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Abstract

Using existing programming tools, writing high-performance im-
age processing code requires sacrificing readability, portability, and
modularity. We argue that this is a consequence of conflating what
computations define the algorithm, with decisions about storage
and the order of computation. We refer to these latter two concerns
as the schedule, including choices of tiling, fusion, recomputation
vs. storage, vectorization, and parallelism.

We propose a representation for feed-forward imaging pipelines
that separates the algorithm from its schedule, enabling high-
performance without sacrificing code clarity. This decoupling sim-
plifies the algorithm specification: images and intermediate buffers
become functions over an infinite integer domain, with no explicit
storage or boundary conditions. Imaging pipelines are compo-
sitions of functions. Programmers separately specify scheduling
strategies for the various functions composing the algorithm, which
allows them to efficiently explore different optimizations without
changing the algorithmic code.

We demonstrate the power of this representation by expressing
a range of recent image processing applications in an embedded
domain specific language called Halide, and compiling them for
ARM, x86, and GPUs. Our compiler targets SIMD units, multiple
cores, and complex memory hierarchies. We demonstrate that it
can handle algorithms such as a camera raw pipeline, the bilateral
grid, fast local Laplacian filtering, and image segmentation. The al-
gorithms expressed in our language are both shorter and faster than
state-of-the-art implementations.
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1 Introduction

Computational photography algorithms require highly efficient
implementations to be used in practice, especially on power-
constrained mobile devices. This is not a simple matter of pro-
gramming in a low-level language like C. The performance differ-
ence between naive C and highly optimized C is often an order of
magnitude. Unfortunately, optimization usually comes at the cost
of programmer pain and code complexity, as computation must be
reorganized to achieve memory efficiency and parallelism.

(a) Clean C++ : 9.94 ms per megapixel
void blur(const Image &in, Image &blurred) {
Image tmp(in.width(), in.height());

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

}

(b) Fast C++ (for x86) : 0.90 ms per megapixel
void fast_blur(const Image &in, Image &blurred) {

m128i one_third = _mm_set1_epi16(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {

m128i a, b, c, sum, avg;
m128i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.width(); xTile += 256) {
m128i *tmpPtr = tmp;

for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128(( m128i*)(inPtr-1));
b = _mm_loadu_si128(( m128i*)(inPtr+1));
c = _mm_load_si128(( m128i*)(inPtr));
sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
avg = _mm_mulhi_epi16(sum, one_third);
_mm_store_si128(tmpPtr++, avg);
inPtr += 8;

}}
tmpPtr = tmp;
for (int y = 0; y < 32; y++) {

m128i *outPtr = ( m128i *)(&(blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(tmpPtr+(2*256)/8);
b = _mm_load_si128(tmpPtr+256/8);
c = _mm_load_si128(tmpPtr++);
sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
avg = _mm_mulhi_epi16(sum, one_third);
_mm_store_si128(outPtr++, avg);

}}}}}

(c) Halide : 0.90 ms per megapixel
Func halide_blur(Func in) {
Func tmp, blurred;
Var x, y, xi, yi;

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule
blurred.tile(x, y, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(y);
tmp.chunk(x).vectorize(x, 8);

return blurred;
}

Figure 1: The code at the top computes a 3×3 box filter using the
composition of a 1×3 and a 3×1 box filter (a). Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 10× faster on a quad-core x86 CPU (b). However, in doing so
we’ve lost readability and portability. Our compiler separates the
algorithm description from its schedule, achieving the same perfor-
mance without making the same sacrifices (c). For the full details
about how this test was carried out, see the supplemental material.

http://doi.acm.org/10.1145/10.1145/2185520.2185528
http://portal.acm.org/ft_gateway.cfm?id=1145/2185520.2185528&type=pdf
http://halide-lang.org
http://github.com/halide/Halide
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Figure 2: We compare algorithms in our prototype language, Halide, to state of the art implementations of four image processing applications,
ranging from MATLAB code to highly optimized NEON vector assembly and hand-written CUDA [Adams et al. 2010; Aubry et al. 2011;
Paris and Durand 2009; Chen et al. 2007; Li et al. 2010]. Halide code is compact, modular, portable, and delivers high performance across
multiple platforms. All speedups are expressed relative to the reference implementation.

For image processing, the global organization of execution and stor-
age is critical. Image processing pipelines are both wide and deep:
they consist of many data-parallel stages that benefit hugely from
parallel execution across pixels, but stages are often memory band-
width limited—they do little work per load and store. Gains in
speed therefore come not just from optimizing the inner loops, but
also from global program transformations such as tiling and fusion
that exploit producer-consumer locality down the pipeline. The best
choice of transformations is architecture-specific; implementations
optimized for an x86 multicore and for a modern GPU often bear
little resemblance to each other.

In this paper, we enable simpler high-performance code by sepa-
rating the intrinsic algorithm from the decisions about how to run
efficiently on a particular machine (Fig. 2). Programmers still spec-
ify the strategy for execution, since automatic optimization remains
hard, but doing so is radically simplified by this split representation.

To understand the challenge of efficient image processing, consider
a 3 × 3 box filter implemented as separate horizontal and vertical
passes. We might write this in C++ as a sequence of two loop nests
(Fig. 1.a). An efficient implementation on a modern CPU requires
SIMD vectorization and multithreading. But once we start to ex-
ploit parallelism, the algorithm becomes bottlenecked on memory
bandwidth. Computing the entire horizontal pass before the vertical
pass destroys producer-consumer locality—horizontally blurred in-
termediate values are computed long before they are consumed by
the vertical pass—doubling the storage and memory bandwidth re-
quired. Exploiting locality requires interleaving the two stages by
tiling and fusing the loops. Tiles must be carefully sized for align-
ment, and efficient fusion requires subtleties like redundantly com-
puting values on the overlapping boundaries of intermediate tiles.
The resulting implementation is 11× faster on a quad-core CPU,
but together these optimizations have fused two simple, indepen-
dent steps into a single intertwined, non-portable mess (Fig. 1.b).

We believe the right answer is to separate the intrinsic algorithm—
what is computed—from the concerns of efficiently mapping to ma-
chine execution—decisions about storage and the ordering of com-
putation. We call these choices of how to map an algorithm onto
resources in space and time the schedule.

Image processing exhibits a rich space of schedules. Pipelines tend
to be deep and heterogeneous (in contrast to signal processing or
array-based scientific code). Efficient implementations must trade
off between storing intermediate values, or recomputing them when
needed. However, intentionally introducing recomputation is sel-
dom considered by traditional compilers. In our approach, the pro-
grammer specifies an algorithm and its schedule separately. This
makes it easy to explore various optimization strategies without ob-
fuscating the code or accidentally modifying the algorithm itself.

Functional languages provide a natural model for separating the
what from the when and where. Divorced from explicit storage,
images are no longer arrays populated by procedures, but are in-
stead pure functions that define the value at each point in terms of
arithmetic, reductions, and the application of other functions. A
functional representation also allows us to omit boundary condi-
tions, making images functions over an infinite integer domain.

