
Introduction PetaBricks OpenTuner Conclusions

Autotuning Programs with Algorithmic Choice

Jason Ansel

MIT - CSAIL

December 18, 2013

Introduction PetaBricks OpenTuner Conclusions

High Performance Search Problem

Performance search space:

Pa
ra

lle
lis

m
 c

h
o

ic
es

 Accuracy choices

 A

lgorith
mic choices

• Parallelism

• Exploiting parallelism is
necessary but not sufficient

• Performance is a
multi-dimensional search problem

• Normally done by expert
programmers

• Optimization decisions often
change program results

Introduction PetaBricks OpenTuner Conclusions

High Performance Search Problem

Performance search space:

Pa
ra

lle
lis

m
 c

h
o

ic
es

 Accuracy choices

 A

lgorith
mic choices

• Parallelism Performance
• Exploiting parallelism is

necessary but not sufficient

• Performance is a
multi-dimensional search problem

• Normally done by expert
programmers

• Optimization decisions often
change program results

Introduction PetaBricks OpenTuner Conclusions

High Performance Search Problem

Performance search space:

Pa
ra

lle
lis

m
 c

h
o

ic
es

 Accuracy choices

 A

lgorith
mic choices

• Parallelism Performance
• Exploiting parallelism is

necessary but not sufficient

• Performance is a
multi-dimensional search problem

• Normally done by expert
programmers

• Optimization decisions often
change program results

Introduction PetaBricks OpenTuner Conclusions

High Performance Search Problem

Goal of this work
To automate the process of program optimization to create
programs that can adapt to changing environments and goals.

• Language level solutions for concisely representing algorithmic
choice spaces.

• Processes and compilation techniques to manage and explore
these spaces.

• Autotuning techniques to efficiently solve these search
problems.

Introduction PetaBricks OpenTuner Conclusions

High Performance Search Problem

Goal of this work
To automate the process of program optimization to create
programs that can adapt to changing environments and goals.

• Language level solutions for concisely representing algorithmic
choice spaces.

• Processes and compilation techniques to manage and explore
these spaces.

• Autotuning techniques to efficiently solve these search
problems.

Introduction PetaBricks OpenTuner Conclusions

Research Covered in This Talk

• The PetaBricks programming language: algorithmic choice at
the language level [PLDI’09]

• Language level support for variable accuracy [CGO’11]

• Automated construction of multigrid V-cycles [SC’09]

• Code generation and autotuning for heterogeneous CPU/GPU
mix of parallel processing units [ASPLOS’13]

• Solution for input sensitivity based on adaptive
overhead-aware classifiers [Under review]

• OpenTuner: an extensible framework for program autotuning
[Under review]

• Won’t be talking about work in: ASPLOS’09, ASPLOS’12,
GECCO’11, IPDPS’09, PLDI’11, and many others

Introduction PetaBricks OpenTuner Conclusions

Research Covered in This Talk

• The PetaBricks programming language: algorithmic choice at
the language level [PLDI’09]

• Language level support for variable accuracy [CGO’11]

• Automated construction of multigrid V-cycles [SC’09]

• Code generation and autotuning for heterogeneous CPU/GPU
mix of parallel processing units [ASPLOS’13]

• Solution for input sensitivity based on adaptive
overhead-aware classifiers [Under review]

• OpenTuner: an extensible framework for program autotuning
[Under review]

• Won’t be talking about work in: ASPLOS’09, ASPLOS’12,
GECCO’11, IPDPS’09, PLDI’11, and many others

Introduction PetaBricks OpenTuner Conclusions

A Motivating Example for Algorithmic Choice

• How would you write a fast sorting algorithm?

• Insertion sort
• Quick sort
• Merge sort
• Radix sort

• Poly-algorithms

Introduction PetaBricks OpenTuner Conclusions

A Motivating Example for Algorithmic Choice

• How would you write a fast sorting algorithm?
• Insertion sort
• Quick sort
• Merge sort
• Radix sort

• Poly-algorithms

Introduction PetaBricks OpenTuner Conclusions

A Motivating Example for Algorithmic Choice

• How would you write a fast sorting algorithm?
• Insertion sort
• Quick sort
• Merge sort
• Radix sort

• Poly-algorithms

Introduction PetaBricks OpenTuner Conclusions

std::stable sort

/usr/include/c++/4.5.2/bits/stl algo.h lines 3350-3367

Introduction PetaBricks OpenTuner Conclusions

std::stable sort

/usr/include/c++/4.5.2/bits/stl algo.h lines 3350-3367

Introduction PetaBricks OpenTuner Conclusions

Why 15?

• Why 15?

• Dates back to at least 2000 (June 2000 SGI release)

• Still in current C++ STL shipped with GCC

• cutoff = 15 survived 10+ years

• In the source code for millions of C++ programs

• There is nothing the compiler can do about it

Introduction PetaBricks OpenTuner Conclusions

Why 15?

