
Optimizations in Stream Programming for

Multimedia Applications

by

Eric Wong

S.B., Massachusetts Institute of Technology, 2011

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

August 2012

Copyright Massachusetts Institute of Technology 2012. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole and in

part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

August 10, 2012

Certified by .
Saman Amarasinghe

Professor, Thesis Supervisor

Accepted by .
Prof. Dennis M. Freeman

Chairman, Masters of Engineering Thesis Committee

2

Optimizations in Stream Programming for

Multimedia Applications

by

Eric Wong

Submitted to the Department of Electrical Engineering and Computer Science
on August 10, 2012, in partial fulfillment of the

requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Multimedia applications are the most dominant workload in desktop and mobile com-
puting. Such applications regularly process continuous sequences of data and can be
naturally represented under the stream programming domain to take take advantage
of domain-specific optimizations. Exploiting characteristics specific to multimedia
programs can provide further significant impact on performance for this class of pro-
grams. This thesis identifies many multimedia applications that maintain induction
variable state, which directly inhibits data parallelism for the program. We demon-
strates it is essential to recognize and parallelize filters with induction variable state
to enable scalable parallelization. We eliminate such state by introducing a new lan-
guage construct that automatically returns the current iteration number of a target
filter. This thesis also exploits the fact that multimedia applications are tolerant in
the accuracy of the program output. We apply a memoization technique that exploits
this tolerance and the repetitive nature of multimedia data. We provide a runtime
system that automatically tunes the memoization capabilities for performance and
output quality. These optimizations are implemented in the StreamIt programmming
language. The necessity of parallelizing induction variable state and performance im-
provements and quality control of our memoization technique is demonstrated by a
case study of the MPEG benchmark.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

3

4

Acknowledgments

This thesis would not have been possible without the guidance and support of Michael

Gordon. His extensive knowledge of the streaming domain, direction throughout this

project, and patience in guiding me through the steps of conducting research and

writing technical papers are what helped this work develop to the state that it is today.

I am also thankful to Saman Amarasinghe, for fostering my interest in compilers and

performance optimizations of computer systems, and for providing further guidance

throughout this project’s development.

Finally, I want to thank my family, particularly my parents, grandparents, and

little sister. For their unconditional love throughout my entire life and endless support

for all of my endeavors, I am forever in their debt.

5

6

Contents

1 Introduction 13

2 The StreamIt Programming Language 21

2.1 Filters: Basic Stream Units . 22

2.2 Stream Hierarchical Structures . 23

2.3 Execution Model and Filter Schedules 24

2.4 Parallelism in Streaming Languages 25

2.5 Stream Graph Transformations . 26

3 Induction Variable State in Stream Programs 27

3.1 Induction Variable State . 28

3.2 Scalability Implications of Eliminating Induction Variable State . . . 30

3.3 The Iteration Keyword . 32

3.3.1 Language Construct Approach 33

3.3.2 Comparison to Automatic Analysis 35

3.3.3 Comparison to Coarsening . 36

3.4 Desugaring . 38

3.5 Fission of Induction State . 39

3.5.1 The Original Fission Transformation 39

3.5.2 Modifications to Fission Transformation 40

3.6 Compiler Infrastructure . 44

3.7 Empirical Evaluation . 46

3.7.1 MPEG-2 Motion Estimation 46

7

3.7.2 FIRBank . 48

4 Locality-Sensitive Memoization in Streaming Multimedia Programs 51

4.1 Function Memoization . 52

4.1.1 Barriers for Streaming Multimedia Applications 53

4.1.2 Inexact Memoization for Streaming Applications 54

4.2 Locality-Sensitive Hashing . 55

4.2.1 Locality-Sensitive Hash Families 56

4.2.2 Locality-Sensitive Hashing Algorithm 56

4.3 Applying Locality-Sensitive Hashing to Stream Filter Memoization . 57

4.3.1 Memoizable Filters . 58

4.3.2 Stable Distribution-based Hash Families 59

4.3.3 Locality-Sensitive Memoization in the StreamIt Symmetric Mul-

tiprocessor Backend . 61

4.4 Locality-Sensitive Hashing in Stream Filter Execution 63

4.4.1 Memoization Profiling Execution 63

4.4.2 Memoization in Steady-State Execution 64

4.5 Adjusting Query Sensitivity for Multimedia Quality and Steady-State

Performance . 66

4.5.1 Measuring Quality with the Signal-to-Noise Ratio 66

4.5.2 Effects of Various Memoization Table Parameters 67

4.5.3 Automatic Tuning for Quality and Performance 70

4.6 Empirical Evaluation . 72

4.6.1 MPEG-2 Decoder Subset . 73

4.6.2 MP3 Decoder Subset . 75

5 Related Work 77

6 Conclusion 81

A MPEG-2 Rendered Frames 83

8

List of Figures

1-1 Example of StreamIt filter with induction variable state. 15

1-2 Example of stateless StreamIt filter using the iter(). 15

1-3 Graphical example of a form of Locality-Sensitive Hashing. 17

2-1 Hierarchical stream structures supported by StreamIt 23

3-1 Summary of the findings of [47]. Of the 763 filters of 65 programs (over

35k lines of code), 55% of stateful filters include avoidable state, and

much of that is due to induction variable state in real world applications. 28

3-2 Example StreamIt filter, as used in MPEG Encoder. 29

3-3 Theoretical speedups of a stateless programs over the corresponding

σ% stateful programs. 32

3-4 Translation of a simple filter with induction variable state that resets

after a certain value. 33

3-5 Translation of a simple filter with induction variable state that resets

to a special value. 34

3-6 Translation of a filter with nested induction variables. 34

3-7 Three versions of the weights calculation filter from Medium Pulse

Doppler (MPD). (a) is the original filter with explicit induction variable

state. (b) is a coarsened version without state. (c) is a version that

utilizes the iter() keyword to avoid state. 36

3-8 Desugaring a filter using iter() keyword. 38

3-9 Fission of a stateless filter that peeks. (a) The original filter (b) the

splitjoin and a detail of fission product J 40

9

3-10 Example of an iteration filter fissed into three fission products each

with multiplicity 2. The chart indicates the values used to determine

the next value of the iteration field. 41

3-11 MPEG Motion Estimation stream graph. 47

3-12 Speedups for MPEG-2 Encoder Motion Estimation subset, with and

without induction variable state. 48

3-13 Speedups for FIRBank, with and without induction variable state. . 49

4-1 Example of a StreamIt filter that can be memoized easily. 59

4-2 Example of a StreamIt filter that cannot be memoized easily. 59

4-3 Graphical example of Locality-Sensitive Hashing for the l2 hash family. 61

4-4 Boundary elements can potentially yield hits with matches that are

not as well matched as with other elements. 68

4-5 Quality comparisons between choices of m for MPEG-2 using locality-

sensitive hashing memoization. 69

4-6 Speedups (line graph) and quality (bar graph) comparisons for MPEG-

2 decoder using locality-sensitive hashing memoization. 74

4-7 Speedups (line graph) and quality (bar graph) comparisons for MP3

decoder using locality-sensitive hashing memoization. 76

A-1 An MPEG-2 rendered frame using no memoization. 83

A-2 An MPEG-2 rendered frame using memoization with untuned m dis-

tance (m = 500). SNR=40db from the source Figure A-1. 83

A-3 An MPEG-2 rendered frame using memoization with untuned m dis-

tance (m = 1000). SNR=45db from the source Figure A-1. 84

A-4 An MPEG-2 rendered frame using memoization with tuned m distance

(m = 3). SNR=73db from the source Figure A-1. 84

A-5 An MPEG-2 rendered frame using memoization with tuned m distance

(m = 10). SNR=61db from the source Figure A-1. 84

10

List of Tables

3.1 Benchmarks using induction variable state and estimations on work

performed in filters with induction state. 31

3.2 Phases of the StreamIt compiler’s coarse-grained task, data, and soft-

ware pipeline parallelism backend [25]. 44

11

12

Chapter 1

Introduction

Multimedia applications represent a large and rich class of programs used across

many computer architectures. Such applications, including audio, video, and graphics

processing, are prevalent in everyday usage across varying computer systems, ranging

from standard laptop and desktop computing systems to handlheld computing devices

and wireless cell phones. Multimedia workloads represent a large part of the workload

in these computing systems, with estimates of up to 90% of desktop cycles being

consumed in multimedia applications [17, 19, 34].

Programmers creating these multimedia applications must consider potential trade-

offs between performance and programming productivity when choosing their target

programming domain. Imperative languages and assembly code provide good perfor-

mance, but may require architecture specific implementations. Functional languages

may provide better representability at the cost of performance. If the programmer

wants to introduce parallelism to their implementation, such programming solutions

would require low-level control and tuning for performance.

Stream programming, on the other hand, naturally represents applications such

as audio, video, digital signal processing, and data analysis; applications that are

increasingly prevalent as computing moves towards data-centric applications and to

the mobile and embedded space. Multimedia programs are often characterized by

sequences of distinct processing stages. By virtue of their structure – a graph of

independent computational nodes (termed filters) with explicit and regular commu-

13

nication – independent processing stages can be mapped to stream programs in a

straightforward manner. Furthermore, stream programs are a natural fit for exploit-

ing coarse-grained parallelism suitable for multicore architectures. The interest in

streaming applications has spawned a number of streaming languages that target the

streaming domain, including StreamIt [48], Brook [15], Cg [37], SPUR [51], Spidle [16],

Lime [8], and SPL [27].

This thesis identifies and implements two optimizations specifically aimed for im-

proving performance of multimedia applications implemented under the domain of

stream programming. We aim to exploit several characteristics prevalent in stream-

ing implementations of multimedia applications. In particular, we eliminate induction

variable state from filters that use them in multimedia applications and implement a

tolerant filter memoization scheme that returns very close approximations to actual

filter output. These optimizations are implemented in the context of the StreamIt pro-

gramming language [48]. StreamIt is a high-performance architecture-independent

streaming language and compiler system. As a language, it allows programmers to

logically connect streaming components into a stream graph. StreamIt relieves pro-

grammers of the burden of performing low-level domain-specific optimizations by

applying them automatically, including automatically exposing implicit parallelism

in stream programs.

Eliminating Induction Variable State

The first optimization eliminates a specific class of state that filters may maintain,

namely induction variable state. This state is represented by a transformation on

the number of executions of a target filter. This state is used very often in multi-

media applications in order to maintain logical counters on the underlying data. For

instance, in the MPEG encoder filter shown in Figure 1-1, MotionEstimation uses

running counters to maintain positions in a two-dimensional array, representing the

underlying blocks of pixels for a picture frame. Induction variable state, and any form

of filter state in general, inhibits parallelism in our target filters. This represents a

bottleneck for parallelization scalability in the application. We present a keyword

14

int->int filter MotionEstimation(int width,

int height, int delay,

int blocks_per_macroblock, int window) {

...

int blockx;

int blocky;

init {

blockx = 0;

blocky = 0;

}

work pop blocks_per_macroblock*64

push blocks_per_macroblock*64+5 {

...

blockx++;

if (blockx == (width/16)) {

blockx = 0;

blocky = (blocky + 1) % (height/16);

}

}

}

Figure 1-1: Example of StreamIt filter
with induction variable state.

int->int filter MotionEstimation(int width,

int height, int delay,

int blocks_per_macroblock, int window) {

...

work pop blocks_per_macroblock*64

push blocks_per_macroblock*64+5 {

int blockx = iter() % (width/16);

int blocky = iter() / (width/16)

% (height/16);

...

blockx++;

if (blockx == (width/16)) {

blockx = 0;

blocky = (blocky + 1) % (height/16);

}

}

}

Figure 1-2: Example of stateless
StreamIt filter using the iter().

solution, namely iter(), to effectively represent the number of executions of the re-

spective filter. Accordingly, this would help eliminate induction variable state and

expose parallelism in multimedia stream programs. Figure 1-2 shows how such in-

duction variable state would be expressed using the keyword solution. The induction

variables in Figure 1-1, blockx and blocky, are incremented predictably. blockx is

incremented on each work() call and on every width/16 call. blocky is updated once

every width/16 work() iteration. Accordingly, each of these induction variables can

be expressed in a straightforward manner with the iter() keyword.

We extend the StreamIt compiler to be fully aware of the new keyword. Most

importantly, we modify StreamIt’s source-to-source filter data-parallelization trans-

formation, termed fission [24], to correctly parallelize filters that utilize the new key-

word. Our formulation correctly calculates the iteration number across data parallel

duplicates of the original filter, taking into account the fact that the iterations of

the original filter are now split across the duplicates. Furthermore, we show how the

modified fission transformation must interact with the steady-state scheduling algo-

15

rithm of the compiler [33] since it may modify the distribution of iterations between

the parallelization duplicates.

The necessity of representing induction variable state and the effectiveness of our

parallelization technique is demonstrated via a case study of the StreamIt imple-

mentation of the motion estimation stage of MPEG-2 encoding [21]. The motion

estimation stage is the most computationally intensive stage of encoding, accounting

for at least a third of the total computation in the entire MPEG-2 encoder [20]. A

static estimation calculates that 98% of the work of the stage is concentrated in filters

that include induction variable state. Originally, these filters cannot be data paral-

lelized because of the presence of state. After modification of these filters to utilize

the iter() keyword, the entire application is data parallel. The StreamIt compiler,

employing our modified fission transformation is able to get significant speedups for

the modified version (use of iter()) over the unmodified version (with explicit in-

duction state) targeting a commodity multicore SMP processor: 5X for 8 cores, 9X

for 16 cores, and 16X for 32 cores.

Tolerant Memoization for Filter Approximation

The second optimization is aimed to introduce memoization of filters to stream pro-

gramming. Multimedia applications have a general characteristic in that incoming

inputs may often be very repetitive. For instance, videos may render similar images

between frames and images may render similar blocks of pixels such as background

colors. This repetitive nature lends itself handily to memoization, which allows skip-

ping expensive operations if we have already calculated a corresponding output in a

previous execution.

However, as we will show, multimedia applications may not lend itself so handily to

the classical function memoization optimization. We instead exploit another common

characteristic that many multimedia applications share – that the target consumers

are the human senses. Human senses have inherent tolerance to low-level inaccuracies

in the underlying data; it is difficult to determine if a specific pixel of an MPEG video

frame is exactly the correct color or simply close enough to the correct color. This

16

Figure 1-3: Graphical example of a form of Locality-Sensitive Hashing.

characteristic, along with the repetitive nature of the incoming inputs, allows us to

memoize certain portions of the stream program, providing potential performance

speedups while still generating a “close-enough” output that is indistinguishable to

the human senses.

