution differences resulting from randomization, we need to address

the standard techniques used by programs to seed PRNGs. In our simulations, reads

performed by the leader from /dev/urandom, the AT RANDOM bytes, or the rdtsc

instruction are intercepted and recorded in the trace execution file using dynamic

instrumentation; for other subsequent instances, we simply replace the return values

to match those from the leader.

For silhouette execution in practice, this means that the leader can simply exclude

rdtsc instructions or reads from dev/urandom from fork-points and simply execute

past them. Semantically, when silhouettes replay the leader’s execution signature,

this simulates the unlikely but possible case that they received the same random

values as the leader from external sources.

We need a slightly different approach for AT RANDOM bytes because they are not

initialized in user-space. Simply excluding reads of AT RANDOM bytes from fork-points

is not sufficient for correctness: when execution diverges permanently, a silhouette

may read AT RANDOM bytes again and they will be different from those read earlier

(which is impossible). To solve this minor issue, we can make the leader transmit its

75

AT RANDOM bytes in its first execution signature; the silhouettes overwrite their own

AT RANDOM bytes with the leader’s values before starting execution.

These strategies eliminate any fork-points or tainted memory locations that result

from external sources of randomization in programs. While eliminating such random-

ization can change execution semantics of a Linux service, we are still simulating a

valid (and possible) execution path for each silhouette.

Time

In our simulations, system calls that return some measurement of the current time,

the CPU or program execution time, or a time interval (e.g. time or gettimeofday)

can be intercepted in the same manner as randomization: the timestamps logged in

the trace signature file can be used to force agreement between different instances.

For silhouette execution in practice, this means that a leader can simply exclude

such system calls from fork-points, and continue executing past them. Rather than

including these system calls in its execution signature, the leader should include the

memory side-effects of these system calls. This way, silhouettes do not perform these

system calls; rather, they automatically copy the behavior of the leader when they

replay its writes. This simulates the unlikely but semantically valid scenario that

the various instances executed various time-related system calls precisely at the same

times. Replacing such system calls with their memory side-effects works because they

do not mutate any operating system state.

The timestamps returned from stat system calls are not as easily handled. If we

assume that all the input, configuration and data files are identical between various

instances of a program, then we can simply exclude stat system calls from fork-

points and include them in the execution signature file instead. A leader can assume

by default that only the various timestamps returned by stat will be different and

mark them as tainted. In our experiences, these timestamps are typically ignored

in an overwhelming majority of cases. Thus, tainting these values by default creates

little overhead because these values are seldom read or propagated. At the same time,

we avoid the overhead associated with treating stat system calls as fork-points.

76

In the rare cases where the timestamps from stat system calls are actually read,

they are typically compared to determine “freshness” (i.e. which file is newer). When

we assume that all the files accessed by a program have similar initial contents,

these comparisons can also be excluded from fork-points because timestamps retain

the same ordering across different instances of a program in our experiments. This

can be a risky optimization, so to be absolutely sure, the leader could treat these

comparisons as fork-points and verify that the comparison results are the same in all

instances instead.

To model this in our simulations, we do not include stat system calls that con-

tain different time-stamps across instances in our count of fork-points. However,

comparisons of timestamps from stat system calls are included in our definition of

fork-points.

Signal Delivery

In order to overcome the unpredictable timing and order of signals in our simulations,

we intercept all signals received by an application and ensure they are delivered at

precisely the same instruction counts and in the same order as that indicated in the

trace signature file. Unlike record-and-replay systems, we only deliver signals that

are actually received. Thus, signals that are received earlier than expected are simply

delayed or reordered. If, however, a signal is not received at the expected instruction

count, our instrumentation tool simply waits or inserts nops until the desired signal

is received. If a signal simply refuses to appear for a long time, execution must

diverge. In our experiments, this final case does not occur as long as other sources of

nondeterminism are controlled.

For silhouette execution in practice, this means that a leader can exclude received

signals from fork-points (unlike before), and simply include them in the execution

signature sent to silhouettes instead. When silhouettes bypass execution using the

execution signature, they delay, reorder and deliver signals at precisely the same

times as the leader and thus avoid any control-flow divergences. This technique,

signal alignment, requires each silhouette to temporarily resume execution from the

77

Operating System Kernel

Application

fork()

 Dynamic Instrumentation Layer

fork()

fork() vPID

fork() rPID

wait(vPID)

wait(rPID)
Signal callback
siginfo_t.si_pid

 = rPID

Signal callback
siginfo_t.si_pid

 = vPID

Real Process ID

 rPID

Virtual Process ID

 vPID

Figure 4-6: All system calls and communications between the Linux user and kernel
space are intercepted; the dynamic instrumentation layer uses a PID translation table,
and translates between real and virtual process IDs to ensure correctness.

instruction before which the signal is expected to be received, and then insert nops

until the signal is received or deliver a previously received (and withheld) signal. This

can prevent control flow divergences and subsequent fork-points that arise from vari-

able signal timing and ordering. Of course, if the expected signal is not received in a

silhouette within a reasonable time interval, control flow must inevitably diverge.