• Why 15?

• Dates back to at least 2000 (June 2000 SGI release)

• Still in current C++ STL shipped with GCC

• cutoff = 15 survived 10+ years

• In the source code for millions1 of C++ programs

• There is nothing the compiler can do about it

1
Any C++ program with “#include <algorithm>”, conservative estimate based on:

http://c2.com/cgi/wiki?ProgrammingLanguageUsageStatistics

http://c2.com/cgi/wiki?ProgrammingLanguageUsageStatistics

Introduction PetaBricks OpenTuner Conclusions

Is 15 The Right Number?

• The best cutoff (CO) changes

• Depends on competing costs:
• Cost of computation (< operator, call overhead, etc)
• Cost of communication (swaps)
• Cache behavior (misses, prefetcher, locality)

• Sorting 100000 doubles with std::stable sort:
• CO ≈ 200 optimal on a Phenom 905e (15% speedup)
• CO ≈ 400 optimal on a Opteron 6168 (15% speedup)
• CO ≈ 500 optimal on a Xeon E5320 (34% speedup)
• CO ≈ 700 optimal on a Xeon X5460 (25% speedup)

• If the best cutoff has changed, perhaps best algorithm has
also changed

Introduction PetaBricks OpenTuner Conclusions

Is 15 The Right Number?

• The best cutoff (CO) changes

• Depends on competing costs:
• Cost of computation (< operator, call overhead, etc)
• Cost of communication (swaps)
• Cache behavior (misses, prefetcher, locality)

• Sorting 100000 doubles with std::stable sort:
• CO ≈ 200 optimal on a Phenom 905e (15% speedup)
• CO ≈ 400 optimal on a Opteron 6168 (15% speedup)
• CO ≈ 500 optimal on a Xeon E5320 (34% speedup)
• CO ≈ 700 optimal on a Xeon X5460 (25% speedup)

• If the best cutoff has changed, perhaps best algorithm has
also changed

Introduction PetaBricks OpenTuner Conclusions

Algorithmic Choice

• Compiler’s hands are tied, it is stuck with 15

• Need a better way to represent algorithmic choices

• PetaBricks is the first language with support for algorithmic
choice

Introduction PetaBricks OpenTuner Conclusions

Sort in PetaBricks

Language

funct ion S o r t
to out [n]
from i n [n]
{

e i t h e r {
I n s e r t i o n S o r t (out , i n) ;

} or {
Q u i c k S o r t (out , i n) ;

} or {
MergeSort (out , i n) ;

} or {
R a d i x S o r t (out , i n) ;

}
}

⇒
Representation

Decision tree
synthesized by our
autotuner

Introduction PetaBricks OpenTuner Conclusions

Sort in PetaBricks

Language

funct ion S o r t
to out [n]
from i n [n]
{

e i t h e r {
I n s e r t i o n S o r t (out , i n) ;

} or {
Q u i c k S o r t (out , i n) ;

} or {
MergeSort (out , i n) ;

} or {
R a d i x S o r t (out , i n) ;

}
}

⇒
Representation

Decision tree
synthesized by our
autotuner

Introduction PetaBricks OpenTuner Conclusions

Decision Trees

Optimized for a Xeon E7340 (8 cores):

N < 600

N < 1420Insertion Sort

Quick Sort Merge Sort
(2-way)

Introduction PetaBricks OpenTuner Conclusions

Decision Trees

Optimized for Sun Fire T200 Niagara (8 cores):

N < 1461

N < 2400

Merge Sort
(4-way)

Merge Sort
(2-way)

N < 75

Merge Sort
(8-way)

Merge Sort
(16-way)

Introduction PetaBricks OpenTuner Conclusions

Sort Algorithm Timings2

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort
QuickSort
MergeSort
RadixSort
Autotuned

2On an 8-way Xeon E7340 system

Introduction PetaBricks OpenTuner Conclusions

Iteration Order Choices

• Many other choices related to execution order
• By rows?
• By columns?
• Diagonal? Reverse order? Blocked?
• Parallel?

• Choices both within a single (possibly parallel)
task and between different tasks

• This is main motivation for a new language as
opposed to a library

Introduction PetaBricks OpenTuner Conclusions

Iteration Order Choices

• Many other choices related to execution order
• By rows?
• By columns?
• Diagonal? Reverse order? Blocked?
• Parallel?

