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Abstract
Despite a burgeoning demand for parallel programs, the tools avail-
able to developers working on shared-memory multicore proces-
sors have lagged behind. One reason for this is the lack of hardware
support for inspecting the complex behavior of these parallel pro-
grams. Inter-thread communication, which must be instrumented
for many types of analyses, may occur with any memory operation.
To detect such thread communication in software, many existing
tools require the instrumentation of all memory operations, which
leads to significant performance overheads. To reduce this over-
head, some existing tools resort to random sampling of memory
operations, which introduces false negatives. Unfortunately, neither
of these approaches provide the speed and accuracy programmers
have traditionally expected from their tools.

In this work, we present Aikido, a new system and framework
that enables the development of efficient and transparent analyses
that operate on shared data. Aikido uses a hybrid of existing hard-
ware features and dynamic binary rewriting to detect thread com-
munication with low overhead. Aikido runs a custom hypervisor
below the operating system, which exposes per-thread hardware
protection mechanisms not available in any widely used operating
system. This hybrid approach allows us to benefit from the low
cost of detecting memory accesses with hardware, while maintain-
ing the word-level accuracy of a software-only approach. To evalu-
ate our framework, we have implemented an Aikido-enabled vector
clock race detector. Our results show that the Aikido enabled race-
detector outperforms existing techniques that provide similar accu-
racy by up to 6.0x, and 76% on average, on the PARSEC bench-
mark suite.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel Programming; D.2.5
[Software Engineering]: Testing and Debugging – Debugging Aids;
D.4.0 [Operating Systems]: General

General Terms Design, Reliability, Performance
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1. Introduction
Despite recent significant efforts to simplify parallel programming,
developing parallel applications remains a daunting task. To fa-
cilitate parallel software development, a number of tools, such as
data-race detectors [28, 31, 30, 19, 27, 7, 16] and atomicity check-
ers [18, 32, 26, 20] have been proposed. While these tools can pro-
vide valuable insights into thread interaction and ultimately help
developers discover both correctness and performance bugs, they
have not seen widespread use. One reason behind this lack of adop-
tion stems from the fact that for many use cases, they incur either
large overheads or do not provide enough accuracy.

Performance issues are endemic to parallel debugging tools
that rely on dynamic analyses to monitor access to shared data.
These types of analyses, which we call shared data analyses, of-
ten require instrumentation of all memory operations that read or
write to thread private data. Unfortunately, for most programming
languages, it is impossible to statically determine which opera-
tions access shared memory or what data is shared. As a conse-
quence, many shared data analyses will conservatively instrument
all memory accesses and incur large overheads. For example, Fast-
Track [19], a vector clock based race detector for Java applications,
incurs slowdowns of around 8.5x. Tools that operate directly on
binaries, such as the Intel Thread Check race detector, incur even
larger overheads that are on the order of 200x [30].

To deal with these performance problems, recent work has ex-
plored methods for improving race detector performance by trad-
ing false negatives for performance using either filtering or sam-
pling techniques [30, 27, 7, 16]. These methods reduce the number
of instructions that need to be instrumented in a manner that en-
ables them to detect a subset of errors, typically without introduc-
ing false positives. While useful in discovering new bugs during
testing, tools built around such techniques offer few benefits to de-
velopers that need assistance with debugging a specific bug they
are already aware of.

In addition, because they introduction false negatives, such fil-
tering methods are generally not applicable for accelerating exist-
ing tools used to verify correctness properties of a parallel program.
For example, the Nondeterminator race detector [17] can guarantee
that a lock-free Cilk [21] program will execute race free (on all runs
for a particular input) provided that it has no false negatives. Like-
wise, detecting the absence of data races is a useful method of en-
suring that an application executing with deterministically ordered
synchronization operations (e.g. under a Weak/SyncOrder Deter-
ministic system [29, 13, 25]) will execute deterministically for a



given input. Such a guarantee can only be offered with a race de-
tector that has no false negatives.

1.1 Aikido

This paper presents and evaluates Aikido, a new system and frame-
work for developing efficient and transparent shared data analyses.
Rather than instrumenting all memory accesses or a statistical sub-
set, Aikido uses a hybrid of hardware and dynamic binary rewriting
techniques to detect shared data at a coarse granularity and the in-
structions that operate on it. By limiting analysis to just this data,
shared data analyses can be accelerated with almost no loss in accu-
racy. Our prototype system uses the following techniques to enable
efficient and transparent shared data analyses:

• Transparent Per-Thread Page Protection: To avoid instru-
menting all memory accesses, Aikido relies on a novel algo-
rithm for efficiently detecting shared pages using per-thread
page protection. Gaining access to per-thread page protection
is difficult due to the lack of operating system support (which
use a single page table per process). To overcome this chal-
lenge, researchers have turned to either modifying the Linux
kernel [3], or creating custom compilers that construct mul-
tithreaded applications out of multiple processes [4, 24]. Un-
fortunately, these solutions require either changes to developer
tool chains or to the underlying operating system. In contrast,
Aikido employs a novel approach that provides per-thread page
protection through a hypervisor (AikidoVM) without any mod-
ifications. The hypervisor exposes a hypercall-based API that
enables user applications to perform per-thread protection re-
quests. Using this approach, Aikido supports tools written to
operate on native applications under native operating systems,
allowing Aikido to be used today with almost no changes to the
development infrastructure.

