
Autotuning Programs with Algorithmic Choice
by

Jason Ansel

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Autotuning Programs with Algorithmic Choice
by

Jason Ansel

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February, 2014

c© Massachusetts Institute of Technology 2014. All rights reserved.

Author..
Department of Electrical Engineering and Computer Science

January 6, 2014

Certified by..
Saman Amarasinghe

Professor
Thesis Supervisor

Accepted by...
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Autotuning Programs with Algorithmic Choice
by

Jason Ansel

Submitted to the Department of Electrical Engineering and Computer Science on January 6,
2014, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

Abstract

The process of optimizing programs and libraries, both for performance and quality of service, can
be viewed as a search problem over the space of implementation choices. This search is traditionally
manually conducted by the programmer and often must be repeated when systems, tools, or
requirements change. The overriding goal of this work is to automate this search so that programs
can change themselves and adapt to achieve performance portability across different environments
and requirements. To achieve this, first, this work presents the PetaBricks programming language
which focuses on ways for expressing program implementation search spaces at the language level.
Second, this work presents OpenTuner which provides sophisticated techniques for searching these
search spaces in a way that can easily be adopted by other projects.

PetaBricks is a implicitly parallel language and compiler where having multiple implementations
of multiple algorithms to solve a problem is the natural way of programming. Choices are provided
in a way that also allows our compiler to tune at a finer granularity. The PetaBricks compiler
autotunes programs by making both fine-grained as well as algorithmic choices. Choices also
include different automatic parallelization techniques, data distributions, algorithmic parameters,
transformations, and blocking. PetaBricks also introduces novel techniques to autotune algorithms
for different convergence criteria or quality of service requirements. We show that the PetaBricks
autotuner is often able to find non-intuitive poly-algorithms that outperform more traditional hand
written solutions.

OpenTuner is a open source framework for building domain-specific multi-objective program
autotuners. OpenTuner supports fully-customizable configuration representations, an extensible
technique representation to allow for domain-specific techniques, and an easy to use interface for
communicating with the program to be autotuned. A key capability inside OpenTuner is the
use of ensembles of disparate search techniques simultaneously; techniques that perform well will
dynamically be allocated a larger proportion of tests. OpenTuner has been shown to perform well
on complex search spaces up to 103000 possible configurations in size.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

7

8

Contents

Abstract 7

Acknowledgments 13

1 Introduction 15
1.1 Contributions . 20

1.1.1 Language . 21
1.1.2 Process and Compilation . 21
1.1.3 Autotuning Techniques . 22

2 The PetaBricks Language 25
2.1 Sorting as an Example of Algorithmic Choice . 25
2.2 Iteration Order Choices . 28
2.3 Variable Accuracy . 31

2.3.1 K-Means Example . 32
2.3.2 Language Support for Variable Accuracy . 34
2.3.3 Variable Accuracy Language Features . 36
2.3.4 Accuracy Guarantees . 38

2.4 Input Features . 38
2.5 A More Complex Example . 40

2.5.1 The Choice Space for SeparableConvolution 43
2.6 Language Specification . 45

2.6.1 Transform Header Flags . 45
2.6.2 Rule Header Flags . 50
2.6.3 Matrix Definitions . 51
2.6.4 Matrix Regions . 52

3 The PetaBricks Compiler 53
3.1 PetaBricks Compiler . 54
3.2 Parallelism in Output Code . 59
3.3 Autotuning System and Choice Framework . 60
3.4 Runtime Library . 62
3.5 Code Generation for Heterogeneous Architectures . 62

3.5.1 OpenCL Kernel Generation . 63
3.5.2 Data Movement Analysis . 64
3.5.3 Runtime System . 65

9

3.5.4 Memory Management . 69

3.5.5 GPU Choice Representation to the Autotuner 70

3.6 Choice Space Representation . 72

3.6.1 Choice Configuration Files . 72

3.7 Deadlocks and Race Conditions . 73

3.8 Automated Consistency Checking . 74

4 Benchmarks and Experimental Analysis 75

4.1 Fixed Accuracy Benchmarks . 76

4.1.1 Symmetric Eigenproblem . 76

4.1.2 Sort . 78

4.1.3 Matrix Multiply . 80

4.2 Autotuning Parallel Performance . 80

4.3 Effect of Architecture on Autotuning . 81

4.4 Variable Accuracy Benchmarks . 82

4.4.1 Bin Packing . 83

4.4.2 Clustering . 84

4.4.3 Image Compression . 85

4.4.4 Preconditioned Iterative Solvers . 86

4.5 Experimental Results . 88

4.5.1 Analysis . 88

4.5.2 Programmability . 91

4.6 Heterogeneous Architectures Experimental Results 92

4.6.1 Methodology . 92

4.6.2 Benchmark Results and Analysis . 95

4.6.3 Heterogeneous Results Summary . 100

4.7 Summary . 102

5 Multigrid Benchmarks 103

5.1 Autotuning Multigrid . 104

5.1.1 Algorithmic choice in multigrid . 104

5.1.2 Full dynamic programming solution . 106

5.1.3 Discrete dynamic programming solution . 108

5.1.4 Extension to Autotuning Full Multigrid . 109

5.1.5 Limitations . 111

5.2 Results . 112

5.2.1 Autotuned multigrid cycle shapes . 112

5.2.2 Performance . 116

5.2.3 Effect of Architecture on Autotuning . 124

6 The PetaBricks Autotuner 127

6.1 The Autotuning Problem . 128

6.1.1 Properties of the Autotuning Problem . 129

6.2 A Bottom Up EA for Autotuning . 130

6.3 Experimental Evaluation . 136

6.3.1 GPEA . 136

10

6.3.2 Experimental Setup . 136

6.3.3 INCREA vs GPEA . 137

6.3.4 Representative runs . 139

7 Input Sensitivity 145

7.1 Usage . 148

7.2 Input Aware Learning . 148

7.2.1 A Simple Design and Its Issues . 148

7.2.2 Design of the Two Level Learning . 149

7.2.3 Level 1 . 150

7.2.4 Level 2 . 152

7.2.5 Discussion of the Two Level Learning . 156

7.3 Evaluation . 157

7.3.1 Input Features and Inputs . 158

7.3.2 Experimental Results . 159

7.3.3 Input Generation . 162

7.3.4 Model of Diminishing Returns with More Landmark Configurations 164

8 Online Autotuning 167

8.1 Competition Execution Model . 169

8.1.1 Other Splitting Strategies . 169

8.1.2 Time Multiplexing Races . 170

8.2 SiblingRivalry Online Learner . 171

8.2.1 High Level Function . 172

8.2.2 Online Learner Objectives . 173

8.2.3 Selecting the Safe and Seed Configuration . 174

8.2.4 Adaptive Mutator Selection (AMS) . 174

8.2.5 Population Pruning . 176

8.3 Experimental Results and Discussion . 177

8.3.1 Sources of Speedups . 177

8.3.2 Load on a System . 178

8.3.3 Migrating Between Microarchitectures . 180

8.4 Hyperparameter Tuning . 182

8.4.1 Tuning the Tuner . 183

8.4.2 Evaluation metrics . 185

8.4.3 Results . 187

8.4.4 Hyperparameter Robustness . 189

9 OpenTuner 193

9.1 The OpenTuner Framework . 194

9.1.1 OpenTuner Usage . 195

9.1.2 Search Techniques . 197

9.1.3 Configuration Manipulator . 198

9.1.4 Objectives . 201

9.1.5 Search Driver and Measurement . 201

9.1.6 Results Database . 202

11

9.2 Experimental Results . 202
9.2.1 GCC/G++ Flags . 204
9.2.2 Halide . 206
9.2.3 High Performance Linpack . 207
9.2.4 PetaBricks . 209
9.2.5 Stencil . 211
9.2.6 Unitary Matrices . 211
9.2.7 Results Summary . 212

10 Related Work 215
10.1 Autotuning . 215
10.2 Variable Accuracy . 219
10.3 Multigrid . 221
10.4 Autotuning Techniques . 221
10.5 Online Autotuning . 222
10.6 Autotuning Heterogeneous Architectures . 223

11 Conclusions 227

Bibliography 251

12

Acknowledgments

This thesis includes text and experiments from a large subset of my publications while at MIT [8,

9, 11–13, 15–17, 37, 53, 110, 113]. The coauthors and collaborators of these publications deserve

due credit and thanks: Clarice Aiello, Saman Amarasinghe, Cy Chan, Yufei Ding, Alan Edelman,

Sam Fingeret, Sanath Jayasena, Shoaib Kamil, Kevin Kelley, Erika Lee, Deepak Narayanan, Marek

Olszewski, Una-May O’Reilly, Maciej Pacula, Phitchaya Mangpo Phothilimthana, Jonathan Ragan-

Kelley, Xipeng Shen, Michele Tartara, Kalyan Veeramachaneni, Yod Watanaprakornku, Yee Lok

Wong, Kevin Wu, Minshu Zhan, and Qin Zhao.

I would specifically like to acknowledge some substantial contributions by: Cy Chan for

multigrid benchmarks; Yufei Ding for input sensitivity; Maciej Pacula for bandit based online

learning; Jonathan Ragan-Kelley for Halide (one of the six shown OpenTuner applications) and

help on the GPU backend; and Phitchaya Mangpo Phothilimthana for the GPU backend and help

providing feedback on this thesis.

Additionally, much of my academic work is beyond the scope of this thesis, but helped shape my

experiences at MIT. This includes: collaboration on deterministic multi-threading [106, 107, 109],

which was the primary project of Marek Olszewski, who is a dear friend, former office mate, and

founder of Locu; self modifying code under software fault isolation [14], while I was a Google; and

distributed checkpointing [10,43,44,123] which was my focus as an undergraduate.

I am grateful for the advice and guidance of my advisor Saman Amarasinghe. I would also like

to extend special thanks to my undergraduate advisor Gene Cooperman. Without their guidance

I would not be where I am today. I would also like to thank the other members of the Commit

group and those who provided feedback, both on draft manuscripts and on practice talks. I am

13

grateful to the members of my thesis committee, Armando Solar-Lezama and Martin Rinard for

their feedback. I finally would like to thank my family and friends for their love and support.

This work is partially supported by NSF Award CCF-0832997, DOE Award DE-SC0005288,

DOD DARPA Award HR0011-10-9-0009, and an award from the Gigascale Systems Research

Center. We wish to thank the UC Berkeley EECS department for generously letting us use one

of their machines for benchmarking and NVIDIA for donating a graphics card used to conduct

experiments. We would like to thank Clarice Aiello for contributing the Unitary benchmark

program. We gratefully acknowledge Connelly Barnes and Andrew Adams for helpful discussions

and bug fixes related to autotuning the Halide project. This research used resources of the National

Energy Research Scientific Computing Center, which is supported by the Office of Science of the

U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

14

Chapter 1

Introduction

The developers of languages and tools have invested a great deal of collective effort into extending

the lifetime of software. To a large degree, this effort has succeeded. Millions of lines of code

written decades ago are still being used in new programs. Early languages such as Fortran largely

achieved their goals of having a single portable source code than can be compiled for almost any

machines. Libraries and interfaces allow code to be reused in ways the original programmer could

not foresee. Languages, such as Java, provide virtual machines allowing compiled bytecode to run

on almost any system. We live in an era of write it once and use everywhere software.

What we have not yet achieved is performance portability. Hand coded optimizations for one

system, often are not the best choice for another system. The result is obsolete optimizations

that get carried to newer architectures in this portable software. A typical example of this can

be found in the C++ Standard Template Library (STL) routine std::stable sort (Figure 1.1),

distributed with the current version of GCC and whose implementation dates back to at least

the 2001 SGI release of the STL. This legacy code contains a hard coded optimization, a cutoff

constant of 15 between merge and insertion sort, that was designed for machines of the time, having

1/100th the memory of modern machines. Our tests have shown that higher cutoffs (around 60-150)

perform much better on current architectures. However, because the optimal cutoff is dependent

on architecture, cost of the comparison routine, element size, and parallelism, no single hard-coded

15

value will suffice. This type of hard coded optimization is typical in modern performance critical

software.

/usr/include/c++/4.7.3/bits/stl algo.h:

3508 /// This i s a h e l p e r f u n c t i o n f o r the s t a b l e s o r t i n g r o u t i n e s .
3509 template<typename RandomAccessIterator>
3510 void
3511 i n p l a c e s t a b l e s o r t (RandomAccessIterator f i r s t ,
3512 RandomAccessIterator l a s t)
3513 {
3514 i f (l a s t − f i r s t < 15)
3515 {
3516 std : : i n s e r t i o n s o r t (f i r s t , l a s t) ;
3517 return ;
3518 }
3519 RandomAccessIterator midd le = f i r s t + (l a s t − f i r s t) / 2 ;
3520 std : : i n p l a c e s t a b l e s o r t (f i r s t , midd le) ;
3521 std : : i n p l a c e s t a b l e s o r t (middle , l a s t) ;
3522 std : : m e r g e w i t h o u t b u f f e r (f i r s t , middle , l a s t ,
3523 midd le − f i r s t ,
3524 l a s t − midd le) ;
3525 }

Figure 1.1: Hard coded optimization constant 15 in std::stable sort

While the paradigm of write once and run it everywhere is great for productivity, a major

sacrifice made in these efforts is performance. Write once use everywhere often becomes write

once slow everywhere. We need programs with performance portability, where programs can

re-optimize themselves to achieve the best performance on widely different execution targets.

The process of optimizing computer programs can be viewed as a search problem over the

space of ways to implement a program. This search is traditionally manually conducted by the

programmer, through iterative development and testing, and takes place in many domains. In high

performance computing, there is constant optimization to fit algorithms to each new generation

of supercomputers. The optimizations for one generation often will not be suitable for the next

and may need to be undone. In areas such as graphics, optimizations must often be done to fit

each hardware target a system may run on, which may range from a laptop to a powerful desktop

computer with a large graphics card. In many web services applications, such as search, programs

16

will be optimized for quality of service so that they achieve the optimal results in a fixed time

budget or a given level of service in the minimum time. In each of these domains, much of the

difficulty of programming is in conducting a manual search over the solution space.

One of the most promising techniques to achieve performance portability is program autotuning.

Rather than hard-coding optimizations, that only work for a single microarchitecture, or using

fragile heuristics, program autotuning exposes a search space of program optimizations that can

be explored automatically. Autotuning is used to search this optimization space to find the best

configuration to use for each platform. Often these optimization search spaces contain complex

decisions such as constructing recursive poly-algorithms to solve a problem. Autotuning can also

be used to meet quality of service requirements of a program, such as sacrificing accuracy to meet

hard execution time limits.

While using autotuners, instead of heuristics or models, for choosing traditional compiler

optimizations can be successful at optimizing a single algorithm, when an algorithmic change

is required to boost performance, the burden is put on the programmer to incorporate the new

algorithm. If a composition of multiple algorithms is needed for the best performance, the

programmer must write all the algorithms, the glue code to connect them together, and figure

out the best switch over points. Making such changes automatically to the program requires heroic

analysis or the analyses required is beyond the capability of all modern compilers. However, this

information is clearly known to the programmer. The needs of modern computing require an

either...or statement, which would allow the programmer to give a menu of algorithmic choices

to the compiler. We also show how choices between different erogenous processing units, such as

GPUs, can be automated by the PetaBricks compiler.

The need for a concise way to represent these algorithmic choices motivated the design of the

PetaBricks programming language, which will be covered in detail in Chapter 2. Programs written

in PetaBricks can naturally describe multiple algorithms for solving a problem and how they can

be fit together. This information is used by the PetaBricks compiler and runtime, described in

Chapter 3, to create and autotune an optimized hybrid algorithm. The PetaBricks system also

optimizes and autotunes parameters relating to data distribution, parallelization, iteration, and

17

accuracy. The knowledge of algorithmic choice allows the PetaBricks compiler to automatically

parallelize programs using the algorithms with the most parallelism when it is beneficial to do so.

Another issue that PetaBricks addresses is variable accuracy algorithms. Traditionally, language

designers and compiler writers have operated under the assumption that programs require a fixed,

precisely defined behavior; however, this is not always the case in practice. For many classes of

applications, such as NP-hard problems or problems with tight computation or timing constraints,

programmers are often willing to sacrifice some level of accuracy for faster performance. We broadly

define these types of programs as variable accuracy algorithms. Often, these accuracy choices are

hard coded into the program. The programmer will hand code parameters which provide good

accuracy performance on some testing inputs. This choice over accuracy of the implementation can

be viewed as another dimension in the solution space. An interesting example of variable accuracy

can be found in Chapter 5, which shows our multigrid benchmarks. We show a novel dynamic

programming approach for synthesizing multigrid V-cycles shapes tailored to a specific problem an

accuracy target.

A large part of this thesis (Chapters 6 and 9) address the challenges developing techniques for

autotuning. A number of novel techniques have been developed to efficiently search the search

spaces created. The PetaBricks autotuner is based on an evolutionary algorithm (EA), however an

off-the-shelf EA does not typically take advantage of shortcuts based on problem properties and

this can sometimes make it impractical because it takes too long to run. A general shortcut is

to solve a small instance of the problem first then reuse the solution in a compositional manner

to solve the large instance which is of interest. Usually solving a small instance is both simpler

(because the search space is smaller) and less expensive (because the evaluation cost is lower).

Reusing a sub-solution or using it as a starting point makes finding a solution to a larger instance

quicker. This shortcut is particularly advantageous if solution evaluation cost grows with instance

size. It becomes more advantageous if the evaluation result is noisy or highly variable which requires

additional evaluation sampling.

Another fundamental problem, which will be addressed in Chapter 7, is input sensitivity. For

a large class of problems, the best optimization to use depends on the input data being processed.

18

For example, sorting an almost-sorted list can be done most efficiently with a different algorithm

than one optimized for sorting random data. This problem is worse in autotuning systems, because

there is a danger that the auotuner will create an algorithm specifically optimized for the inputs it

is provided during tuning. This may be suboptimal for inputs later encountered in production or

be a compromise solution that is not best for any one input but performs well overall. For many

problems, no single optimized program exists which can match the performance of a collection of

optimized programs autotuned for different subsets of the input space. This problem of input

sensitivity is exacerbated by several features common to many classes of problems and types

of autotuning systems. Many autotuning systems must handle large search spaces and variable

accuracy algorithms with multiple objectives. They encounter inputs with non-superficial features

that require domain specific knowledge to extract, Each of these challenges makes the problem of

input sensitivity more difficult in a unique way.

Chapter 7 will present a general means of automatically determining what algorithmic

optimization to use when different ones suit different inputs. While input sensitivity seems to be

intertwined with the complexity of large optimization spaces and input spaces, we show that it can

be resolved via simple extensions to our existing autotuning system. We show that the complexity

of input sensitivity can be managed, and that a small number of input optimized programs is often

sufficient to get most of the benefits of input adaptation.

In Chapter 8, we take a novel approach to online learning that enables the application of

evolutionary tuning techniques to online autotuning. Our technique, called SiblingRivalry, divides

the available processor resources in half and runs the current best algorithm on one half and a

variation on the other half. If the current best finishes first, the variation is killed, the failure

of the variation is reported to the online learning algorithm which controls the selection of both

configurations for such “competitions” and the application continues to the next stage. If the

variation finishes first, we have found a better solution than the current best. Thus, the current

best is killed and the results from the variation are used as the program continues to the next

stage. Using this technique, SiblingRivalry produces predictable and stable executions, while still

exploiting an evolutionary tuning approach. The online learning algorithm is capable of adapting

19

to changes in the environment and progressively identifies better configurations over time without

resorting to experiments that might deliver extremely slow performance. As we will show, despite

the loss of resources, this technique can produce speedups over fixed configurations when the

dynamic execution environment changes. To the best of our knowledge, SiblingRivalry is the first

attempt at employing evolutionary tuning techniques to online autotuning computer programs.

Chapter 9 will present OpenTuner, a new framework for building domain-specific program

autotuners. OpenTuner features an extensible configuration and technique representation able to

support complex and user-defined data types and custom search heuristics. It contains a library

of predefined data types and search techniques to make it easy to setup a new project. Thus,

OpenTuner solves the custom configuration problem by providing not only a library of data types

that will be sufficient for most projects, but also extensible data types that can be used to support

more complex domain specific representations when needed.

1.1 Contributions

The overriding goal of this thesis work is to automate this optimization search and take it out

of the hands over the programmer. The programmer should concisely define the search space,

and then the compiler should perform the search. When the processors, coprocessors, accuracy

requirements, or inputs programs should change themselves and adapt to work optimally in different

each different environment. This provides performance portability, extends the life of software, and

saves programmer effort.

To achieve this, this thesis has three main focuses:

• Designing language level solutions for concisely representing the implementation choice spaces

of programs in ways that can be searched automatically.

• Developing process and compilation techniques to manage and explore these program search

spaces.

• Creating novel autotuning techniques and search spaces representations to efficiently solve

these search problems where prior techniques would fail or be inefficient.

20

The remainder of this subsection will expand on the contributions in each of these areas.

1.1.1 Language

The language level contributions in this work are realized in design and implementation of the

PetaBricks programming language compiler.

• We introduce the PetaBricks programming language, which, to best of our knowledge, is the

first language that enables programmers to express algorithmic choice at the language level.

• PetaBricks introduces the concept of the either ... or ... statement as a means to express

recursive poly-algorithm choices.

• PetaBricks uses a declarative outer syntax to express iteration order choices around its

imperative inner syntax. Multiple declarations in this declarative outer syntax allow the

programmer to cleanly express algorithmic choices in handling boundary cases and iteration

order dependency choices in a way that can automatically be searched by an autotuner.

• We have introduced the first language level support for variable accuracy. This includes

support for multiple accuracy metrics and accuracy targets, which provide a general-purpose

way for users to define arbitrary accuracy requirements in any domain and expands the scope

of algorithmic choices that can be represented.

• PetaBricks introduces the concept of the for enough loop, a loop whose input-dependent

iteration bounds are determined by the autotuner.

• We introduce language level support for declaring variable accuracy input features, to enable

programs that dynamically adapt to each input.

1.1.2 Process and Compilation

• While autotuners have exploited coarse-grained algorithmic choice at a programmatic level,

to best of our knowledge PetaBricks is the first compiler that incorporates fine-grained

21

algorithmic choices in program optimization. PetaBricks includes novel compilation structures

to organize and manage this choice space.

• We introduce a new model for online autotuning, called SiblingRivalry, where the processor

resources are divided and two candidate configurations compete against each other in parallel.

This solves the problem of exploring a volatile configuration space, by dedicating half the

resources to a known safe configuration.

• We developed the first system to simultaneously address the interdependent problems of

variable accuracy algorithms and input sensitivity.

• We introduce the first system which automatically determines the best mapping of programs

in a high level language across a heterogeneous CPU/GPU mix of parallel processing units,

including placement of computation, choice of algorithm, and optimization for specialized

memory hierarchies. With this, a high-level, architecture independent language can obtain

comparable performance to architecture specific, hand-coded programs.

1.1.3 Autotuning Techniques

The autotuning technique contributions of this work can be divided into two main areas. First,

a number of novel techniques have been developed in the context of PetaBricks. The remaining

contributions in the area of autotuning techniques are in the OpenTuner project, a new open source

framework for building domain-specific multi-objective program autotuners.

• We have created a multi-objective, practical evolutionary autotuning algorithm for high-

dimensional, multi-modal, and experimentally shown its efficacy on non-linear configuration

search spaces up to 103000 possible configurations in size.

• We introduce a bottom-up learning algorithm that drastically improves convergence time for

many benchmarks. It does this by using tests conducted on much smaller program instances

to bootstrap the learning process.

22

• We show a novel dynamic programming solution to efficiently build tuned multigrid V-cycle

algorithms that combine methods with varying levels of accuracy while providing that a final

target accuracy is met. These autotuned V-cycle shapes are non-obvious and perform better

than the cycle shapes used in practice.

• We have developed a technique for mapping variable accuracy code so that it can be

efficiently autotuned without the search space growing prohibitively large. This is done by

simultaneously autotuning for many different accuracy targets.

• We present a multi-armed bandit based algorithm for online autotuning, which, to the best

of our knowledge, is the first application of evolutionary algorithms to the problem of online

autotuning of computer programs.

• We show a through principled search of the parameter space of our multi-armed bandit

algorithm that a single “robust” parameter setting exists, which performs well across a large

suite of benchmarks.

• To solve the problem of input sensitive programs, we present a novel two level approach, which

first clusters the input feature space into input classes and then builds adaptive overhead-

aware classifiers to select between different input optimized algorithms for these classes, solves

the problem of input sensitivity for much larger algorithmic search spaces than would be

tractable using prior techniques.

• We offer a principled understanding of the influence of program inputs on algorithmic

autotuning, and the relations among the spaces of inputs, algorithmic configurations,

performance, and accuracy. We identify a key disparity between input properties,

configuration, and execution behavior which makes it impractical to produce a direct mapping

from input properties to configurations and motivates our two level approach.

• We show both empirically and theoretically that for many types of search spaces there are

rapidly diminishing returns to adding more and more input adaption to a program. A little

bit of input adaptation goes a long way, while a large amount is often unnecessary.

23

• We present OpenTuner, which is a general autotuning framework to describe complex search

spaces which contain parameters such as schedules and permutations.

• OpenTuner introduces the concept of ensembles of search techniques to program autotuning,

which allow many search techniques to work together to find an optimal solution.

• OpenTuner provides more sophisticated search techniques than typical program auotuners.

This enables expanded uses of program autotuning to solve more complex search problems

and pushes the state of the art forward in program autotuning in a way that can easily be

adopted by other projects.

24

Chapter 2

The PetaBricks Language

This chapter will provide an overview of the base PetaBricks language and all extensions made to

it over the course of this thesis work. The key features of the language, such as algorithmic choice

and variable accuracy, will be introduced with example programs.

2.1 Sorting as an Example of Algorithmic Choice

As a motivation example, consider the problem of sorting. There are a huge number of ways to

sort a list [31]. For example: insertion sort, quick sort, merge sort, bubble sort, heap sort, radix

sort, and bucket sort. Most of these sorting algorithms are recursive, thus, one can switch between

algorithms at any recursive level. This leads to an exponential number of possible algorithmic

compositions that make use of more than one primitive sorting algorithm.

Since sorting is a well known problem, most readers will have some intuition about the optimal

algorithm: for very small inputs, insertion sort is faster; for medium sized inputs, quick sort is

faster (in the average case); and for very large inputs radix sort becomes fastest. Thus, the optimal

algorithm might be a composition of the three, using quick sort and radix sort to recursively

decompose the problem until the subproblem is small enough for insertion sort to take over. Once

parallelism is introduced, the optimal algorithm gets more complicated. It often makes sense to use

merge sort at large sizes because it contains more parallelism than quick sort (the merging performed

at each recursive level can also be parallelized). Another aspect that impacts performance beyond

25

available parallelism is the locality of different memory access patterns of each algorithm, which

can impact the cache utilization.

Even with this detailed intuition (which one may not have for other algorithms), the problem

of writing an optimized sorting algorithm is nontrivial. Using popular languages today, the

programmer would still need to find the right cutoffs between algorithms. This has to be done

through manually tuning or using existing autotuning techniques that would require additional

code to integrate (as discussed in Chapter 1). If the programmer puts too much control flow in

the inner loop for choosing between a wide set of choices, the cost of control flow may become

prohibitive. The original simple code for sorting will be completely obscured by this glue, thus

making the code hard to comprehend, extend, debug, port and maintain.

PetaBricks solves this problem by automating both algorithm selection and autotuning in the

compiler. The programmer specifies the different sorting algorithms in PetaBricks and how they

fit together, but does not specify when each one should be used. The compiler and autotuner

will experimentally determine the best composition of algorithms to use and the respective cutoffs

between algorithms. This has added benefits in portability. On a different architecture, the optimal

cutoffs and algorithms may change. The PetaBricks program can adapt to this by merely retuning.

Figure 2.1 shows a partial implementation of Sort in PetaBricks. The Sort function is defined

taking an input array named in and an output array named out. The either...or primitive implies a

space of possible polyalgorithms. The semantics are that when the ether...or statement is executed,

exactly one of the clauses will be executed, and the choice of which sub block to execute is left

up to the autotuner. In our example, many of the sorting routines (QuickSort, MergeSort, and

RadixSort) will recursively call Sort again, thus, the either...or statement will be executed many

times dynamically when sorting a single list. The autotuner uses evolutionary search to construct

polyalgorithms which make one decision at some calls to the either...or statement, then different

decisions in the recursive calls.

These polyalgorithms are realized through selectors (sometimes called decision trees) which

efficiently select which algorithm to use at each recursive invocation of the either...or statement.

26

1 function Sort
2 to out [n]
3 from in [n]
4 {
5 either {
6 I n s e r t i o n S o r t (out , in) ;
7 } or {
8 QuickSort (out , in) ;
9 } or {

10 MergeSort (out , in) ;
11 } or {
12 RadixSort (out , in) ;
13 } or {
14 B i ton i cSo r t (out , in) ;
15 }
16 }

Figure 2.1: PetaBricks code for Sort

N < 600

N < 1420InsertionSort

QuickSort MergeSort
(2-way)

(a) Optimized for an Intel Xeon X5460

N < 1461

N < 2400

MergeSort
(4-way)

MergeSort
(2-way)

N < 75

MergeSort
(8-way)

MergeSort
(16-way)

(b) Optimized for a Sun UltraSPARC T1

Figure 2.2: Example synthesized selectors for Sort.

27

Figure 2.2 shows two examples of selectors that might be synthesized by the autotuner for some

specific input and architecture.

2.2 Iteration Order Choices

Current language constructs are too prescriptive in specifying an exact iteration order for loop nests.

In order to take advantage of architectural features such as vectorization and cache hierarchies,

compilers are forced to perform heroic analysis to find better iteration orders. This not only

hinders the compilers ability to get the best performance but also requires the programmer to specify

additional constraints beyond what is required to describe many algorithms. Natural mathematical

notations such as sets and tensors do not provide an iteration order.

To expose iteration order choices to the compiler, PetaBricks does not require an outer sequential

control flow, it uses a declarative outer syntax combined with an imperative inner syntax. The

outer syntax defines parameterized data dependencies, which bring data into the local scope of

each imperative block. The compiler must find a legal execution order that computes inputs before

outputs and every output exactly once. The outer syntax can define multiple ways of computing

the same value as another way of expressing algorithmic choice. This is done by defining multiple

rules to compute the same region of data.

The language is built around two major constructs, transforms and rules. The transform,

analogous to a function, defines an algorithm that can be called from other transforms, code

written in other languages, or invoked from the command line. The header for a transform defines

to and from arguments, which represent inputs and outputs, and through intermediate data used

within the transform. The size in each dimension of these arguments is expressed symbolically in

terms of free variables, the values of which must be determined by the PetaBricks compiler.

The user encodes choice by defining multiple rules in each transform. Each rule defines how

to compute a region of data in order to make progress towards a final goal state. Rules have

explicit dependencies parametrized by free variables set by the compiler. Rules can have different

granularities and intermediate state. The compiler is required to find a sequence of rule applications

that will compute all outputs of the program. The explicit rule dependencies allow automatic

28

parallelization and automatic detection and handling of corner cases by the compiler. The rule

header references to and from regions which are the inputs and outputs for the rule. The compiler

may apply rules repeatedly, with different bindings to free variables, in order to compute larger

data regions. Additionally, the header of a rule can specify a where clause to limit where a rule can

be applied. The body of a rule consists of C++-like code to perform the actual work.

Instead of outer sequential control flow, Petabricks users specify which transform to apply, but

not how to apply it. The decision of when and which rules to apply is left up the compiler and

runtime system to determine. This has the dual advantages of both exposing algorithmic choices

to the compiler and enabling automatic parallelization. It also gives the compiler a large degree of

freedom to autotune iteration order and storage.

Figure 2.3 shows an example PetaBricks transform, that performs matrix multiplication. The

transform header is on lines 1 to 5, which defines the inputs outputs and 7 intermediate matrices

which may or may not be used. The first rule (line 8 to 10) is the straightforward way of computing

a single matrix element. With the first rule alone the transform would be correct, the remaining

rules add choices. Rule 2 (lines 14 to 16) operated on a different granularity, a 4x4 tile, and could

contain a vectorized version. Next come rules to compute the intermediate M1 though M7 defined

in Strassen’s algorithm. This intermediate data will only be used in the final 4 rules are chosen,

which compute the quadrents of the output from M1 to M7.

The PetaBricks transform is a side effect free function call as in any common procedural

language. The major difference with PetaBricks is that we allow the programmer to specify multiple

rules to convert the inputs to the outputs for each transform. Each rule converts parts or all of the

inputs to parts or all of the outputs and may be implemented using multiple different algorithms.

It is up to the PetaBricks compiler to determine which rules are necessary to compute the whole

output, and the autotuner to decide which of these rules are most computationally efficient for a

given architecture and input.

Taken together, the set of possible pathways through the graph of rules in a transform may

be thought of as forming a directed acyclic dependency graph with various paths leading from the

transform’s inputs (represented as the graph’s source) to the transform’s outputs (represented as

29

1 transform StrassenMatr ixMult ip ly
2 from A[n , n] , B[n , n]
3 to AB[n , n]
4 using M1[n/2 , n / 2] , M2[n/2 , n / 2] , M3[n/2 , n / 2] , M4[n/2 , n / 2] ,
5 M5[n/2 , n / 2] , M6[n/2 , n / 2] , M7[n/2 , n /2]
6 {
7 // Base case 1 : Compute a s i n g l e e lement
8 to (AB. ce l l (x , y) out)
9 from(A.row(y) a , B. column(x) b) {

10 out = dot (a , b) ;
11 }
12
13 // Base case 2 : Vec tor i zed v e r s i o n to compute 16 e lements at a time
14 to (AB. region (x , y , x + 4 , y + 4) out)
15 from(A. region (0 , y , n , y + 4) a ,
16 B. region (x , 0 , x + 4 , n) b){ . . . }
17
18 // Compute i n t e r m e d i a t e data
19 to (M1 m1)
20 from(A. region (0 , 0 , n/2 , n/2) a11 ,
21 A. region (n/2 , n/2 , n , n) a22 ,
22 B. region (0 , 0 , n/2 , n/2) b11 ,
23 B. region (n/2 , n/2 , n , n) b22)
24 using (t1 [n / 2 , n / 2] , t2 [n/2 , n / 2]) {
25 spawn MatrixAdd (t1 , a11 , a22) ;
26 spawn MatrixAdd (t2 , b11 , b22) ;
27 sync ;
28 StrassenMatr ixMult ip ly (m1, t1 , t2) ;
29 }
30
31 // . . . M2 through M7 r u l e s omit ted . . .
32
33 // Recurs ive case : Compute the 4 quadrants us ing M1 through M7
34 to (AB. region (0 , 0 , n/2 , n/2) c11) from(M1 m1, M4 m4, M5 m5, M7 m7){
35 MatrixAddAddSub (c11 , m1, m4, m7, m5) ;
36 }
37 to (AB. region (n/2 , 0 , n , n/2) c12) from(M3 m3, M5 m5){
38 MatrixAdd (c12 , m3, m5) ;
39 }
40 to (AB. region (0 , n/2 , n/2 , n) c21) from(M2 m2, M4 m4){
41 MatrixAdd (c21 , m2, m4) ;
42 }
43 to (AB. region (n/2 , n/2 , n , n) c22) from(M1 m1, M2 m2, M3 m3, M6 m6){
44 MatrixAddAddSub (c22 , m1, m3, m6, m2) ;
45 }
46 }

Figure 2.3: PetaBricks code for MatrixMultiply

30

the graph’s sink). Intermediate nodes in the graph represent intermediate data structures produced

and used during the computation of the output. The user specifies how to get to nodes from other

nodes by defining rules. The rules correspond to the edges (or sometimes hyperedges) of the graph,

which encode both the data dependencies of the algorithm, as well as the code needed to produce

the edge’s destinations from the sources.

In addition to choices between different algorithms, many algorithms have configurable

parameters that change their behavior. A common example of this is the branching factor in

recursively algorithms such as merge sort or radix sort. To support this PetaBricks has a tunable

keyword that allows the user to export custom parameters to the autotuner. PetaBricks analyzes

where these tunable values are used, and autotunes them at an appropriate time in the learning

process.

PetaBricks contains many additional language features such as: %{ ... }% escapes used to

embed raw C++ in the output file; a generator keyword for specifing a transform to be used to

supply input data during training; matrix versions, with a A<0..n> syntax, useful when defining

iterative algorithms; rule priorities and where clauses are used to handle corner cases gracefully;

and template transforms, similar to templates in C++, where each template instance is autotuned

separately.

2.3 Variable Accuracy

Another issue that PetaBricks addresses is variable accuracy algorithms. This choice over accuracy

of the implementation can be viewed as another dimension in the solution space. There are many

different classes of variable accuracy algorithms.