In this representation, the algorithm only defines the value of each
function at each point, and the schedule specifies:

• The order in which points in the domain of a function are eval-
uated, including the exploitation of parallelism, and mapping
onto SIMD execution units.

• The order in which points in the domain of one function are
evaluated relative to points in the domain of another function.

• The memory location into which the evaluation of a function
is stored, including registers, scratchpad memories, and re-
gions of main memory.

• Whether a value is recomputed, or from where it is loaded, at
each point a function is used.

Once the programmer has specified an algorithm and a schedule,
our compiler combines them into an efficient implementation. Op-
timizing execution for a given architecture requires modifying the
schedule, but not the algorithm. The representation of the sched-
ule is compact and does not affect the correctness of the algorithm
(e.g. Fig. 1.c), so exploring the performance of many options is fast



and easy. It can be written separately from the algorithm, by an
architecture expert if necessary. We can most flexibly schedule op-
erations which are data parallel, with statically analyzable access
patterns, but also support the reductions and bounded irregular ac-
cess patterns that occur in image processing.

In addition to this model of scheduling (Sec. 3), we present:

• A prototype embedded language, called Halide, for functional
algorithm and schedule specification (Sec. 4).

• A compiler which translates functional algorithms and op-
timized schedules into efficient machine code for x86 and
ARM, including SSE and NEON SIMD instructions, and
CUDA GPUs, including synchronization and placement of
data throughout the specialized memory hierarchy (Sec. 5).

• A range of applications implemented in our language, com-
posed of common image processing operations such as con-
volutions, histograms, image pyramids, and complex sten-
cils. Using different schedules, we compile them into opti-
mized programs for x86 and ARM CPUs, and a CUDA GPU
(Sec. 6). For these applications, the Halide code is compact,
and performance is state of the art (Fig. 2).

2 Prior Work

Loop transformation Most compiler optimizations for numeri-
cal programs are based on loop analysis and transformation, includ-
ing auto-vectorization, loop interchange, fusion, and tiling. The
polyhedral model is a powerful tool for transforming imperative
programs [Feautrier 1991], but traditional loop optimizations do not
consider recomputation of values: each point in each loop is com-
puted only once. In image processing, recomputing some values—
rather than storing, synchronizing around, and reloading them—can
be a large performance win (Sec. 6.2), and is central to the choices
we consider during optimization.

Data-parallel languages Many data-parallel languages have
been proposed. Particularly relevant in graphics, CUDA and
OpenCL expose an imperative, single program-multiple data pro-
gramming model which can target both GPUs and multicore CPUs
with SIMD units [Buck 2007; OpenCL 2011]. ispc provides a simi-
lar abstraction for SIMD processing on x86 CPUs [Pharr and Mark
2012]. Like C, they allow the specification of very high perfor-
mance implementations for many algorithms. But because parallel
work distribution, synchronization, kernel fusion, and memory are
all explicitly managed by the programmer, complex algorithms are
often not composable in these languages, and the optimizations re-
quired are often specific to an architecture, so code must be rewrit-
ten for different platforms.

Array Building Blocks provides an embedded language for data-
parallel array processing in C++ [Newburn et al. 2011]. As in our
representation, whole pipelines of operations are built up and opti-
mized globally by a compiler. It delivers impressive performance
on Intel CPUs, but requires a sufficiently smart compiler to do so.

Streaming languages encode data and task parallelism in graphs
of kernels. Compilers automatically schedule these graphs using
tiling, fusion, and fission [Kapasi et al. 2002]. Sliding window
optimizations can automatically optimize pipelines with overlap-
ping data access in 1D streams [Gordon et al. 2002]. Our model of
scheduling addresses the problem of overlapping 2D stencils, where
recomputation vs. storage becomes a critical but complex choice.
We assume a less heroic compiler, and focus on enabling human
programmers to quickly and easily specify complex schedules.

Programmer-controlled scheduling A separate line of com-
piler research attempts to put control back in the hands of the pro-
grammer. The SPIRAL system [Püschel et al. 2005] uses a domain-
specific language to specify linear signal processing operations in-
dependent of their schedule. Separate mapping functions describe
how these operations should be turned into efficient code for a par-
ticular architecture. It enables high performance across a range of
architectures by making deep use of mathematical identities on lin-
ear filters. Computational photography algorithms often do not fit
within a strict linear filtering model. Our work can be seen as an
attempt to generalize this approach to a broader class of programs.

Sequoia defines a model where a user-defined “mapping” describes
how to execute tasks on a tree-like memory hierarchy [Fatahalian
et al. 2006]. This parallels our model of scheduling, but focuses
on hierarchical problems like blocked matrix multiply, rather than
pipelines of images. Sequoia’s mappings, which are highly explicit,
are also more verbose than our schedules, which are designed to
infer details not specified by the programmer.

Image processing languages Shantzis described a framework
and runtime model for image processing systems based on graphs
of operations which process tiles of data [Shantzis 1994]. This is
the inspiration for many scalable and extensible image processing
systems, including our own.

Apple’s CoreImage and Adobe’s PixelBender include kernel lan-
guages for specifying individual point-wise operations on images
[CoreImage; PixelBender]. Neon embeds a similar kernel language
in C# [Guenter and Nehab 2010]. All three compile kernels into
optimized code for multiple architectures, including CPU SIMD
instructions and GPUs, but none optimize across kernels connected
by complex communication like stencils, and none support reduc-
tions or nested parallelism within kernels.

Elsewhere in graphics, the real-time graphics pipeline has been a
hugely successful abstraction precisely because the schedule is sep-
arated from the specification of the shaders. This allows GPUs and
drivers to efficiently execute a wide range of programs with lit-
tle programmer control over parallelism and memory management.
This separation of concerns is extremely effective, but it is spe-
cific to the design of a single pipeline. That pipeline also exhibits
different characteristics than image processing pipelines, where re-
ductions and stencil communication are common, and kernel fusion
is essential for efficiency. Embedded DSLs have also been used to
specify the shaders themselves, directly inside the host C++ pro-
gram that configures the pipeline [McCool et al. 2002].

MATLAB is extremely successful as a language for image process-
ing. Its high level syntax enables terse expression of many algo-
rithms, and its widely-used library of built-in functionality shows
that the ability to compose modular library functions is invaluable
for programmer productivity. However, simply bundling fast imple-
mentations of individual kernels is not sufficient for fast execution
on modern machines, where optimization across stages in a pipeline
is essential for efficient use of parallelism and memory (Fig. 2).

Spreadsheets for Images extended the spreadsheet metaphor as
a functional programming model for imaging operations [Levoy
1994]. Pan introduced a functional model for image processing
much like our own, in which images are functions from coordinates
to values [Elliott 2001]. Modest differences exist (Pan’s images are
functions over a continuous coordinate domain, while in ours the
domain is discrete), but Pan is a close sibling of our intrinsic al-
gorithm representation. However, it has no corollary to our model
of scheduling and ultimate compilation. It exists as an interpreted
embedding within Haskell, and as source to source compiler to C
containing basic scalar and loop optimizations [Elliott et al. 2003].



