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Perils of Parallel Programming 

• Parallel programming is unavoidable in the 
era of the multicore 

• Use of multiple threads on shared memory 
introduces new classes of correctness and 
performance bugs 

• Some of these bugs are hard to detect and fix 

• False Sharing is one such performance bug 
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What is False Sharing? 
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… 
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x y 

Write x 

x and y are allocated in 
memory such that they 
share same cache block. 

Caches 

Memory 

Processors 

Source: [Leiserson & Angelina Lee, 2012] 
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… 
P1 P P2 

x y Write y 

Ping-pong effect on 
cache-line (due to 
cache-coherency 

protocol). Processors 
suffer cache misses. 

False sharing: threads 
running on different 
processors/cores 
modify unshared data 
that share the same 
cache line 



False Sharing: Program Example 

int psum[MAXTHREADS]; 

int V1[N], V2[N]; 

 

void pdot_1(…) { 

 int mysum = 0; 

 for(int i=myid*BLKSZ; i < min((myid+1)*BLKSZ, N); i++) 

  mysum += V1[i] * V2[i]; 

 psum[myid] = mysum; 

} 

 

void pdot_2(…) { 

 for(int i=myid*BLKSZ; i < min((myid+1)*BLKSZ, N); i++) 

  psum[myid] += V1[i] * V2[i]; 

} 
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GOOD 

BAD-FS 

Computing the dot-product 
of two vectors v1[N], v2[N] 



False Sharing: Impact 
Elapsed times (seconds) for the parallel dot-product on a 32-
core Intel Xeon X7550 Nehalem system, Vector size N=108 
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Detecting False Sharing is Hard 

• The program is functionally correct 

– Only running much slower than possible 

– Major class of bugs 

• There is no sharing at the program level 

– Two interfering variables that share a cache line are 
independent with no visible relationship 

– Program analysis will not find it 

• Happens due to interaction among cores 

– Looking within a single core does not reveal the problem 
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Recent Work 

• [Zhao et al, 2011, VEE] 

– Dynamic instrumentation, memory shadowing 

– Excessive run-time overhead (5x slowdown), 
limited to 8 threads 

– Some cache misses identified as false sharing 

• [Liu & Berger, 2011, OOPSLA] 

– ‘SHERIFF’ framework replaces pthreads, breaks 
threads into processes 

• Big change to the execution model 

– 20% run-time overhead 
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Our Approach 

• We use machine learning to analyze 
hardware performance event data 

• Basic idea: train a classifier with data from 
problem-specific mini-programs 

• Develop a set of mini-programs, with 3 
possible modes of execution 

– Good (no false sharing, no bad memory access) 

– Bad-FS (with false sharing) 

– Bad-MA (with bad memory access) 
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BAD-MA 

Overall Bad Memory Accesses 
Introduced a 3rd class of memory references.  
Bad memory accesses are due to other types of cache misses. 

Differentiate between other cache misses vs. false sharing 

 

int psum[MAXTHREADS]; 

int V1[N], V2[N]; 

 

void pdot_3(…) { 

 int mysum = 0; 

 for(int i=myid*BLKSZ; i < min((myid+1)*BLKSZ, N); i++) 

  mysum += V1[permute(i)] * V2[permute(i)]; 

 psum[myid] = mysum; 

} 
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Performance Events 

• “Performance events” can be counted 
using Performance Monitoring Units (PMU) 

 

•  But performance event data 

– can be confusing 

– too much for human processing when large 
amounts are collected  
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Example 
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Fast Version Slow Version 

Execution Time 1.57 seconds 3.01 seconds 

Sample Events Event Counts Event Counts 

Resource Stalls (r01a2) 3,947,728,352 8,627,478,887 

L3 References (r4f2e) 97,594,129 128,009,158 

L3 Misses (412e) 31,202,292 117,648,528 

L1D Modif. Evicted (r0451) 108,399,271 109,767,458 

DTLB Load Misses (r1008) 1,561,291 610,899 

DTLB Store Misses (r1049) 1,207,394 601,354 

Sample event counts for fast and slow versions of one program 

Machine learning may recognize patterns in such data 



Our Methodology 

1. Identify a set of performance events 

2. Collect performance event counts from 
problem-specific mini-programs 

3. Label data instances as “good”, “bad-fs”, 
“bad-ma” 

4. Train a classifier using these training data  

 