One class of variable accuracy algorithms are approximation algorithms in the area of

soft computing [165]. Approximation algorithms are used to find approximate solutions to

computationally difficult tasks with results that have provable quality. For many computationally

hard problems, it is possible to find such approximate solutions asymptotically faster than it is

to find an optimal solution. A good example of this is BinPacking. Solving the BinPacking

problem is NP-hard, yet arbitrarily accurate solutions may be found in polynomial time [50]. Like

31

many soft computing problems, BinPacking has many different approximation algorithms, and

the best choice often depends on the level of accuracy desired.

Another class of variable accuracy algorithms are iterative algorithms used extensively in the

field of applied mathematics. These algorithms iteratively compute approximate values that

converge toward an optimal solution. Often, the rate of convergence slows dramatically as one

approaches the solution, and in some cases a perfect solution cannot be obtained without an

infinite number of iterations [163]. Because of this, many programmers create convergence criteria

to decide when to stop iterating. However, deciding on a convergence criteria can be difficult when

writing modular software because the appropriate criteria may not be known to the programmer

ahead of time.

A third class of variable accuracy algorithms are algorithms in the signal processing domain. In

this domain, the accuracy of an algorithm can be directly determined from the problem specification.

For example, when designing digital signal processing (DSP) filters, the type and order of the filter

can be determined directly from the desired sizes of the stop, transition and pass-bands as well

as the required filtering tolerance bounds in the stop and pass-bands. When these specifications

change, the optimal filter type may also change. Since many options exist, determining the best

approach is often difficult, especially if the exact requirements of the system are not known ahead

of time.

To help illustrate variable accuracy algorithms in PetaBricks, we will first introduce a new

example program, kmeans, which will used as a running example in this Section.

2.3.1 K-Means Example

Figure 2.4 presents an example PetaBricks program, kmeans. This program groups the input Points

into a number of clusters and writes each points cluster to the output Assignments. Internally the

program uses the intermediate data Centroids to keep track of the current center of each cluster.

The rules contained in the body of the transform define the various pathways to construct the

Assignments data from the initial Points data. The transform can be depicted using the dependence

graph shown in Figure 2.5, which indicates the dependencies of each of the three rules.

32

1 transform kmeans
2 from Points [n , 2] // Array o f p o i n t s (each column
3 // s t o r e s x and y c o o r d i n a t e s)
4 using Centro ids [s q r t (n) , 2]
5 to Assignments [n]
6 {
7 // Rule 1 :
8 // One p o s s i b l e i n i t i a l c o n d i t i o n : Random
9 // s e t o f p o i n t s

10 to (Centro ids . column(i) c) from(Points p) {
11 c=p . column(rand (0 , n))
12 }
13
14 // Rule 2 :
15 // Another i n i t i a l c o n d i t i o n : Centerp lus i n i t i a l
16 // c e n t e r s (kmeans++)
17 to (Centro ids c) from(Points p) {
18 CenterPlus (c , p) ;
19 }
20
21 // Rule 3 :
22 // The kmeans i t e r a t i v e a l go r i t hm
23 to (Assignments a) from(Points p , Centro ids c) {
24 while (t rue) {
25 int change ;
26 Ass i gnClus t e r s (a , change , p , c , a) ;
27 i f (change==0) return ; // Reached f i x e d p o i n t
28 NewClusterLocations (c , p , a) ;
29 }
30 }
31 }

Figure 2.4: PetaBricks code for kmeans.

33

Figure 2.5: Dependency graph for kmeans example. The rules are the vertices while each edge
represents the dependencies of each rule. Each edge color corresponds to each named data
dependence in the pseudocode.

The first two rules specify two different ways to initialize the Centroids data needed by the

iterative kmeans solver in the third rule. Both of these rules require the Points input data. The third

rule specifies how to produce the output Assignments using both the input Points and intermediate

Centroids. Note that since the third rule depends on the output of either the first or second rule, the

third rule will not be executed until the intermediate data structure Centroids has been computed

by one of the first two rules.

To summarize, when our transform is executed, the cluster centroids are initialized either by

the first rule, which performs random initialization on a per-column basis with synthesized outer

control flow, or the second rule, which calls the CenterPlus algorithm. Once Centroids is generated,

the iterative step in the third rule is called.

2.3.2 Language Support for Variable Accuracy

To realize support for variable accuracy we extend the idea of algorithmic choice to include choices

between different accuracies. We provide a mechanism to allow the user to specify how accuracy

should be measured. Our accuracy-aware autotuner then searches to optimize for both time and

accuracy. The result is code that probabilistically meets users’ accuracy needs. Optionally, users

can request hard guarantees (described below) that utilize runtime checking of accuracy.

34

1 transform kmeans

2 accuracy metric kmeansaccuracy
3 accuracy variable k

4 from Points [n , 2] // Array o f p o i n t s (each column
5 // s t o r e s x and y c o o r d i n a t e s)
6 using Centro ids [k , 2]
7 to Assignments [n]
8 {
9 // Rule 1 :

10 // One p o s s i b l e i n i t i a l c o n d i t i o n : Random
11 // s e t o f p o i n t s
12 to (Centro ids . column(i) c) from(Points p) {
13 c=p . column(rand (0 , n))
14 }
15
16 // Rule 2 :
17 // Another i n i t i a l c o n d i t i o n : Centerp lus i n i t i a l
18 // c e n t e r s (kmeans++)
19 to (Centro ids c) from(Points p) {
20 CenterPlus (c , p) ;
21 }
22
23 // Rule 3 :
24 // The kmeans i t e r a t i v e a l g or i t hm
25 to (Assignments a) from(Points p , Centro ids c) {
26 for enough {
27 int change ;
28 Ass i gnClus t e r s (a , change , p , c , a) ;
29 i f (change==0) return ; // Reached f i x e d p o i n t
30 NewClusterLocations (c , p , a) ;
31 }
32 }
33 }
35 transform kmeansaccuracy
36 from Assignments [n] , Points [n , 2]
37 to Accuracy
38 {
39 Accuracy from(Assignments a , Points p){
40 return s q r t (2∗n/ SumClusterDistanceSquared (a , p)) ;
41 }
42 }

Figure 2.6: PetaBricks code for variable accuracy kmeans. (The new variable accuracy code is
highlighted in light blue.)

35

Figure 2.6 presents our kmeans example with our new variable accuracy extensions. The updates

to the code are highlighted in light blue. The example uses three of our new variable accuracy

features.

First the accuracy metric, on line 2, defines an additional transform, kmeansaccuracy, which

computes the accuracy of a given input/output pair to kmeans. PetaBricks uses this transform

during autotuning and sometimes at runtime to test the accuracy of a given configuration of the

kmeans transform. The accuracy metric transform computes the
√

2n∑
D2

i
, where Di is the Euclidean

distance between the i-th data point and its cluster center. This metric penalizes clusters that are

sparse and is therefore useful for determining the quality of the computed clusters. Accuracy metric

transforms such as this one might typically be written anyway for correctness or quality testing,

even when programming without variable accuracy in mind.

The accuracy variable k, on line 3 controls the number of clusters the algorithm generates by

changing the size of the array Centroids. The variable k can take different values for different

input sizes and different accuracy levels. The compiler will automatically find an assignment of

this variable during training that meets each required accuracy level.

The for enough loop on line 26 is a loop where the compiler can pick the number of iterations

needed for each accuracy level and input size. During training the compiler will explore different

assignments of k, algorithmic choices of how to initialize the Centroids, and iteration counts for the

for enough loop to try to find optimal algorithms for each required accuracy.

2.3.3 Variable Accuracy Language Features

PetaBricks contains the following language features used to support variable accuracy algorithms:

• The accuracy metric keyword in the transform header allows the programmer to specify the

name of another user-defined transform to compute accuracy from an input/output pair. This

allows the compiler to test the accuracy of different candidate algorithms during training. It

also allows the user to specify a domain specific accuracy metric of interest to them.

• The accuracy variable keyword in the transform header allows the user to define one or more

algorithm-specific parameters that influence the accuracy of the program. These variables are

36

set automatically during training and are assigned different values for different input sizes.

The compiler explores different values of these variables to create candidate algorithms that

meet accuracy requirements while minimizing execution time. An accuracy variable is the

same as a tunable except that it provides some hints to the autotuner about its effect.

• The accuracy bins keyword in the transform header allows the user to define the range of

accuracies that should be trained for and special accuracy values of interest that should

receive additional training. This field is optional and the compiler can add such values of

interest automatically based on how a transform is used. If not specified, the default range

of accuracies is 0 to 1.0.

• The for enough statement defines a loop with a compiler-set number of iterations. This is

useful for defining iterative algorithms. This is syntactic sugar for adding an accuracy variable

to specify the number of iterations of a traditional loop.

• The semantics for calling variable accuracy transforms is also extended. When a variable

accuracy transform calls another variable accuracy transform (including recursively), the

required sub-accuracy level is determined automatically by the compiler. This is handled by

making each function polymorphic on accuracy.

When a variable accuracy transform is called from fixed accuracy code, the desired level

of accuracy must be specified. We use template-like, “<N>”, syntax for specifying desired

accuracy. This syntax may also be optionally used in variable accuracy transforms to prevent

the automatic expansion described above.

• The keyword verify accuracy in the rule body directs the compiler to insert a runtime check

for the level of accuracy attained. If this check fails the programmer can insert calls to retry

with the next higher level of accuracy or the programmer can provide custom code to handle

this case. This keyword can be used when strict accuracy guarantees, rather than probabilistic

guarantees, are desired for all program inputs.

37

2.3.4 Accuracy Guarantees

PetaBricks supports the following three types of accuracy guarantees:

• Statistical guarantees are the most common technique used, and the default behavior of our

system. They work by performing off-line testing of accuracy using a set of program inputs

to determine statistical bounds on an accuracy metric to within a desired level of confidence.

Confidence bounds are calculated by assuming accuracy is normally distributed and measuring

the mean and standard deviation. This implicitly assumes that accuracy distributions are

the same across training and production inputs.

• Runtime checking can provide a hard guarantee of accuracy by testing accuracy at runtime

and performing additional work if accuracy requirements are not met. Runtime checking

can be inserted using the verify accuracy keyword. This technique is most useful when the

accuracy of an algorithm can be tested with low cost and may be more desirable in case where

statistical guarantees are not sufficient.

• Domain specific guarantees are available for many types of algorithms. In these cases, a

programmer may have additional knowledge, such as a lower bound accuracy proof or a proof

that the accuracy of an algorithm is independent of data, that can reduce or eliminate the

cost of runtime checking without sacrificing strong guarantees on accuracy. In these cases the

accuracy metric can just return a constant based on the program configuration.

As with variable accuracy code written without language support, deciding which of these

techniques to use with what accuracy metrics is a decision left to the programmer.

2.4 Input Features

For a large class of problems, the best optimization to use depends on the input data being

processed. We broadly call this feature of algorithms input sensitivity and will discuss our handling

of them in detail in Chapter 7.

38

1 function Sort
2 to out [n]
3 from in [n]

4 input feature Sortedness , Dup l i ca t ion

5 {
6 either {
7 I n s e r t i o n S o r t (out , in) ;
8 } or {
9 QuickSort (out , in) ;

10 } or {
11 MergeSort (out , in) ;
12 } or {
13 RadixSort (out , in) ;
14 } or {
15 B i ton i cSo r t (out , in) ;
16 }
17 }
18
19 function Sortedness
20 from in [n]
21 to s o r t e d n e s s
22 tunable double l e v e l (0 . 0 , 1 . 0)
23 {
24 int sor tedcount = 0 ;
25 int count = 0 ;
26 int s tep = (int) (l e v e l ∗n) ;
27 for (int i =0; i+step<n ; i+=step) {
28 i f (in [i] <= in [i+step]) {
29 // increment f o r c o r r e c t l y ordered
30 // p a i r s o f e lements
31 sortedcount += 1 ;
32 }
33 count += 1 ;
34 }
35 i f (count > 0)
36 s o r t e d n e s s = sortedcount / (double) count ;
37 else
38 s o r t e d n e s s = 0 . 0 ;
39 }
40
41 function Dupl i cat ion
42 from in [n]
43 to d u p l i c a t i o n
44 . . .

Figure 2.7: PetaBricks code for Sort with input features. (The new input feature code is highlighted
in light blue.) 39

PetaBricks provides language support for input sensitivity by adding the keyword input feature,

shown on lines 4 and 5 of Figure 2.7. The input feature keyword specifies a programmer-defined

function, a feature extractor, that will measure some domain specific property of the input to the

function. A feature extractor must have no side effects, take the same inputs as the function, and

output a single scalar value. The autotuner will call this function as necessary.

Feature extractors may have tunable parameters which control their behavior. For example, the

level tunable on line 23 of Figure 2.7, is a value that controls the sampling rate of the sortedness

feature extractor. Higher values will result in a faster, but less accurate measure of sortedness.

Tunable is a general language keyword that specifies a variable to be set by the autotuner and two

values indicating the allowable range of the tunable (in this example between 0.0 and 1.0).

2.5 A More Complex Example

To end the chapter we show a more complex example PetaBricks program, Convolution, and its

performance characteristics when mapped to different GPU/CPU targets. We will show the power

of algorithmic choice previewing the results for convolution. The full set of results an be found in

Chapter 4.

Figure 2.8 shows the PetaBricks code for SeparableConvolution. The top-level transform

computes Out from In and Kernel by either computing a single-pass 2D convolution, or computing

two separate 1D convolutions and storing intermediate results in buffer. Our compiler maps this

program to multiple different executables which perform different algorithms (separable vs. 2D

blur), and map to the GPU in different ways. This program computes the convolution of a 2D

matrix with a separable 2D kernel. The main transform (starting on line 1) maps from input matrix

In to output matrix Out by convolving the input with the given Kernel. It does this using one of

two rules:

• Choice 1 maps from In to Out in a single pass, by directly applying the Convolve2D transform.

40

1 transform SeparableConvolut ion
2 from In [w, h] , Kernel [KWIDTH]
3 to Out [w−KWIDTH+1, h−KWIDTH+1]
4 {
5 // Choice 1 : s i n g l e pass 2D c o n v o l u t i o n
6 to (Out out) from(In in , Kernel k e rne l) {
7 Convolve2D (out , in , k e rne l) ;
8 }
9

10 // Choice 2 : two−pass s e p a r a b l e c o n v o l u t i o n
11 to (Out out) from(In in , Kernel k e rne l)
12 using (b u f f e r [w−KWIDTH+1, h]) {
13 ConvolveRows (bu f f e r , in , k e rne l) ;
14 ConvolveColumns (out , bu f f e r , k e rne l) ;
15 }
16 }
17
18 transform Convolve2D
19 from In [w, h] , Kernel [KWIDTH]
20 to Out [w−KWIDTH+1, h−KWIDTH+1]
21 {
22 Out . ce l l (x , y)
23 from(In . region (x , y , x+KWIDTH+1, y+KWIDTH+1) in , Kernel k e rne l)
24 {
25 ElementT sum = 0 ;
26 for (int x = 0 ; x < KWIDTH; x++)
27 for (int y = 0 ; y < KWIDTH; y++)
28 sum += in . ce l l (x , y) ∗ ke rne l . ce l l (x) ∗ ke rne l . ce l l (y) ;
29 return sum ;
30 }
31 }

(continued in Figure 2.9).

Figure 2.8: PetaBricks code for SeparableConvolution.

41

(continued from Figure 2.8).

32
33 transform ConvolveRows
34 from In [w, h] , Kernel [KWIDTH]
35 to Out [w−KWIDTH+1, h]
36 {
37 Out . ce l l (x , y)
38 from(In . region (x , y , x+KWIDTH, y+1) in , Kernel k e rne l)
39 {
40 ElementT sum = 0 ;
41 for (int i = 0 ; i < KWIDTH; i++)
42 sum += in . ce l l (i , 0) ∗ ke rne l . ce l l (i) ;
43 return sum ;
44 }
45 }
46
47 transform ConvolveColumns
48 from In [w, h] , Kernel [KWIDTH]
49 to Out [w, h−KWIDTH+1]
50 {
51 Out . ce l l (x , y)
52 from(In . region (x , y , x+1, y+KWIDTH) in , Kernel k e rne l)
53 {
54 ElementT sum = 0 ;
55 for (int i = 0 ; i < KWIDTH; i++)
56 sum += in . ce l l (0 , i) ∗ ke rne l . ce l l (i) ;
57 return sum ;
58 }
59 }

Figure 2.9: PetaBricks code for SeparableConvolution

42

Choice Type Parameters Possible Configurations

Parallelism 3 1012

Work Stealing Scheduler 6 6

Iteration Order 9 1043

Algorithmic 25 1072

Total 43 10128

Figure 2.10: Counts of different types of choices generated by PetaBricks for SeparableConvolution.

• Choice 2 maps from In to Out in two passes, by first performing the ConvolveRows transform,

storing its result in buffer, and then performing the ConvolveColumns transform on this

intermediate result.

The three transforms are each defined in terms of a single data parallel rule which, for each point

in Out, computes a sum of the points in the corresponding KWIDTH-sized region of In weighted

by the corresponding points in the Kernel. ConvolveRows and ConvolveColumns apply only in

the horizontal and vertical directions, respectively, while Convolve2D applies both dimensions

simultaneously, iterating over a 2D window of In for each output point. Based on the experimental

data, the autotuner chooses which rules to run (a choice of algorithm), and how to map them onto

the machine, including runtime scheduling strategy, parallelism, data placement, and the choice of

processors on which to run.

2.5.1 The Choice Space for SeparableConvolution

Figure 2.10 summarizes the number of choices generated by the PetaBricks compiler for

SeparableConvolution. The top-level SeparableConvolution transform compiles into two simple

rules, each of which computes the entire Out matrix from the entire In matrix. Internally, these rules

apply the Convolve* transforms which are defined elementwise, without sequential dependencies,

and so can be executed in a data parallel fashion over the entire output space. As one choice, these

data parallel rules can be compiled directly into equivalent OpenCL kernels, with each work-item

computing a single cell of Out. Automatic compilation into OpenCL is discussed in Section 3.5.

Because of its simple data parallel pattern, this example runs most efficiently when all Convolve*

transform are executed entirely in the OpenCL runtime, but the ideal choices of algorithm and

43

mapping to the memory system vary across machines, and for each machine across different kernel

sizes. However, even though not optimal for this benchmark, the choice to run some fraction of the

computation on the CPU is also available to the autotuner.

Intuitively, when blur size (kernel’s width) is large, implementing the separable convolution as

a pair of 1D passes over the data, first in the horizontal and then in the vertical direction, performs

asymptotically less work than a single 2D convolution pass. Starting each block of work with an

extra phase which prefetches a block of In into scratchpad memory shared by all processors in the

block saves memory bandwidth compared to separately loading many overlapping inputs through

the (slower) main memory hierarchy. But when the kernel size is small, the overhead (in bandwidth

for intermediate results, and in kernel invocations) of multiple passes overtakes the computational

complexity advantage of separable computation, making a single 2D pass faster, and the overhead of

explicit prefetching into OpenCL local memory cannot be offset by the smaller number of redundant

loads saved across a block of work. Where these tradeoffs dominate varies between machines. And

the underlying machines vary further: on an OpenCL target where the shared memory maps to

the same caches and buses used for all loads and stores, the explicit prefetch phase nearly always

represents wasted work.

0.02

0.03

0.04

 3 5 7 9 11 13 15 17

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
s
)

Kernel Width

(a) Desktop

0.10

0.20

0.30

0.40

0.50

 3 5 7 9 11 13 15 17

Kernel Width

(b) Server

0.10

0.20

0.30

0.40

0.50

 3 5 7 9 11 13 15 17

Kernel Width

2D Localmem
2D No-local

Seperable Localmem
Separable No-local

Autotuner

(c) Laptop

Figure 2.11: Execution time (lower is better) of different possible mappings of
SeparableConvolution to OpenCL with varying kernel widths on three test systems when the
input size is 3520 × 3520. The three test systems are described in Section 4.6.1. Note that each
mapping is optimal for at least one machine and kernel width. In handwritten OpenCL, these
would correspond to four distinct programs the programmer would need to write.

Figure 2.11 shows the running times of four distinct OpenCL choices (2D Convolution and

Separable Convolution, each with and without local memory prefetching) generated by PetaBricks

44

for SeparableConvolution, on three different machines (described in Section 4.6.1), over kernel sizes

from 3-17. The ideal choice (the lowest line at a given point) varies among the four choices,

depending on both the targeted machine and the kernel size. As expected, the execution times of

the single-pass 2D algorithms increase faster than those of the two-pass separable algorithms as the

kernel size increases, and the use of scratchpad memory helps little when the kernel size is small

and worsens the performance on the CPU OpenCL runtime. But how exactly these effects interact,

and the relative behavior of each choice, varies substantially across machines.

In short, simply mapping this program to the OpenCL runtime is not sufficient. How it is

mapped (whether or not to prefetch shared inputs into scratchpad memory), and which algorithms

to use, is a complex choice, highly dependent on the specific workload and target architecture.

2.6 Language Specification

This section provides a exhaustive list of the syntax of the PetaBricks language. Figures 2.12, 2.13,

and 2.14 show a slightly simplified grammar for the PetaBricks language, with the exception of

the inner EmbeddedCPlusPlusSuset in rule bodies. This is C++ code (suitable to go in a function

body) with the addition of the either...or statement. Ident is a variable name literal and Integer

and Float are numeric literals.

2.6.1 Transform Header Flags

The following options can appear in the header for a transform or a function. Note that a function

is syntactic sugar for a transform with a single rule that takes the same inputs/outputs.

• ’accuracy bins’ FloatList

Specific additional accuracy targets which should be trained for.

• ’accuracy metric’ Ident

The name of another PetaBricks transform to measure the quality of an output.

• ’accuracy variable’ ConfigItem

’config’ ConfigItem

45

PetaBricksProgram → Ni l
PetaBricksProgram → Function PetaBricksProgram
PetaBricksProgram → Transform PetaBricksProgram

Function → ’ f unc t i on ’ Ident TransformHeaderList RuleBody

Transform → ’ t rans form ’ Ident TransformHeaderList TransformBody

TransformHeaderList → Ni l
TransformHeaderList → TransformHeader TransformHeaderList

TransformHeader → ’ main ’
TransformHeader → ’ memoized ’
TransformHeader → ’ param ’ Ident
TransformHeader → ’ from ’ Matr ixDefList
TransformHeader → ’ through ’ Matr ixDefList
TransformHeader → ’ us ing ’ Matr ixDefList
TransformHeader → ’ to ’ Matr ixDefList
TransformHeader → ’ template ’ Ident ’ (’ I n t e g e r ’ , ’ I n t e g e r ’) ’
TransformHeader → ’ a ccuracy metr i c ’ Ident
TransformHeader → ’ a c curacy b in s ’ F l o a t L i s t
TransformHeader → ’ g enera tor ’ Ident
TransformHeader → ’ i n p u t f e a t u r e ’ Ident
TransformHeader → ’ c o n f i g ’ ConfigItem
TransformHeader → ’ tunable ’ ConfigItem
TransformHeader → ’ a c c u r a c y v a r i a b l e ’ ConfigItem

ConfigItem → Conf ig I temFlagLis t Ident ConfigItemBounds

Conf ig I temFlagLis t → Ni l
Conf ig I temFlagLis t → ConfigItemFlag Conf ig I temFlagLis t

ConfigItemFlag → ’ i n t ’
Conf igItemFlag → ’ double ’
Conf igItemFlag → ’ f l o a t ’
Conf igItemFlag → ’ s i z e s p e c i f i c ’
Conf igItemFlag → ’ accuracyh int ’

ConfigItemBounds → Ni l
ConfigItemBounds → ’ (’ ’) ’
ConfigItemBounds → ’ (’ F loat ’) ’
ConfigItemBounds → ’ (’ F loat ’ , ’ F loat ’) ’
ConfigItemBounds → ’ (’ F loat ’ , ’ F loat ’ , ’ F loat ’) ’

Matr ixDefList → MatrixDef
Matr ixDefList → MatrixDef ’ , ’ Matr ixDefList

MatrixDef → Ident OptVersion OptSize

Figure 2.12: Grammar for the PetaBricks language. Page 1 of 3 (Figures 2.12, 2.13, 2.14).

46

OptVersion → Ni l
OptVersion → ’< ’ Formula ’> ’
OptVersion → ’< ’ Formula ’ . . . ’ Formula ’> ’

OptSize → Ni l
OptSize → ’ [’ FormulaList ’] ’

TransformBody → ’ { ’ Ru leL i s t ’ } ’

Ru leL i s t → Ni l
RuleL i s t → Rule RuleL i s t

Rule → RuleFlagLis t RuleHeader RuleBody

RuleFlagLis t → Ni l
RuleFlagLis t → RuleFlag RuleFlagLis t

RuleFlag → ’ primary ’
RuleFlag → ’ secondary ’
RuleFlag → ’ p r i o r i t y ’ ’ (’ I n t e g e r ’) ’
RuleFlag → ’ r o t a t a b l e ’
RuleFlag → ’ r e c u r s i v e ’
RuleFlag → ’ r e c u r s i v e ’ ’ (’ Formula ’) ’
RuleFlag → ’ d u p l i c a t e ’ ’ (’ Ident ’ , ’ I n t e g e r ’ , ’ I n t e g e r ’) ’
RuleFlag → ’ r u l e ’ Ident

RuleHeader → Region RuleHeaderFrom RuleHeaderThrough OptWhere
RuleHeader → RuleHeaderTo RuleHeaderFrom RuleHeaderThrough OptWhere

RuleHeaderFrom → ’ from ’ ’ (’ NamedRegionList ’) ’

RuleHeaderTo → ’ to ’ ’ (’ NamedRegionList ’) ’

NamedRegionList → Ni l
NamedRegionList → NamedRegion
NamedRegionList → NamedRegion ’ , ’ NamedRegionList

NamedRegion → Region Ident
NamedRegion → Region Ident ’=’ Formula

RuleHeaderThrough → Ni l
RuleHeaderThrough → ’ through ’ ’ (’ Matr ixDefList ’) ’
RuleHeaderThrough → ’ us ing ’ ’ (’ Matr ixDefList ’) ’

Figure 2.13: Grammar for the PetaBricks language. Page 2 of 3 (Figures 2.12, 2.13, 2.14).

47

OptWhere → Ni l
OptWhere → ’ where ’ FormulaRelation

RuleBody → ’ { ’ EmbeddedCPlusPlusSubset ’ } ’

Formula → Ident
Formula → I n t e g e r
Formula → Float
Formula → ’ (’ Formula ’) ’
Formula → Formula ’+’ Formula
Formula → Formula ’− ’ Formula
Formula → Formula ’ ∗ ’ Formula
Formula → Formula ’ / ’ Formula
Formula → Formula ’ ˆ ’ Formula
Formula → ’− ’ Formula

FormulaRelation → Formula ’==’ Formula
FormulaRelation → Formula ’< ’ Formula
FormulaRelation → Formula ’> ’ Formula
FormulaRelation → Formula ’<=’ Formula
FormulaRelation → Formula ’>=’ Formula
FormulaRelation → FormulaRelation ’ or ’ FormulaRelation
FormulaRelation → FormulaRelation ’ and ’ FormulaRelation

Region → Ident OptVersion RegionAccessor

RegionAccessor → Ni l
RegionAccessor → ’ . ’ a l l ’ (’ ’) ’
RegionAccessor → ’ . ’ c e l l ’ (’ FormulaList ’) ’
RegionAccessor → ’ . ’ r eg i on ’ (’ FormulaList ’) ’
RegionAccessor → ’ . ’ row ’ (’ Formula ’) ’
RegionAccessor → ’ . ’ c o l ’ (’ Formula ’) ’
RegionAccessor → ’ . ’ column ’ (’ Formula ’) ’
RegionAccessor → ’ . ’ s l i c e ’ (’ I n t e g e r ’ , ’ Formula ’) ’

FormulaList → Ni l
FormulaList → Formula
FormulaList → Formula ’ , ’ FormulaList

F l o a t L i s t → Float
F l o a t L i s t → Float ’ , ’ F l o a t L i s t

Ni l →

Figure 2.14: Grammar for the PetaBricks language. Page 3 of 3 (Figures 2.12, 2.13, 2.14).

48

’tunable’ ConfigItem

Variables stored in the configuration file. Unless the keyword config is used, the autotuner

will tune the value. Additional keywords double, int, or float can be added to change the type.

If the keyword accuracy variable or accuracyhint is used it will notify the autotuner that the

variable is likely to effect accuracy. If the keyword sizespecific is given, the variable may hold

a different value for each input size, and will generate a synthezied function in the program

configuration. Optional default, min, and max bounds can be added.

• ’from’ MatrixDefList

List of inputs to the transform.

• ’generator’ Ident

The name of another PetaBricks transform to generate training inputs.

• ’input feature’ Ident

The name of another PetaBricks transform to extract a feature from the input.

• ’main’

Marks a single transform as the entry point for the PetaBricks program.

• ’memoized’

Enables automatic memoization for results of the given function. Outputs to the function

will be cached in a hash table and re-used when the function is called with the same inputs.

• ’param’ Ident

A constant integer input parameter, allowed to be used in size formulas.

• ’template’ Ident ’(’ Integer ’,’ Integer ’)’

Define many copies of the transform, with the value of Ident set to all values between the two

given Integers.

• ’through’ MatrixDefList

’using’ MatrixDefList

Intermediate data (semantically equivalent).

49

• ’to’ MatrixDefList

List of outputs from the transform.

• ’transform’ Ident

The name of the transform to be defined.

2.6.2 Rule Header Flags

The following flags can go in the header before a rule:

• ’duplicate’ ’(’ Ident ’,’ Integer ’,’ Integer ’)’

Define many copies of the rule, with Ident set to each value between the two Integers.

• ’from’ ’(’ NamedRegionList ’)’

Define the symbolic input regions from the inputs and outputs of the transform.

• ’primary’

’secondary’

’priority’ ’(’ Integer ’)’

Set the priority for the rule. If multiple rules apply to the same region only the rules with

lowest integer priority can be used.

priority(0) is the same as primary. priority(1) is the default. priority(2) is the same as

secondary.

• ’recursive’

For backwards compatibility, does nothing.

• ’recursive’ ’(’ Formula ’)’

Specify the decision trees generated should be conditioned on the given formula instead of

the size of the largest input dimension.

• ’rotatable’

Generate 4 copies of the given rule, each with the coordinate space offset by 90 degrees for

2D inputs.

50

• ’rule’ Ident

Provide a optional name for the rule (used in debugging / visualization).

• ’through’ ’(’ MatrixDefList ’)’

’using’ ’(’ MatrixDefList ’)’

Intermediate data used in the scope of the rule.

• ’to’ ’(’ NamedRegionList ’)’

Define the symbolic output regions from the outputs of the transform.

• ’where’ FormulaRelation

A condition to limit the region where the rule can be applied. The rule may only be used

when FormulaRelation evaluates to true. This is evaluated statically at compile time .

2.6.3 Matrix Definitions

Input, output, and intermediate matrices can be defined in the to, from, using, and through clauses

of the transform header. They can also be declared in the using and through clauses of the rule.

They define a symbolic region, bases on a set of variables they share a transform scope and whose

values are automatically inferred from the sizes of the regions a transform is called with.

A matrix definition can either be a single double, for example A, or can be array, B[n], or have

an arbitrary number of dimensions, C[n, n]. The sizes of each dimension can be a formula, for

example D[n, n, 2*n, n + m + 10]. In this example the first two dimensions of matrix D must be

the same size (n), the next dimension must be twice that size, and the third dimension can be any

size and m will be bound to |D4|−n−10, where |D4| is the size of the forth dimension of D. (This

is determined by solving for m.) If m and n were used in any other matrix definitions in the same

transform they are required to have the same values.

Matrix definitions can also have versions, for example E < 1...10 > [n], which can be used for

iterative computations. This is syntactic sugar for adding an extra dimension.

51

2.6.4 Matrix Regions

Rules operate on regions of a matrix. These regions are bound to local variables in the scope of

the rule. Regions can be specified using the following methods on the matrix:

• ’.’ all ’(’ ’)’

The entire matrix. This is the same as writing just the name of the matrix.

• ’.’ cell ’(’ FormulaList ’)’

A specific element in the matrix. FormulaList must contain a number of formulas equal to

the number of dimensions.

• ’.’ region ’(’ FormulaList ’)’

A region of the matrix specified by begin coordinate (inclusive) and end coordinate (exclusive).

FormulaList must contain a number of formulas equal to twice the number of dimensions.

• ’.’ row ’(’ Formula ’)’

Alias for .slice(1, Formula)

• ’.’ col ’(’ Formula ’)’

’.’ column ’(’ Formula ’)’

Alias for .slice(0, Formula)

• ’.’ slice ’(’ Integer ’,’ Formula ’)’

Return a region with one fewer dimensions with a given Integer dimension replaced by

Formula.

For example: C.cell(x, y) could be rewritten as either: C.slice(1, y).cell(x), C.slice(0,

x).cell(y), or C.slice(0, x).slice(0, y).cell().

52

Chapter 3

The PetaBricks Compiler

The traditional goal of a compiler is to map a program to a specific piece of hardware. Most compiler

optimizations reason about program transformations using a simplified model of a specific processor

target. This simple model of the performance of the machine is often implied by the heuristics that

guide optimization. The PetaBricks compiler takes a different approach. It exposes the choice

space in its internal representations, and to the autotuner, so that it can be search automatically.

The PetaBricks compiler manages complex, interdependent choices of algorithm: which algorithm

to use; placement: on which resources to place computations and data; and mapping: how much

parallelism to exploit and how to use specialized memories.

The PetaBricks compiler implementation consists of three main components:

• a source-to-source compiler from the PetaBricks language to C++;

• an autotuning system and choice framework to find optimal choices and set parameters; and

• a runtime library used by the generated code.

The relationship between these components is depicted in Figure 3.1. First, the source-to-

source compiler executes and performs static analysis. The compiler encodes choices and tunable

parameters in the output code so that autotuning can be performed. When autotuning is performed

(either at compile time or at installation time), it outputs an application configuration file that

controls when different choices are made. This configuration file can be tweaked by hand to force

53

specific choices. Optionally, this configuration file can be fed back into the compiler and applied

statically to eliminate unused choices and allow additional optimizations.

Figure 3.1: Interactions between the compiler and output binaries. First, in Steps 1 and 2, the
compiler reads the source code and generates an autotuning binary. Next, in Step 3, autotuning is
run to generate a choice configuration file. Finally, either the autotuning binary is used with the
configuration file (Step 4a), or the configuration file is fed back into a new run of the compiler to
generate a statically chosen binary (Step 4b).

3.1 PetaBricks Compiler

Figure 3.2 displays the general flow for the compilation of a PetaBricks transform. Compilation is

split into two representations. The first representation operates at the rule level, and is similar to

a traditional high level sequential intermediate representation. The second representation operates

at the transform level, and is responsible for managing choices and for code synthesis.

A region is a core concept in the compiler. A region is a rectilinear subset of a single matrix

defined at the transform level. A region is defined by a symbolic begin coordinate (inclusive) and

54

m���������

m�	
���

�
�����

m���������

m�	
���

�
�����

��	�����������

�������������
�	��

��	�����������

�������������
�	��

�������������� ��������������������

��	����

����������������

��	����

����������������

 �������������� ��������������

!�����

������

!�����

������

"������
�

��#	�����	�

$���

"������
�

��#	�����	�

$���

"����#	���%�&���������������	��

�����%�&���������������	��
��	���

�	�#�
�����	�

$���

��	���

�	�#�
�����	�

$���

���	�����

Figure 3.2: Flow for the compilation of a PetaBricks program with a single transform. (Additional
transforms would cause the center part of the diagram to be duplicated.)

end coordinate (exclusive). We use the Maxima symbolic algebra library [122] to reason about

region intersections and relations, and to guarantee all points of every matrix are covered.

To help illustrate the compilation process we will use the example transform RollingSum, shown

in Figure 3.3. RollingSum computes an incremental (sometimes known as a cumulative) sum of

an input list. It includes two rules: rule 0 computes an output directly, by iterating all input

elements to the left; and rule 1 computes a value using a previously computed value to the left.

An algorithm using only rule 0 is slower (Θ(n2) operations), but can be executed in a data parallel

way. An algorithm using only rule 1 is faster (Θ(n) operations), but has no parallelism and must

be run sequentially.

Compilation consists of the following main phases. Figure 3.4 shows an overview the

intermediate representation built up as the phases proceed. It starts as an abstract syntax tree and

ends as a choice dependency graph. All compilation is done on symbolic regions of an unknown

size and is general to any number of dimensions. The compilation steps are as follows:

Parsing and normalization. First, the input language is parsed into an abstract syntax tree.