• Shared Page Access Detection: Aikido uses per-thread page
protection to dynamically determine which pages each thread
is accessing, as well as which instructions are accessing those
pages. Pages accessed by more than one thread are deemed
shared, and any instructions that access these pages are pre-
sented to the shared data analysis for instrumentation. However,
because Aikido must detect all instructions that access a shared
page, Aikido cannot unprotect a page once it has been found to
be shared. Consequently, Aikido uses a novel dynamic rewrit-
ing technique to dynamically modify instructions that access
shared pages to perform the accesses via a specially mapped
mirror page. Mirror pages point to the same physical memory
as the pages they are mirroring, but are not protected.

We have implemented Aikido as an extension to the Umbra
project [34], an efficient framework for writing shadow value tools
(tools that require per-address metadata) in the DynamoRIO [9]
binary instrumentation system.

1.2 Experimental Results

We evaluate Aikido on applications from the PARSEC benchmark
suite [6], using a dynamic race detector analysis that implements
the FastTrack algorithm [19]. Our results show that Aikido im-
proves the performance of a shared data analysis by 76% on av-
erage, and by up to 6.0x when running on applications that exhibit
little data sharing.

1.3 Contributions

This paper makes the following contributions:

• Accelerating Shared Data Analyses: It presents a new system
for accelerating shared data dynamic analyses and evaluates the
performance of such a system.

• Transparent Per-thread Page Protection: It presents a new
mechanism for providing per-thread page protection support to
unmodified applications running under unmodified operating
systems using a hypervisor.

• AikidoVM: It presents AikidoVM, a hypervisor that enables
user applications to transparently perform per-thread protection
requests.

• Efficient Shared Page Detection: It presents a new method of
using per-thread page protection to dynamically and efficiently
detect shared pages of memory.

• Experimental Results: It presents experimental results demon-
strating Aikido’s ability to enable efficient and transparent
shared data analysis tools.

2. Background
In this section, we provide background on DynamoRIO and the
Umbra shadow memory framework. Aikido uses these systems
to perform dynamic instrumentation and as a basis for providing
mirror-pages, which will be described in Section 3.

2.1 DynamoRIO

DynamoRIO [9, 10] is a dynamic instrumentation and optimiza-
tion framework that supports both 32 and 64 Windows and Linux
platforms. DynamoRIO allows programs to be dynamically in-
strumented both transparently and efficiently. Rather than execut-
ing a program directly, DynamoRIO runs application instructions
through a code cache that is dynamically filled one basic block
at a time. As basic blocks are copied into the code cache they
are modified both by the DynamoRIO and by tools in the Dy-
namoRIO system that are responsible for performing instrumenta-
tion and optimization. Blocks in the code cache are linked together
via direct jumps or fast lookup tables so as to reduce the number
of context switches to the DynamoRIO runtime system. In addi-
tion, DynamoRIO stitches sequences of hot code together to create
single-entry multiple-exit traces that are stored in a separate trace
cache for further optimization. DynamoRIO allows users to build
DynamoRIO tools using the APIs provided. These tools can manip-
ulate the application code by supplying callback functions which
are called by DynamoRIO before the code is placed in either code
caches.

2.2 Umbra

Umbra [33, 34] is an extension to the DynamoRIO binary in-
strumentation system that allows building efficient shadow value
tools [8]. Shadow memory tools store information about every
piece of application data, both dynamically and statically allo-
cated. This information is called shadow metadata. Umbra sup-
ports arbitrary mappings from configurable number of bytes of ap-
plication data to a configurable number of bytes of shadow meta-
data. This shadow metadata can be updated by DynamoRIO tools
at the granularity of individual instructions as the application ex-
ecutes. Shadow value tools have been created for a wide vari-
ety of purposes, including finding memory usage errors, tracking



tainted data, detecting race conditions, and many others. Like many
software-based shadow value tools, Umbra dynamically inserts (us-
ing DynamoRIO) additional instructions into the target application
to be executed along with the target code. This inserted instrumen-
tation allows a shadow value tool to update shadow metadata during
program execution.

The inserted instrumentation code performs three tasks: map-
ping an application data location to the corresponding shadow
metadata location, updating metadata, and performing checks.
These tasks represent the major source of runtime overhead in
Umbra tools.

Umbra uses a translation scheme that incurs modest metadata
mapping overhead. Umbra leverages the fact that application mem-
ory is typically sparsely populated, with only a small number of
regions in memory that contain densely laid out memory alloca-
tions (such as the stack, heap, data and code segments). This ob-
servation allows Umbra to use a simple yet efficient shadow mem-
ory mapping scheme that uses such densely populated regions as
a mapping unit: for each densely populated region of memory, the
Shadow Metadata Manger allocates a shadow memory region and
associates it with the application memory region. Umbra associates
each region with one shadow memory region and maintains a ta-
ble of offsets to convert an application address in a region to an
address in the corresponding shadow memory region. By focusing
on densely populated regions of memory rather than on the entire
address space, Umbra is able to scale to large 64-bit address spaces
without requiring multiple translation steps or extremely large ta-
bles.