Process IDs

In our simulations, nondeterminism from process IDs can be controlled by virtualizing

the process ID layer, as shown by Figure 4-6. Using dynamic instrumentation, we

can replace real and unpredictable process IDs from kernel space with virtual and

unpredictable process IDs in user space. As outlined in Section 3.3, all interfaces

which use process IDs need to be carefully monitored so that process IDs can be

translated back and forth for correctness.

78

In practice, this is equivalent to using an operating system that assigns process IDs

in a deterministic fashion. In a complete implementation of silhouette execution, we

could expect the leader VM to store process IDs in its execution signature; silhouettes

would assign process IDs in the same order as the leader.

For silhouette execution purely in user-space, we could add some logic to the

silhouettes and virtualize their process IDs as described in Figure 4-6. Instead of

treating instructions that deal with process IDs as fork-points (e.g. fork or clone),

the leader would execute past them, and simply flag them before including them in its

execution signature. When silhouettes would arrive at these instructions, they would

simply translate between real and virtual process IDs. This clearly adds complexity

and translation overhead whenever an instance interacts with an operating system

interface using virtual process IDs. However, virtualizing the process ID layer pre-

vents a considerable number of user-space instructions that propagate differences in

process IDs (e.g. in libc or pthreads) from being labeled at fork-points due to taint

propagation. Note that, for correctness, silhouettes must pretend to use the same

virtual process IDs that they have already used before even after they completely

diverge execution.

File I/O

Differences in input file contents across executions would inevitably cause execution

to diverge, but reducing fork-points arising from time, randomization or process ID

system calls is typically sufficient to ensure that file contents evolve identically in

Linux services. Some files that may differ between two instances on start up (e.g.

cache files or logs) can simply be deleted or replaced without sacrificing correctness.

Also, as mentioned already, stat timestamps are frequently not read, so they can be

excluded from fork-points until they are actually compared with other timestamps.

For file contents that are inherently and minimally different (e.g. they contain

different timestamps), taint propagation otherwise suffices to ensure that they do not

cause execution to diverge permanently.

79

Network I/O

The content of network configuration files does not change over a booting period in

our experiments, so we can mark them as immutable during the boot process and

arrange for their stat timestamps to return identical values across different instances.

In practice, this means that a leader can exclude the stat calls for network files or

their comparisons from its set of fork-points without sacrificing correctness.

In the same vein, the leader can exclude IP address resolution instructions from its

definition of fork-points, and execute past them. This disables DNS-based dynamic

load balancing during the boot process and forces silhouettes to use the same resolved

IP addresses as the leader. DNS-based load balancing typically uses low TTLs, so

once the boot process is finished and execution diverges permanently, the IP addresses

will be refreshed quickly.

If bytes read from sockets differ across different executions, we need to understand

the context to determine whether the differences are serious (e.g. due to different re-

quests) or synthetic (e.g. due to timestamps). Simply tainting the bytes that are

different between the instances is sufficient to tolerate minor differences from exter-

nal data. In some specific cases, we can avoid marking socket reads as fork-points:

for Netlink sockets, typically the only differences in bytes across different instances

arise from interface statistics (RTM NEWLINK), sequence numbers or end-point IDs. To

handle variability in interface statistics (which are rarely read, if at all), we can sim-

ply overwrite them with identical fixed values across instances; sequence numbers

and end-points IDs are generated by time system calls and process IDs respectively,

which we already handle. Thus, a leader can execute a socket read on Netlink

sockets and simply add memory operations that replace any statistics read by the

silhouette with what the leader read. This simulates the unlikely but semantically

valid execution scenario that all instances have the same network statistics (e.g. pack-

ets dropped/transmitted) when the system call is made. Using this approach, while

we introduce instrumentation overhead in the leader for handling Netlink sockets,

we reduce the number of expensive fork-points requiring byte-by-byte comparisons

related to Netlink socket reads across all instances.

80

To overcome fork-points related to ephemeral port assignments, the leader can

monitor the bind or connect system calls and changes their arguments to explicitly

request ports in the ephemeral range rather than let the kernel assign them. These

system calls, then, are no longer fork-points; the silhouettes derive and use the same

arguments as the leader from the execution signature files sent to them, so there are

no execution differences. This allows us to avoid virtualizing ephemeral ports in a

similar fashion to how we virtualize process IDs.