• Choices both within a single (possibly parallel)
task and between different tasks

• This is main motivation for a new language as
opposed to a library

Introduction PetaBricks OpenTuner Conclusions

Synthesized Outer Control Flow

• PetaBricks programs have synthesized outer control flow
• Declarative (data flow like) outer syntax
• Imperative inner code

• Programs start as completely parallel

• Added dependencies restrict the space of legal executions

• May only access data explicitly depended on

Parallel loop

X . c e l l (i) from () { . . . }

Sequential loop

X . c e l l (i) from (X . c e l l (i −1) l e f t) { . . . }

Introduction PetaBricks OpenTuner Conclusions

Matrix Multiply

transform M a t r i x M u l t i p l y
to AB[w, h]
from A [c , h] , B [w, c]
{

AB. c e l l (x , y) from (A . row (y) a , B . column (x) b){
return dot (a , b) ;

}

}

to (AB. reg ion (x , y , x + 4 , y + 4) out)
from (A . reg ion (0 , y , c , y + 4) a ,

B . reg ion (x , 0 , x + 4 , c) b){
// . . . compute 4 x 4 b l o c k . . .

}
}

Introduction PetaBricks OpenTuner Conclusions

Matrix Multiply

transform M a t r i x M u l t i p l y
to AB[w, h]
from A [c , h] , B [w, c]
{

AB. c e l l (x , y) from (A . row (y) a , B . column (x) b){
return dot (a , b) ;

}

to (AB. reg ion (x , y , x + 4 , y + 4) out)
from (A . reg ion (0 , y , c , y + 4) a ,

B . reg ion (x , 0 , x + 4 , c) b){
// . . . compute 4 x 4 b l o c k . . .

}
}

Introduction PetaBricks OpenTuner Conclusions

Strassen Matrix Multiply

t r a n s f o r m S t r a s s e n
to AB[n , n]
from A[n , n] , B [n , n]
u s i n g M1[n/2 , n /2] , M2[n /2 , n /2] , M3[n /2 , n /2] , M4[n /2 , n /2] ,

M5[n /2 , n /2] , M6[n /2 , n /2] , M7[n /2 , n /2]
{

to (M1 m1)
from (A . r e g i o n (0 , 0 , n /2 , n /2) a11 ,

A . r e g i o n (n /2 , n /2 , n , n) a22 ,
B . r e g i o n (0 , 0 , n /2 , n /2) b11 ,
B . r e g i o n (n /2 , n /2 , n , n) b22)

u s i n g (t1 [n / 2 , n / 2] , t2 [n /2 , n / 2]) {
spawn MatrixAdd (t1 , a11 , a22) ;
spawn MatrixAdd (t2 , b11 , b22) ;
sync ;
S t r a s s e n (m1, t1 , t2) ;

}
. . . .
// Compute one quadrant o f output w i th s t r a s s e n decompos i t i on
to (AB. r e g i o n (n /2 , 0 , n , n /2) c12) from (M3 m3, M5 m5){

MatrixAdd (c12 , m3, m5) ;
}
. . . .
// Or , compute e l ement i n output d i r e c t l y (same as l a s t s l i d e)
AB. c e l l (x , y) from (A . row (y) a , B . column (x) b){

r e t u r n dot (a , b) ;
}

}

Introduction PetaBricks OpenTuner Conclusions

Variable Accuracy Algorithms

• Many problems don’t have a single correct answer,
optimizations often trade-off accuracy and performance.

• Soft computing
• DSP algorithms
• Iterative algorithms

• Variable accuracy, supported in the PetaBricks language, is a
fundamental part of algorithmic choice which enables new
classes of programs to be represented.

Introduction PetaBricks OpenTuner Conclusions

Variable Accuracy Algorithms

• Many problems don’t have a single correct answer,
optimizations often trade-off accuracy and performance.

• Soft computing
• DSP algorithms
• Iterative algorithms

• Variable accuracy, supported in the PetaBricks language, is a
fundamental part of algorithmic choice which enables new
classes of programs to be represented.

Introduction PetaBricks OpenTuner Conclusions

K-Means Example
t r a n s f o r m kmeans
from Po in t s [n , 2] // Array o f p o i n t s (each column

// s t o r e s x and y c o o r d i n a t e s)
u s i n g Cen t r o i d s [s q r t (n) , 2]
to Ass ignments [n]
{

// Rule 1 :
// One p o s s i b l e i n i t i a l c o n d i t i o n : Random
// s e t o f p o i n t s
to (C en t r o i d s . column (i) c) from (Po i n t s p) {

c=p . column (rand (0 , n))
}

// Rule 2 :
// Another i n i t i a l c o n d i t i o n : C en t e r p l u s i n i t i a l
// c e n t e r s (kmeans++)
to (C en t r o i d s c) from (Po i n t s p) {

Cen t e rP l u s (c , p) ;
}

// Rule 3 :
// The kmeans i t e r a t i v e a l g o r i t hm
to (Ass ignments a) from (Po i n t s p , C en t r o i d s c) {

w h i l e (t r u e) {
i n t change ;
A s s i g nC l u s t e r s (a , change , p , c , a) ;
i f (change==0) r e t u r n ; // Reached f i x e d po i n t
NewC lu s t e rLoca t i on s (c , p , a) ;

}
}

}

Introduction PetaBricks OpenTuner Conclusions

K-Means Example (Variable Accuracy)
t r a n s f o r m kmeans
a c c u r a c y m e t r i c kmeansaccuracy
a c c u r a c y v a r i a b l e k
from Po in t s [n , 2] // Array o f p o i n t s (each column

// s t o r e s x and y c o o r d i n a t e s)
u s i n g Cen t r o i d s [k , 2]
to Ass ignments [n]

...