3 Representing Algorithms and Schedules
We propose a functional representation for image processing
pipelines that separates the intrinsic algorithm from the schedule
with which it will be executed. In this section we describe the rep-
resentation for each of these components, and how they combine to
create a fully-specified program.

3.1 The Intrinsic Algorithm

Our algorithm representation is functional. Values that would be
mutable arrays in an imperative language are instead functions from
coordinates to values. We represent images as pure functions de-
fined over an infinite integer domain, where the value of a function
at a point represents the color of the corresponding pixel. Imaging
pipelines are specified as chains of functions. Functions may ei-
ther be simple expressions in their arguments, or reductions over
a bounded domain. The expressions which define functions are
side-effect free, and are much like those in any simple functional
language, including:

• Arithmetic and logical operations;
• Loads from external images;
• If-then-else expressions (semantically equivalent to the ?:

ternary operator in C);
• References to named values (which may be function arguments,

or expressions defined by a functional let construct);
• Calls to other functions, including external C ABI functions.

For example, our separable 3× 3 box filter in Figure 1 is expressed
as a chain of two functions in x, y. The first horizontally blurs the
input; the second vertically blurs the output of the first.

This representation is simpler than most functional languages. We
omit higher-order functions, dynamic recursion, and richer data
structures such as tuples and lists. Functions simply map from in-
teger coordinates to a scalar result. This representation is sufficient
to describe a wide range of image processing algorithms, and these
constraints enable extremely flexible analysis and transformation
of algorithms during compilation. Constrained versions of more
advanced features, such as higher-order functions and tuples, are
reintroduced as syntactic sugar, but they do not change the under-
lying representation (Sec. 4.1).

Reduction functions. In order to express operations like his-
tograms and general convolutions, we need a way to express iter-
ative or recursive computations. We call these reductions because
this class of functions includes, but is not limited to, traditional re-
ductions such as summation. Reductions are defined recursively,
and consist of two parts:

• An initial value function, which specifies a value at each point
in the output domain.
• A recursive reduction function, which redefines the value at

points given by an output coordinate expression in terms of
prior values of the function.

Unlike a pure function, the meaning of a reduction depends on the
order in which the reduction function is applied. We require the
programmer to specify the order by defining a reduction domain,
bounded by minimum and maximum expressions for each dimen-
sion. The value at each point in the output domain is defined by the
final value of the reduction function at that point, given recursive in
lexicographic order across the reduction domain.

In the case of a histogram, the reduction domain is the input im-
age, the output domain is the histogram bins, the initial value is 0,

UniformImage in(UInt(8), 2);
Func histogram, cdf, out;
RDom r(0, in.width(), 0, in.height()), ri(0, 255);
Var x, y, i;

histogram(in(r.x, r.y))++;
cdf(i) = 0;
cdf(ri) = cdf(ri-1) + histogram(ri);
out(x, y) = cdf(in(x, y));

Figure 3: Histogram equalization uses a reduction to compute a
histogram, a scan to integrate it into a cdf, and a point-wise op-
eration to remap the input using the cdf. The iteration domains
for the reduction and scan are expressed by the programmer using
RDoms. Like all functions in our representation, histogram and cdf

are defined over an infinite domain. Entries not touched by the re-
duction step are zero-valued. For cdf, this is specified explicitly.
For histogram, it is implicit in the ++ operator.

the output coordinate is the intensity of the input image, and the
reduction function increments the value in the corresponding bin.

From the perspective of a caller, the result of the reduction is de-
fined over an infinite domain, like any other function. At points
which are never specified by an output coordinate, the value is the
initial expression.

This relatively simple pattern can describe a range of naturally it-
erative algorithms in a way that bounds side effects, but still allows
easy conversion to efficient implementations which need to allocate
only a single value for each point in the output domain. Several re-
ductions are combined to perform histogram equalization in Fig. 3.

3.2 The Schedule

Our formulation of imaging pipelines as chains of functions inten-
tionally omits choices of when and where these functions should be
computed. The programmer separately specifies this using a sched-
ule. A schedule describes not only the order of evaluation of points
within the producer and consumer, but also what is stored and what
is recomputed. The schedule further describes mapping onto par-
allel execution resources such as threads, SIMD units, and GPU
blocks. It is constrained only by the fundamental dependence be-
tween points in different functions (values must be computed before
they are used).

Schedules are demand-driven: for each pipeline stage, they spec-
ify how the inputs should be evaluated, starting from the output of
the full pipeline. Formally, when a callee function such as tmp in
Fig.1(c) is invoked in a caller such as blurred, we need to decide
how to schedule it with respect to the caller.

We currently allow four types of caller-callee relationships (Fig. 4).
Some of them lead to additional choices, including traversal order
and subdivision of the domain, with possibly recursive scheduling
decisions for the sub-regions.

Inline: compute as needed, do not store. In the simplest case,
the callee is evaluated directly at the single point requested by the
caller, like a function call in a traditional language. Its value at
that point is computed from the expression which defines it, and
passed directly into the calling expression. Reductions may not be
inlined because they are not defined by a single expression; they
require evaluation over the entire reduction domain before they can
return a value. Inlining performs redundant computation whenever
a single point is referred to in multiple places. However, even when
it introduces significant amounts of recomputation, inlining can be
the most efficient option. This is because image processing code is
often constrained by memory bandwidth and inlining passes values
between functions with maximum locality, usually in registers.
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Figure 4: We model scheduling an imaging pipeline as the set of choices that must be made for each stage about how to evaluate each of its
inputs. Here, we consider blurred’s dependence on tmp, from the example in Fig. 1. blurred may inline tmp, computing values on demand
and not storing anything for later reuse (top left). This gives excellent temporal locality and requires minimal storage, but each point of tmp
will be computed three times, once for each use of each point in tmp. blurred may compute and consume tmp in larger chunks. This provides
some producer-consumer locality, and isolates redundant computation at the chunk boundaries (visible as overlapping transparent regions
above). At the extreme, blurred may compute all of tmp before using any of it. We call this root. It computes each point of tmp only once, but
requires storage for the entire region, and producer-consumer locality is poor—each value is unlikely to still be in cache when it is needed.
Finally, if some other consumer (in green on the right) had already evaluated all of tmp as root, blurred could simply reuse that data. If
blurred evaluates tmp as root or chunked, then there are further choices to make about the order in which to compute the given region of tmp.
These choices define the interleaving of the dimensions (e.g. row- vs. column-major, bottom left), and the serial or parallel evaluation of each
dimension. Dimensions may be split and their sub-dimensions further scheduled (e.g., to produce tiled traversal orders, bottom right).