Scalable I/O Schemes

To handle nondeterminism caused by unpredictable ordering of I/O events, we use

techniques similar to those used for reordering signals in our simulations, as described

by Figure 4-7. We name our approach I/O stalling.

 Dynamic Instrumentation Layer

Operating System Kernel

Application

epoll()

epoll()

A epoll()

epoll()

Actual Event Order

 {A, C, B}

Effective Event Order

 {A, B, C}

A epoll()

epoll()

C epoll()

epoll()

epoll()

B epoll()

B epoll()
C epoll()

Case 1:

Expected event received.

Case 2:

Unexpected event received.

Case 2:

Already received

expected event.

Figure 4-7: We intercept all epoll system calls, and use the execution signature file
to achieve determinism. We do not “replay” I/O events because only events that
actually do occur are delivered to the application instance. This diagram assumes
epoll returns one event per call for the sake of illustration.

81

Assuming that epoll returns just one event, figure 4-7 illustrates three possible

cases that could occur:

• The event returned by a call to epoll (A) is the one expected in the execution

signature file (A). The instrumentation layer does not modify the system call.

• The desired event (B) has not been received yet, and epoll returns an unex-

pected event (C). The instrumentation layer stores the out-of-order event, and

repeatedly calls epoll until the the expected event is received.

• A call to epoll is initiated, and the event desired (C) has already been received.

The instrumentation layer does not make a system call and simulates a return

from epoll with the expected event instead.

Even if I/O events are reordered, it is possible that different amounts of data are

available for ready file descriptors across executions. We can mask this effect in the

same way we handle signals: if more bytes are available (e.g. through read) than

expected in the execution signature file, we modify return values and read buffers

to delay the reading of these bytes until the next read. In some corner cases, we

may have to “fake” readiness in a call to epoll: if all bytes to be read from a file

descriptor have been read by the dynamic instrumentation layer (out of which a few

have not yet been delivered to the application), there will be no more readiness events

even though the application expects them. If less-than-expected bytes are available,

we simply wait till they are available by waiting for another readiness update on the

same file descriptor inside dynamic instrumentation layer. In our experiments, this

approach has been sufficient for overcoming nondeterminism from event-based I/O

schemes. For asynchronous I/O schemes (e.g. aio read), strategies similar to those

used for reordering and precisely-timing signals would be necessary to hide variable

I/O latency and ordering.

For silhouette execution in practice, we would implement this technique – I/O

alignment – by excluding epoll system calls from fork-points. An epoll call and

its expected results would be stored in the execution signature; a silhouette would

82

execute epoll and not not let differences in the observed results let execution branch

immediately. Instead, the silhouette would repeatedly call epoll until it gets the

desired event set, taking care to delay and reorder I/O events as necessary to align

with the leader. The same approach can be used for determining how many bytes are

available from a read. While this adds overhead to the instructions executed by a

silhouette, it eliminates control-flow divergences and subsequent fork-points created

from inherent I/O nondeterminism.

Concurrency

Execution variability resulting from multi-threading has been extensively documented;

there is a significant body of work that attempts to overcome such nondeterminism

by using deterministic logical clocks or record-and-replay approaches. For our exper-

iments, we did not attempt to enforce a total order on the instructions executed in

multi-threaded programs and just measured fork-points inside the main process for

each Linux service. To reduce fork-points from multi-threading, we could incorporate

deterministic logical clocks into our design.

As mentioned before, a nondeterministic system scheduler can cause variable tim-

ing of signals or I/O events, which we handle using signal and I/O alignment strate-

gies. Work on deterministic operating systems can be extended to overcome this issue

in a more systematic manner.

Procfs: The /proc/ directory

A leader can exclude reads from procfs for statistics from fork-points; instead, the

leader can simply replace them with memory operations that simulate identical results

in silhouettes. A leader must be careful to flag reads from procfs use process IDs, so

that silhouettes can translate between real and virtual process IDs accordingly.

83

4.5 Evaluation of Improved Silhouette Execution

In this section, we evaluate the effectiveness of some of the techniques introduced

earlier to increase determinism in Linux services. The next few subsections analyze

some of the Linux services we sampled in our experiments individually.

Tables 4.4 and 4.5 summarize the results of our experiments using the modified

data collection scheme. When we pick very high values for the overhead constants

(represented by ~K), our techniques yield an aggregate improvement of 5.33× in the

advantage ratio A for 1000 VMs. That is, we go from a CPU load increase of 6%

due to silhouette execution to a CPU load reduction by a factor of 4.772×. When we

pick reasonably conservative values of ~K in our simulations, our techniques boost A

by a factor of 19.01×, and theoretically reduce the CPU load by a factor of 19.18×.

Figure 4-8 visually graphs such improvements in A over different values of N .