// Rule 3 :
// The kmeans i t e r a t i v e a l g o r i t hm
to (Ass ignments a) from (Po i n t s p , C en t r o i d s c) {

f o r e n o u g h {
i n t change ;
A s s i g nC l u s t e r s (a , change , p , c , a) ;
i f (change==0) r e t u r n ; // Reached f i x e d po i n t
NewC lu s t e rLoca t i on s (c , p , a) ;

}
}

}
t r a n s f o r m kmeansaccuracy
from Ass ignments [n] , Po i n t s [n , 2]
to Accuracy
{

Accuracy from (Ass ignments a , Po i n t s p){
r e t u r n s q r t (2∗n/ SumClus te rD i s tanceSquared (a , p)) ;

}
}

Introduction PetaBricks OpenTuner Conclusions

Semantics of Variable Accuracy

Running the accuracy metric on the output will return a value
that, in expectation, exceeds the accuracy target more than P
percent of the time.

• Expected distribution of accuracy measured during autotuning
time, not at runtime.

• When fixed accuracy code calls variable accuracy code, an
accuracy target must be specified.

• When variable accuracy code call code containing variable
accuracy components, only the outer most accuracy target
will be honored.

Introduction PetaBricks OpenTuner Conclusions

Semantics of Variable Accuracy

Running the accuracy metric on the output will return a value
that, in expectation, exceeds the accuracy target more than P
percent of the time.

• Expected distribution of accuracy measured during autotuning
time, not at runtime.

• When fixed accuracy code calls variable accuracy code, an
accuracy target must be specified.

• When variable accuracy code call code containing variable
accuracy components, only the outer most accuracy target
will be honored.

Introduction PetaBricks OpenTuner Conclusions

A Brief Multigrid Intro

• Used to iteratively solve PDEs over a gridded domain

• Relaxations update points using neighboring values (stencil
computations)

• Restrictions and Interpolations compute new grid with coarser
or finer discretization

Introduction PetaBricks OpenTuner Conclusions

Standard Cycle Shaps

• Cycle shapes effect accuracy and
performance

• Equation, accuracy target, data,
and execution platform effect
efficacy of different shapes

• Entire papers published about new
cycle shapes!

• We fundamentally change the
status quo in this domain

• Define the search space of cycle
shapes once

• Autotune to find a cycle shape
tailored to your problem

Introduction PetaBricks OpenTuner Conclusions

Standard Cycle Shaps

• Cycle shapes effect accuracy and
performance

• Equation, accuracy target, data,
and execution platform effect
efficacy of different shapes

• Entire papers published about new
cycle shapes!

• We fundamentally change the
status quo in this domain

• Define the search space of cycle
shapes once

• Autotune to find a cycle shape
tailored to your problem

Introduction PetaBricks OpenTuner Conclusions

Choice Space of Multigrid

Introduction PetaBricks OpenTuner Conclusions

Autotuned V-cycle Shapes

10
1

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

10
3

10
5

10
7

G
ri

d
 S

iz
e

2048

1024

512

256

128

64

32

16

Introduction PetaBricks OpenTuner Conclusions

Dynamic Programming Technique for Autotuning Multigrid

Grid size i

⇒ Grid size 2i

• Partition accuracy space into discrete levels

• Base space of candidate algorithms on optimal algorithms
from coarser level

Introduction PetaBricks OpenTuner Conclusions

Dynamic Programming Technique for Autotuning Multigrid

Grid size i

⇒ Grid size 2i

• Partition accuracy space into discrete levels

• Base space of candidate algorithms on optimal algorithms
from coarser level

Introduction PetaBricks OpenTuner Conclusions

Dynamic Programming Technique for Autotuning Multigrid

Grid size i

⇒ Grid size 2i

• Partition accuracy space into discrete levels

• Base space of candidate algorithms on optimal algorithms
from coarser level

Introduction PetaBricks OpenTuner Conclusions

Dynamic Programming Technique for Autotuning Multigrid

Grid size i

⇒ Grid size 2i

• Partition accuracy space into discrete levels

• Base space of candidate algorithms on optimal algorithms
from coarser level

Introduction PetaBricks OpenTuner Conclusions

Dynamic Programming Technique for Autotuning Multigrid

Grid size i

⇒
Grid size 2i

• Partition accuracy space into discrete levels

• Base space of candidate algorithms on optimal algorithms
from coarser level

Introduction PetaBricks OpenTuner Conclusions

2D Poisson’s Equation (uses Multigrid)