We apply an approximate nearest-neighbor solution for finding “close-enough”

memoization matches, called locality-sensitive hashing [22, 18, 5]. Figure 1-3 shows

a graphical example of a form of locality-sensitive hashing. This algorithm relies on

hash functions that hash closer points to the same hash buckets and farther points

in different hash buckets. Points in our sample space are assigned to hash buckets;

in Figure 1-3 each square grid represents a hash bucket. To find near neighbors, our

query point is hashed to identify its hash bucket, thus returning our near neighbors.

This technique allows us to find values that can generate results that are virtually

indistinguishable to the human senses from the original results.

We extend the StreamIt compiler to inject memoization capabilities into target

filters in the stream graph. Such filters will be automatically tuned for quality dur-

ing runtime. Memoization capabilities are automatically disabled if it is determined

the overhead of memoization queries exceeds the benefits of skipping the work() .

We present the performance improvements and compare the quality of the resulting

17

outputs of various multimedia applications, including a decoder for MPEG-2, a video

compression standard and a decoder for MP3, an audio compression standard.

Contributions

This work expands the domain of algorithms for which the stream programming

model, and its associated compiler technologies, is effective at automatically man-

aging parallelism. For automatic parallelization to become mainstream, computer

scientists must continue to remove common sensitivities (in this case induction vari-

able state) that inhibit parallelization. Furthermore, the work introduces a potential

for performance improvements if the application presents some tolerance for inaccura-

cies. Such techniques aim to improve runtime performance of multimedia applications

in the stream programming domain. In accordance to this, this thesis makes the fol-

lowing contributions:

1. Directly represent the basis of induction variable state in the language. We intro-

duce a new expression that is attractive to programmers and precludes the need

for a programmer to maintain induction state in a stream program.

2. Automatic parallelization of induction variable state. We provide modifications to

the foundational parallelization transformation of the StreamIt language so that

it can data parallelize filters with induction variable state utilizing the iter()

expression.

3. Case study of induction variable state. We include a motivating case study of

applications from the StreamIt benchmark suite that include induction variable

state. Furthermore, we demonstrate the performance and scalability benefits of

our approach via the motion estimation stage of MPEG2 encoding.

4. Tolerant memoization for stream programs . We introduce memoization capabili-

ties to stream programs. We relax the requirement of having exact input matches

provided there is a tolerance for slight output inaccuracies.

18

5. Performance and quality analysis of memoization for multimedia applications .

We apply these memoization capabilities to various multimedia applications and

perform runtime tuning to optimize performance and output quality. For MPEG-

2 we found slight performance improvements of 1.14X for 40% hit rates, 1.22X

for 55% hit rates, and 1.27X for 60% hit rates. For MP3 we found performance

improvements of 1.42X for 40% hit rates and 2.02X for 60% hit rates. For both

benchmarks, this optimization yielded outputs that were indistinguishable to the

human senses.

The remainder of the thesis is organized as follows. Chapter 2 provides a brief

introduction to the StreamIt language and its capabilities. Chapter 3 introduces

induction variable state as applied to stream programming and details the imple-

mentation and application of the induction variable keyword solution. Chapter 4

introduces the locality-sensitive hashing technique and details the application of this

technique to filter memoization.

19

20

Chapter 2

The StreamIt Programming

Language

StreamIt is a high-performance streaming language and compiler system. The com-

piler is publicly available [1] and include backends for multicore architectures, clusters

of workstations, and Tilera architectures.

StreamIt is built on the Synchronous Dataflow model of streaming computa-

tions [35]. This model allows programmers to implement independent actors, known

in StreamIt as filters, which act on data items from input channels and push data to

output channels. These filters are composed into a stream graph modeling the desired

computation. The synchronous dataflow model requires filters to have static commu-

nication rates, thus fixing the number of data items the filter consumes and produces.

This restriction allows compilers to perform static analysis of and optimizations to

the stream graph and schedule filters for optimal execution.

StreamIt as a programming language aims to provide high-productivity and high-

performance for the domain of stream programming. The principle goals of the

StreamIt system include:

• Automating streaming-specific optimizations. The model of streaming compu-

tations is unique from other models of programming due to the structuring of

stream programs. Accordingly, we can take advantage of optimizations such as

21

the implicit parallelism in stream programs.

• Improving programmer productivity. StreamIt programs are hierarchical by

nature. As such, they are expressive through easy-to-use hierarchical abstrac-

tions, with an emphasis on a filter’s code reuse. Furthermore, optimizations

are performed without the programmer needing to manually tune the program

or manually implementing them. The programmer simply needs to express the

program in an algorithmically sound manner.

2.1 Filters: Basic Stream Units

As described before, the basic unit of a StreamIt program is a filter. Each filter

represents an actor in the synchronous dataflow model, whereby it reads data items

from an input tape, processes them, and then writes processed data items onto an

output tape. An example StreamIt filter appears in Figure 1-1.

The filter is defined by its work() function. The work() function is the steady-

state execution step of the filter and is called repeatedly by the StreamIt runtime

system. Within the work() function, a filter may peek at a given element off the

input tape, pop the first data item off the input tape, or push a data item onto the

output tape. The rates at which each filter invocation peeks, pops, and pushes are

declared as part of the work() function. Note the peek rate must always be greater

than or equal to the pop rate. If the peek rate exceeds the pop rate, the filter represents

a sliding window computation where some input elements are accessed across multiple

invocations of the filter.

Filters may declare an init() function to initialize any internal data structures.

Filters may also define a prework() function to perform specialized processing of

data items off the input stream prior to the steady state. This is necessary for cases

where their initial processing has a different input or output rate than the steady-state

processing.

22

stream

stream

stream

stream

splitter

am am

joiner

joiner

stream

splitter

stream

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 2-1: Hierarchical stream structures supported by StreamIt

2.2 Stream Hierarchical Structures

As depicted in Figure 2-1, StreamIt provides three hierarchical primitives for compos-

ing filters into stream graphs, namely pipeline, splitjoin, and feedbackloop. StreamIt

requires filters to be connected according to these hierarchical structures. Each hier-

archical construct has itself a single input tape and a single output tape, thus allowing

for complex nested structures of hierarchical primitives of filters. The term stream is

used to refer to any of these hierarchical groups or the individual filters themselves.

A pipeline represents a sequential composition of streams. The pipeline connects

the single output tape of each child stream to the input tape of the subsequent stream.

The ordering of the streams is indicated through successive add calls. Predictably,

the input tape of the pipeline feeds into the input tape of the first child stream and

the output tape of the final child stream feeds into the output tape of the pipeline.

A splitjoin represents a parallel set of streams. The input tape of the splitjoin feeds

into a splitter, which splits the single input tape into multiple tapes. StreamIt prede-

fines two types of splitters: duplicate splitters copy every item on the single splitjoin

input tape to each multiple tape, and round-robin splitters send the data items on the

input tape to a different tape in a weighted round-robin fashion. The StreamIt syn-

tax for the splitters are, respectively, split duplicate and split roundrobin(w1,

..., wn), indicating the first w1 items get sent to the first child, the next w2 items

get sent to the second child, and so on. These multiple tapes correspond to individual

children streams of the splitjoin, operating in parallel with one another. The splitjoin

23

child streams are indicated with successive add calls. The output tape of all of these

children streams feed into a joiner, which converges the output tapes in a weighted

round-robin fashion.

Finally, a feedbackloop represents a cycle in the stream graph. The feedbackloop

contains a body stream, whereby a backwards feedback path is created, a loop stream,

which performs computation on the feedback path, a splitter, which distributes data

between the feedback path and the output tape, and a joiner, which merges items

between the feedback path and the input tape.

2.3 Execution Model and Filter Schedules

A filter’s schedule gives a multiplicity for the filter in a stream graph. The multiplicity

indicates how often the filter’s work() function should be invoked (or prework() func-

tion on the first iteration of the filter).

The steady-state schedule can be calculated such that all filters fire in the schedule,

and the schedule can be repeated indefinitely [35]. Steady-state execution of the

graph entails repeating the steady-state schedule for as many inputs as is expected.

Running a steady-state schedule will leave exactly the same number of data items

on all channels before and after the execution. Execution of the stream graph is

conceptually wrapped in an outer loop that continuously executes the steady-state

schedule. All the multiplicities of the steady-state can be multiplied by the same

constant m, and the result will still be a valid steady-state. We call this process

increasing the steady-state of the graph by m.

Furthermore, an initialization schedule enables the steady-state schedule in the

presence of peeking filters. An initialization schedule is required if peeking is present

in a graph to enable the calculation and execution of a steady-state schedule [33].

During application execution, the init() function is called once for each filter, then

the initialization schedule is executed once, followed by an infinite repetition of the

steady-state schedule.

The StreamIt program is defined with a top-level stream that defines the hierar-

24

chical stream graph. The leaves of the hierarchy correspond to the individual filters

interconnected by channels. Once the schedules have been calculated, the filters are

translated to fit the schedules accordingly, via increasing the initialization or steady-

state multiplicity and the push, pop, and peek rates for the work() and prework() .

2.4 Parallelism in Streaming Languages

The stream graph of a StreamIt program exposes three types of coarse-grained par-

allelism, task, data, and pipeline parallelism.

Task parallelism refers to pairs of filters in a stream graph that are on different

parallel branches. This parallelism is exposed directly by the stream graph, through

the splitjoin construct. Specifically, the output of each filter will never reach the input

of the other. Accordingly, these filters have no dependencies on each other, and can

be safely run in parallel.

Data parallelism refers to filters that have no dependencies between execution

steps. Filters that are data-parallel maintain no state, and accordingly different

execution steps working on different inputs can be performed independently. While

such stateless filters can provide unlimited data parallelism, it can also potentially

increase buffering and latency.

Pipeline parallelism refers to filters connected in a pipeline. Filters that produce

data items and filters that consume them can be mapped onto different cores. There

must be an initialization schedule to prime the inputs, Once enough data is available,

the producer and consumer are independent of one another. Extra synchronization

and effective load balancing is required to maintain the execution.

Introducing parallelism to the streaming program provides the benefits of per-

forming work that is wholly independent of one another simultaneously. However,

in adding parallelism to the program, communication and synchronization costs are

introduced to maintain the the ordering of the data items on the stream and the

correctness of the execution. If a particular filter performs too little work, such costs

may overtake the benefits of executing in parallel.

25

2.5 Stream Graph Transformations

Accordingly, it is necessary for the StreamIt compiler to perform stream graph trans-

formations in order to adjust the granularity of the stream and its filters for the opti-

mizations that require them. As one of StreamIt’s goals is to aid in programmability,

the programmer should express the program at a level of granularity that suits their

understanding of the program, rather than for what is needed for certain optimiza-

tions. Such graph transformations are done automatically without the programmer

needing to modify their code in any way.

Fusion is the process of merging adjacent filters into a single large filter. Fusion

aims to decrease the granularity of the stream graph and merging the work (under

the appropriate schedules) of all affected filters. More details of the implementation

of the fusion transformations can be found at [24].

Decreasing the granularity of the stream graph through merging work() functions

of several filters can enable other optimizations to be performed on the program.

Filter fusion can shorten the live range of certain variables and allow instructions to

be reordered. Furthermore, it can improve load balancing by allowing a larger filter

to be split across multiple cores.

Fission is the process of automatically data-parallelizing filters. The transfor-

mation duplicates the target filter multiple ways and wraps these duplicated filters,

termed fission products, in a round-robin splitjoin. Each of these products can be

assigned to distinct cores, thus introducing data parallelism. More details of the

implementation of the fission transformations can be found in §3.5.1 and [24].

26

Chapter 3

Induction Variable State in Stream

Programs

As described in §2.4, the key to effectively parallelizing stream programs is to take

advantage of data parallelism present in filters that do not maintain state [25]. Data

parallelism provides load-balanced and limitless parallelism (as long as input data

is available). As described, however, data parallelism of a filter is restricted by the

existence of state. Many real-world streaming applications include filters with explicit

state. A prominent example of such state is induction variable state, which is derived

from the number of executions of the filter. For example, a filter may keep track

of how many times it has been invoked, in order to perform a special action every

N iterations. An MPEG encoder has a concrete example of such a filter; motion

estimation uses running counters to maintain positions in a two-dimensional array,

representative of blocks of pixels for a picture frame. The presence of induction

variable state inhibits data parallelism, and represents a bottleneck for parallelization

scalability of the application.

In this chapter we introduce techniques to represent, capture, and parallelize in-

duction variable state in stream programs. Our research is conducted in the context

of the StreamIt programming language [48]. Figure 3-1 summarizes the finding of [47]

in regards to induction variable state on the StreamIt benchmark suite. Of the 65

benchmarks included in the suite many of the real world applications include in-

27

763 Filter Types! 49 Stateful Types!

6% !
Stateful"

94% !
Stateless" 55% !

Avoidable"
State"

45% !
Algorithmic"
State"

27 Types with "
“Avoidable State”!

!
Due to"
message"
handlers"

Due to"
induction"
variables"

Due to"
Granularity"

Sources of Induction Variables"
–  MPEG encoder: counts frame # to assign picture type"
–  MPD / Radar: count position in logical vector for FIR"
–  Trellis: noise source flips every N items"
–  MPEG encoder / MPD: maintain logical 2D position (row/column)"
–  MPD: reset accumulator when counter overflows"

Figure 3-1: Summary of the findings of [47]. Of the 763 filters of 65 programs (over
35k lines of code), 55% of stateful filters include avoidable state, and much of that is
due to induction variable state in real world applications.

duction variable state, including MPEG encoder, beamforming, Trellis, and Medium

Pulse Doppler. It is important to represent induction variable state because it is a

common implementation idiom and parallelizing such state removes scalability bot-

tlenecks to drastically improve parallelization performance. As we will show, even a

small amount of stateful computation will severely limit parallelization scalability as

we quickly transition to the manycore era with hundreds and thousands of cores.

3.1 Induction Variable State

Traditional induction variables encapsulate all variables that are increased or de-

creased by a fixed amount with every iteration of a loop [3]. Induction variable state

as applied to stream programming is a class of state that requires keeping count of how

often a filter has been invoked. Common usage of induction variable state includes

performing some special action after a certain number of iterations and keeping track

of array index positions. Some filters, including some used in MPEG2 encoder and

MPD, maintain multiple induction variables as well, which may either be dependent

28

int->int filter AssignPictureType(
 int width,
 int height,
 int numpictures) {

 int frameno;
 init {
 frameno = 0;
 }

 work pop (width*height*3)
 push 2 {
 ...

 int framecount = frameno % 12;
 if (framecount == 0) {
 ...
 }
 ...

 frameno++;
 }
}

int frameno = iter();

Figure 3-2: Example StreamIt filter, as used in MPEG Encoder.

or independent of each other.