Much of the performance of Umbra comes from many layers
of caching for offsets from application data to shadow memory
regions. In the common case, a lookup of shadow data will occur
in an inlined memoization cache that is inserted directly into the
application code. In the less common case, lookups will occur in
one of three levels of thread-local caches that are checked in a lean
procedure that executes without a stack and requires only a partial
context switch away from user code. In rare cases, lookups need
to be performed in a more expensive function that requires a full
context switch to invoke.

3. Design and Implementation
This section describes the design and implementation of the com-
plete Aikido system, which can be used to accelerate DynamoRIO
tools that perform shared data analysis.

3.1 Overview

Figure 1 displays an overview of the Aikido system. The system is
comprised of a hypervisor, a modified version of the DynamoRIO
system, a sharing detector, and a user specified instrumentation tool
that performs a shared data analysis.

At the base of the system is the AikidoVM hypervisor which
transparently provides the per-thread page protection mechanism
to any userspace application running under the guest operating sys-
tem. AikidoVM exposes this new feature through the userspace
AikidoLib, which communicates with the hypervisor using hyper-
calls that bypass the guest operating system. This library can be
used by any userspace application wishing to use per-thread page
protections. In Aikido, this library is linked with a version of Dy-
namoRIO that is modified to support tools that wish to set per-
thread page protection on any portion of a target application’s ad-
dress space. Using this mechanism, the Aikido sharing detector, or
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Figure 1. An overview of the Aikido system

AikidoSD, efficiently constructs a dynamic mapping of instructions
to pages, which can be used to determine which pages of mem-
ory are shared within the target application, and which instructions
access those pages. Once a page is discovered to be shared, Aiki-
doSD presents all instructions that access it to the DynamoRIO tool
for instrumentation. In this way, a DynamoRIO tool running under
the Aikido system will only be presented with instructions that are
guaranteed to access shared pages of memory.

3.2 AikidoVM

In this section, we discuss the design and implementation of the
AikidoVM hypervisor. We first begin with an overview of the sys-
tem. Next, we provide some background on memory virtualization
and conclude with a description of our implementation.

3.2.1 Overview

AikidoVM is based on the Linux KVM virtual machine, a robust
and lightweight virtual machine manager that supports a number of
operating systems. AikidoVM extends KVM to transparently add
support for per-thread page protection for user space applications
executing in the guest operating system. AikidoVM targets Intel
x86-64 processors and uses Intel’s VMX virtualization extensions
to virtualize privileged operations.

3.2.2 Traditional Memory Virtualization

Most operating systems today use page tables to translate virtual
addresses to physical addresses. Each process is assigned its own
page table, giving it a virtual address space that is isolated from
other processes. To construct a shared address space for multiple
threads executing in a single process, modern operating systems
share the process’s page table with all threads within the process.
In addition to mapping virtual to physical addresses, page tables
also store a protection level for each virtual page that is enforced
by the machine hardware. Protection levels are specified by three
bits that control whether a page is present (i.e. readable), writable,
and userspace accessible. Because all threads within a process
share a single page table, all threads running in the same address
space must observe the same protection on all pages mapped in the
address space.



In a typical hypervisor, a guest virtual machine is given the il-
lusion of executing in a private physical machine that is isolated
from all other virtual machines on the system. To guarantee mem-
ory isolation, hypervisors present each virtual machine with a guest
physical address space by adding an extra level of indirection to the
address translation. This translation maps guest physical addresses,
which provide a software abstraction for the zero-based physical
address space that the guest operating system expects, to machine
addresses, which refer to actual memory in the physical machine,
Subsequently, the guest operating system maintains a mapping of
guest virtual addresses to guest physical addresses for each pro-
cess, to complete the translation.

To perform this translation, today’s hypervisors will either
maintain shadow page tables in a software MMU which directly
maps guest virtual addresses to machine addresses, or on newer
hardware with support for nested paging (e.g. using Intel’s VMX
EPT and AMD-V extensions), maintain a page table that maps
guest physical to machine addresses, and uses the hardware MMU
to perform the complete address translation by walking both the
guest OS and the hypervisor’s page tables. In this work, we re-
fer only to the former shadow paging strategy, though we believe
that our techniques are generally applicable to hardware MMU
virtualization systems based on nested paging as well.

In a software MMU, shadow page tables provide an efficient
way of mapping guest virtual addresses directly to machine ad-
dresses. The processor uses these shadow page tables during execu-
tion instead of the guest page tables, caching the translations in the
TLB allowing most memory accesses to avoid virtualization over-
head. The shadow page tables must be kept in sync with the guest
operating system’s page tables by monitoring the guest’s changes
to these page tables. This is typically done by write-protecting the
pages that comprise the guest page tables, allowing the hypervisor
to intercept any changes made to them. Once a write is detected, the
hypervisor will emulate the write on behalf of the guest and update
the shadow page table accordingly. The hypervisor also intercepts
all context switches performed by the guest OS by trapping on up-
dates to the control register (CR3 on x86) that points to the root of
the page table. On x86, this can be done using Intel VMX virtu-
alization extensions to request an exit from the virtual machine on
any write to the CR3 register. This allows the hypervisor to switch
shadow page tables to correspond with the guest page tables on
context switches.

