
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-026 November 1, 2013

OpenTuner: An Extensible Framework for
Program Autotuning
Jason Ansel, Shoaib Kamil, Kalyan
Veeramachaneni, Una-May O�Reilly, and Saman Amarasinghe

OpenTuner: An Extensible Framework for Program Autotuning

Jason Ansel Shoaib Kamil Kalyan Veeramachaneni Una-May O’Reilly Saman Amarasinghe
Massachusetts Institute of Technology

{jansel, skamil, kalyan, unamay, saman}@csail.mit.edu

Abstract
Program autotuning has been shown to achieve better or
more portable performance in a number of domains. How-
ever, autotuners themselves are rarely portable between
projects, for a number of reasons: using a domain-informed
search space representation is critical to achieving good re-
sults; search spaces can be intractably large and require ad-
vanced machine learning techniques; and the landscape of
search spaces can vary greatly between different problems,
sometimes requiring domain specific search techniques to
explore efficiently.

This paper introduces OpenTuner, a new open source
framework for building domain-specific multi-objective pro-
gram autotuners. OpenTuner supports fully-customizable
configuration representations, an extensible technique rep-
resentation to allow for domain-specific techniques, and an
easy to use interface for communicating with the program to
be autotuned. A key capability inside OpenTuner is the use
of ensembles of disparate search techniques simultaneously;
techniques that perform well will dynamically be allocated
a larger proportion of tests. We demonstrate the efficacy and
generality of OpenTuner by building autotuners for 6 dis-
tinct projects and 14 total benchmarks, showing speedups
over prior techniques of these projects of up to 2.8× with
little programmer effort.

OpenTuner can be downloaded from:
http://opentuner.org/

1. Introduction
Program autotuning is increasingly being used in domains
such as high performance computing and graphics to op-
timize programs. Program autotuning augments traditional
human-guided optimization by offloading some or all of the
search for an optimal program implementation to an auto-
mated search technique. Rather than optimizing a program
directly, the programmer expresses a search space of possi-
ble implementations and optimizations. Autotuning can of-
ten make the optimization process more efficient as auto-
tuners are able to search larger spaces than is possible by
hand. Autotuning also provides performance portability, as
the autotuning process can easily be re-run on new machines

which require different sets of optimizations. Finally, multi-
objective autotuning can be used to trade off between per-
formance and accuracy, or other criteria such as energy con-
sumption and memory usage, and provide programs which
meet given performance or quality of service targets.

While the practice of autotuning has increased in popu-
larity, autotuners themselves often remain relatively simple
and project specific. There are three main challenges which
make the development of autotuning frameworks difficult.

The first challenge is using the right configuration rep-
resentation for the problem. Configurations can contain pa-
rameters that vary from a single integer for a block size to
a much more complex type such as an expression tree rep-
resenting a set of instructions. The creator of the autotuner
must find ways to represent their complex domain-specific
data structures and constraints. When these data structures
are naively mapped to simpler representations, such as a
point in high dimensional space, locality information is lost
which makes the search problem much more difficult. Pick-
ing the right representation for the search space is critical
to having an effective autotuner. To date, all autotuners that
have used a representation other than the simplest ones have
had custom project-specific representations.

The second challenge is the size of the valid configura-
tion space. While some prior autotuners have worked hard to
prune the configuration space, we have found that for many
problems excessive search space pruning will miss out on
non-intuitive good configurations. We believe providing all
the valid configurations of these search spaces is better than
artificially constraining search spaces and possibly missing
optimal solutions. Search spaces can be very large, up to
103600 possible configurations for one of our benchmarks.
Full exhaustive search of such a space will not complete in
human lifetimes! Thus, intelligent machine learning tech-
niques are required to seek out a good result with a small
number of experiments.

The third challenge is the landscape of the configuration
space. If the configuration space is a monotonic function, a
search technique biased towards this type of search space
(such as a hill climber) will be able to find the optimal con-
figuration. If the search space is discontinuous and haphaz-
ard an evolution algorithm may perform better. However, in
practice search spaces are much more complex, with discon-

1 2013/11/1

tinuities, high dimensionality, plateaus, hills with some of
the configuration parameters strongly coupled and some oth-
ers independent from each other. A search technique that is
optimal in one type of configuration space may fail to locate
an adequate configuration in another. It is difficult to provide
a robust system that performs well in a variety of situations.
Additionally, many application domains will have domain-
specific search techniques (such as scheduling or blocking
heuristics) which may be critical to finding an optimal solu-
tion efficiently. This has caused most prior autotuners to use
customized search techniques tailored to their specific prob-
lem. This requires machine learning expertise in addition to
the individual domain expertise to build an autotuner for a
system. We believe that this is one of the main reasons that,
while autotuners are recognized as critical for performance
optimization, they have not seen commodity adoption.

In this paper we present OpenTuner, a new framework for
building domain-specific program autotuners. OpenTuner
features an extensible configuration and technique represen-
tation able to support complex and user-defined data types
and custom search heuristics. It contains a library of pre-
defined data types and search techniques to make it easy
to setup a new project. Thus, OpenTuner solves the custom
configuration problem by providing not only a library of data
types that will be sufficient for most projects, but also exten-
sible data types that can be used to support more complex
domain specific representations when needed.

A core concept in OpenTuner is the use of ensembles
of search techniques. Many search techniques (both built
in and user-defined) are run at the same time, each testing
candidate configurations. Techniques which perform well by
finding better configurations are allocated larger budgets of
tests to run, while techniques which perform poorly are allo-
cated fewer tests or disabled entirely. Techniques are able to
share results using a common results database to construc-
tively help each other in finding an optimal solution. To allo-
cate tests between techniques we use an optimal solution to
the multi-armed bandit problem using area under the curve
credit assignment. Ensembles of techniques solve the large
and complex search space problem by providing both a ro-
bust solutions to many types of large search spaces and a
way to seamlessly incorporate domain specific search tech-
niques.

1.1 Contributions
This paper makes the following contributions:

• To the best of our knowledge, OpenTuner is the first
to introduce a general framework to describe complex
search spaces for program autotuning.

• OpenTuner introduces the concept of ensembles of search
techniques to program autotuning, which allow many
search techniques to work together to find an optimal
solution.

• OpenTuner provides more sophisticated search tech-
niques than typical program auotuners. This enables ex-
panded uses of program autotuning to solve more com-
plex search problems and pushes the state of the art for-
ward in program autotuning in a way that can easily be
adopted by other projects.

• We demonstrate the versatility of our framework by
building autotuners for 6 distinct projects and demon-
strate the effectiveness of the system with 14 total bench-
marks, showing speedups over existing techniques of up
to 2.8×.