Many applications in the StreamIt benchmark suite, including MPEG2 encoder,

Medium Pulse Doppler, Trellis, and FIRBank, maintain induction variable state by

creating a mutable state field in the corresponding filter. This state can be set to the

desired starting value. The induction variable is consistently updated at some point

during the work call. For many use cases, this induction variable may need to be

reset if it reaches a certain threshold.

Figure 3-2 illustrates a common pattern of explicit induction variable state. This

filter is based on the AssignPictureType filter in the MPEG2 encoder. The im-

plementation of the filter maintains a filter variable frameno that is incremented on

each call of the AssignPictureType’s work function. This variable represents state.

Each iteration of the filter uses a value for frameno dependent on what the value of

frameno was in the previous iteration. The framecount variable is derived from this

state and used in control flow.

29

As presently constructed, induction variable state forces the corresponding filter

to be run in sequential order. In providing a mutable state whose value is dependent

on the previous execution step, it is necessary to run a filter execution step and

establish the induction variable value before moving on to the next execution step.

The tradition fission transformation would not be able to parallelize this filter without

understanding how to properly distribute the calculation of the state. As such, it is

not possible to create duplicates and run them in a parallel fashion.

With induction variable state, it is possible to make the compiler aware of such

state through the keyword solution. Figure 3-2 shows how the same AssignPicture-

Type filter can be rewritten to use the keyword. The compiler can generate the value

for iter() for each iteration of the AssignPictureType filter independent of previous

iterations. Duplicates of the filter can be made and data parallelism opportunities

can be exploited.

3.2 Scalability Implications of Eliminating Induc-

tion Variable State

Table 3.1 indicates programs in the StreamIt benchmark suite that use induction

variable filters (not including source filters) in the manner described above. The

StreamIt compiler provides static estimations of work performed in filters. The above

table indicates the percentage of work performed in specifically the induction variable

filters.

The majority of programs do not have substantial work performed in filters using

induction variables; FIRBank and MPD contain only a few stateful filters whose total

work concentration is fairly low. The MPEG-2 motion estimation subset is the only

exception because its stream graph is comprised mostly with stateful filters. However,

eliminating any form of state will have a large impact on runtime performance even

on programs with low work concentration in stateful filters. We model the potential

speedups of a particular stateful program in this section. For the purpose of this

30

!"#$%&'()"$*(+,-./01,(2$3$%(
4%,/*53&6(789%'(+,'$3,/%'(:1&6(
!"#$%&'&$(#)(*&+,&#-."$-&$/ 0/ 0/ 12345/
.67.&&+8#9:/ 0/ 0/ 12135/
.;7,#<:=(>&)(<&/ 0/ 0/ 32?@5/
A=B/ @/ C/ 32105/
A=DE&<9"+&$/FA"G"</D%G-#G"<H/ 0/ 4/ ?I2445/
A=DE&<9"+&$/F=(9JK$&/=$&>$"9&%%(<LH/ 0/ 0/ 42C?5/

Table 3.1: Benchmarks using induction variable state and estimations on work per-
formed in filters with induction state.

analysis, assume no communication cost between filters. Also assume the compiler

exposes no pipeline parallelism. This assumption forces the serialization of stateful

filters on the stream graph.

Let N be the number of cores we are planning to parallelize over. Let σ be the

percentage of work performed in stateful filters that can have its state eliminated, in

this case solely filters that use induction variable state.

If σ = 0, the entire program is stateless. The program can be fused to coarsen

the granularity, then fissed and mapped to all of the available cores. Each core would

perform 1
N

of the total work. Thus with no state, the program can exhibit speedups

of up to N times the single-core runtime.

For filters that contain stateful work, 1−σ of the work in the program is considered

stateless, and thus can be fissed and assigned to N individual cores. The stateful

filters cannot be parallelized, and is sequential to all work in the program. The total

serialized work is 1−σ
N

+ σ. Thus the total speedup is the serial work divided by the

new parallelized work.

1
1−σ
N

+ σ
=

N

1 + σ(N − 1)

We can characterize the amount of speedup between a completely stateless pro-

gram to an equivalent stateful program with σ percentage of stateful work. This is

31

0

10

20

30

40

50

60

1 2 4 8 16 32 64 128 256 512

Sp
e

e
d

u
p

 o
f

P
ar

al
le

liz
in

g
In

d
u

ct
io

n

V
ar

ia
b

le
 S

ta
te

Available Cores

10%

5%

3%

1%

Work in Induction
Variable Filters

Figure 3-3: Theoretical speedups of a stateless programs over the corresponding σ%
stateful programs.

simply:

N
N

1+σ(N−1)
= 1 + σ(N − 1)

Figure 3-3 indicates the potential speedups over stateful programs given stateful

work percentages and a varying number of cores. Even benchmarks in the suite

that exhibit only 3% work in stateful filters can exhibit 8x speedups with 256 cores.

Providing a means to remove state from filters that exhibit very small amounts of

work relative to the rest of the program can still generate substantial speedups in the

near future.

3.3 The Iteration Keyword

We remove this potential throughput bottleneck by introducing a new language con-

struct that maintains a value indicating how often the corresponding filter has been

invoked. With the introduction of a new language construct, hereafter referred to

as iter(), the programmer can implement a common idiom much more easily. Fur-

thermore, it allows programmers to circumvent the scalability limitations caused by

32

int counter;
int max;
work push 1 pop 1{
 ...
 counter = (counter + C);
 if (counter > max) {
 counter = 0;
 }
}

int max;
work push 1 pop 1{
 int counter =
 (iter() * C) % max;
 ...
}

int counter;
int start;
int max;

init {
 counter = start;
}

work push 1 pop 1{
 ...
 counter = (counter + 1);
 if (counter > max) {
 counter = start;
 }
}

int max;
int start;

work push 1 pop 1{
 int counter =
 iter() % (max - start)
 + start;
 ...
}

Figure 3-4: Translation of a simple filter with induction variable state that resets
after a certain value.

stateful filters limited by induction variable state.

3.3.1 Language Construct Approach

iter() yields the same value as a field that is incremented on every prework and

work invocation. The value returned by iter() indicates how often the filter has

been invoked.

Induction variable state requires the user to maintain mutable state, updating such

state within the filter invocation, and potentially resetting them when required. The

programmer can eliminate much of this code simply by arithmetically manipulating

iter() usage, as illustrated in Figures 3-4 and 3-5. The implementation using iter()

describes the induction variable’s full behavior much more succintly. It is easy to lose

track of where or what causes the induction variable to be updated, but the use of

iter() allows all of this information to be localized.

Multiple induction variables, as used with the stateful filter in Figure 3-6, can be

redefined in terms of iter() as well. It is not necessary to maintain multiple separate

values for state. Independent and nested induction variable state alike can be defined

in terms of iter().

Using iter() captures a common idiom in a very simple manner. Programmers

can write programs that use induction variable state by simply defining their induction

variables in terms of how often the filter has been invoked. Induction variables can

all be derived from this value arithmetically. The transformations from filters using

induction variable state to using iter() are also simple for users to implement.

33

int counter;
int max;
work push 1 pop 1{
 ...
 counter = (counter + C);
 if (counter > max) {
 counter = 0;
 }
}

int max;
work push 1 pop 1{
 int counter =
 (iter() * C) % max;
 ...
}

int counter;
int start;
int max;

init {
 counter = start;
}

work push 1 pop 1{
 ...
 counter = (counter + 1);
 if (counter > max) {
 counter = start;
 }
}

int max;
int start;

work push 1 pop 1{
 int counter =
 iter() % (max - start)
 + start;
 ...
}

Figure 3-5: Translation of a simple filter with induction variable state that resets to
a special value.

int counter_x;
int counter_y;
int max_x;
int max_y;

work push 1 pop 1{
 ...

 counter_x = (counter_x + 1);
 if (counter_x > max_x) {
 counter_x = 0;
 counter_y = (counter_y + 1);

 if (counter_y > max_y) {
 counter_y = 0
 }
 }
}

int max_x;
int max_y;

work push 1 pop 1{
 int counter_x =
 (iter() % max_x);
 int counter_y =
 (iter() / max_x) % max_y;
 ...
}

Figure 3-6: Translation of a filter with nested induction variables.

Some of the common transformations of patterns using induction variables to

filters using iter() can be summarized below.

• Incrementing the induction variable by C for each invocation scales the running

value by C, as illustrated in Figure 3-4.

• Placing an upper bound on the induction variable value establishes a range of

values it may take. This requires taking the running value modulo the size of

this range, as illustrated in Figure 3-4.

34

• Initializing and resetting the induction variable to a special starting value re-

duces the total range of values the induction variable can take. The running

value is taken modulo the size of this new range to calculate the current excess

over the special starting value. We add this value to the special starting value,

as illustrated in Figure 3-5.

• A nested induction variable updates only when another induction variable reaches

a certain threshold. We scale the running value down according to this thresh-

old to indicate it is incremented only once every time this threshold is reached

by the other induction variable, as illustrated in Figure 3-6.

3.3.2 Comparison to Automatic Analysis

Another approach to detecting induction variables in stream programmers involves

automatically recognizing induction variable usage in filter construction.

The approach of automatic analysis would idiomatically detect a variable modified

by a statement similar to var=var+1. For programs such as the MPEG2 picture pre-

processing subset, as depicted in Figure 3-2, there is only one update to the induction

state.

Very few iteration filters, outside of source filters, use induction state in this

limited capacity. Consider Figure 3-4, where the induction variable is incremented

at each iteration step but resets at a threshold value. This pattern is common in

programs that use induction filters; MPD and FIRBank use this technique to iterate

across a provided array one element per iteration step. Trellis uses this technique

to perform a special action once this threshold is reached. There is more than one

location where the induction state can be updated. Furthermore, the induction state

may not be updated at every invocation.

A filter may also have multiple dependent induction variables. The stateful filter

in Figure 3-6 shows a filter using nested dependent induction variables. Co-induction

variables may be constructed to reset the value of other induction variables after it

reaches a certain value.

35

!"#$%&'!"#$%(!)"%*+(,-.)/%(/0(
1(
((!"#$%2/3(4)/5#46(
(()/%(4)/5#47#86(
((999(
((4#+:(;<8=(>(;#;(>(
((1(
((((;<8=.;#;.0?4)/5#424)/5#47#8306(
((((;<8=.;#;.0?4)/5#424)/5#47#8306(
(
((((4)/5#47#8@@6(
(((()!.4)/5#47#8('A(/0(
((((1(
((((((4)/5#47#8(A(B6(
((((C(
((C(
C(

!"#$%&'!"#$%(!)"%*+(,-.)/%(/0(
1(
((!"#$%2/3(4)/5#46(
((999(
((4#+:(;<8=(>?/(;#;(>?/(
((1(
((((!#+(.)/%(4;(A(B6(4;(D(/6(4;@@0(1(
((((((;<8=.;#;.0(?(4)/5#424;306(
((((((;<8=.;#;.0(?(4)/5#424;306(
((((C(
((C(
C(
!

!"#$%&'!"#$%(!)"%*+(,-.)/%(/0(
1(
((!"#$%2/3(4)/5#46(
((999(
((4#+:(;<8=(>(;#;(>(
((1(
((((;<8=.;#;.0?4)/5#42)%*+.0(E(/306(
((((;<8=.;#;.0?4)/5#42)%*+.0(E(/306(
((C(
C(
!

(a)! (b)! (c)!

Figure 3-7: Three versions of the weights calculation filter from Medium Pulse
Doppler (MPD). (a) is the original filter with explicit induction variable state. (b) is
a coarsened version without state. (c) is a version that utilizes the iter() keyword
to avoid state.

Accordingly, the automatic analysis must be flexible enough to detect the induc-

tion variable and potentially unpredictable updating statements. Automatic analysis

must be able to detect incrementing statements that may not be called on every

invocation. The process of simply detecting and identifying induction variables can

potentially branch into many cases each needing to be specially implemented. With

the keyword solution, what value the induction variable should take is left to the user

to control, without potentially inhibiting data parallelism opportunities.

It may also be difficult to detect how the induction value will be updated. The

keyword solution has the added benefit of only maintaining a single value that is

predictable in its updates. The value that the keyword returns is simply the number

of times the filter has been invoked. This value is always incremented by one at the

end of every work call.

3.3.3 Comparison to Coarsening

In cases of explicit induction variable state where the induction variable is reset after a

certain number of iterations, the filter can be converted into a stateless filter by coars-

ening the filter, increasing the number of input items that are required for the work

function execution. Figure 3-7(a) lists the weight calculation filter from the Medium

36

Pulse Doppler (MPD) benchmark. The filter includes explicit induction variable state

as originally implemented by the programmer. This filter can be rewritten without

state (and without using the iter() keyword) by coarsening the filter such that each

work function execution operates on a larger subset of the input. Figure 3-7(b) lists

a coarsened implementation that is stateless. In the coarsened implementation the

filter requires 2n input items.

Figure 3-7(c) lists the implementation of the weights calculation filter utilizing

the iter() keyword. Notice that the filter operates at a finer granularity versus

the coarsened version and that it operates at the same granularity as the original

filter. Although the iter() implementation includes a modulo operation per output,

calculation of outputs will be parallelized (see Section 3.5).

The mantra of stream programming is that the programmer should not be bur-

dened with parallelization, granularity, communication or synchronization concerns.

Implementing a filter at a fine granularity allows the compiler or runtime to decide

on the best granularity for a given architectural target. In practice the use of the

iter() keyword is preferred over a coarsening conversion because:

• The programmer grasped the algorithm and implemented the application at

the fine granularity. A language should constrain the programmer as little as

possible for the sake of performance.

• The coarse granularity implementation requires larger input and output buffers

to implement because of the larger push and pop rates. Larger buffers occupy

more of the cache and could evict filter data or instructions are needed dur-

ing execution. Thus there could be more accesses to longer latency memory

hierarchies [46].

• Larger input and output rates also interact with the steady-state scheduling

algorithm. Since the scheduling algorithm is performing many cascading LCMs,

a single filter with large input and output rates will increase the multiplicities of

all filters of the application, requiring more buffering and increasing latency [33].

37

 work push 1 pop 1{
 int counter = iter();
 ...
}

int iter = 0;

work push 1 pop 1{
 int counter = iter;
 ...
 iter++;
}

Figure 3-8: Desugaring a filter using iter() keyword.