Root: precompute entire required region. At the other ex-
treme, we can compute the value of the callee for the entire subdo-
main needed by the caller before evaluating any points in the caller.
In our blur example, this means evaluating and storing all of the
horizontal pass (tmp) before beginning the vertical pass (blurred).
We call this call schedule root. Every point is computed exactly
once, but storage and locality may be lost: the intermediate buffer
required may be large, and points in the callee are unlikely to still
be in a cache when they are finally used. This schedule is equiv-
alent to the most common structure seen in naive C or MATLAB
image processing code: each stage of the algorithm is evaluated in
its entirety, and then stored as a whole image in memory.

Chunk: compute, use, then discard subregions. Alterna-
tively, a function can be chunked with respect to a dimension of
its caller. Each iteration of the caller over that dimension first com-
putes all values of the callee needed for that iteration only. Chunk-
ing interleaves the computation of sub-regions of the caller and the
callee, trading off producer-consumer locality and reduced storage
footprint for potential recomputation when chunks required for dif-
ferent iterations of the caller overlap.

Reuse: load from an existing buffer. Finally, if a function is
computed in chunks or at the root for one caller, another caller may
reuse that evaluation. Reusing a chunked evaluation is only legal
if it is also in scope for the new caller. Reuse is typically the best
option when available.

Imaging applications exhibit a fundamental tension between to-
tal fusion down the pipeline (inline), which maximizes producer-
consumer locality at the cost of recomputation of shared values,
and breadth-first execution (root), which eliminates recomputation

at the cost of locality. This is often resolved by splitting a function’s
domain and chunking the functions upstream at a finer granular-
ity. This achieves reuse for the inner dimensions, and producer-
consumer locality for the outer ones. Choosing the granularity
trades off between locality, storage footprint, and recomputation.
A key purpose of our schedule representation is to span this contin-
uum, so that the best choice may be made in any given context.

Order of domain evaluation. The other essential axis of control
is the order of evaluation within the required region of each func-
tion, including parallelism and tiling. While evaluating a function
scheduled as root or chunk, the schedule must specify, for each di-
mension of the subdomain, whether it is traversed:

• sequentially,
• in parallel,
• unrolled by a constant factor,
• or vectorized by a constant factor.

The schedule also specifies the relative traversal order of the dimen-
sions (e.g., row- vs. column-major).

The schedule does not specify the bounds in each dimension. The
bounds of the domain required of each stage are inferred during
compilation (Sec. 5.2). Ultimately, these become expressions in the
size of the requested output image. Leaving bounds specification to
the compiler makes the algorithm and schedule simpler and more
flexible. Explicit bounds are only required for indexing expressions
not analyzable by the compiler. In these cases, we require the algo-
rithm to explicitly clamp the problematic index.

The schedule may also split a dimension into inner and outer com-
ponents, which can then be treated separately. For example, to rep-



resent evaluation in 2D tiles, we can split the x into outer and inner
dimensions xo and xi, and similarly split y into yo and yi, which
can then be traversed in the order yo, xo, yi, xi (illustrated in the
lower right of Fig. 4). After a dimension has been split, the inner
and outer components are recursively scheduled using any of the
options above. Chunked call schedules, combined with split iter-
ation dimensions, describe the common pattern of loop tiling and
stripmining (as used in Fig. 1). Recursive splitting describes hier-
archical tiling.

Splitting a dimension expands its bounds to be a multiple of the ex-
tent of the inner dimension. Vectorizing or unrolling a dimension
similarly rounds its extent up to the nearest multiple of the factor
used. Such bounds expansion is always legal given our representa-
tion of images as functions over infinite domains.

These choices amount to specifying a complete loop nest which tra-
verses the required region of the output domain. Tiled access pat-
terns can be extremely important in maximizing locality and cache
efficiency, and are a key effect of our schedules. The storage layout
for each region, however, is not controlled by the schedule. Tiled
storage layouts have mattered surprisingly little on all architectures
and applications we have tried, so we do not include them. Cache
lines are usually smaller than tile width, so tiled layout in main
memory often has limited effect on cache behavior.

Scheduling reductions. The schedule for a reduction must spec-
ify a pair of loop nests: one for the initial value (over the output do-
main), and one for the reduction step (over the reduction domain).
In the latter case, the bounds are given by the definition of the re-
duction, and do not need to be inferred later. Since the meaning of
reductions is partially order-dependent, it is illegal for the schedule
to change the order of dimensions in the update in such a way that
changes the meaning. But while we semantically define reductions
to follow a strict lexicographic traversal order over the reduction
domain, many common reductions (such as sum and histogram) are
associative, and may be executed in parallel. Scans like cdf are
more challenging to parallelize. We do not yet address this.

3.3 The Fully Specified Program

Lowering an intrinsic algorithm with a specific schedule produces
a fully specified imperative program, with a defined order of oper-
ations and placement of data. The resulting program is made up of
ordered imperative statements, including:

• Stores of expression values to array locations;

• Sequential and parallel for loops, which define a range of vari-
able values over which a statement should be executed;

• Producer-consumer edges, which define an array to be allo-
cated (its size given by a potentially dynamic expression), a
block of statements which may write to it, and a block of state-
ments which may read from it, after which it may be freed.

This is a general imperative program representation, but we don’t
need to analyze or transform programs in this form. Most challeng-
ing optimization has already been performed in the lowering from
intrinsic algorithm to imperative program. And because the com-
piler generates all imperative allocation and execution constructs,
it has a deep knowledge of their semantics and constraints, which
can be very challenging to infer from arbitrary imperative input.
Our lowered imperative program may still contain symbolic bounds
which need to be resolved. A final bounds inference pass infers con-
crete bounds based on dependence between the bounds of different
loop variables in the program (Sec. 5.2).

4 The Language

We construct imaging pipelines in this representation using a pro-
totype language embedded in C++, which we call Halide. A chain
of Halide functions can be JIT compiled and used immediately, or
it can be compiled to an object file and header to be used by some
other program (which need not link against Halide).

Expressions. The basic expressions are constants, domain vari-
ables, and calls to Halide functions. From these, we use C++
operator overloading to build arithmetic operations, comparisons,
and logical operations. Conditional expressions, type-casting, tran-
scendentals, external functions, etc. are described using calls to
provided intrinsics. For example, the expression select(x > 0,

sqrt(cast<float>(x)), f(x+1)) returns either the square root of
x, or the application of some Halide function f to x+1, depending on
the sign of x. Finally, debug expressions evaluate to their first argu-
ment, and print the remainder of their arguments at evaluation-time.
They are useful for inspecting values in flight.

Functions are defined in a functional programming style. The
following code constructs a Halide function over a two dimensional
domain that evaluates to the product of its arguments:

Func f;
Var x, y;
f(x, y) = x * y;

Reductions are declared by providing two definitions for a function:
one for its initial value, and one for its reduction step. The reduction
step should be defined in terms of the dimensions of a reduction
domain (of type RDom), which include expressions describing their
bounds (min and extent). The left-hand-side of the reduction step
may be a computed location rather than simple variables (Fig. 3).

