
Detection of False Sharing
Using Machine Learning

Sanath Jayasena, Asanka Abeyweera,
Gayashan Amarasinghe, Himeshi De Silva,

Sunimal Rathnayake,

Saman Amarasinghe,

Xiaoqiao Meng, Yanbin Liu

University of Moratuwa
Sri Lanka

T.J. Watson Research Center

Perils of Parallel Programming

• Parallel programming is unavoidable in the
era of the multicore

• Use of multiple threads on shared memory
introduces new classes of correctness and
performance bugs

• Some of these bugs are hard to detect and fix

• False Sharing is one such performance bug

2

What is False Sharing?

3

…
P1 P P2

x y

Write x

x and y are allocated in
memory such that they
share same cache block.

Caches

Memory

Processors

Source: [Leiserson & Angelina Lee, 2012]

4

…
P1 P P2

x y Write y

5

…
P1 P P2

x y
Write x

6

…
P1 P P2

x y Write y

Ping-pong effect on
cache-line (due to
cache-coherency

protocol). Processors
suffer cache misses.

False sharing: threads
running on different
processors/cores
modify unshared data
that share the same
cache line

False Sharing: Program Example

int psum[MAXTHREADS];

int V1[N], V2[N];

void pdot_1(…) {

 int mysum = 0;

 for(int i=myid*BLKSZ; i < min((myid+1)*BLKSZ, N); i++)

 mysum += V1[i] * V2[i];

 psum[myid] = mysum;

}

void pdot_2(…) {

 for(int i=myid*BLKSZ; i < min((myid+1)*BLKSZ, N); i++)

 psum[myid] += V1[i] * V2[i];

}

7

GOOD

BAD-FS

Computing the dot-product
of two vectors v1[N], v2[N]

False Sharing: Impact
Elapsed times (seconds) for the parallel dot-product on a 32-
core Intel Xeon X7550 Nehalem system, Vector size N=108

8

0

10

20

30

40

50

60

70

80

90

1 4 8 12 16

Ex
ec

u
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Number of Threads

Good

Bad-FS

Faster

Detecting False Sharing is Hard

• The program is functionally correct

– Only running much slower than possible

– Major class of bugs

• There is no sharing at the program level

– Two interfering variables that share a cache line are
independent with no visible relationship

– Program analysis will not find it

• Happens due to interaction among cores

– Looking within a single core does not reveal the problem

9

Recent Work

• [Zhao et al, 2011, VEE]

– Dynamic instrumentation, memory shadowing

– Excessive run-time overhead (5x slowdown),
limited to 8 threads

– Some cache misses identified as false sharing

• [Liu & Berger, 2011, OOPSLA]

– ‘SHERIFF’ framework replaces pthreads, breaks
threads into processes

• Big change to the execution model

– 20% run-time overhead
10

Our Approach

• We use machine learning to analyze
hardware performance event data

• Basic idea: train a classifier with data from
problem-specific mini-programs

• Develop a set of mini-programs, with 3
possible modes of execution

– Good (no false sharing, no bad memory access)

– Bad-FS (with false sharing)

– Bad-MA (with bad memory access)

11

BAD-MA

Overall Bad Memory Accesses
Introduced a 3rd class of memory references.
Bad memory accesses are due to other types of cache misses.

Differentiate between other cache misses vs. false sharing

int psum[MAXTHREADS];

int V1[N], V2[N];

void pdot_3(…) {

 int mysum = 0;

 for(int i=myid*BLKSZ; i < min((myid+1)*BLKSZ, N); i++)

 mysum += V1[permute(i)] * V2[permute(i)];

 psum[myid] = mysum;

}

 12

Performance Events

• “Performance events” can be counted
using Performance Monitoring Units (PMU)

• But performance event data

– can be confusing

– too much for human processing when large
amounts are collected

13

Example

14

Fast Version Slow Version

Execution Time 1.57 seconds 3.01 seconds

Sample Events Event Counts Event Counts

Resource Stalls (r01a2) 3,947,728,352 8,627,478,887

L3 References (r4f2e) 97,594,129 128,009,158

L3 Misses (412e) 31,202,292 117,648,528

L1D Modif. Evicted (r0451) 108,399,271 109,767,458

DTLB Load Misses (r1008) 1,561,291 610,899

DTLB Store Misses (r1049) 1,207,394 601,354

Sample event counts for fast and slow versions of one program

Machine learning may recognize patterns in such data

Our Methodology

1. Identify a set of performance events

2. Collect performance event counts from
problem-specific mini-programs

3. Label data instances as “good”, “bad-fs”,
“bad-ma”

4. Train a classifier using these training data

5. Use the trained classifier to classify data
from unseen programs

15

Classification: Training & Testing

16

Training data
(manually classified)