The use of the iter() keyword does not force the programmer to sacrifice

latency for parallelization.

3.4 Desugaring

A filter is classified as an iteration filter when there exists a use of iter() in its

prework() or work() function. In this section, we introduce a simple desugaring

transformation that will convert an iteration filter into a filter that does not include

the iter() keyword, but implements the correct semantics of the iter() uses. We

accomplish this by introducing a state field that records the current iteration of this

filter. This state field is updated in a consistent and compiler-defined manner, so later

transformations and passes (such as fission, see §3.5) can reason about the state.

The iter() expression is replaced with an access to a field holding the value of the

iteration count. Again, the filter is given a definition of this field only if it is classified

as an iteration filter, this field is not added to non-iteration filters. The work() and

prework() function (if it exists) are appended with incrementing statements that

update the iteration value. The name of the state field is compiler defined for easy

recognition by later passes, for the remainder of this paper the field is named iter.

Figure 3-8 provides a code example of the desugaring process. The left filter in

Figure 3-8 shows an iteration filter. All references to the keyword are replaced to field

accesses to the iter field. Figure 3-8 shows the StreamIt code representation after the

iteration keyword is desugared.

38

3.5 Fission of Induction State

Data parallelism is added to a stream program through a transformation known as

fission. Fission is the process of duplicating a stateless filter and wrapping these

duplicates in a splitjoin so that input data is distributed correctly and output data is

collected in correct order. The duplicated filters, known as products, can be assigned

to distinct cores, thus introducing data parallelism.

3.5.1 The Original Fission Transformation

The unmodified fission transformation is described in [24]. In this section we give some

background for the transformation. The original fission transformation is applicable

only to a stateless filter, i.e., a filter that does not include a state field to which non-

constant values are assigned in the prework() or work() functions. The simplest case

for fission is when it is applied to a filter that does not peek (i.e., the peek rate equals

the pop rate). In this case, the filter is duplicated the desired number of ways, and

placed in a round-robin splitjoin, where the weights of the splitter are uniform and

equal to the pop rate of the orignal filter, and the weights of the joiner are uniform

and equal to the push rate of the original filter.

A more complex case is illustrated in Figure 3-9. The base filter, MovingAverage,

is a peeking filter with a sliding window (the pop rate is 1 and the peek rate is N).

In this case the filter is placed in a splitjoin with a duplicate spitter and a round-

robin joiner. Each individual MovingAveragej product has the work() function of the

base filter with some additional code to implement the sliding window correctly. The

duplicate splitter is introduced because of the fact that a single input item is read

by multiple filters (due to the overlapping sliding windows between the products).

All input items are duplicated to all products, with unneeded items being decimated

by popping them at the end of the new work() function. The prework() function

is introduced to decimate input data that is consumed by previous products during

before the first iteration.

Providing the complete algorithm for the fission transformation is beyond the

39

!"#$%"&'()
))*%")'+,-)+./0)+12340)+55()
))))!%!'(0)
)

duplicate!

MovingAverage1(N)! MovingAverageK(N)!

roundrobin!

)
$%"&'())
))+,-)+6)789).)/0))
))*%")'+./)0)+1:0)+55()
))))789)5.)!##&'+(0))
))!87;'789<:(0))
))!%!'(0)
)
))*%")'+./0)+1=340)+55())
))))!%!'(0)

MovingAverageJ(N)!

MovingAverage(N)!
)
$%"&'())
))+,-)789).)/0))
))*%")'+./)0)+1:0)+55()
))))789)5.)!##&'+(0))
))!87;'789<:(0))
))!%!'(0)

 (a) The original filter! (b) Fission product J!

Figure 3-9: Fission of a stateless filter that peeks. (a) The original filter (b) the
splitjoin and a detail of fission product J .

scope of this paper, but from the example in Figure 3-9, the reader can gleam the

necessary background information to understand our modifications to the algorithm

in the next section.

3.5.2 Modifications to Fission Transformation

Fission is applicable only to stateless filters, as the duplication process does not

guarantee consistent behavior if filters contain state that changes between iterations.

Because the desugared iteration filters actually use mutable state to keep track of

iteration values, the fission process must be modified to handle iteration values. If

a filter includes only state in the form of the iter field introduced by the desugaring

process (see §3.4), then it is considered a candidate for the modified fission process

described in this section.

The code additions described below are applied to the fission products after the

original fission transformation algorithm introduces the splitjoin structure and (for

peeking filters) makes it changes to the work() and prework() functions.

40

Source

Sink

int iter_0 = 2;
int init = 0;
int start_0 = 2;
int reps_0 = 2;
int total = 6;

work pop 1 push 1 {
 ...
 int counter = iter_0;
 ...
 iter_0++;
 if ((iter_0–(start_0+init)–reps_0)
 % total == 0)
 iter_0 = iter_0+total-reps_0;
}

int iter_1 = 2;
int init = 0;
int start_1 = 2;
int reps_1 = 2;
int total = 6;

work pop 1 push 1 {
 ...
 int counter = iter_1;
 ...
 iter_1++;
 if ((iter_1–(start_1+init)–reps_1)
 % total == 0)
 iter_1 = iter_1+total-reps_1;
}

int iter_2 = 2;
int init = 0;
int start_2 = 2;
int reps_2 = 2;
int total = 6;

work pop 1 push 1 {
 ...
 int counter = iter_2;
 ...
 iter_2++;
 if ((iter_2–(start_2+init)–reps_2)
 % total == 0)
 iter_2 = iter_2+total-reps_2;
}

iter iter++ Check Next

0 1 (1-0-2) = -1 1

1 2 (2-0-2) = 0 6

6 7 (7-0-2) = 5 7

7 8 (8-0-2) = 6 12

iter iter++ Check Next

2 3 (3-2-2) = -1 3

3 4 (4-2-2) = 0 8

8 9 (9-2-2) = 5 9

9 10 (10-2-2) = 6 14

iter iter++ Check Next

4 5 (5-4-2) = -1 5

5 6 (6-4-2) = 0 10

10 11 (11-4-2)=5 11

11 12 (12-4-2)=6 16

Figure 3-10: Example of an iteration filter fissed into three fission products each with
multiplicity 2. The chart indicates the values used to determine the next value of the
iteration field.

Let F be the stateless filter that is fissed. Assume the fission process yielded N

fissed products, namely F0, F1, ... , Fi, ... , FN−1. The notation Fi represents the

(i+ 1)th fissed product of filter F .

The fission process now modifies the fission products by adding the following

values as fields to the products:

• init: the multiplicity of the initialization schedule. This value is determined

for F and is constant for all fissed products.

• repsi: how often the work() function of the product Fi is invoked between

rounds.

• starti: the value of the induction variable each product Fi starts with, less

the initialization multiplicity. Alternatively,
∑i−1

j=0 repsj of all fission products

preceding the current product.

• total: the periodic multiplicity of F . Alternatively
∑N−1

j=0 repsj. This value is

the same for all fissed products.

41

As described in §2.3 initialization execution is required for peeking filters to ensure

every firing of the periodic steady-state schedule maintains the same number of left-

over items on the channel. The fission transformation guarantees that all initializtion

multiplicities are executed by the leftmost filter. However, all fission products must

take the multiplicity of the initialization schedule into account in their calculations

as the multiplicity is adjusted upwards by this value.

Accordingly, the fission product Fi should start each round with iteration values:

total ∗ k + (starti + init)

and range up to the value

total ∗ k + (starti + init) + repsi − 1

where k is a nonnegative integer indicating how many rounds have been run in the

span of the program.

At the end of each fission product’s work() function, a check must be made to

see if it is necessary to increment the induction variable to the next round of values.

This will prevent certain fissed products from making calls with duplicate iteration

values. This check is done after the field incrementing statement.

(iteri,k − (starti + init)− repsi)%total == 0

This is consistent with the maximum value per round as indicated above. Only when

we reach this maximum value does subtracting starti, init, and repsi from iteri

leave a value divisible by total.

Once the fissed product’s iteration value has reached this value, it must be set to:

iteri,k+1 = iteri,k + (total− repsi)

= total ∗ k + (starti + init) + repsi

+ (total− repsi)

= total ∗ (k+1) + (starti + init)

42

which is the starting iteration value of the next round, as defined.

Figure 3-10 shows the filter from Figure 3-8 fissed into three fission products, each

with multiplicity 2. The accompanying charts for each fissed product are as follows:

• iter indicates the value of the iter field at the start of the filter invocation.

• iter++ indicates the value of the iter field incremented by 1 (which is the

value iter takes prior to the check.

• check indicates the value of (iteri,k − (starti + init) − repsi), which must

be divisible by total in order to advance to the next round.

• next indicates the value iter will take at the next invocation of the fissed

product.

Note that iter jumps to the next round of values with multiplicity 2, as expected.

Accounting for Steady-state Schedule Modification

The code additions described above are dependent on specific values for the initial-

ization and steady-state multiplicities of the fission products. If any multiplicities

change, then the values used in the generated code must be updated. The initializa-

tion schedule is not modified once it is calculated, but certain passes in the StreamIt

compiler may modify the steady-state schedule after fission, increasing the multiplic-

ity of the fission products. In this section we demonstrate how passes that run after

fission and seek to modify the steady-state must update the generated fields.

Increasing the steady-state scales the repsi field for all products. starti and

total are dependent on repsi and must be scaled accordingly. Assume a pass in-

creases the steady-state multiplicity of our filter tom. The generated fields for product

Fi are updated as follows:

• init: unchanged because the initialization schedule in unmodified when the

steady-state is increased.

• repsi = repsi ∗m

43

Phase Function

Front-end Parse StreamIt code and create AST.

SIR Conversion Converts the AST to the StreamIt IR (SIR).

Graph Expansion Expands all parameterized structures in the
stream graph.

Scheduling Calculates initialization and steady-state
execution orderings for filter firings.

Partitioning Performs fission and fusion transformations
for coarsening and parallelism.

Layout Assign filters of the partitioned graph to cores

Filter optimizations Apply traditional optimizations such as constant
propagation, loop unrolling, scalarization and batching.

Code generation Generates code for synchronization, computation, and
communication.

Table 3.2: Phases of the StreamIt compiler’s coarse-grained task, data, and software
pipeline parallelism backend [25].

• starti = starti ∗m

• total = total ∗m

After we increase the multiplicities, the values of the four fields introduced by the

transformation are consistent, i.e., the iteration values will be correctly redistributed

to account for the modification to the steady-state multiplicities.

3.6 Compiler Infrastructure

We have modified the StreamIt compiler infrastructure [1] to include full support

for the iteration keyword and to correctly handle the desugared filters in passes and

transformation that are affected by the presense of state. This section provides an

overview of the compiler and the changes we implemented.

The overall flow of the StreamIt compiler is given in Table 3.2. Begininning our

discussion from the first phase, we made modifications to the parser to correctly parse

the new iter() keyword. An expression class representing iter() was added to the

44

intermediate representation. The type of this expression is always of the base integer

type in the language. We added iter() to the IR so uses of it can be type-checked

by StreamIt’s type checker.

The desugaring step (see §3.4) is performed after Graph Expansion and before

Scheduling. The modifications to the Fission transformation described in §3.5 are

included and called by the partitioning algorithm. Since the Scheduling phase is

called before partitioning, the initialization and steady-state multiplicities for each

filter is available for use by the modified fission transformation.

The compiler includes a function that determines if a filter is stateful or stateless.

Originally, this function looks for a filter field that may be assigned a non-constant

value, and the field may also be read. If such a field exists the filter is classified as

stateful. We do not want desugared iteration filters to be classified as stateful, so we

modified the function to ignore the iter field added by the desugaring, thus classifying

filters that include state that is only the generated iter field as stateless.

The only filter optimization that needed alteration was batching. The batching

optimization increases the steady-state multiplicities of all filters to amortize the cost

of synchronization at the expense of latency [25]. Since this optimization increases the

steady-state multiplicities by a calculated factor m, it must now scale the fields of all

fissed iteration filters as described in §3.5.2. Since the fields are compiler generated,

it is simple to find them by name and scale them appropriately.

The StreamIt compiler infrastructure includes multiple paths and backends. For

the evaluation in the next section, we employ the coarse-grained task, data, and

software pipelining path as described in [25]. This approach aggressively fuses filters,

careful not to introduce state and obscure data parallelism. For our modifications,

desugared iteration filters without additional state are classified as stateless and fused

with other stateless filters during this coarsening step.

A heuristic algorithm considers each task-parallel slice of the graph, introducing

data parallelism when available such that a slice will occupy all cores of the chip.

Coarse-grained software pipelining is introduced by adding appropriate buffering and

a prolog schedule such that within the steady state, there are no dependences between

45

operators. Finally, a heuristic mapping algorithm first groups data parallel filters

together into sets, and then schedules the sets so that each occupies all cores. Stateful

filters are greedily bin-packed to take advantage of software pipeline parallelism. The

next section gives the experiment results.

3.7 Empirical Evaluation

In this section we evaluate the performance and scalability benefits of the iter() key-

word and its parallelization by providing empirical results for two applications that

originally included induction variable state. We modified these applications to remove

the explicit induction variable state, and instead employ the iter() keyword. We

modified the StreamIt compiler as described in the last section. The experimental

architecture is composed of 4 octal-core 2.00 GHz Intel Xeon x7550 processors, each

with 18 MB L3 caches. The architecture has 128 GB of available memory.

3.7.1 MPEG-2 Motion Estimation

This section presents an application of induction variables to the Motion Estimation

compression subset of the MPEG-2 encoder. Motion estimation attempts to generate

predictions with respect to a set of reference frames obtained from previous or future

pictures.

The stream subgraph of the MPEG-2 encoder is illustrated in Figure 3-11 [20].

Each block of pixels will be tested against three types of prediction (no prediction,

forward predicted, and backward predicted) to determine which is the best method

for motion estimation. The MotionEstimationDecision filter determines which is the

best encoding technique for this macroblock.

The filter MotionEstimation is stateful and contains the majority of the work.

The MotionEstimation iterates through a two-dimensional array (16x16 macroblocks)

along the picture and relies on induction variables to maintain its array position. We

can apply the induction variable transformation on this filter to remove the state in

the filter.

46

MotionEstimation
Work = 49.1%

MotionEstimation
Work =49.1%

IntraMotionPrediction
Work = .2%

Duplicate

Round Robin

MotionPredictionDecision
Work = 1.6%

Figure 3-11: MPEG Motion Estimation stream graph.