3.2.3 Memory Virtualization in AikidoVM

Rather than maintaining a single shadow page for every page in
the guest operating system, AikidoVM maintains multiple shadow
pages, one for each thread in an Aikido enabled guest process.
Each copy of a shadow page table performs the same mapping
from virtual to physical memory, so each thread executing in the
guest process will share the exact same view of memory. As with a
traditional hypervisor, AikidoVM write protects the guest operating
system’s page table pages to detect updates to them. If a change is
detected, AikidoVM updates each of the shadow page tables for
each of the threads.

Additionally, AikidoVM must intercept all context switches be-
tween threads within the same address space so that it is able to
switch shadow page tables. Unfortunately, modern operating sys-
tems do not write to the CR3 register on such context switches
because such switches do not require a change in address space.
Therefore, it is not possible to use traditional mechanisms for re-

questing an exit from the virtual machine during such context
switches. As a result, we currently insert a hypercall into the con-
text switch procedure of the guest operating system to inform Aiki-
doVM of the context switch. However, to support truly unmodified
operating systems, we are in the process of updating our system to
request virtual machine exits on writes to the GS and FS segment
registers. These registers are used in modern operating systems to
specify thread local storage for each thread on x86 systems, and
are updated on all context switches, including context switches be-
tween threads in the same process. Alternatively, a hypercall can
be inserted into an unmodified guest operating system at runtime
by inserting a trampoline-based probe [11] into the context switch
function.

3.2.4 Per-Thread Page Protection

By maintaining multiple shadow page tables, AikidoVM is able to
set different page protections for each thread in the Aikido-enabled
guest userspace process. AikidoVM maintains a per-thread protec-
tion table that is queried and used to determine the protection bits
on any new page table entry in a thread’s shadow page table (see
Figure 2). When a page fault occurs, AikidoVM first checks the
current thread’s protection table before checking the guest operat-
ing system’s page table to determine whether the page fault was
caused by an Aikdio initiated protection, or by regular behavior of
the guest application and operating system. Being able to differenti-
ate between the two types of page faults has proven to be extremely
useful for our system, as it has greatly simplified the number of
changes required to support Aikido in DynamoRIO.

When a guest operating system makes a change to its page
tables, AikidoVM will trap and apply the changes to each of the
thread’s shadow page tables, updating the page protection bits
according to the contents of the per-thread protection table. In order
to do so, it must maintain two reverse mapping tables that map
guest physical addresses to the per-thread shadow pages and to
Aikido’s per thread protection table.

3.2.5 Delivering Page Faults

For non-Aikido caused page faults, AikidoVM delivers the page
fault to the guest operating system, allowing the guest operating
system to handle it as it would normally. For Aikido related page
faults, AikidoVM reuses the guest’s signal delivery mechanisms
by injecting a fake page fault at a special address predetermined
with the Aikido library. To prevent the guest operating system from
ignoring this page fault, Aikido requires that this predetermined
address is mapped in the guest userspace application’s address
space and has the same page protection as the faulting location.
This is achieved in the Aikido library by allocating a page with
no write access and one with no read access and reporting both
page addresses to the AikidoVM on initialization. To report the
true faulting address, AikidoVM records the address at a memory
location that is registered with the Aikido library. Subsequently, the
signal handler that is handling the fault can both check whether a
fault is Aikido related, and obtain the faulting address using the
aikido is aikido pagefault() function in the Aikido library.

3.2.6 Handling Guest Operating System Faults

Because the guest operating system is unaware of any additional
page protection set by the guest userspace application through Aiki-
doVM, it may cause a page fault when accessing a page in the ap-
plication’s address space, which it will not be able to handle. As a
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Figure 2. Compares the shadow page tables maintained by a traditional hypervisor to that of AikidoVM. A traditional hypervisor maintains
one shadow page table for every page table in the guest operating system, while the AikidoVM maintains multiple shadow pages (one for
each thread sharing the guest page table) for each guest page table, and multiple per-thread page protection tables that store the desired page
protection.

result, AikidoVM detects such page faults and emulates the instruc-
tion in the guest operating system that caused the page fault. To
prevent subsequent page faults (and further emulation) to the same
page, AikidoVM will also temporarily unprotect the page. Unfor-
tunately, because Intel’s VMX extensions cannot be used to request
VM exits when the guest operating system returns execution to the
guest userspace application, AikidoVM has no way of reprotect-
ing these pages before the guest userspace application resumes.
Therefore, when temporarily unprotecting a page, AikidoVM en-
sures that it is not userspace accessible (i.e.: USER bit is not set).
Thus, a page fault will be triggered when the userspace applica-
tion attempts to access a temporarily unprotected page, at which
point AikidoVM will restore the original protections to all pages
accessed by the guest operating system.

3.3 AikidoSD

In this section, we describe the Aikido sharing detector (Aiki-
doSD), the component that is responsible for instrumenting and
tracking the target application’s accesses to memory to determine
which pages are shared. Once AikidoSD finds a shared page, it
presents all instructions that access the page to a user supplied Dy-
namoRIO tool for instrumentation.

3.3.1 Overview

AikidoSD is built on top of a version of the Umbra shadow memory
framework that has been modified to map application addresses to
two shadow addresses (instead of just one). The first of these two
shadow memories is used to store metadata for the shared data anal-
ysis tool and to track the shared state of each page by the Aikido
sharing detector. The second shadow memory is used to construct
mirror pages. Mirror pages duplicate the content of the target ap-
plication’s address space without any additional protections added
by AikidoSD. This provides AikidoSD a mechanism for accessing
application data while the original location is protected.