 1

 2

 4

 8

 16

 32

 64

 100 1000 10000 100000 1e+06

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 109

Accuracy Level 107

Accuracy Level 105

Accuracy Level 103

Accuracy Level 101

2D Poisson’s equation

Introduction PetaBricks OpenTuner Conclusions

More Variable Accuracy Results

 1

 2

 4

 8

 10 100 1000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 0.95
Accuracy Level 0.75
Accuracy Level 0.50
Accuracy Level 0.20
Accuracy Level 0.10
Accuracy Level 0.05

Clustering

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06
S

pe
ed

up
 (

x)

Input Size

Accuracy Level 1.01
Accuracy Level 1.1
Accuracy Level 1.2
Accuracy Level 1.3
Accuracy Level 1.4

Bin Packing

 1

 2

 4

 8

 16

 32

 10 100 1000 10000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 2.0
Accuracy Level 1.5
Accuracy Level 1.0
Accuracy Level 0.8
Accuracy Level 0.6
Accuracy Level 0.3

Image Compression

 1

 2

 4

 8

 16

 32

 10 100 1000 10000 100000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 109

Accuracy Level 107

Accuracy Level 105

Accuracy Level 103

Accuracy Level 101

3D Helmholtz

 1

 2

 4

 8

 16

 32

 64

 100 1000 10000 100000 1e+06

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 109

Accuracy Level 107

Accuracy Level 105

Accuracy Level 103

Accuracy Level 101

2D Poisson

 1

 2

 4

 8

 10 100 1000 10000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 3.0
Accuracy Level 2.0
Accuracy Level 1.5
Accuracy Level 1.0
Accuracy Level 0.5
Accuracy Level 0.0

Preconditioner

Introduction PetaBricks OpenTuner Conclusions

Results on Different Systems

Test Systems
Codename CPU(s) Cores GPU OpenCL Runtime

Desktop Core i7 920 @2.67GHz 4 NVIDIA Tesla C2070 CUDA Toolkit 3.2

Server 4× Xeon X7550 @2GHz 32 None AMD APP SDK 2.5

Laptop Core i5 2520M @2.5GHz 2 AMD Radeon HD 6630M Xcode 4.2

Benchmarks
Name

Possible
Configs

Generated OpenCL
Kernels

Mean
Autotuning Time

Testing
Input Size

SeparableConv. 101358 9 3.82 hours 35202

Black-Sholes 10130 1 3.09 hours 500000

Poisson2D SOR 101358 25 15.37 hours 20482

Sort 10920 7 3.56 hours 220

Strassen 101509 9 3.05 hours 10242

SVD 102435 8 1.79 hours 2562

Tridiagonal Solver 101040 8 5.56 hours 10242

Introduction PetaBricks OpenTuner Conclusions

Results on Different Systems

Test Systems
Codename CPU(s) Cores GPU OpenCL Runtime

Desktop Core i7 920 @2.67GHz 4 NVIDIA Tesla C2070 CUDA Toolkit 3.2

Server 4× Xeon X7550 @2GHz 32 None AMD APP SDK 2.5

Laptop Core i5 2520M @2.5GHz 2 AMD Radeon HD 6630M Xcode 4.2

Benchmarks
Name

Possible
Configs

Generated OpenCL
Kernels

Mean
Autotuning Time

Testing
Input Size

SeparableConv. 101358 9 3.82 hours 35202

Black-Sholes 10130 1 3.09 hours 500000

Poisson2D SOR 101358 25 15.37 hours 20482

Sort 10920 7 3.56 hours 220

Strassen 101509 9 3.05 hours 10242

SVD 102435 8 1.79 hours 2562

Tridiagonal Solver 101040 8 5.56 hours 10242

Introduction PetaBricks OpenTuner Conclusions

Separable Convolution (width=7)

1.0x

2.0x

3.0x

Desktop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Desktop Config Server Config Laptop Config

SeparableConv.
1D kernel+local memory on
GPU

1D kernel on OpenCL
2D kernel+local memory on
GPU

Introduction PetaBricks OpenTuner Conclusions

Separable Convolution (width=7)

1.0x

2.0x

3.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Desktop Config Server Config Laptop Config

SeparableConv.
1D kernel+local memory on
GPU

1D kernel on OpenCL
2D kernel+local memory on
GPU

Introduction PetaBricks OpenTuner Conclusions

Separable Convolution (width=7)

1.0x

2.0x

3.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Hand-coded
 OpenCL

Desktop Config Server Config Laptop Config

SeparableConv.
1D kernel+local memory on
GPU

1D kernel on OpenCL
2D kernel+local memory on
GPU

Introduction PetaBricks OpenTuner Conclusions

Poisson 2D SOR

1.0x

3.0x

5.0x

7.0x

9.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Desktop Config Server Config Laptop Config