Reference pictures can be set using upstream messaging from later in the stream

graph. Currently the backend does not support the use of upstream messaging, so

for the purpose of benchmarking this application, the reference picture is set to a

dummy value and is unchanged throughout the program. This does not detract

from the data parallelism introduced after removing the induction state. Upstream

messaging would simply require that sent messages be duplicated to all fissed filters

in the stream graph.

Figure 3-12 shows the speedup figures for the MPEG-2 motion estimation sub-

set. There is a noticeable speedup for 2 cores for both induction state and iteration

keyword implementations. This can be attributed to the stream graph, which is

composed of two stateful MotionEstimation filters that have task parallelism. The

bottleneck in data parallelism is apparent as we increase the number of cores past

2, as the majority of the work cannot be partitioned and load-balanced effectively

across multiple cores.

Theoretical speedup is calculated using the theoretical speedup value from 3.2 and

the base induction state runtime values. The model requires work to be serialized.

47

0

5

10

15

20

25

30

35

1 2 4 8 16 32

Sp
e

e
d

u
p

s
O

ve
r

1
 C

o
re

Cores

Using iter()

Base induction state

Theoretical Speedups

Figure 3-12: Speedups for MPEG-2 Encoder Motion Estimation subset, with and
without induction variable state.

Since almost all of the work is embedded in the two filters that are task parallelizable,

we can estimate the theoretical speedups by dividing the theoretical speedup value

by 2. This is reflected in Figure 3-12.

We can see significant improvements to runtime after making this subset stateless

and exposing data parallelism. There is a 4.93X speedup on 8 cores, 9.30X speedup

on 16 cores, and 15.62X speedup on 32 cores between the base induction variable and

iteration keyword implementations.

3.7.2 FIRBank

The FIRBank benchmark contains multiple finite impulse response filters each with

a different impulse response coefficient array. This benchmark is used in speech

processing applications. FIRBank contains one filter that uses induction variable

state with 3.94% of program’s work. This filter, Multiply, maintains induction state

in an index that traces through the rows of a two dimensional array. Each invocation

performs complex multiplication on the stream input values and the array elements

of that specified row. The conversion to the iter() keyword version removed 5 lines

and added 1 line.

48

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32

Sp
e

e
d

u
p

s
O

ve
r

1
 C

o
re

Cores

Using iter()

Base induction state

Theoretical Speedups

Figure 3-13: Speedups for FIRBank, with and without induction variable state.

The original version with explicit state is partitioned into a 3 filter pipeline: state-

less filter, stateful filter (with explicit induction state), and a stateless filter. The

stateless filters are data-parallelized, but the first requires data to be collected in a

joiner (in a synchronization point) before passing on to the unparallelized stateful fil-

ter. Furthermore, output from the stateful filter must be communicated to all cores of

the chip as the last stateless filter has fission products on all cores. In the iter() ver-

sion, the entire application is fused to a single filter that can be data parallelized.

There is no inter-core communication in the fused and parallelized final version.

Figure 3-13 indicates the speedups over 1 core for both induction state and iter-

ation keyword implementations. We do not see close-to-perfect scaling in this appli-

cation because I/O costs dominate the computation costs. However data parallelism

is exposed. Between the two implementations, there is 1.36X speedup on 8 cores,

1.58X speedup on 16 cores, and 1.83X speedup on 32 cores for the iteration keyword

implementation. This abides fairly closely with the model as described in Section

3.2.

49

50

Chapter 4

Locality-Sensitive Memoization in

Streaming Multimedia Programs

Multimedia applications exhibit special characteristics that are well suited for mem-

oization. Many multimedia inputs have redundancy in the underlying data. Images

may have very similar blocks of pixels. Audio files may have sequences of similar

sounds. Video files render similar images between frames. In fact, multimedia com-

pression techniques exploit such redundancy in order to represent the data in much

smaller output sizes.

Such applications also share the quality that the target consumer of the program

output is the human senses. Human visual and audio perception presents an inherent

tolerance in processing their respective medium. The inherent benefit of such image,

video, and audio compression techniques is that it will save on generated output size

at the loss of some computing accuracy in its processing. Such loss in accuracy would

generate some degradation in output quality. However, this loss in quality is largely

indistinguishable by the human senses.

The computer systems that run such multimedia applications include desktop

computers, laptops, handheld devices, and mobile phones. Many of these devices are

powered by battery, and accordingly must be careful to consume energy efficiently.

As multimedia applications are the most dominant component of a typical system’s

workload, providing optimizations that will save the system from performing expen-

51

sive computation will help reduce energy consumption.

Accordingly, we construct a memoization technique, applying an approximate

nearest-neighbor algorithm to find memoization matches, targeted for applications

that can tolerate slight losses in computation accuracy. This technique is implemented

in the StreamIt programming language [48]. The StreamIt benchmark suite contains

several multimedia applications for which memoization can be applied effectively,

including MPEG-2 decoding [30] and MP3 decoding [29].

In this chapter, we describe classical function memoization (§4.1), locality-sensitive

hashing (§4.2), our approach to filter memoization for stream programming (§4.3.2),

and changes made to the runtime system for filter memoization (§4.4 & §4.5).

4.1 Function Memoization

Function memoization [40, 41] is a widely used and widely researched optimization

technique. The main purpose of memoization is to potentially bypass the execution

of an expensive function call that may have been previously executed. Such function

calls are identified according to some input that dictates the filter’s execution. These

functions have the quality that subsequent executions with the same input should

yield the same output.

Memoization provides access to such input-output pairs by storing them in a

lookup table. This lookup table can be preloaded and can be populated throughout

the program execution. Subsequent executions of the function would first query the

lookup table with the appropriate inputs. If an input-output pair is found, the output

can simply be returned. Accordingly, the technique makes a predictable tradeoff on

space used for potential performance gained.

Memoization is a particularly useful technique for programs with inputs that are

often repeated throughout a program’s execution. This property is often commonly

exhibited with multimedia applications. Videos processing often renders similar im-

ages between frames. Image processing often needs to render large areas of similar

color data. Audio processing often have repeated sounds or large sequences of silence

52

that requires the same function executions.

4.1.1 Barriers for Streaming Multimedia Applications

Unfortunately, this simple means of function memoization does not work as well for

streaming multimedia applications in practice. Several barriers exist when applying

function memoization to streaming multimedia programs.

Many multimedia applications represent the underlying media files using floating-

point figures. Even within the same media file, some fuzziness or floating-point preci-

sion roundoff errors may cause slight deviations on the floating-point representation.

As function memoization operates by matching input parameters, such fuzziness can

cause inexact values, thus preventing lookup table matches. Accordingly the use of

function memoization really only introduces extra overhead in space usage for the

lookup table and program execution in lookup time.

In the context of the streaming space, multimedia programs often have filters that

exhibit very large input and output rates. MPEG-2 processes frames a block at a

time, which constitutes a set of 8x8 luminance samples. MP3 reorders and adds data

across large sliding windows (over 1000 peeks required). Channel vocoder performs a

sliding autocorrelation and threshold across a large set of items (by default 100 peeks

required). After compiler fusion transformations are applied, such input and output

rates can increase. The input spaces for such multimedia programs are generally very

large, and as such can cause a drastic increase in the overhead of looking up entries.

Furthermore, we would need to be careful when choosing our target filters for

memoization. It may be possible that the overhead of performing memoization queries

may exceed the benefits in skipping the work() . The amount of work saved via

performing lookups to a lookup table may not be enough to compensate for the

amount of work required to perform the lookups in the first place. Applying the simple

function memoization technique to stream programming for multimedia applications

would likely yield little benefit, unless the inputs are deliberately selected to fit the

technique.

53

4.1.2 Inexact Memoization for Streaming Applications

Many multimedia algorithms including MPEG-2 and MP3 are examples of lossy com-

pression algorithms. Accordingly, corresponding applications present a level of tol-

erance to the resulting output data. It is possible to introduce speedups to the

processing of the application at the cost of some loss in the accuracy of the resulting

output. Such deviations to the output are allowed because the final target of the

outputs is the human senses. While some visual or audible differences may exist in

the resulting output, as long as such differences are inperceptible to the human sense,

it may still be accepted by the target user.

As described in §4.1, multimedia applications often presents a level of repetitive-

ness in the underlying data. However, because of the barrier of inexact matches as

described in §4.1.1, it may be necessary to adjust the strictness of our memoization

technique in order to exploit the repetitive nature of the data in our multimedia

applications.

Such streaming video or audio processing applications exhibit a nice property

that a small change to the input results in a corresponding small change in the

output [42]. A slight change in the color data (chrominance sample) of an MPEG-2

frame, for instance, would propagate the same slight change in the resulting output

frame. Accordingly, we can relax the function memoization requirement of having an

exact match to allowing an inexact but “close-enough” match. This makes it possible

to exploit the tolerance of an application’s target user to achieve the desired speedups

via memoization.

The process of finding a “close-enough” input match is analagous to solving the

nearest neighbor problem. This problem is defined as follows: given a set of points P ,

all of which are in an input space S, a requested query point q ∈ S, and a distance

metric D, find the point p ∈ P that minimizes D(q, p).

It is straightforward to map the nearest neighbor problem to the problem of match-

ing inputs for memoization. P corresponds to the inputs of the lookup table and the

query point q refers to the querying input of the current filter execution. The input

54

space S refers to the input space of all incoming inputs for the target filter. For

example, an int->output filter with a peek rate of d has an input space in Zd, and

a float->output filter with a peek rate of d has an input space in Rd.

The time complexity of many nearest neighbor solutions suffer from exponential

scaling with the dimensionality of S. As described in §4.1.1, input rates are often very

large for multimedia programs. This would in turn significantly scale up dimension-

ality of the input space and the time complexity of input matching. As memoization

is a technique that imposes an ideally slight overhead for finding appropriate input

matches on all function calls, it is crucial to find a nearest neighbor solution that can

find an appropriate match without imposing significant performance delays.

4.2 Locality-Sensitive Hashing

Solutions for the nearest neighbor problem for data points in d-dimensional Euclidean

space suffer from exponential scaling in either space or runtime. For large enough

dimensions, such solutions offer little improvement to a linear search over all points in

the table. Such large dimensions are very common for streaming programs, especially

after fusion transformations are applied. Often times, however, applications of the

nearest neighbor problem do not require the actual nearest neighbor, but rather an

approximate point. The approximate nearest neighbor problem relaxes the condition

of finding the exact nearest neighbor to the query point to finding a neighbor within

a certain range of the query point.

Locality-sensitive hashing [22, 18, 5] is a randomized algorithm for solving the

approximate nearest neighbor problem in the Euclidean space. Locality-sensitive

hashing helps to deal with the previously described curse of dimensionality, along

with the problem of inexact input values as described in §4, in solving the nearest

neighbor problem. The algorithm relies on hash functions that map similar data

inputs into the same hash bucket, with high probability. Data inputs are loaded

into the hash table accordingly. Querying the hash table is a matter of using the

hash functions to identify the corresponding hash bucket and iterating through the

55

appropriate input values in the hash buckets.

4.2.1 Locality-Sensitive Hash Families

Locality-sensitive hash families [18, 5] define a set of functions that exhibit the prop-

erty that data inputs close to one another in the Euclidean space will, with high

probability, be mapped into the same hash bucket. A hash family is defined below

for an input domain S, a distance metric d, and an approximation factor c.

Definition 1. A hash family H = {h : S −→ U} is called (r, cr, p1, p2)-

sensitive for d if for any pair of points p, q ∈ S:

• If d(p, q) ≤ r then PrH[h(p) = h(q)] ≥ p1

• If d(p, q) > cr then PrH[h(p) = h(q)] ≤ p2

The locality-sensitive hash family definition specifies that points near one another

(i.e. with distance less than r) will be hashed to the same bucket with probability

at least p1. Furthermore, the probability of points that are far from one another

(i.e. with distance greater than r) being mapped to the same hash bucket is bounded

above by p2. A locality-sensitive hash family defined by above is useful if p1 > p2 and

c > 1. By this definition, inputs that are near one another have a higher probability

of being hashed into the same bucket than inputs that are far from one another.

Locality-sensitive hash families exist for various distance metrics. Families for

Hamming distance for binary vectors [28], the Jaccard similarity coefficient for sample

sets[14, 13], and ls norms for s ∈ [0, 2) between vectors in some vector space [18] can

be applied in the locality-sensitive hashing algorithm.

4.2.2 Locality-Sensitive Hashing Algorithm

The general locality-sensitive hashing algorithm consists of a preprocessing step to

populate the hash tables and a querying step for finding an appropriate near neighbor.

The algorithm also must also take measures to ensure the data points are bucketed

and accessed correctly (with high probability).

56

Given a hash family G, with parameters (r, cr, p1, p2), it is possible that the proba-

bilities p1 and p2 are too close to one another. Such can hinder the performance of the

system as either points not close in distance are bucketed with comparatively higher

frequency, or points that are near in distance are bucketed with comparatively lower

frequency. This probability gap can be increased through an amplification process.

We define a new hash family H where each function h is defined by the concatenation

of k functions g1, g2, ..., gk in the hash family G.

This new hash family causes reduces the collision probability of objects with large

distance between one another (pk2), but also reduces the probability of nearby objects

(pk1). Accordingly, to further amplify the process of locating an appropriate approx-

imate near neighbor, the algorithm constructs L different hash tables, each defined

by a hash function h from the newly formed hash family H.

The preprocessing step takes all n points from the input set S and hashes them

into each of the L different hash tables. With high probability, loaded points that

are close together would be located in the same hash bucket for at least some of the

L hash tables.

To query for a nearest neighbor, for each hash table, calculate the appropriate hash

bucket for the query point. Each point in each hash bucket is retrieved. The distances

between the input point and the retrieved points are calculated. If a distance is less

than the requested threshold, the corresponding retrieved point is reported as a near

neighbor.

4.3 Applying Locality-Sensitive Hashing to Stream

Filter Memoization

In applying this approximate nearest-neighbor solution to memoization in stream

programming, we must define several characteristics for the target stream programs

to ensure locality-sensitive hashing achieves the expected results in filter memoization.

We first define what is considered the “input” for our target memoization tables.

57

For the original function memoization, the function parameters act as the identifying

input. The analagous components in stream programs are the values coming off the

input stream, specifically the values we peek. Functionality of the filter comes from all

incoming values that will be used in the processing of the filter, regardless of whether

or not we pop them off the stream.