Program Preliminary Best A Current Best A Relative Improvement

acpid 0.589 1.16 1.96×
anacron 0.980 10.26 10.47×
cron 0.938 4.24 4.53×
cupsd 0.982 5.91 6.02×
ntpd 0.942 2.04 2.17×
Average 0.886 4.772 5.33×

Table 4.4: Improvements in A for Linux services when N = 1000 and ~K is picked
conservatively i.e. ~K = (20, 1000, 20, 40, 1000).

Program Preliminary Best A Current Best A Relative Improvement

acpid 1.031 6.20 6.01×
anacron 1.01 37.92 37.90×
cron 0.999 17.39 17.41×
cupsd 0.999 24.31 24.33×
ntpd 1.006 10.09 10.03×
Average 1.009 19.18 19.01×

Table 4.5: Improvements in A for Linux services when N = 1000 and ~K is picked less
conservatively i.e. ~K = (10, 100, 5, 20, 50).

84

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000

A
,

th
e
 a

d
v
a
n
ta

g
e
 r

a
ti
o

.

Instances

Old A

Improved A

Ratio

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000

A
,

th
e
 a

d
v
a
n
ta

g
e
 r

a
ti
o

.

Instances

Old A

Improved A

Ratio

Figure 4-8: Improvements in A after controlling nondeterminism in Linux services.
~K for the top graph is much more conservative than that for the bottom graph.

85

4.5.1 acpid

The program acpid is a user-space daemon typically launched at boot and is part of

the Advanced Configuration and Power Interface (ACPI) implementation in Linux.

The daemon listens for specific events triggered by external actions (e.g. pressing the

power button, unplugging the AC adapter from a notebook, or closing the notebook

lid). When an event occurs, it executes programs to handle that event (which are

specified through some configuration files).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,

th
e

 a
d

v
a

n
ta

g
e

 r
a

ti
o

.

Instances

PS

OPT NC

Scheme A

Figure 4-9: For acpid, computing A as a function of N (highly conservative ~K).
PS and OPT NC are lines for precise silhouetting and optimistic silhouetting (excluding
control flow) without any improvements; they serve as a baseline to measure the
success of our techniques in our simulations. Scheme A represents the improved values
of A achieved through deterministic silhouette execution. There is no OPT C line for
optimistic silhouetting (including control flow) because there were no control flow
divergences in our acpid traces.

86

Figure 4-9 shows the results of our experiments to measure any improvements in

A from the techniques described in Section 4.4. Our workload consisted of simple

boot-time initialization of acpid i.e. a few iterations of its main loop.

Scheme A includes the techniques we described to reduce execution differences that

arise from randomization, security and time; these are sufficient to eliminate active

fork-points in acpid entirely. Thus, Scheme A uses precise silhouetting in which

execution does not diverge till the very end of our workload. Unlike the baseline

executions, Scheme A also simulates write compression: silhouettes only write the

latest values to memory locations instead of wastefully replaying all intermediate

writes in execution signatures.

As shown in Figure 4-9, Scheme A improves A and takes it above 1, converting a

CPU load increase into a CPU load reduction. However, the value of A is not high

and does not scale too well as N increases; this is because of the high design overhead

modelled by a highly conservative ~K. In fact, the overhead in acpid from comparing

forking instructions across instances, and replaying system calls and memory writes

across silhouettes is equally significant, unlike the overhead from simply detecting

fork-points. Setting one of k2 or k3 to 0 immediately boosts A by a factor of 2 for

large N ; this factor is small because of generally high design overhead.

Figure 4-10 shows how A changes with N when we pick less conservative values

of overhead constants (~K) i.e. (10, 100, 5, 20, 50) rather than (20, 1000, 20, 40,

100). The achieved values of A exceed 6 for N < 1000, which represents a significant

theoretical reduction in the number of user-space instructions executed. The value

of A scales well for small N (Figure 4-10a). However, as N increases, A plateaus

because some of the design overhead (e.g. executing forking instructions or system

calls in the execution signature) grows with N .

The highest theoretically possible A for our sampled traces is given by AMAX =

I
F+M

, which models the possibility that each instance only executes system calls and

compressed memory-writes rather than I instructions. For our samples of acpid,

AMAX is about 40, and we get within a factor of 10 of that number in Figure 4-10b.

87

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

Scheme A

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500 4000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

Scheme A

Figure 4-10: For acpid, A as a function of N (moderately conservative ~K). The top
graph is a zoomed-in version of the lower graph.

88

4.5.2 anacron

Anacron is a user-space service that complements cron by scheduling and executing

tasks without requiring the system to be continuously running. Typically, anacron

is used to schedule daily, weekly or monthly tasks for system-wide maintenance.