We can initialize the bounds of a reduction domain based on the
dimensions of an input image. We can also infer reasonable initial
values in common cases: if a reduction is a sum, the initial value
defaults to zero; if it is a product, it defaults to one. The follow-
ing code takes advantage of both of these features to compute a
histogram over the image im:

Func histogram;
RDom r(im);
histogram(im(r.x, r.y))++;

Uniforms describe the run-time parameters of an imaging
pipeline. They may be scalars or entire images (in particular, an in-
put image). When using Halide as a JIT compiler, uniforms can be
bound by assigning to them. Statically-compiled Halide functions
will expose all referenced uniforms as top-level function arguments.
The following C++ code builds a Halide function that brightens its
input using a uniform parameter.

// A floating point parameter
Uniform<float> scale;
// A two-dimensional floating-point image
UniformImage input(Float(32), 2);
Var x, y:
Func bright;
bright(x, y) = input(x, y) * scale;

We can JIT compile and use our function immediately by calling
realize:

Image<float> im = load("input.png");
input = im;
scale = 2.0f;
Image<float> output =
bright.realize(im.width(), im.height());



Alternatively, we can statically compile with:

bright.compileToFile("bright", {scale, input});

This produces bright.o and bright.h, which together define a C
callable function with the following type signature:

void bright(float scale, buffer t *input, buffer t *out);

where buffer t is a simple image struct defined in the same header.

Value types. Expressions, functions, and uniforms may have
floating point, signed, or unsigned integer type of any natively-
supported bit width. Domain variables are 32-bit signed integers.

4.1 Syntactic Sugar

While the constructs above are sufficient to express any Halide al-
gorithm, functional languages typically provide other features that
are useful in this context. We provide restricted forms of several of
these via syntactic sugar.

Higher-order functions. While Halide functions may only have
integer arguments, the code that builds a pipeline may include C++
functions that take and return Halide functions. These are effec-
tively compile-time higher-order functions, and they let us write
generic operations on images. For example, consider the following
operator which shrinks an image by subsampling:

// Return a new Halide function that subsamples f
Func subsample(Func f) {
Func g; Var x, y;
g(x, y) = f(2*x, 2*y);
return g;

}

C++ functions that deal in Halide expressions are also a convenient
way to write generic code. As the host language, C++ can be used
as a metaprogramming layer to more conveniently construct Halide
pipelines containing repetitive substructures.

Partial application. When performing trivial point-wise opera-
tions on entire images, it is often clearer to omit pixel indices. For
example if we wish to define f as equal to a plus a subsampling of b,
then f = a + subsample(b) is clearer than f(x, y) = a(x, y) +

subsample(b)(x, y). We therefore automatically lift any operator
which combines partially applied functions to point-wise operation
over the omitted arguments.

Tuples. We overload the C++ comma operator to allow for tuples
of expressions. A tuple generates an anonymous function that maps
from an index to that element of the tuple. The tuple is then treated
as a partial application of this function. For example, given ex-
pressions r, g, and b, the definition f(x, y) = (r, g, b) creates a
three-dimensional function (in this case representing a color image)
whose last argument selects between r, g, and b. It is equivalent to
f(x, y, c) = select(c==0, r, select(c==1, g, b)).

Inline reductions. We provide syntax for inlining the most
commonly-occurring reduction patterns: sum, product, maximum,
and minimum. These simplified reduction operators implicitly use
any RDom referenced with as the reduction domain. For example, a
blurred version of some image f can be defined as follows:

Func blurry; Var x, y;
RDom r(-2, 5, -2, 5);
blurry(x, y) = sum(f(x+r.x, y+r.y));

4.2 Specifying a Schedule

Once the description of an algorithm is complete, the programmer
specifies a desired partial schedule for each function. The compiler
fills in any remaining choices using simple heuristics, and tabulates
the scheduling decisions for each call site. The function represent-
ing the output is scheduled as root. Other functions are scheduled
as inline by default. This behavior can be modified by calling one
of the two following methods:

• im.root() schedules the first use of im as root, and schedules
all other uses to reuse that instance.
• im.chunk(x) schedules im as chunked over x, which must be

some dimension of the caller of im. A similar reuse heuristic
applies; for each unique x, only one use is scheduled as chunk,
and the others reuse that instance.

If im is scheduled as root or chunk, we must also specify the traver-
sal order of the domain. By default it is traversed serially in scanline
order. This can be modified using the following methods:

• im.transpose(x, y) moves iteration over x outside of y in the
traversal order (i.e., this switches from row-major to column-
major traversal).
• im.parallel(y) indicates that each row of im should be com-

puted in parallel across y.
• im.vectorized(x, k) indicates that x should be split into vec-

tors of size k, and each vector should be executed using SIMD.
• im.unroll(x, k) indicates that the evaluation of im should be

unrolled across the dimension x by a factor of k.
• im.split(x, xo, xi, k) subdivides the dimension x into outer

and inner dimensions xo and xi, where xi ranges from zero to k.
xo, and xi can then be independently marked as parallel, serial,
vectorized, or even recursively split.
• im.tile(x, y, xi, yi, tw, th) is a convenience method that

splits x by a factor of tw, and y by a factor of th, then transposes
the inner dimension of y with the outer dimension of x to effect
traversal over tiles.
• im.gpu(bx, by, tx, ty) maps execution to the CUDA model,

by marking bx and by as corresponding to block indices, and tx

and ty as corresponding to thread indices within each block.
• im.gpuTile(x, y, tw, th) is a similar convenience method to

tile. It splits x and y by tw and th respectively, and then maps
the resulting four dimensions to CUDA’s notion of blocks and
threads.

Schedules that would require substantial transformation of code
written in C can be specified tersely, and in a way that does
not change the statement of the algorithm. Furthermore, each
scheduling method returns a reference to the function, so calls
can be chained: e.g., im.root().vectorize(x, 4).transpose(x,

y).parallel(x) directs the compiler to evaluate im in vectors of
width 4, operating on every column in parallel, with each thread
walking down its column serially.

5 Compiler Implementation

The Halide compiler lowers imaging pipelines into machine code
for ARM, x86, and PTX. It uses the LLVM compiler infrastructure
for conventional scalar optimizations, register allocation, and ma-
chine code generation [LLVM]. While LLVM provides some de-
gree of platform neutrality, the final stages of lowering must be
architecture-specific to produce high-performance machine code.
Compilation proceeds as shown in Fig. 5.
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Figure 5: The programmer writes a pipeline of Halide functions
and partially specifies their schedules. The compiler then removes
syntactic sugar (such as tuples), generates a complete schedule,
and uses it to lower the pipeline into an imperative representa-
tion. Bounds inference is then performed to inject expressions that
compute the bounds of each loop and the size of each intermediate
buffer. The representation is then further lowered to LLVM IR, and
handed off to LLVM to compile to machine code.

5.1 Lowering

After the programmer has created an imaging pipeline and specified
its schedule, the first role of the compiler is to transform the func-
tional representation of the algorithm into an imperative one using
the schedule. The schedule is tracked as a table mapping from each
call site to its call schedule. For root and chunked schedules, it also
contains an ordered list of dimensions to traverse, and how they
should be traversed (serial, parallel, vectorized, unrolled) or split.