4.3.1 Memoizable Filters

It is also important to ensure that the target filter yields similar output values for

similar input values, as follows:

Definition 2. A filter F : Rk → Rm is memoizable if:

Given that F maps input (p1, p2, ..., pk) to output (q1, q2, ..., qm):

For each i such that 1 ≤ i ≤ k, there exists some small δ, ε1, ε2, ..., εm ∈ R

such that F maps input (p1, p2, ..., pi + δ, ..., pk) to output (q1 + ε1, q2 +

ε2, ..., qm + εm).

This characteristic of the filter ensures that small changes to the filter’s inputs

will in turn generate comparably small changes to the output. If at any specific input

point there are significant jumps in the output, the memoization table may return

very different output values for the filter, which would in turn cause large deviations

in the overall stream program.

Figure 4-1 shows a LowPassFilter as used in the FMRadio application. This

filter is an example of a good candidate for memoization. Any δ change to one

of the next taps inputs off the input stream would simply affect the resulting sum

value by a factor of the δ change. Accordingly, an approximate input match for the

LowPassFilter (of taps many floats) would still generate a fairly close output sum

value.

Figure 4-2 shows a Detect filter as used in the Frequency-Hopping Radio appli-

cation. This filter is a trickier to memoize with the locality-sensitive technique due

to the step-function nature of the work() function. A slight change to the first input

58

float->float filter LowPassFilter(float rate,

float cutoff, int taps, int decimation) {

float[taps] coeff;

init {

int i;

float m = taps - 1;

float w = 2 * pi * cutoff / rate;

for (i = 0; i < taps; i++) {

if (i - m/2 == 0)

coeff[i] = w/pi;

else

coeff[i] = sin(w*(i-m/2)) / pi / (i-m/2) *

(0.54 - 0.46 * cos(2*pi*i/m));

}

}

work pop 1+decimation push 1 peek taps {

float sum = 0;

for (int i = 0; i < taps; i++) {

sum += peek(i) * coeff[i];

}

push(sum);

for (int i=0; i<decimation; i++) {

pop();

}

pop();

}

}

Figure 4-1: Example of a StreamIt fil-
ter that can be memoized easily.

float->float filter Detect(float start_freq,

int channels, float channel_bandwidth,

float hop_threshold, int pos) {

work pop 1 push 2 {

float val = pop();

push(val);

if (val > hop_threshold) {

push(pos);

} else {

push(0);

}

}

}

Figure 4-2: Example of a StreamIt fil-
ter that cannot be memoized easily.

off the input stream may cause the resulting float val to be greater or less than the

hop threshold where it would otherwise be the opposite, causing a far more no-

ticeable change to the resulting output. It may be possible that this deviation will

be automatically corrected or accounted for further down the stream graph, thereby

mitigating the noticeability of this deviation in the final output. However, the mem-

oization technique operates on a filter-by-filter basis without knowledge of the rest

of the stream graph. Accordingly, the algorithm attempts to maintain the sensible

outputs for the program on the filter level.

4.3.2 Stable Distribution-based Hash Families

In establishing the input of our memoization tables as the values we peek off the

input stream of our target filter, we must select an appropriate hash family. As we

can represent the inputs as points in Euclidean space (Rd), we can apply the locality-

59

sensitive hashing scheme as documented in [18, 5]. The following section provides an

overview of the locality-sensitive hash family as applied to p-stable distributions and

the lp norm distance metric, in particular the Euclidean norm.

A distribution D is considered p-stable [43] if for n independent and identi-

cally distributed variables X1, · · · , Xn all under the distribution D, and n constants

a1, · · · , an, the random variable
∑

i ai ∗Xi has the same distribution as the random

variable (
∑

i |vi|p)(1/p)X for some p > 0 and X under the distribution D. A commonly

known stable distribution exists for p = 2, namely the Gaussian (normal) distribution.

The definition of p-stable distributions provides a nice property that allows us

to deal with high dimensionality efficiently for the locality-sensitive hashing scheme.

Given an input vector v of dimensions d, we generate a random vector x where each

entry is chosen from a p-stable distribution. The dot product v · x =
∑

i vi ∗ xi has

the same distribution as the random variable (
∑

i |vi|p)(1/p)X where X is a random

variable with p-stable distribution. This random variable is simply ‖v‖pX. For p = 2,

this norm is the Euclidean norm.

The hashing scheme uses this dot product v · x to assign a hash value for each

vector v. As the dot product is distributed according to ‖v‖pX, it is locality sensitive.

Consider such vectors, v1 and v2, that are close together, (low ‖v1−v2‖p). The hash

value returned for both vectors are v1 · x and v2 · x respectively. The difference of the

hash value, v1 · x− v2 · x = (v1 − v2) · x, is distributed with ‖v1−v2‖pX, by definition

of p-stable distributions. Accordingly, two vectors with lower ‖v1−v2‖p would return

hashes that are closer in value than two vectors with higher ‖v1−v2‖p. Accordingly,

rather than performing exponential searches in high-dimension input spaces, we can

simply compute the Euclidean norm to find the appropriate hash bucket.

The hashing scheme we define for the locality-sensitive memoization is defined by

a 2-stable distribution-based hash family (Gaussian-based). By performing the dot

product v · x, we are effectively performing a scalar projection of v onto the real line.

This real line will be bucketed into equi-width segments of size r. Hash values for

each vector are assigned according to the corresponding segment of the real line that

the vector has projected onto.

60

x

r

r

r

h(v)

Figure 4-3: Graphical example of Locality-Sensitive Hashing for the l2 hash family.

In particular, our hash function h : Rd → Z maps incoming inputs of dimension-

ality d to some integer hash value. Each hash function is defined by a vector x, a

d-dimensional vector where each entry is chosen from a 2-stable (Gaussian) distribu-

tion, and a real value b, a real number uniformly distributed in the range [0, r]. The

hash function is then defined as h(v)= bv·x+b
r
c. The remainder of the locality-sensitive

hashing algorithm follows in line with the process described in §4.2.2.

4.3.3 Locality-Sensitive Memoization in the StreamIt Sym-

metric Multiprocessor Backend

The locality-sensitive memoization scheme has been implemented in the StreamIt

backend for symmetric multiprocessor (SMP) architectures. The focus of this algo-

rithm is for single-core performance.

We assign targets for filter memoization after the completion of the fusion transfor-

mations in the partitioning phase of the StreamIt compiler as described in Table 3.2.

Good targets for filter memoization are the filters that exhibit the highest amount of

work, which is identified with internal work estimation calculations. The main pur-

pose of identifying high-work filters is to amortize the cost of performing the search

on the input space. The cost of calculating the hash function and performing a

search through the inputs in the corresponding hash buckets is not dependent on the

61

amount of work performed in the filter. However, more work for the target filter can

be skipped if the memoization process yields an input match.

The memoization table for any particular stream filter maps an integer hash value

(i.e. the corresponding hash bucket) to a linked list of input and output pairs. The

input vectors, of dimensionality de as defined by the peek rate of the filter, and output

vectors, of dimensionality du as defined by the push rate fo the filter, are all vectors

generated from filter execution.

Each memoization table also maintains a unique vector analagous to the vector

x in §4.3.2 of dimension dx. x is generated by selecting dx many random Gaussian

values. This value dx may not necessarily be equal to de, but will always be at most

de. For performance improvements, we implement a means of sampling only a portion

of the inputs off of the input stream. This effective downsampling would require the

hash function to perform less calculations while still preserving the locality-sensitive

property of the hash function (closer points will still return similar hash values, though

the probability for farther points to return similar hash values increases). If downsam-

pling is active in the target filter, the table maintains an additional vector s indicating

the indices of the input vectors that we choose to sample.

Each memoization table also maintains a segment size r and the random value b

in the range [0, r). This segment size r is largely input dependent and is determined

on loading input and output pairs into the table.

Lastly, as we are effectively attempting to solve the approximate nearest neighbor

problem, we maintain a maximum distance value m. This value indicates that for

a query input vector vi and a proposed memoized input vector match vj, it must

be true that D(vi, vj) ≤ m, where D defines the Euclidean distance function. This

requirement ensures that the proposed match is indeed “close enough” to our query

input vector. As a result, the final output vector of the filter execution should be

“close enough” as well.

The hash function corresponding to each memoization table is defined similarly

to what is specified in §4.3.2. The function takes an input vector of dimensions de. If

the target filter has downsampling active, only the corresponding entries of the input

62

vector (as specified by s), are used in the dot product with x. The final hash value is

specified by:

h(v) = bvsamp · xsamp + b

r
c

4.4 Locality-Sensitive Hashing in Stream Filter Ex-

ecution

As described in §4.3.3, target filters are chosen during compile time using approxi-

mate work estimate figures. For filters with large enough work estimates, providing

effective amortization of the costs of performing memoization lookups, memoization

capabilities are attached to the target filter. This process is performed entirely dur-

ing compilation. The entirety of the memoization preprocessing and querying is

performed during runtime execution of the program. The following section describes

the process of preprocessing, loading, and querying the memoization tables during

runtime execution.

4.4.1 Memoization Profiling Execution

The memoization tables must be populated with meaningful data in order to be

effective in execution. As we set out to exploit the repetitive nature of the multimedia

data, we choose to profile the program on execution of the program itself.

The user can choose to execute the profiling step of the program for a set number

of iterations. In this process, each filter iteration maintains an array of inputs and

outputs. Prior to the target filter’s work() function, inputs off of the input stream are

peeked and stored in the input array. Each subsequent push() records a single output

value, which is stored in the output array. At the completion of the work() function,

the input and output arrays are added to a profiling set of input-output pairs. At

the completion of the profiling execution, all stored input-output pairs are written to

disk, for future steady-state execution.

63

The main purpose of maintaining a separate profiling execution step is to set the

required parameters in our memoization tables more effectively. Parameters such as

the segment size, r, must be adjusted according to the maginitudes of the incoming

inputs in order for the memoization tables to be both effective and efficient. Statically

establishing r to too large a value may yield too many inputs in a single bucket, thus

slowing down the search for a proposed match. Setting r to too small a value may yield

too little inputs per bucket, thus bypassing potential matches that would otherwise

have been accepted in execution. Furthermore, the segment size r cannot be altered

in the duration of the steady-state execution as all inputs are indexed according to

the defined hash function, which is in turn defined according to r. Altering r in the

middle of execution would require reindexing the entire memoization table.

4.4.2 Memoization in Steady-State Execution

The profiling execution step must be performed prior to the steady-state execution.

Prior to both the initialization and steady-state schedule of the stream program, the

preprocessed caches on disk are loaded onto the memoization tables. If such cache

files are not found in the expected location, memoization capabilities will be made

inactive for the remainder of the steady-state schedule.

The memoization tables are initialized as described in §4.3.3. The unique vectors

x and s are generated prior to loading. r is loaded according to the value indicated

in the cache file. These values must be assigned prior to loading inputs as the hash

value for each input vector is dependent on what they are set to. Adjusting these

values would require expensive reindexing operations.

m is originally set to a best-guess static value according to the general magnitude

and dimensions of the inputs. This value has no effect on how values are loaded into

the table, as it is only used during runtime. It will be automatically adjusted for a

desired quality level during steady-state execution.

Inputs and corresponding outputs are read off of the cache files on disk and loaded

to the corresponding memoization table. Currently, we only use one table for each

target filter, bypassing the amplification process used in locality-sensitive hashing.

64

There may be potential benefits for speedups in using multiple tables for one filter at

the cost of additional memory usage, but in applying this technique to the StreamIt

benchmark suite, we find an appropriately tuned p2-stable distribution hash family

very accurately assigns hash buckets for our target inputs. Loading is a matter of

computing the hash value bvsamp·xsamp+b

r
c, where vsamp corresponds to the downsam-

pled input vector. The input and output pair are added as an entry to the linked list

corresponding to this hash value.

During steady-state execution, querying the memoization tables requires first ac-

quiring all entries from the input tape. Prior to any filter execution, the entire input

vector (all inputs the filters peek off of the input tape) is acquired. We calculate

the target hash value bvsamp·xsamp+b

r
c, where vsamp corresponds to the downsampled

input vector. We then iterate over the corresponding linked list of input-output pairs.

For each input-output pair we calculate the l2 distance (i.e. Euclidean distance) be-

tween the actual peeked input and the proposed input match. This distance value is

compared with m to determine if the two input vectors are “close-enough” matches.

If the distance value is less than or equal to m, we consider this a “close-enough”

match and in turn we can bypass any work performed in the filter. This still requires

the appropriate number of pop() calls to clear the input tape for the next execution.

Lastly, we push() each entry of the matched output vector.

If the distance value is greater than m, we cannot consider this a “close-enough”

match. The next input-output pair entry in the linked list will be checked. If none

of the values in this hash bucket can be considered “close-enough”, there are several

options to we can do to proceed. If there are multiple memoization tables, we can

repeat the entire process for this entry with other memoization tables under a different

random vector x. If there are no potential matches in any memoization table, we must

identify this input vector as a cache miss. This would require the filter to be executed.

If we choose to allow the memoization tables to learn during steady-state execution

(not set by default), the target input-output pair can be added similar to how the

loading step is performed.

65

4.5 Adjusting Query Sensitivity for Multimedia

Quality and Steady-State Performance

Function memoization is primarily used as a performance optimization. As the tech-

nique provides exact results for exact matches, there is little need to consider how the

optimization affects the overall output of the program. The locality-sensitive hashing

approach to filter memoization provides inexact results that must be “close enough”

to the actual output. The notion of two outputs being “close enough”, however, must

be quantified in some manner to allow the runtime system to adjust the memoization

calculations if required.

4.5.1 Measuring Quality with the Signal-to-Noise Ratio

A widely-used metric for quantifying the quality of several multimedia processing

methods, including video and audio compression programs, is the Signal-to-Noise

Ratio (SNR). This ratio attempts to measure the level of the desired signal to the

level of the background noise.

For the context of the memoization optimization, we attempt to identify the

amount of noise introduced by the inexact nature of the filter memoization as com-

pared to the expected execution of the program without the use of memoization.

Though the SNR works best with a pure desired signal, this optimization technique

attempts to generate an output that matches the expected output as close as possible.