5. Use the trained classifier to classify data 
from unseen programs 
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Classification: Training & Testing 
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Training data 
(manually classified) 

Classified by 
the Classifier 

Class-B 
Class-A 

Class-A 
Class-B 

Testing data 
(manually classified) 

4/5 classified correctly  
Correctness = 80% 



Problem-Specific Mini-Programs 

• Multi-threaded parallel programs 

– 3 scalar programs, 3 vector programs, matrix-
multiplication, matrix-compare 

– Parameters: mode, problem size (N), number 
of threads (T) 

• Sequential (single-threaded) programs 

– array access for: read, read-modify-write, 
write; dot product, matrix multiplication 

– Parameters: mode, problem size (N) 
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Selected Performance Events for Intel 
Nehalem/Westmere 

1. L2 Data Req. – Demand “I” 

2. L2 Writes - RFO “S” state 

3. L2 Requests  - LD Miss 

4. Resource Stalls – Store 

5. Offcore Req. – Demand RD 

6. L2 Transactions – FILL 

7. L2 Lines In – “S” state 

8. L2 Lines Out – Demand Clean 

9. Snoop Response – HIT 

10. Snoop Response – HIT “E” 

11. Snoop Response – HIT “M” 

12. Mem. Load Retd. - HIT LFB 

13. DTLB Misses 

14. L1D Cache Replacements 

15. Resource Stalls – Loads 

• Instructions Retired 
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Normalize other event counts by 
dividing each by this 

Key 
Events 



Training Data 
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good bad-fs bad-ma Total 

Part A (Multi-threaded) 324 216 113 653 

Part B (Single-threaded) 130 - 97 227 

Training Data Set 454 216 210 880 

In each data instance,  each of the 15 event counts is  
normalized as a (scaled up)  
ratio = (event count/# instructions) x 109  



Training & Model Validation 
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Training Data Set 
Decision Tree 

Model 

10-fold stratified 
Cross-validation: 

Correct  

880 instances 
(454, 216, 210) 

6 leaves 
11 nodes 

875 
99.4% 

Predicted Class 

good bad-fs bad-ma 

Actual 
Class 

good 453 1 0 

bad-fs 0 216 0 

bad-ma 4 0 206 

Using J48 
classifier that 
implements the 
C4.5 decision-
tree algorithm  



Decision 
Tree Model 
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Snoop Response 
– HIT “M” 

L2 Transactions 
- FILL 

L1D Cache 
Replacements 

DTLB 
Misses 

DTLB 
Misses 

bad-fs 

good 

bad-ma 

bad-ma 

bad-ma good 

Branch to the 
right if the 
normalized count 
of the event ≥ a 
threshold;  to the 
left otherwise 



Results: 
Detection of False Sharing in 

Phoenix and PARSEC 
Benchmarks 

Experimental setup: 

2x 6-core (total 12-core) Intel Xeon 
X5690 @3.47GHz, 192 GB RAM, 

Linux x86_64 
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Our Detection of False Sharing in 
Phoenix and PARSEC Benchmarks  

23 

Phoenix PARSEC 
histogram No ferret No 
linear_regression Yes canneal No 
word_count No fluidanimate No 
reverse_index No streamcluster Yes 
kmeans No swaptions No 
matrix_multiply No vips No 
string_match No bodytrack No 
pca No freqmine No 

blackscholes No 
raytrace No 
x264 No 

Each program had multiple cases (by varying inputs, # of threads, 
compiler optimization); the above is based on the majority result. 