Poisson2D SOR
Split on CPU followed by
compute on GPU

Split some parts on OpenCL
followed by compute on CPU

Split on CPU followed by
compute on GPU

Introduction PetaBricks OpenTuner Conclusions

Singular Value Decomposition (SVD)

1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Desktop Config Server Config Laptop Config

SVD

First phase: task parallism be-
tween CPU/GPU; matrix multi-
ply: 8-way parallel recursive de-
composition on CPU, call LA-
PACK when < 42× 42

First phase: all on CPU; ma-
trix multiply: 8-way parallel re-
cursive decomposition on CPU,
call LAPACK when < 170×170

First phase: all on CPU; ma-
trix multiply: 4-way parallel re-
cursive decomposition on CPU,
call LAPACK when < 85× 85

Introduction PetaBricks OpenTuner Conclusions

Results Takeaways

• Different configurations are required for best performance on
different systems

• Not just changing block sizes

• Can not be easily solved by a simple heuristic

• Motivates the need for algorithmic choice and autotuning

Introduction PetaBricks OpenTuner Conclusions

Autotuning Challenges

• Evaluating quality of candidate algorithms is expensive
• Must run the program (at least once)
• More expensive for unfit solutions
• Scales poorly with larger problem sizes

• Fitness is noisy
• Randomness from parallel races and system noise
• Testing each candidate only once often produces a worse

algorithm
• Running many trials is expensive

• Decision tree structures are complex
• Not easy to hill-climb
• We artificially bound them

Introduction PetaBricks OpenTuner Conclusions

Input Sensitivity

• Input sensitivity is a major challenge

• Different algorithms may be better for different inputs

• Use fast algorithm for easy inputs, slow algorithm for hard
inputs

• Avoid pathological cases

Introduction PetaBricks OpenTuner Conclusions

Input Sensitivity Today

• Vast majority of programs today use a single algorithm for all
inputs

• This forces design for the “worst case” input
• Wastes time and resources

• Related work:
• Uses hand written heuristics to adapt to inputs
• Rectify inputs for security [Long el al.]

• Our system automatically classifies inputs and runs a program
optimized for the type of input being processed

Introduction PetaBricks OpenTuner Conclusions

Input Sensitivity Today

• Vast majority of programs today use a single algorithm for all
inputs

• This forces design for the “worst case” input
• Wastes time and resources

• Related work:
• Uses hand written heuristics to adapt to inputs
• Rectify inputs for security [Long el al.]

• Our system automatically classifies inputs and runs a program
optimized for the type of input being processed

Introduction PetaBricks OpenTuner Conclusions

Input Sensitivity Overview

Training
Deployment

Input Classifier

Input Aware
Learning

Program

Training Inputs

Feature Extractors
Insights:
 - Feature Priority List
 - Performance Bounds

Input

Select Input Optimized
Programs

Training

Selected
Program

Run

Introduction PetaBricks OpenTuner Conclusions

Input Features
f u n c t i o n Sor t
to out [n]
from i n [n]

i n p u t f e a t u r e So r t edne s s , Dup l i c a t i o n

{ . . . }
f u n c t i o n So r t e dn e s s
from i n [n]
to s o r t e d n e s s
t u n a b l e doub l e l e v e l (0 . 0 , 1 . 0)
{

i n t s o r t e d coun t = 0 ;
i n t count = 0 ;
i n t s t e p = (i n t) (l e v e l ∗n) ;
f o r (i n t i =0; i+step<n ; i+=s t ep) {

i f (i n [i] <= in [i+s t ep]) {
// inc r ement f o r c o r r e c t l y o r d e r ed
// p a i r s o f e l ement s
s o r t e d coun t += 1 ;

}
count += 1 ;

}
i f (count > 0)

s o r t e d n e s s = so r t e d coun t / (doub l e) count ;
e l s e

s o r t e d n e s s = 0 . 0 ;
}
f u n c t i o n Dup l i c a t i o n
from i n [n]
to d u p l i c a t i o n
{ . . . }

Introduction PetaBricks OpenTuner Conclusions

Input Space Sampling

Duplication

S
or
te
dn
es
s

Introduction PetaBricks OpenTuner Conclusions

Input Space Sampling

Duplication

S
or
te
dn
es
s

Introduction PetaBricks OpenTuner Conclusions

Input Space Sampling

Duplication

S
or
te
dn
es
s

Introduction PetaBricks OpenTuner Conclusions

Input Space Sampling

Duplication

S
or
te
dn
es
s

Introduction PetaBricks OpenTuner Conclusions

Input Space Sampling

Duplication

S
or
te
dn
es
s

Introduction PetaBricks OpenTuner Conclusions

Input Space Sampling

Duplication

S
or
te
dn
es
s

Introduction PetaBricks OpenTuner Conclusions

Training

Features
Input

Labels

Decision Tree

Max A Priori

Adaptive Tree

Classifier
Constructors

1...m

0

m+1

Classifier
Selector

Selection
Objective

Considers
cost of

extracting
needed
features

Input
Classifier

Introduction PetaBricks OpenTuner Conclusions

How Many Landmarks Are Enough?