Accordingly our desired signal will be the expected output of the program (without

memoization enabled). We can thus calculate the SNR as follows:

SNR =
Power of the Desired Signal

Power of Corrupting Noise in Output Signal

=
RMS(Samples of the Desired Signal)2

RMS(Deviations between Desired and Output Signal)2

=
1
n

∑
Sd,i

2

1
n

∑
(S2

d,i − S2
o,i)

=

∑
Sd,i

2∑
(S2

d,i − S2
o,i)

66

SNR is usually represented in logarithmic decibel format to manage the large

ranges in values that can be inputted, defined as follows:

SNRdb = 10 log10

(
Power of the Desired Signal

Power of Corrupting Noise in Output Signal

)

SNRdb = 10 log10

(∑
Sd,i

2∑
(S2

d,i − S2
o,i)

)

Good SNRs vary from application to application. Generally, however, having more

signal compared to background corrupting noise is better for the output quality. As we

are calculating the SNR of our modified output against the actual generated output,

a high SNR would mean our modified output is indistinguishable from the actual

output.

4.5.2 Effects of Various Memoization Table Parameters

§4.3.3 enumerates the parameters that define each memoization table. As every input-

output pair is indexed according to these parameters, what they are set to has a very

noticeable impact on performance or quality of our steady-state execution.

Effects of Segment Size: r

Perhaps the most important parameter in the context of the locality-sensitive hashing

scheme is the segment size r, which largely determines what hash buckets each input

vector is hashed to. We briefly described the consequences of not having a tuned r

in §4.4.1. If r is set too large, graphically, we have larger segments, thus allowing

more inputs to be projected onto this segment. Accordingly, there are more inputs in

this hash bucket. Our program execution, as described in §4.4.2, requires a distance

function to be calculated on each input in the hash bucket. Too many inputs would

thus require many more distance functions to be executed. On the other hand, if r is

set too small, we would have smaller segments and less inputs would be projected onto

the same segment, even if two inputs are close enough to be considered “close-enough”

67

x

r

r

r

h(v)

Figure 4-4: Boundary elements can potentially yield hits with matches that are not
as well matched as with other elements.

matches. With too many memoization table misses, even though such good matches

exist, we are incurring the overhead of memoization lookups while still performing the

filter work() . Accordingly, the value of r has a large impact on performance of the

memoization technique. A happy medium for this parameter would allow for a well-

distributed hash table (not too densely or sparsely packed for each hash bucket.) [18].

The value of r has minimal impact on potential quality figures. Quality figures

can be slightly affected if a target input is at the edge of a segment, as in Figure 4-4.

Accordingly, inputs that are good matches can actually be hashed to different hash

buckets. Generally, however, r only sets the boundaries of the hash buckets, and does

not have a large impact on if a pair of inputs can be considered good matches.

Effects of Maximum Vector Distance Thresholds: m

Perhaps the most important parameter in altering output quality is the maximum

distance threshold m. Ultimately, this value determines if we find a good match

for a target input vector. The distance between two input points are considered

good matches only if the distance between the two does not exceed m. The program

execution, as described in §4.4.2, performs the distance value comparisons as the final

68

35

40

45

50

55

60

65

70

75

3 10 50 200 500 1000

Si
gn

al
-t

o
-N

o
is

e
 R

at
io

 (
in

 d
B

)

Maximum Nearest-Neighbor Distance (m)

Figure 4-5: Quality comparisons between choices of m for MPEG-2 using locality-
sensitive hashing memoization.

step for querying, thus any changes at any step of the program would still meet a

certain minimal quality in the final output.

Figure 4-5 shows a comparison between obtained SNR values with the (squared)

maximum nearest-neighbor distance. The target memoized int→int filter has I/O

of 64→64 and stores luminance samples for pixels. Quality very clearly degrades as

m increases, due to many more input vectors stored in the memoization table being

labeled as good matches. Individual MPEG-2 frames have also been generated to

show quality degradation visually. Figure A-1 shows the base generated output, with

no memoization. With small m distances, as seen in Figures A-4 and A-5, we can see

very little deviation from Figure A-1, as is indicated by its high SNR with Figure A-1

as the source output. Figures A-2 and A-3 show distinct deviations in the image

generated from poor memoization matches. You can also observe that SNR levels off

for m = 500 and m = 1000. This is likely because the majority of vectors that are

considered near neighbors for m = 1000 are also near neighbors for m = 500, as we

only have 64 integers as our input vector.

69

Effects of Downsampling

Downsampling, as described in §4.3.3, allows us to only consider a dimensional subset

of our inputs when finding the appropriate hash bucket. This factor is largely for

performance consideration. Downsampling, in general, can save us from having to

calculate too many operations for the required dot-product, which is helpful for large

enough dimensionality. However, downsampling can ultimately increase the size of

our hash buckets, filling them with inputs that are generally not close at all with the

target input.

In our current implementation, downsampling is hand-tuned to the application.

The level of downsampling is difficult to tune during runtime, as it directly affects

the hash functions. Reassigning the level of downsampling in the middle of execution

would require reindexing the entire memoization table.

In general, very high input filters suffer from having to perform many operations

to calculate the hash. Certain filters in MP3 decoder have peek rates of greater than

1000. Such filters benefit greatly from downsampling its peeked inputs, as it restricts

the buckets without reporting too many false positives.

4.5.3 Automatic Tuning for Quality and Performance

As it is difficult to anticipate all incoming input values during compile time, extra

runtime analysis is required to finely tune the memoization technique for better per-

formance or quality. The following section presents some additional runtime tuning

techniques to achieve better runtime performance or output quality.

Performance Tuning

As the process of querying the target memoization tables require the overhead of

calculating the input’s hash and the distance between potential input matches, per-

formance can potentially be worse if the target filter’s memoization table does not

generate enough hits. This can be a result of the program input, which may not be

very repetitive in its underlying values. It may also be the case that the profiling step

70

of the target filter did not generate enough inputs to populate the memoization table.

As a result, the work of the filter must be performed in addition to the overhead of

performing the lookup query.

To improve runtime performance, we would have to identify which filters can

actually benefit from the memoization query. Each filter will thus have its work

and hit rates monitored. If the target filter’s hit rate is too small, the memoization

capabilities would simply be disabled. The ideal hit rate can be generated based on

estimates of the average time it takes to complete the target filter’s work and the

average time it takes to complete the memoization query as follows:

Rwork = Rquery + (1− hmin) ∗Rwork

hmin =
Rquery

Rwork

We would like the filter to perform at least as well using memoization as it would

without memoization. hmin indicates the break-even hit rate, the point at which

the filter using memoization performs, on average, at the same speed as the filter

without memoization. The runtimes of both the memoization querying segment and

the entire work function can be monitored in aggregate to generate the break-even

hit rate. Filters that do not exhibit hits up to this rate will be disabled.

Quality Tuning

Quality control is largely determined by the value that we set m, the maximum vector

distance threshold, as described in §4.5.2. This value must be tuned according to the

incoming inputs, as it is difficult to ascertain an appropriate value at compile time

for a desired level of quality.

We discussed in §4.5.1 how to measure the quality of our memoized outputs.

Calculating the SNR requires access to both the desired signal and our target output

signal. Accordingly, to tune the memoization technique appropriately, we would

have perform both the memoization query and the filter work to generate the target

71

output signal and the desired signal respectively. This presents a direct slowdown in

the steady-state execution because much more work may be performed, even if it is

not needed.

We must choose the appropriate times to calculate both the desired output and the

memoized output. We can perform initial tuning for some fixed amount of iterations

at the beginning of the steady-state. During these iterations, we calculate both

the output of the filter and the output of our memoization table. We compute the

components of the SNR, namely the running squared sum of the desired signal samples

and the running squared sum of the differential between the desired signal sample and

the output signal sample, in aggregate between iterations. Per iteration, we will be

able to generate an estimate of the SNR we will generate for the specified m. If it

does not exceed the desired SNR threshold, the quality of the output is potentially

lower, and we will scale the distance threshold downwards accordingly. The SNR

components must be cleared for a new distance threshold m.

It may be possible that the beginning of the target input varies greatly from the

rest of the input. For instance, an image may be very repetitive in the beginning

set of pixels (perhaps it is a flat color background), but the rest of the image may

be rich with other details. The autotuning may thus set m to a very high value

because the desired signal and memoized output signal are very similar for a repetitive

set of inputs. Accordingly, we may also choose to perform randomized sampling

during steady-state execution to determine if there is a need to lower the target

distance threshold. These random iterations would follow much of the same process

in calculating the SNR as described before.

4.6 Empirical Evaluation

In this section, we evaluate the performance benefits of the locality-sensitive memo-

ization technique on several multimedia applications, including MPEG-2, MP3, and

Channel Vocoder. The performance benefits come with potential quality degrada-

tion, and such is documented in our evaluation as well. Modifications are made to

72

the StreamIt compiler to identify targetable filters using static work estimations, as

described in §4.3.3. All remaining memoization work is performed at runtime of the

program execution. The experimental architecture is composed of 4 octal-core 2.00

GHz Intel Xeon x7550 processors, each with 18 MB L3 caches, and 128 GB of random

access memory. We focus our attention on single-core performance and thus work on

solely one of the available cores, though the technique is applicable across all cores in

parallel.

4.6.1 MPEG-2 Decoder Subset

The MPEG-2 decoder can interpret and decompress an MPEG-2 compliant bit stream

based on the MPEG-2 specification as presented in [30]. The decoder subset in the

StreamIt benchmark suite consists of a block decoder and a motion vector decoder.

It omits the bit parser, which parses the incoming bitstream into the blocks data of

a macroblock and the differentially coded motion vectors of the same macroblock.

Instead, incoming data is hand-parsed and fed into a splitjoin that sends the blocks

data to the block decoder, and the differentially coded motion vectors to the motion

vector decoder. It also omits the motion compensation subset, which recovers mac-

roblocks that were encoded via MPEG-2 motion prediction after block and motion

vector decoding is complete.

This block decoder subset of the MPEG-2 decoder is entirely stateless. The motion

vector decoder is stateful, which prevents the entire application to be fused down to

a single filter. The block decoder branch of the decoding splitjoin, however, is fused

down entirely. Static work estimations place 99% of the work in this decoder subset

in the block decoder, making it an ideal candidate for memoization. The resulting

fused filter is an int→int filter with I/O of 64→64.

We run the decoder with the additional runtime parameters tuning active during

steady-state execution, as described in §4.5.3, on a set of 352x240 frames, which would

take 1320 iterations of this filter to render each frame. The program was given a target

SNR of 60 dB, which would make the resulting memoization-generated image return

relatively indistinguishable from the original image [23]. At the completion of an

73

0

10

20

30

40

50

60

70

80

90

100

0.8

1

1.2

1.4

1.6

1.8

2

0% 20% 40% 60% 80% 100%

Si
gn

al
-t

o
-N

o
is

e
 R

at
io

 (
in

 d
B

)

Sp
e

e
d

u
p

 o
f

M
e

m
o

iz
at

io
n

 A
ga

in
st

 N
o

n
-

m
e

m
o

iz
e

d
 V

e
rs

io
n

Hit Rate (in Percentage)

Figure 4-6: Speedups (line graph) and quality (bar graph) comparisons for MPEG-2
decoder using locality-sensitive hashing memoization.

initial 100 iterations the maximum vector distance m varied from 3 to 10, indicating

two vectors can be considered matches if their vector distance is at most m. It was

also found that the ideal hit rate of the filter was 12.7%, calculated as specified in

§4.5.3. Accordingly, all program executions with hit rates that ever fall below 12.7%

after the first 100 iterations would immediately disable memoization capabilities.

Figure 4-6 shows the speedup and SNR figures for the MPEG-2 block and motion

vector decoders subset, with the line and plot indicating performance speedup and

the bars indicating SNR figures for the corresponding hit rate. Performance speedups

are fairly modest, particularly as most applications will rarely generate high hit rates.

There are 1.14X speedups for 40% hit rates, 1.22X speedups for 55% hit rates, and

1.27X speedups for 60% hit rates. We do observe, however, a fairly flat tail from 0%

to 15% hit rates. This is generated from having memoization capabilities disabled if

we ever go below a 12.7% hit rate, as described before.

As expected, as hit rates increase, generated by populating the profiled cache

with more entries, quality generally degrades. More memoization matches indicates

the result of our filter execution will not be exact, thus always introducing some

nonnegative deviation to our final output. Tuned rendered frames can be seen in

Figures A-4 and A-5. Comparing these frames to the source in Figure A-1, they are

74

virtually indistinguishable.

4.6.2 MP3 Decoder Subset

The MP3 decoder performs audio decoding of files specified by the MPEG 1/2 Layer

3 audio encoding format [29]. The MP3 decoder in the StreamIt benchmark is a

subset of the decoder that performs antialiasing, an inverse DCT, and PCM syn-

thesis. The subset omits the decompression stage, consisting of Huffman decoding

and re-quantization. The decoder subset contains a splitjoin of two banks of filters,

performing the previously mentioned steps, for input audio files with two channels.

The MP3 decoder stream graph cannot be fused down to a single individual filter.

The antialiasing and inverse DCT steps are fused into a single float→float filter, f1,

with I/O 609→1152. Segments of the PCM synthesis step are broken into two single

fused filters one float→float filter, f2, with I/O 2304→1152 and one float→int

filter, f3, with I/O 1024→32. By far most of the work performed in the MP3 decoder

subset is performed in the PCM synthesis step, particularly the first fused filter which

contains a matrix multiplication filter.

We again run the decoder with the additional runtime parameters tuning active

during steady-state execution. We run the decoder on a decompressed sound input

that would take about 600 iterations to complete. Through experimentation, we

determined that, whilst employing the memoization technique, the RAW output audio

files have much different SNR thresholds when being considered indistinguishable.

An SNR of 80 dB generated fair sounding but slightly distorted samples. An SNR

of 100 dB, however, generated very similar sounds to the non-memoized output.

Accordingly, with a target SNR of 100 dB, we generated maximum vector distance

values of m ∈ (1e − 5, 5e − 5) for f1 and m ∈ (1e − 3, 5e − 3) for f2. Ideal hit rates

were determined to be around 5% for f1, 0.9% for f2, and 66% for f3. Because of the

high hit rate requirement for f3, it was difficult to ascertain an accurate m value for

it, as it would get disabled very quickly.

Figure 4-7 shows the speedup and SNR figures for the MP3 decoders subset, with

the line and plot indicating performance speedup and the bars indicating SNR figures

75

0

20

40

60

80

100

0

0.5

1

1.5

2

2.5

3

3.5

0% 20% 40% 60% 80% 100%

Si
gn

al
-t

o
-N

o
is

e
 R

at
io

 (
in

 d
B

)

Sp
e

e
d

u
p

 o
f

M
e

m
o

iz
at

io
n

 A
ga

in
st

 N
o

n
-

m
e

m
o

iz
e

d
 V

e
rs

io
n

Hit Rate (in Percentage)

Figure 4-7: Speedups (line graph) and quality (bar graph) comparisons for MP3
decoder using locality-sensitive hashing memoization.

for the corresponding hit rate. Performance speedups are again somewhat modest,

with 1.42X speedups for 40% hit rates and 2.02X speedups for 60% hit rates. The

input audio file contained many silent periods, as such hit rates between 0% and 30%

are hard to generate (“silence” can be very often memoized). Quality figures are

also fairly level, but generally trend downward with higher hit rate, as is expected

behavior.