• We show that OpenTuner is able to succeed both in mas-
sively large search spaces, exceeding 103600 possible
configurations in size, and in smaller search spaces using
less than 2% of the tests required for exhaustive search.

2. Related Work

Package Domain Search Method
Active Harmony [30] Runtime System Nelder-Mead
ATLAS [33] Dense Linear Algebra Exhaustive
FFTW [14] Fast Fourier Transform Exhaustive/Dynamic Prog.
Insieme [19] Compiler Differential Evolution
OSKI [32] Sparse Linear Algebra Exhaustive+Heuristic
PATUS [9] Stencil Computations Nelder-Mead or Evolutionary
PetaBricks [4] Programming Language Bottom-up Evolutionary
Sepya [21] Stencil Computations Random-Restart Gradient Ascent
SPIRAL [27] DSP Algorithms Pareto Active Learning

Figure 1. Summary of selected related projects using auto-
tuning

A number of offline empirical autotuning frameworks
have been developed for building efficient, portable libraries
in specific domains; selected projects and techniques used
are summarized in Figure 1. ATLAS [33] utilizes empirical
autotuning to produce an optimized matrix multiply routine.
FFTW [14] uses empirical autotuning to combine solvers for
FFTs. Other autotuning systems include SPIRAL [27] for
digital signal processing PATUS [9] and Sepya [21] for sten-
cil computations, and OSKI [32] for sparse matrix kernels.

The area of iterative compilation contains many projects
that use different machine learning techniques to optimize
lower level compiler optimizations [1, 2, 15, 25]. These
projects change both the order that compiler passes are ap-
plied and the types of passes that are applied.

In the dynamic autotuning space, there have been a num-
ber of systems developed [5, 6, 8, 16, 18, 22] that focus
on creating applications that can monitor and automatically
tune themselves to optimize a particular objective. Many of
these systems employ a control systems based autotuner that
operates on a linear model of the application being tuned.
For example, PowerDial [18] converts static configuration
parameters that already exist in a program into dynamic
knobs that can be tuned at runtime, with the goal of trad-
ing QoS guarantees for meeting performance and power us-
age goals. The system uses an offline learning stage to con-
struct a linear model of the choice configuration space which

2 2013/11/1

Results Database

Search
TechniquesSearch

Driver

Search

Reads: Results
Writes: Desired Results

Measurement

User Defined
Measurement

Function

Measurement
Driver

Configuration
Manipulator

Reads: Desired Results
Writes: Results

Figure 2. Overview of the major components in the Open-
Tuner framework.

can be subsequently tuned using a linear control system.
The system employs the heartbeat framework [17] to pro-
vide feedback to the control system. A similar technique
is employed in [16], where a simpler heuristic-based con-
troller dynamically adjusts the degree of loop perforation
performed on a target application to trade QoS for perfor-
mance.

3. The OpenTuner Framework
Our terminology reflects that the autotuning problem is cast
as a search problem. The search space is made up of config-
urations, which are concrete assignments of a set of param-
eters. Parameters can be primitive such as an integer or com-
plex such as a permutation of a list. When the performance,
output accuracy, or other metrics of a configuration are mea-
sured (typically by running it in a domain-specific way),
we call this measurement a result. Search techniques are
methods for exploring the search space and make requests
for measurement called desired results. Search techniques
can change configurations using a user-defined configuration
manipulator, which also includes parameters corresponding
directly the parameters in the configuration. Some parame-
ters include manipulators, which are opaque functions that
make stochastic changes to a specific parameter in a config-
uration.

Figure 2 provides an overview of the major compo-
nents in OpenTuner. The search process includes techniques,
which use the user defined configuration manipulator in or-
der to read and write configurations. The measurement pro-
cesses evaluate candidate configurations using a user defined
measurement function. These two components communi-
cate exclusively through a results database used to record
all results collected during the tuning process, as well as
the providing ability to perform multiple measurements in
parallel.

3.1 OpenTuner Usage
To implement an autotuner with OpenTuner, first, the user
must define the search space by creating a configuration
manipulator. This configuration manipulator includes a set

of parameter objects which OpenTuner will search over.
Second, the user must define a run function which evaluates
the fitness of a given configuration in the search space to
preduce a result. These must be implemented in a small
Python program in order interface with the OpenTuner API.

Figure 3 shows an example of using OpenTuner to search
over the space of compiler flags to GCC in order to minimize
execution time of the resulting program. In Section 4, we
present results on an expanded version of this example which
obtains up to 2.8x speedup over -O3.

This example tunes three types of flags to GCC. First it
choses between the four optimization levels -O0, -O1, -O2,
-O3. Second, for 176 flags listed on line 8 it decides between
turning the flag on (with -fFLAG), off (with -fno-FLAG), or
omitting the flag in order to let default value to take prece-
dence. Including the default value as a choice is not neces-
sary for completeness, but speeds up convergence and results
in shorter command lines. Finally, it assigns a bounded inte-
ger value to the 145 parameters on line 15 with the --param
NAME=VALUE command line option.

The method manipulator (line 23), is called once at
startup and creates a ConfigurationManipulator object
which defines the search space of GCC flags. All accesses
to configurations by search techniques are done through
the configuration manipulator. For optimization level, an
IntegerParameter between 0 and 3 is created. For each
flag, a EnumParameter is created which can take the values
on, off, and default. Finally, for the remaining bounded
GCC parameters, an IntegerParameter is created with the
appropriate range.

The method run (line 40), implements the measurement
function for configurations. First, the configuration is real-
ized as specific command line to g++. Next, this g++ com-
mand line is run to produce an executable, tmp.bin, which
is then run using call program. Call program is a con-
vince function which runs and measures the execution time
of the given program. Finally, a Result is constructed and
returned, which is a database record type containing many
other optional fields such as time, accuracy, and energy.
By default OpenTuner minimizes the time field, however
this can be customized.

3.2 Search Techniques
To provide robust search, OpenTuner includes techniques
that can handle many types of search spaces and runs a
collection of search techniques at the same time. Tech-
niques which perform well are allocated more tests, while
techniques which perform poorly are allocated fewer tests.
Techniques share results through the results database, so
that improvements made by one technique can benefit other
techniques. OpenTuner techniques are meant to be ex-
tended. Users can define custom techniques which imple-
ment domain-specific heuristics and add them to ensembles
of pre-defined techniques.