Classified by
the Classifier

Class-B
Class-A

Class-A
Class-B

Testing data
(manually classified)

4/5 classified correctly
Correctness = 80%

Problem-Specific Mini-Programs

• Multi-threaded parallel programs

– 3 scalar programs, 3 vector programs, matrix-
multiplication, matrix-compare

– Parameters: mode, problem size (N), number
of threads (T)

• Sequential (single-threaded) programs

– array access for: read, read-modify-write,
write; dot product, matrix multiplication

– Parameters: mode, problem size (N)

 17

Selected Performance Events for Intel
Nehalem/Westmere

1. L2 Data Req. – Demand “I”

2. L2 Writes - RFO “S” state

3. L2 Requests - LD Miss

4. Resource Stalls – Store

5. Offcore Req. – Demand RD

6. L2 Transactions – FILL

7. L2 Lines In – “S” state

8. L2 Lines Out – Demand Clean

9. Snoop Response – HIT

10. Snoop Response – HIT “E”

11. Snoop Response – HIT “M”

12. Mem. Load Retd. - HIT LFB

13. DTLB Misses

14. L1D Cache Replacements

15. Resource Stalls – Loads

• Instructions Retired

18

Normalize other event counts by
dividing each by this

Key
Events

Training Data

19

good bad-fs bad-ma Total

Part A (Multi-threaded) 324 216 113 653

Part B (Single-threaded) 130 - 97 227

Training Data Set 454 216 210 880

In each data instance, each of the 15 event counts is
normalized as a (scaled up)
ratio = (event count/# instructions) x 109

Training & Model Validation

20

Training Data Set
Decision Tree

Model

10-fold stratified
Cross-validation:

Correct

880 instances
(454, 216, 210)

6 leaves
11 nodes

875
99.4%

Predicted Class

good bad-fs bad-ma

Actual
Class

good 453 1 0

bad-fs 0 216 0

bad-ma 4 0 206

Using J48
classifier that
implements the
C4.5 decision-
tree algorithm

Decision
Tree Model

21

Snoop Response
– HIT “M”

L2 Transactions
- FILL

L1D Cache
Replacements

DTLB
Misses

DTLB
Misses

bad-fs

good

bad-ma

bad-ma

bad-ma good

Branch to the
right if the
normalized count
of the event ≥ a
threshold; to the
left otherwise

Results:
Detection of False Sharing in

Phoenix and PARSEC
Benchmarks

Experimental setup:

2x 6-core (total 12-core) Intel Xeon
X5690 @3.47GHz, 192 GB RAM,

Linux x86_64
22

Our Detection of False Sharing in
Phoenix and PARSEC Benchmarks

23

Phoenix PARSEC
histogram No ferret No
linear_regression Yes canneal No
word_count No fluidanimate No
reverse_index No streamcluster Yes
kmeans No swaptions No
matrix_multiply No vips No
string_match No bodytrack No
pca No freqmine No

blackscholes No
raytrace No
x264 No

Each program had multiple cases (by varying inputs, # of threads,
compiler optimization); the above is based on the majority result.

Phoenix: Comparison With Other Work

24

histogram

linear_regression

word_count (*)

reverse_index (*)

kmeans (*)

matrix_multiply

string_match

pca

[Zhao et al, 2011]

histogram(*)

linear_regression

word_count

kmeans

matrix_multiply

string_match

pca

[Liu & Berger, 2011]

histogram

linear_regression

word_count

reverse_index

kmeans

matrix_multiply

string_match

pca

Our approach

PARSEC : Comparison With Other Work

25

ferret

canneal(*)

fluidanimate(*)

streamcluster

swaptions

vips, bodytrack

freqmine, blackscholes

raytrace, x264

[Liu & Berger, 2011]
Our approach

ferret

canneal

fluidanimate

streamcluster

swaptions

vips, bodytrack

freqmine, blackscholes

raytrace, x264

* Indicates false sharing would not
have a significant impact

Verification of Our Detection of
False Sharing: Phoenix Benchmarks

26

Benchmark

cases
Actual Detected

FS No FS FS No FS

histogram 18 0 18 0 18
linear_regression 18 18 0 12 06
word_count 18 0 18 0 18
reverse_index 06 0 06 0 06
kmeans 12 0 12 0 12
matrix_multiply 18 0 18 0 18
string_match 18 0 18 0 18
pca 18 0 18 0 18
Subtotal 126 18 108 12 114