3.3.2 Detecting Sharing

The Aikido sharing detector is designed with the key goal of en-
suring that instructions that access only private data incur close to
no overheads. With this goal in mind, the sharing detector relies
on thread-private page protection to page protect each module of

memory mapped by the target application. When the target appli-
cation begins execution, AikidoSD will page protect all mapped
pages in the target application’s address space. When a thread ac-
cesses a page for the first time (first scenario in Figure 3), AikidoSD
catches the segmentation fault delivered by AikidoVM, unprotects
the page, sets the page’s status to private and finally resumes exe-
cution. All subsequent accesses to the page by the thread will con-
tinue without additional page faults or overhead (second scenario
in Figure 3). In this way, the Aikido sharing detector requires just
one page fault per thread for each page that will remain private to a
single thread throughout the execution of the target application.

If another thread accesses a page that has been previously
marked private (third scenario in Figure 3), AikidoSD will catch
the resulting segmentation fault and atomically set the state of
the page to shared and globally protect the page so that it is not
accessible by any thread. Once the page is globally inaccessible
(last scenario in Figure 3), AikidoSD will receive a segmentation
fault every time a new instruction attempts to access a shared page.
At this point, any instruction that causes a page fault is known
to be accessing shared data and can be instrumented by the Dy-
namoRIO tool. This is accomplished by deleting all cached basic
blocks that contain the faulting instruction and re-JITing them to
include any desired instrumentation by the tool. Additionally, since
the page being accessed by the faulting instruction is no longer
accessible, AikidoSD must update the code in the basic block such
that the instruction accesses all memory via mirror pages. This is
achieved by either modifying the immediate effective address in
direct memory instructions, or for indirect memory instructions,
inserting a sequence of instruction that translate the base address
of the instruction. AikidoSD uses the same efficient sequence of
instructions used by Umbra to perform the translation. Finally,
for indirect memory instructions only, which may continue to ac-
cess shared or private data, AikidoSD will also emit a branch that
checks whether the instruction is accessing a shared or private page
on subsequent invocations. This check allows AikidoSD to jump
over the instrumentation and memory address redirection code
when the instruction accesses a private page. Figure 4 outlines
the code sequence emitted by AikidoSD when instrumenting an
instruction.
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Figure 3. An example page protection state and the corresponding actions that will occur on a memory access to each page.

// Translate address from application to shadow
shd addr = app to shd(app addr);
if (page status(shd addr) == SHARED) {
// Execute instrumentation emitted by the tool
// (e.g. race detection instrumentation)
tool instrumentation code(shd addr);
// Translate address from app to mirror
mirror addr = app to mirror(app addr);
// Redirect memory access to mirror page
redirect(APP INSTR, mirror addr);

} else {
// Execute the original application instr
APP INSTR;

}

Figure 4. Pseudocode of the instrumentation inserted at an instruc-
tion that has accessed a shared page

3.3.3 Mirror Pages

AikidoSD starts by mirroring all allocated pages within the target
application’s address space at program start. This is done by creat-
ing a new backing file for every segment of memory, copying the
contents of memory to that file, and finally mmapping the file both
over the originally allocated segment, and into the mirrored mem-
ory region for that segment.

After the application begins to execute, AikidoSD will intercept
all mmap and brk system calls to ensure that all new memory allo-
cations are correctly mirrored. For non-anonymous shared mmaps,
AikidoSD simply performs the same mmap into the mirrored
pages. For private (copy-on-write) mappings (including anony-
mous mappings), AikidoSD creates a new backing file, copies the
contents of the original file and mmaps the new backing file twice
using shared mappings. The new backing file is required so that its
contents can be shared without affecting any other mappings of the
original file. To handle extensions to the heap, AikidoSD intercepts
all brk system calls and emulates their behaviour using mmaped
files, which are again mapped twice in the address space.

3.4 Changes to DynamoRIO

DynamoRIO often needs access to the entire contents of the target
application’s address space. Furthermore, DynamoRIO will write-
protect certain pages in the application’s address space (to detect
self-modifying code) and can get confused when it discovers unex-
pected page protections. As a result, we made a number of changes
to DynamoRIO to have it support tools that use Aikido’s per-thread
page protections.

Most significantly, we updated the master signal handler to
differentiate between Aikdio and non-Aikido page faults. When
an Aikido page fault is discovered, DynamoRIO will check the
location of the faulting instruction. If the page fault was triggered
by the target application, DynamoRIO will forward the signal to
the Aikido sharing detector for further examination. If it occurred
within DynamoRIO or within a DynamoRIO tool, DynamoRIO
will unprotect the page for that thread, and will add the page
address to a list of unprotected pages. When returning control back
to the target application, DynamoRIO will iterate through this list
and reprotect all the pages that needed uprotecting.

3.5 Portability

While our implementation has been in the context of a Linux guest
operating system, we believe that the approach we have taken can
be easily applied to other operating systems, such as Microsoft
Windows or Mac OS X. Indeed, great care was taken to ensure
that the implementation is as portable as possible. Because of this,
we expect that our system will operate almost out of the box when
running on the Windows version of DynamoRIO.