3 2013/11/1

1 import o p e n t u n e r
2 from o p e n t u n e r import C o n f i g u r a t i o n M a n i p u l a t o r
3 from o p e n t u n e r import EnumParameter
4 from o p e n t u n e r import I n t e g e r P a r a m e t e r
5 from o p e n t u n e r import M e a s u r e m e n t I n t e r f a c e
6 from o p e n t u n e r import R e s u l t
7
8 GCC FLAGS = [
9 ’ a l i g n−f u n c t i o n s ’ , ’ a l i g n−jumps ’ , ’ a l i g n−l a b e l s ’ ,

10 ’ branch−count−r e g ’ , ’ branch−p r o b a b i l i t i e s ’ ,
11 # . . . (176 t o t a l)
12]
13
14 # (name , min , max)
15 GCC PARAMS = [
16 (’ e a r l y−i n l i n i n g−i n s n s ’ , 0 , 1 0 0 0) ,
17 (’ gcse−c o s t−d i s t a n c e−r a t i o ’ , 0 , 1 0 0) ,
18 # . . . (145 t o t a l)
19]
20
21 c l a s s GccFlagsTuner (M e a s u r e m e n t I n t e r f a c e) :
22
23 def m a n i p u l a t o r (s e l f) :
24 ”””
25 De f i n e t h e s e a r c h s p a c e by c r e a t i n g a
26 C o n f i g u r a t i o n M a n i p u l a t o r
27 ”””
28 m a n i p u l a t o r = C o n f i g u r a t i o n M a n i p u l a t o r ()
29 m a n i p u l a t o r . a d d p a r a m e t e r (
30 I n t e g e r P a r a m e t e r (’ o p t l e v e l ’ , 0 , 3))
31 f o r f l a g in GCC FLAGS :
32 m a n i p u l a t o r . a d d p a r a m e t e r (
33 EnumParameter (f l a g ,
34 [’ on ’ , ’ o f f ’ , ’ d e f a u l t ’]))
35 f o r param , min , max in GCC PARAMS:
36 m a n i p u l a t o r . a d d p a r a m e t e r (
37 I n t e g e r P a r a m e t e r (param , min , max))
38 re turn m a n i p u l a t o r
39
40 def run (s e l f , d e s i r e d r e s u l t , i n p u t , l i m i t) :
41 ”””
42 Compile and run a g i v e n c o n f i g u r a t i o n t h e n
43 r e t u r n p e r f o r m a n c e
44 ”””
45 c f g = d e s i r e d r e s u l t . c o n f i g u r a t i o n . d a t a
46 gcc cmd = ’ g++ r a y t r a c e r . cpp −o . / tmp . b i n ’
47 gcc cmd += ’ −O{0} ’ . f o r m a t (c f g [’ o p t l e v e l ’])
48 f o r f l a g in GCC FLAGS :
49 i f c f g [f l a g] == ’ on ’ :
50 gcc cmd += ’ −f {0} ’ . f o r m a t (f l a g)
51 e l i f c f g [f l a g] == ’ o f f ’ :
52 gcc cmd += ’ −fno−{0} ’ . f o r m a t (f l a g)
53 f o r param , min , max in GCC PARAMS:
54 gcc cmd += ’ −−param {0}={1} ’ . f o r m a t (
55 param , c f g [param])
56
57 c o m p i l e r e s u l t = s e l f . c a l l p r o g r a m (gcc cmd)
58 a s s e r t c o m p i l e r e s u l t [’ r e t u r n c o d e ’] == 0
59 r u n r e s u l t = s e l f . c a l l p r o g r a m (’ . / tmp . b i n ’)
60 a s s e r t r u n r e s u l t [’ r e t u r n c o d e ’] == 0
61 re turn R e s u l t (t ime = r u n r e s u l t [’ t ime ’])
62
63 i f n a m e == ’ m a i n ’ :
64 a r g p a r s e r = o p e n t u n e r . d e f a u l t a r g p a r s e r ()
65 GccFlagsTuner . main (a r g p a r s e r . p a r s e a r g s ())

Figure 3. GCC/G++ flags autotuner using OpenTuner.

Ensembles of techniques are created by instantiating a
meta technique, which is a technique made up of a collec-
tion of other techniques. The OpenTuner search driver inter-
acts with a single root technique, which is typically a meta
technique. When the meta technique gets allocated tests, it
incrementally decides how to divide theses tests among its
sub-techniques. OpenTuner contains an extensible class hi-
erarchy of techniques and meta techniques, which can be
combined together and used in autotuners.

3.2.1 AUC Bandit Meta Technique
In addition to a number of simple meta techniques, such as
round robin, OpenTuner’s core meta technique used in re-
sults is the multi-armed bandit with sliding window, area
under the curve credit assignment (AUC Bandit) meta tech-
nique. A similar technique was used in [24] in the different
context of online operator selection. It is based on an optimal
solution to the multi-armed bandit problem [12]. The multi-
armed bandit problem is the problem of picking levers to pull
on a slot machine with many arms each with an unknown
payout probability. It encapsulates a fundamental trade-off
between exploitation (using the best known technique) and
exploration (estimating the performance of all techniques).

The AUC Bandit meta technique assigns each test to the
technique, t, defined by the formula

arg max
t

(AUCt + C

√
2 lg |H|

Ht
)

where |H| is the length of the sliding history window, Ht is
the number of times the technique has been used in that his-
tory window, C is a constant controlling the exploration/ex-
ploitation trade-off, and AUCt is the credit assignment term
quantifying the performance of the technique in the sliding
window. The second term in the equation is the exploration
term which gets smaller the more often a technique is used.

The area under the curve credit assignment mechanism,
based on [13], draws a curve by looking at the history for a
specific technique and looking only at if a technique yielded
a new global best or not. If the technique yielded a new
global best, a upward line is draw, otherwise a flat line is
drawn. The area under this curve (scaled to a maximum
value of 1) is the total credit attributed to the technique.
This credit assignment mechanism can be described more
precisely by the formula:

AUCt =
2

|Vt|(|Vt|+ 1)

|Vt|∑
i=1

iVt,i

where Vt is the list of uses of t in the sliding window history.
Vt,i is 1 if using technique t the ith time in the history
resulted in a speedup, otherwise 0.

3.2.2 Other Techniques
OpenTuner includes implementations of the techniques: dif-
ferential evolution; many variants of Nelder Mead and Torc-

4 2013/11/1

Parameter

Primitive Complex

Integer ScaledNumericFloat

LogInteger LogFloat PowerOfTwo

Switch Enum Permutation

Schedule

SelectorBoolean

Figure 4. Hierarchy of built in parameter types. User de-
fined types can be added at any point below �Primitive or
Complex in the tree.

zon hillclimbers; a number of evolutionary mutation tech-
niques; pattern search; particle swarm optimization; and
random search. OpenTuner also includes a bandit mutation
technique which uses the same AUC Bandit method to de-
cide which manipulator function across all parameters to
call on the best known configuration. These techniques span
a range of strategies and are each biased to perform best
in different types of search spaces. They also each contain
many settings which can be configured to change their be-
havior. Each technique has been modified so that with some
probability it will use information found by other techniques
if other techniques have discovered a better configuration.