Rule dependencies are normalized by converting all dependencies into region syntax, assigning each

55

1 transform RollingSum
2 from A[n]
3 to B[n]
4 {
5 // r u l e 0 : sum a l l e lements to the l e f t
6 to (B. ce l l (i) b) from(A. region (0 , i) in) {
7 b=sum(in) ;
8 }
9

10 // r u l e 1 : use the p r e v i o u s l y computed v a l u e
11 to (B. ce l l (i) b) from(A. ce l l (i) a ,
12 B. ce l l (i −1) leftSum) {
13 b=a+leftSum ;
14 }
15 }

Figure 3.3: PetaBricks code for RollingSum. A simple example used to demonstrate the compilation
process. The output element Bx is the sum of the input elements A0..Ax.

Intermediate
Representation

Scope Coverage Data Type

Applicable Regions Rule Where rule can be used One region per rule / matrix

Choice Grids Transform
All points of all matrices
(non-overlapping)

List of regions per matrix

Choice Dependency
Graph

Transform
All points of all matrices
(non-overlapping)

Choice grids, plus annotated
data dependency edges

Figure 3.4: Overview of major compiler intermediate representations.

rule a symbolic center (a arbitrary symbolic coordinate used to specify where a rule executes)

and rewriting all dependencies to be relative to this center. (This is done using the Maxima

symbolic algebra library [122].) In our RollingSum example, the center of both rules is equal to

i, and the dependency normalization does not do anything other than replace variable names. For

other inputs, this transformation would simplify the dependencies. For example, if 1 were added to

every coordinate containing i in the input to rule 0 (leaving the meaning of the rule unchanged), the

compiler would then assign the center to be i+1 and the dependencies would be been automatically

rewritten to remove the added 1.

56

Applicable regions. Next, the region where each rule can legally be applied, called an applicable,

is calculated. Applicable regions are non-overlapping regions of the output/intermediate symbolic

space that cover all points. There is one set of applicable regions for each rule.

Applicable regions are first calculated for each dependency and then propagated upwards with

intersections (this is again done by the linear equations solver and inference system). In rule 0 of

our RollingSum example, both b and in (and thus the entire rule) have an applicable region of

[0, n). In rule 1 a and b have applicable regions of [0, n) and leftSum has an applicable region of

[1, n) because it would read off the array for i = 0. These applicable regions are intersected to

get an applicable region for rule 1 of [1, n). Applicable regions can also be constrained with user

defined where clauses, which are handled similarly.

Choice grid analysis. Next, we construct a choice grid for each symbolic matrix. The choice

grid divides each matrix into rectilinear regions where a uniform set of rules are applicable. These

regions must not overlap and must cover all points in every symbolic matrix.

Choice grids are constructed using an inference system to sort the applicable regions and divide

them into smaller regions where a uniform set of choices apply. In our RollingSum example, the

choice grid for B is:

[0, 1) = {rule 0}

[1, n) = {rule 0, rule 1}

and A is not assigned a choice grid because it is an input. For analysis and scheduling these two

regions are treated independently.

It is in the choice grid phase that rule priorities are applied. If many rules are applicable to

the same region, only those with the high priority can be used. In each region, all rules of non-

minimal priority are removed. This feature is not used in our example code, but if the user had

only provided rule 1, he could have added special handler for [0, 1) by specifying a secondary rule.

This mechanism becomes especially useful in higher dimensions where there are more corner cases.

Where clauses. Where clasues are handled in two ways:

57

• If the where clause can be statically proven to correspond to a rectilinear region: the where

clause is eliminated and the applicable region for the rule is replaced with the intersection of

the where clause region and the original applicable region. This is the fast path, and used by

most of our benchmarks.

• If the where clause is not rectilinear: in choice grid analysis the rule is replaced by a meta-rule

that is constructed by finding sets of rules that cover the entire rectolinear bounding box,

and combining them up into a single meta-rule which dynamically executes the where clauses

and switches between the sub-rules based on the result.

B.region(1, n)
 Choices: r0, r1

(r1,=,-1)

B.region(0, 1)
 Choices: r0

(r1,=,-1)A.region(0, n)
(r0,<=),(r1,=)

(r0,<=),(r1,=)

Figure 3.5: Choice dependency graph for RollingSum (in Figure 3.3). Arrows point the opposite
direction of dependency (the direction data flows). Edges are annotated with rules and directions,
offsets of 0 are not shown.

Choice dependency graph analysis. A choice dependency graph is constructed using each

regions from the choice grid as nodes. Edges in this graph are created from the data dependencies

of each rule in the choice grid. The paths through the graph from the inputs to the outputs

represent legal execution orders. Each edge is annotated with the set of choices that require that

edge, a direction of the data dependency, and an offset between rule centers for that dependency.

The direction and offset information are especially useful for parallel scheduling; in many cases,

they eliminate the need for a barrier before beginning the computation of a dependant matrix.

Figure 3.5 shows the choice dependency graph for our example RollingSum. The three nodes

correspond to the input matrix and the two regions in the choice grid. Each edge is annotated with

the rules that require it along with the associated directions and offsets. These annotations allow

matrices to be computed in parallel when the rules chosen allow. This high level coarse graph is

passed to the dynamic scheduler to execute in parallel at runtime. The dependency edges tell the

58

scheduler when it can split regions to compute them in parallel. The cost of the dynamic scheduler

is negligible because scheduling is done from the top down on large regions of the matrix.

The graph for RollingSum does not require simplification, however if the graph were more

complicated analysis would be required to simplify it. This simplification process is primarily

focused around removing cycles of size greater than one. The input graph can contain cycles

(provided union of the directions along the cycle points in towards a single hyper-quadrant), but

the output schedule must be a topologically sorted directed acyclic graph (DAG) for other phases

of the compiler to work. We remove cycles by merging strongly connected components into larger

meta-nodes. This gives us choice dependency graph which is a DAG and is easier to process.

The meta-nodes created by this process have a separate scheduler, which will finds an axis and

direction for iterating which respects dependencies. For example, a cycle created by dependencies

A[i] → B[i − 1] and B[i] → [A − 1] with be resolved by merging the A and B regions into a

single meta-node and interleaving the execution of the two rules such that A[i− 1] and B[i− 1] are

computed before A[i] and B[i].

The choice dependency graph is encoded in the output program for use by the autotuner and

parallel runtime. It contains all information needed to explore choices and execute the program in

parallel.

Code generation. Code generation has two modes. In the default mode choices and information

for autotuning are embedded in the output code. This binary can be dynamically tuned, which

generates a configuration file, and later run using this configuration file. In the second mode for

code generation, a previously tuned configuration file is applied statically during code generation.

The second mode is included since the C++ compiler can make the final code incrementally more

efficient when the choices are eliminated.

3.2 Parallelism in Output Code

The PetaBricks runtime includes a parallel work stealing [67] dynamic scheduler. The scheduler

works on tasks with a known interface. The generated output code will recursively create these

59

tasks and feed them to the dynamic scheduler to be executed. Dependency edges between tasks

are detected at compile time and encoded in the tasks as they are created. A task may not be

executed until all the tasks that it depends on have completed. These dependency edges expose

all available parallelism to the dynamic scheduler and allow it to change its behavior based on

autotuned parameters.

To expose parallelism and to help the dynamic scheduler schedule tasks in a depth-first search

manner (see Section 3.4), the generated code is constructed such that functions suspended due to

a call to a spawned task, can be migrated and executed on a different processor. This is difficult

to achieve as the function’s stack frame and registers need to be migrated. We support this by

generating continuation points, points at which a partially executed function may be converted

back into a task so that it can be rescheduled to a different processor. The continuation points are

inserted after any code that spawns a task. This is implemented by storing all needed state to the

heap.

The code generated for dynamic scheduling incurs some overhead, despite being heavily

optimized. In order to amortize this overhead, the output code that makes use of dynamic

scheduling is not used at the leaves of the execution tree where most work is done. The PetaBricks

compiler generates two versions of every output function. The first version is the dynamically

scheduled task-based code described above, while the second version is entirely sequential and does

not use the dynamic scheduler. Each output transform includes a tunable parameter (set during

autotuning) to decide when to switch from the dynamically scheduled to the sequential version of

the code.

3.3 Autotuning System and Choice Framework

Autotuning is performed on the target system so that optimal choices and cutoffs can be found for

that architecture. We have found that the best solution varies both by architecture and number

of processors, these results are discussed in Chapter 4. The autotuning library is embedded in the

output program whenever choices are not statically compiled in. Autotuning outputs an application

60

configuration file containing choices. This file can either be used to run the application, or it can

be used by the compiler to build a binary with hard-coded choices.

The autotuner uses the choice dependency graph encoded in the compiled application. This

choice dependency graph is also used by the parallel scheduler discussed in Section 3.4. This choice

dependency graph contains the choices for computing each region and also encodes the implications

of different choices on dependencies.

The intuition of the autotuning algorithm is that we take a bottom-up approach to tuning. To

simplify autotuning, we assume that the optimal solution to smaller sub-problems is independent

of the larger problem. In this way we build algorithms incrementally, starting on small inputs and

working up to larger inputs.

The autotuner builds a multi-level algorithm. Each level consists of a range of input sizes and a

corresponding algorithm and set of parameters. Rules that recursively invoke themselves result in

algorithmic compositions. In the spirit of a genetic tuner, a population of candidate algorithms is

maintained. This population is seeded with all single-algorithm implementations. The autotuner

starts with a small training input and on each iteration doubles the size of the input. At each step,

each algorithm in the population is tested. New algorithm candidates are generated by adding

levels to the fastest members of the population. Finally, slower candidates in the population are

dropped until the population is below a maximum size threshold. Since the best algorithms from

the previous input size are used to generate candidates for the next input size, optimal algorithms

are iteratively built from the bottom up. The autotuning process will be explained in more detail

in Chapter 6.

All choices are represented in a flat configuration space. Dependencies between these

configurable parameters are exported to the autotuner so that the autotuner can choose a sensible

order to tune different parameters. The autotuner starts by tuning the leaves of the graph and

works its way up. In the case of cycles, it tunes all parameters in the cycle in parallel, with

progressively larger input sizes. Finally, it repeats the entire training process, using the previous

iteration as a starting point, a small number of times to better optimize the result.

61

3.4 Runtime Library

The runtime library is primarily responsible for managing parallelism, data, and configuration. It

includes a runtime scheduler as well as code responsible for reading, writing, and managing inputs,

outputs, and configurations. The runtime is described in more detail in Section 3.5.3.

The runtime scheduler dynamically schedules tasks (that have their input dependencies satisfied)

across processors to distribute work. When tasks reach a certain tunable cutoff size, they stop

calling the scheduler and continue executing sequentially. Conversely, large data parallel tasks are

divided up into smaller tasks, to increase the amount of parallelism available to the scheduler.

The scheduler attempts to maximize locality using a greedy algorithm that schedules tasks in

a depth-first search order. Following the approach taken by Cilk [67], we distribute work with

thread-private deques and a task stealing protocol. A thread operates on the top of its deque as

if it were a stack, pushing tasks as their inputs become ready and popping them when a thread

needs more work. When a thread runs out of work, it randomly selects a victim and steals a task

from the bottom of the victim’s deque. This strategy allows a thread to steal another thread’s

most nested continuation, which preserves locality in the recursive algorithms we observed. We use

Cilk’s THE [67] protocol to allow the victim to pop items of work from its deque without needing

to acquire a lock in the common case.

3.5 Code Generation for Heterogeneous Architectures

This Section presents a solution to the problem of efficiently programming diverse heterogeneous

systems, such as GPGPUs. Support for heterogeneous architectures consists of three different parts:

• Compiler passes and static analyses to automatically convert subsets of existing PetaBricks

programs into OpenCL kernels that can be run on a variety of architectural backends, and

coexist as choices available to the autotuner. This includes static analyses to help efficiently

manage the memory of these coprocessing devices, and reduce data movement between kernel

executions.

62

• A GPU management runtime that allows coprocessor devices to be efficiently utilized in the

PetaBricks workstealing runtime without requiring the calling CPU thread to block on GPU

operations, providing automatic memory management, and allowing efficient overlapping of

computation and communication.

• Autotuning enhancements to search different divisions of GPU and CPU work, and to allow

the exploration of choices on the GPU, such as choices of in which of the many memory spaces

to place different data, and choices of how much data to run on the GPU.

3.5.1 OpenCL Kernel Generation

Since the PetaBricks language is more general (and supports calling arbitrary C/C++ code), only

a subset of a PetaBricks program can be converted into OpenCL kernels. The process of generating

additional choices for OpenCL execution is done early in the compilation process, before scheduling.

The conversion process consists of three phases that are applied to each original user defined rule

to inject equivalent synthetic OpenCL rules when possible.

In the first phase, a dependency analysis is performed to determine if the execution pattern of

the rule fits into the OpenCL execution model. Sequential dependency patterns and data parallel

dependency patterns can both be mapped to OpenCL kernels, but more complex parallel patterns,

such as wavefront parallelism, can not be in our current implementation. It is possible that some

sets of algorithmic choices will permit a mapping while others will not. The choice dependency

graph is analyzed to determine if a rule can be mapped to OpenCL. The analysis looks at direction

of the computed dependency for the strongly connected component associated with each of the rule’s

outputs. If there is no dependency, or the dependency is eliminated by selecting the rule choice

under consideration, then the outer dependency pattern of the rule can be mapped to OpenCL.

If a rule passes the first phase, it goes to the second phase where the body of the transform

is converted into OpenCL code. This phase includes a number of syntactic conversions. It is also

responsible for rewriting data accesses to use GPU global memory, detecting a number of language

constructs, such as calls to external libraries, that can not be mapped to OpenCL, and disqualifying

a rule from being converted to OpenCL. This phase can also detect some language constructs (such

63

as inline native code), which can not be supported by OpenCL. The majority of these constructs

are detected statically; however, there are a few more subtle requirements, sometimes OpenCL-

implementation specific, which we detect by attempting to compile the resulting transform and

rejecting synthetic OpenCL rules that do not compile.

The third phase attempts to optimize the basic version of OpenCL codes generated from the

second phase by utilizing GPU local memory, known as OpenCL local memory or CUDA shared

memory. For a subset of the mapped OpenCL rules, the local memory version can be generated.

To do so, we analyze input data access pattern. A bounding box is a rectangular region of an input

matrix that is used for computing an entry of the output matrix. If the size of the bounding box is

a constant greater than one, then the local memory version of the GPU code is created; if the size

of the bounding box is one, there is no need to copy the data into local memory because threads

that share the same local memory never access the same data. The local memory version consists

of two parts. First, all work-items on the GPU cooperate to load the data into local memory that

will be accessed by the work-group they belong to. The second part is the actual computation

derived from the basic version by replacing global memory accesses with local memory accesses.

This local memory version is presented as a choice to the autotuner.

3.5.2 Data Movement Analysis

A second group of OpenCL analyses are performed at scheduling time in the compiler for

determining how data is copied in and out of GPU memory. The PetaBricks compiler generates a

unique schedule for each assignment of choices in a transform. These schedules represent parallelism

as dependency trees that are given to the workstealing runtime. After each schedule is generated, it

is analyzed for GPU data movement requirements. This analysis looks at preceding rule applications

in the schedule and classifies applicable output regions generated on the GPU into three states:

• must copy-out regions are those that are immediately followed by a rule that executes on the

CPU in the current schedule. For these regions, data is copied eagerly.

• reused regions are those immediately followed by another rule on the GPU. For these regions

the data is left in GPU memory between rule applications.

64

Figure 3.6: Overview of the runtime system. Worker threads use workstealing among themselves,
and the GPU management thread only receives works that are pushed by the workers. Tasks exist
in both a runnable and non-runnable state. Runnable tasks exist in deques of different threads,
while non-runnable tasks are accessible only through dependency pointers in other tasks.

• may copy-out are regions followed by dynamic control flow which we cannot analyze statically.

For these regions, we employ a lazy copy-out strategy. A check is inserted before any code

that may consume one of these regions to ensure that the required data is in CPU memory.

If it is not, then the copy-out is performed when the data is requested.

Depending on the result of this analysis, tasks to prepare, copy-in, execute, and check copy-out

status are inserted into the schedule by the compiler.

3.5.3 Runtime System

This section describes the runtime tasks, the workstealing model for CPU tasks, the work-pushing

model for GPU tasks, and the integration of the two models. Figure 3.6 presents an overview of

the different parts of the system that will be described in this section.

65

Task Model for GPUs

The PetaBricks runtime uses a workstealing mechanism similar to the one introduced in Cilk [67],

however, unlike Cilk, the PetaBricks task model supports arbitrary (non-cyclic) dependency graphs

between tasks. To support this, dynamic dependency pointers are maintained from each incomplete

task to those tasks that depend on it. When a task completes, it may return a continuation task to

which all of its dependents are forwarded. Since task dependencies for dependent tasks are created

in parallel to a task being executed, some care must be taken when managing tasks. Each task has

a state, a count of dependencies, and a list of pointers to dependent tasks. A task can be in one of

5 states:

• new task is the initial state for a task. Dependencies may only be added to a task while

it is in the new state, and those tasks that the new task depends on have to be tasks not

already in the complete state. Adding a dependency to a task atomically increments the

task’s dependency count and adds the task to the appropriate dependents lists, following any

needed continuation pointers. When dependency creation is finished, the task transitions to

a runnable task if its dependency count is zero, otherwise to a non-runnable task.

• non-runnable task is the state for tasks whose dependency count is greater than zero. These

tasks are waiting for other tasks to complete. Non-runnable tasks are stored only in the

dependents lists of other tasks and are not stored in any central or thread-specific location.

The task completion that eventually decrements the dependency count from one to zero is

responsible for enqueuing the task in its thread-local deque.

• runnable task is the state for tasks that have zero dependencies and can be executed. These

tasks are either being executed or are in exactly one thread-local deque of tasks. Runable

tasks can be stolen. When executed, if the task returns a continuation task, it transitions

into the continued state, otherwise, it transitions to the complete state.

• complete task is the state for tasks that have already been executed and did not result in a

continuation task. When a task becomes complete, it decrements the dependency count of

66

(1)

(2)

(3)

GPU Manager
2
5
7

CPU Worker
1
4

GPU Manager
2
5

3

6 7

CPU Worker
4
6

CPU Worker
4
6

3

GPU Manager
5

7
3

(a) A GPU task is always pushed
to the bottom of the GPU manage-
ment thread’s queue.

CPU Worker
1
4

GPU Manager
2
5

3

6 7

CPU Worker
4
6

GPU Manager
5
7

CPU Worker
4
6

GPU Manager
7

3

3

(1)

(2)

(3)

(b) The GPU management thread
pushes a CPU task to the bottom
of a random CPU worker’s deque.

(1)

(2)

(3)

CPU Worker
1
4

GPU Manager
2
5

3

6 7

CPU Worker
4
6

GPU Manager
5
7

CPU Worker
3
6

GPU Manager
5

3

7

(c) A CPU worker pushes a CPU
task to the top of its own deque.

Figure 3.7: Three different cases when a task become runnable. The events progress from (1) to
(3). Green tasks are GPU non-runnable tasks. Grey tasks are CPU non-runnable tasks.

each of its dependents and enqueues any dependent that becomes runnable. The dependents

list is then cleared. Any subsequent attempt to depend on this task results in a no-op.

• continued task is the state for tasks that have been executed and returned a continuation.

When a task enters the continued state a pointer is stored to the continuation task and the

dependents list is transferred to the continuation task. Subsequent attempts to depend on

this task instead depend on the continuation task (and possibly, recursively, a continuation

of the continuation task).

GPU Management Thread and GPU Tasks

In this highly decentralized model, managing a GPU accelerator presents some challenges. First,

for performance, it is important to overlap data transfer operations with computation. Second, one

does not want to have many worker threads blocking and waiting for GPU operations to complete.

To address these challenges, we add a dedicated GPU management thread that is responsible

for keeping track of all data that resides in GPU memory and schedule operations on the GPU. It

operates using the same task representation as CPU threads’, allowing dependencies between GPU

67

and CPU tasks. A tasks is marked as either GPU or CPU task. We use workstealing scheme to

manage CPU tasks, but work-pushing scheme to handle GPU tasks. CPU worker threads’ deques

can only contain CPU tasks, and the GPU management thread’s FIFO queue can only contain

GPU tasks.

Figure 3.7 depicts what happens when a task becomes runnable in different scenarios. We define

the term cause as follow. Task A causes task B to become runnable when task A satisfies the last

dependency of task B; more precisely, task A decrements the dependency count of task B to zero.

When a GPU task becomes runnable, it is pushed to the bottom of the GPU management thread’s

queue as shown in Figure 3.7(a). When a GPU task causes a CPU task to become runnable, the

GPU management thread chooses a random CPU worker and pushes the task to the bottom of that

thread’s deque as shown in Figure 3.7(b). When a CPU task causes another CPU task to become

runnable, the CPU worker that runs the former task pushes the newly runnable task to the top of

its own local deque as shown in Figure 3.7(c).

There are four classes of GPU tasks that are run by the GPU management thread. For each

execution of a GPU kernel, there are one prepare task, zero or more copy-in tasks, one execute task,

and zero or more copy-out completion tasks.

• Prepare tasks allocate buffers on the GPU, and update metadata for GPU execution.

• Copy-in tasks copy the required input data to the GPU. One copy-in task is responsible for

one input. This task performs a non-blocking write to a GPU buffer and becomes a complete

immediately after the call, so the GPU manager thread does not have to wait and can execute

the next task in its queue right away.

• Execute tasks initiate the asynchronous execution of the kernel, perform non-blocking reads

from GPU buffers to must copy-out regions, and put may copy-out regions into pending

storage.

• Copy-out completion tasks check the status of the non-blocking reads called by the execute

task. If the status of a read is complete, the copy-out completion task corresponding to that

68

output data transitions to the complete state. If the read is not complete, the GPU manager

thread pushes the task back to the end of its queue.

There is no dependency between GPU tasks because the GPU management thread only runs

one task at a time; the GPU tasks associated to one GPU kernel execution only need to be enqueued

by following order: prepare, copy-in, execute, and copy-out completion, to ensure the correctness.

However, CPU tasks may depend on GPU copy-out completion tasks.

3.5.4 Memory Management

GPU memory is allocated and managed by the GPU management thread. The GPU management

thread keeps a table of information about data stored in the GPU. Each region stored on the

GPU can either be a copy of a region of a matrix in main memory or an output buffer for newly

computed data that must eventually be copied back to main memory. The GPU management

thread is responsible for releasing buffers that become stale because the copy in main memory has

been written to and for copying data back to main memory when the data is needed or when it

has been flagged for eager copy-out.

The memory management process includes various optimizations to minimize data transfer

between the GPU and the CPU. Before we further explain our implementation, the term matrix

and region should be clarified. A matrix is an input or an output of a transform, and is an n-

dimensional dense array of elements. A region is a part of a matrix, defined by a start coordinate

and size that is an input or an output of a rule.

Copy-in Management Before the GPU management thread executes a copy-in task, it will

check whether the data is already on the GPU. It can already be on the GPU either if it was copied

in for another task execution or if it was the output of another task on the GPU. If all data that

will be copied in by the task is already on the GPU, then the GPU management thread will change

the status of that copy-in task to complete without actually executing the task, otherwise it will

perform the required copy.

69

Copy-out Management A single output matrix might be generated by multiple rules in a

transform. For example, one task might generate the interior elements of a matrix and other tasks

will generate the edges and corners. Instead of creating multiple small buffers on the GPU for these

multiple rule outputs, it is often more efficient to create one big buffer for the entire matrix and have

the individual tasks output to regions of this buffer. Creating one buffer will take less time than

creating multiple buffers because there is an overhead associated with each read from GPU memory,

and copying out multiple regions individually requires extra copying to consolidate the data back

to the original buffer. It is also possible that some regions of a matrix will be generated on the

CPU while others will be generated on the GPU. Our code generation and memory management

needs to handle these more complex cases to keep track of which regions of a matrix have been

written.

In order to apply this optimization, we use a static analysis for each possible schedule to

determine which regions of the matrix are generated on the GPU. The GPU management thread

will wait until all of the individual regions have been computed to change the state of the larger

matrix.

CPU-GPU Work Balancing If a rule can be run on GPU, choices of how much data should

be computed on the GPU are presented to our autotuner. At the extremes, the entire rule could

computed on the GPU, or the entire rule could be computed on the CPU. We implement the

CPU-GPU work balancing feature by having the autotuner pick a CPU/GPU ratio that defines

how much of the data should be computed on each device. This ratio can be set in fixed 1/8th

increments. The GPU-CPU ratio shared among all the rules in the same transform because they

compute the same matrix but different regions. The system divides the matrix so that the first

part is on GPU and the second part is on CPU.

3.5.5 GPU Choice Representation to the Autotuner

The compiler exposes four classes of GPU choices to the autotuner. First, there is the decision of if

and when to use the GPU. This is encoded as an algorithmic choice in the selectors constructed by

the autotuner. The autotuner can construct selectors that use the GPU for some input sizes and not

70

others. The autotuner can also construct poly-algorithms that run some parts of the computation

on the GPU and other parts on the CPU.

The second type of choice is memory mapping from PetaBricks code to OpenCL. The choice

indicates whether or not to use the local memory of the device when possible. This choice exists

only if the OpenCL kernel with local memory version of a rule is generated. This is also mapped

to an algorithmic choice using a selector constructed by to autotuner.

The third type is the number of work-items in the work-groups (or so called local work size)

of each OpenCL kernel, since assigning the right local work size is a common optimization for

GPU computing. These parameters are mapped to tunable values that the autotuner can explore

independently of algorithmic choices.

The final one is GPU-CPU workload ratio of each transform, which defines what percentage

of a region should be computed on the GPU. To limit the search space size, the possible ratios

restricted to multiples of 1/8.

In a big picture, every transform provides 12 levels of algorithmic choices for 12 different ranges

of input sizes. Note that all levels of the same transform have the same number of algorithmic

choices. For example, in SeparableConvolution configuration, each level of each Convolve*

transform has three possible choices: using CPU backend, using OpenCL backend with global

memory only, and using OpenCL backend with local memory optimization. Each Convolve* has

two OpenCL kernels, so each of them has its own tunable parameters for local work size and GPU-

CPU workload ratio. Apart from OpenCL related parameters, the configuration also includes other

parameters such as split size for CPU work-stealing model, number of execution threads on CPU,

and a sequential/parallel cutoff.

Challenges with Runtime Kernel Compilation

The PetaBricks autotuning approach runs large numbers of tests on small input sizes in order to

quickly explore the choice space and seed exploration for larger input sizes. With only the CPU,

these tests on small input sizes are very cheap and greatly improve convergence time. However,

with our OpenCL backend these small tests take a much larger amount of time, because OpenCL

71

kernels are compiled dynamically at runtime. These kernel compiles represent a fixed startup cost,

often on the order of a few seconds, that dominate execution time for small input sizes. This factor

increases autotuning time.

To address this problem we use two techniques. First, we cache the intermediate representation

(IR) used by the OpenCL compiler. The first time we run a program, we store the OpenCL

runtime-specific IR for each compiled kernel with the hash of the source for that kernel. This IR

is reused in subsequent executions in order to skip the parsing and optimization phases of kernel

compilation. Second, we adjusted the parameters of the autotuner so that it runs fewer tests at

small input sizes. This involved both skipping extremely small input sizes entirely and running

fewer tests on the smaller input sizes we do use. The result of these optimizations reduced typical

training times from many days for some benchmarks to an average of 5.2 hours. This training

time is still heavily influenced by architecture-specific JITing, which OpenCL does not allow to be

cached. Full binary caching, as allowed by other languages such as CUDA, would further reduce

training times.

3.6 Choice Space Representation

We will now discuss two important building blocks that will be required by the autotuner (described

in Chapter 6), choice configuration files and mutator functions, before discussing the individual

phases of the autotuner.

3.6.1 Choice Configuration Files

The PetaBricks compiler and autotuner represents different possible candidate algorithms through

configuration files representing an assignment of decisions to all available choices. Broadly, one can

divide the choices contained in the configuration file into the following categories.

• Decision trees to decide which algorithm to use for each choice site, accuracy, and input

size.

72

• Cutoffs values. For example, switching points from a parallel work stealing scheduler to

sequential code or the blocking sizes for data parallel operations.

• Switches. For example, the type of storage for intermediate data.

• Synthesized functions. A function from a dynamic input size to a value. For example,

how many iterations in a for enough loop, which may be different depending on the size of

data the loop is operating on. The autotuner sets a fixed number of values of this function

and other values are filled in through interpolation.

• User defined parameters.

These choice configuration files will be used heavily by the PetaBricks autotuner which will be

described in Chapter 6.

3.7 Deadlocks and Race Conditions

Another typical problem in hand written parallel code is deadlocks. Deadlocks cannot occur in

PetaBricks because the program’s dependency graph is fully analyzed at compile time. Potential

deadlocks manifest themselves as a cycle in the graph, and the PetaBricks compiler detects this

cycle and reports an error to user. This deadlock freedom guarantee, when using only the core

PetaBricks language, is a great advantage. When external code, written in other languages, is

called from PetaBricks, it is the programmers responsibility to ensure that the program executes

without deadlocks.

Similar to deadlocks, race conditions cannot exist in PetaBricks, except when caused by

externally called code written in other languages. Since PetaBricks is implicitly parallel, the

programmer cannot manually specify that two operations should run in parallel. Instead, analysis

is performed by the compiler and tasks that do not depend on each other are automatically

parallelized. If a race condition were to exist, then the compiler would see that dependency edge

and not run the two tasks in parallel.

73

3.8 Automated Consistency Checking

A side benefit of having multiple implementations of algorithms for solving the same problem is that

the compiler can check these algorithms against each other to make sure they produce consistent

results. This helps the user to automatically detect bugs and increase confidence in code correctness.

This automated checking makes it advisable to include a slow reference implementation as a choice

so that faster choices can be checked against it.

This consistency checking happens during autotuning when a special flag is set. The autotuner,

by design, is already exploring the space of possible algorithms to find one that performs the best.

The consistency checking merely uses a fixed input during each autotuning round and ensures

that the same output is produced by every candidate algorithm. While not provably correct, this

technique provides good testing coverage. Notably, this technique also focuses more testing on the

candidate algorithms that are actually used as the autotuner hones in on an optimal choice. Some

of our benchmarks use iterative approaches that do not produce exact answers. To support such

code, our automated checker takes a threshold argument where differences below that threshold

are ignored.

74

Chapter 4

Benchmarks and Experimental

Analysis

In this section, we describe a set of benchmarks we implemented to illustrate the capabilities of

the PetaBricks compiler. The benchmarks were chosen to be relevant, widely applicable scientific

and computing kernels: solving Poisson’s equation, the symmetric tridiagonal eigenvalue problem,

sorting, and dense matrix multiply. The Poisson’s equation solver benchmark is described in detail

in Chapter 5.

The benchmarks described in this chapter will demonstrate the benefits of algorithmic choice.

We will show how different algorithms are required to get performance on different systems, and

show how PetaBricks programs can adapt to fit their environment.

Results were gathered on a 8-way (dual socket, quad core) Intel Xeon E7340 system running

at 2.4 GHz. The system was running 64 bit CSAIL Debian 4.0 with Linux kernel 2.6.18 and GCC

4.1.2.

75

4.1 Fixed Accuracy Benchmarks

4.1.1 Symmetric Eigenproblem

The symmetric eigenproblem is another problem with broad applications in areas such as mechanics,

quantum physics and structural engineering. Given a symmetric n × n matrix, we want to find

its eigenvalues and/or eigenvectors. Deciding on which algorithms to use depends on how many

eigenvalues to find and whether eigenvectors are needed. Here we study the problem in which all

the eigenvalues and eigenvectors are computed.

Algorithms and Choices

To find all the eigenvalues and eigenvectors of a symmetric matrix, we examine the use of three

primary algorithms, QR iteration, Bisection and inverse iteration, and Divide-and-conquer. The

input matrix A is first reduced to A = QTQT , where Q is orthogonal and T is symmetric

tridiagonal. All the eigenvalues and eigenvectors of T are then computed by the algorithm chosen.

The eigenvalues of A and T are equal. The eigenvectors of A are obtained by multiplying Q by

the eigenvectors of T . The total work needed is O(n3) for reduction of the input matrix and

transforming the eigenvectors, and the cost associated with each algorithm [52].

The QR iteration applies the QR decomposition iteratively until T converges to a diagonal

matrix. It computes all the eigenvalues and eigenvectors in O(n3) operations.

Bisection, followed by inverse iteration, finds k eigenvalues and the corresponding eigenvectors

in O(nk2) operations, resulting in a complexity of O(n3) for finding all eigenvalues and eigenvectors.

This algorithm is based on a simple formula to count the number of eigenvalues less than a given

value. Each eigenvalue and eigenvector thus can be computed independently, making the algorithm

“embarrassingly parallel”.

The eigenproblem of tridiagonal T can also be solved by a divide-and-conquer approach. The

eigenvalues and eigenvectors of T can be computed using the eigenvalues and eigenvectors of two

smaller tridiagonal matrices, and this can be done recursively. Divide-and-conquer requires O(n3)

work in the worst case.

76

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

T
im

e
(s

)

Input Size

Bisection
DC
QR

Cutoff 25
Autotuned

Figure 4.1: Performance for Eigenproblem on 8 cores. “Cutoff 25” corresponds to the hard-coded
hybrid algorithm found in LAPACK.

EIG(T)

1: either
2: Use QR to find Λ and X
3: Use BISECTION to find Λ and X
4: Recursively call EIG on submatrices T1 and T2 to get Λ1, X1, Λ2 and X2. Use results to

compute Λ and X.
5: end either

Figure 4.2: Pseudo code for eigenvector solve.

The PetaBricks transforms for these three primary algorithms are implemented using LAPACK

routines, as is MATLAB polyalgorithm eig. Our optimized hybrid PetaBricks algorithm computes

the eigenvalues Λ and eigenvectors X by automating choices of these three basic algorithms. The

pseudo code for this is shown in Figure 4.2. There are three algorithmic choices, two non-recursive

and one recursive. The two non-recursive choices are QR iterations, or bisection followed by inverse

iteration. Alternatively, recursive calls can be made. At the recursive call, the PetaBricks compiler

will decide the next choices, i.e. whether to continue making recursive calls or switch to one of the

non-recursive algorithms. Thus the PetaBricks compiler chooses the optimal cutoff for the base

case if the recursive choice is made. After autotuning, the best algorithm choice was found to be

77

divide-and-conquer for matrices larger than 48, and switching to QR iterations when the size of

matrix n ≤ 48.

Performance

We implemented and compared the performance of five algorithms in PetaBricks: QR iterations,

bisection and inverse iteration, divide-and-conquer with base case n = 1, divide-and-conquer

algorithm with hard-coded cutoff at n = 25, and our autotuned hybrid algorithm. In figure 4.1,

these are labelled QR, Bisection, DC, Cutoff 25 and Autotuned respectively. The input matrices

tested were random symmetric tridiagonal. Our autotuned algorithm runs faster than any of the

three primary algorithms alone (QR, Bisection and DC). It is also faster than the divide-and-

conquer strategy which switches to QR iteration for n ≤ 25, which is the underlying algorithm of

the LAPACK routine dstevd [6].

4.1.2 Sort

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 250 500 750 1000 1250 1500 1750

T
im

e
(s

)

Input Size

InsertionSort
QuickSort
MergeSort
RadixSort
Autotuned

Figure 4.3: Performance for sort on 8 cores.

For the problem of sorting, we implemented the following algorithms in PetaBricks: insertion

sort; quick sort; n-way merge sort (when n equals 2, merge sort employs a recursive merge routine

78

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

T
im

e
(s

)

Input Size

Basic
Blocking

Transpose
Recursive

Strassen 256
Autotuned

Figure 4.4: Performance for Matrix Multiply on an 8 cores. “Strassen 256” uses strassen algorithm
to decompose until n=256 when it switches to basic matrix multiply.

that can also be parallelized), where the compiler can select n; and a 16 bucket radix sort (a MSD

variant that can recursively call any sorting algorithm). All of the algorithms are recursive except

for insertion sort. Each of these algorithms recursively calls a generalized sort transform, which

allows the compiler to switch algorithms at any level.

Figure 4.3 shows the performance for sort on 8 cores. Our autotuner was able to achieve

significant performance improvements over any single algorithm. Surprisingly, the autotuned

composite algorithm did not utilize radix sort, despite it being the second fastest algorithm. Instead,

it built a hybrid algorithm using first 2-way merge sort, followed by quicksort, followed by a call

to insertion sort for smaller inputs. The sharp bend in performance for merge sort occurs at 1024

where the binary tree of merges grows from 10 to 11 levels. If the graph is extended to larger

inputs, merge sort’s performance forms a step ladder. When merge sort is used in a autotuned

hybrid algorithm this step ladder performance pattern disappears.

79

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Threads

Autotuned Matrix Multiply
Autotuned Sort

Autotuned Poisson
Autotuned Eigenvector Solve

Figure 4.5: Parallel scalability. Speedup as more worker threads are added. Run on an 8-way
(2 processor × 4 core) x86 64 Intel Xeon System.

4.1.3 Matrix Multiply

The PetaBricks code for matrix multiply can be found in the introduction (Figure 2.3). The

compiler also considers non-algorithmic choices including: transposing each of the inputs; various

blocking strategies; and various parallelization strategies. For matrix multiply, these non

algorithmic choices make a huge impact.