 0 0.2 0.4 0.6 0.8 1

Lo
st

 s
pe

ed
up

 (
L)

Size of region (pi)

2 configs
3 configs
4 configs
5 configs
6 configs
7 configs
8 configs
9 configs

 10 20 30 40 50 60 70 80 90 100
S

pe
ed

up
Landmarks

Introduction PetaBricks OpenTuner Conclusions

Input Adaptation Results

sort

1 100

1

3

5

Landmarks

S
pe

ed
up

clustering

1 100

2

3

Landmarks

S
pe

ed
up

binpacking

1 100

1

1.05

Landmarks

S
pe

ed
up

svd

1 100

0.9

1.1

Landmarks

S
pe

ed
up

poisson2d

1 100

0.9

1.2

Landmarks

S
pe

ed
up

helmholtz3d

1 100

0.8

1.0

Landmarks

S
pe

ed
up

Introduction PetaBricks OpenTuner Conclusions

Related Projects

A small selection of many related projects:
Package Domain Search Method

Active Harmony Runtime System Nelder-Mead

ATLAS Dense Linear Algebra Exhaustive

Code Perforation Compiler Exhaustive + Simulated Annealing

Dynamic Knobs Runtime System Control Theory

FFTW Fast Fourier Transform Exhaustive / Dynamic Prog.

Insieme Compiler Differential Evolution

Milepost GCC / cTuning Compiler IID Model + Central DB

OSKI Sparse Linear Algebra Exhaustive + Heuristic

PATUS Stencil Computations Nelder-Mead or Evolutionary

SEEC / Heartbeats Runtime System Control Theory

Sepya Stencil Computations Random-Restart Gradient Ascent

SPIRAL DSP Algorithms Pareto Active Learning

• Simple techniques (exhaustive, hill climbers, etc) are popular
• No single technique is best for all problems

• Representations are often just integers/floats/booleans

Introduction PetaBricks OpenTuner Conclusions

Related Projects

A small selection of many related projects:
Package Domain Search Method

Active Harmony Runtime System Nelder-Mead

ATLAS Dense Linear Algebra Exhaustive

Code Perforation Compiler Exhaustive + Simulated Annealing

Dynamic Knobs Runtime System Control Theory

FFTW Fast Fourier Transform Exhaustive / Dynamic Prog.

Insieme Compiler Differential Evolution

Milepost GCC / cTuning Compiler IID Model + Central DB

OSKI Sparse Linear Algebra Exhaustive + Heuristic

PATUS Stencil Computations Nelder-Mead or Evolutionary

SEEC / Heartbeats Runtime System Control Theory

Sepya Stencil Computations Random-Restart Gradient Ascent

SPIRAL DSP Algorithms Pareto Active Learning

• Simple techniques (exhaustive, hill climbers, etc) are popular
• No single technique is best for all problems

• Representations are often just integers/floats/booleans

Introduction PetaBricks OpenTuner Conclusions

Limits of Existing Autotuning Projects

• We believe these factors limit the scope and efficiency of
autotuning

• A hill climber works great for a block size, but completely fails
at synthesizing poly-algorithms

• Many users of autotuning work hard to prune their search
spaces to fit their techniques

• OpenTuner provides extensible representations and ensembles
of techniques which can solve more complex autotuning
problems

Introduction PetaBricks OpenTuner Conclusions

Limits of Existing Autotuning Projects

• We believe these factors limit the scope and efficiency of
autotuning

• A hill climber works great for a block size, but completely fails
at synthesizing poly-algorithms

• Many users of autotuning work hard to prune their search
spaces to fit their techniques

• OpenTuner provides extensible representations and ensembles
of techniques which can solve more complex autotuning
problems

Introduction PetaBricks OpenTuner Conclusions

OpenTuner Overview

OpenTuner: an extensible framework for program autotuning

Results Database

Search
TechniquesSearch

Driver

Search

Reads: Results
Writes: Desired Results

Measurement

User Defined
Measurement

Function

Measurement
Driver

Configuration
Manipulator

Reads: Desired Results
Writes: Results

Introduction PetaBricks OpenTuner Conclusions

OpenTuner Configuration Manipulator Parameters

Parameter

Primitive Complex

Integer ScaledNumericFloat

LogInteger LogFloat PowerOfTwo

Switch Enum Permutation

Schedule

SelectorBoolean

• Hierarchical structure of parameters, user defined parameter
types can be added at any point