The default meta technique, used in results in this paper
and meant to be robust, uses an AUC Bandit meta technique
to combine greedy mutation, differential evolution, and two
hill climber instances.

3.3 Configuration Manipulator
The configuration manipulator provides a layer of abstrac-
tion between the search techniques and the raw configura-
tion structure. It is primarily responsible for managing a list
of parameter objects, each of which can be used by search
techniques to read and write parts of the underlying config-
uration.

The default implementation of the configuration manip-
ulator uses a fixed list of parameters and stores the config-
uration as a dictionary from parameter name to parameter-
dependant data type. The configuration manipulator can be
extended by the user either to change the underlying data
structure used for configurations or to support a dynamic
list of parameters that is dependant on the configuration in-
stance.

3.3.1 Parameter Types
Figure 4 shows the class hierarchy of built-in parameter
types in OpenTuner. Each parameter type is responsible for
interfacing between the raw representation of a parameter
in the configuration and standardized view of that parameter
presented to the search techniques. Parameter types can be
extended both to change the underlying representation, and
to change the abstraction provided to search techniques to
cause a parameter to be search in different ways.

From the viewpoint of search techniques there are two
main types of parameters, each of which provides a different
abstraction to the search techniques:

Primitive parameters present a view to search techniques
of a numeric value with an upper and lower bound. These
upper and lower bounds can be dependant on the configura-
tion instance.

The built in parameter types Float and LogFloat (and
similarly Integer and LogInteger) both have identical
representations in the configuration, but present a differ-
ent view of the underlying value to the search techniques.
Float is presented directly to to search techniques, while
LogFloat presents a log scaled view of the underlying pa-
rameter to search techniques. To a search technique, halving
and doubling a log scaled parameter are changes of equal
magnitude. Log scaled variants of parameters are often bet-
ter for parameters such as block sizes where fixed changes in
values have diminishing effects the larger the parameter be-
comes. PowerOfTwo is a commonly used special case, sim-
ilar to LogInteger, where the legal values of the parameter
are restricted to powers of two.

Complex parameters present a more opaque view to
search techniques. Complex parameters have a variable
set of manipulation operators (manipulators) which make
stochastic changes to the underlying parameter. These ma-
nipulators are arbitrary functions defined on the parameter
which can make high level type dependant changes. Com-
plex parameters are meant to be easily extended to add do-
main specific structures to the search space.

The built in parameter types Boolean, Switch, and Enum
could theoretically also be represented as primitive param-
eters, since they each can be translated directly to a small
integer representation. However, in the context of search
techniques they make more sense as complex parameters.
The reason for this is that for primitive parameters search
techniques will attempt to follow gradients. These parame-
ter types are unordered collections of values for which no
gradients exist. Thus, the complex parameter abstraction is a
more efficient representation to search over.

The Permutation parameter type assigns an order to a
given list of values and has manipulators which make various
types of random changes to the permutation. A Schedule
parameter is a Permutation with a set of dependencies
that limit the legal order. Schedules are implemented as a
permutation that gets topologically sorted after each change.
Finally, a Selector parameter is a special type of tree which
is used to define a mapping from an integer input to an
enumerated value type.

In addition to these primary primitive and complex ab-
stractions for parameter types, there are a number of derived
ways that search techniques will interact with parameters in
order to more precisely convey intent. These are additional
methods on parameter which contain default implementa-
tions for both primitive and complex parameter types. These
methods can optionally be overridden for specific parame-
ters types to improve search techniques. Parameter types will

5 2013/11/1

work without these methods being overridden, however im-
plementing them can improve results.

As an example, a common operation in many search
techniques is to add the difference between configuration A
and B to configuration C. This is used both in differential
evolution and many hill climbers. Complex parameters have
a default implementation of this indent which compares the
value of the parameter in the 3 configurations: if A = B,
then there is no difference and the result is C; similarly,
if B = C, then A is returned; otherwise a change should
be made so random manipulators are called. This works in
general, however for individual parameter types there are
often better interpretations. For example with permutations,
one could calculate the positional movement of each item
in the list an calculate a new permutation by applying these
movements again.

3.4 Objectives
OpenTuner supports multiple user defined objectives. Re-
sult records have fields for time, accuracy, energy, size,
confidence, and user defined data. The default objective
is to minimize time. Many other objectives are supported,
such as: maximize accuracy; threshold accuracy while min-
imizing time; and maximize accuracy then minimize size.
The user can easily define their own objective by defining
comparison operators and display methods on a subclass of
Objective.

3.5 Search Driver and Measurement
OpenTuner is divided into two submodules, search and mea-
surement. The search driver and measurement driver in each
of these modules orchestrate most of the framework of
the search process. These two modules communicate only
through the results database. The measurement module is
minimal by design and is primarily a wrapper around the
user defined measurement function which creates results
from configurations.

This division between search and measurement is moti-
vated by a number of different factors:

• To allow parallelism between multiple search measure-
ment processes, possibly across different machines. Par-
allelism is most important in the measurement processes
since in most autotuning applications measurement costs
dominate. To allow for parallelism the search driver will
make multiple requests for desired results without wait-
ing for each request to be fulfilled. If a specific technique
is blocking waiting for results, other techniques in the en-
semble will used to fill out requests to prevent idle time.

• The separation of the measurement modules is desirable
to support online learning and sideline learning. In these
setups, autotuning is not done before deployment of an
application, but is done online as an application is run-
ning or during idle time. Since the measurement module
is minimal by design, it can be replaced by an domain

specific online learning module which periodically ex-
amines the database to decide which which configuration
to use and records performance back to the database.

• Finally, in many embedded or mobile settings which re-
quire constrained measurement environments it is de-
sirable to have a minimal measurement module which
can easily be re-implemented in other languages without
needing to modify the majority of the OpenTuner frame-
work.

3.6 Results Database
The results database is a fully featured SQL database. All
major database types are supported, and SQLite is used if
the user has not configured a database type so that no setup
is required. It allows different techniques to query and share
results in a variety of ways and is useful for introspection
about the performance of techniques across large numbers
of runs of the autotuner.

