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High Performance Search Problem
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programmers

• Optimization decisions often
change program results
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High Performance Search Problem

Goal of this work
To automate the process of program optimization to create
programs that can adapt to changing environments and goals.

• Language level solutions for concisely representing algorithmic
choice spaces.

• Processes and compilation techniques to manage and explore
these spaces.

• Autotuning techniques to efficiently solve these search
problems.
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Research Covered in This Talk

• The PetaBricks programming language: algorithmic choice at
the language level [PLDI’09]

• Language level support for variable accuracy [CGO’11]

• Automated construction of multigrid V-cycles [SC’09]

• Code generation and autotuning for heterogeneous CPU/GPU
mix of parallel processing units [ASPLOS’13]

• Solution for input sensitivity based on adaptive
overhead-aware classifiers [Under review]

• OpenTuner: an extensible framework for program autotuning
[Under review]

• Won’t be talking about work in: ASPLOS’09, ASPLOS’12,
GECCO’11, IPDPS’09, PLDI’11, and many others
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A Motivating Example for Algorithmic Choice

• How would you write a fast sorting algorithm?

• Insertion sort
• Quick sort
• Merge sort
• Radix sort

• Poly-algorithms
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std::stable sort

/usr/include/c++/4.5.2/bits/stl algo.h lines 3350-3367
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Why 15?

• Why 15?

• Dates back to at least 2000 (June 2000 SGI release)

• Still in current C++ STL shipped with GCC

• cutoff = 15 survived 10+ years

• In the source code for millions of C++ programs

• There is nothing the compiler can do about it
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• Why 15?

• Dates back to at least 2000 (June 2000 SGI release)

• Still in current C++ STL shipped with GCC

• cutoff = 15 survived 10+ years

• In the source code for millions1 of C++ programs

• There is nothing the compiler can do about it

1
Any C++ program with “#include <algorithm>”, conservative estimate based on:

http://c2.com/cgi/wiki?ProgrammingLanguageUsageStatistics

http://c2.com/cgi/wiki?ProgrammingLanguageUsageStatistics
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Is 15 The Right Number?

• The best cutoff (CO) changes

• Depends on competing costs:
• Cost of computation (< operator, call overhead, etc)
• Cost of communication (swaps)
• Cache behavior (misses, prefetcher, locality)

• Sorting 100000 doubles with std::stable sort:
• CO ≈ 200 optimal on a Phenom 905e (15% speedup)
• CO ≈ 400 optimal on a Opteron 6168 (15% speedup)
• CO ≈ 500 optimal on a Xeon E5320 (34% speedup)
• CO ≈ 700 optimal on a Xeon X5460 (25% speedup)

• If the best cutoff has changed, perhaps best algorithm has
also changed
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Algorithmic Choice

• Compiler’s hands are tied, it is stuck with 15

• Need a better way to represent algorithmic choices

• PetaBricks is the first language with support for algorithmic
choice
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Sort in PetaBricks

Language

funct ion S o r t
to out [ n ]
from i n [ n ]
{

e i t h e r {
I n s e r t i o n S o r t ( out , i n ) ;

} or {
Q u i c k S o r t ( out , i n ) ;

} or {
MergeSort ( out , i n ) ;

} or {
R a d i x S o r t ( out , i n ) ;

}
}

⇒
Representation

Decision tree
synthesized by our
autotuner
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Decision Trees

Optimized for a Xeon E7340 (8 cores):

N < 600

N < 1420Insertion Sort

Quick Sort Merge Sort
(2-way)
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Decision Trees

Optimized for Sun Fire T200 Niagara (8 cores):

N < 1461

N < 2400

Merge Sort
(4-way)

Merge Sort
(2-way)

N < 75

Merge Sort
(8-way)

Merge Sort
(16-way)
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Sort Algorithm Timings2
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Iteration Order Choices

• Many other choices related to execution order
• By rows?
• By columns?
• Diagonal? Reverse order? Blocked?
• Parallel?