76

Chapter 5

Related Work

Data parallelism is an important class of parallelism that many stream program-

ming languages attempt to expose and manage automatically, including Brook [15],

StreamC/KernelC [32], SPUR [51], and Cg [37]. Some streaming languages go so far

as to disallow stateful computation in all filters (e.g., Brook and StreamC/KernelC)

so all filters can be data parallelized. StreamIt’s philosophy is to allow state for

better expressiveness, but to include language idioms that capture common forms of

state. Peeking is an example of representing a common form of state (in the form

of a sliding window) in the language and including compiler transformations for its

parallelization. Our work adheres to this philosophy of capturing common patterns

of state in the language.

The Brook language includes an indexof expression that returns the position of

the current element within an input or output stream [15]. Given that Brook kernels

are executed once per input item index (across all input streams), indexof returns

the execution iteration of the kernel. In StreamIt, a filter can potentially consume

multiple input items, so the simple indexof operator does not give the iteration of

the filter. Furthermore, StreamIt filters can consume a varying and dynamic number

of items per firing. Our iter() keyword will correctly count the iterations of a filter

with a dynamic input rate. Finally, a study of the importance and prevalence of

Brook’s indexof idiom has not been published. This work motivates the indexof

keyword in Brook as well as our iter() keyword for StreamIt.

77

The process of eliminating traditional induction variables has been extensively

researched [9, 45]. Eliminating derived induction variables in traditional loop struc-

tures further motivates the effectiveness of running the loop iterations in parallel.

Extensive research has been done in the field of symbolic dependence analysis to

determine if iterations in loop structures can be parallelized [38, 11]. These particu-

lar optimizations help eliminate instructions by redefining all induction variables in

terms of a single induction variable. Induction variable elimination and redefinition

has been used largely to remove inter-loop dependencies. Many automatically par-

allelizing compiler systems, including Rice Fortran D [26], SUIF [49], and Polaris

[12] have also implemented recognizers to automatically eliminate such traditional

derived induction variables. Such works motivate the transformations that must be

performed to redefine induction variables in terms of iter().

Function memoization as an optimization has been discussed for many years and

has been extensively researched [2, 40, 41]. In particular memoization has been used

extensively to aid in top-down parsing of context-free grammars [44, 31], helping to

reduce exponential time and space requirements. This is achieved by maintaining

the results of previously calculated inputs, thus preventing repeated descents in the

grammar. While such a technique generally requires the explicit maintenance of the

lookup-table, automatic memoization has also been researched [44, 39], particularly

in the context of functional languages, where functions are first-class objects. Such an

approach abstracts the details of memoization away from the programmer, which fits

in line with StreamIt principles as discussed in §2. Automatic memoization, however,

generally makes no decision regarding which functions to memoize, leaving that wholly

to the programmer to decide. Our approach to applying memoization relies on specific

characteristics of multimedia applications and static work estimations that allows us

to decide whether target filters are good candidates for memoization.

Memoization, as used for functions, provide exact outputs for exact input matches.

Our approach to memoization relies on the concept of returning inexact matches for

memoizations that are “good-enough” to the end-user. Finding approximations in

the place of exact calculations has been researched extensively in the form of soft

78

computing [50]. The approach of applying approximations for multimedia applica-

tions is reliant on the fact that the end-user is tolerant to inexact calculation. Li

and Yeung [36] investigate the application-level resilience of various programs, in-

cluding several multimedia benchmarks, to low-level execution errors, finding that

many such programs exhibit application-level resiliency to lower-level faults. These

accuracy tradeoffs for performance are featured in such programming frameworks as

Petabricks [6, 7] and Green [10]. Such programming frameworks allow users to provide

controlled approximations for their target programs. Fuzzy, or tolerant, memoiza-

tion [4] performs a floating point approximation by dropping N least significant bits

of incoming operands before performing instruction-level memoization via a look-up

table.

79

80

Chapter 6

Conclusion

Applications in the multimedia space represent a dominant part of the workload

of many computing systems in everyday use. Finding effective means of exploiting

characteristics specific to multimedia applications can provide effective scaling and

speedups for widely used applications. We identify several characteristics regarding

multimedia applications that we set out to exploit.

Multimedia applications often requires maintaining induction variable state in its

processing, be it maintaining indices of an image or frame numbers of a video. This

type of state, if not parallelized, represents a significant bottleneck to scalable par-

allelization. We introduce a keyword expression that can be used as the basis of all

derived induction variable state. The keyword, when executed, returns the current

execution iteration of a filter. We present a desugaring of the keyword that enables

minimal changes to the existing StreamIt compiler codebase. We present modifica-

tions to the fundamental filter fission parallelization transformation that extracts data

parallelism from filters that included the new keyword. Our techniques demonstrate a

substantial performance improvement on the MPEG2 motion estimation subset when

explicit iteration state is replaced by our keyword solution.

Consumers of multimedia application outputs are generally tolerant to inaccura-

cies in the final output. Furthermore, incoming data in many multimedia programs

are very repetitive. We present a means of providing approximations to multime-

dia outputs using previously executed inputs of the same data source. We present

81

an application of a nearest neighbor solution to approximating filter work() execu-

tions. Using the locality-sensitive hashing algorithm for Euclidean space, we can find

effective matches for our target inputs without being susceptible to the curse of di-

mensionality. We present automatic runtime tuning of the memoization to achieve the

desired output quality and performance improvements based on the incoming inputs.

Our technique exhibits performance improvements for a single core on the MPEG2

decoder subset and the MP3 decoder subset while generating indistinguishable quality

outputs.

Streaming languages are natural tools for representing multimedia applications.

Input data arrives in continuous sequence and specified processing steps can be ef-

fectively mapped to filters. Stream programming provides flexibility in representing

and implementing multimedia applications. However, unlike other languages that

impose steep tradeoffs between flexibility and performance, StreamIt also provides

performance and scalability. With StreamIt, programmers need not focus on the low-

level details of domain-specific optimizations or parallelization, as it is automated by

the compiler system. With the additional optimizations of induction variable state

elimination and tolerant filter memoization, we eliminate some barriers to scalability

and improve performance of multimedia applications across varying computer archi-

tectures.

82

Appendix A

MPEG-2 Rendered Frames

Figure A-1: An MPEG-2 rendered frame using no memoization.

Figure A-2: An MPEG-2 rendered frame using memoization with untuned m distance
(m = 500). SNR=40db from the source Figure A-1.

83

Figure A-3: An MPEG-2 rendered frame using memoization with untuned m distance
(m = 1000). SNR=45db from the source Figure A-1.

Figure A-4: An MPEG-2 rendered frame using memoization with tuned m distance
(m = 3). SNR=73db from the source Figure A-1.

Figure A-5: An MPEG-2 rendered frame using memoization with tuned m distance
(m = 10). SNR=61db from the source Figure A-1.

84

Bibliography

[1] StreamIt. http://groups.csail.mit.edu/cag/streamit/.

[2] H. Abelson and G. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, MA, 1985.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, tech-
niques, and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1986.

[4] Carlos Alvarez, Jesus Corbal, and Mateo Valero. Fuzzy memoization for floating-
point multimedia applications. IEEE Transactions on Computers, 54:922–927,
2005.

[5] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122,
January 2008.

[6] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. Petabricks: a language and compiler for al-
gorithmic choice. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages 38–49, New
York, NY, USA, 2009. ACM.

[7] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and
Saman Amarasinghe. Language and compiler support for auto-tuning variable-
accuracy algorithms. In Proceedings of the 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’11, pages 85–96, Wash-
ington, DC, USA, 2011. IEEE Computer Society.

[8] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rabbah. Lime: a
java-compatible and synthesizable language for heterogeneous architectures. In
OOPSLA ’10, New York, NY, USA, 2010.

[9] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transfor-
mations for high-performance computing. ACM Comput. Surv., 26(4):345–420,
December 1994.

85

[10] Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting
energy-conscious programming using controlled approximation. In Proceedings
of the 2010 ACM SIGPLAN conference on Programming language design and
implementation, PLDI ’10, pages 198–209, New York, NY, USA, 2010. ACM.

[11] W. Blume et al. Automatic detection of parallelism: A grand challenge for high
performance computing. Parallel Distributed Technology: Systems Applications,
IEEE, 2(3):37, autumn/fall 1994.

[12] W. Blume et al. Parallel programming with polaris. Computer, 29(12):78–82,
December 1996.

[13] Andrei Z. Broder. On the resemblance and containment of documents. In In
Compression and Complexity of Sequences (SEQUENCES97, pages 21–29. IEEE
Computer Society, 1997.

[14] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. In Selected papers from the sixth international
conference on World Wide Web, pages 1157–1166, Essex, UK, 1997. Elsevier
Science Publishers Ltd.

[15] Ian Buck et al. Brook for GPUs: Stream Computing on Graphics Hardware. In
SIGGRAPH, 2004.

[16] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu, H. Yu, and C. Pu. Spidle: A
DSL Approach to Specifying Streaming Applications. In Conf. on Generative
Prog. and Component Engineering, 2003.

[17] Thomas M. Conte, Pradeep K. Dubey, Matthew D. Jennings, Ruby B. Lee,
Alex Peleg, Salliah Rathnam, Mike Schlansker, Peter Song, and Andrew Wolfe.
Challenges to combining general-purpose and multimedia processors. Computer,
30(12):33–37, December 1997.

[18] Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based on p-
stable distributions. In In SCG 04: Proceedings of the twentieth annual sympo-
sium on Computational geometry, pages 253–262. ACM Press, 2004.

[19] Keith Diefendorff and Pradeep K. Dubey. How multimedia workloads will change
processor design. Computer, 30(9):43–45, September 1997.

[20] Matthew Drake. Stream programming for image and video compression. M.Eng.
Thesis, MIT, 2006.

[21] Matthew Drake, Henry Hoffman, Rodric Rabbah, and Saman Amarasinghe.
MPEG-2 Decoding in a Stream Programming Language. In IPDPS, Rhodes
Island, Greece, April 2006.

86

[22] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB ’99, pages 518–529, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[23] E.B. Goldstein. Sensation and perception. Brooks/Cole, 4 edition, 1996.

[24] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,
Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze,
and Saman Amarasinghe. A Stream Compiler for Communication-Exposed Ar-
chitectures. In ASPLOS, 2002.

[25] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-
grained task, data, pipeline parallelism in stream programs. In ASPLOS, 2006.

[26] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling fortran d
for mimd distributed-memory machines. Commun. ACM, 35(8):66–80, August
1992.

[27] Martin Hirzel et al. Spl stream processing language specification. Technical
report, IBM, 2009.

[28] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual
ACM symposium on Theory of computing, STOC ’98, pages 604–613, New York,
NY, USA, 1998. ACM.

[29] ISO/IEC 13818-3: Generic Coding of Moving Pictures and Associated Audio In-
formation, Part 3: Audio, 1994. International Organization for Standardization,
1999.

[30] ISO/IEC 13818: Information technology — Coding of moving pictures and as-
sociated audio for digital storage media at up to about 1.5 Mbit/s. International
Organization for Standardization, 1999.

[31] Mark Johnson. Memoization in top-down parsing. Comput. Linguist., 21(3):405–
417, September 1995.

[32] Ujval J. Kapasi et al. Programmable stream processors. IEEE Computer, 2003.

[33] Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased scheduling
of stream programs. In LCTES, 2003.

[34] Christoforos E. Kozyrakis and David A. Patterson. A new direction for computer
architecture research. IEEE Computer, pages 31–11, 1998.

[35] Edward Ashford Lee and David G. Messerschmitt. Static Scheduling of Syn-
chronous Data Flow Programs for Digital Signal Processing. IEEE Trans. Com-
put., 36(1):24–35, 1987.

87

[36] Xuanhua Li and Donald Yeung. Application-level correctness and its impact
on fault tolerance. In Proceedings of the 2007 IEEE 13th International Sympo-
sium on High Performance Computer Architecture, HPCA ’07, pages 181–192,
Washington, DC, USA, 2007. IEEE Computer Society.

[37] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:
A System for Programming Graphics Hardware in a C-like Language. In SIG-
GRAPH, 2003.

[38] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact
data dependence analysis. SIGPLAN Not., 26(6):1–14, May 1991.

[39] James Mayfield, Tim Finin, and Marty Hall. Using automatic memoization as a
software engineering tool in real-world ai systems, 1995.

[40] Donald Michie. Memo functions: a language feature with rote learning proper-
ties. Technical Report MIP-R-29, University of Edinburgh, Scotland, 1967.

[41] Donald Michie. Memo functions and machine learning. Nature, 218:1922, 1968.

[42] Mehmet Kivanç Mihçak and Ramarathnam Venkatesan. New iterative geometric
methods for robust perceptual image hashing. In Revised Papers from the ACM
CCS-8 Workshop on Security and Privacy in Digital Rights Management, DRM
’01, pages 13–21, London, UK, UK, 2002. Springer-Verlag.

[43] J. P. Nolan. Stable Distributions - Models for Heavy Tailed
Data. Birkhauser, Boston, 2012. In progress, Chapter 1 online at
academic2.american.edu/∼jpnolan.

[44] Peter Norvig. Techniques for automatic memoization with applications to
context-free parsing. Comput. Linguist., 17(1):91–98, March 1991.

[45] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of
the FLoC Workshop on Run-Time Result Verification, Trento, Italy, July 1999.

[46] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe. Cache
aware optimization of stream programs. In Conference on Languages, Compilers,
Tools for Embedded Systems (LCTES), 2005.

[47] William Thies and Saman Amarasinghe. An empirical characterization of stream
programs and its implications for language and compiler design. In PACT, New
York, NY, USA, 2010.

[48] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications. In CC, France, 2002.

[49] Robert P. Wilson et al. Suif: an infrastructure for research on parallelizing and
optimizing compilers. SIGPLAN Not., 29(12):31–37, December 1994.

88

[50] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun.
ACM, 37(3):77–84, March 1994.

[51] Dan Zhang, Zeng-Zhi Li, Hong Song, and Long Liu. A Programming Model for
an Embedded Media Processing Architecture. In SAMOS, 2005.

89