Figure 4.4 shows performance for various versions of matrix multiply. Since the non-algorithmic

optimizations (blocking and transposing) made a large difference performance of those optimizations

are also shown. The series labeled “Recursive” is the recursive decomposition in the “c”. The

autotuned algorithm uses a mixture of blocking, transpose, and the recursive decomposition.

4.2 Autotuning Parallel Performance

A great advantage of PetaBricks is that it allows a single program to be optimized for both sequential

performance and parallel performance. We have observed our autotuner make different choices when

training in parallel. As a general trend we noticed much lower cutoffs to bases cases in sequential

80

programs. In many cases entirely different algorithms are chosen. Of particular note is the fact

that algorithms tuned on 8 cores scale much better than algorithms tuned on 1 core.

As an example, when tuning sort on 1 core our autotuner picks radix sort with a cutoff of 98

where it switches to 4-way merge sort after which it finishes with insertion sort at a cutoff of 75.

When tuned using 8 cores the autotuner decides to use the 2-way-merge sort (with a parallelizable

recursive merge) function until the input is smaller than 1420, after which it switches to quick sort.

Finally, at inputs smaller than 600, it switches to insertion sort. When both algorithms are run

using 8 cores, the algorithm tuned on 8 cores performs 2.14x faster than the algorithms tuned on

1 core (as seen in Table 4.1).

4.3 Effect of Architecture on Autotuning

Trained on
Mobile Xeon 1-way Xeon 8-way Niagara

R
u

n
on

Mobile - 1.09x 1.67x 1.47x
Xeon 1-way 1.61x - 2.08x 2.50x
Xeon 8-way 1.59x 2.14x - 2.35x

Niagara 1.12x 1.51x 1.08x -

Table 4.1: Slowdown when trained on a setup different than the one run on. Benchmark is sort on
an input size of 100,000. Slowdowns are relative to training natively. Descriptions of abbreviated
system names can be found in Table 4.2.

Abbreviation System Frequency Cores used Scalability Algorithm Choices (w/ switching points)

Mobile Core 2 Duo Mobile 1.6 GHz 2 of 2 1.92 IS(150) 8MS(600) 4MS(1295) 2MS(38400) QS(∞)

Xeon 1-way Xeon E7340 (2 x 4 core) 2.4 GHz 1 of 8 - IS(75) 4MS(98) RS(∞)

Xeon 8-way Xeon E7340 (2 x 4 core) 2.4 GHz 8 of 8 5.69 IS(600) QS(1420) 2MS(∞)

Niagara Sun Fire T200 Niagara 1.2 GHz 8 of 8 7.79 16MS(75) 8MS(1461) 4MS(2400) 2MS(∞)

Table 4.2: Automatically tuned configuration settings for the sort benchmark on various
architectures. We use the following abbreviations for algorithm choices: IS = insertion sort;
QS = quick sort; RS = radix sort; 16MS = 16-way merge sort; 8MS = 8-way merge sort; 4MS = 4-
way merge sort; and 2MS = 2-way merge sort, with recursive merge that can be parallelized. The
cutoff point to switch to each algorithm is shown within parentheses.

Multicore architectures have drastically increased the processor design space resulting in a

large variety of processor designs currently on the market. Such variance significantly hinders

porting efforts of performance critical code. In this section, we present the results of PetaBricks

81

autotuner when optimizing our sort benchmark on three parallel architectures designed for a variety

of purposes: Intel Core 2 Due mobile processor, Intel Xeon E7340 server processor, and the Sun

Fire T200 Niagara low power high throughput server processor.

Table 4.1 illustrates the necessity of tuning your program for the architecture that you plan to

run on. When autotuning our sort benchmark, we found that configurations trained on a different

setup than they are run on exhibit significant slowdowns. For example, even though they have the

same number of cores, the autotuned configuration file from the Niagara machine results in a 2.35x

loss of performance when used on the Xeon processor. On average we observed a slowdown of 1.68x

across all of the systems we tested.

Table 4.2 displays the optimal configurations for the sort benchmark after running the same

autotuning process on the three architectures. It is interesting to note the dramatic differences

between the choice of algorithms, composition switching points, and scalability. The Intel

architectures (with larger computation to communication ratios) appear to perform better when

PetaBricks produces code with less parallelism, suggesting that the cost of communication often

outweighs any benefits from running code containing fine-grained parallelism. On the other hand,

the Sun Niagara processor performs best when executing code with lots of parallelism as shown by

the exclusive use of recursive algorithms.

4.4 Variable Accuracy Benchmarks

In this section, we describe a number variable accuracy benchmarks that we implemented to test

the efficacy variable accuracy algorithms in PetaBricks. The Poisson and Helmholtz benchmarks

are described in detail in Chapter 5.

Many variable accuracy benchmarks are input sensitive. For these experiments we test and

train on (different) random inputs taken from a single distribution. Chapter 7 will revisit many

of these benchmarks in the context of input sensitivity and discuss how to classify and adapt to

different types of program inputs.

82

4.4.1 Bin Packing

Bin packing is a classic NP-hard problem where the goal of the algorithm is to find an assignment

of items to unit sized bins such that the number of bins used is minimized, no bin is above capacity,

and all items are assigned to a bin. It is an interesting problem because, while finding the optimal

assignment is NP-hard, there are a number of polynomial time approximation algorithms that each

provides different levels of approximation and performance.

The bin packing benchmark demonstrates the ability of our system to handle a large number

of algorithmic choices. Variable accuracy is attained primarily through using different algorithms.

We implemented 13 well known bin packing algorithms:

• FirstFit – Iterate through the items, placing each in the first bin that has capacity. This

will use no more than 17/10×OPT bins in the worst case where OPT is the number of bins

used in an optimal packing.

• FirstFitDecreasing – Reverse-sort the items and call FirstFit. Sorting the items before

applying FirstFit reduces the worst case bounds to 10/9×OPT .

• ModifiedFirstFitDecreasing – A variant of FirstFitDecreasing that classifies items into

categories to improve the provable accuracy bound to 71/60 from optimal [83].

• BestFit – Iterate through the items, placing each in the most-full bin that has capacity. This

has the same worst case packing performance as FirstFit.

• BestFitDecreasing – Reverse-sort the items and call BestFit. This has the same worst

case packing performance as FirstFitDecreasing.

• LastFit – Iterate through the items, placing each in the last nonempty bin that has capacity.

• LastFitDecreasing – Reverse-sort the items and call LastFit.

• NextFit – Iterate through the items, placing each in the last nonempty bin if possible,

otherwise start a new bin. This has been shown to perform 2×OPT in the worst case.

• NextFitDecreasing – Reverse-sort the items and call NextFit.

83

• WorstFit – Iterate through the items, placing each in the least-full nonempty bin that has

capacity.

• WorstFitDecreasing – Reverse-sort the items and call WorstFit.

• AlmostWorstFit – A variant of WorstFit, that instead puts items in the kth-least-full

bin. AlmostWorstFit by definition sets k = 2, but our implementation generalizes it and

supports a variable compiler-set k. This has the same worst case packing performance as

FirstFit.

• AlmostWorstFitDecreasing – Reverse-sort the items and call AlmostWorstFit.

For more information on bin packing see [50].

To train this benchmark, we generate training data by dividing up full bins into a number of

items such that the resulting distribution of item sizes matches that of a distribution of interest to

us. Using this method, we can construct an accuracy metric that measures the relative performance

of an algorithm to the optimal packing at training time, without the need for an exponential search.

In this way, we are able to efficiently autotune the benchmark for a particular distribution of item

sizes with an effective accuracy metric.

4.4.2 Clustering

Clustering divides a set of data into clusters based on similarity. The problem of k-clustering is

NP-hard when k is fixed. Clustering is a common technique for statistical data analysis in areas

including machine learning, pattern recognition, image segmentation and computational biology.

We implemented a variant of Lloyd’s algorithm for k-means clustering. Our implementation gives

the autotuner multiple choices for creating initial assignments of clusters, including random and

k-means++ [19].

In our PetaBricks transform, the number of clusters, k, is the accuracy variable to be determined

on training. Several algorithmic choices are implemented in our version of k-means clustering: The

initial set of k cluster centers are either chosen randomly among the n data points, or according to

the k-means++ algorithm [19], which chooses subsequent centers from the remaining data points

84

with probability proportional to the distance squared to the closest center. Once the initial cluster

centers are computed, the final cluster assignments and center positions are determined by iterating,

either until a fixed point is reach or in some cases when the compiler decides to stop early.

The training data is a randomly generated clustered set of n points in two dimensions. First,
√
n

“center” points are uniformly generated from the region [−250, 250]× [−250, 250]. The remaining

n−
√
n data points are distributed evenly to each of the

√
n centers by adding a random number

generated from a standard normal distribution to the corresponding center point. The optimal

value of k =
√
n is not known to the autotuner.

Rather than assigning a fixed k through a heuristic (such as the commonly used k =
√
n),

we define k as an accuracy variable and allow the autotuner to set it. This allows the number of

clusters to change based on how compact clusters the user of the algorithm requests through the

accuracy requirement. This implicitly ties the tuned algorithm to the distribution of inputs being

run on. We explore adapting to specific program inputs in Chapter 7.

The accuracy metric used is
√

2n∑
D2

i
, where Di is the Euclidean distance between the i-th data

point and its cluster center. The reciprocal is chosen such that a smaller sum of distance squared

will give a higher accuracy.

4.4.3 Image Compression

Our image compression benchmark performs Singular Value Decomposition (SVD) on an m × n

matrix. SVD is major component in some image compression algorithms [152]. For any m×n real

matrix A with m ≥ n, the SVD of A is A = UΣV T . The columns ui of the matrix U , the columns

vi of V , and the diagonal values σi of Σ (singular values) form the best rank-k approximation of A,

given by Ak =
∑k

i=1 σiuiv
T
i . Only the first k columns of U and V and the first k singular values σi

need to be stored to reconstruct the image approximately.

The SVD of a square matrix A can be computed using the eigenvalues and eigenvectors of the

matrix H = [0 AT ;A 0]. The number of singular values, k, to be used in the approximation is

the accuracy variable to be determined by the PetaBricks autotuner. The transform for matrix

approximation consists of a hybrid algorithm for finding all eigenvalues and eigenvectors, which

85

combines Divide and Conquer, QR Iteration, and Bisection method. Another algorithmic choice

exposed is using the Bisection method for only k eigenvalues and eigenvectors. The accuracy metric

used is the ratio between the RMS error of the initial guess (the zero matrix) to the RMS error of

the output compared with the input matrix A, converted to log-scale.

4.4.4 Preconditioned Iterative Solvers

Solving a linear system of equations Ax = b is a common problem in both scientific research and

real-world applications such as cost optimization and asset pricing. Iterative methods are often used

to provide approximate solutions as direct solvers are usually too slow to produce exact solutions.

Preconditioning is a technique that speeds up the convergence of an iterative solver.

The convergence of a matrix iteration depends on the properties of the matrix A, one of which

is called the condition number. A preconditioner P of a matrix A is a matrix that if well chosen,

the condition number of P−1A is smaller than that of A. Solving the preconditioned system

P−1Ax = P−1b gives the same solution, but the rate of convergence improves. Achieving a faster

convergence rate while keeping the operation of P−1 simple to compute is the key to finding a good

preconditioner.

Our preconditioner PetaBricks transform implements three choices of preconditioners and

solves the system. The first choice is the Jacobi preconditioner coupled with Preconditoned

Conjugate Gradient (PCG). The preconditioner is chosen to be the diagonal of the matrix P =

diag(A). Another choice is to apply the polynomial preconditioner P−1 = p(A), where p(A) is an

approximation of the inverse of A by using a few terms of the series expansion of A−1, and solve

the preconditioned system with PCG. We also implemented the Conjugate Gradient method (CG)

which solves the system without any preconditioning. The accuracy metric is the ratio between the

RMS error of the initial guess Axin to the RMS error of the output Axout compared to the right

hand side vector b, converted to log-scale.

86

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 1.01
Accuracy Level 1.1
Accuracy Level 1.2
Accuracy Level 1.3
Accuracy Level 1.4

(a) Bin Packing

 1

 2

 4

 8

 10 100 1000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 0.95
Accuracy Level 0.75
Accuracy Level 0.50
Accuracy Level 0.20
Accuracy Level 0.10
Accuracy Level 0.05

(b) Clustering

 1

 2

 4

 8

 16

 32

 10 100 1000 10000 100000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 109

Accuracy Level 107

Accuracy Level 105

Accuracy Level 103

Accuracy Level 101

(c) Helmholtz

 1

 2

 4

 8

 16

 32

 10 100 1000 10000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 2.0
Accuracy Level 1.5
Accuracy Level 1.0
Accuracy Level 0.8
Accuracy Level 0.6
Accuracy Level 0.3

(d) Image Compression

 1

 2

 4

 8

 16

 32

 64

 100 1000 10000 100000 1e+06

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 109

Accuracy Level 107

Accuracy Level 105

Accuracy Level 103

Accuracy Level 101

(e) Poisson

 1

 2

 4

 8

 10 100 1000 10000

S
pe

ed
up

 (
x)

Input Size

Accuracy Level 3.0
Accuracy Level 2.0
Accuracy Level 1.5
Accuracy Level 1.0
Accuracy Level 0.5
Accuracy Level 0.0

(f) Preconditioner

Figure 4.6: Speedups for each accuracy level and input size, compared to the highest accuracy level
for each benchmark. Run on an 8-way (2× 4-core Xeon X5460) system.

87

4.5 Experimental Results

Figures 4.6(a)-4.6(f) show the speedups that are attainable when a user is in a position to use an

accuracy lower than the maximum accuracies of our benchmarks. On the largest tested input

size, for benchmarks such as Clustering and Preconditioner speedups range from 1.1 to 9.6x;

for benchmarks such as Helmholtz, Image Compression, and Poisson speedups range from 1.3

to 34.6x; and for the Bin Packing benchmark speedups ranged from 1832 to 13789x. Such dramatic

speedups are a result of algorithmic changes made by our autotuner that can change the asymptotic

performance of the algorithm (O(n) vs O(n2)) when allowed by a change in desired accuracy level.

Because of this, speedup can become a function of input size and will grow arbitrarily high for larger

and larger inputs. These speedups demonstrate some of the performance improvement potentials

available to programmers using our system.

4.5.1 Analysis

This section provides more detailed analysis of the impact of accuracy on algorithmic choice and

of programmability. We observed similar behaviours for the other benchmarks. Further analysis of

many of these benchmarks is provided in Chapter 7 in the context of adapting these benchmarks

to different inputs.

Bin Packing Figure 4.7 depicts the results of autotuning the Bin Packing benchmark for various

desired accuracy levels (average number of bins used over the optimal). For any desired accuracy

between 1 and 1.5, the figure indicates the approximation algorithm that performs fastest on

average, for input data sizes between 8 and 220 generated by our training data generator. The results

show that each of the 13 approximation algorithms used by the benchmark perform fastest for some

areas of the accuracy/data size space. This presents a major challenge to developers seeking high

performance when using today’s programming languages since there exists no clear winner among

the algorithms. Instead, the best choice will depend on the desired accuracy and input size. Thus,

when writing a Bin Packing library, today’s high performance programmers have the option of

either producing a brittle special-casing of the algorithmic choices manually (which would be very

88

Figure 4.7: Best algorithm for each accuracy and input size in the Bin Packing benchmark. By best
we mean on the optimal frontier (there exists no algorithm with better performance and accuracy
for a given input size on average). Accuracy is defined as the number of bins over the optimal
number of bins achievable. Lower numbers represents a higher accuracy.

tedious given the number of well performing choices), or break the algorithm’s abstraction to let

the user specify which choice to go with. Either of the two options are undesirable.

It is also interesting to note the relatively poor performance of ModifiedFirstFitDecreasing,

despite the fact that it has the best provable accuracy bounds out of the set algorithms. It is

best in only three small areas in the accuracy/data size space. Additionally, despite the fact that

it is provably guaranteed to be within 71/60 (1.18×) of optimal, it is never the best performing

algorithm when a probabilistic bound of worse than 1.07× accuracy is desired. This result highlights

89

Accuracy k Initial Center Iteration Algorithm

0.10 4 random once

0.20 38 k-means++ 25% stabilize

0.50 43 k-means++ once

0.75 45 k-means++ once

0.95 46 k-means++ 100% stabilize

Figure 4.8: Algorithm selection and initial k value results for autotuned k-means benchmark for
various accuracy levels with n=2048 and k source= 45

the advantages of using a empirical approach to determining optimal algorithms when probabilistic

guarantees on accuracy are permissible.

Clustering Figure 4.8 illustrates the results of autotuning our k-means benchmark on our sample

input of size n = 2048. The results show interesting algorithmic choices and number of clusters

k chosen by the autotuner. For example, at accuracies greater than 0.2, the autotuned algorithm

correctly uses the accuracy metric (
√

2n∑
D2

i
) to construct an algorithm that picks a k value that is

close to 45, which is the number of clusters generated by our training data (which is not known to

the autotuner).

At accuracy 0.1, the autotuner determines 4 to be the best choice of k and chooses to start

with a random cluster assignment with only one level of iteration. While this is a very rough

estimate of k and a very rough cluster assignment policy, it is sufficient to achieve the desired low

level of accuracy. To achieve accuracy 0.2, the autotuner uses 38 clusters, which is slightly less

than the predetermined value. Our autotuned algorithm determines the initial cluster centers by

k-means++, and iterates until no more than 25% of the cluster assignments change. For accuracy

0.5 and 0.75, the ks picked by the autotuner algorithm are 43 and 45 respectively, which are only

slightly smaller or equal to the predetermined k. The initial centers are decided by k-means++

and only one iteration is used. By successfully finding a number of clusters that is close to the

predetermined k and picking good initial centers, only one iteration is needed on average during

training to achieve a high level of accuracy. Finally, to achieve the highest accuracy of 0.95, the

algorithm uses k value of 46. Initial centers are determined by k-means++ and iterations are

90

performed until a fixed point is reached. It is interesting to note that on average, the autotuner

finds that a value of k that is one higher than the k used to generate the data, is best to minimize

the user specified accuracy metric,

4.5.2 Programmability

While determining the programmer productivity of a new language can be quite challenging, our

anecdotal experience has shown that our extensions greatly simplify the task of programming

variable accuracy code. We have written a variable accuracy version of the 2D Poisson’s equation

solver benchmark in the PetaBricks language both before and after we added our new variable

accuracy language constructs. We found that our new language features greatly simplified the

benchmark, resulting in a 15.6x reduction in code size.

In the original PetaBricks language, we were able to leverage the language’s autotuner to perform

the search through the accuracy performance space. However, unlike in the new code, much of the

heavy lifting during the training stage had to be performed by code written by the programmer.

For example, the original code contained specialized transforms used only during training that

predetermined the levels of accuracy required at each recursive step in the multigrid algorithm.

These transforms stored this information in a file which was used during subsequent non-training

runs. Additionally, we were able to eliminate a substantial amount of code duplication because

we were able to represent variable accuracy directly instead of being forced to represent it as

algorithmic choices. Finally, we should note that had the original code been written in a language

without autotuning support, the code would have no doubt been even more complex if it were to

not expose the numerous choices in the multigrid solver to the user.

The amount of time spent training is heavily dependent on both the configuration used for

the autotuner and the time complexity of the application being tuned. The configuration used for

the autotuner determines the number of times the program will be run to measure performance

and accuracy metrics for different parameter values. A larger number of runs will be chosen

automatically in cases where the timing or accuracy of the result has larger variance – this is highly

benchmark dependent. Total training times for the various benchmark configurations ranged from

91

fifteen minutes to two hours per benchmark, where the longest training times resulted from running

our most complex benchmarks on very large inputs.

4.6 Heterogeneous Architectures Experimental Results

This section of experimental results explores the extent to which different heterogeneous systems

require different configurations to obtain optimal performance. To this end, our experiments test

how configurations tuned for one heterogeneous system perform when run on a different system. We

examine these differences both by testing relative performance and by examining the configurations

and algorithmic choices of these tuned configurations.

Desktop Config Server Config Laptop Config

Black-Sholes 100% on GPU 100% on OpenCL
Concurrently 25% on CPU
and 75% on GPU

Poisson2D SOR
Split on CPU followed by
compute on GPU

Split some parts on OpenCL
followed by compute on CPU

Split on CPU followed by
compute on GPU

SeparableConv.
1D kernel+local memory on
GPU

1D kernel on OpenCL
2D kernel+local memory on
GPU

Sort

Polyalgorithm: above 174762
2MS (PM), then QS until
64294, then 4MS until 341,
then IS on CPU1

Polyalgorithm: above 7622
4MS, then 2MS until 2730,
then IS on CPU1

Polyalgorithm: above 76830
4MS (PM), then 2MS until
8801 (above 34266 PM), then
MS4 until 226, then IS on
CPU1

Strassen Data parallel on GPU
8-way parallel recursive de-
composition on CPU, call
LAPACK when < 682× 682

Directly call LAPACK on
CPU

SVD

First phase: task paral-
lism between CPU/GPU; ma-
trix multiply: 8-way parallel
recursive decomposition on
CPU, call LAPACK when <
42× 42

First phase: all on CPU;
matrix multiply: 8-way par-
allel recursive decomposition
on CPU, call LAPACK when
< 170× 170

First phase: all on CPU;
matrix multiply: 4-way par-
allel recursive decomposition
on CPU, call LAPACK when
< 85× 85

Tridiagonal Solver Cyclic reduction on GPU Direct solve on CPU Direct solve on CPU

Figure 4.9: Summary of the different autotuned configurations for each benchmark, focusing on the
primary differences between the configurations. 1For sort we use the abbreviations: IS = insertion
sort, 2MS = 2-way mergesort, 4MS = 4-way mergesort, QS = quicksort, PM = with parallel merge.

4.6.1 Methodology

Figure 4.12 lists the representative test systems used in our experiments and assigns code names that

will be used in the remainder of the section. We chose these machines to represent three diverse

92

1.0x

6.0x

11.0x

16.0x

21.0x

26.0x

31.0x

36.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

CPU-only Config

(a) Black-Sholes

1.0x

3.0x

5.0x

7.0x

9.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

(b) Poisson2D SOR

1.0x

2.0x

3.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Hand-coded
 OpenCL

(c) Separable Convolution

1.0x

2.0x

3.0x

4.0x

5.0x

6.0x

7.0x

8.0x

9.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

GPU-only Config
Hand-coded OpenCL

(d) Sort

1.0x

6.0x

11.0x

16.0x

21.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

Hand-coded OpenCL

(e) Strassen

1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

(f) SVD

1.0x

1.5x

2.0x

2.5x

3.0x

Desktop Server Laptop

E
x
e
c
u
ti
o
n
 T

im
e
 (

N
o
rm

a
liz

e
d
) Desktop Config

Server Config
Laptop Config

(g) Tridiagonal Solver

Figure 4.10: Benchmark performance when varying the machine and the program configuration.
Execution time on each machine is normalized to the natively autotuned configuration. Lower
is better. 4.10(c), 4.10(d), and 4.10(e) include Hand-coded OpenCL as a baseline taken from the
NVIDIA SDK sample code. This baseline uses NVIDIA-specific constructs and only runs on our
Desktop system. These hand-coded OpenCL baselines implement 1D separable convolution, radix
sort, and matrix multiply respectively. As additional baselines, 4.10(b) includes a CPU-only Config
which uses a configuration autotuned with OpenCL choices disabled and 4.10(d) includes GPU-only
Config which uses PetaBricks bitonic sort on the GPU.

93

Name

Possible
Configs
without
OpenCL

Possible
Configs

Generated
OpenCL
Kernels

Mean
Autotuning
Time

Testing
Input Size

Black-Sholes 1021 10130 1 3.09 hours 500000

Poisson2D SOR 10133 101358 25 15.37 hours 20482

SeparableConv. 10156 101358 9 3.82 hours 35202

Sort 10267 10920 7 3.56 hours 220

Strassen 10645 101509 9 3.05 hours 10242

SVD 101016 102435 8 1.79 hours 2562

Tridiagonal Solver 10178 101040 8 5.56 hours 10242

Figure 4.11: Properties of the benchmarks. The number of configurations are calculated from the
parameters described in Section 3.5.5.

Codename CPU(s) Cores GPU OS OpenCL Runtime

Desktop
Core i7 920
@2.67GHz

4
NVIDIA Tesla
C2070

Debian 5.0
GNU/Linux

CUDA Toolkit 4.21

Server
4× Xeon X7550
@2GHz

32 None
Debian 5.0
GNU/Linux

AMD Accelerated Parallel
Processing SDK 2.52

Laptop
Core i5 2520M
@2.5GHz

2
AMD Radeon
HD 6630M

Mac OS X Lion
(10.7.2)

Xcode 4.21

Figure 4.12: Properties of the representative test systems and the code names used to identify them
in results. The OpenCL runtimes marked 1 targets the GPUs of the machines, while 2 targets the
CPU by generating optimized SSE code.

systems a program may run on. Desktop represents a high-end gaming system with a powerful

processor and a graphics card. Server represents a large throughput-oriented multicore system one

might find in a data center. It does not have a graphics card, we instead use a CPU OpenCL runtime

that creates optimized parallel SSE code from OpenCL kernels. Laptop represents a laptop (it is

actually a Mac Mini), with a low-power mobile processor and a graphics card. Together, our test

systems cover graphics cards from both AMD and NVIDIA, use three different OpenCL runtimes,

have two different operating systems, and range in cores from 2 to 32.

In our experiments we first create three program configurations by autotuning: Desktop Config

is the configuration tuned on Desktop; Server Config is the configuration tuned on Server; and

Laptop Config is the configuration tuned on Laptop.

94

Next, we run each of these three configurations on each of our three machines. Since we are

migrating configurations between machines with different numbers of processors, for fairness, we

remove the thread count parameter from the search space and set the number of threads equal to

the number of processors on the current machine being tested. (On Server, the number of threads

is set to 16 which provides better performance on every benchmark.)

Finally, for some benchmarks, we also include baseline results for comparison. We do this either

by writing a PetaBricks program configuration by hand, by running OpenCL programs included as

sample code in the NVIDIA OpenCL SDK, or by running CUDPP applications. We use the label

Hand-coded OpenCL to indicate the performance of a standalone OpenCL program not using our

system. These baselines are described in detail for each benchmark.

Figure 4.11 lists properties of each of our benchmarks from the PetaBricks benchmark suite.

The configuration space is large, ranging from 10130 to 102435. Our system automatically creates

up to 25 OpenCL kernels per benchmark. Average autotuning time was 5.2 hours. This training

time is larger as a result of overheads from OpenCL kernel compilation, which dominate tuning

time for many benchmarks.

4.6.2 Benchmark Results and Analysis

Figure 4.9 summarizes the auto tuned configurations for each benchmark and Figure 4.10 shows the

performance of each of these configurations on each system. Detailed analysis for each benchmark

is provided in this section.

Black-Sholes The Black-Scholes benchmark results (Figure 4.10(a)) show that on some machines

it is fastest to divide the data and compute part of the output on the CPU and another part

concurrently on the GPU. Black-Scholes implements a mathematical model of a financial market

to solve for the price of European options. Each entry of the output matrix can be computed from

the input matrix by applying the Black-Scholes formula.

The autotuned Black-Scholes configurations on the Desktop and Server both perform all

computation using the GPU/OpenCL backend, while the configuration on the Laptop divides the

work such that 25% of the computation is performed on the CPU, and 75% is performed on the

95

GPU. This 25/75 split provides a 1.3x speedup over using only the GPU on the Laptop, while such

a split produces a 7x slowdown on the other two systems.

The reason why these configurations perform this way is the OpenCL performance for Black-

Sholes is an order of magnitude better than the CPU performance on the Desktop and Server.

However, on the laptop the relative performance of the GPU is only about 4x the performance

of the CPU. This can be seen in the CPU-only Config bar in Figure 4.10(a), which is a baseline

configuration that does not use the GPU/OpenCL backend. On the laptop, where the relative

performance of the two processors is close, exploiting heterogeneous parallelism between the CPU

and the GPU results in performance gains.

Poisson2D SOR The Poisson2D SOR benchmark (Figure 4.10(b)) shows that the choice of

which backend is best for each phase of the computation can change between machines. This

benchmark solves Poisson’s equation using Red-Black Successive Over-Relaxation (SOR). Before

main iteration, the algorithm splits the input matrix into separate buffers of red and black cells for

cache efficiency.

In the Desktop and Laptop tuned configuration, this splitting is performed on the CPU and

then actual iterations are performed using the OpenCL GPU backed. In the Server configuration,

nearly the opposite happens; the OpenCL backend is used for splitting a large area of the matrix,

and the CPU backend is used for the main iterations. The reason for this switch is the very different

performance profiles of the OpenCL backends. The Desktop and Laptop utilize actual GPUs while

the Server OpenCL backend shares the CPU.

Separable Convolution The Separable Convolution benchmark (Figure 4.10(c)) highights the

effect of algorithmic choices on the GPU. Three configurations, all using only OpenCL for

computation, provide very different performance on each machine. This benchmark is used as

a driving example in Section 2.5, which describes the choices benchmark in more detail. At width

7, shown here, Desktop performs best using 1D separable convolution on the GPU with the GPU

local memory. Laptop, with the less powerful GPU, performs best using local memory but with

the single-pass 2D convolution algorithm, because the overhead of synchronization and creating an

96

extra buffer to store the intermediate results between the two passes dominates the computational

savings of the separable algorithm. The best configuration on Server uses the OpenCL version of

separable convolution, but without local memory prefetching, since the CPUs’ caches perform best

here without explicit prefetches.

The results also show 2.3x better performance than OpenCL baseline implementation taken from

the OpenCL samples in the NVIDIA SDK (Figure 4.10(c)). Our implementation differs from this

sample code in that in our generated code each work-item computes exactly one entry of the output,

while in the sample code each work-item computes multiple entries of the output. This optimization

in the sample code not only increases code complexity, but also results in worse performance than

our PetaBricks implementation on the Tesla C2070. Performance on these machines is complex

and unpredictable, making hard-coded choices often lose to our automatically inferred results.

Sort The Sort benchmark (Figure 4.10(d)) shows that for some tasks it makes sense to run on

the CPU. The benchmark includes 7 sorting algorithms: merge sort, parallel merge sort, quick

sort, insertion sort, selection sort, radix sort, and bitonic sort; in addition, merge sort and parallel

merge sort have choices of dividing a region into two or four subregions. The configuration defines

a poly-algorithm that combines these sort building blocks together into a hybrid sorting algorithm

None of the tuned configurations choose to use OpenCL in the main sorting routine (although

some helper functions, such as copy, are mapped to OpenCL). The choices in CPU code are

complex, and result in up to a 2.6x difference in performance between autotuned configurations.

Each configuration is a poly-algorithm that dynamically changes techniques at recursive call sites.

Desktop uses 2-way merge sort with parallel merge at the top level, switches to quick sort when

sizes of sub-arrays are smaller, switches to 4-way merge sort with sequential merge when sizes are

even smaller, and finally ends with insertion sort as a base case when size is less than 341. Server

uses 4-way merge sort with sequential merge, switches to 2-way merge sort when sizes are smaller,

and finally switches to insertion sort when size is less than 2730. Laptop alternatively switches

between 4-way and 2-way merge sort, uses parallel merge until size is less than 34266, and switches

to insertion sort when size is less than 226.

97

For comparison, we wrote a configuration by hand that uses bitonic sort in OpenCL using our

system (GPU-only Config in Figure 4.10(d)). This configuration is between 1.9 and 5.2x slower

than the native autotuned configuration. Interestingly, this configuration does beat the Server

configuration on both of the other machines that have GPUs. This means that, if one had the

Server configuration, using the GPU instead would give a speedup, but not as much of a speedup

as re-tuning on the CPU.

As a second baseline, we include the radix sort sample program from the NVIDIA SDK (Hand-

coded OpenCL in Figure 4.10(d)). This OpenCL implementation of Sort performs 8.4x worse

than our autotuned configuration and 4.4x worse than our bitonic sort configuration. The poor

performance of both of these GPU Sort baselines, relative to our autotuned Sort, speak to the

difficulty writing a high performance Sort on the GPU. Researchers have developed faster methods

for GPU sorting, however, these methods require both an autotuning system and heroic programmer

effort [72], and their performance generally does not account for overhead in copying data to and

from the GPU, which our benchmarks do.

Strassen The Strassen benchmark (Figure 4.10(e)) shows that choosing the right configuration

for each architecture results in very large performance gains. The Strassen benchmark performs

a dense matrix-matrix multiplication. The choices include: transposing any combination of the

inputs; four different recursive decompositions, including Strassen’s algorithm; various blocking

methods; naive matrix multiplication; and calling the LAPACK external library.

Figure 4.10(e) shows the performance of our Strassen benchmark with different configurations.

Laptop configuration gives a 16.5x slowdown on Desktop. OpenCL is used in the Desktop

configuration, and C++/Fortran (through a call to LAPACK) is used in the Server and Laptop

configurations. The large computation to communication ratio in matrix multiplication stresses the

difference in relative CPU/GPU computational power between Desktop, with a high performance

graphics card, and Laptop, with a mobile graphics card. This results in the Desktop GPU producing

a speedup compared to its CPU, and the Laptop GPU producing a slowdown.

Altough Server and Laptop both use CPUs, their optimal configurations are different. On

Server, the best algorithm is to recursively decompose the matrices in 8-way parallel fashion

98

until the regions are smaller than a certain size, call LAPACK on the small regions, and finally

combine the data. On Laptop, the best algorithm is to make a direct call to LAPACK without any

decomposition.

As a baseline, we include the matrix multiplication OpenCL sample from the NVIDIA SDK

(Hand-coded OpenCL in Figure 4.10(e)). This baseline runs 1.4x faster than our autotuned

configuration on Desktop. The reason for this difference is the hand-coded OpenCL uses a number

complex manual local memory optimizations that accumulate partially computed outputs in local

memory shared between work-items. We have not implemented a similar optimization in our

system; however, it would be possible to automatically perform a similar optimization.

Singular Value Decomposition (SVD) The results for SVD (Figure 4.10(f)) are particularly

interesting because on some systems the autotuner constructs a poly-algorithm with task parallel

divisions between the GPU and the CPU, and the complexity of the benchmark provides a

large number of choices in the search space. This benchmark approximates a matrix through a

factorization that consumes less space. SVD is a variable accuracy benchmark where many of the

choices available to the autotuner, such as how many eigenvalues to use, impact the quality of of the

approximation. The autotuner must produce an algorithm which meets a given accuracy target.

These variable accuracy features are described in more detail in Chapters 2 and 3.

On Desktop, the autotuned configuration divides the work by using the GPU to compute one

matrix and the CPU to concurrently compute another matrix. Since the computations of the two

matrices are very similar, and the CPU and the GPU have relatively similar performance for these

computations on Desktop, overall throughput is increased by dividing the work in this way.

This benchmark also demonstrates that the best configurations of a sub-program might be

different when the sub-program is a part of different applications even running on the same machine.

The SVD benchmark uses the Strassen code to perform matrix multiplication. However SVD uses

matrix multiply on sub-regions of multiple larger arrays (resulting in different data locality) and

possibly making multiple calls concurrently. Due to the different data-accessing patterns, the

cache behaviors are not the same on the CPU, the bank conflicts on GPU memory vary, and the

interactions between subsystems change. This makes the best configurations differ for Strassen

99

inside SVD and in isolation. While the best matrix multiplication configuration on Desktop for

Strassen in isolation always uses the GPU, the best one for this benchmark is 8-way parallel recursive

decomposition and then calling LAPACK. The autotuned configurations on Server and Laptop for

this benchmark are also different from Strassen in isolation.

Tridiagonal Solver The Tridiagonal Solver benchmark (Figure 4.10(g)) shows that often

algorithmic changes are required to utilize the GPU. The benchmark solves a system of a equations

where the matrix contains non-zero elements only on cells neighboring and on the diagonal and

includes a variety of techniques including polyalgorithms. We implement a subset of the algorithmic

choices described in [48,167].

Similar to the Strassen benchmark, the GPU is only used on the Desktop machine; however, in

order to utilize the GPU, an algorithmic change is required. Cyclic reduction is the best algorithm

for Desktop when using the GPU. If a machine does not use OpenCL, it is better to run the

sequential algorithm as demonstrated used on Server and Laptop.

Our best configuration on Desktop is 3.5x slower than CUDPP [167] on input size 512. Some of

this slowdown is a result of OpenCL being generally slower than CUDA when using the NVIDIA

toolchain. Additionally, our automatically generated OpenCL kernel is not as highly optimized as

CUDPP’s kernel, which guarantees the efficient use of shared memory without bank conflicts.