4. Aikido Race Detector
To demonstrate the efficacy of Aikido in accelerating shared data
analyses, we implemented a race detector that takes advantage of
the sharing detection in Aikido to only check for races that occur
in shared data. Our race detector implements the FastTrack [19] al-
gorithm, an efficient happens-before race detector. We first provide
background on the FastTrack algorithm and then present details of
how we incorporated it into Aikido.



4.1 FastTrack Algorithm Background

FastTrack operates by computing a happens-before relation on the
memory and synchronization operations in a program execution. A
happens-before relation is a partial ordering on the instructions in
the program trace that can be used to identify races. A race occurs
when two instructions are not ordered by this happens-before rela-
tion, they read or write to the same variable, and one instruction is
a write. FastTrack computes the happens-before relation by keep-
ing track of a vector clock for each thread. Each thread is given a
logical clock that is incremented each time a synchronization event
occurs. Each thread’s vector clock records the clock of every thread
in the system. Entries for other threads in a vector clock are updated
as synchronization occurs.

To update the thread vector clocks, each lock also maintains a
vector clock, which serves as a checkpoint of how far along each
thread was when it last accessed the lock. When a thread performs
a lock acquire, the lock’s vector clock is used to update the thread’s
vector clock, thus passing on information about happens-before
invariants originating from past holders of the lock. Upon lock
release, the lock’s vector clock is updated using the thread’s vector
clock to record the event. Finally, after the lock is released, the
thread increments its own clock.

Each variable in the program has two vector clocks, one for
reads and one for writes. To detect races during program execution,
FastTrack compares the clocks of each variable to the clock of the
accessing thread. This check ensures that a read must occur after
the last write from any other thread to that variable, and a write
must occur after any read or write from any other thread. Upon a
read or write, the entry corresponding to the thread performing the
access in the variable’s read vector clock or write vector clock is
updated to contain the thread’s clock.

FastTrack uses a novel optimization of this algorithm revolving
around the concept of epochs, which reduces the metadata for vari-
ables by only recording information about the last access when a
totally ordered sequence of accesses occurs. Like other happens-
before race-detectors, FastTrack does not report false positives and
can only find races that could manifest for a particular tested exe-
cution schedule for a given input.

4.2 Aikido Race Detector

There were a number of challenges in implementing FastTrack in
DynamoRIO and Aikido. The largest issue resulted from operating
on unmodified x86 binaries. While FastTrack operates on variables
in Java, x86 binaries contain instructions that operate directly on
memory and may contain overlapping accesses to data. To simplify
the design, we divided the address space into fixed size (currently
8-byte) blocks that we considered “variables” for the FastTrack al-
gorithm. This has the downside of possibly introducing false posi-
tives for tightly packed data, but simplifies the allocation of shadow
memory to keep track of the metadata required by FastTrack. To
store metadata we use thread-local storage for thread metadata, a
hash-table for per-lock metadata, and shadow memory for storing
metadata about each block of memory. The mechanism for pro-
viding shadow memory is summarized in Section 2.2. We use Dy-
namoRIO to insert the instrumentation needed to perform metadata
updates and checks for races.

Additionally, to simplify clock inheritance and metadata up-
dates on thread creation, we serialize all thread creation using lock-
ing. We also added special handling to avoid reporting spurious
races from the C/C++ libraries, the pthread library, and the loader.

When running under AikidoVM, our race detector only instru-
ments instructions that access shared data and only maintains the
epoch metadata for shared data. Initially, instructions are not instru-
mented and metadata is not maintained for memory. When Aikido
finds shared data, the instructions accessing that data are instru-
mented and the metadata for the shared data is initialized. This
achieves our performance improvements, but may prevents us from
instrumenting instructions before they perform their first access to
shared data (i.e. before we detected that the data was shared). This
can potentially introduce a false negative if a race occurs between
two instructions that are each the first instruction in their respective
threads to access the same page.

5. Evaluation
In this section we evaluate the performance of Aikido on the race
detector described in Section 4.

5.1 Experimental Setup

We tested Aikido on a quad-socket Xeon X7550 system running
Debian 5.0 using 8 threads. We ran our race detector on 10 bench-
marks from the PARSEC 2.1 benchmark suite [5, 6] using the sims-
mall input set.

5.2 Results and Analysis

Figure 5 compares the performance of our Aikido-FastTrack race
detector versus the regular FastTrack tool. Both numbers are nor-
malized to the native execution time, resulting in a slowdown num-
ber where lower is better. Aikido is able to improve the perfor-
mance of 6 of the 10 benchmarks. In the remaining 4 benchmarks
it exhibits little change for 3 benchmarks, and a 3% increase in
overhead for fluidanimate. On average, Aikido is able to speed up
the FastTrack race detector by 76%, and up to 6.0x for the raytrace
benchmark.

Figure 6 shows the percentage of accesses in each benchmark
that target shared pages. We see that the three top performing
benchmarks: raytrace, swaptions, and blackscholes, all exhibit low
levels of sharing between threads, which permits the up to 6.0x
improvement in performance when run with Aikido. Likewise,
Aikido’s poor performance on fluidanimate can be explained in part
by the large amount of sharing in the benchmark.