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,

th
e

 a
d

v
a

n
ta

g
e

 r
a

ti
o

.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Figure 4-11: For anacron, computing A as a function of N (highly conservative ~K).
PS, OPT NC and OPT C are lines for precise silhouetting, optimistic silhouetting (ex-
cluding control flow) and optimistic silhouetting (including control flow) without any
improvements; they serve as a baseline to measure the success of our techniques in our
simulations. Scheme A and Scheme B represent the improved values of A achieved
through deterministic silhouette execution: Scheme A reduces execution differences
because of security, randomization and architecture-specific instructions; Scheme B

incrementally adds the techniques used to virtualize the process ID layer on top of
Scheme A.

89

Figure 4-11 shows the results of our experiments to measure any improvements in

A from the techniques described in Section 4.4. Our workload consisted of simple

boot-time initialization of anacron for the case when cron.weekly tasks need to be

executed.

Scheme A includes the techniques we described to reduce execution differences that

arise from randomization, security and time. Scheme B adds process ID virtualization

to Scheme A; anacron interacts frequently with process IDs because it uses them

to track child jobs spawned. Scheme B is sufficient to eliminate active fork-points

in anacron entirely. Thus, Scheme B uses precise silhouetting in which execution

does not diverge till the very end of our workload, whereas Scheme A elongates the

execution prefix (P) slightly to 5.50%. As before, Scheme A and Scheme B simulate

write compression to improve A.

As shown in Figure 4-11, Scheme A does not affect A much; because of the small

increase in P (the prefix), A remains close to 1. However, Scheme B improves the

ratio A and takes it to a reasonably high value (A > 10), converting a CPU load

increase into a CPU load reduction. A scales better as N increases for anacron

than for acpid, because anacron has a 10× lower memory-writes-to-instructions (i.e.

M/I) ratio than acpid; this means there is less overhead when silhouettes restore

the leader’s memory image in anacron. Eventually, however, the very conservative

design overhead ~K causes A to plateau when N becomes very large.

As before, Figure 4-12a shows how A changes with N when we pick less con-

servative values of overhead constants (~K). The achieved values of A exceed 50 for

N < 3000, a significant simulated reduction in the CPU pressure from user-space.

The value of A scales well for moderately high N (Figure 4-12a) before it plateaus

due to expected design overhead.

The highest theoretically possible A (AMAX) is equal to I
F+M

. For our samples of

anacron, AMAX is about 377, and we again get within a factor of 10 of that number

in Figure 4-10b.

90

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Figure 4-12: For anacron, A as a function of N (moderately conservative ~K). The
top graph is a zoomed-in version of the lower graph.

91

4.5.3 cron

The program cron is a job scheduler that allows users to periodically execute scripts

or programs; it automates system maintenance or administration and complements

anacron. Cron assumes that the system is running continuously; anacron catches

jobs missed by cron while the computer is turned off.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,

th
e

 a
d

v
a

n
ta

g
e

 r
a

ti
o

.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Figure 4-13: For cron, computing A as a function of N (highly conservative ~K).
PS, OPT NC and OPT C are lines for precise silhouetting, optimistic silhouetting (ex-
cluding control flow) and optimistic silhouetting (including control flow) without any
improvements; they serve as a baseline to measure the success of our techniques in our
simulations. Scheme A and Scheme B represent the improved values of A achieved
through deterministic silhouette execution: Scheme A reduces execution differences
because of security, randomization and architecture-specific instructions; Scheme B

incrementally adds the techniques used to virtualize the process ID layer on top of
Scheme A.

92

Figure 4-13 shows the results of our experiments to measure any improvements in

A from the techniques described in Section 4.4. Our workload consisted of a few

iterations of the main loop in cron. The analysis for cron is somewhat similar to

that of anacron because of the similar nature of the two programs.

As before, Scheme A includes the techniques we described to reduce execution

differences that arise from randomization, security and time. Just like anacron, cron

uses process IDs in its interactions with any spawned child jobs, so Scheme A itself

is not effective and only elongates the execution prefix (P) to 12.40%. However,

Scheme B adds process ID virtualization to Scheme A, which is sufficient to eliminate

execution differences in cron. Scheme B thus uses precise silhouetting in which ex-

ecution does not branch till the very end of our workload. Both schemes simulate

write compression.

As shown in Figure 4-13, Scheme B improves A to be slightly higher than 1. In fact,

A > 4, which represents a theoretical reduction in CPU pressure unlike the baseline

scores. However, the achieved A is much lower for cron than that for anacron, which

is probably because of the lower memory-writes-to-instructions (i.e. M/I) ratio for

the latter.