The compiler works iteratively from the end of the pipeline up-
wards, considering each function after all of its uses. This requires
that the pipeline be acyclic. It first initializes a seed by generating
the imperative code that realizes the output function over its do-
main. It then proceeds up the pipeline, either inlining function bod-
ies, or injecting loop nests that allocate storage and evaluate each
function into that storage.

The structure of each loop nest, and the location it is injected, are
precisely specified by the schedule: a function scheduled as root
has realization code injected at the top of the code generated so far;
functions scheduled as chunked over some variable have realization
code injected at the top of the body of the corresponding loop; in-
line functions have their uses directly replaced with their function
bodies, and functions that reuse other realizations are skipped over
for now. Reductions are lowered into a sequential pair of loop nests:
one for the initialization, and one for the reduction step.

The final goal of lowering is to replace calls to functions with loads
from their realizations. We defer this until after bounds inference.

5.2 Bounds Inference

The compiler then determines the bounds of the domain over which
each use of each function must be evaluated. These bounds are
typically not statically known at compile time; they will almost cer-
tainly depend on the sizes of the input and output images. The com-
piler is responsible for injecting the appropriate code to compute
these bounds. Working through the list of functions, the compiler
considers all uses of each function, and derives expressions that
give the minimum and maximum possible argument values. This is
done using symbolic interval arithmetic. For example, consider the
following pseudocode that uses f:

for (i from a to b) g[i] = f(i+1) + f(i*2)

Working from the inside out it is easy to deduce that f must be
evaluated over the range [min(a + 1, a ∗ 2),max(b + 1, b ∗ 2)],
and so expressions that compute these are injected just before the
realization of f. Reductions must also consider the bounds of the
expressions that determine the location of updates.

This analysis can fail in one of two ways. First, interval arithmetic
can be over-conservative. If x ∈ [0, a], then interval arithmetic
computes the bounds of x(a − x) as [0, a2], instead of the actual
bounds [0, a2/4]. We have yet to encounter a case like this in prac-
tice; in image processing, dependence between functions is typi-
cally either affine or data-dependent.

Second, the compiler may not be able to determine any bound for
some values, e.g. a value returned by an external function. These
cases often correspond to code that would be unsafe if implemented
in equivalent C. Unbounded expressions used as indices cause the
compiler to throw an error.

In either case, the programmer can assist the compiler using min,
max, and clamp expressions to simultaneously declare and enforce
the bounds of any troubling expression.

Now that expressions giving the bounds of each function have been
computed, we replace references to functions with loads from or
stores to their realizations, and perform a constant-folding and sim-
plification pass. The imperative representation is then translated
directly to LLVM IR with a few architecture-specific modifications.

5.3 CPU Code Generation

Generating machine code from our imperative representation is
largely left to LLVM, with two caveats:

First, LLVM IR has no concept of a parallel for loop. For the CPU
targets we implement these by lifting the body of the for loop into a
separate function that takes as arguments a loop index and a closure
containing the referenced external state. At the original site of the
loop we insert code that generates a work queue containing a sin-
gle task representing all instances of the loop body. A thread pool
then nibbles at this task until it is complete. If a worker thread en-
counters a nested parallel for loop this is pushed onto the same task
queue, with the thread that encountered it responsible for managing
the corresponding task.

Second, while LLVM has native vector types, it does not reliably
generate good vector code in many cases on both ARM (target-
ing the NEON SIMD unit) and x86 (using SSE). In these cases we
peephole optimize patterns in our representation, replacing them
with calls to architecture-specific intrinsics. For example, while it
is possible to perform efficient strided vector loads on both x86 and
ARM for small strides, naive use of LLVM compiles them as gen-
eral gathers. We can leverage more information than is available to
LLVM to generate better code.

5.4 CUDA Code Generation

When targeting CUDA, the compiler still generates functions with
the same calling interface: a host function which takes scalar and
buffer arguments. We compile the Halide algorithm into a hetero-
geneous program which manages both host and device execution.

The schedule describes how portions of the algorithm should be
mapped to CUDA execution. It tags dimensions as corresponding
to the grid dimensions of CUDA’s data-parallel execution model
(threads and blocks, across up to 3 dimensions). Each of the result-
ing loop nests is mapped to a CUDA kernel, launched over a grid
large enough to contain the number of threads and blocks active at
the widest point in that loop nest. Operations scheduled outside the
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Figure 6: The basic camera post-processing pipeline is a feed-
forward pipeline in which each stage either considers only nearby
neighbors (denoise and demosaic), or is point-wise (color correct
and tone curve). The best schedule computes the entire pipeline in
small tiles in order to exploit producer-consumer locality. This in-
troduces redundant computation in the overlapping tile boundaries,
but the reduction in memory bandwidth more than makes up for it.

kernel loop nests execute on the host CPU, using the same schedul-
ing primitives and generating the same highly optimized x86/SSE
code as when targeting the host CPU alone.

Fusion is achieved by scheduling functions inline, or by chunking
at the CUDA block dimension. We can describe many kernel fusion
choices for complex pipelines simply by changing the schedule.

The host side of the generated code is responsible for managing
most data allocation and movement, CUDA kernel launch, and syn-
chronization. Allocations scheduled outside CUDA thread blocks
are allocated in host memory, managed by the host runtime, and
copied to CUDA global memory when and if they are needed by
a kernel. Allocations within thread blocks are allocated in CUDA
shared memory, and allocations within threads in CUDA thread-
local memory.

Finally, we allow associative reductions to be executed in parallel
on the GPU using its native atomic operations.

6 Applications and Evaluation

We present four image processing applications that test different as-
pects of our approach. For each we compare both our performance
and our implementation complexity to existing optimized solutions.
The results are summarized in Fig. 2. The Halide source for each
application can be found in the supplemental materials. Perfor-
mance results are reported as the best of five runs on a 3GHz Core2
Quad x86 desktop, a 2.5GHz quad-core Core i7-2860QM x86 lap-
top, a Nokia N900 mobile phone with a 600MHz ARM OMAP3
CPU, a dual core ARM OMAP4 development board (equivalent to
an iPad 2), and an NVIDIA Tesla C2070 GPU (equivalent to a mid-
range consumer GPU). In all cases, the algorithm code does not
change between targets. (All application code and schedules are
included in supplemental material.)

6.1 Camera Pipeline

We implement a simple camera pipeline that converts raw data from
an image sensor into color images (Fig. 6). The pipeline performs
four tasks: hot-pixel suppression, demosaicking, color correction,
and a tone curve that applies gamma correction and contrast. This
reproduces the software pipeline from the Frankencamera [Adams
et al. 2010], which was written in a heavily optimized mixture of
vector intrinsics and raw ARM assembly targeted at the OMAP3
processor in the Nokia N900. Our code is shorter and simpler, while
also slightly faster and portable to other platforms.