Table 1 shows how the overheads for our two worst perform-
ing benchmarks (fluidanimate and vips) change at different thread
counts. For both benchmarks, the overheads are significantly lower
at two threads than at 8 threads. Additionally, at thread counts of
both two and four, Aikido-FastTrack always outperforms FastTrack
for both of the two benchmarks. At two threads, Aikido-FastTrack
is up to 45% faster than the FastTrack algorithm for vips.

Table 2 outlines a number of other statistics for each of the PAR-
SEC benchmarks recorded while running the Aikido-FastTrack
tool. The first column lists the number of memory accessing in-
structions executed by each of the benchmarks. This represents
the number of instructions that would typically need to be instru-
mented by a race detector to conservatively instrument all accesses
to shared memory. The second column displays the dynamic ex-
ecution count of all instructions that were found to access shared
pages, while the third column lists the number of times these in-
structions accessed a shared page, which indicates the number of
times the Aikido-FastTrack instrumentation was executed. Lastly,
the fourth column displays the number of segmentation faults de-
livered by the AikidoVM hypervisor. This number also represents
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the number of times DynamoRIO needed to rebuild a basic block
(and potentially a trace).

By comparing the first two columns, it is possible to determine
an upper bound, for each benchmark, on the amount of instrumen-
tation that can be avoided using our approach when running with 8
threads. Across all of the benchmarks, our technique yields a geo-
metric mean reduction of 6.75x in the number of memory accessing
instructions that need to be instrumented.

5.3 Detected Races

We compared the outputs between both the FastTrack and Aikido-
FastTrack tools to check that both tools were detecting the same
races. In both tools, we found a number races in the PARSEC
benchmark suite. We believe most of the races found were con-
sidered benign and the result of custom synchronization in libraries

or “racy reads” where outdated results are acceptable to the pro-
grammer.

An example race we found was in the random number generator
(based on Mersenne Twister) in the canneal benchmark. This might
be considered a benign race, since there is no correct result of a
random number generator. However, it is not clear that the known
statistical properties of the Mersenne Twister function hold in a
runtime with data races.

6. Discussion
AikidoSD determines whether a page is shared by waiting until two
threads have accessed the same page, triggering two segmentation
faults. Because of this, any tool built on top of Aikido may not in-
strument the first two instructions that access a particular piece of
shared data. This fact introduces a small number of false negatives
to such tools. While any degree of false negatives can be unde-



2 Threads 4 Threads 8 Threads
fluidanimate (FastTrack) 55.79x 127.62x 178.60x
fluidanimate (Aikido-FastTrack) 48.11x 110.65x 184.33x
vips (FastTrack) 45.52x 53.34x 67.24x
vips (Aikido-FastTrack) 31.5x 35.96x 66.37x

Table 1. Performance overheads over native execution for the FastTrack and Aikido-FastTrack race detectors on the fluidanimate and vips
benchmarks at different thread counts.

Benchmark Instrs. Referencing Memory Instrumented Instrs. Shared Page Accesses Segmentation Faults
freqmine 1,167,712,401 742,195,956 651,009,521 24,880
blackscholes 105,944,404 7,395,315 7,340,038 889
bodytrack 384,925,938 83,514,877 77,116,382 8,993
raytrace 13,186,394,771 16,920,360 14,419,167 23,350
swaptions 350,009,582 58,348,333 4,160,2078 1,778
fluidanimate 556,317,760 356,317,897 267,758,255 11,054
vips 1,044,161,383 253,794,130 231,533,572 10,227
x264 241,456,020 82,561,137 70,813,420 32,616
canneal 560,635,087 69,108,663 68,153,896 23,049
streamcluster 1,067,233,548 403,953,097 396,265,668 5,918

Table 2. Instrumentation statistics recorded while running the Aikido-FastTrack tool.

sirable, we were careful to design Aikido such that it introduces
false negatives in a well-defined and targeted manner. We believe
that our approach represents a point in the performance/soundness
trade-off space is desirable. By limiting our false negatives to well
defined application behaviors, false negatives can be handled sepa-
rately in cases where they present a problem.

For example, in the context of Weak/SyncOrder Deterministic
systems [29, 13, 25]), which will execute an application determinis-
tically for a given input only if the program is guaranteed to be race
free for that input, Aikido-FastTrack cannot provide a guarantee on
the required race freedom. However, it can still be used to provide
a guarantee on determinism if the underlying deterministic multi-
threading system also ensures that the first two memory accesses to
any memory location are ordered deterministically. We believe that
ordering such accesses can be achieved cheaply using off-the-shelf
process-wide (i.e. non per-thread) page protection available in to-
day’s operating systems. We hope that similar workarounds can be
applied for other scenarios where sound shared data analyses are
currently required.

7. Related Work
We divide the discussion of related work into three areas. First,
we cover related systems to AikidoVM’s technique for providing
per-thread page protection. Next, we discuss systems that also
use mirror-pages, and finally we cover systems related to the race
detector we implemented in Aikido.

7.1 Private Page Protections

Overshadow [12] is a hypervisor that isolates application memory
from the operating system by encrypting any application memory
that the operating system must be able to access. This provides a
layer of security in case the operating system becomes compro-
mised. Overshadow does not provide per-thread page protection,
but uses a technique similar to AikidoVM’s to present its encrypted
and plain text views of memory to the system. Overshadow main-
tains multiple shadow page tables and encrypts (or decrypts) pages

depending on which part of the system is attempting to read or write
to a page.