4. Experimental Results
Project Benchmark Possible Configurations

GCC/G++ Flags all 10806

Halide Blur 1052

Halide Wavelet 1044

HPL n/a 109.9

PetaBricks Poisson 103657

PetaBricks Sort 1090

PetaBricks Strassen 10188

PetaBricks TriSolve 101559

Stencil all 106.5

Unitary n/a 1021

Figure 5. Search space sizes in number of possible config-
urations, as represented in OpenTuner.

We validated OpenTuner by using it to implemented auto-
tuners for six distinct projects. This section describes these
six projects, the autotuners we implemented, and presents
results comparing to prior practices in each project.

Figure 5 lists, for each benchmark, the number of distinct
configurations that can be generated by OpenTuner. This
measure is not perfect because some configurations may be
semantically equivalent and the search space depends on
the representation chosen in OpenTuner. It does, however,
provide a sense of the relative size of each search space,
which is useful as a first approximation of tuning difficulty.

4.1 GCC/G++ Flags
The GCC/G++ flags autotuner is described in detail in Sec-
tion 3.1. There are a number features that were omitted from
the earlier example code for simplicity, which are included
in the full version of the autotuner.

First, we added error checking to gracefully handle the
compiler or the output program hanging, crashing, running
out of memory, or otherwise going wrong. Our tests uncov-
ered a number of bugs in GCC which triggered internal com-
piler errors and we implemented code to detect, diagnose,

6 2013/11/1

 0.8

 0.85

 0.9

 0.95

 1

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

gcc -O1
gcc -O2
gcc -O3

OpenTuner

(a) fft.c

 0.1

 0.15

 0.2

 0.25

 0.3

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(b) matrixmultiply.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(c) raytracer.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(d) tsp ga.cpp

Figure 6. GCC/G++ Flags: Execution time (lower is better) as a function of autotuning time. Aggregated performance of 30
runs of OpenTuner, error bars indicate median, 20th, and 80th percentiles. Note that in (b) the O1/O2/O3 and in (c) the O2/O3
lines are on top of each other and may be difficult to see.

and avoid error-causing sets of flags. We are submitting bug
reports for these crashes to the GCC developers.

Second, instead of using a fixed list of flags and pa-
rameters (which the example does for simplicity), our full
autotuner automatically extracts the supported flags from
g++ --help=optimizers. Parameters and legal ranges
are extracted automatically from params.def in the GCC
source code.

Additionally, there were a number of smaller features
such as: time limits to abort slow tests which will not be
optimal; use of LogInteger parameter types for some val-
ues; a save final config method to output the final flags;
and many command line options to autotuner behavior.

We ran experiments using gcc 4.7.3-1ubuntu1, on an
8 total core, 2-socket Xeon E5320. We allowed flags such a
-ffast-math which can change rounding / NaN behavior
of floating point numbers and have small impacts on pro-
gram results. We still observe speedups with these flags re-
moved.

For target programs to optimize we used: A fast Fourier
transform in C, fft.c, taken from the SPLASH2 [34] bench-

mark suite; A C++ template matrix multiply, matrix-
multiply.cpp, written by Xiang Fan [11] (version 3); A
C++ ray tracer, raytracer.cpp, taken from the scratch-
pixel website [26]; and a genetic algorithm to solve the trav-
eling salesman program in C++, tsp ga.cpp, by Kristoffer
Nordkvist [23], which we modified to run deterministically.
These programs were chosen to span a range from highly
optimized codes, like fft.c which contains cache aware
tiling and threading, to less optimized codes, like matrix-
multiply.cpp which contains only a transpose of one of
the inputs.

Figure 6 shows the performance for autotuning GC-
C/G++ flags on four different sample programs. Final speedups
ranged from 1.15× for FFT to 2.82× for matrix multiply.
Examining the frequencies of different flags in the final
configurations, we can see some patterns and some differ-
ences between the benchmarks. In all programs -funsafe-
math-optimizations (and related flags) and -O3 flags
were very common. There were a number of flags that were
only common only in specific benchmarks:

7 2013/11/1

• matrixmultiply.cpp: -fvariable-expansion-in-unroller and
-ftree-vectorize

• raytracer.cpp: -fno-reg-struct-return
• fft.c: --param=allow-packed-store-data-races=1,
-frerun-cse-after-loop, and -funroll-all-loops

• tsp ga.cpp: --param=use-canonical-types=1 and
-fno-schedule-insns2.

However these most common flags alone do not account
for all of the speedup. Full command lines found contained
typically 200 to 300 options and are difficult understand by
hand.

4.2 Halide
Halide [28, 29] is a domain-specific language and com-
piler for image processing and computational photography,
specifically targeted towards image processing pipelines that
contain several stages. Halide separates the scheduling of the
image processing stages from the expression of the kernels
themselves, allowing expert programmers to dictate complex
schedules that result in high performance.

The Halide project originally integrated an autotuner,
which was removed from the project because it became too
complex to maintain and was rarely used in practice. We
hope that our new OpenTuner-based autotuner for Halide,
presented here, will be easier to maintain, both because it
benefits from some of the lessons learned from the original
autotuner and because it provides a clear separation between
the search techniques and the definition of the search space.
Unfortunately, the original Halide autotuner cannot be used
as a baseline to compare against, because the Halide code
base has changed too much since its removal.

The autotuning problem in Halide is to synthesize execu-
tion schedules that control how Halide generates code. As an
example, the hand-tuned schedule (against which we com-
pare our autotuner) for the blur example is:
b l u r y . s p l i t (y , y , y i , 8)

. p a r a l l e l (y)

. v e c t o r i z e (x , 8) ;
b l u r x . s t o r e a t (b l u r y , y)

. c o m p u t e a t (b l u r y , y i)

. v e c t o r i z e (x , 8) ;

blur y(x, y) and blur y(x, y) are Halide functions in
the program. The scheduling operators which the autotuner
can use to synthesize schedules are:

• split introduces a new variable and loop nest by adding
a layer of blocking. This operator makes the search space
theoretically infinite; however, we limit the number of
splits to at most 4 per dimension of each function, which
is sufficient in practice. We represent each of these splits
as a PowerOfTwoParameter, where setting the size of
the split to 1 corresponds to not using the split operator.

• parallel, vectorize, and unroll cause the loop nest
associated with a given variable in the function to be
executed in parallel, SSE vectorized, or unrolled. Open-
Tuner represents these operators as an EnumParameter

 8.6

 8.65

 8.7

 8.75

 8.8

 8.85

 8.9

 8.95

 9

 9.05

 0 200 400 600 800 1000 1200 1400 1600 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Vendor-optimized
OpenTuner

Figure 8. High Performance Linpack: Execution time
(lower is better) as a function of autotuning time. Aggre-
gated performance of 30 runs of OpenTuner, error bars indi-
cate median, 20th, and 80th percentiles.

for each variable/function pair including temporary vari-
ables possibly introduced by splits to decide on an oper-
ator, including no operator as a choice.