Figure 4-14 shows how A changes with N when we pick less conservative values

of overhead constants (~K) The achieved values of A exceed 17 for N < 1000, which

represents a significant theoretical reduction in the number of user-space instructions

executed. The value of A scales well for small N (Figure 4-14a) but plateaus as

expected for very large N .

The highest theoretically possible A, AMAX = I
F+M

is about 120, and we get

within a factor of 10 of that number in Figure 4-14b.

93

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Figure 4-14: For cron, A as a function of N (moderately conservative ~K). The top
graph is a zoomed-in version of the lower graph.

94

4.5.4 cupsd

The cupsd program is a printing service for Linux systems that allows a computer

to act as a print server. Because of the modularity in cupsd, the print scheduler can

easily communicate with many kinds of printers (including local, remote or virtual

printers).

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,

th
e

 a
d

v
a

n
ta

g
e

 r
a

ti
o

.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Scheme C

Scheme D

Figure 4-15: For cupsd, computing A as a function of N (highly conservative ~K).
PS, OPT NC and OPT C are lines for precise silhouetting, optimistic silhouetting (ex-
cluding control flow) and optimistic silhouetting (including control flow) without any
improvements; they serve as a baseline to measure the success of our techniques in our
simulations. Scheme A, Scheme B, Scheme C and Scheme D represent the improved
values of A achieved through incremental levels of deterministic silhouette execution.

95

Figure 4-15 shows how A depends on N for various design strategies for silhouette

execution in cupsd. The workload considered was a few iterations of the cupsd

daemon on a machine configured to print remotely to cups.csail.mit.edu. The

various schemes illustrated in Figure 4-15 are:

• Scheme A

This scheme reduces execution differences that occur because of Linux security

features, time, randomization and architecture-specific instructions.

• Scheme B

This scheme includes Scheme A, and also handles execution differences from

Netlink and the process ID layer in Linux.

• Scheme C

This scheme includes Scheme B, and also handles execution differences from

file contents (e.g. cache files) or file timestamps (e.g. from stat). Scheme C

reduces fork-points from stat calls by tainting their timestamps automatically

and deletes/forces agreements between cache files if they do not matter for

correctness.

• Scheme D

This scheme includes Scheme C, and also handles execution differences from

variable timing, latency or ordering of I/O operations e.g. signals or scalable

polling (epoll) engines.

For each of these schemes, the measured advantage ratio is higher than 1, so they

all successfully reduce CPU pressure in our simulations unlike the baseline designs.

Scheme D is necessary because cupsd uses signals and epoll; using it, the achieved

value of A is reasonably high (A > 15 for N < 500). Scheme D eliminates all active

fork-points, so we can use precise silhouetting for cupsd.

For less conservative values of ~K, Figure 4-16 shows that A plateaus at a higher

value of A = 30 as N gets very large. The maximum theoretical advantage achievable,

AMAX is equal to 194, and we are within a factor of 10× that value.

96

0

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Scheme C

Scheme D

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Scheme C

Scheme D

Figure 4-16: For cupsd, A as a function of N (moderately conservative ~K). The top
graph is a zoomed-in version of the lower graph.

97

4.5.5 ntpd

The Network Time Protocol daemon (ntpd) is a background service that synchronizes

the system time with time servers using the Network Time Protocol (NTP). ntpd uses

a single configuration file, can operate in both server or client mode. and can even try

to correct for clock skew using a drift file in the absence of an accessible time server.

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,

th
e

 a
d

v
a

n
ta

g
e

 r
a

ti
o

.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Scheme C

Scheme D

Figure 4-17: For ntpd, computing A as a function of N (highly conservative ~K).
PS, OPT NC and OPT C are lines for precise silhouetting, optimistic silhouetting (ex-
cluding control flow) and optimistic silhouetting (including control flow) without any
improvements; they serve as a baseline to measure the success of our techniques in our
simulations. Scheme A, Scheme B, Scheme C and Scheme D represent the improved
values of A achieved through incremental levels of deterministic silhouette execution.

98

Figure 4-17 shows how deterministic silhouette execution affects A for ntpd. The

workload considered was a few iterations of ntpd after it starts up, to simulate what

happens at boot time. The schemes for ntpd are the same as those defined for cupsd

in Section 4.5.4, except that Scheme D monitors select events rather than epoll.

For the conservative values of overhead constants (~K), Scheme D yields A > 2

for N < 1000, which means that the CPU pressure is halved in our simulation of

silhouette execution. This value of A is not as high for ntpd as for cupsd because

ntpd has almost twice as many memory writes as cupsd for the same number of

instructions (which, in turn, translates into higher overhead for ntpd).

For less conservative values of (~K), A plateaus at a value greater than 10. The

maximum theoretical advantage achievable AMAX = I
F+M

= 72 for ntpd, and our

simulated A is within a factor of 10× of AMAX .