The Grace [4] and DTHREADS [24] projects use per-thread
page tables for the purpose of implementing language features and
for deterministic multithreading [29, 14], in contrast to the shared
data analyses targeted by Aikido. These systems achieve per-thread
page tables by converting all threads into separate processes and
taking steps to create the illusion of a single process and address
space. While it does not require a custom hypervisor, this technique
is operating system specific and may find it difficult to maintain
the illusion of a single process for more complex applications.
For example, without special care, file descriptors created in one
process after all processes are forked, will not be visible in the other
processes.

The dOS [3] project uses per-thread page tables to track owner-
ship of pages in order to enforce deterministic ordering of memory
operations. dOS implements per-thread page tables through exten-
sive modifications to the 2.6.24 Linux kernel.

Finally, SMP-ReVirt [15] uses per-processor private page map-
pings within a modified Xen Hypervisor for efficient full-system
record/replay that runs on commodity hardware. SMP-ReVirt im-
plements the CREW [23] protocol at a page-level granularity to
track and later replay page-ownership transitions. Like Aikido,
SMP-ReVirt uses shadow page tables within the hypervisor to
achieve the private page mappings. However, unlike Aikido, these
mappings are per processor rather than per (guest) thread. While
Aikido must determine whether each thread has accessed a partic-
ular page, the thread abstraction is irrelevant for STMP-ReVirt to
replay the execution of an entire operating system, allowing it to
track page ownership changes on (guest) physical pages.

7.2 Address Space Mirroring

Abadi et. al present a Software Transactional Memory (STM)
system [1] that uses off-the-shelf page-level memory protection
to lower the cost of providing strong atomicity guarantees for
C# applications. Under this system, the C# application heap is
mapped twice in virtual memory. One mapping is used by code



executing within a transaction while the other mapping is used
during non-transactional execution. Pages in the latter mapping
are then dynamically page protected before every access to the
heap within a transaction to ensure that all potentially conflict-
ing non-transactional accesses trigger a segmentation fault. This
allows the STM system to detect conflicting accesses to mem-
ory that occur between concurrently executing transactional and
non-transactional code. Because such conflicts tend to be rare, the
strategy achieves low overheads. Furthermore, in cases where a
large amount of conflicts do occur, the system can patch instruc-
tions that frequently cause segmentation faults to jump to code that
performs the same operation but within a transaction.

Aikido differs from this work in the following ways. First,
Aikido maintains different page protections for each thread for the
main (non-mirrored) pages of memory. This addition is very im-
portant to be able to efficiently determine which pages of mem-
ory are shared, as it enables accesses to private data to execute
without redirection. Additionally, because Aikido must redirect all
memory accesses that access shared memory (rather than just ac-
cesses that frequently conflict with transactions), it must dynami-
cally rewrite all accesses to protected pages instead of just a small
number of frequently occurring ones. Doing so efficiently is a sig-
nificant challenge. Finally, Aikido’s use of a hypervisor and binary
rewriting transparently bring some of the benefits of mirror pages
to a large number of applications (e.g. binary applications) and po-
tential shared data analyses.

7.3 Race Detectors

Foremost in relevance to Aikido’s race detector is the Fast-
Track [19] algorithm on which our race detector is based. We differ
from FastTrack in that we operate directly on x86 binaries, as op-
posed to on Java variables, and that we only instrument accesses to
shared data as opposed to all variables.

FastTrack (and our system) computes its happens-before [22]
relation using a vector-clocks [28] based approach. This strategy
has the advantage that it is precise, and does not introduce false
positives. Alternate approaches, such as Eraser’s LockSet algo-
rithm [31], that try to associate locks with data protected by them,
can report false positives. Other techniques in this area use a hybrid
of these two approaches or explore the trade-offs between perfor-
mance and precision by using sampling or heuristics to decide what
to instrument [30, 27, 7, 16].

In each of these systems, the race detector’s ability to detect
races is often tied to the particular execution schedule seen by the
application during execution, which may not be deterministic. This
is in contrast to special purpose race detectors such as Nondetermi-
nator and CilkScreen [17, 2] which are schedule independent and
can have no false negatives for a subset of legal Cilk and Cilk++
code [21].

8. Conclusions
We have presented Aikido, a novel framework that enables the de-
velopment of efficient and transparent shared data analysis tools.
Aikido achieves transparency through the use of a custom hypervi-
sor that exposes per-thread hardware protection mechanisms. This
enables Aikido to use a hybrid hardware and dynamic binary in-
strumentation approach to dynamically detect shared data in paral-
lel programs. Our results demonstrate that Aikido can be used to
speed up shared data analyses. In particular, we have shown that
it is possible to speed up existing race detectors by focusing atten-

tion to data races caused by instructions that access shared pages.
The resulting race detector offers significant performance improve-
ments over existing techniques that provide similar accuracy.

Enabling faster and more transparent shared data analysis can
enable new, practical, analysis techniques. The end goal is to enable
a new set of tools that helps developers write, understand, debug
and optimize parallel programs.
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