Figure 7: The local Laplacian filter enhances local contrast us-
ing Gaussian and Laplacian image pyramids. The pipeline mixes
images at different resolutions with a complex network of depen-
dencies. While we show three pyramid levels here, for our four
megapixel test image we used eight.

The tightly bounded stencil communication down the pipeline
makes fusion of stages to save bandwidth and storage a critical op-
timization for this application. In the Frankencamera implemen-
tation, the entire pipeline is computed on small tiles to take ad-
vantage of producer-consumer locality and minimize memory foot-
print. Within each tile, the evaluation of each stage is vectorized.
These strategies render the algorithm illegible. Portability is sac-
rificed completely; an entirely separate, slower C version of the
pipeline has to be included in the Frankencamera source in order to
be able to run the pipeline on a desktop processor.

We can express the same optimizations used in the Frankencamera
assembly, separately from the algorithm: the output is tiled, and
each stage is computed in chunks within those tiles, and then vec-
torized. This requires one line of scheduling choices per pipeline
stage. With these transformations, our implementation takes 741
ms to process a 5 megapixel raw image on a Nokia N900 running
the Frankencamera code, while the Frankencamera implementation
takes 772 ms. We specify the algorithm in 145 lines of code, and the
schedule in 23. The Frankencamera code uses 463 lines to specify
both. Our implementation is also portable, whereas the Franken-
camera assembly is entirely platform specific: the same Halide code
compiles to multithreaded x86 SSE code, which takes 51 ms on our
quad-core desktop.

6.2 Local Laplacian Filters

One of the most important tasks in producing compelling photo-
graphic images is adjusting local contrast. Paris et al. [2011] intro-
duced local Laplacian filters for this purpose. The technique was
then modified and accelerated by Aubry et al. [2011] (Fig. 7). This
algorithm exhibits a high degree of data parallelism, which the orig-
inal authors took advantage of to produce an optimized implemen-
tation using a combination of Intel Performance Primitives [IPP]
and OpenMP [OpenMP].

We implemented this algorithm in Halide, and explored multiple
strategies for scheduling it efficiently on several different machines
(Fig. 8). The statement of the algorithm did not change during the
exploration of plausible schedules. We found that on several x86
platforms, the best performance came from a complex schedule in-
volving inlining certain stages, and vectorizing and parallelizing the
rest. Using this schedule on our quad-core laptop, processing a 4
megapixel image takes 158 ms. On the same processor the hand-
optimized version used by Aubry et al. takes 335 ms. The reference
implementation requires 262 lines of C++, while in Halide the same
algorithm is 62 lines. The schedule is specified using seven lines of
code. A third implementation, in ispc [Pharr and Mark 2012], us-
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Figure 8: We found effective schedules for the local Laplacian fil-
ter by manually testing and refining a small, hand-tuned schedule,
across a range of multicore CPUs. Some major steps are high-
lighted. To begin, all functions were scheduled as root and com-
puted serially. (a) Then, each stage was parallelized over its out-
ermost dimension. (b) Computing the Laplacian pyramid levels
inline improves locality, at the cost of redundant computation. (d)
But excessive inlining is dangerous: the high spike in runtimes re-
sults from additionally inlining every other Gaussian pyramid level.
(d) The best performance on the x86 processors required addition-
ally inlining only the bottom-most Gaussian pyramid level, and vec-
torizing across x. The ARM performs slightly better with a similar
schedule, but no vectorization. The entire optimization process took
only a couple of hours. (The full sequence of schedules from this
graph, and their performance, are shown at the end of this applica-
tion’s source code in supplemental material.)

ing OpenMP to distribute the work across multiple cores, used 288
lines of code. It is longer than in Halide due to explicit boundary
handling, memory management, and C-style kernel syntax. The
ispc implementation takes 327 ms to process the 4-megapixel im-
age. The Halide implementation is faster due to fusion down the
pipeline. The ispc implementation can be manually fused by rewrit-
ing it, but this would further lengthen and complicate the code.

A schedule equivalent to naive parallel C, with all major stages
scheduled as root but evaluated in parallel over the outer dimen-
sions, performs much less redundant computation than the fastest
schedule, but takes 296 ms because it sacrifices producer-consumer
locality and is limited by memory bandwidth. The best schedule
on a dual core ARM OMAP4 processor is slightly different. While
the same stages should be inlined, vectorization is not worth the
extra instructions, as the algorithm is bandwidth-bound rather than
compute-bound. On the ARM processor, the algorithm takes 5.5
seconds with vectorization and 4.2 seconds without. Naive evalu-
ation takes 9.7 seconds. The best schedule for the ARM takes 278
ms on the x86 laptop—75% longer than the best x86 schedule.

This algorithm maps well to the GPU, where processing the same
four-megapixel image takes only 49 ms. The best schedule evalu-
ates most stages as root, but fully fuses (inlines) all of the Laplacian
pyramid levels wherever they are used, trading increased compu-
tation for reduced bandwidth and storage, similar to the x86 and
ARM schedules. Each stage is split into 32×32 tiles that each map
to a single CUDA block. The same algorithm statement then com-
piles to 83 total invocations of 25 distinct CUDA kernels, combined
with host CPU code that precomputes lookup tables, manages de-
vice memory and data movement, and synchronizes the long chain
of kernel invocations. Writing such code by hand is a daunting
prospect, and would not allow for the rapid performance-space ex-
ploration that Halide provides.
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Figure 9: The bilateral filter smoothes detail without losing strong
edges. It is useful for a variety of photographic applications includ-
ing tone-mapping and local contrast enhancement. The bilateral
grid computes a fast bilateral filter by scattering the input image
onto a coarse three-dimensional grid using a reduction. This grid
is blurred, and then sampled to produce the smoothed output.

6.3 The Bilateral Grid

The bilateral filter [Paris et al. 2009] is used to decompose images
into local and global details. It is efficiently computed with the
bilateral grid algorithm [Chen et al. 2007; Paris and Durand 2009].
This pipeline combines three different types of operation (Fig. 9).
First, the grid is constructed with a reduction, in which a weighted
histogram is computed over each tile of the input. These weighted
histograms become columns of the grid, which is then blurred with
a small-footprint filter. Finally, the grid is sampled using trilinear
interpolation at irregular data-dependent locations to produce the
output image.

We implemented this algorithm in Halide and found that the best
schedule for the CPU simply parallelizes each stage across an ap-
propriate axis. The only stage regular enough to benefit from vec-
torization is the small-footprint blur, but for commonly used filter
sizes the time taken by the blur is insignificant. Using this sched-
ule on our quad-core x86 desktop, we compute a bilateral filter of
a four megapixel input using typical filter parameters (spatial stan-
dard deviation of 8 pixels, range standard deviation of 0.1) in 80 ms.
In comparison, the moderately-optimized C++ version provided by
Paris and Durand [2009] takes 472 ms using a single thread on the
same machine. Our single-threaded runtime is 254 ms; some of our
speedup is due to parallelism, and some is due to generating supe-
rior scalar code. We use 34 lines of code to describe the algorithm,
and 6 for its schedule, compared to 122 lines in the C++ reference.