4.6 Limitations of Deterministic Execution

This section describes some of the drawbacks of deterministic silhouette execution.

Security

To achieve deterministic silhouette execution, we have to disable ASLR. We also

have to fix canary (gs:0x14) or pointer guard (gs:0x18) values across many different

VMs. Disabling ASLR increases the vulnerability of applications to external attacks.

Though canary and pointer guard values are still dynamically chosen in our brand of

deterministic execution, they must agree across all VMs. Thus, an adversary who can

compromise one VM by guessing its canary could easily attack the other VMs. The

fact that we can choose different canary or guard values between different successive

boot storms is some consolation and provides some security.

99

0

1

2

3

4

5

6

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Scheme C

Scheme D

0

2

4

6

8

10

12

0 500 1000 1500 2000 2500 3000 3500 4000

A
,
th

e
 a

d
v
a
n

ta
g

e
 r

a
ti

o
.

Instances

PS

OPT NC

OPT C

Scheme A

Scheme B

Scheme C

Scheme D

Figure 4-18: For ntpd, A as a function of N (moderately conservative ~K). The top
graph is a zoomed-in version of the lower graph.

100

Randomization

Randomization can be essential for security (e.g. random values may be used to

generate keys or certificates), performance, and sometimes simply correctness (e.g.

clients may choose random IDs for themselves). Making PRNG seeds agree across all

VM instances can entail a compromise on all of these fronts. In our sample of Linux

services, we have not yet discovered any such issues. Technically, our approach simu-

lates the extremely unlikely – yet possible – scenario that all concurrently executing

instances somehow generated the same seeds from external sources. A complicated

implementation could involve the hypervisor guessing which random values can be

made deterministic without affecting correctness, and allowing some critical values to

differ between the instances (e.g. by taint propagation).

Time and Correctness

Any programs that rely on precise measurements of time (e.g. through system calls

or rdtsc) will lose correctness. Some Linux services such as ntpd do need to measure

time accurately in order to synchronize the system clock Our semantics can cause

such services to behave incorrectly at start up, because we may give incorrect values

of time to ntpd. Thankfully, this is not a huge correctness problem because network

clock synchronization programs are self-healing and because we ultimately do provide

monotonically increasing time values. After the booting process is over, and all VMs

branch in execution, ntpd will synchronize the current time correctly.

101

4.7 Summary

In this chapter, we introduced the general notion of silhouette execution, which is

our own design innovation. To study whether silhouette execution can be effective

in mitigating boot storms, we outlined some design sketches for silhouette execution

in user-space and evaluated their effectiveness on a few Linux services via simulation

and modeling. Preliminary analysis of silhouette execution was discouraging and

showed an average CPU load increase in our simulations. We proposed strategies

to control the nondeterminism in Linux services (e.g. I/O alignment, memory-write

compression and process ID virtualization). Through our simulations in user-space,

we found that silhouette execution can reduce CPU pressure by a factor of 8× on

average for N = 100 and 19× on average for N = 1000 program instances.

102

Chapter 5

Conclusion

The ability to run as many VMs as possible on individual hosts is an important

determinant in the cost-savings offered by server and desktop virtualization. In this

context, VM boot storms represent a major – and often daily – obstacle for data

centers that wish to sustain a high VM density per host in all workloads.

This thesis proposed a novel design idea, silhouette execution, as a possible strategy

for mitigating the prohibitively high CPU overhead that results from concurrently

booting VMs on a host. In theory, silhouette execution exploits potential overlap in

distinct instruction streams of different VMs and uses it to avoid repetitive execution

on a host CPU.

In order to understand whether there is sufficient overlap in the instruction streams

of concurrently booting VMs to merit an implementation of silhouette execution, we

used dynamic instrumentation techniques to study user-space execution traces of a

few Linux services. Using our traces, we were able to statistically profile the extent

of nondeterminism in these programs, and also collect a comprehensive list of the

sources behind such nondeterminism. Through our experiments, we found that a lot

of the nondeterminism in Linux services arises from the numerous – and sometimes

obscure – interactions between user-space programs and the lower software layers. We

also found that most of the nondeterminism is an artefact of synthetic rather than

semantic differences in program execution (e.g. variable ordering or latency of I/O

events, unpredictability of process IDs).

103

We outlined a few design sketches for silhouette execution in user-space, and used

simple simulation techniques to mathematically model the effectiveness of silhouette

execution for a few Linux services. In our simulations, some synthetic differences

in program execution caused silhouette execution to fail and in fact increased the

number of instructions executed in user space by 13% for 100 VMs and 6% for 1000

VMs. However, using our knowledge of nondeterminism in programs, we were able to

propose techniques that can increase the instruction overlap between various program

instances (e.g. signal, I/O alignment and process ID virtualization). Based on the few

Linux services we sampled, silhouette execution theoretically achieves a 8× reduction

in user-space CPU pressure for 100 VMs; the savings scale to 19× for 1000 VMs,

which is an encouraging result. The improvement in host scalability during boot

storms may be somewhat larger because reduced CPU pressure can allow transparent

page sharing to be more effective.