• Choices both within a single (possibly parallel)
task and between different tasks

• This is main motivation for a new language as
opposed to a library
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Synthesized Outer Control Flow

• PetaBricks programs have synthesized outer control flow
• Declarative (data flow like) outer syntax
• Imperative inner code

• Programs start as completely parallel

• Added dependencies restrict the space of legal executions

• May only access data explicitly depended on

Parallel loop

X . c e l l ( i ) from ( ) { . . . }

Sequential loop

X . c e l l ( i ) from (X . c e l l ( i −1) l e f t ) { . . . }
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Matrix Multiply

transform M a t r i x M u l t i p l y
to AB[ w, h ]
from A [ c , h ] , B [ w, c ]
{

AB. c e l l ( x , y ) from (A . row ( y ) a , B . column ( x ) b ){
return dot ( a , b ) ;

}

}

to (AB. reg ion ( x , y , x + 4 , y + 4) out )
from (A . reg ion ( 0 , y , c , y + 4) a ,

B . reg ion ( x , 0 , x + 4 , c ) b ){
// . . . compute 4 x 4 b l o c k . . .

}
}
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Strassen Matrix Multiply

t r a n s f o r m S t r a s s e n
to AB[ n , n ]
from A[ n , n ] , B [ n , n ]
u s i n g M1[ n/2 , n /2 ] , M2[ n /2 , n /2 ] , M3[ n /2 , n /2 ] , M4[ n /2 , n /2 ] ,

M5[ n /2 , n /2 ] , M6[ n /2 , n /2 ] , M7[ n /2 , n /2 ]
{

to (M1 m1)
from (A . r e g i o n (0 , 0 , n /2 , n /2) a11 ,

A . r e g i o n ( n /2 , n /2 , n , n ) a22 ,
B . r e g i o n (0 , 0 , n /2 , n /2) b11 ,
B . r e g i o n ( n /2 , n /2 , n , n ) b22 )

u s i n g ( t1 [ n / 2 , n / 2 ] , t2 [ n /2 , n / 2 ] ) {
spawn MatrixAdd ( t1 , a11 , a22 ) ;
spawn MatrixAdd ( t2 , b11 , b22 ) ;
sync ;
S t r a s s e n (m1, t1 , t2 ) ;

}
. . . .
// Compute one quadrant o f output w i th s t r a s s e n decompos i t i on
to (AB. r e g i o n ( n /2 , 0 , n , n /2) c12 ) from (M3 m3, M5 m5){

MatrixAdd ( c12 , m3, m5 ) ;
}
. . . .
// Or , compute e l ement i n output d i r e c t l y ( same as l a s t s l i d e )
AB. c e l l ( x , y ) from (A . row ( y ) a , B . column ( x ) b){

r e t u r n dot ( a , b ) ;
}

}
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Variable Accuracy Algorithms

• Many problems don’t have a single correct answer,
optimizations often trade-off accuracy and performance.

• Soft computing
• DSP algorithms
• Iterative algorithms

• Variable accuracy, supported in the PetaBricks language, is a
fundamental part of algorithmic choice which enables new
classes of programs to be represented.
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K-Means Example
t r a n s f o r m kmeans
from Po in t s [ n , 2 ] // Array o f p o i n t s ( each column

// s t o r e s x and y c o o r d i n a t e s )
u s i n g Cen t r o i d s [ s q r t ( n ) , 2 ]
to Ass ignments [ n ]
{

// Rule 1 :
// One p o s s i b l e i n i t i a l c o n d i t i o n : Random
// s e t o f p o i n t s
to ( C en t r o i d s . column ( i ) c ) from ( Po i n t s p ) {

c=p . column ( rand (0 , n ) )
}

// Rule 2 :
// Another i n i t i a l c o n d i t i o n : C en t e r p l u s i n i t i a l
// c e n t e r s ( kmeans++)
to ( C en t r o i d s c ) from ( Po i n t s p ) {