• reorder / reorder storage take a list of variables
and reorganizes the loop nest order or storage order for
those variables. We represent this is as a Permutation-
Parameter, which includes all possible variables intro-
duced by splits.

• compute at / store at cause the execution or stor-
age for a given function to be embedded inside of the
loop nest of a different function. We represent this as
an EnumParameter with all legal function/variable pairs
and special tokens for global and inline as options.

The most difficult parameter to search is compute at be-
cause most choices combinations for this parameter will cre-
ate invalid schedules are are rejected by the compiler. We
created a custom domain specific technique which attempted
to create more legal schedules by biasing the search of the
parameter.

Figure 7 presents results for blur and the inverse Daubechies
wavelet transform written in Halide. For both of these exam-
ples OpenTuner is able to create schedules that beat the hand
optimized schedules shipping with the Halide source code.
Results were collected on an 8-core Core i7 920 processor
using a development build of Halide.

4.3 High Performance Linpack
The High Performance Linpack benchmark [10] is used to
evaluate floating point performance of machines ranging
from small multiprocessors to large-scale clusters, and is
the evaluation criterion for the Top 500 [31] supercomputer
benchmark. The benchmark measures the speed of solving
a large random dense linear system of equations using dis-
tributed memory. Achieving optimal performance requires
tuning about fifteen parameters, including matrix block sizes
and algorithmic parameters. To assist in tuning, HPL in-

8 2013/11/1

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(a) Blur

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(b) Wavelet

Figure 7. Halide: Execution time (lower is better) as a function of autotuning time. Aggregated performance of 30 runs of
OpenTuner, error bars indicate median, 20th, and 80th percentiles.

cludes a built in autotuner that uses exhaustive search over
user-provided discrete values of the parameters.

We run HPL on a 2.93 GHz Intel Sandy Bridge quad-
core machine running Linux kernel 3.2.0, compiled with
GCC 4.5 and using the Intel Math Kernel Library (MKL)
11.0 for optimized math operations. For comparison pur-
poses, we evaluate performance relative to Intel’s optimized
HPL implementation 1. We encode the input tuning param-
eters for HPL as naı̈vely as possible, without using any
machine-specific knowledge. For most parameters, we uti-
lize EnumParameter or SwitchParameter, as they gener-
ally represent discrete choices in the algorithm used. The
major parameter that controls performance is the blocksize
of the matrix; this we represent as an IntegerParameter
to give as much freedom as possible for the autotuner for
searching. Another major parameter controls the distribution
of the matrix onto the processors; we represent this by enu-
merating all 2D decompositions possible for the number of
processors on the machine.

Figure 8 shows the results of 30 tuning runs using Open-
Tuner, compared with the vendor-provided performance.
The median performance across runs, after 1200 seconds
of autotuning, exceeds the performance of Intel’s optimized
parameters. Overall, OpenTuner obtains a best performance
of 86.5% of theoretical peak performance on this machine,
while exploring a miniscule amount of the overall search
space. Furthermore, the blocksize chosen is not a power of
two, and is generally a value unlikely to be guessed for use
in hand-tuning.

4.4 PetaBricks
PetaBricks [3] is an implicitly parallel language and com-
piler which incorporates the concept of algorithmic choice
into the language. The PetaBricks language provides a

1 Available at http://software.intel.com/en-us/articles/

intel-math-kernel-library-linpack-download.

framework for the programmer to describe multiple ways
of solving a problem while allowing the autotuner to deter-
mine which of those ways is best for the user’s situation.
The search space of PetaBricks programs is both over low
level optimizations and over different algorithms. The au-
totuner is used to synthesize poly-algorithms which weave
many individual algorithms together by switching dynami-
cally between them at recursive call sites.

The primary components in the search space for PetaBricks
programs are algorithmic selectors which are used to synthe-
size instances of poly-algorithms from algorithmic choices
in the PetaBricks language. A selector is used to map in-
put sizes to algorithmic choices, and is represented by a
list of cutoffs and choices. As an example, the selector
[InsertionSort, 500, QuickSort, 1000, MergeSort] would cor-
respond to synthesizing the function:
void S o r t (L i s t& l i s t) {

i f (l i s t . l e n g t h < 500)
I n s e r t i o n S o r t (l i s t) ;

e l s e i f (l i s t . l e n g t h < 1000)
Q u i c k S o r t (l i s t) ;

e l s e
MergeSor t (l i s t) ;

}
where QuickSort and MergeSort recursively call Sort so
the program dynamically switches between sorting methods
as recursive calls are made on smaller and smaller lists.
We used the general SelectorParameter to represent this
choice type, which internally keeps track of the order of the
algorithmic choices and the cutoffs. PetaBricks programs
contain many algorithmic selectors and a large number of
other parameter types, such as block sizes, thread counts,
iteration counts, and program specific parameters.

Results using OpenTuner compared to the built-in PetaBricks
autotuner are shown in Figure 9. The PetaBricks autotuner
uses a different strategy that starts with tests on very small
problem inputs and incrementally works up to full sized
inputs [4]. In all cases, the autotuners arrive at similar solu-

9 2013/11/1

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(a) Poisson

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(b) Sort

 0

 0.05

 0.1

 0.15

 0.2

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(c) Strassen

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(d) Tridiagonal Solver

Figure 9. PetaBricks: Execution time (lower is better) as a function of autotuning time. Aggregated performance of 30 runs
of OpenTuner, error bars indicate median, 20th, and 80th percentiles.

tions, and for Strassen, the exact same solution. For Sort and
Tridiagonal Solver, OpenTuner beats the native PetaBricks
autotuner, while for Poisson the PetaBricks autotuner arrives
at a better solution, but has much higher variance.

The Poisson equation solver (Figure 9(a)) presents the
most difficult search space. The search space for Poisson
in PetaBricks is described in detail in [7]. It is a variable
accuracy benchmark where the goal of the autotuner is to
find a solution that provides 8-digits of accuracy while min-
imizing time. All points in Figure 9(a) satisfy the accu-
racy target, so we do not display accuracy. OpenTuner uses
the ThresholdAccuracyMinimizeTime objective described in
Section 3.4. The Poisson search space selects between direct
solvers, iterative solvers, and multigrid solvers where the
shape of the multigrid V-cycle/W-cycle is defined by the au-
totuner. The optimal solution is a poly-algorthm composed
of multigrid W-cycles. However, it is difficult to obtain 8-
digits of accuracy with randomly generated multigrid cycle
shapes, but is easy with a direct solver (which solves the
problem exactly). This creates a large “plateau” which is dif-
ficult for the autotuners to improve upon, and is shown near
0.16. The native PetaBricks autotuner is less affected by this

plateau because it constructs algorithms incrementally bot-
tom up; however the use of these smaller input sizes causes
larger variance as mistakes early on get amplified.