We first tried running the same algorithm on the GPU using a sched-
ule which performs the reduction over each tile of the input image
on a single CUDA block, with each thread responsible for one in-
put pixel. Halide detected the parallel reduction, and automatically
inserted atomic floating point adds to memory. The runtime was 40
ms—only 2× faster than our optimized CPU code, due to atomic
contention. The latest hand-written GPU implementation by Chen
et al. [2007] expresses the same algorithm and a similar schedule in
370 lines of CUDA C++, and takes 24 ms on the same GPU.

With the rapid schedule exploration enabled by Halide, we quickly
found a better schedule that trades off some parallelism to reduce
atomics contention. We modified the schedule to use one thread per
tile of the input, with each thread walking serially over the reduc-
tion domain. This one-line change in schedule gives us a runtime of
11 ms for the same image. When we rewrite the hand-tuned CUDA
implementation to match the schedule found with Halide, it takes
8 ms. The 3 ms improvement over Halide comes from the use of
texture units for the slicing stage. Halide does not currently use
texture hardware. In general, hand-tuned CUDA can surpass the
performance Halide achieves when there is a significant win from
clever use of specific CUDA features not expressible in our sched-
ule, but exploring different optimization strategies is much harder



Figure 10: Adaptive contours segment objects from the back-
ground. Level-set approaches are useful to cope with smooth ob-
jects and when the number of elements is unknown. The algorithm
iterates a series of differential operators and nonlinear functions to
progressively refine the selection. The final result is a set of curves
that tightly delineate the objects of interest (in red on the right).

than in Halide. Compared to the original CUDA bilateral grid, the
schedule found with Halide saved 13 ms, while the clever use of
texture units saved 3 ms.

With the final GPU schedule, the same 34-line Halide algorithm
runs over 40× faster than the more verbose reference C++ imple-
mentation on the CPU, and twice as fast as the reference CUDA
implementation using 1/10th the code.

6.4 Image Segmentation using Level Sets

Active contour selection (a.k.a. snake [Kass et al. 1988]) is a
method for segmenting objects from a background (Fig.10). It
is well suited for medical applications. We implemented the al-
gorithm proposed by Li et al. [2010]. The algorithm is iterative,
and can be interpreted as a gradient-descent optimization of a 2D
function. Each update of this function is composed of three terms
(Fig. 10), each of them being a combination of differential quanti-
ties computed with small 3 × 1 and 1 × 3 stencils, and point-wise
nonlinear operations, such as normalizing the gradients.

We factored this algorithm into three feed-forward pipelines. Two
pipelines create images that are invariant to the optimization loop,
and one primary pipeline performs a single iteration of the opti-
mization loop. While Halide can represent bounded iteration over
the outer loop using a reduction, it is more naturally expressed in
the imperative host language. We construct and chain together these
pipelines at runtime using Halide as a just-in-time compiler in order
to perform a fair evaluation against the reference implementation
from Li et al., which is written in MATLAB. MATLAB is notori-
ously slow when misused, but this code expresses all operations in
the array-wise notation that MATLAB executes most efficiently.

On a 1600× 1200 test image, our Halide implementation takes 55
ms per iteration of the optimization loop on our quad-core x86 desk-
top, whereas the MATLAB implementation takes 3.8 seconds. Our
schedule is expressed in a single line: we parallelize and vector-
ize the output of each iteration, while leaving every other function
to be inlined by default. The bulk of the speedup comes not from
vectorizing or parallelizing; without them, our implementation still
takes just 202 ms per iteration. The biggest difference is that we
have completely fused the operations that make up one iteration.
MATLAB expresses algorithms as sequences of many simple array-
wise operations, and is heavily limited by memory bandwidth. It is
equivalent to scheduling every operation as root, which is a poor
choice for algorithms like this one.

The fully-fused form of this algorithm is also ideal for the GPU,
where it takes 3 ms per iteration.

6.5 Discussion and Future Work

The performance gains we have found on these applications demon-
strate the feasibility and power of separating algorithms from their
schedules. Changing the schedule enables a single algorithm defi-
nition to achieve high performance on a diversity of machines. On
a single machine, it enables rapid performance space exploration.
The algorithm specification also becomes considerably more con-
cise once scheduling concerns are separated.

While the set of scheduling choices we enumerate proved sufficient
for these applications, there are other interesting options that our
representation could incorporate, such as sliding window schedules
in which multiple evaluations are interleaved to reduce storage, or
dynamic schedules in which functions are computed lazily and then
cached for reuse. Heterogeneous architectures are an important po-
tential target. Our existing implementation already generates mixed
CPU & GPU code, with the schedule managing the orchestration.
On PCs with discrete GPUs, data movement costs tend to preclude
fine-grained collaboration, but on more integrated SoCs being able
to quickly explore a wide range of schedules combining multiple
execution resources is appealing.

We are also exploring autotuning and heuristic optimization en-
abled by our ability to enumerate the space of legal schedules. We
further believe we can continue to clarify the algorithm specifica-
tion with more aggressive inference.

Some image processing algorithms include constructs beyond the
capabilities of our current representation, such as non-image data
structures like lists and graphs, and optimization algorithms that
use iteration-until-convergence. We believe that these and other
patterns can also be unified into a similar programming model, but
doing so remains an open challenge.

7 Conclusion

Image processing pipelines are simultaneously deep and wide; they
contain many simple stages that operate on large amounts of data.
This makes the gap between naive schedules and highly parallel
execution that efficiently uses the memory hierarchy large—often
an order of magnitude. And speed matters for image processing.
People expect image processing that is interactive, that runs on their
cell phone or camera. An order of magnitude in speed is often the
difference between an algorithm being used in practice, and not
being used at all.

With existing tools, closing this gap requires ninja programming
skills; imaging pipelines must be painstakingly globally trans-
formed to simultaneously maximize parallelism and memory effi-
ciency. The resulting code is often impossible to modify, reuse, or
port efficiently to other processors. In this paper we have demon-
strated that it is possible to earn this order of magnitude with less
programmer pain, by separately specifying the algorithm and its
schedule—the decisions about ordering of computation and storage
that are critical for performance but irrelevant to correctness.

Decoupling the algorithm from its schedule has allowed us to com-
pile simple expressions of complex image processing pipelines into
implementations with state-of-the-art performance across a diver-
sity of devices. We have done so without a heroic compiler. Rather,
we have found that the most practical design provides program-
mer control over both algorithm and schedule, while inferring and
mechanizing as many low-level details as possible to make this
high-level control manageable. This is in contrast to most compiler
research, but it is what made it feasible to achieve near peak per-
formance on these real applications with a simple and predictable
system.



However, we think future languages should exploit compiler au-
tomation. A domain-specific representation of scheduling, like the
one we have demonstrated, is essential to automatically inferring
similar optimizations. Even the prototype we have described infers
many details in common cases. The ultimate solution must allow a
smooth trade off between inference when it is sufficient, and sparse
programmer control when it is necessary.
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