Cen t e rP l u s ( c , p ) ;
}

// Rule 3 :
// The kmeans i t e r a t i v e a l g o r i t hm
to ( Ass ignments a ) from ( Po i n t s p , C en t r o i d s c ) {

w h i l e ( t r u e ) {
i n t change ;
A s s i g nC l u s t e r s ( a , change , p , c , a ) ;
i f ( change==0) r e t u r n ; // Reached f i x e d po i n t
NewC lu s t e rLoca t i on s ( c , p , a ) ;

}
}

}
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K-Means Example (Variable Accuracy)
t r a n s f o r m kmeans
a c c u r a c y m e t r i c kmeansaccuracy
a c c u r a c y v a r i a b l e k
from Po in t s [ n , 2 ] // Array o f p o i n t s ( each column

// s t o r e s x and y c o o r d i n a t e s )
u s i n g Cen t r o i d s [ k , 2 ]
to Ass ignments [ n ]

...

// Rule 3 :
// The kmeans i t e r a t i v e a l g o r i t hm
to ( Ass ignments a ) from ( Po i n t s p , C en t r o i d s c ) {

f o r e n o u g h {
i n t change ;
A s s i g nC l u s t e r s ( a , change , p , c , a ) ;
i f ( change==0) r e t u r n ; // Reached f i x e d po i n t
NewC lu s t e rLoca t i on s ( c , p , a ) ;

}
}

}
t r a n s f o r m kmeansaccuracy
from Ass ignments [ n ] , Po i n t s [ n , 2 ]
to Accuracy
{

Accuracy from ( Ass ignments a , Po i n t s p){
r e t u r n s q r t (2∗n/ SumClus te rD i s tanceSquared ( a , p ) ) ;

}
}



Introduction PetaBricks OpenTuner Conclusions

Semantics of Variable Accuracy

Running the accuracy metric on the output will return a value
that, in expectation, exceeds the accuracy target more than P
percent of the time.

• Expected distribution of accuracy measured during autotuning
time, not at runtime.

• When fixed accuracy code calls variable accuracy code, an
accuracy target must be specified.

• When variable accuracy code call code containing variable
accuracy components, only the outer most accuracy target
will be honored.
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A Brief Multigrid Intro

• Used to iteratively solve PDEs over a gridded domain

• Relaxations update points using neighboring values (stencil
computations)

• Restrictions and Interpolations compute new grid with coarser
or finer discretization
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Standard Cycle Shaps

• Cycle shapes effect accuracy and
performance

• Equation, accuracy target, data,
and execution platform effect
efficacy of different shapes

• Entire papers published about new
cycle shapes!

• We fundamentally change the
status quo in this domain

• Define the search space of cycle
shapes once

• Autotune to find a cycle shape
tailored to your problem
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Choice Space of Multigrid
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Autotuned V-cycle Shapes
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Dynamic Programming Technique for Autotuning Multigrid

Grid size i

⇒ Grid size 2i

• Partition accuracy space into discrete levels

• Base space of candidate algorithms on optimal algorithms
from coarser level
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2D Poisson’s Equation (uses Multigrid)
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More Variable Accuracy Results
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Results on Different Systems

Test Systems
Codename CPU(s) Cores GPU OpenCL Runtime

Desktop Core i7 920 @2.67GHz 4 NVIDIA Tesla C2070 CUDA Toolkit 3.2

Server 4× Xeon X7550 @2GHz 32 None AMD APP SDK 2.5

Laptop Core i5 2520M @2.5GHz 2 AMD Radeon HD 6630M Xcode 4.2

Benchmarks
Name

# Possible
Configs

Generated OpenCL
Kernels

Mean
Autotuning Time

Testing
Input Size

SeparableConv. 101358 9 3.82 hours 35202

Black-Sholes 10130 1 3.09 hours 500000

Poisson2D SOR 101358 25 15.37 hours 20482

Sort 10920 7 3.56 hours 220

Strassen 101509 9 3.05 hours 10242

SVD 102435 8 1.79 hours 2562

Tridiagonal Solver 101040 8 5.56 hours 10242
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Separable Convolution (width=7)
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Poisson 2D SOR