4.6.3 Heterogeneous Results Summary

In all of our benchmarks, algorithmic choices—which traditional languages and compilers do not

expose—play a large role in performance on heterogeneous systems since the best algorithms vary

not only between machines but also between processors within a machine. Ultimately, the complex

and interdependent space of best mapping choices seen in these benchmarks would be very difficult

to predict from first principles, alone, but our empirical exploration effectively and automatically

accounts for many interacting effects on actual machine performance, in each program on each

system.

Taken together, these seven benchmarks demonstrate even more of the complexity in mapping

programs to heterogeneous machines than any one benchmark alone.

100

• Strassen shows that choosing the right configuration for each specific architecture can provide

a huge performance improvement. In this benchmark, choosing to use a data parallel

accelerator can yield large speedups (16.5x) on some machines, and large slowdowns (4.1x)

on others, for the same problem, depending on the exact characteristics of all heterogeneous

processors in the system.

• Poisson 2D SOR further supports the previous argument by showing that the optimal

placement of computations across the processors in one system is almost the opposite of

another.

• Tridiagonal Solver demonstrates that not only where computations run, but also which

algorithms to use on that particular resource, can dramatically affect performance.

• Separable Convolution shows that, even when a program is best run entirely on the data-

parallel compute resources, the best algorithm to use and the best strategy for mapping to

the complex heterogeneous memory hierarchy vary widely both across machines and across

program parameters (kernel size).

• Sort, on the other hand, shows that even parallel problems may not always be best solved

by data parallel accelerators, and that complex machine-specific algorithmic choice is still

essential to performance on a smaller array of conventional processors.

• SVD shows that the best performance can require mapping portions of a program across

all different processor types available, and together with Strassen, it shows that the best

configurations of the same sub-program in different applications vary on the same system.

• Finally, while SVD confirms that sometimes it is best to run different portions of a program

on different subsystems concurrently, Black-Scholes illustrates that sometimes it is best to run

the same portion of the program but different regions of data across multiple heterogeneous

subsystems simultaneously; therefore, considering the workload balance between processor

types is important to achieve the optimal performance on a heterogeneous system.

101

4.7 Summary

This chapter has shown three sets of results. First, we saw that for fixed accuracy benchmarks,

PetaBricks can provide significant speedups over using a single algorithm or a hard coded heuristic.

Next, our variable accuracy results showed the by trading accuracy for performance one can

achieve large (sometimes asymptoticly better) speedups. Finally, we explored heterogeneous results

that show there is no one size fits all solution for all execution targets. One often needs to do

fundamentally different things on different machines for the best performance.

102

Chapter 5

Multigrid Benchmarks

Our multigrid benchmarks (Helmholz3D and Poisson2D) are particularly interesting, and represent

distinct contribution in their domain. Multigrid is a popular techniques for efficiently solving partial

differential equations over a grid. This chapter explores these two benchmarks in greater detail.

In some cases, tuning algorithmic choice could simply mean choosing the appropriate top-level

technique during the initial function invocation; however, for many problems including multigrid, it

is better to be able to utilize multiple techniques within a single function call or solve. For example,

in the C++ Standard Template Library’s stable sort routine (Shown in Figure 1.1 in Chapter 1),

the algorithm switches from using the divide-and-conquer O(n log n) merge sort to O(n2) insertion

sort once the working array size falls below a set cutoff. In multigrid, an analogous strategy

might switch from recursive multigrid calls to a direct method such as Cholesky factorization and

triangular solve once the problem size falls below a threshold.

This chapter analyzes the optimizations of algorithmic choice in multigrid. When confronted

with the problem of training the autotuner to choose between a recursive multigrid call and a call

to an iterative or direct solver, one quickly realizes that no comparison between methods can be fair

without considering the relative accuracies of each. Indeed, we found that in some cases sacrificing

accuracy at lower levels of recursion has little impact on the accuracy of the final result, while in

other cases improving accuracy at a lower level reduces the number of (more expensive) iterations

needed at a higher level.

103

Algorithm Direct SOR Multigrid

Complexity n2 (N4) n1.5 (N3) n (N2)

Figure 5.1: Complexity of different algorithmic choices for multigrid.

5.1 Autotuning Multigrid

Although multigrid is a versatile technique that can be used to solve many different types of

problems, we will use the 2D Poisson’s equation as an example and benchmark to guide our

discussion. The techniques presented here are generalizable to higher dimensions and the broader

set of multigrid problems.

Poisson’s equation is a partial differential equation that describes many processes in physics,

electrostatics, fluid dynamics, and various other engineering disciplines. The continuous and

discrete versions are

52 φ = f and Tx = b, (5.1)

where T , x, and b are the finite difference discretizations of the Laplace operator, φ, and f ,

respectively.

To build an autotuned multigrid solver for Poisson’s equation, we consider the use of three basic

algorithmic building blocks: one direct (band Cholesky factorization through LAPACK’s DPBSV

routine), one iterative (Red-Black Successive Over Relaxation), and one recursive (multigrid).

Figure 5.1 shows the computational complexity of using any single algorithmic choice to compute

a solution. From left to right, each of the methods has a larger overhead, but yields a better

asymptotic serial complexity [52]. N is the size of the grid on a side, and n = N2 is the number of

cells in the grid.

5.1.1 Algorithmic choice in multigrid

Multigrid is a recursive algorithm that uses the solution to a coarser grid resolution as part of the

algorithm. We will first address tuning symmetric “V-type” cycles. An extension to full multigrid

will be presented in Section 5.1.4.

104

MULTIGRID-V-SIMPLE(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Relax using some iterative method
5: Compute the residual and restrict to half resolution
6: Recursively call MULTIGRID-V-SIMPLE on coarser grid
7: Interpolate result and add correction term to current solution
8: Relax using some iterative method
9: end if

Figure 5.2: Pseudocode for standard multigrid v-cycle.

Figure 5.3: Simplified illustration of choices in the multigrid algorithm. The diagonal arrows
represent the recursive case, while the dotted horizontal arrows represent the shortcut case where
a direct or iterative solution may be substituted. Depending on the desired level of accuracy a
different choice may be optimal at each decision point. This figure does not illustrate the autotuner’s
capability of using multiple iterations at different levels of recursion; it shows a single iteration at
each level.

For simplicity, we assume all inputs are of size N = 2k + 1 for some positive integer k. Let x

be the initial state of the grid, and b be the right hand side of Equation (5.1).

Figure 5.2 shows pseudocode for a standard multigrid v-cycle. It is at the recursive call on line

6 that our autotuning compiler can make a choice of whether to continue making recursive calls to

multigrid or take a shortcut by using the direct solver or one of the iterative solvers at the current

resolution. Figure 5.3 shows these possible paths of the multigrid algorithm.

Figure 5.4 shows the idea of algorithmic choice can be implemented by defining a top level

function MULTIGRID-V, which makes calls to either the direct, iterative, or recursive solution. The

function RECURSE implements the recursive solution. Making the choice on line 1 of MULTIGRID-V

105

MULTIGRID-V(x, b)

1: either
2: Solve directly
3: Use an iterative method
4: Call RECURSE for some number of iterations
5: end either

RECURSE(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Relax using some iterative method
5: Compute the residual and restrict to half resolution
6: On the coarser grid, call MULTIGRID-V
7: Interpolate result and add correction term to current solution
8: Relax using some iterative method
9: end if

Figure 5.4: Pseudocode for multigrid with algorithmic choices

has two implications. First, the time to complete the algorithm is choice dependent. Second, the

accuracy of the result is also dependent on choice since the various methods have different abilities

to reduce error (depending on parameters such as number of iterations or weights). To make a

fair comparison between choices, we must take both performance and accuracy of each choice into

account. To this end, during the tuning process, we keep track of not just a single optimal algorithm

at every recursion level, but a set of such optimal algorithms for varying levels of desired accuracy.

5.1.2 Full dynamic programming solution

We will first describe a full dynamic programming solution to handling variable accuracy, then

restrict it to a discrete set of accuracies. We define an algorithm’s accuracy level to be the ratio

between the error norm of its input xin versus the error norm of its output xout compared to the

optimal solution xopt:

||xin − xopt||2
||xout − xopt||2

.

We choose this ratio instead of its reciprocal so that a higher accuracy level is better, which is

more intuitive. In order to measure the accuracy level of a potential tuned algorithm, we assume

106

(a) (b)

Figure 5.5: (a) Possible algorithmic choices with optimal set designated by squares (both hollow
and solid). The choices designated by solid squares are the ones remembered by the PetaBricks
compiler, being the fastest algorithms better than each accuracy cutoff line. (b) Choices across
different accuracies in multigrid. At each level, the autotuner picks the best algorithm one level
down to make a recursive call. The path highlighted in red is an example of a possible path for
accuracy level p2

we have access to representative training data so that the accuracy level of our algorithms during

tuning closely reflects their accuracy level during use.

Let level k refer to an input size of N = 2k + 1. Suppose that for level k− 1, we have solved for

some set Ak−1 of optimal algorithms, where optimality is defined such that no optimal algorithm

is dominated by any other algorithm in both accuracy and compute time.

In order to construct the optimal set Ak, we try substituting all algorithms in Ak−1 for step 6 of

RECURSE. We also try varying parameters in the other steps of the algorithm, including the choice

of iterative methods and the number of iterations (possibly zero) in steps 4 and 8 of RECURSE and

steps 3 and 4 of MULTIGRID-V.

Trying all of these possibilities will yield many algorithms that can be plotted as in Figure 5.5(a)

according to their accuracy and compute time. The optimal algorithms we add to Ak are the

dominant ones designated by square markers.

107

The reason to remember algorithms of multiple accuracies on this Pareto frontier for use in

step 6 of RECURSE is that it may be better to use a less accurate, fast algorithm and then iterate

multiple times, rather than use a more accurate, slow algorithm. Note that even if we use a direct

solver in step 6, the interpolation in step 7 will invariably introduce error at the higher resolution.

5.1.3 Discrete dynamic programming solution

Since the optimal set of tuned algorithms can grow to be very large, the PetaBricks autotuner offers

an approximate version of the above solution. Instead of remembering the full optimal set Ak, the

compiler remembers the fastest algorithm yielding an accuracy of at least pi for each pi in some set

{p1, p2, . . . , pm}. The vertical lines in Figure 5.5(a) indicate the discrete accuracy levels pi, and the

optimal algorithms (designated by solid squares) are the ones remembered by PetaBricks. Each

highlighted algorithm is associated with a function MULTIGRID-Vi, which achieves accuracy pi on

all input sizes.

Due to restricted time and computational resources, to further narrow the search space, we

only use SOR as the iteration function since we found experimentally that it performed better than

weighted Jacobi on our particular training data for similar computation cost per iteration. In

MULTIGRID-Vi, we fix the weight parameter of SOR to ωopt, the optimal value for the 2D discrete

Poisson’s equation with fixed boundaries [52]. In RECURSEi, we fix SOR’s weight parameter to

1.15 (chosen by experimentation to be a good parameter when used in multigrid). We also fix the

number of iterations of SOR in steps 4 and 8 in RECURSEi to one. As more powerful computational

resources become available over time, the restrictions on the algorithmic search space presented

here may be relaxed to find a more optimal solution.

The resulting accuracy-aware Poisson solver, shown in Figure 5.6, is a family of functions,

where i is the accuracy parameter. The autotuning process determines what choices to make in

MULTIGRID-Vi for each i and for each input size. Since the optimal choice for any single accuracy

for an input of size 2k + 1 depends on the optimal algorithms for all accuracies for inputs of size

2k−1 + 1, the PetaBricks autotuner tunes all accuracies at a given level before moving to a higher

level. In this way, the autotuner builds optimal algorithms for every specified accuracy level and

108

MULTIGRID-Vi(x, b)

1: either
2: Solve directly
3: Iterate using SORωopt until accuracy pi is achieved
4: For some j, iterate with RECURSEj until accuracy pi is achieved
5: end either

RECURSEi(x, b)

1: if N = 3 then
2: Solve directly
3: else
4: Compute one iteration of SOR1.15

5: Compute the residual and restrict to half resolution
6: On the coarser grid, call MULTIGRID-Vi
7: Interpolate result and add correction term to current solution
8: Compute one iteration of SOR1.15

9: end if

Figure 5.6: Pseudocode for accuracy aware multigrid

for each input size up to a user specified maximum, making use of the tuned sub-algorithms as it

goes.

The final set of multigrid algorithms produced by the autotuner can be visualized as in

Figure 5.5(b). Each of the versions has the flexibility to choose any of the other versions during

its recursive calls, and the optimal path may switch between accuracies many times as we recurse

down towards either the base case or a shortcut case.

5.1.4 Extension to Autotuning Full Multigrid

Full multigrid methods have been shown to exhibit better convergence behavior than traditional

symmetric cycle shapes such as the V and W cycles by utilizing an estimation phase before the

solve phase (see Figure 5.7). The estimation phase of the full multigrid algorithm can be thought

of as just a recursive call to itself at a coarser grid resolution. We extend the autotuning ideas

presented thus far to leverage this structure and produce autotuned full multigrid cycles.

Figure 5.8 shows pseudocode for ESTIMATE and FULL-MULTIGRID and illustrates how to construct

an autotuned full multigrid cycle. Here we take advantage of the discrete dynamic programming

109

Figure 5.7: Conceptual breakdown of full multigrid into an estimation phase and a solve phase.
The estimation phase can be thought of as just a recursive call to full multigrid up to a coarser
grid resolution. We make use of this recursive structure, in addition to our autotuned “V-type”
multigrid cycles, in constructing tuned full multigrid cycles.

analogue presented in Section 5.1.3 where we maintain only finite sets of optimized functions

FULL-MULTIGRIDj and MULTIGRID-Vk to use in recursive calls. In FULL-MULTIGRIDi, there are

three choices: the first is just a direct solve (line 2), while the latter two choices (lines 4 and 5) are

similar to those given in MULTIGRID-Vi except an estimate is first calculated and then used as a

starting point for iteration. Note that this structure is descriptive enough to include the standard

full multigrid V or W cycle shapes, just as the MULTIGRID-Vi algorithm can produce standard

regular V or W cycles.

The parameters j and k in FULL-MULTIGRID can be chosen independently, providing a great

deal of flexibility in the construction of the optimized full multigrid cycle shape. In cases where

the user does not require much accuracy in the final output, it may make sense to invest more

heavily in the estimation phase, while in cases where very high precision is needed, a high precision

estimate may not be as helpful as most of the computation would be done in relaxations at the

highest resolution. Indeed, we found patterns of this type during our experiments.

110

ESTIMATEi(x, b)

1: Compute residual and restrict to half resolution
2: Call FULL-MULTIGRIDi on restricted problem
3: Interpolate result and add correction to x

FULL-MULTIGRIDi(x, b)

1: either
2: Solve directly
3: For some j, compute estimate by calling ESTIMATEj(x, b), then either:
4: Iterate using SORωopt until accuracy pi is achieved
5: For some k, iterate with RECURSEk until accuracy pi is achieved
6: end either

Figure 5.8: Pseudocode for full multigrid

5.1.5 Limitations

Multigrid benchmarks are sensitive to input variations. Results in this chapter examine a single

distribution of inputs. Chapter 7 presents additional multigrid results that take into account input

sensitivity.

It should be clear that the algorithms produced by the autotuner are not meant to be optimal

in any theoretical sense. Because of the compromises made in the name of efficiency, the resulting

autotuning algorithm merely strives to discover near-optimal algorithms from within the restricted

space of cycle shapes reachable during the search. There are many cycle shapes that fall outside

the space of searched algorithms; for example, our approach does not check algorithms that utilize

different choices in succession at the same recursion depth instead of choosing a single choice and

iterating. Future work may examine the extent to which this restriction impacts performance.

Additionally, the scalar accuracy metric is an imperfect measure of the effectiveness of a

multigrid cycle. Each cycle may have different effects on the various error modes (frequencies)

of the current guess, all of which would be impossible to capture in a single number. Future

work may expand the notion of an “optimal” set of sub-algorithms to include separate classes of

algorithms that work best to reduce different types of error. Though such an approach could lead

to a better final tuned algorithm, this extension would obviously make the auto-tuning process

more complex.

111

We will demonstrate in our results that although our methodology is not exhaustive, it can be

quite descriptive, discovering cycle shapes that are both unconventional and efficient. That section

will present actual cycle shapes produced by our multigrid autotuner and show their performance

compared to less sophisticated heuristics.

5.2 Results

In this section, we present the results of the PetaBricks autotuner when optimizing our multigrid

algorithm on three parallel architectures designed for a variety of purposes: Intel Xeon E7340 server

processor, AMD Opteron 2356 Barcelona server processor, and the Sun Fire T200 Niagara low

power, high throughput server processor. These machines provided architectural diversity, allowing

us to show not only how autotuned multigrid cycles outperform reference multigrid algorithms,

but also how the shape of optimal autotuned cycles can be dependent on the underlying machine

architecture.

To the best of our knowledge, there are no standard data distributions currently in wide use

for benchmarking multigrid solvers, so it was not clear what the best choice is for training and

benchmarking our tuned solvers. We decided to use matrices with entries drawn from two different

random distributions: 1) uniform over [−232, 232] (unbiased), and 2) the same distribution shifted

in the positive direction by 231 (biased). The random entries were used to generate right-hand

sides (b in Equation 5.1) and boundary conditions (boundaries of x) for the problem. We also

experimented with specifying a finite number of random point sources/sinks in the right-hand side,

but since the observed results were similar to those found with the unbiased random distribution,

we did not include them in interest of space. If one wishes to obtain tuned multigrid cycles for a

different input distribution, the training should be done using that data distribution.

5.2.1 Autotuned multigrid cycle shapes

During the tuning process for the MULTIGRID-Vi algorithm presented in Section 5.1.3, the autotuner

first computes the number of iterations needed for the SOR and RECURSEj choices before determining

which is the fastest option to attain accuracy pi for each input size. Representative training data

112

is required to make this determination. Once the number of required iterations of each choice is

known, the autotuner times each choice and chooses the fastest option.

Figures 5.9(a) and 5.9(b) show the traces of calls to the tuned MULTIGRID-V4 algorithms for

unbiased and biased uniform random inputs of size N = 4097, on the Intel machine. As you can

see, the algorithm utilizes multiple accuracy levels throughout the call stack. In general, whenever

greater accuracy is required by our tuned algorithm, it is achieved through some repetition of

optimal substructures determined by the dynamic programming method. This may be easier to

visualize by examining the resulting tuned cycles corresponding to the autotuned multigrid calls.

Figures 5.10(a) and 5.10(b) show some tuned “V-type” cycles created by the autotuner for

unbiased and biased uniform random inputs of size N = 2049 on the AMD Opteron machine.

The cycles are shown using standard multigrid notation with some extensions: The path of the

algorithm progresses from left to right through time. As the path moves down, it represents a

restriction to a coarser resolution, while paths up represent interpolations. Dots represent red-

black SOR relaxations, solid horizontal arrows represent calls to the direct solver, and dashed

horizontal arrows represent calls to the iterative solver.

As seen in the figure, a different cycle shape is used depending on what level of accuracy is

required by the user. Cycles shown are tuned to produce final accuracy levels of 10, 103, 105, and

107. The leverage of optimal subproblems is clearly seen in the common patterns that appear across

cycles. Note that in Figure 5.10(b), the call to the direct solver in cycle i) occurs at level 4, while

for the other three cycles, the direct call occurs at level 5. This is an example of the autotuner

trading accuracy for performance while accounting for the accuracy requirements of the user.

Figures 5.10(c) and 5.10(d) show autotuned full multigrid cycles for unbiased and biased uniform

random inputs of size N = 2049 on the AMD Opteron machine. Although similar substructures are

shared between these cycles and the “V-type” cycles in 5.10(a) and 5.10(b), some of the expensive

higher resolution relaxations are avoided by allowing work to occur at the coarser grids during the

estimation phase of the full multigrid algorithm. The tuned full multigrid cycle in Figure 5.10(d)-iv)

shows how the additional flexibility of using an estimation phase can dramatically alter the tuned

cycle shape when compared to Figure 5.10(b)-iv).

113

DIRECT

12

11

10

 9

 8

 7

 6

 5

1x

1x
2x

2x

1x
1x

421MULTIGRID MULTIGRID MULTIGRID

1x

1x

(a)

DIRECT

12

11

10

 9

 8

 7

 6

 5

1x

1x
2x

2x

1x

1x
1x

432MULTIGRID MULTIGRID MULTIGRID1MULTIGRID

1x

(b)

Figure 5.9: Call stacks generated by calls to autotuned MULTIGRID-V4 for a) unbiased and b) biased
random inputs of size N = 4097 on an Intel Xeon server. Discrete accuracies used during autotuning
were (pi)i=1..5 = (10, 103, 105, 107, 109). The recursion level is displayed on the left, where the size
of the grid at level k is 2k + 1. Note that each arrow connecting to a lower recursion level actually
represents a call to RECURSEi, which handles grid coarsening, followed by a call to MULTIGRID-Vi.

114

11

10

 9

 8

 7

 6

 5

 4

11

10

 9

 8

 6

 5

iv)

 7

i) ii) iii)

 4

(a)

11

10

 9

 8

 7

 6

 5

 4

11

10

 9

 8

 6

 5

iv)

 7

i) ii) iii)

(b)

10

 9

 8

 7

 6

 5

11
i)

 4

iv)

iii)ii)

10

 9

 8

 7

 6

 5

11

 4

 3

(c)

10

 9

 8

 7

 6

 5

11
i)

 4

iv)

iii)ii)

10

 9

 8

 7

 6

 5

11

 4

 3

(d)

Figure 5.10: Optimized multigrid V (a and b) and full multigrid (c and d) cycles created by the
autotuner for solving the 2D Poisson’s equation on an input if size N = 2049. Subfigures a) and
c) were trained on unbiased uniform random data, while b) and d) were trained on biased uniform
random data. Cycles i), ii), iii), and iv), correspond to algorithms that yield accuracy levels of
10, 103, 105, and 107, respectively. The solid arrows at the bottom of the cycles represent shortcut
calls to the direct solver, while the dashed arrow in c)-i) represents an iterative solve using SOR.
The dots present in the cycle represent single relaxations. Note that some paths in the full multigrid
cycles skip relaxations while moving to a higher grid resolution. The recursion level is displayed on
the left, where the size of the grid at level k is 2k + 1.

115

It is important to realize that the call stacks in Figure 5.9 and the cycle shapes in Figure 5.10

are all dependent on the specific situation at hand. They would all likely change were the autotuner

run on other architectures, using different training data, or solving other multigrid problems. The

flexibility to adapt to any of these changing variables by tuning over algorithmic choice is the

autotuner’s greatest strength.

5.2.2 Performance

This section will provide data showing the performance of our tuned multigrid Poisson’s equation

solver versus reference algorithms and heuristics. Test data was produced from the same

distributions used for training. Section 5.2.2 describes performance of the autotuned MULTIGRID-V

algorithm, and Section 5.2.2 describes the performance of the autotuned FULL-MULTIGRID

algorithm.

Autotuned multigrid V algorithm

To demonstrate the effectiveness of our dynamic programming methodology, we compare the

autotuned MULTIGRID-V algorithm against more basic approaches to solving the 2D Poisson’s

equation to an accuracy of 109, including several multigrid variations. Results presented in the

section were collected on the Intel Xeon server testbed machine.

Figure 5.11 shows the performance of our autotuned multigrid algorithm for accuracy 109 on

unbiased uniform random inputs of different sizes. The autotuned algorithm uses internal accuracy

levels of {10, 103, 105, 107, 109} during its recursive calls. The figure compares the autotuned

algorithm with the direct solver, iterated calls to SOR, and iterated calls to MULTIGRID-V-SIMPLE

(labeled Multigrid). Each of the iterative methods is run until an accuracy of at least 109 is

achieved.

As to be expected, the autotuned algorithm outperforms all of the simple algorithms shown in

Figure 5.11. At sizes greater than N = 65, the autotuned algorithm performs slightly better than

MULTIGRID-V-SIMPLE because it utilizes a more complex tuned strategy.

116

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000

T
im

e
(s

)

Input Size

Direct
Jacobi

SOR
Multigrid

Autotuned

Figure 5.11: Performance for algorithms to solve Poisson’s equation on unbiased uniform random
data up to an accuracy of 109 using 8 cores. The basic direct and SOR algorithms as well as
the standard V-cycle multigrid algorithm are all compared to our tuned multigrid algorithm. The
iterated SOR algorithm uses the corresponding optimal weight ωopt for each of the different input
sizes

Figure 5.12 compares the tuned algorithm with various heuristics more complex than

MULTIGRID-V-SIMPLE. The training data used in this graph was drawn from the biased uniform

distribution. Strategy 109 refers to requiring an accuracy of 109 at each recursive level of multigrid

until the base case direct method is called at N = 65. Strategies of the form 10x/109 refer to

requiring an accuracy of 10x at each recursive level below that of the input size, which requires an

accuracy of 109. Thus, all strategies presented result in a final accuracy of 109; they differ only

in what accuracies are required at lower recursion levels. All heuristic strategies call the direct

method for smaller input sizes whenever it is more efficient to meet the accuracy requirement.

The lines in Figure 5.12 are somewhat close together and difficult to see on the logarithmic

time scale, so Figure 5.13 presents the same data but showing the ratio of times taken versus the

autotuned algorithm. We can more clearly see in this figure that as the input size increases, the

most efficient heuristic changes from Strategy 101/109 to 103/109 to 105/109. The autotuner does

better than just choosing the best from among these heuristics, since it can also tune the desired

accuracy at each recursion level independently, allowing greater flexibility. This figure highlights

117

 0.01

 0.1

 1

 10

 100

 1000

 32 64 128 256 512 1024 2048 4096 8192 16384

T
im

e
(s

)

Input Size

Strategy 109

Strategy 107/109

Strategy 105/109

Strategy 103/109

Strategy 101/109

Autotuned

Figure 5.12: Performance for algorithms to solve Poisson’s equation up to an accuracy of 109 using
8 cores. The autotuned multigrid algorithm is presented alongside various possible heuristics. The
graph omits sizes less than N = 65 since all cases call the direct method for those inputs. To see
the trends more clearly, Figure 5.13 shows the same data as this figure, but as ratios of times taken
versus the autotuned algorithm.

the complexity of finding an optimal strategy and showcases the utility of an autotuner that can

efficiently find this optimum.

Another big advantage of using PetaBricks for autotuning is that it allows a single program

to be optimized for both sequential performance and parallel performance. We have observed our

autotuner make different choices when running on different numbers of cores.

Autotuned full multigrid algorithm

In order to evaluate the performance of our autotuned MULTIGRID-V and FULL-MULTIGRID

algorithms on multiple architectures, we ran them for problem sizes up to N = 4097 (up to 2049

on the Sun Niagara) for target accuracy levels of 105 and 109 alongside two reference algorithms:

an iterated V cycle and a full multigrid algorithm. The reference V cycle algorithm runs standard

V cycles until the accuracy target is reached, while the reference full multigrid algorithm runs a

118

 0.5

 1

 2

 4

 8

 16

 32

 32 64 128 256 512 1024 2048 4096 8192 16384

T
im

es
 s

lo
w

er
 th

an
 A

ut
ot

un
ed

Input Size

Strategy 109

Strategy 107/109

Strategy 105/109

Strategy 103/109

Strategy 101/109

Autotuned

Figure 5.13: Speedup of tuned algorithm compared to various simple heuristics to solve Poisson’s
equation up to an accuracy of 109 using 8 cores. The data presented in this graph is the same as in
Figure 5.12 except that the ratio of time taken versus the autotuned algorithm is plotted. Notice
that as the problem size increases, the higher accuracy heuristics become more favored since they
require fewer iterations at high resolution grid sizes.

standard full multigrid cycle (as in Figure 5.7), then standard V cycles until the accuracy target is

reached.

We chose these two reference algorithms since they are generally deemed good starting points

for those interested in implementing multigrid for the first time. Since they are easy to understand

and commonly implemented, we felt they were a reasonable point of reference for our results. From

these starting points, performance tweaks can be manually applied to tailor the solver to each

user’s specific application domain. The goal of our autotuner is to discover and make these tweaks

automatically.

Figure 5.14 shows the performance of both reference and autotuned multigrid algorithms for

unbiased uniform random data relative to the reference iterated V-cycle algorithm on all three

testbed machines. Figure 5.15 shows similar comparisons for biased uniform random data. The

relative time (lower is better) to compute the solution up to an accuracy level of 105 is plotted

against problem size.

119

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096
R

el
at

iv
e

T
im

e
(r

at
io

)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(c)

Figure 5.14: Relative performance of multigrid algorithms versus reference V cycle algorithm for
solving the 2D Poisson’s equation on unbiased, uniform random data to an accuracy level of 105

on a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara.

120

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096
R

el
at

iv
e

T
im

e
(r

at
io

)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(c)

Figure 5.15: Relative performance of multigrid algorithms versus reference V cycle algorithm for
solving the 2D Poisson’s equation on biased uniform random data to an accuracy level of 105 on a)
Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara.

121

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(c)

Figure 5.16: Relative performance of multigrid algorithms versus reference V cycle algorithm for
solving the 2D Poisson’s equation on unbiased, uniform random data to an accuracy level of 109

on a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara.

On all three architectures, we see that the autotuned algorithms provide an improvement over

the reference algorithms’ performances. There is an especially marked difference for small problem

sizes due to the autotuned algorithms’ use of the direct solve without incurring the overhead of

recursion. Speedups relative to the reference full multigrid algorithm are also observed at higher

problem sizes: e.g., for problem size N = 2049, we observed speedups of 1.2x, 1.1x, and 1.8x on

the unbiased uniform test inputs, and 2.9x, 2.5x, and 1.8x on the biased uniform test inputs for

the Intel, AMD, and Sun machines, respectively.

Figures 5.16 and 5.17 show similar performance comparisons, except to an accuracy level of

109. The autotuner had a more difficult time beating the reference full multigrid algorithm when

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096
R

el
at

iv
e

T
im

e
(r

at
io

)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 16 64 256 1024 4096

R
el

at
iv

e
T

im
e

(r
at

io
)

Problem Size

Reference V
Reference Full MG

Autotuned V
Autotuned Full MG

(c)

Figure 5.17: Relative performance of multigrid algorithms versus reference V cycle algorithm for
solving the 2D Poisson’s equation on biased, uniform random data to an accuracy level of 109 on
a) Intel Harpertown, b) AMD Barcelona, and c) Sun Niagara.

123

10

 9

 8

 7

 6

 5

11

10

 9

 8

 7

 6

 5

11

 4

i) ii)

iii)

 4

Figure 5.18: Comparison of tuned full multigrid cycles across machine architectures: i) Intel
Harpertown, ii) AMD Barcelona, iii) Sun Niagara. All cycles solve the 2D Poisson’s equation on
unbiased uniform random input to an accuracy of 105 for an initial grid size of 211.

training for both high accuracy and large size (greater than N = 257). For sizes greater than 257,

autotuned performance is essentially tied with the reference full multigrid algorithm on the Intel

and AMD machines, while improvements were still possible on the Sun machine. For input size

N = 2049, a speedup of 1.9x relative to the reference full multigrid algorithm was observed on

the Niagara for both input distributions. We suspect that performance gains are more difficult to

achieve when solving for both high accuracy and size in some part due to a greater percentage of

compute time being spent on unavoidable relaxations at the finest grid resolution.

5.2.3 Effect of Architecture on Autotuning

Trained on
Xeon 8-way Niagara

Run on
Xeon 8-way - 1.29x

Niagara 1.79x -

Figure 5.19: Slowdown when trained on a setup different than the one run on for a 1.2 GHz Sun
Fire T200 Niagara and a 2.4 GHz Xeon E7340 (2 x 4 core) system. Slowdowns are relative to
training natively. Autotuned full Poisson 2D multigrid cycle for unbiased uniform inputs of size
N = 2049.

124

Figure 5.18 shows the different optimized cycles chosen by the autotuner on the three testbed

architectures. Though all cycles were tuned to yield the same accuracy level of 105, the autotuner

found a different optimized cycle shape on each architecture. These differences take advantage of

the specific characteristics of each machine. For example, the AMD and Sun machines recurse down

to a coarse grid level of 24 versus 25 on the Intel machine. The AMD and Sun’s cycles appear to

make up for the reduced accuracy of the coarser direct solve by doing more relaxations at medium

grid resolutions (levels 9 and 10).

We found that the performance of tuned multigrid cycles can be quite sensitive to the type

of system the autotuning is performed on. For example, Figure 5.19 shows slowdowns when

trained/running on two different systems: the Sun Niagara 1 and an Intel Xeon. The table shows

up to a 79% slowdown for using a V-cycle shape generated on a different machine.

Chapter 7 will provide further analysis of our multigrid benchmarks in the context of adapting

to different inputs. We find that different multigrid cycle shapes are best for different inputs.

125

126

Chapter 6

The PetaBricks Autotuner

Petabricks not only relies on the autotuner to create hybrid algorithms from user provided

algorithmic choice, but also moves most of the compiler optimization decisions to the autotuner.

Thus, PetaBricks relies heavily on having an autotuner that is capable of searching extremely large

spaces in an efficient manner. This chapter will describe how PetaBricks autotuner is able to achieve

these goals. The PetaBricks autotuner uses at its core a novel evolutionary algorithm, INCREA,

to produce new candidate algorithms and guide the search.

In this chapter, we present an evolutionary algorithm, INCREA, which is designed to

incrementally solve a large, noisy, computationally expensive problem by deriving its initial

population through recursively running itself on problem instances of smaller sizes. The INCREA

algorithm also expands and shrinks its population each generation and cuts off work that does

not appear to promise a fruitful result. For further efficiency, it addresses noisy solution quality

efficiently by focusing on resolving it for small, potentially reusable solutions which have a much

lower cost of evaluation. We compare INCREA to a general purpose evolutionary algorithm and

find that in most cases INCREA arrives at the same solution in significantly less time.

This evolutionary algorithm is at the core of the PetaBricks autotuner. The genome for the

evolutionary algorithm is the search space encoded by the PetaBricks compiler and the PetaBricks

autotuner evaluates fitness by running candidate programs on representative inputs.

127

6.1 The Autotuning Problem

The autotuner must identify selectors that will determine which choice of an algorithm will be

used during a program execution so that the program executes as fast as possible. Formally, a

selector s consists of ~Cs = [cs,1, . . . , cs,m−1] ∪ ~As = [αs,1, . . . , αs,m] where ~Cs are the ordered interval

boundaries (cutoffs) associated with algorithms ~As. During program execution the runtime function

SELECT chooses an algorithm depending on the current input size by referencing the selector as

follows:

SELECT (input, s) = αs,i s.t. cs,i > size(input) ≥ cs,i−1

where

cs,0 = min(size(input)) and cs,m = max(size(input)).

The components of ~As are indices into a discrete set of applicable algorithms available to s,

which we denote Algorithmss. The maximum number of intervals is fixed by the PetaBricks

compiler. An example of a selector for a sample sorting algorithm is shown in Figure 6.1.

αs,1 = 1

cs,1

=

150 MaxInputSize0

cs,2

=

106

input size

0: RadixSort

1: InsertionSort

2: QuickSort

3: BogoSort

αs,2 = 2 αs,3 = 0

Algorithmss:

Figure 6.1: A selector for a sample sorting algorithm where ~Cs = [150, 106] and ~As = [1, 2, 0]. The
selector selects the InsertionSort algorithm for input sizes in the range [0; 150), QuickSort for
input sizes in the range [150, 106) and RadixSort for [106,MAXINT). BogoSort was suboptimal
for all input ranges and is not used.

128

In addition to algorithmic choices, the autotuner tunes parameters such as blocking sizes,

sequential/parallel cutoffs and the number of worker threads. Each tunable is either a discrete

value of a small set indexed by an integer or a integer in some positive bounded range.

Formally, given a program P , hardware H and input size n, the autotuner must identify the

vector of selectors and vector of tunables such that the following objective function executionT ime

is satisfied:

argmin
s̄,t̄

executionTime(P,H, n)

6.1.1 Properties of the Autotuning Problem

Three properties of autotuning influence the design of an autotuner. First, the cost of fitness

evaluation depends heavily on on the input data size used when testing the candidate solution.

The autotuner does not necessarily have to use the target input size. For efficiency it could use

smaller sizes to help it find a solution to the target size because is generally true that smaller input

sizes are cheaper to test on than larger sizes, though exactly how much cheaper depends on the

algorithm. For example, when tuning matrix multiply one would expect testing on a 1024 × 1024

matrix to be about 8 times more expensive than a 512×512 matrix because the underlying algorithm

has O(n3) performance. While solutions on input sizes smaller than the target size sometimes are

different from what they would be when they are evolved on the target input size, it can generally be

expected that relative rankings are robust to relatively small changes in input size. This naturally

points to “bottom-up” tuning methods that incrementally reuse smaller input size tests or seed

them into the initial population for larger input sizes.

Second, in autotuning the fitness of a solution is its fitness evaluation cost. Therefore the

cost of fitness evaluation is dependant on the quality of a candidate algorithm. A highly tuned

and optimized program will run more quickly than a randomly generated one and it will thus be

fitter. This implies that fitness evaluations become cheaper as the overall fitness of the population

improves.