Phoenix: Comparison With Other Work 
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histogram 

linear_regression 

word_count (*) 

reverse_index (*) 

kmeans (*) 

matrix_multiply 

string_match 

pca 

[Zhao et al, 2011] 

histogram(*) 

linear_regression 

word_count 
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matrix_multiply 

string_match 

pca 

[Liu & Berger, 2011] 

histogram 

linear_regression 

word_count 

reverse_index 

kmeans 

matrix_multiply 

string_match 

pca 

Our approach 



PARSEC : Comparison With Other Work 
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ferret 

canneal(*) 

fluidanimate(*) 

streamcluster 

swaptions 

vips, bodytrack 

freqmine, blackscholes 

raytrace, x264  

[Liu & Berger, 2011 ] 
Our approach 

ferret 

canneal 

fluidanimate 

streamcluster 

swaptions 

vips, bodytrack 

freqmine, blackscholes 

raytrace, x264  

* Indicates false sharing would not 
have a significant impact 



Verification of Our Detection of 
False Sharing: Phoenix Benchmarks 
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Benchmark 
# 

cases 
Actual Detected 

FS No FS FS No FS 

histogram 18  0  18  0  18  
linear_regression 18  18  0  12  06  
word_count 18  0  18  0  18  
reverse_index 06  0  06  0  06  
kmeans 12  0  12  0  12  
matrix_multiply 18  0  18  0  18  
string_match 18  0  18  0  18  
pca 18  0  18  0  18  
Subtotal 126 18 108 12 114 

Verification is by the approach of [Zhao et al, 2011], on which 
the “Actual” columns are based 



Verification of Our Detection of 
False Sharing: PARSEC Benchmarks 
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Benchmark # cases 
Actual Detected 

FS No FS FS No FS 
ferret 18  0  18  0  18  
canneal 18  0  18  0  18  
fluidanimate 18  0  18  0  18  
streamcluster 18  11  07  10  08  
swaptions 18  0  18  0  18  
vips 18  0  18  0  18  
bodytrack 18  0  18  0  18  
freqmine 16  0  16  0  16  
blackscholes 18  0  18  0  18  
raytrace 18  0  18  0  18  
x264 18  0  18  0  18  
Total (Overall) 322 29  293 22  300 



Summary: Verification of Our 
Detection of False Sharing 
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Detection (Our Classification) 
FS No FS 

Actual 
FS 22 7 
No FS 0 293 

Correctness (22+293)/(22+7+0+293) = 97.8% 
False Positive Rate 0/(293+0) = 0% 

Verification is by the approach of [Zhao et al, 2011], on which 
the “Actual” values are based 



Ongoing/Future Work 

• Finer granularity in false sharing detection 
for long running programs 

– Time slicing 

– Subroutine-wise 

• Extending to IBM Power platform 

• Other forms of performance problems 
related to memory access (locks, true 
sharing) 
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Preliminary Results: Detection 
in Time-Slices 
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Conclusions 

• False sharing can seriously degrade 
performance yet it is difficult to detect 

• We presented an efficient and effective 
approach 

– Minimal performance overhead (< 2%), and 
easy to apply 

• In PARSEC and Phoenix benchmarks, we 
detect all programs where false sharing 
exists with 0 false positives 
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Selection of Performance Events 

• Identify a candidate set C of events 

– Related to: memory access, data caches, TLBs, 
interaction among CPU cores, resource stalls… 

– 60-70 events for Intel Nehalem, Westmere  

• Use the mini-programs to select a relevant 
subset R from C 

– Select events that can distinguish good and 
bad modes for most mini-programs  

– 15 events for Intel Nehalem/Westmere 
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Training data: Part A (Multi-threaded) 
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Program 
N 

count 
Threads Good Bad-FS Bad-MA Total 

pdot 7 1,3,6,9, 12 42 28 35 105 

psums 7 42 28 - 70 

psumv 7 42 28 35 105 

count 7 42 28 35 105 

padding 7 42 28 - 70 

false1 7 42 28 - 70 

pmatcom 6 36 24 30 90 

pmatmul 6 36 24 - 60 

Total Part A 324 216 113 653 



Training data: Part B (single-threaded) 
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Program N count Threads Good Bad-FS Bad-MA Total 

read 9 1 9 - 18 27 

write 9 9 - 18 27 

read-mod-
write 

9 9 - 18 27 

dotp 9 9 - 18 27 

matmult 14 135 - 28 163 

Total Part B 130 - 97 227 



• Intel docs say to look for the high count of 
“MEM_UNCORE_RETIRED.OTHER_CORE_L2
_HITM” event as an indication of possible 
false sharing 

• Ref: 

– Avoiding and Identifying False Sharing Among 
Threads, http://software.intel.com/en-
us/articles/avoiding-and-identifying-false-
sharing-among-threads   
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Decision Tree for IBM Power 7 
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