1.0x

3.0x

5.0x

7.0x

9.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Desktop Config Server Config Laptop Config

Poisson2D SOR
Split on CPU followed by
compute on GPU

Split some parts on OpenCL
followed by compute on CPU

Split on CPU followed by
compute on GPU



Introduction PetaBricks OpenTuner Conclusions

Singular Value Decomposition (SVD)
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First phase: task parallism be-
tween CPU/GPU; matrix multi-
ply: 8-way parallel recursive de-
composition on CPU, call LA-
PACK when < 42× 42

First phase: all on CPU; ma-
trix multiply: 8-way parallel re-
cursive decomposition on CPU,
call LAPACK when < 170×170

First phase: all on CPU; ma-
trix multiply: 4-way parallel re-
cursive decomposition on CPU,
call LAPACK when < 85× 85
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Results Takeaways

• Different configurations are required for best performance on
different systems

• Not just changing block sizes

• Can not be easily solved by a simple heuristic

• Motivates the need for algorithmic choice and autotuning
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Autotuning Challenges

• Evaluating quality of candidate algorithms is expensive
• Must run the program (at least once)
• More expensive for unfit solutions
• Scales poorly with larger problem sizes

• Fitness is noisy
• Randomness from parallel races and system noise
• Testing each candidate only once often produces a worse

algorithm
• Running many trials is expensive

• Decision tree structures are complex
• Not easy to hill-climb
• We artificially bound them
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Input Sensitivity

• Input sensitivity is a major challenge

• Different algorithms may be better for different inputs

• Use fast algorithm for easy inputs, slow algorithm for hard
inputs

• Avoid pathological cases
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Input Sensitivity Today

• Vast majority of programs today use a single algorithm for all
inputs

• This forces design for the “worst case” input
• Wastes time and resources

• Related work:
• Uses hand written heuristics to adapt to inputs
• Rectify inputs for security [Long el al.]

• Our system automatically classifies inputs and runs a program
optimized for the type of input being processed
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Input Sensitivity Overview

Training
Deployment

Input Classifier

Input Aware 
Learning

Program

Training Inputs

Feature Extractors
Insights:
  - Feature Priority List
  - Performance Bounds

Input

Select Input Optimized 
Programs

Training

Selected  
Program

Run
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Input Features
f u n c t i o n Sor t
to out [ n ]
from i n [ n ]

i n p u t f e a t u r e So r t edne s s , Dup l i c a t i o n

{ . . . }
f u n c t i o n So r t e dn e s s
from i n [ n ]
to s o r t e d n e s s
t u n a b l e doub l e l e v e l ( 0 . 0 , 1 . 0 )
{

i n t s o r t e d coun t = 0 ;
i n t count = 0 ;
i n t s t e p = ( i n t ) ( l e v e l ∗n ) ;
f o r ( i n t i =0; i+step<n ; i+=s t ep ) {

i f ( i n [ i ] <= in [ i+s t ep ] ) {
// inc r ement f o r c o r r e c t l y o r d e r ed
// p a i r s o f e l ement s
s o r t e d coun t += 1 ;

}
count += 1 ;

}
i f ( count > 0)

s o r t e d n e s s = so r t e d coun t / ( doub l e ) count ;
e l s e

s o r t e d n e s s = 0 . 0 ;
}
f u n c t i o n Dup l i c a t i o n
from i n [ n ]
to d u p l i c a t i o n
{ . . . }
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Training

Features
Input 

Labels

Decision Tree

Max A Priori

Adaptive Tree

Classifier 
Constructors

1...m

0

m+1

Classifier 
Selector

Selection 
Objective

Considers 
cost of 

extracting 
needed 
features

Input 
Classifier
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How Many Landmarks Are Enough?
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Input Adaptation Results
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Related Projects

A small selection of many related projects:
Package Domain Search Method

Active Harmony Runtime System Nelder-Mead

ATLAS Dense Linear Algebra Exhaustive

Code Perforation Compiler Exhaustive + Simulated Annealing

Dynamic Knobs Runtime System Control Theory

FFTW Fast Fourier Transform Exhaustive / Dynamic Prog.