129

Third, significant to autotuning well is recognizing the fact that fitness evaluation is noisy due

to details of the parallel micro-architecture being run on and artifacts of concurrent activity in the

operating system. The noise can come from many sources, including: caches and branch prediction;

races between dependant threads to complete work; operating system artifacts such as scheduling,

paging, and I/O; and, finally, other competing load on the system. This leads to a design conflict:

an autotuner can run fewer tests, risking incorrectly evaluating relative performance but finishing

quickly, or it can run many tests, likely be more accurate but finish too slowly. An appropriate

strategy is to run more tests on less expensive (i.e. smaller) input sizes.

The INCREA exploits incremental structure and handles the noise exemplified in autotuning.

We now proceed to describe a INCREA for autotuning.

6.2 A Bottom Up EA for Autotuning

Representation

The INCREA genome, see Figure 6.2, encodes a list of selectors and tunables as integers each in

the range [0,MaxV al) where MaxV al is the cardinality of each algorithm choice set for algorithms

and MaxInputSize for cutoffs. Each tunable has a MaxV al which is the cardinality of its value

set or a bounded integer depending on what it represents.

In order to tune programs of different input sizes the genome represents a solution for maximum

input size and throughout the run increases the “active” portion of it starting from the selectors and

tunables relevant to the smallest input size. It has length (2m+ 1)k+ n, where k is the number of

selectors, m the number of interval cutoffs within each selector and n the number of other tunables

defined for the PetaBricks program. As the algorithm progresses the number of “active” cutoff and

algorithm pairs, which we call “choices” for each selector in the genome starts at 1 and then is

incremented in step with the algorithm doubling the current input size each generation.

130

s
e
le
c
to
r
2

c α c α α c α c α α t t t t

2m+1 2m+1 n

s
e
le
c
to
r
1

0 c1,1 c1,2 MaxInputSizeα1,1 α1,2 α1,3

0 c2,1 c2,2 MaxInputSizeα2,1 α2,2 α2,3

tu
n
a
b
le
s

t
1
, t

2
, t

3
, t

4[

[

Figure 6.2: A sample genome for m = 2, k = 2 and n = 4. Each gene stores either a cutoff cs,i, an
algorithm αs,i or a tunable value ti.

Fitness evaluation

The fitness of a genome is the inverse of the corresponding program’s execution time. The execution

time is obtained by timing the PetaBricks program for a specified input size.

Top level Strategy

Figure 6.3 shows top level pseudocode for INCREA. The algorithm starts with a “parent”

population and an input size of 1 for testing each candidate solution. All choices and tunables

are initially set to algorithm 0 and cutoff of MAX INT. The choice set is grown through mutation

on a per candidate basis. The input size used for fitness evaluation doubles each generation.

A generation consists of 2 phases: exploration, and downsizing. During exploration, a random

parent is used to generate a child via mutation. Only active choices and tunables are mutated in

this process. The choice set may be enlarged. The child is added to the population only if it is

determined to be fitter than its parent. The function “fitter” which tests for this condition increases

trials of the parent or child to improve confidence in their relative fitnesses. Exploration repeatedly

generates a child and tests it against its parent for some fixed number of MutationAttempts or

until the population growth reaches some hard limit.

131

During downsizing, the population, which has potentially grown during exploration, is pruned

down to its original size once it is ranked. The “rankThenPrune” function efficiently performs

additional fitness tests only as necessary to determine a ranking of which it is reasonably certain.

This strategy is reminiscent but somewhat different from a (µ + λ)ES [23]. The (µ + λ)ES

creates a pool of λ offspring each generation by random draws from the parent population of size µ.

Then both offspring and parents are combined and ranked for selection into the next generation.

The subtle differences in INCREA are that 1) in a “steady state” manner, INCREA inserts any

child which is better than its parent immediately into the population while parents are still being

drawn, and 2) a child must be fitter than its parent before it gains entry into the population. The

subsequent ranking and pruning of the population matches the selection strategy of (µ+ λ)ES.

Doubling the input size used for fitness evaluation at each generation allows the algorithm to

learn good selectors for smaller ranges before it has to find ones for bigger ranges. It supports

subsolution reuse and going forward from a potentially good, non-random starting point. Applying

mutation to only the active choice set and tunables while input size is doubling brings additional

efficiency because this narrows down the search space while concurrently saving on the cost of

fitness evaluations because testing solutions on smaller inputs sizes is cheaper.

Mutation Operators

The mutators perform different operations based on the type of value being mutated. For

an algorithmic choice, the new value is drawn from a uniform probability distribution

[0, ||Algorithmss|| − 1]. For a cutoff, the existing value is scaled by a random value drawn from a

log-normal distribution, i.e. doubling and halving the existing value are equally likely. The intuition

for a log-normal distribution is that small changes have larger effects on small values than large

values in autotuning. We have confirmed this intuition experimentally by observing much faster

convergence times with this type of scaling.

The INCREA mutation operator is only applied to choices that are in the active choice list for

the genome. INCREA has one specialized mutation operator that adds another choice to the active

choice list of the genome and sets the cutoff to 0.75 times the current input size while choosing

132

1 popu la t i onS i z e = popLowSize
2 i n p u t S i z e s = [1 , 2 , 4 , 8 , 16 , , maxInputSize]
3 i n i t i a l i z e populat ion (maxGenomeLength)
4 for gen = 1 to log (maxInputSize)
5 /∗ e x p l o r a t i o n phase : p o p u l a t i o n and a c t i v e
6 c h o i c e s may i n c r e a s e ∗/
7 inputS i z e = i n p u t S i z e s [gen]
8 for j = 1 to mutationAttempts
9 parent = random draw from populat ion

10 ac t i v eCho i c e s = getAct iveCho ices (parent)
11 /∗ a c t i v e c h o i c e s cou ld grow ∗/
12 c h i l d = mutate (parent , a c t i v eCho i c e s)
13 /∗ r e q u i r e s f i t n e s s e v a l u a t i o n s ∗/
14 i f f i t t e r (ch i ld , parent , i nputS i z e)
15 populat ion = add (populat ion , c h i l d)
16 i f l ength (populat ion) >= popHighSize
17 e x i t e x p l o r a t i o n phase
18 end /∗ e x p l o r a t i o n phase ∗/
19 /∗ more t e s t i n g ∗/
20 populat ion = rankThenPrune (populat ion ,
21 popLowSize ,
22 inputS i z e)
23 /∗ d i s c a r d a l l pa s t f i t n e s s e v a l u a t i o n s ∗/
24 c l e a r R e s u l t s (populat ion)
25 end /∗ g e n e r a t i o n loop ∗/
26 return f i t t e s t populat ion member

Figure 6.3: Top level strategy of INCREA.

133

the algorithm randomly. This leaves the behavior for smaller inputs the same, while changing the

behavior for the current set of inputs being tested. It also does not allow a new algorithm to be

the same as the one for the next lower cutoff.

Noisy Fitness Strategies

Because INCREA must also contend with noisy feedback on program execution times, it is bolstered

to evaluate candidate solutions multiple times when it is ranking any pair. Because care must be

taken not to test too frequently, especially if the input data size is large, it uses an adaptive sampling

strategy [3, 34, 36, 138] . The boolean function “fitter”, see Figure 6.4, takes care of this concern

by running more fitness trials for candidates s1 and s2 under two criteria. The first criterion is

a t-test [99]. When the t-test result has a confidence, i.e. p-value less than 0.05, s1 and s2 are

considered different and trials are halted. If the t-test cannot confirm difference, least squares is

used to fit a normal distribution to the percentage difference in the mean execution time of the two

algorithms. If this distribution estimates there is a 95% probability of less than a 1% difference,

the two candidates’ fitnesses are considered to be the same. There is also a parameterized hard

upper limit on trials.

The parent ranking before pruning, in function “rankThenPrune”, is optimized to minimize the

number of additional fitness evaluations. First, it ranks the entire population by mean performance

without running any additional trials. It then splits the ranking at the populationLowSize

element into a KEEP list and a DISCARD list. Next, it sorts the KEEP list by calling the

“fitter” function (which may execute more fitness trials). Next, it compares each candidate in

the DISCARD list to the populationLowSize element in the KEEP list by calling the “fitter”

function. If any of these candidates are faster, they are moved to the KEEP list. Finally, the

KEEP list is sorted again by calling “fitter” and the first populationLowSize candidates are the

result of the pruning.

This strategy avoids completely testing the elements of the population that will be discarded. It

allocates more testing time to the candidate that will be kept in the population. It also exploits the

134

1 function f i t t e r (s1 , s2 , i nputS i z e)
2 while s1 . evalCount < evalsLowerLimit
3 e v a l u a t e F i t n e s s (s1 , i nputS i z e)
4 end
5 while s2 . evalCount < evalsLowerLimit
6 e v a l u a t e F i t n e s s (s2 , i nputS i z e)
7 end
8 while t rue
9 /∗ S i n g l e t a i l e d T−t e s t assumes each sample ’ s mean i s

10 normal ly d i s t r i b u t e d . I t r e p o r t s p r o b a b i l i t y t h a t
11 sample means are same under t h i s assumption . ∗/
12 i f t t e s t (s1 . eva l sResu l t s , s2 . eva lRe su l t s) < PvalueLimit
13 /∗ s t a t i s t i c a l l y d i f f e r e n t ∗/
14 return mean(s1 . eva lR e su l t s) > mean(s2 . eva lR e su l t s)
15 end
16 /∗ T e s t 2 E q u a l i t y : Use l e a s t squares to f i t a normal
17 d i s t r i b u t i o n to the percentage d i f f e r e n c e in the
18 mean performance o f the two a l g o r i t h m s . I f t h i s
19 d i s t r i b u t i o n e s t i m a t e s t h e r e i s a 95% p r o b a b i l i t y
20 o f l e s s than a 1% d i f f e r e n c e in t r u e means , c o n s i d e r
21 the two a l g o r i t h m s the same . ∗/
22 i f Test2Equal i ty (s1 . eva lResu l t s , s2 . ev a lRe su l t s)
23 return f a l s e
24 end
25 /∗ need more information , choose s1 or s2 based on
26 the h i g h e s t expec ted r e d u c t i o n in standard err or ∗/
27 whoToTest = mostInformative (s1 , s2) ;
28 i f whoToTest == s1 and s1 . testCount < evalsUpperLimit
29 e v a l u a t e F i t n e s s (s1 , i nputS i z e)
30 e l i f s2 . testCount < evalsUpperLimit
31 e v a l u a t e F i t n e s s (s2 , i nputS i z e)
32 else
33 /∗ i n c o n c l u s i v e r e s u l t , no more e v a l s l e f t ∗/
34 return f a l s e
35 end
36 end /∗ w h i l e ∗/
37 end /∗ f i t t e r ∗/

Figure 6.4: Pseudocode of function “fitter”.

135

fact that comparing algorithms with larger differences in performance is cheaper than comparing

algorithms with similar performance.

6.3 Experimental Evaluation

We now compare INCREA to a general purpose EA we call GPEA on 4 Petabricks benchmarks

described in Chapter 4: sort (for 2 target input sizes), matmult which is dense matrix multiply, and

eig which solves for symmetric eigenvalues.

6.3.1 GPEA

The GPEA uses the same genome representation and operators of INCREA. All selector choices are

always active. It initializes all population members with values drawn from the distributions used

by the mutation operator. It then loops evaluating the fitness of each member once, performing

tournament selection and applying crossover with pxo = 1.0 then mutation with probability pµ.

Crossover swaps algorithms while cutoffs and tunables are swapped or changed to a random value in

between those of the two parents’ genes. Extrapolating from [18,33], GPEA’s significant population

size (100 in our experiments) should provide some robustness to fitness case noise.

6.3.2 Experimental Setup

Parameter Value

confidence required 70%

max trials 5

min trials 1

population high size 10

population low size 2

mutationAttempts 6

standard deviation prior 15%
(a) INCREA

Parameter Value

mutation rate 0.5

crossover rate 1.0

population size 100

tournament size 10

generations 100

evaluations per candidate 1
(b) GPEA

Figure 6.5: INCREA and GPEA Parameter Settings.

136

We performed all tests on multiple identical 8-core, dual-Xeon X5460, systems clocked at 3.16

GHz with 8 GB of RAM. The systems were running Debian GNU/Linux 5.0.3 with kernel version

2.6.26. For each test, we chose a target input size large enough to allow parallelism, and small

enough to converge on a solution within a reasonable amount of time. Parameters such as the

mutation rate, population size and the number of generations were determined experimentally and

kept constant between benchmarks. Parameter values we used are listed in Figure 6.5.

6.3.3 INCREA vs GPEA

In practice we might choose parameters of either INCREA or GPEA to robustly ensure good

autotuning or allow the programmer to vary them while tuning a particular problem and

architecture. In the latter case, considering how quickly the tuner converges to the final solution

is important. To more extensively compare the two tuners, we ran each tuner 30 times for each

benchmark.

Table 6.1 compares the tuners mean performance with 30 runs based on time to convergence

and the performance of the final solution. To account for noise, time to convergence is calculated

as the first time that a candidate was found that was within 5% of the best fitness achieved. For

all of the benchmarks except for eig, both tuners arrive at nearly the same solutions, while for

eig INCREA finds a slightly better solution. For eig and matmult, INCREA converges an order

of magnitude faster than GPEA. For sort, GPEAconverges faster on the small input size while

INCREA converges faster on the larger input size. If one extrapolates convergences times to larger

input sizes, it is clear that INCREA scales a lot better than GPEA for sort.

Figure 6.6 shows aggregate results from 30 runs for both INCREA and GPEA on each

benchmark. INCREA generally has a large amount of variance in its early generations, because

those generations are based on smaller input sizes that may have different optimal solutions than

the largest input size. However, once INCREA reaches its final generation it exhibits lower variance

than than GPEA. GPEA tends to converge slowly with gradually decreasing variance. Note that the

first few generations for INCREA are not shown because, since it was training on extremely small

input sizes, it finds candidates candidates that exceed the timeout set by our testing framework

137

INCREA GPEA SS?

sort-220 Convergence 1464.7± 1992.0 599.2± 362.9 YES (p = 0.03)
Performance 0.037± 0.004 0.034± 0.014 NO

sort-223 Convergence 2058.2± 2850.9 2480.5± 1194.5 NO
Performance 0.275± 0.010 0.276± 0.041 NO

matmult
Convergence 278.5± 185.8 2394.2± 1931.0 YES (p = 10−16)
Performance 0.204± 0.001 0.203± 0.001 NO

eig
Convergence 92.1± 66.4 627.4± 530.2 YES (p = 10−15)
Performance 1.240± 0.025 1.250± 0.014 YES (p = 0.05)

Table 6.1: Comparison of INCREA and GPEA in terms of mean time to convergence in seconds
and in terms of execution time of the final configuration. Standard deviation is shown after the ±
symbol. The final column is statistical significance determined by a t-test. (Lower is better)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(a) sort 220

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(b) sort 223

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(c) matmult

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(d) eig

Figure 6.6: Execution time for target input size with best individual of generation. Mean and
standard deviation (shown in error bars) with 30 runs.

138

when run on the largest input size. These early generations account for a only a small amount of

the total training time.

In 6.6(a) the INCREA’s best candidate’s execution time displays a “hump” that is caused

because it finds optima for smaller input sizes that are not reused in the optimal solution for the

target input size.

-50

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

Te
st

 T
im

eo
ut

s

Generation Number

INCREA
GPEA

(a) Tests Halted due to Time Out

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30
A

dd
ed

 c
an

di
da

te
s

Generation Number

INCREA
GPEA

(b) Population Growth

Figure 6.7: Time out and population growth statistics of INCREA for 30 runs of sort on target
input size 220. Error bars are mean plus and minus one standard deviation.

Using sort-220, in Figure 6.7(a) we examine how many tests are halted by each tuner, indicating

very poor solutions. The timeout limit for both algorithms is set to be the same factor of the time

of the current best solution. However, in GPEA this will always be a test with the target input size

whereas with INCREA it is the current input size (which is at least half the time, half as large).

Almost half of GPEA’s initial population were stopped for timing out, while INCREA experiences

most of its timeouts in the later generations where the difference between good and bad solutions

grows with the larger input sizes. We also examine in Figure 6.7(b) how much the population

grew each generation during the exploration phase. For INCREA the population expansion during

exploration is larger in the middle generations as it converges to a final solution.

6.3.4 Representative runs

We now select a representative run for each benchmark to focus on run dynamics.

139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 60 120 240 480 960 1920

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 120 240 480 960 1920

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 60 120 240 480 960 1920

Tr
ai

ni
ng

 In
pu

t S
iz

e

Training Time

INCREA
GPEA

(a) sort 220

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 180 540 1620 4860 14580

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 180 540 1620 4860 14580

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 60 180 540 1620 4860 14580

Tr
ai

ni
ng

 In
pu

t S
iz

e

Training Time

INCREA
GPEA

(b) sort 223

 0

 0.5

 1

 1.5

 2

 2.5

 3

 60 120 240 480 960 1920 3840 7680

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 120 240 480 960 1920 3840 7680

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

 1

 4

 16

 64

 256

 1024

 60 120 240 480 960 1920 3840 7680

Tr
ai

ni
ng

 In
pu

t S
iz

e

Training Time

INCREA
GPEA

(c) matmult 1024 × 1024

 1

 1.5

 2

 2.5

 3

 60 240 960 3840 15360

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 240 960 3840 15360

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

 1

 4

 16

 64

 256

 1024

 60 240 960 3840 15360

Tr
ai

ni
ng

 In
pu

t S
iz

e

Training Time

INCREA
GPEA

(d) eig 1024 × 1024

Figure 6.8: Representative runs of INCREA and GPEA on each benchmark. The left graphs plot
the execution time (on the target input size) of the best solution after each generation. The right
graph plots the number of fitness evaluations conducted at the end of each generation. All graphs
use seconds of training time as the x-axis.

140

sort: Sorting

Figures 6.8(a) and 6.8(b) show results from a representative run of each autotuner with two different

target input sizes respectively. The benchmark consists of insertion-sort, quick-sort, radix sort, and

2/4/8/16/32-way merge-sorts. On this Xeon system, sort is relatively easy to tune because the

optimal solution is relatively simple and the relative costs of the different algorithms are similar.

For the 220 benchmark, both INCREA and GPEA consistently converge to a very similar

solution which consists of small variations of quick-sort switching to insertion-sort at somewhere

between 256 and 512. Despite arriving at a similar place, the two tuners get there in a very different

way. Table 6.2, lists the best algorithm for each tuner at each generation in the run first shown in

Figure 6.8(a). INCREA starts with small input sizes, where insertion-sort alone performs well, and

for generations 0 to 7 is generating algorithms that primarily use insertion-sort for the sizes being

tested. From generations 8 to 16, it creates variants of radix-sort and quicksort that are sequential

for the input sizes being tested. In generation 17 it switches to a parallel quick sort and proceeds

to optimize the cutoff constants on that for the remaining rounds. The first two of these major

phases are locally optimal for the smaller input sizes they are trained on.

GPEA starts with the best of a set of random solutions, which correctly chooses insertion-sort

for small input sizes. It then finds, in generation 3, that quick-sort, rather than the initially chosen

radix-sort, performs better on large input sizes within the tested range. In generation 6, it refines

its solution by paralellizing quick-sort. The remainder of the training time is spent looking for the

exact values of the algorithmic cutoffs, which converge to their final values in generation 29.

We classified the possible mutation operations of INCREA and counted how frequently each was

used in creating an offspring fitter than its parent. We identified specialized classes of operations

that target specific elements of the genome. Table 6.3 lists statistics on each for the run first shown

in Figure 6.8(a). The class most likely to generate an improved child scaled both algorithm and

parallelism cutoffs. The class that changed just algorithms were less likely to cause improvement.

Overall only 3.7% of mutations improved candidate fitness.

141

INCREA: sort

Input Training
Genome

size Time (s)

20 6.9 Q 64 Qp
21 14.6 Q 64 Qp
22 26.6 I

23 37.6 I

24 50.3 I

25 64.1 I

26 86.5 I

27 115.7 I

28 138.6 I 270 R 1310 Rp
29 160.4 I 270 Q 1310 Qp
210 190.1 I 270 Q 1310 Qp
211 216.4 I 270 Q 3343 Qp
212 250.0 I 189 R 13190 Rp
213 275.5 I 189 R 13190 Rp
214 307.6 I 189 R 17131 Rp
215 341.9 I 189 R 49718 Rp
216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp
218 642.9 I 189 Q 5585 Qp
219 899.8 I 456 Q 5585 Qp
220 1313.8 I 456 Q 5585 Qp

GPEA: sort

Gen
Training

Genome
Time (s)

0 91.4 I 448 R

1 133.2 I 413 R

2 156.5 I 448 R

3 174.8 I 448 Q

4 192.0 I 448 Q

5 206.8 I 448 Q

6 222.9 I 448 Q 4096 Qp
7 238.3 I 448 Q 4096 Qp
8 253.0 I 448 Q 4096 Qp
9 266.9 I 448 Q 4096 Qp
10 281.1 I 371 Q 4096 Qp
11 296.3 I 272 Q 4096 Qp
12 310.8 I 272 Q 4096 Qp

...

27 530.2 I 272 Q 4096 Qp
28 545.6 I 272 Q 4096 Qp
29 559.5 I 370 Q 8192 Qp
30 574.3 I 370 Q 8192 Qp

...

Table 6.2: Listing of the best genome of each generation for each autotuner for an example training
run. The genomes are encoded as a list of algorithms (represented by letters), separated by the
input sizes at which the resulting program will switch between them. The possible algorithms are:
I = insertion-sort, Q = quick-sort, R = radix-sort, and Mx = x-way merge-sort. Algorithms may
have a p subscript, which means they are run in parallel with a work stealing scheduler. For clarity,
unreachable algorithms present in the genome are not shown.

Mutation Class Count
Times Effect on fitness
Tried Positive Negative None

Make an algorithm active 8 586 2.7% 83.8% 13.5%

Lognormally scale a cutoff 11 1535 4.4% 50.4% 45.1%

Randomy switch an algorithm 12 1343 2.5% 50.4% 25.7%

Lognormally change a parallism cutoff 2 974 5.2% 38.7% 56.1%

Table 6.3: Effective and ineffective mutations when INCREA solves sort (target input size 220.)

142

matmult: Dense Matrix Multiply

Figure 6.8(c) shows comparative results on matmult. The program choices are a naive matrix

multiply and five different parallel recursive decompositions, including Strassen’s Algorithm and

a cache-oblivious decomposition. A tunable allows both autotuners to transpose combinations of

inputs and outputs to the problem. To generate a valid solution, the autotuner must learn to put

a base case in the lowest choice of the selector, otherwise it will create an infinite loop. Because

many random mutations will create candidate algorithms that never terminate when tested, we

impose a time limit on execution.

Both INCREA and GPEA converge to the same solution for matmult. This solution consists

of transposing the second input and then doing a parallel cache-oblivious recursive decomposition

down to 64× 64 blocks which are processed sequentially.

While both tuners converge to same solution, INCREA arrives at it much more quickly. This

is primarily due to the n3 complexity of matrix multiply, which makes running small input size

tests extremely cheap compared to larger input sizes and the large gap between fast and slow

configurations. INCREA converges to the final solution in 88 seconds, using 935 trials, before

GPEA has evaluated even 20% of its initial population of 100 trials. INCREA converges to a final

solution in 9 generations when the input size has reached 256, while GPEA requires 45 generations

at input size 1024. Overall, INCREA converges 32.8 times faster than GPEA for matrix multiply.

eig: Symmetric Eigenproblem

Figure 6.8(d) shows results for eig. Similar to matmult here INCREA performs much better because

of the fast growth in cost of running tests. This benchmark is unique in that its timing results

have higher variance due to locks and allocation in the underlying libraries used to implement

certain mathematical functions. This high variance makes it difficult to autotune well, especially

for GPEA which only runs a single test for each candidate algorithm. Both solutions found were

of same structure, but INCREA was able to find better cutoffs values than the GPEA.

143

144

Chapter 7

Input Sensitivity

A fundamental problem that autotuning systems face is input sensitivity. For a large class of

problems, the best optimization to use depends on the input data being processed. For example,

sorting an almost-sorted list can be done most efficiently with a different algorithm than one

optimized for sorting random data. In empirical autotuning systems, there is a danger that the

auotuner will create an algorithm specifically optimized for the inputs it is provided during tuning.

This may be suboptimal for inputs later encountered in production or be a compromise solution

that is not best for any one input but performs well overall. For many problems, no single optimized

program exists which can match the performance of a collection of optimized programs autotuned

for different subsets of the input space.

This problem of input sensitivity is exacerbated by several features common to many classes

of problems and types of autotuning systems. Many autotuning systems must handle large search

spaces and variable accuracy algorithms with multiple objectives. They encounter inputs with

non-superficial features that require domain specific knowledge to extract, Each of these challenges

makes the problem of input sensitivity more difficult in a unique way.

The first challenge is the size of the optimization space. When it is small, an autotuner can

exhaustively try all possible configurations on a large subset of inputs to characterize and resolve

input sensitivity. However, exhaustive search does not scale to larger, complex search spaces. In

the benchmarks we consider, the autotuner uses algorithmic choices embedded in the program to

145

construct arbitrary polyalgorithms which process a single input through a hybrid of many different

individual techniques. This results in enormous search spaces, ranging from 10312 to 101016 possible

configurations of a program. These search spaces are far too large to search exhaustively and

demand new techniques for dealing with input sensitivity.

The second challenge is that the performance of different algorithmic configurations may be

sensitive to many input features that are domain-specific and require deep, possibly expensive,

analysis to extract. Two inputs which superficially look similar may respond very differently to

the same optimization. For example, our singular value decomposition benchmark is sensitive to

the number of eigenvalues in the input matrix. This is not reflected in a generic feature such as

input size. A complete solution to this problem must address both how to express and extract such

domain specific features and how to do so in a cost effective manner. If the overhead of extracting a

feature is too large, it may not be worth using. One must further weigh whether extracting another

feature, somewhat correlated to existing ones, with the runtime cost of extracting it.

The third challenge is interaction with variable accuracy algorithms. Many programs can

produce outputs of varying quality, and the autotuner is required to produce configurations that

will meet a target quality of service level. For example, our Poisson’s equation solver benchmark

must produce an output that matches the output of a direct solver to seven digits of precision with

at least 90% confidence. Meeting such a requirement is especially difficult, because the difficulty

level of different inputs can vary. For a class of inputs, a very fast polyalgorithm may suffice

to achieve seven digits of accuracy, while for different inputs that same solver may not meet the

accuracy target. A system that is not input aware is forced to use a more expensive algorithm that

achieves the target across all inputs, and can not tailor different algorithms for different inputs.

This chapter presents a general means of automatically determining what algorithmic

optimization to use when different ones suit different inputs. While input sensitivity seems to be

intertwined with the complexity of large optimization spaces and input spaces, we show that it can

be resolved via simple extensions to an existing autotuning system. We show that the complexity

of input sensitivity can be managed, and that a small number of input optimized programs is often

sufficient to get most of the benefits of input adaptation. The language keyword input feature

146

Training
Deployment

Input Classifier

Input Aware
Learning

Program

Training Inputs

Feature Extractors
Insights:
 - Feature Priority List
 - Performance Bounds

Input

Select Input Optimized
Programs

Training

Selected
Program

Run

Figure 7.1: Usage of the system both at training time and deployment time. At deployment time
the input classifier selects the input optimized program to handle each input. Input Aware Learning
is described in Section 7.2.

(discussed in Section 2.4) is used to define the domain specific input features referenced in this

chapter.

We propose a two level approach to solving the input sensitivity problem for complex algorithmic

search spaces. At the first level we cluster the input space into a finite number of input classes.

For each of these input classes, we use an evolutionary autotuner to create an optimized program

configuration. We then train a large number of classifiers, each of which relies upon a varying

number of input features, to assign each new input to one of the optimized program configurations

created for one of the input classes. At the second level, prior to the execution of a program, given

an input to process, we select among these candidate classifiers by means of competition so that

one production classifier is chosen. This two level approach is able to achieve large speedups by

making an optimization choice which is sensitive to input variation while managing the input space

and search space complexity. We also propose a new language keyword that allows the programmer

to specify arbitrary domain-specific input features with variable sampling levels.

147

7.1 Usage

Figure 7.1 describes the usage of our system for input sensitive algorithm design. At the first level,

there is input aware learning which takes the user’s program (containing algorithmic choices),

the feature extractors specified by the input feature language keyword (described in Chapter 2)

and input exemplars as input. Input aware learning is described in Section 7.2. The output of

the learning is an input classifier and a set of input optimized programs, each of which has been

optimized for specific class of inputs.

When an arbitrary input is encountered in deployment, the classifier created by learning is used

to select an input optimized program which is expected to perform the best on this input. The

classifier will use some (possibly variable) subset of the feature extractors available to it to probe

the input. Finally, the selected input optimized program will process the input and return the

output to the user.

7.2 Input Aware Learning

In this section, for reference, we start by proposing a naive design of input aware learning. We use

its design issues to convey the important considerations one needs to take when designing input

aware learning for complex algorithmic autotuning. We then explain the two level approach we

have developed.

7.2.1 A Simple Design and Its Issues

A straightforward way to construct an input classifier is via input-based clustering. First, construct

feature vectors for every example input set with the input feature extraction procedures encoded

by the programmer. Then, cluster examples based on the feature vectors. Next, find a good

algorithmic configuration for each cluster’s centroid. For a new input, the classifier first invokes

the feature extraction procedures to compute its feature vector, based on which, it finds out what

input cluster the new input belongs, and then runs the configuration of that cluster on that new

148

input. This design has been used for addressing input sensitivity in program specialization and

others [143]. However, applying it to algorithmic autotuning raises three issues.

First, it fails to acknowledge that two input sets that are similar may not have correspondingly

similar configurations, and vice versa. As well, while there may be more than one configuration

that suits an input set, but some will perform well on an input set similar to it, while others

will not. In other words, there is no direct correspondence between similar input features, similar

configurations and/or similar algorithm performance (measured in execution speed and accuracy).

Instead the relationships among input properties, configurations and program behavior are non-

linear and complex. We call this phenomena a mapping disparity. It implies that by assigning

configurations based on the differences in input features, the simple design is likely to assign an

inferior configuration for new input.

The second issue is that even if the configuration found by the simple classifier happens to

provide the highest performance on that new input, its calculation accuracy may not meet the

requirement. It is unclear how the simple design can handle accuracy-performance conflicts, a

special complexity in algorithmic autotuning.

The third issue with the simple design is that it does not consider the overhead in feature

extraction on the new input. Due to the complexity in algorithmic choice, some features may take

a substantial time to extract. As the feature extraction occurs on the critical path of the program

execution, the simple design may end up with a significant slowdown for the introduced extra work.

7.2.2 Design of the Two Level Learning

Motivated by the particular complexities of algorithmic autotuning, we develop a two level learning

framework. The first level is shown in Figure 7.2. Like the simple design, in its first step it clusters

and groups the input space into a finite number of input classes and then uses the autotuner to

identify a good algorithmic configuration for each cluster’s centroid. In addition however, to provide

data on the mappings among inputs, configuration and performance, it executes every exemplar

using the configuration of each cluster. These results will be used at the next level.

149

Feature
Extraction

Input Space
Clustering

Evolutionary
Autotuner

Features

Input Optimized
Programs

Centroids

Performance
Testing

Training
Inputs

Input
Labels

Figure 7.2: Selecting representative inputs to train input optimized programs.

The second level is shown in Figure 7.3. It addresses interpreting the mapping evidence

previously collected on the inputs and their performance on a small set of ”landmark” configurations

taken from the centroids found earlier. It builds a large number of classifiers each different by which

input features it references and/or different by the algorithm used to derive the classifier. It then

computes an objective score, based on performance and feature extraction costs, for every classifier

and selects the best one as the production classifier. Together, these two levels create an approach

that is able to achieve large speedups by its sensitivity to input variation and configuration influence

on program performance. We now provide detail on each level’s design.

7.2.3 Level 1

The main objective of Level one is to identify a set of configurations for each class of inputs. We

call these configurations “landmarks”.

Specifically, there are four steps in this level of learning.

• Step 1: Feature Extraction We assemble a feature vector for each training input using

the values computed by the input feature procedures of the program. For each property, by

using a tunable parameter such as level in the input feature procedure in the program, we

have collected values at z different costs which are what we call features.

150

• Step 2: Input Clustering We first normalize the input feature vectors to avoid biases

imposed by the different value scales in different dimensions. We then group the inputs into

a number of clusters (five in our experiments) by running a standard clustering algorithm

(e.g., K-means) on the feature vectors. For each cluster, we compute its centroid. Note that

the programmer is only required to provide a input feature functions.

• Step 3: Landmark Creation We autotune the program using the PetaBricks evolutionary

autotuner multiple times, once for each input cluster, using its centroid as the presumed

inputs. While the default evolutionary search in autotuner generates random inputs at each

step of search, we use a flag which indicates it should use the centroid instead. We call

each configuration for each cluster’s centroid as input data to the program, a landmark. The

stochasticity of the autotuner means we may get different configurations albeit perhaps equal

performing ones each time.

• Step 4: Performance Measurement We run each landmark configuration on every

training input and record both the execution time and accuracy (if applicable) as its

performance information.

We note that there is an alternative way to accomplish Steps 1 through 3 and identify landmarks.

We could find the best configuration for each training input, group these configurations based on

their similarity, and use the centroids of the groups as landmark configurations. This unfortunately

is infeasible because it is too time consuming to find a suitable configuration for every input example.

Modeling is not as effective as search, and search involves the composition and evaluation of

hundreds of thousands configurations, taking hours or even days to finish. This also has the problem

we mention previously: similar configurations do not have matching algorithm performance. For

these reasons, we cluster in the space of inputs’, determine an inputs centroid for each cluster and

then autotune the centroid to get a landmark. This process will cost some extra time depending

the number of landmarks we want to obtain, but it is a one time only cost to programmer.

151

Features
Input

Labels

Decision Tree

Max A Priori

Adaptive Tree

Classifier
Constructors

1...m

0

m+1

Classifier
Selector

Selection
Objective

Considers
cost of

extracting
needed
features

Input
Classifier

Figure 7.3: Constructing and selecting the input classifier.

7.2.4 Level 2

The main objective of Level 2 is to identify a production classifier. The challenge is to determine

which input features are good predictors of a high performing classifier. If this was directly known,

these features could be used to learn one classifier which would directly be used in production.

Because it is not, the first sub-goal is to generate a candidate set of classifiers each with a unique

set of features and all using the data that provides evidence of the relationship between inputs,

configurations and algorithm performance. Incorporating this step and its wealth of evidence

drastically improves results. The second sub-goal follows: choose among the candidates to identify

the best one for production.

Data Conditioning Before Classifier Learning

We use machine learning to generate our classifiers. Per machine learning, we make each set of

example inputs, their features, feature extraction costs, execution times and accuracy scores for

each landmark configuration, a row of a dataset. We append to each row a label which is the best

configuration for the input.

More formally, we create a datatable of 4-tuples where each 4-tuple is < F,T,A,E >, where

F is a m-dimensional feature vector for this input, T and A are vectors of length 1 × K1 where

ith entry represents the execution time and accuracy achieved for this input when ith configuration

is applied. E is a M -dimensional vector giving us the values for time taken for extraction of the

152

features. We first generate labels L ∈ {1 . . .K1} for each input. Label li represents the best

configuration for the ith input. For problems where only minimizing the execution time is an

objective (for example sorting) the label for ith input is simply arg maxj T
j
i . For problems where

both accuracy and execution time are objectives, we first choose a threshold for the accuracy and

then select the subset of configurations that meet the accuracy threshold and among them pick

the one that has the minimum execution time. For the case, in which none of the configs achieve

desired accuracy threshold, we pick the configuration that gives the maximum accuracy.

We then divide our inputs into two sets, one set is used for training the classifier, the other

for testing. We next pass the training set portion of the dataset to different classification methods

which either reference different features or compute a classifier in a different way. Formally a

method derives classifier C referencing a feature set fc ⊂ F to predict the label, i.e., C(Fi)→ Li.

Classifier Learning

We now describe the classifiers we derive and the methods we use to derive them.

Max-apriori classifier This classifier evaluates the empirical priors for each configuration label

by looking at the training data. It chooses the configuration with the maximum prior (maximum

number of inputs in the training data had this label) as the configuration for the entire test data.

There is no training involved in this other than counting the exemplars of each label in the training

data. As long as the inputs follow the same distribution in the test data as in the training data

there is minimal mismatch between its performance on training and testing. It should be noted

that this classifier does not have to extract any features of the input data.

Advantages: No training complexity, no cost incurred for extraction of features.

Disadvantages: Potentially highly inaccurate, vulnerable to error in estimates of prior.