5.1 Future Work

There are several ways we can expand on the work done for this thesis. These can

be broadly grouped into ideas that would improve the models we used to simulate

silhouette execution and make our reults more comprehensive, along with a future

implementation of silhouette execution.

Improve Models for Silhouette Execution

In this work, we evaluated silhouette execution in user-space, by studying and profiling

nondeterminism in a few Linux services. In the future, we hope to consolidate our

results by:

• Incorporating results from a greater number and variety of Linux services and

distributions.

• Framing more sophisticated models for each of the design sketches for silhouette

execution. Currently, the models for execution overhead are linear, conservative

104

and do not estimate how boot latencies will be affected via silhouette execution.

• Incorporate nondeterminism and instruction traces from lower software layers

(e.g. the kernel or hypervisor) for completeness.

Implementation

We are currently working on a user-space implementation of silhouette execution that

uses dynamic instrumentation. In the future, we hope our endeavors will serve as a

foundation for a complete implementation of silhouette execution that can provably

mitigate boot storms.

105

106

Bibliography

[1] T. Bergan, N. Hunt, L. Ceze, and S.D. Gribble. Deterministic process groups in
dos. 9th OSDI, 2010.

[2] A.T. Clements, I. Ahmad, M. Vilayannur, and J. Li. Decentralized deduplication
in san cluster file systems. In Proceedings of the 2009 conference on USENIX
Annual technical conference, pages 8–8. USENIX Association, 2009.

[3] J.G. Hansen and E. Jul. Lithium: virtual machine storage for the cloud. In
Proceedings of the 1st ACM symposium on Cloud computing, pages 15–26. ACM,
2010.

[4] Solving Boot Storms With High Performance NAS. http://www.

storage-switzerland.com/Articles/Entries/2011/1/3_Solving_Boot_

Storms_With_High_Performance_NAS.html, 2011. [Accessed 1-August-2011].

[5] X.F. Liao, H. Li, H. Jin, H.X. Hou, Y. Jiang, and H.K. Liu. Vmstore: Distributed
storage system for multiple virtual machines. SCIENCE CHINA Information
Sciences, 54(6):1104–1118, 2011.

[6] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V.J. Reddi, and K. Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In ACM SIGPLAN Notices, volume 40, pages
190–200. ACM, 2005.

[7] Bootchart: Boot Process Performance Visualization. http://www.bootchart.

org, 2011. [Accessed 29-July-2011].

[8] S. Meng, L. Liu, and V. Soundararajan. Tide: achieving self-scaling in virtualized
datacenter management middleware. In Proceedings of the 11th International
Middleware Conference Industrial track, pages 17–22. ACM, 2010.

[9] VMware Bootstorm on NetApp. http://ctistrategy.com/2009/11/01/

vmware-boot-storm-netapp/, 2009. [Accessed 29-July-2011].

[10] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, anal-
ysis, and signature generation of exploits on commodity software. Citeseer, 2005.

[11] M. Olszewski, J. Ansel, and S. Amarasinghe. Scaling deterministic multithread-
ing. 2nd WoDet, 2011.

107

[12] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. Pinplay: a frame-
work for deterministic replay and reproducible analysis of parallel programs.
In Proceedings of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, pages 2–11. ACM, 2010.

[13] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting the
electric bill for internet-scale systems. In Proceedings of the ACM SIGCOMM
2009 conference on Data communication, pages 123–134. ACM, 2009.

[14] Vijayaraghavan Soundararajan and Jennifer M. Anderson. The impact of man-
agement operations on the virtualized datacenter. SIGARCH Comput. Archit.
News, 38:326–337, June 2010.

[15] M.W. Stephenson, R. Rangan, E. Yashchin, and E. Van Hensbergen. Statisti-
cally regulating program behavior via mainstream computing. In Proceedings
of the 8th annual IEEE/ACM international symposium on Code generation and
optimization, pages 238–247. ACM, 2010.

[16] S.B. Vaghani. Virtual machine file system. ACM SIGOPS Operating Systems
Review, 44(4):57–70, 2010.

[17] VMware Virtual Desktop Infrastructure. http://www.vmware.com/pdf/

virtual_desktop_infrastructure_wp.pdf, 2011. [Accessed 29-July-2011].

[18] C.A. Waldspurger. Memory resource management in vmware esx server. ACM
SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

108