4.5 Stencil
In [20], the authors describe a generalized system for auto-
tuning memory-bound stencil computations on modern mul-
ticore machines and GPUs. By composing domain-specific
transformations, the authors explore a large space of imple-
mentations for each kernel; the original autotuning method-
ology involves exhaustive search over thousands of imple-
mentations for each kernel.

We obtained the raw execution data, courtesy of the au-
thors, and use OpenTuner instead of exhaustive search on the
data from a Nehalem-class 2.66 GHz Intel Xeon machine,
running Linux 2.6. We compare against the optimal perfor-
mance obtained by the original autotuning system through
exhaustive search. The search space for this problem in-
volves searching for parameters for the parallel decompo-
sition, cache and thread blocking, and loop unrolling for
each kernel; to limit the impact of control flow and cache
misalignment, these parameters depend on one another (for

10 2013/11/1

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 0 10 20 30 40 50 60

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Tests

Optimal
OpenTuner

(a) Laplacian

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 10 20 30 40 50 60

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Tests

Optimal
OpenTuner

(b) Divergence

Figure 10. Stencil: Execution time (lower is better) as a function of tests. Aggregated performance of 30 runs of OpenTuner,
error bars indicate median, 20th, and 80th percentiles.

example, the loop unrolling will be a small integer divi-
sor of the thread blocking). We encode these parameters as
PowerOfTwoParameters but ensure that invalid combina-
tions are discarded.

Figure 10 shows the results of using OpenTuner for the
Laplacian and divergence kernel benchmarks, showing the
median performance obtained over 30 trials as a function
of the number of tests. OpenTuner is able to obtain peak
performance on Laplacian after less than 35 tests of can-
didate implementations and 25 implementations for diver-
gence; thus, using OpenTuner, less than 2% of the search
space needs to be explored to reach optimal performance.
These results show that even for problems where exhaustive
search is tractable (though it may take days), OpenTuner can
drastically improve convergence to the optimal performance
with little programmer effort.

4.6 Unitary Matrices
As a somewhat different example, we use OpenTuner in an
example from physics, namely the quantum control prob-
lem of synthesizing unitary matrices in SU(2) in optimal
time, using a finite control set composed of rotations around
two non-parallel axes. (Such rotations generate the complete
space SU(2).)

Unlike other examples, which use OpenTuner as a tradi-
tional autotuner to optimize a program, the Unitary example
uses OpenTuner to perform a search over the problem space
as a subroutine at runtime in a program. The problem has a
fixed set of operators (or controls), represented as matrices,
and the goal is to find a sequence of operators that, when
multiplied together, produce a given target matrix. The ob-
jective function is an accuracy value defined as a function of
the distance of the product of the sequence to the goal (also
called the trace fidelity).

Figure 11 shows the performance of the Unitary example
on both easy and hard instances of the problem. For both
types of problem instance OpenTuner is able to meet the

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 10 20 30 40 50 60

A
cc

ur
ac

y

Autotuning Time (seconds)

OpenTuner (easy problem instances)
OpenTuner (hard problem instances)

Figure 11. Unitary: Accuracy (higher is better) as a func-
tion of autotuning time. Aggregated performance of 30 runs
of OpenTuner, error bars indicate median, 20th, and 80th
percentiles.

accuracy target within the first few seconds. This is example
shows that OpenTuner can be used for more types of search
problems than just program autotuning.

5. Conclusions
We have shown OpenTuner, a new framework for building
domain-specific multi-objective program autotuners. Open-
Tuner supports fully customizable configuration representa-
tions and an extensible technique representation to allow for
domain-specific techniques. OpenTuner introduces the con-
cept of ensembles of search techniques in autotuning, which
allow many search techniques to work together to find an
optimal solution and provides a more robust search than a
single technique alone.

While implementing these six autotuners in OpenTuner,
the biggest lesson we learned reinforced a core message of
this paper of the need for domain-specific representations

11 2013/11/1

and domain-specific search techniques in autotuning. As an
example, the initial version of the PetaBricks autotuner we
implemented just used a point in high dimensional space as
the configuration representation. This generic mapping of
the search space did not work at all. It produced final config-
urations an order of magnitude slower than the results pre-
sented from our autotuner that uses selector parameter types.
Similarly, Halide’s search space strongly motivates domain
specific techniques that make large coordinated jumps, for
example, swapping scheduling operators on x and y across
all functions in the program. We were able to add domain-
specific representations and techniques to OpenTuner at a
fraction of the time and effort of building a fully custom
system for that project. OpenTuner was able to seamlessly
integrate the techniques with its ensemble approach.

OpenTuner is free and open source and as the community
adds more techniques and representations to this flexible
framework, there will be less of a need to create a new
representation or techniques for each project and we hope
that the system will work out-of-the-box for most creators
of autotuners. OpenTuner pushes the state of the art forward
in program autotuning in a way that can easily be adopted by
other projects. We hope that OpenTuner will be an enabling
technology that will allow the expanded use of program
autotuning both to more domains and by expanding the role
of program autotuning in existing domains.

Acknowledgments
We would like to thank Clarice Aiello for contributing the
Unitary benchmark program. We gratefully acknowledge
Jonathan Ragan-Kelley and Connelly Barnes for helpful
discussions and bug fixes related to autotuning the Halide
project.

This work is partially supported by DOE award DE-
SC0005288 and DOD DARPA award HR0011-10-9-0009.
This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U.S. Department of Energy un-
der Contract No. DE-AC02-05CH11231.

References
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin,

M. F. P. O’boyle, J. Thomson, M. Toussaint, and C. K. I.
Williams. Using machine learning to focus iterative optimiza-
tion. In International Symposium on Code Generation and
Optimization, pages 295–305, 2006.

[2] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W.
Reeves, D. Subramanian, L. Torczon, and T. Waterman. Find-
ing effective compilation sequences. In LCTES’04, pages
231–239, 2004.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao,
A. Edelman, and S. Amarasinghe. PetaBricks: A language
and compiler for algorithmic choice. In PLDI, Dublin, Ire-
land, Jun 2009.

[4] J. Ansel, M. Pacula, S. Amarasinghe, and U.-M. O’Reilly.
An efficient evolutionary algorithm for solving bottom up
problems. In Annual Conference on Genetic and Evolutionary
Computation, Dublin, Ireland, July 2011.