Exhaustive Feature Subsets Classifiers Even though we have M features in the machine

learning dataset, we only have M
z input properties. The bottom level feature takes minimal time

to extract and only looks at the partial input, while the top level takes significant amount of time

as it looks at the entire input. However, features extracted for the same input could be highly

153

correlated. Hence, as a logical progression, we select a subset of features size of which ranges

between 1 . . . Mz where each entry is for a property. For each property we allow only one of its level

to be part of the subset, and also allow it to be absent altogether. So for 4 properties with z = 3

levels we can generate 44 unique subsets. For each of these 256 subsets we then build a decision

tree classifier [119] yielding a total of 256 classifiers.

The feature extraction time associated with each classifier is dependent on the subset of features

used by the classifier, ie. for an input i, it is the summation
∑

j E
j
i . The decision tree algorithm

references the label and features and tries minimize its label prediction error. It does not reference

the feature extraction times, execution times or accuracy information. These will be referenced in

accomplishing the second sub-goal of classifier selection.

Because we wanted to avoid any “learning to the data”, we performed 10 fold cross validation.

Advantages: Feature selection could simply lead to higher accuracy and allow us to save

feature extraction time.

Disadvantages: More training time, not scalable should the number of properties increase.

All features Classifier This classifier is one of the 256 Exhaustive Feature Subsets classifiers

which we call out because it uses all the m features.

Advantages: Can lead to higher accuracy classification.

Disadvantages: More training time, higher feature extraction time, no feature selection.

Incremental Feature Examination classifier

Finally, we designed a classifier which works on an input in a sequential fashion. First, for every

feature fm ∈ R, we divide it into multiple decision regions {dm1 . . . dmj } where j ≥ K1. We then

model the probability distributions under each class for each feature under each decision region

Pm,j,k(fm = dmj |Li = k). Given a pre-specified order of features it classifies in the following manner

when deployed:

Step 1: Calculate the feature: Evaluate the mth feature for the input and apply the thresholds

to identify the decision region it belongs to.

154

Step 2: Calculate posterior probabilities: The posterior for a configuration (class label) k,

given all the features {1 . . .m} acquired so far and let d1
1 . . . d

i
j be the decision regions they

belong to, is given by:

P (Li = k|f1...m) =
ΠmPm,j,k(fm = dmj |Li = k)P (L = k)∑
k ΠmPm,j,k(fm = dmj |Li = k)P (L = k)

(7.1)

Step 3: Compare and decide: We pre-specify a threshold on the posterior ∆ and we declare

the configuration (class label) as k if its posterior P (Li = k|f1...m) > ∆. If none of the

posteriors are greater than this threshold, we return to step 1 to acquire more features.

In this method, we incrementally acquire features for a input point i based on judgement as to

whether there is enough evidence (assessed via posteriors) for them to indicate one configuration.

This results in a variable feature extraction time for different inputs thus providing potential further

reductions in feature extraction time at the time the production classifier is applied to new inputs.

For all the classifiers preceding this one, we extracted the same number of features for all the inputs.

This method can be applied after the previous method has found the best subset to further

save on feature extraction time.

To train this classifier, we need to find the optimal decision regions for each feature and the

threshold on posterior ∆ such that the performance measurements mentioned above are minimized.

This could be done via a simple continuous parameter search algorithm. Usually, more decision

regions per feature help increase the performance and in some cases search over orders could help.

This is the only classifier in our system where we introduce the domain specific cost function into

the inner loop of training of a classifier.

Advantages: Reduced feature extraction time, scalable as the number of attributes increase.

Disadvantages: One possible drawback for this classifier is that it requires a storage of i×j×k

number of probabilities in a look up table. Training time.

155

Candidate Selection of Production Classifier

After we generate a set of classifiers based on different inputs or methods, we next need to select

one as the production classifier. We start by applying every classifier on the test set and measuring

the performance (execution time and accuracy, if required) of the algorithm when executing with its

predicted configuration. We can compare this performance to that of the rest configuration. There

are three objectives for the production classifier: 1) minimize execution time; 2) meet accuracy

requirements ; and, 3) minimize the feature extraction time.

Let βi be the minimum execution time for the input i by all the representative polyalgorithms.

Let Ψ(i, Li) be the execution time of i when its class label is Li, given by classifier C and gi =∑
j Tj , j ∈ fc be the feature extraction time associated with this classification.

Given a classifier we measure its efficacy for our problem as follows:

For time only:The cost incurred (represented by ri) for classifying a data point to configuration

ci will be ri = Ψ(i, ci) + gi. The cost function (represented by R) for all the data will be the

average of all their costs, that is, R =
∑

i(ri)/N , where N is the total number of data lists.

We refer to R as performance cost in the following description.

For time and accuracy: Let H be the accuracy threshold, that is, only when the accuracy of

the computation (e.g., binpacking) result at a data list exceeds H, the result is useful. The

value of H can be prefixed by programmer.

Suppose the fraction of data lists whose computation results are inaccurate (ie. accuracy is

less than H) is s when classifier C is applied to our data set. We set a target on the s. If

a classifier does not meet this target, it is considered invalid (or incurring a huge cost). If a

classifier meets this target then the cost of this classifier is calculated as defined above.

7.2.5 Discussion of the Two Level Learning

This two level learning has several important properties.

First, it uses a two level design to systematically address mapping disparity. Its first phase

takes advantage of the properties of inputs to identify landmark configurations. It then furnishes

156

evidence of how example inputs and different landmarks affect program performance (execution

time and accuracy). Its second phase uses this evidence to (indirectly) learn a production classifier.

By classifying based upon best landmark configuration it avoids misusing similarity of inputs. The

means by which it evaluates each candidate classifier (trained to identify the best landmark) to

determine the production classifier takes into account the performance of the configurations both

in terms of execution time and accuracy.

Second, this two level learning reconciles the stress between accuracy and performance by

introducing a programmer-centric scheme and a coherent treatment to the dual objectives at both

levels of learning. The scheme allows programmers to provide two thresholds. One is an accuracy

threshold, which determines whether the computation result is considered as accurate; the other

is a satisfaction threshold, which determines whether the statistical accuracy guarantee (e.g., the

calculation is accurate in 95% time) offered by a configuration meets the programmer’s needs. The

scheme is consistently followed by both levels of learning.

Third, it seamlessly integrates consideration of the feature extraction overhead into the

construction of input classifiers. Expensive feature extractions may provide more accurate feature

values but cost more time than cheap ones do. The key question is to select the feature extractions

that can strike a good tradeoff between the usefulness of the features and the overhead. Our two

level learning framework contains two approaches to finding the sweet point. One uses exhaustive

feature selection, the other uses adaptive feature selection. Both strive to maximize the performance

while maintaining the accuracy target.

Fourth, our learning framework maintains an open design, allowing easy integration of other

types of classifiers. Any other classification algorithm could be integrated into our system without

loss of generality. Plus it takes advantage of the PetaBricks autotuner to intelligently search through

the vast configuration space.

7.3 Evaluation

To measure the efficacy of our system we tested it on 6 of the benchmarks described in Chapters 4

and 5. Of these benchmarks 1 requires fixed accuracy and 5 require variable accuracy. Each of

157

these benchmarks was modified to add feature extractors for their inputs and a richer set of input

generators to exercise these features. Each feature extractor was set to 3 different sampling levels

providing more accurate measurements at increasing costs. Tests were conducted on a 32-core

(8× 4-sockets) Xeon X7550 system running GNU/Linux (Debian 6.0.6).

We use two primary baselines to provide both a lower bound of performance without input

adaptation and an upper bound of the limits of input adaption. Neither baseline includes (or

requires) any feature extraction costs.

• Static oracle uses a single configuration for all inputs. This configuration is selected by trying

each input optimized program configuration and picking the one with the best performance.

The static oracle is the performance that would be obtained by not using our system and

instead using an autotuner without input adaptation. In practice the static oracle may be

better than some offline autotuners, because such autotuners may train on non-representative

sets of inputs.

• Dynamic oracle uses the best configuration for each input. It is the lower bound of the best

possible performance that can be obtained by our input classifier. It is equivalent to a classifier

that always picks the best optimized program and requires no features to do so. We allow

the dynamic oracle to miss the accuracy target on up to 10% of the inputs, to match the

selection criteria of the input classifier.

7.3.1 Input Features and Inputs

We use 6 of the benchmarks described in Chapters 4 and 5 to evaluate our results. We modified

each of these benchmarks to contain the input features described below.

Sort Sort, described in Section 4.1.2, is the only non-variable accuracy benchmark shown. Input

variability comes from different algorithms having fast and slow inputs, for example QuickSort has

pathological input cases and InsertionSort is good on mostly-sorted lists. For input features we use

standard deviation, duplication, sortedness, and the performance of a test sort on a subsequence

of the list.

158

Sort1 results are sorting real-world inputs taken from the Central Contractor Registration

(CCR) FOIA Extract, which lists all government contractors available under FOIA from data.gov.

Sort2 results are sorting synthetic inputs generated from a collection of input generators meant to

span the space of features.

Clustering Clustering is described in Section 4.4.2 and uses input the features: radius, centers,

density, and range.

Clustering1 results are clustering real-world inputs taken from the Poker Hand Data Set from

UCI machine learning repository. Clustering2 results are clustering synthetic inputs generated from

a collection of input generators meant to span the space of features.

Bin Packing Bin packing is described in Section 4.4.1 and contains 4 input feature extractors:

average, standard deviation, value range, and sortedness.

Singular Value Decomposition The SVD benchmark is described in Section 4.4.3 and for

input features we used range, the standard deviation of the input, and a count of zeros in the

input.

Poisson 2D Poisson equation is a multigrid benchmark described in Chapter 5. For input features

we used the residual measure of the input, the standard deviation of the input, and a count of zeros

in the input.

Helmholtz 3D Holmholtz equation is a multigrid benchmark described in Chapter 5. For input

features we used the residual measure of the input, the standard deviation of the input, and a count

of zeros in the input.

7.3.2 Experimental Results

Figure 7.4 shows the overall performance of our system on an isolated testing data set. Overall

results range 1.046x speedup for helmholtz3d, to 3.054x speedup for sorting. Both of these results

are close to the dynamic oracle performance of 1.111x and 6.622x for these same two benchmarks.

159

Benchmark
Name

Dynamic
Oracle

Classifier
(w/o feature
extraction)

Classifier
(w/ feature
extraction)

sort1 5.104× 2.946× 2.905×
sort2 6.622× 3.054× 3.016×
clustering1 3.696× 2.378× 2.370×
clustering2 1.674× 1.446× 1.180×
binpacking 1.094× 1.093× 1.081×
svd 1.164× 1.108× 1.105×
poisson2d 1.121× 1.086× 1.086×
helmholtz3d 1.111× 1.046× 1.044×

Figure 7.4: Mean speedup over the static oracle of the generated input classifier (with and without
feature extraction costs included) and the dynamic oracle. Static oracle uses the best single
configuration for all inputs, and is the best performance achievable without using input adaption.
Dynamic oracle uses the best configuration for each input, and is the upper bound speedup one
would get with a “perfect” input classifier.

Generally, the less expensive features (in terms of feature extraction time) were sufficient to meet

the best performance. Additionally, we note that most of the features we extracted had orders of

magnitude smaller extraction time when compared to the execution time. This obviated the need

for the adaptive classifier in the current scenario.

In the sort benchmark, we also tried both real world inputs (sort1) and inputs from our own

generator (sort2). For real world input, the best classifier used the sorted list and sortedness

features at its intermediate sampling level and the duplication and deviation at the cheapest level.

2.946x speedup was achieved compared to a dynamic oracle speedup of 5.104x. For inputs from our

own generator, the best classifier used the sorted list and sortedness features at its intermediate

sampling level, achieving our largest speedup of 3.054x compared to a dynamic oracle of 6.622x.

In the clustering benchmark, we tried real world inputs and those from our own generator. For

real world input, the best classifier used the density feature at its cheapest level, and algorithms

selected by the classifier causes a 2.378x shorter execution time (compared to the dynamic oracle

speedup of 3.696x), For our own generator, the best classifier used the centers feature at its cheapest

sampling level, achieving a 1.446x speedup compared to a dynamic oracle of 1.674x. However,

160

1 50000
1

10

20

Inputs

S
pe

ed
up

(a) sort1

1 50000
1

50

100

Inputs

S
pe

ed
up

(b) sort2

1 50000
1

50

100

Inputs

S
pe

ed
up

(c) clustering1

1 50000
1

4

7

Inputs

S
pe

ed
up

(d) clustering2

1 50000
1

2

3

4

Inputs

S
pe

ed
up

(e) binpacking

1 50000
1

2

3

Inputs

S
pe

ed
up

(f) svd

1 50000
1

2

Inputs

S
pe

ed
up

(g) poisson2d

1 50000
1

2

5

Inputs

S
pe

ed
up

(h) helmholtz3d

Figure 7.5: Distribution of speedups over static oracle for each individual input. For each problem,
some individual inputs get much larger speedups than the mean.

161

 0 0.2 0.4 0.6 0.8 1

Lo
st

 s
pe

ed
up

 (
L)

Size of region (pi)

2 configs
3 configs
4 configs
5 configs
6 configs
7 configs
8 configs
9 configs

(a) Predicted loss in speedup contributed by input space
regions of different sizes.

 10 20 30 40 50 60 70 80 90 100

S
pe

ed
up

Landmarks

(b) Predicted speedup with a worst-case region size with
different numbers of sampled landmark configurations.

Figure 7.6: Model predicted speedup compared to sampling all input points as the number of
landmarks are increated. Y-axis units are omitted because the problem-specific scaling term in the
model is unknown.

centers feature is the most expensive feature relative to execution time, which lowers the effective

speedup to just 1.180x.

In the binpacking benchmark, the best classifier used the deviation and sortedness features at

the intermediate level. The classifier is selecting algorithms that cause a 1.093x faster execution

time (close to the dynamic oracle speedup of 1.094x).

In the svd benchmark, the best classifier used only zeros input feature at the intermediate level

and achieved 1.108x speedup compared to a dynamic oracle of 1.164x.

In the poisson2d benchmark, the best classifier employed the input features zeros at the

intermediate level, achieving a 1.086x speedup compared to a dynamic oracle of 1.121x.

In the helmholtz3d benchmark, the best classifier used the residue, zeros and deviation input

features at the intermediate level and the range feature at the cheapest level. This benchmark

showed a 1.046x speedup, compared to a dynamic oracle speedup of 1.111x.

7.3.3 Input Generation

For sort1 and clustering1 we used real world input data taken from production systems. The

performance for this real world data can be compared to sort2, clustering2, and other benchmarks

162

1 100

1

3

5

Landmarks

S
pe

ed
up

(a) sort1

1 100

1

3

5

Landmarks

S
pe

ed
up

(b) sort2

1 100

2

3

Landmarks

S
pe

ed
up

(c) clustering1

1 100

0.5

1.5

Landmarks

S
pe

ed
up

(d) clustering2

1 100

1

1.05

Landmarks

S
pe

ed
up

(e) binpacking

1 100

0.9

1.1

Landmarks
S

pe
ed

up

(f) svd

1 100

0.9

1.2

Landmarks

S
pe

ed
up

(g) poisson2d

1 100

0.8

1.0

Landmarks

S
pe

ed
up

(h) helmholtz3d

Figure 7.7: Measured speedup over static oracle as the number of landmark configurations changes,
using 1000 random subsets of the 100 landmarks used in other results. Error bars show median,
first quartiles, third quartiles, min, and max.

163

where we used synthetic input generators designed to span the feature space. For sort, real world

inputs provides similar mean speedup to synthetic inputs. For clustering, real world inputs saw

much larger speedups than synthetic inputs. Interestingly, the classifier for synthetic inputs in

clustering needs to use a much more expensive set of input features because the classes of inputs

are harder to distinguish.

Figure 7.5 shows the distribution of speedups for individual inputs to each program, sorted such

that the largest speedup is on the right. What is interesting here is the speedups are not uniform.

For each benchmark there exist small sets of inputs with very large speedups, in some cases up to

90x. This shows that way inputs are chosen can have a large effect on mean speedup observed. If

one had a real world input distribution that favored these types of inputs the overall speedup of this

technique would be much larger. In other words, the relative benefits of using of input adaptation

techniques can vary drastically depending on your input data distribution.

7.3.4 Model of Diminishing Returns with More Landmark Configurations

In addition to the evaluation of our classifier performance it is important to evaluate if our

methodology of clustering and using 100 landmark configurations is sufficient. To help gain insight

into this question we created a theoretical model where we consider the input search space of a

program where some finite number of optimal program configurations dominate different subsets

of the input space. For each of these dominate configurations, we define the values pi and si, where

pi is fraction of the inputs in the search space where this configuration dominates and si is the

speedup on these configurations obtained by training a configuration for any of the inputs where

this configuration dominates. The model assumes that no speedup is obtained if one of these points

is not sampled. We also assume that all inputs have equal cost before the speedups are applied, to

avoid the need for weighting terms.

If we assume the k landmark configurations are sampled uniform randomly (which is likely a

worse technique than our actual clustering) the total expected loss in speedup, L, compared to a

164

perfect method that sampled all points would be:

L =
∑
i

(1− pi)kpisi

Where (1−pi)k represents the chance of “missing” the region of the search space where configuration

i is optimal and pisi represents the cost of missing that region of the search space in terms of

speedup.

Figure 7.6(a) shows the value of this function for a single region as pi changes. One can see that

on the extremes pi = 0 and pi = 1 there is no loss in speedup, because either the region is so small

a speedup in that region does not matter or the region is so large that random sampling is likely

to find it. For each number of configs, there exists a worst-case region size where the expected

loss in speedup is maximized. We can find this worst-case region size by solving for pi in dL
dpi

= 0

which results in a worst-case pi = 1
k+1 . Using this worst-case region size, Figure 7.6(b) shows

the diminishing returns predicted by our model as more landmark configurations are sampled.

Figure 7.7 validates this theoretical model by running each benchmark with varying numbers of

landmark configurations. This experiment takes random subsets of the 100 landmarks used in other

results and measures that speedup over the static oracle. Real benchmarks show a similar trend of

diminishing returns with more landmarks that is predicted by our model. We believe that this is

strong evidence that using a fixed number of landmark configurations suffices in practice, however

correct number of landmarks needed may vary between benchmarks.

165

166

Chapter 8

Online Autotuning

We have shown so far that that autotuning computer programs can lead to significant speedups.

However, autotuning can be burdensome to the deployment of a program, since the tuning process

can take a long time and should be re-run whenever the program, microarchitecture, execution

environment, or tool chain changes. Failure to re-autotune programs often leads to widespread

use of sub-optimal algorithms. With the growth of cloud computing, where computations can

run in environments with unknown load and migrate between different (possibly unknown)

microarchitectures, the need for online autotuning has become increasingly important.

In this chapter, we take a novel approach to online learning that enables the application of

evolutionary tuning techniques to online autotuning. Our technique, called SiblingRivalry, divides

the available processor resources in half and runs the current best algorithm on one half and a

variation on the other half. If the current best finishes first, the variation is killed, the failure

of the variation is reported to the online learning algorithm which controls the selection of both

configurations for such “competitions” and the application continues to the next stage. If the

variation finishes first, we have found a better solution than the current best. Thus, the current

best is killed and the results from the variation are used as the program continues to the next

stage. Using this technique, SiblingRivalry produces predictable and stable executions, while still

exploiting an evolutionary tuning approach. The online learning algorithm is capable of adapting

to changes in the environment and progressively identifies better configurations over time without

167

resorting to experiments that might deliver extremely slow performance. As we will show, despite

the loss of resources, this technique can produce speedups over fixed configurations when the

dynamic execution environment changes. To the best of our knowledge, SiblingRivalry is the first

attempt at employing evolutionary tuning techniques to online autotuning computer programs.

Our results show that SiblingRivalry’s always-on racing technique can lead to an autotuned

algorithm that uses only half the machine resources (as the other half is used for learning) but

that is often faster than an optimized algorithm that uses the entire processing resources of the

machine. Furthermore, we show that SiblingRivalry dynamically responds and adapts to changes

in the runtime environment such as system load.

We envision a number of common use cases for our online learning techniques:

• Adapting to dynamic load: Production code is usually run not in isolation but on shared

machines with varying amounts of load. Yet it is impossible for offline training to pre-compute

a best strategy for every type of load. SiblingRivalry enables programs to dynamically

adapt to changing load on a system. It ensures continual good performance and eliminates

pathological cases of interference due to resource competition.

• Migration in the cloud: In the cloud, the type of machine on which a program is running is

often unknown. Additionally, the virtual machine executing a program can be live migrated

between systems. SiblingRivalry allows programs to dynamically adapt to these circumstances

as the architecture changes underneath them.

• Dynamically changing accuracy targets: Depending on the situation, a user may need varying

levels of accuracy (or quality of service) from an application. SiblingRivalry allows the user to

dynamically change either the accuracy or performance target of an application. It supports

trading-off execution time with accuracy.

• Deploying to a wide variety of machines: SiblingRivalry greatly simplifies the task of deploying

an application to a wide variety of architectures. It enables a single centralized configuration,

perhaps on a shared disk, to be deployed. This is followed by online customization for each

machine on the network.

168

• Reducing over-provisioning requirements hardware resources: Data centers must often over-

provision resources to handle rare load spikes. By supporting dynamic changes to desired

accuracies during load spikes, SiblingRivalry can reduce the amount of required over-

provisioning.

8.1 Competition Execution Model

Online Autotuner

Population

Mutation
Operators

N/2 Cores
(Experimental)First Result

Request Safe Config

Experimental Config

Measurement

N/2 Cores
(Safe) Measurement

Figure 8.1: High level flow of the runtime system. The data on dotted lines may not be transmitted
for the slower configuration, which can be terminated before completion.

Figure 8.1 shows the high level flow of how requests are processed by the PetaBricks runtime

system. The cores on our system are split in half into two groups. One group of cores is designated

to run safe configurations, while the other group runs experimental configurations. When a request

is received, the autotuner runs the same request on both groups of cores in parallel using a safe

configuration on one group and an experimental configuration on the other group. When the first

configuration completes (and provides a satisfactory answer) the system terminates the slower one.

The output of the better algorithm is returned to the user, and timing and quality of service

measurements are sent to the autotuner so that it may update its population of configurations and

mutation operator priorities.

8.1.1 Other Splitting Strategies

Our racing execution model requires that there be two groups of cores, one that executes an

experimental configuration, while the other executes a safe configuration. While we have chosen to

divide our resources in a 50/50 split, other divisions (such as 60/40 or 75/25) are possible.

169

We do not consider splits where we devote fewer cores to the experimental group than the safe

group since doing so would prevent some superior configurations from completing (they would be

killed immediately after the safe strategy completes). Further, tuning for fewer than half of the

cores limits the potential benefits from autotuning.

One of the reasons we chose a 50/50 split over other possible splits was to minimize the gap

between best-case and worst-case overheads that result from splitting. Splits that devote very few

resources to the safe configuration will incur larger costs when the experimental configuration fails

compared to when it succeeds.

Another major advantage of the 50/50 split is that it provides more data to the autotuner,

since the performance of both tests can be compared directly. In uneven configurations, very little

is learned about the configuration on the smaller part of the chip, since even if it is a better

configuration it still may be aborted before completion. This means that the online learner is

expected to converge more quickly in the 50/50 case.

8.1.2 Time Multiplexing Races

Another racing strategy is to run the experimental configuration and the safe configuration in

sequence rather than in parallel. This allows both algorithms to utilize the entire machine. It also

provides a way to, in some cases, avoid running the safe configuration entirely. These types of

techniques are also the most amenable to at some point switching off online learning, if one knows

that the dynamic execution environment has stabilized and the learner has converged.

There are two variants to this type of technique:

• Safe configuration first. In this variant, the safe configuration is run first, and is always

allowed to complete, using the entire machine. Then the experimental configuration is allowed

an equal amount of time to run, to see if it would have completed faster. Unfortunately, this

method will incur a 2x overhead in the steady state, which is the same as the expected

worst case for running the races in parallel (assuming linear scalability). For this reason

this technique is only desirable if one plans to disable online learning part way through an

execution.

170

• Experimental configuration first. In this variant, a model is required to predict the

performance of a configuration given a specific input and current dynamic system

environment. The model predicts the upper bound performance of the safe configuration. The

experimental configuration is given this predicted amount of time to produce an answer before

being terminated. If the experimental configuration produces an acceptable answer, then the

safe configuration is never run, otherwise the system falls back to the safe configuration.

The efficacy of this technique depends a lot on the quality of the model used and the

probability of the learning system producing bad configurations. In the best case, this

technique can have close to zero overhead. However, in the worst case, this technique

could both fail to converge and produce overheads exceeding 2x. If the performance model

under-predicts execution time, superior configurations will be terminated prematurely and

autotuning will fail to make improvements. If the performance model over-predicts execution

time, then the cost of exploring bad configurations will grow. For our problem, the probability

of a bad configuration is high enough that this type of technique is not desirable, however,

with search spaces with more safer configurations this technique may become more appealing.

8.2 SiblingRivalry Online Learner

The online learner is an evolutionary algorithm (EA) that is specially designed for the purpose

of identifying, online, the best configuration for the program. It has a multitude of exacting

requirements: It must be lightweight because it is always running. It cannot add significant

computational or memory overhead to the application or it will diminish the overall value of

autotuning. It must conduct its search in accordance with the structure of the pairwise competition

execution model as described in Section 8.1. Accordingly, it must effectively search and adapt

candidate solutions by offering competition configurations and integrating the feedback from their

measurement results. Because the competition execution model is processing real requests, it must

provide at least one configuration that is sufficiently safe to ensure quality of service. Despite

the search space of candidate configurations being very large, it must converge to a high quality

configuration quickly. It must not assume the underlying environment is stationary. It must

171

converge in the face of high execution time variability (due to load variance) and react to system

changes in a timely way without being notified of them.

To meet its convergence goals, the online learner, in effect, must ideally balance exploration and

exploitation in its search strategy. Exploitation should investigate candidates in the “neighborhood”

of currently high performing configurations. Exploration should investigate candidates that are very

different from the current population to ensure no route to the optimum has been overlooked by

the greedy nature of exploitation. This final required property of the online learner motivates one

of its key capabilities. The online learner performs “adaptive mutator selection” which we explain

in more detail in Section 8.2.4.

8.2.1 High Level Function

In the process of tuning a program, the online learner maintains a population of candidate

configurations. The population is relatively small to minimize the computational and memory

overhead of learning.

The online learner keeps two types of performance logs: per-configuration and per-mutator.

Per-configuration logs record runtime, accuracy, and confidence for a given candidate, and are used

by the learner to select the “safe” configuration for each competition, and to prune configurations

which are demonstrably worse. Per-mutator logs record performance along the three objectives

for candidates generated by a given mutator. This information allows the online learner to select

mutators which have a record of producing improved solutions, using a process called Adaptive

Operator Selection (see Section 8.2.4 for more information).

Whenever the program being tuned receives a request, the online learner selects two

configurations to handle it: “safe” and “experimental”. The safe configuration is the configuration

with the highest value of the fitness function (see Section 8.2.3) in the current population, computed

using per-configuration logs. The fitness value captures how well the configuration has performed in

the past, and thus the safe configuration represents the best candidate found by the online learner

so far. The experimental configuration is produced by drawing a “seed” configuration from the

172

current population and transforming it using a mutator. The probability of a configuration being

selected as a seed is proportional to its fitness.

Once the safe and experimental configurations have been selected, the online learner uses both

to process the request in parallel, and returns the result from the candidate that finishes first and

meets the accuracy target (the “winner”). The slower candidate (the “loser”) is terminated. If the

experimental configuration is the winner, it is added to the online learner’s population. Otherwise,

it is discarded. The safe configuration is added back to the population regardless of the result of

the race, but might be pruned later if the new result makes it worse than any other candidate.

8.2.2 Online Learner Objectives

The online learner optimizes three objectives with respect to its candidate configurations:

• Execution time: the expected execution time of the algorithm.

• Accuracy: the expected value of a programmer metric measuring the quality of the solution

found.

• Confidence: a metric representing the online learner’s confidence in the first two metrics.

This metric is 0 if there is only one sample and

Confidence =
1

stderr(timings)
+

1

stderr(accuracies)

if there are multiple samples. This takes into account any observed variance in the objective.

If the observed variance were constant, the metric would be proportional to sqrt(T) where T

is the number of times the candidate has been used.

Confidence is an objective because we expect the variance in the execution times and accuracies

of a configuration (as it performs more and more competitions) to be significant. Confidence

allows configurations with reliable performance to be differentiated from those with highly variable

performance. It prevents an “outlier run” from making a suboptimal configuration temporarily

dominate better configurations and forcing them out of the population.

173

Taken together, these objectives create a 3-dimensional space in which each candidate algorithm

in the population occupies a point. In this 3-dimensional space, the online learner’s goal is to push

the current population towards the Pareto-optimal front.

8.2.3 Selecting the Safe and Seed Configuration

Each configuration of the population is assigned a fitness, m, that is updated every time it competes

against another configuration. Fitness depends upon how well the configuration is meeting a target

accuracy, ma, and its execution time, mt:

mconfig =


−mt∑
n∈P nt

− z g−ma∑
n∈P na

if ma < g

−mt∑
n∈P nt

if ma ≥ g


where g is a target accuracy, z is a scalar weight set based on how often the online learner has

been meeting its goals in the past, and P is the population of all candidates. Fitness prioritizes

meeting the accuracy target, but gives no reward for accuracy exceeding the target.

To select the safe configuration, the online learner picks the algorithm in the population that

has the highest fitness. When the online learner is not producing configurations that meet the

targets, the weight of z is adaptively incremented to put more importance on accuracy targets

when it calculates m.

To select a seed configuration, the online learner first eliminates any configuration that has an

expected running time that is below the 65th percentile running time of the safe configuration.

Then, it randomly draws a configuration from the remaining population using the fitness of each

configuration to weight the draw. In evolutionary algorithm terminology, this type of draw is called

“fitness proportional selection”.

8.2.4 Adaptive Mutator Selection (AMS)

The evolutionary algorithm of the online learner uses different mutators. This provides it

with flexibility to generate experimental configurations that range from being close to the seed

configuration to far from it, thus controlling its exploration and exploitation. However, the efficiency

174

of the search process is sensitive to which mutators are applied and when. These decisions cannot

be hard coded because they are dependent on what program is being autotuned. Furthermore, even

for a specific program, they might need to change over the course of racing history as the population

changes and converges. Mutators that cause larger seed-experiment configuration differences should

be favored in early competitions to explore while ones that cause smaller differences should be

favored when the search is close to the best configuration to exploit.

For this reason, the online tuner has a specific strategy for selecting mutators on the basis of how

well they have performed. The performance of mutators is the extent to which they have generated

experimental configurations of better fitness than others. In general, this is called “Adaptive

Operator Selection” (AOS) [46, 49, 139] and our version is called “Adaptive Mutator Selection”

(AMS).

There are two parts to AMS: credit assignment to a mutator, and mutator selection. AMS uses

Fitness-based Area-Under-Curve for its credit assignment and a Bandit decision process for mutator

selection. We use Fitness-based Area-Under-Curve because it is appropriate for the comparison

(racing) approach taken by the online learner. We use the AUC version of the Dynamic Multi-Armed

Bandit decision process because it matches up with the online learner’s dynamic environment. Our

descriptions are adapted and implemented directly from [130].

Credit Assignment

After each competition the AOS stops and assigns credit to operators based on their performance

over the interval. Fitness-based Area-Under-Curve adapts the Area Under the ROC Curve criteria

[32] to assign credit to comparison-based assessment of mutators by first creating a ranked list of

the experimental configurations generated in any time window according to a fitness objective. The

ROC (Receiver Operator Curve) associated to a given mutator, µ, is then drawn by scanning the

ordered list, starting from the origin: a vertical segment is drawn when the current configuration

has been generated by µ, a horizontal segment is drawn otherwise, and a diagonal one is drawn in

case of ties. Finally, the credit assigned to mutator, µ, is the area under this curve (AUC).

175

Bandit Mutator Selection

The bandit-based mutator selection deterministically selects the mutator based on a variant of the

Upper Confidence Bound (UCB) algorithm [20]:

Select arg max
i

(
AUCi,t + C

√
2 log

∑
k nk,t

ni,k

)

where AUCi,t denotes the empirical quality of the i-th mutator during a user-defined time-

window W (exploitation term), ni,t the total number of times it has been used since the beginning

of the process (the right term corresponding to the exploration term), and C is a user defined

constant that controls the balance between exploration and exploitation. Bandit algorithms have

been proven to optimally solve the exploration vs. exploitation dilemma in a stationary context.

The dynamic context is addressed in this formulation by using AUC as the exploitation term.

See [130] for more details.

8.2.5 Population Pruning

Each time the population has an experimental configuration added, it is pruned. Pruning is a

means of ensuring the experimental configuration should appropriately stay in the population and

removing any configuration wholly inferior to the experimental configuration. The experimental

configuration should stay if, for any weighting of its objectives, it is better than any other

configuration under the same weighting. This condition is expressed as:

arg max
m∈P

(
wa∑
n∈P na

ma −
wt∑
n∈P nt

mt +
wc∑
n∈P nc

mc)

where P is the population and w defines a weight. The subscripts a, t, and c of w represent the

accuracy, time, and confidence objectives for each configuration.

If the experimental configuration results in an extant configuration no longer being non-

dominated, the extant configuration is pruned. We set wt = 1 − wa and sample values of wa

176

and wc in the range [0, 1]. We sample the time-accuracy trade-off space more densely than the

confidence space, with approximately 100 different weight combinations total.

Acronym Processor Type Operating System Processors

Xeon8 Intel Xeon X5460 3.16GHz Debian 5.0 2 (×4 cores)

Xeon32 Intel Xeon X7560 2.27GHz Ubuntu 10.4 4 (×8 cores)

AMD48 AMD Opteron 6168 1.9GHz Debian 5.0 4 (×12 cores)

Table 8.1: Specifications of the test systems used and the acronyms used to differentiate them in
results.

8.3 Experimental Results and Discussion

We evaluate SiblingRivalry with two experimental scenarios. In the first scenario, we use a single

system and vary the load on the system. In the second scenario we vary the underling architecture,

to represent the effects of a computation being migrated between machines. In both cases we

compare to a fixed configuration found with offline tuning that utilizes all cores of the underlying

machine.

We performed our experiments on three systems described in Table 8.1. We refer to these three

systems using the acronyms Xeon8, Xeon32, and AMD48. Power measurements were performed

on the AMD48 system, using a WattsUp device that samples and stores the consumed power at 1

second intervals.

8.3.1 Sources of Speedups

The speedups achieved for different benchmarks can come from a variety of sources. Some of these

sources of speedup can apply even to the case where the environment does not change dynamically.

Different benchmarks obtained speedups for different reasons in different tests.

• Algorithmic improvements are a large source of speedup, and the motivation for this work.

When the dynamic environment changes, the optimal algorithmic choices may be different

and SiblingRivalry can discover better algorithms dynamically.

177

• For the variable accuracy benchmarks, additional speedup can be obtained since the online

tuner receives runtime feedback on how well it is meeting its accuracy targets. If it observes

that it is over delivering on its quality of service target it can opportunistically change

algorithms, enabling it to be less conservative than offline tuning. For all tests, both

SiblingRivalry and the baseline met the required quality of service requirements.

• SiblingRivalry benefits from a “dice effect,” since it is running two copies of the algorithm it

has an increased chance of getting lucky and having one configuration complete faster than

its mean performance. External events, like I/O interrupts, have a lower chance of affecting

both algorithms. This leads to a small speedup, which is a function of the variance in the

performance of each algorithm.

• As the number of processing cores continues to grow exponentially, the amount of per core

memory bandwidth is decreasing dramatically since per-chip memory bandwidth is growing

only at a linear rate [26]. This fact, coupled with Amdahl’s law, makes it particularly difficult

to write applications with scalable performance. On our AMD48 machine, we found that some

benchmarks with high degree of available parallelism exhibit limited scalability, preventing

them from fully utilizing all available processors. In cases where the performance leveled off

before half of the available processors, the cost of our competition strategy becomes close to

zero.

8.3.2 Load on a System

To test how SiblingRivalry adapts to load on the system, we simulated system load by running

concurrently with a synthetic CPU-bound benchmark competing for system resources. We allowed

the operating system to assign cores to this benchmark and did not bind it to specific cores. For

the different tests, we varied the number of threads in this benchmark to utilize between 0 and

100% of the processors on the system. Combined with the PetaBricks benchmarks, this creates an

overloaded system where the number of active threads is double the number of cores. In all cases

we compared SiblingRivalry to a baseline of a fixed configuration found with offline tuning on the

178

 0

 0.5

 1

 1.5

 2

 2.5

Bin Packing

Clustering

Helm
holtz

Im
age Com

pression

Poisson

LU Factorization

M
atrix M

ultiply

Sort
GeoM

ean

S
pe

ed
up

 (
vs

 o
ffl

in
e

tu
ne

d)

 0% load
 25% load

 50% load
 75% load

100% load

(a) Xeon8

 0

 0.5

 1

 1.5

 2

 2.5

Bin Packing

Clustering

Helm
holtz

Im
age Com

pression

Poisson

LU Factorization

M
atrix M

ultiply

Sort
GeoM

ean

S
pe

ed
up

 (
vs

 o
ffl

in
e

tu
ne

d)

 0% load
 25% load

 50% load
 75% load

100% load

(b) AMD48

Figure 8.2: Speedups (or slowdowns) of each benchmark as the load on a system changes. Note
that the 50% load and 100% load speedups for Clustering in (b), which were cut off due to the
scale, are 4.0x and 3.9x.