Insieme Compiler Differential Evolution

Milepost GCC / cTuning Compiler IID Model + Central DB

OSKI Sparse Linear Algebra Exhaustive + Heuristic

PATUS Stencil Computations Nelder-Mead or Evolutionary

SEEC / Heartbeats Runtime System Control Theory

Sepya Stencil Computations Random-Restart Gradient Ascent

SPIRAL DSP Algorithms Pareto Active Learning

• Simple techniques (exhaustive, hill climbers, etc) are popular
• No single technique is best for all problems

• Representations are often just integers/floats/booleans
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Limits of Existing Autotuning Projects

• We believe these factors limit the scope and efficiency of
autotuning

• A hill climber works great for a block size, but completely fails
at synthesizing poly-algorithms

• Many users of autotuning work hard to prune their search
spaces to fit their techniques

• OpenTuner provides extensible representations and ensembles
of techniques which can solve more complex autotuning
problems



Introduction PetaBricks OpenTuner Conclusions

Limits of Existing Autotuning Projects

• We believe these factors limit the scope and efficiency of
autotuning

• A hill climber works great for a block size, but completely fails
at synthesizing poly-algorithms

• Many users of autotuning work hard to prune their search
spaces to fit their techniques

• OpenTuner provides extensible representations and ensembles
of techniques which can solve more complex autotuning
problems



Introduction PetaBricks OpenTuner Conclusions

OpenTuner Overview

OpenTuner: an extensible framework for program autotuning

Results Database

Search 
TechniquesSearch 

Driver

Search

Reads: Results
Writes: Desired Results

Measurement

User Defined 
Measurement 

Function

Measurement 
Driver

Configuration 
Manipulator

Reads: Desired Results
Writes: Results
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OpenTuner Configuration Manipulator Parameters

Parameter

Primitive Complex

Integer ScaledNumericFloat

LogInteger LogFloat PowerOfTwo

Switch Enum Permutation

Schedule

SelectorBoolean

• Hierarchical structure of parameters, user defined parameter
types can be added at any point

• Primitive parameters behave like bounded integers or floats

• Complex parameters have a set of stochastic mutation
operators

• Technique-specific operators
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Ensembles of Techniques
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Ensembles of Techniques

Differential 
Evolution

Particle 
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Optimization

Torczon
Hill 

Climber

Information sharing through ResultsDB

AUC Bandit

Which configuration should we try next?
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OpenTuner Results

Project Benchmark Possible Configurations

GCC/G++ Flags all 10806

Halide Blur 1052

Halide Wavelet 1044

HPL n/a 109.9

PetaBricks Poisson 103657

PetaBricks Sort 1090

PetaBricks Strassen 10188

PetaBricks TriSolve 101559

Stencil all 106.5

Unitary n/a 1021
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OpenTuner Results: GCC Flags

fft.c
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OpenTuner Results: PetaBricks

Poisson 2D
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Conclusions

• PetaBricks has pushed the limits of what can be done with
algorithmic choice

• Provides performance portability by allowing programs to
adapt to their environment

• Have shown: variable accuracy, multigrid, and input sensitivity
• Hope that future main stream programming languages will

incorperate algorithmic choice and autotuning

• OpenTuner can expand the scope of program autotuning for
other projects

• Extensible configuration representation
• Ensembles of techniques
• Hope that field of autotuning will expand to much more

complex problems
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Thanks!

About me:
http://jasonansel.com/

http://opentuner.org/

http://projects.csail.mit.edu/petabricks/

http://jasonansel.com/
http://opentuner.org/
http://projects.csail.mit.edu/petabricks/
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