• Primitive parameters behave like bounded integers or floats

• Complex parameters have a set of stochastic mutation
operators

• Technique-specific operators

Introduction PetaBricks OpenTuner Conclusions

Ensembles of Techniques

Differential
Evolution

Particle
Swarm

Optimization

Torczon
Hill

Climber

Introduction PetaBricks OpenTuner Conclusions

Ensembles of Techniques

Differential
Evolution

Particle
Swarm

Optimization

Torczon
Hill

Climber

Information sharing through ResultsDB

Introduction PetaBricks OpenTuner Conclusions

Ensembles of Techniques

Differential
Evolution

Particle
Swarm

Optimization

Torczon
Hill

Climber

Information sharing through ResultsDB

AUC Bandit

Introduction PetaBricks OpenTuner Conclusions

Ensembles of Techniques

Differential
Evolution

Particle
Swarm

Optimization

Torczon
Hill

Climber

Information sharing through ResultsDB

AUC Bandit

Which configuration should we try next?

?

Introduction PetaBricks OpenTuner Conclusions

Ensembles of Techniques

Differential
Evolution

Particle
Swarm

Optimization

Torczon
Hill

Climber

Information sharing through ResultsDB

AUC Bandit

Which configuration should we try next?

33%

Exploration

33% 33%

Introduction PetaBricks OpenTuner Conclusions

Ensembles of Techniques

Differential
Evolution

Particle
Swarm

Optimization

Torczon
Hill

Climber

Information sharing through ResultsDB

AUC Bandit

Which configuration should we try next?

100%

Exploitation

0% 0%

Introduction PetaBricks OpenTuner Conclusions

OpenTuner Results

Project Benchmark Possible Configurations

GCC/G++ Flags all 10806

Halide Blur 1052

Halide Wavelet 1044

HPL n/a 109.9

PetaBricks Poisson 103657

PetaBricks Sort 1090

PetaBricks Strassen 10188

PetaBricks TriSolve 101559

Stencil all 106.5

Unitary n/a 1021

Introduction PetaBricks OpenTuner Conclusions

OpenTuner Results

Project Benchmark Possible Configurations

GCC/G++ Flags all 10806

Halide Blur 1052

Halide Wavelet 1044

HPL n/a 109.9

PetaBricks Poisson 103657

PetaBricks Sort 1090

PetaBricks Strassen 10188

PetaBricks TriSolve 101559

Stencil all 106.5

Unitary n/a 1021

Introduction PetaBricks OpenTuner Conclusions

OpenTuner Results: GCC Flags

fft.c

 0.8

 0.85

 0.9

 0.95

 1

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

gcc -O1
gcc -O2
gcc -O3

OpenTuner

matrixmultiply.cpp

 0.1

 0.15

 0.2

 0.25

 0.3

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

raytracer.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

tsp ga.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

Introduction PetaBricks OpenTuner Conclusions

OpenTuner Results: PetaBricks

Poisson 2D

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

Sort

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

Strassen

 0

 0.05

 0.1

 0.15

 0.2

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

Tridiagonal Solver

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

Introduction PetaBricks OpenTuner Conclusions

Conclusions

• PetaBricks has pushed the limits of what can be done with
algorithmic choice

• Provides performance portability by allowing programs to
adapt to their environment

• Have shown: variable accuracy, multigrid, and input sensitivity
• Hope that future main stream programming languages will

incorperate algorithmic choice and autotuning

• OpenTuner can expand the scope of program autotuning for
other projects

• Extensible configuration representation
• Ensembles of techniques
• Hope that field of autotuning will expand to much more

complex problems

Introduction PetaBricks OpenTuner Conclusions

Coauthors and Collaborators

• Saman Amarasinghe

• Cy Chan

• Yufei Ding

• Alan Edelman

• Sam Fingeret

• Sanath Jayasena

• Shoaib Kamil

• Kevin Kelley

• Erika Lee

• Deepak Narayanan

• Marek Olszewski

• Una-May O’Reilly

• Maciej Pacula

• Phitchaya Mangpo Phothilimthana

• Jonathan Ragan-Kelley

• Xipeng Shen

• Michele Tartara

• Kalyan Veeramachaneni

• Yod Watanaprakornku

• Yee Lok Wong

• Kevin Wu

• Minshu Zhan

• Qin Zhao

Introduction PetaBricks OpenTuner Conclusions

Thanks!

About me:
http://jasonansel.com/

http://opentuner.org/

http://projects.csail.mit.edu/petabricks/

http://jasonansel.com/
http://opentuner.org/
http://projects.csail.mit.edu/petabricks/

	Introduction
	Goals
	Motivating Example

	PetaBricks
	Language
	Multigrid and Results
	Autotuner

	OpenTuner
	OpenTuner

	Conclusions
	Conclusions