Verification is by the approach of [Zhao et al, 2011], on which
the “Actual” columns are based

Verification of Our Detection of
False Sharing: PARSEC Benchmarks

27

Benchmark # cases
Actual Detected

FS No FS FS No FS
ferret 18 0 18 0 18
canneal 18 0 18 0 18
fluidanimate 18 0 18 0 18
streamcluster 18 11 07 10 08
swaptions 18 0 18 0 18
vips 18 0 18 0 18
bodytrack 18 0 18 0 18
freqmine 16 0 16 0 16
blackscholes 18 0 18 0 18
raytrace 18 0 18 0 18
x264 18 0 18 0 18
Total (Overall) 322 29 293 22 300

Summary: Verification of Our
Detection of False Sharing

28

Detection (Our Classification)
FS No FS

Actual
FS 22 7
No FS 0 293

Correctness (22+293)/(22+7+0+293) = 97.8%
False Positive Rate 0/(293+0) = 0%

Verification is by the approach of [Zhao et al, 2011], on which
the “Actual” values are based

Ongoing/Future Work

• Finer granularity in false sharing detection
for long running programs

– Time slicing

– Subroutine-wise

• Extending to IBM Power platform

• Other forms of performance problems
related to memory access (locks, true
sharing)

29

Preliminary Results: Detection
in Time-Slices

30 0 100 200 300 400 500 600 Timeslice Number

Predicted

0 100 200 300 400 500 600 Timeslice Number

12 threads

Actual

FS

No FS

FS

No FS

Conclusions

• False sharing can seriously degrade
performance yet it is difficult to detect

• We presented an efficient and effective
approach

– Minimal performance overhead (< 2%), and
easy to apply

• In PARSEC and Phoenix benchmarks, we
detect all programs where false sharing
exists with 0 false positives

31

Acknowledgements

• Anonymous reviewers

• Part of this work was done when the first
author was spending sabbatical at the
Massachusetts Institute of Technology

• This work was partially supported by:

– DOE award DE-SC0005288

– DOD DARPA award HR0011-10-9-0009

– NSF awards CCF-0632997, CCF-0811724

– Open Collaborative Research (OCR) program
from IBM 32

Q & A

33

Extra Slides

34

Selection of Performance Events

• Identify a candidate set C of events

– Related to: memory access, data caches, TLBs,
interaction among CPU cores, resource stalls…

– 60-70 events for Intel Nehalem, Westmere

• Use the mini-programs to select a relevant
subset R from C

– Select events that can distinguish good and
bad modes for most mini-programs

– 15 events for Intel Nehalem/Westmere

35

Training data: Part A (Multi-threaded)

36

Program
N

count
Threads Good Bad-FS Bad-MA Total

pdot 7 1,3,6,9, 12 42 28 35 105

psums 7 42 28 - 70

psumv 7 42 28 35 105

count 7 42 28 35 105

padding 7 42 28 - 70

false1 7 42 28 - 70

pmatcom 6 36 24 30 90

pmatmul 6 36 24 - 60

Total Part A 324 216 113 653

Training data: Part B (single-threaded)

37

Program N count Threads Good Bad-FS Bad-MA Total

read 9 1 9 - 18 27

write 9 9 - 18 27

read-mod-
write

9 9 - 18 27

dotp 9 9 - 18 27

matmult 14 135 - 28 163

Total Part B 130 - 97 227

• Intel docs say to look for the high count of
“MEM_UNCORE_RETIRED.OTHER_CORE_L2
_HITM” event as an indication of possible
false sharing

• Ref:

– Avoiding and Identifying False Sharing Among
Threads, http://software.intel.com/en-
us/articles/avoiding-and-identifying-false-
sharing-among-threads

38

Decision Tree for IBM Power 7

39