[5] W. Baek and T. Chilimbi. Green: A framework for supporting
energy-conscious programming using controlled approxima-
tion. In PLDI, June 2010.

[6] V. Bhat, M. Parashar, . Hua Liu, M. Khandekar, N. Kan-
dasamy, and S. Abdelwahed. Enabling self-managing appli-
cations using model-based online control strategies. In Inter-
national Conference on Autonomic Computing, Washington,
DC, 2006.

[7] C. Chan, J. Ansel, Y. L. Wong, S. Amarasinghe, and A. Edel-
man. Autotuning multigrid with PetaBricks. In Supercomput-
ing, Portland, OR, Nov 2009.

[8] F. Chang and V. Karamcheti. A framework for automatic
adaptation of tunable distributed applications. Cluster Com-
puting, 4, March 2001. ISSN 1386-7857.

[9] M. Christen, O. Schenk, and H. Burkhart. Patus: A code
generation and autotuning framework for parallel iterative
stencil computations on modern microarchitectures. In
IPDPS, pages 676–687. IEEE, 2011. ISBN 978-1-61284-372-
8. URL http://dblp.uni-trier.de/db/conf/ipps/

ipdps2011.html#ChristenSB11.

[10] J. J. Dongarra, P. Luszczek, and A. Petitet. The LIN-
PACK Benchmark: past, present and future. Concurrency and
Computation: Practice and Experience, 15(9):803–820, 2003.
ISSN 1532-0634. . URL http://dx.doi.org/10.1002/

cpe.728.

[11] X. Fan. Optimize your code: Matrix multiplication. https:

//tinyurl.com/kuvzbp9, 2009.

[12] A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Ana-
lyzing bandit-based adaptive operator selection mechanisms.
Annals of Mathematics and Artificial Intelligence – Special
Issue on Learning and Intelligent Optimization, 2010. .

[13] A. Fialho, R. Ros, M. Schoenauer, and M. Sebag.
Comparison-based adaptive strategy selection with bandits in
differential evolution. In R. S. et al., editor, PPSN’10: Proc.
11th International Conference on Parallel Problem Solving
from Nature, volume 6238 of LNCS, pages 194–203. Springer,
September 2010. ISBN 978-3-642-15843-8. .

[14] M. Frigo and S. G. Johnson. The design and implementation
of FFTW3. IEEE, 93(2), February 2005. Invited paper, special
issue on “Program Generation, Optimization, and Platform
Adaptation”.

[15] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov,
A. Zaks, B. Mendelson, E. Bonilla, J. Thomson, H. Leather,
C. Williams, M. O’Boyle, P. Barnard, E. Ashton, E. Courtois,
and F. Bodin. MILEPOST GCC: machine learning based
research compiler. In Proceedings of the GCC Developers’
Summit, Jul 2008.

[16] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and
M. Rinard. Using code perforation to improve performance,
reduce energy consumption, and respond to failures. Tech-
nical Report MIT-CSAIL-TR-2209-042, Massachusetts Insti-
tute of Technology, Sep 2009.

12 2013/11/1

[17] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller,
and A. Agarwal. Application heartbeats: a generic interface
for specifying program performance and goals in autonomous
computing environments. In ICAC, New York, NY, 2010.

[18] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Power-aware computing with
dynamic knobs. In ASPLOS, 2011.

[19] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini,
P. Gschwandtner, T. Fahringer, and H. Moritsch. A multi-
objective auto-tuning framework for parallel codes. In Pro-
ceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’12,
pages 10:1–10:12, Los Alamitos, CA, USA, 2012. IEEE Com-
puter Society Press. ISBN 978-1-4673-0804-5. URL http:

//dl.acm.org/citation.cfm?id=2388996.2389010.

[20] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An
auto-tuning framework for parallel multicore stencil compu-
tations. In International Symposium on Parallel Distributed
Processing (IPDPS), pages 1–12, 2010.

[21] S. A. Kamil. Productive High Performance Parallel Pro-
gramming with Auto-tuned Domain-Specific Embedded Lan-
guages. PhD thesis, EECS Department, University of Califor-
nia, Berkeley, Jan 2013.

[22] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon,
and T. Kovacshazy. An approach to self-adaptive software
based on supervisory control. In International Workshop in
Self-adaptive software, 2001.

[23] K. Nordkvist. Solving TSP with a genetic algorithm in C++.
https://tinyurl.com/lq3uqlh, 2012.

[24] M. Pacula, J. Ansel, S. Amarasinghe, and U.-M. O’Reilly. Hy-
perparameter tuning in bandit-based adaptive operator selec-
tion. In European Conference on the Applications of Evolu-
tionary Computation, Malaga, Spain, Apr 2012.

[25] E. Park, L.-N. Pouche, J. Cavazos, A. Cohen, and P. Sadayap-
pan. Predictive modeling in a polyhedral optimization space.
In IEEE/ACM International Symposium on Code Generation
and Optimization, pages 119 –129, April 2011.

[26] S. Pixel. 3D Basic Lessons: Writing a simple raytracer.
https://tinyurl.com/lp8ncnw, 2012.

[27] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. R. Johnson,
D. A. Padua, M. M. Veloso, and R. W. Johnson. Spiral: A
generator for platform-adapted libraries of signal processing
alogorithms. IJHPCA, 18(1), 2004.

[28] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amaras-
inghe, and F. Durand. Decoupling algorithms from schedules
for easy optimization of image processing pipelines. ACM
Trans. Graph., 31(4):32:1–32:12, July 2012. ISSN 0730-
0301.

[29] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand,
and S. Amarasinghe. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in im-
age processing pipelines. In Proceedings of the 34th ACM
SIGPLAN conference on Programming language design and
implementation, PLDI ’13, pages 519–530, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2014-6.

[30] C. Tapus, I.-H. Chung, and J. K. Hollingsworth. Active har-
mony: Towards automated performance tuning. In In Proceed-
ings from the Conference on High Performance Networking
and Computing, pages 1–11, 2003.

[31] Top500. Top 500 supercomputer sites.
http://www.top500.org/, 2010.

[32] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. In Scientific
Discovery through Advanced Computing Conference, Journal
of Physics: Conference Series, San Francisco, CA, June 2005.

[33] R. C. Whaley and J. J. Dongarra. Automatically tuned linear
algebra software. In Supercomputing, Washington, DC, 1998.

[34] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 programs: characterization and methodological
considerations. In proceedings of 22nd Annual International
Symposium on Computer Architecture News, pages 24–36,
June 1995.

13 2013/11/1