179

same machine, without the additional load. We measure average throughput over 10 minutes of

execution, which includes all of the learning costs.

We observed different trends of speedups on the two machines tested. On the Xeon8

(Figure 8.2(a)), the geometric mean cost of running SiblingRivalry (under zero new load) was

16%. This cost is largest for Matrix Multiply, which scales linearly on this system. For other

benchmarks, the overheads are lower for two reasons. For the non-variable accuracy benchmarks,

some benchmarks do not scale perfectly (These benchmarks exhibit an average speedup of 5.4x

when running with 8 threads [12]). For variable accuracy benchmarks, the online autotuner is

able to improve performance by taking advantage of using a number of candidate algorithms to

construct an aggregate QoS that is closer to the target accuracy level than would be otherwise

possible with a single algorithm.

Figure 8.2(b) shows the performance results on the AMD48 machine. In the zero load case,

SiblingRivalry achieves a geometric mean speedup of 1.12x. This speedup comes primarily because

of the way the autotuner can dynamically adapt the variable accuracy benchmarks (the same way it

did on Xeon8). Additionally, while AMD48 and Xeon8 have very similar memory systems, AMD48

has six times as many cores, and thus 6 times less bandwidth per core. Thus, we found that in some

cases, using additional cores on this system did not always translate to better performance. For

example, while some fixed configurations of our matrix multiply benchmark scale well to 48 cores,

our autotuner is able to find a less scalable configuration that provides the same performance using

only 20 cores. Once load is introduced, SiblingRivarly is able to further adapt the benchmarks,

providing geometric speedups of up to 1.53x.

8.3.3 Migrating Between Microarchitectures

In a second group of experiments we test how SiblingRivalry can adapt to changes in

microarchitecture. We first train offline on a initial machine and then move this trained

configuration to a different machine. We compare SiblingRivalry to a baseline configuration found

with offline tuning on the original machine. The offline configuration is given one thread per

180

Figure 8.3: Speedups (or slowdowns) of each benchmark after a migration between
microarchitectures. “Normalized throughput” is the throughput over the first 10 minutes of
execution of SiblingRivalry (including time to learn), divided by the throughput of the first 10
minutes of an offline tuned configuration using the entire system.

core on the system. Figure 8.3 shows the speedups for each benchmark after such a migration.

SiblingRivalry shows a geometric mean speedup of 1.8x in this migration experiment.

Starting Configuration Figure 8.4 shows how using an offline tuned configuration affects

the rate of convergence of SiblingRivalry. We show three starting configurations: a random

configuration, a configuration tuned on a different machine, and a configuration tuned on the

same machine. As one would expect, convergence time increases as the starting point becomes less

optimal. Convergence times are roughly 5 minutes, 1 minute, and 0 for the configurations tried,

though since changes are constantly being made it is difficult to mark a point of convergence.

Power Consumption Figure 8.5 shows the energy used per request for each of our benchmarks.

While one might initially think that the techniques proposed would increase energy usage since

up to twice the amount of work is performed, SiblingRivalry actually reduces energy usage by

181

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry (w/o offline)
SiblingRivalry (w/ offline on Xeon8)

SiblingRivalry (w/ offline on AMD48)

Figure 8.4: The effect of using an offline tuned configuration as a starting point for SiblingRivaly
on the Sort benchmark. We compare starting from a random configuration (“w/o offline”) to
configurations found through offline training on the same and a different architecture.

an average of 30% for our benchmarks. The primary reason for this decreased energy usage is the

increased throughput of SiblingRivalry, which results in the machine being used for a shorter period

of time. The benchmarks that saw increased throughput also saw decreased power consumption

per request.

8.4 Hyperparameter Tuning

SiblingRivalry uses as an underlying algorithm bandit-based adaptive operator selection and the

Upper Confidence Bound (UCB) algorithm. This technique introduces two hyperparameters:

W - the length of the history window, and C - the balance point between exploration and

exploitation. UCB is only optimal if these hyperparamters are set by an oracle or through some

other search technique. In practice, a user of this technique must either use a fixed, non-optimal

assignment of these hyperparameters, or perform a search over hyperparameters whenever the

search space changes. Unfortunately, in practice, finding good values of these hyperparameters

may be more expensive that the actual search itself. While [61] addresses the robustness of

hyperparameters in empirical academic study we present a practically motivated, real world study

182

 0

 500

 1000

 1500

Bin Packing

Clustering

Helm
holtz

Im
age Com

pression

Poisson

LU Factorization

M
atrix M

ultiply

Sort
M

ean

E
ne

rg
y

pe
r

re
qu

es
t (

jo
ul

es
)

Benchmark

3.9

Baseline
SiblingRivalry

Figure 8.5: Average energy use per request for each benchmark after migrate Xeon8 to AMD48.

on setting hyperparameters. We define evaluation metrics that can be used in score functions that

appropriately gauge the autotuner’s performance in either a static or dynamic environment and

use them to ask:

• How much does the optimal assignment of hyperparameters vary when tuning different

programs in two classes of environments - static or dynamic?

• Does there exist a single “robust” assignment of hyperparameters for a context that performs

close to optimal across all benchmarks?

8.4.1 Tuning the Tuner

The hyperparameters C (exploration/exploitation trade-off) and W (window size) can have a

significant impact on the efficacy of SiblingRivalry. For example, if C is set too high, it might

dominate the exploitation term and all operators will be applied approximately uniformly, regardless

of their past performance. If, on the other hand, C is set too low, it will be dominated by the

183

exploitation term q̂i,t and new, possibly better operators will rarely be applied in favor of operators

which made only marginal improvements in the past.

The problem is further complicated by the fact that the optimal balance between exploration

and exploitation is highly problem-dependent [61]. For example, programs with a lot of algorithmic

choices are likely to benefit from a high exploration rate. This is because algorithmic changes create

discontinuities in the program’s fitness, and operator weights calculated for a given set of algorithms

will not be accurate when those algorithms suddenly change. When such changes occur, exploration

should become the dominant behavior. For other programs, e.g. those where only a few mutators

improve performance, sacrificing exploration in favor of exploitation might be optimal. This is

especially true for programs with few algorithmic choices - once the optimal algorithmic choices

have been made, the autotuner should focus on adjusting cutoffs and tunables using an exploitative

strategy with a comparatively low C.

The optimal value of C is also closely tied to the optimal value of W , which controls the size

of the history window. The autotuner looks at operator applications in the past W races, and uses

the outcome of those applications to assign a quality score to each operator. This is based on the

assumption that an operator’s past performance is a predictor of its future performance, which may

not always be true. For example, changes in algorithms can create discontinuities in the fitness

landscape, making past operator performance largely irrelevant. However, if W is large, this past

performance will still be taken into account for quite some time. In such situations, a small W

might be preferred.

Furthermore, optimal values of C and W are not independent. Due to the way q̂i,t is computed,

the value of the exploitation term grows with W . Thus by changing W , which superficially controls

only the size of the history window, one might accidentally alter the exploration/exploitation

balance. For this reason, C and W should be tuned together.

Finally, the task of selecting hyperparameters is complicated by the fact that different

hyperparameter values might be optimal at different stages of the autotuning process. As described

earlier, a larger C might be favorable following algorithm changes, with a smaller C when optimal

algorithmic choices have already been made. Currently, however, SiblingRivalry does not allow

184

dynamically adjusting hyperparameters throughout the run, which have to be statically set before

the autotuning begins.

8.4.2 Evaluation metrics

Because there is no single metric that will suffice to evaluate performance under different

hyperparameter values, we use three separate metrics to evaluate SiblingRivalry on a given

benchmark program with different hyperparameters:

1. Mean throughput: the number of requests processed per second, averaged over the entire

duration of the run. Equal to the average number of races per second.

2. Best candidate throughput: inverse of the runtime of the fastest candidate found during

the duration of the run. For variable accuracy benchmarks, only candidates that met the

accuracy target are considered.

3. Time to convergence: number of races until a candidate has been found that has a

throughput within 5% of the best candidate for the given run. For variable accuracy

benchmarks, only candidates that met the accuracy target are considered.

To enable a fair comparison between SiblingRivalry’s performance under different hyperparam-

eter values, we define a single objective metric for each scenario that combines one or more of the

metrics outlined above. We call this metric the score function fb for each benchmark b, and its

output the score.

We consider two classes of execution contexts: static and dynamic. In the static context, the

program’s execution environment is mostly unchanging. In this setting, the user cares mostly about

the quality of the best candidate. Convergence time is of little concern, as the autotuner only has

to learn once and then adapt very infrequently. For the sake of comparison, we assume in this

scenario the user assigns a weight of 80% to the best candidate’s throughput, and only 20% to the

convergence time. Hence the score function for the static context:

fb(C,W) = 0.8× best throughputb(C,W) + 0.2× convergence time−1
b (C,W)

185

In the dynamic context, the user cares both about average throughput and the convergence

time. The convergence time is a major consideration since execution conditions change often in a

dynamic system and necessitate frequent adaptation. Ideally, the autotuner would converge very

quickly to a very fast configuration. However, the user is willing sacrifice some of the speed for

improved convergence time. We can capture this notion using the following score function:

fb(C,W) = 0.5×mean throughputb(C,W) + 0.5× convergence time−1
b (C,W)

We normalize throughput and convergence time with respect to their best measured values

for the benchmark, so that the computed scores assume values in the range [0, 1], from worst to

best. Note that those are theoretical bounds: in practice it is often impossible to simultaneously

maximize both throughput and convergence time.

static context dynamic context
Xeon8 AMD48 Xeon8 AMD48

C W C W C W C W

Sort 50.00 5 5.00 5 5.00 5 5.00 5

Bin Packing 0.01 5 0.10 5 5.00 500 5.00 500

Poisson 50.00 500 50.00 500 0.01 500 5.00 5

Image Compression 0.10 100 50.00 50 0.01 100 50.00 50
(a) Best performing values of the hyperparameters C and W over an empirical sample.

static context dynamic context
Xeon8 AMD48 Xeon8 AMD48

Sort 0.8921 0.8453 0.9039 0.9173

Bin Packing 0.8368 0.8470 0.9002 0.9137

Poisson 0.8002 0.8039 0.8792 0.6285

Image Compression 0.9538 0.9897 0.9403 0.9778
(b) Scores of the best performing hyperparameters.

Figure 8.6: Best performing hyperparameters and associated score function values under static and
dynamic autotuning scenarios.

186

8.4.3 Results

We evaluated the hyperparameter sensitivity of SiblingRivalry by running the autotuner on a set

of four benchmarks: sort, Bin Packing, Image Compression and Poisson. We used twenty different

combinations of C and W for each benchmark: (C,W) = [0.01, 0.1, 0.5, 5, 50]× [5, 50, 100, 500].

For each run, we measured the metrics described in Section 8.4.2 and used them to compute

score function values. We performed all tests on the Xeon8 and AMD48 systems (see Table 8.2). The

reported numbers for Xeon8 have been averaged over 30 runs, and the numbers for AMD48 over 20

runs. The benchmarks are described in more detail in Chapter 4.

Acronym Processor Type Operating System Processors

Xeon8 Intel Xeon X5460 3.16GHz Debian 5.0 2 (×4 cores)

AMD48 AMD Opteron 6168 1.9GHz Debian 5.0 4 (×12 cores)

Table 8.2: Specifications of the test systems used.

Figures 8.7 and 8.8 show select scores as a function of C and W on the Xeon8 amd AMD48 systems

for benchmarks in both static and dynamic scenarios. All benchmarks except Image Compression

show moderate to high sensitivity to hyperparameter values, with Bin Packing performance ranging

from as low as 0.1028 at (C,W) = (0.01, 5) to as high as 0.9002 at (C,W) = (5, 500) in the dynamic

scenario on the Xeon8. On average, the dynamic context was harder to autotune with a mean score

of 0.6181 as opposed to static system’s 0.6919 (Figure 8.9). This result confirms the intuition

that maintaining a high average throughput while minimizing convergence time is generally more

difficult than finding a very high-throughput candidate after a longer autotuning process.

The optimal hyperparameter values for each benchmark ranged considerably and depended

on both the scenario and the architecture (Table 8.6). sort tended to perform best with a

moderate C and a low W , underlining the importance of exploration in the autotuning process

of this benchmark. Bin Packing in the static context favored a balance between exploration and

exploitation of a small number of recently tried operators. In the dynamic context Bin Packing

performed best with much longer history windows (optimal W = 500) and with only a moderate

exploration term C = 5. This is expected as Bin Packing in the dynamic context is comparatively

difficult to autotune and hence benefits from a long history of operator performance. Poisson was

187

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(a) sort on Xeon8

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(b) sort on AMD48

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(c) Bin Packing on Xeon8

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(d) Bin Packing on AMD48

Figure 8.7: Scores for Sort and Bin Packing as a function of C and W . The colored rectangle is a
plane projection of the 3D surface and is shown for clarity.

188

another “difficult” benchmark, and as a result performed better with long histories (W = 500

for almost all architecures and contexts). In the static scenario it performed best with a high

C = 50, confirming the authors’ intuition that exploration is favorable if we are given more time

to converge. In the dynamic context exploration was favored less (optimal C = 0.01 for the Xeon8

and C = 5 for the AMD48). In the case of Image Compression, many hyperparameters performed

close to optimum suggesting that it is an easy benchmark to tune. Medium W were preferred

across architectures and scenarios, with W = 100 and W = 50 for the static and dynamic contexts,

respectively. Image Compression on AMD48 favored a higher C = 50 for both scenarios, as opposed

to the low C = 0.1 and C = 0.01 for the static and dynamic contexts on the Xeon8. This result

suggests exploitation of a limited number of well-performing operators on the Xeon8, as opposed

to a more explorative behavior on the AMD48. We suspect this is due to a much higher parallelism

of the AMD48 architecture, where as parallelism increases different operators become effective.

8.4.4 Hyperparameter Robustness

Our results demonstrate that autotuning performance can vary significantly depending on the

selection of hyperparameter values. However, in a real-world setting the user cannot afford to

run expensive experiments to determine which values work best for their particular program and

architecture. For this reason, we performed an empirical investigation whether there exists a single

assignment of C and W that works well across programs and architectures.

We used the score functions from Section 8.4.2 to find hyperparameters that maximized the

mean score on all the benchmarks. We found that the hyperparameters (C,W) = (5, 5) for the

static context and (C,W) = (5, 100) for the dynamic context maximized this score. The results

are shown in Table 8.3. For the sake of illustration, we normalized each score with respect to the

optimum for the given benchmark and scenario (Table 8.6(b)).

Despite fixing hyperparameter values across benchmarks, we measured a mean normalized score

of 88.32% for the static and 82.45% for the dynamic context, which means that we only sacrificed

less than 20% of the performance by not tuning hyperparameters on a per-benchmark and per-

architecture basis. This result shows that the hyperparameters we found are likely to generalize to

189

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(a) Poisson on Xeon8

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(b) Poisson on AMD48

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(c) Image Compression on Xeon8

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

(d) Image Compression on AMD48

Figure 8.8: Measured scores for Poisson and Image Compression.

190

static context dynamic context
Xeon8 AMD48 Xeon8 AMD48

Sort 95.71% 100% 74.16% 61.12%

Bin Packing 85.61% 94.72% 67.42% 88.74%

Poisson 70.64% 71.09% 90.77% 96.07%

Image Compression 92.44% 96.35% 89.92% 91.42%

Table 8.3: Benchmark scores for the globally optimal values of hyperparameters normalized with
respect to the best score for the given benchmark and scenario. The optimal hyperparameters
were C = 5, W = 5 for the static context, and C = 5, W = 100 for the dynamic context. Mean
normalized scores were 88.32% and 82.45% for the static and dynamic contexts, respectively.

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

static context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

 0.01 0.1 1 10 100 1
 10

 100
 1000

 0
 0.2
 0.4
 0.6
 0.8

 1

dynamic context

C
W

 0
 0.2
 0.4
 0.6
 0.8
 1

Figure 8.9: Scores for the static and dynamic scenarios averaged over the sort, Bin Packing, Poisson
and Image Compression benchmarks and the Xeon8 and AMD48 architectures. The mean scores across
all benchmarks, architectures and hyperparameter values were 0.6919 for the static and 0.6181 for
the dynamic contexts.

other benchmarks, thus providing sensible defaults and removing the need to optimize them on a

per-program basis. They also align with our results for individual benchmarks (Figure 8.6), where

we found that exploration (moderate to high C, low W) is beneficial if we can afford the extra

convergence time (static context), whereas exploitation (low to moderate C, high W) is preferred

if average throughput and low convergence time are of interest (dynamic context).

191

192

Chapter 9

OpenTuner

Program autotuning can achieve better or more portable performance in a number of domains.

However, autotuners themselves are rarely portable between projects, for a number of reasons: using

a domain-informed search space representation is critical to achieving good results; search spaces

can be intractably large and require advanced machine learning techniques; and the landscape of

search spaces can vary greatly between different problems, sometimes requiring domain specific

search techniques to explore efficiently.

In this chapter, we present OpenTuner, a new framework for building domain-specific program

autotuners. A core concept in OpenTuner is the use of ensembles of search techniques. Many

search techniques (both built in and user-defined) are run at the same time, each testing candidate

configurations. Techniques which perform well by finding better configurations are allocated larger

budgets of tests to run, while techniques which perform poorly are allocated fewer tests or disabled

entirely. Techniques are able to share results using a common results database to constructively

help each other in finding an optimal solution. To allocate tests between techniques we use an

optimal solution to the multi-armed bandit problem using area under the curve credit assignment.

Ensembles of techniques solve the large and complex search space problem by providing both a

robust solutions to many types of large search spaces and a way to seamlessly incorporate domain

specific search techniques.

193

Results Database

Search
TechniquesSearch

Driver

Search

Reads: Results
Writes: Desired Results

Measurement

User Defined
Measurement

Function

Measurement
Driver

Configuration
Manipulator

Reads: Desired Results
Writes: Results

Figure 9.1: Overview of the major components in the OpenTuner framework.

9.1 The OpenTuner Framework

Our terminology reflects that the autotuning problem is cast as a search problem. The search space

is made up of configurations, which are concrete assignments of a set of parameters. Parameters can

be primitive such as an integer or complex such as a permutation of a list. When the performance,

output accuracy, or other metrics of a configuration are measured (typically by running it in a

domain-specific way), we call this measurement a result. Search techniques are methods for exploring

the search space and make requests for measurement called desired results. Search techniques

can change configurations using a user-defined configuration manipulator, which also includes

parameters corresponding directly the parameters in the configuration. Some parameters include

manipulators, which are opaque functions that make stochastic changes to a specific parameter in

a configuration.

Figure 9.1 provides an overview of the major components in OpenTuner. The search process

includes techniques, which use the user defined configuration manipulator in order to read and write

configurations. The measurement processes evaluate candidate configurations using a user defined

194

measurement function. These two components communicate exclusively through a results database

used to record all results collected during the tuning process, as well as the providing ability to

perform multiple measurements in parallel.

9.1.1 OpenTuner Usage

To implement an autotuner with OpenTuner, first, the user must define the search space by creating

a configuration manipulator. This configuration manipulator includes a set of parameter objects

which OpenTuner will search over. Second, the user must define a run function which evaluates the

fitness of a given configuration in the search space to produce a result. These must be implemented

in a small Python program in order to interface with the OpenTuner API.

Figure 9.2 shows an example of using OpenTuner to search over the space of compiler flags

to GCC in order to minimize execution time of the resulting program. In Section 9.2, we present

results on an expanded version of this example which obtains up to 2.8x speedup over -O3.

This example tunes three types of flags to GCC. First it choses between the four optimization

levels -O0, -O1, -O2, -O3. Second, for 176 flags listed on line 8, it decides between turning the flag

on (with -fFLAG), off (with -fno-FLAG), or omitting the flag in order to let default value to take

precedence. Including the default value as a choice is not necessary for completeness, but speeds

up convergence and results in shorter command lines. Finally, it assigns a bounded integer value

to the 145 parameters on line 15 with the --param NAME=VALUE command line option.

The method manipulator (line 23), is called once at startup and creates a ConfigurationManipulator

object which defines the search space of GCC flags. All accesses to configurations by

search techniques are done through the configuration manipulator. For optimization level, an

IntegerParameter between 0 and 3 is created. For each flag, a EnumParameter is created which

can take the values on, off, and default. Finally, for the remaining bounded GCC parameters,

an IntegerParameter is created with the appropriate range.

The method run (line 40), implements the measurement function for configurations. First,

the configuration is realized as specific command line to g++. Next, this g++ command line is

run to produce an executable, tmp.bin, which is then run using call program. Call program is

195

1 import opentuner

2 from opentuner import Conf igurat ionManipulator

3 from opentuner import EnumParameter

4 from opentuner import IntegerParameter

5 from opentuner import MeasurementInterface

6 from opentuner import Result

7
8 GCC FLAGS = [

9 ’ a l i gn−f unc t i on s ’ , ’ a l i gn−jumps ’ , ’ a l i gn−l a b e l s ’ ,

10 ’ branch−count−reg ’ , ’ branch−p r o b a b i l i t i e s ’ ,

11 # . . . (176 t o t a l)

12]

13
14 # (name , min , max)

15 GCCPARAMS = [

16 (’ ear ly−i n l i n i n g−i n sn s ’ , 0 , 1000) ,

17 (’ gcse−cost−dis tance−r a t i o ’ , 0 , 100) ,

18 # . . . (145 t o t a l)

19]

20
21 class GccFlagsTuner (MeasurementInterface) :

22
23 def manipulator (s e l f) :

24 ”””

25 Def ine the search space by c r e a t i ng a

26 Conf igurat ionManipulator

27 ”””

28 manipulator = Conf igurat ionManipulator ()

29 manipulator . add parameter (

30 IntegerParameter (’ o p t l e v e l ’ , 0 , 3))

31 for f l a g in GCC FLAGS:

32 manipulator . add parameter (

33 EnumParameter (f l ag ,

34 [’ on ’ , ’ o f f ’ , ’ d e f au l t ’]))

35 for param , min , max in GCCPARAMS:

36 manipulator . add parameter (

37 IntegerParameter (param , min , max))

38 return manipulator

39
40 def run (s e l f , d e s i r e d r e s u l t , input , l im i t) :

41 ”””

42 Compile and run a given con f i gu r a t i on then

43 re turn performance

44 ”””

45 c f g = d e s i r e d r e s u l t . c on f i gu r a t i on . data

46 gcc cmd = ’ g++ ray t r a c e r . cpp −o . / tmp . bin ’

47 gcc cmd += ’ −O{0} ’ . format (c f g [’ o p t l e v e l ’])

48 for f l a g in GCC FLAGS:

49 i f c f g [f l a g] == ’ on ’ :

50 gcc cmd += ’ −f {0} ’ . format (f l a g)

51 e l i f c f g [f l a g] == ’ o f f ’ :

52 gcc cmd += ’ −fno−{0} ’ . format (f l a g)

53 for param , min , max in GCCPARAMS:

54 gcc cmd += ’ −−param {0}={1} ’ . format (

55 param , c f g [param])

56
57 c omp i l e r e s u l t = s e l f . ca l l p rogram (gcc cmd)

58 assert c omp i l e r e s u l t [’ re turncode ’] == 0

59 r un r e s u l t = s e l f . ca l l p rogram (’ . / tmp . bin ’)

60 assert r un r e s u l t [’ re turncode ’] == 0

61 return Result (time=run r e s u l t [’ time ’])

62
63 i f name == ’ ma in ’ :

64 argpar s e r = opentuner . d e f a u l t a r gpa r s e r ()

65 GccFlagsTuner . main (a rgpar s e r . pa r s e a r g s ())

Figure 9.2: GCC/G++ flags autotuner using OpenTuner.

196

a convince function which runs and measures the execution time of the given program. Finally,

a Result is constructed and returned, which is a database record type containing many other

optional fields such as time, accuracy, and energy. By default OpenTuner minimizes the time

field, however this can be customized.

9.1.2 Search Techniques

To provide robust search, OpenTuner includes techniques that can handle many types of search

spaces and runs a collection of search techniques at the same time. Techniques which perform

well are allocated more tests, while techniques which perform poorly are allocated fewer tests.

Techniques share results through the results database, so that improvements made by one technique

can benefit other techniques. OpenTuner techniques are meant to be extended. Users can define

custom techniques which implement domain-specific heuristics and add them to ensembles of pre-

defined techniques.

Ensembles of techniques are created by instantiating a meta technique, which is a technique

made up of a collection of other techniques. The OpenTuner search driver interacts with a single

root technique, which is typically a meta technique. When the meta technique gets allocated tests,

it incrementally decides how to divide theses tests among its sub-techniques. OpenTuner contains

an extensible class hierarchy of techniques and meta techniques, which can be combined together

and used in autotuners.

AUC Bandit Meta Technique

In addition to a number of simple meta techniques, such as round robin, OpenTuner’s core meta

technique used in results is the multi-armed bandit with sliding window, area under the curve credit

assignment (AUC Bandit) meta technique. A similar technique was used in [110] in the different

context of online operator selection. It is based on an optimal solution to the multi-armed bandit

problem [62]. The multi-armed bandit problem is the problem of picking levers to pull on a slot

machine with many arms each with an unknown payout probability. It encapsulates a fundamental

197

trade-off between exploitation (using the best known technique) and exploration (estimating the

performance of all techniques).

A detailed explanation of the bandit algorithm and AUC credit assignment is provided in

Section 8.2.4. The same algorithm is used here (though in a different context).

Other Techniques

OpenTuner includes implementations of the techniques: differential evolution; many variants of

Nelder Mead and Torczon hill climbers; a number of evolutionary mutation techniques; pattern

search; particle swarm optimization; and random search. These techniques span a range of strategies

and are each biased to perform best in different types of search spaces. They also each contain

many settings which can be configured to change their behavior. Each technique has been modified

so that with some probability it will use information found by other techniques if other techniques

have discovered a better configuration.

The default meta technique, used in results and meant to be robust, uses an AUC Bandit meta

technique to combine greedy mutation, differential evolution, and two hill climber instances.

9.1.3 Configuration Manipulator

The configuration manipulator provides a layer of abstraction between the search techniques and

the raw configuration structure. It is primarily responsible for managing a list of parameter

objects, each of which can be used by search techniques to read and write parts of the underlying

configuration.

The default implementation of the configuration manipulator uses a fixed list of parameters and

stores the configuration as a dictionary from parameter name to parameter-dependant data type.

The configuration manipulator can be extended by the user either to change the underlying data

structure used for configurations or to support a dynamic list of parameters that is dependant on

the configuration instance.

198

Parameter

Primitive Complex

Integer ScaledNumericFloat

LogInteger LogFloat PowerOfTwo

Switch Enum Permutation

Schedule

SelectorBoolean

Figure 9.3: Hierarchy of built in parameter types. User defined types can be added at any point
below �Primitive or Complex in the tree.

Parameter Types

Figure 9.3 shows the class hierarchy of built-in parameter types in OpenTuner. Each parameter type

is responsible for interfacing between the raw representation of a parameter in the configuration

and standardized view of that parameter presented to the search techniques. Parameter types can

be extended both to change the underlying representation, and to change the abstraction provided

to search techniques to cause a parameter to be search in different ways.

From the viewpoint of search techniques there are two main types of parameters, each of which

provides a different abstraction to the search techniques:

Primitive parameters present a view to search techniques of a numeric value with an upper

and lower bound. These upper and lower bounds can be dependant on the configuration instance.

The built in parameter types Float and LogFloat (and similarly Integer and LogInteger)

both have identical representations in the configuration, but present a different view of the

underlying value to the search techniques. Float is presented directly to to search techniques,

while LogFloat presents a log scaled view of the underlying parameter to search techniques. To a

search technique, halving and doubling a log scaled parameter are changes of equal magnitude. Log

scaled variants of parameters are often better for parameters such as block sizes where fixed changes

in values have diminishing effects the larger the parameter becomes. PowerOfTwo is a commonly

used special case, similar to LogInteger, where the legal values of the parameter are restricted to

powers of two.

199

Complex parameters present a more opaque view to search techniques. Complex parameters

have a variable set of manipulation operators (manipulators) which make stochastic changes to the

underlying parameter. These manipulators are arbitrary functions defined on the parameter which

can make high level type dependant changes. Complex parameters are meant to be easily extended

to add domain specific structures to the search space.

The built in parameter types Boolean, Switch, and Enum could theoretically also be represented

as primitive parameters, since they each can be translated directly to a small integer representation.

However, in the context of search techniques they make more sense as complex parameters. The

reason for this is that for primitive parameters search techniques will attempt to follow gradients.

These parameter types are unordered collections of values for which no gradients exist. Thus, the

complex parameter abstraction is a more efficient representation to search over.

The Permutation parameter type assigns an order to a given list of values and has manipulators

which make various types of random changes to the permutation. A Schedule parameter is a

Permutation with a set of dependencies that limit the legal order. Schedules are implemented as

a permutation that gets topologically sorted after each change. Finally, a Selector parameter is

a special type of tree which is used to define a mapping from an integer input to an enumerated

value type.

In addition to these primary primitive and complex abstractions for parameter types, there

are a number of derived ways that search techniques will interact with parameters in order to

more precisely convey intent. These are additional methods on parameter which contain default

implementations for both primitive and complex parameter types. These methods can optionally

be overridden for specific parameters types to improve search techniques. Parameter types will

work without these methods being overridden, however implementing them can improve results.

As an example, a common operation in many search techniques is to add the difference between

configuration A and B to configuration C. This is used both in differential evolution and many

hill climbers. Complex parameters have a default implementation of this indent which compares

the value of the parameter in the 3 configurations: if A = B, then there is no difference and the

result is C; similarly, if B = C, then A is returned; otherwise a change should be made so random

200

manipulators are called. This works in general, however for individual parameter types there are

often better interpretations. For example with permutations, one could calculate the positional

movement of each item in the list an calculate a new permutation by applying these movements

again.

9.1.4 Objectives

OpenTuner supports multiple user defined objectives. Result records have fields for time, accuracy,

energy, size, confidence, and user defined data. The default objective is to minimize time. Many

other objectives are supported, such as: maximize accuracy; threshold accuracy while minimizing

time; and maximize accuracy then minimize size. The user can easily define their own objective by

defining comparison operators and display methods on a subclass of Objective.

9.1.5 Search Driver and Measurement

OpenTuner is divided into two submodules, search and measurement. The search driver and

measurement driver in each of these modules orchestrate most of the framework of the search

process. These two modules communicate only through the results database. The measurement

module is minimal by design and is primarily a wrapper around the user defined measurement

function which creates results from configurations.

This division between search and measurement is motivated by a number of different factors:

• To allow parallelism between multiple search measurement processes, possibly across different

machines. Parallelism is most important in the measurement processes since in most

autotuning applications measurement costs dominate. To allow for parallelism the search

driver will make multiple requests for desired results without waiting for each request to be

fulfilled. If a specific technique is blocking waiting for results, other techniques in the ensemble

will used to fill out requests to prevent idle time.

• The separation of the measurement modules is desirable to support online learning and sideline

learning. In these setups, autotuning is not done before deployment of an application, but is

done online as an application is running or during idle time. Since the measurement module

201

is minimal by design, it can be replaced by an domain specific online learning module which

periodically examines the database to decide which which configuration to use and records

performance back to the database.

• Finally, in many embedded or mobile settings which require constrained measurement

environments it is desirable to have a minimal measurement module which can easily be

re-implemented in other languages without needing to modify the majority of the OpenTuner

framework.

9.1.6 Results Database

The results database is a fully featured SQL database. All major database types are supported, and

SQLite is used if the user has not configured a database type so that no setup is required. It allows

different techniques to query and share results in a variety of ways and is useful for introspection

about the performance of techniques across large numbers of runs of the autotuner.

9.2 Experimental Results

Project Benchmark Possible Configurations

GCC/G++ Flags all 10806

Halide Blur 1052

Halide Wavelet 1044

HPL n/a 109.9

PetaBricks Poisson 103657

PetaBricks Sort 1090

PetaBricks Strassen 10188

PetaBricks TriSolve 101559

Stencil all 106.5

Unitary n/a 1021

Figure 9.4: Search space sizes in number of possible configurations, as represented in OpenTuner.

202

 0.8

 0.85

 0.9

 0.95

 1

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

gcc -O1
gcc -O2
gcc -O3

OpenTuner

(a) fft.c

 0.1

 0.15

 0.2

 0.25

 0.3

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(b) matrixmultiply.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(c) raytracer.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(d) tsp ga.cpp

Figure 9.5: GCC/G++ Flags: Execution time (lower is better) as a function of autotuning
time. Aggregated performance of 30 runs of OpenTuner, error bars indicate median, 20th, and
80th percentiles. Note that in (b) the O1/O2/O3 and in (c) the O2/O3 lines are on top of each
other and may be difficult to see.

We validated OpenTuner by using it to implemented autotuners for six distinct projects. This

section describes these six projects, the autotuners we implemented, and presents results comparing

to prior practices in each project.

Figure 9.4 lists, for each benchmark, the number of distinct configurations that can be generated

by OpenTuner. This measure is not perfect because some configurations may be semantically

equivalent and the search space depends on the representation chosen in OpenTuner. It does,

however, provide a sense of the relative size of each search space, which is useful as a first

approximation of tuning difficulty.

203

9.2.1 GCC/G++ Flags

The GCC/G++ flags autotuner is described in detail in Section 9.1.1. There are a number features

that were omitted from the earlier example code for simplicity, which are included in the full version

of the autotuner.

First, we added error checking to gracefully handle the compiler or the output program hanging,

crashing, running out of memory, or otherwise going wrong. Our tests uncovered a number of bugs

in GCC which triggered internal compiler errors and we implemented code to detect, diagnose,

and avoid error-causing sets of flags. We are submitting bug reports for these crashes to the GCC

developers.

Second, instead of using a fixed list of flags and parameters (which the example

does for simplicity), our full autotuner automatically extracts the supported flags from

g++ --help=optimizers. Parameters and legal ranges are extracted automatically from

params.def in the GCC source code.

Additionally, there were a number of smaller features such as: time limits to abort slow

tests which will not be optimal; use of LogInteger parameter types for some values; a

save final config method to output the final flags; and many command line options to autotuner

behavior.

We ran experiments using gcc 4.7.3-1ubuntu1, on an 8 total core, 2-socket Xeon E5320. We

allowed flags such a -ffast-math which can change rounding / NaN behavior of floating point

numbers and have small impacts on program results. We still observe speedups with these flags

removed.

For target programs to optimize we used: A fast Fourier transform in C, fft.c, taken from the

SPLASH2 [158] benchmark suite; A C++ template matrix multiply, matrixmultiply.cpp, written

by Xiang Fan [60] (version 3); A C++ ray tracer, raytracer.cpp, taken from the scratchpixel

website [114]; and a genetic algorithm to solve the traveling salesman program in C++, tsp ga.cpp,

by Kristoffer Nordkvist [104], which we modified to run deterministically. These programs were

chosen to span a range from highly optimized codes, like fft.c which contains cache aware tiling

204

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(a) Blur

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(b) Wavelet

Figure 9.6: Halide: Execution time (lower is better) as a function of autotuning time. Aggregated
performance of 30 runs of OpenTuner, error bars indicate median, 20th, and 80th percentiles.

and threading, to less optimized codes, like matrixmultiply.cpp which contains only a transpose

of one of the inputs.

Figure 9.5 shows the performance for autotuning GCC/G++ flags on four different sample

programs. Final speedups ranged from 1.15× for FFT to 2.82× for matrix multiply. Examining

the frequencies of different flags in the final configurations, we can see some patterns and some

differences between the benchmarks. In all programs -funsafemath-optimizations (and related

flags) and -O3 flags were very common. There were a number of flags that were only common only

in specific benchmarks:

• matrixmultiply.cpp: -fvariable-expansion-in-unroller and -ftree-vectorize

• raytracer.cpp: -fno-reg-struct-return

• fft.c: --param=allow-packed-store-data-races=1,

-frerun-cse-after-loop, and -funroll-all-loops

• tsp ga.cpp: --param=use-canonical-types=1 and

-fno-schedule-insns2.

However these most common flags alone do not account for all of the speedup. Full command lines

found contained typically 200 to 300 options and are difficult to understand by hand.

205

9.2.2 Halide

Halide [120,121] is a domain-specific language and compiler for image processing and computational

photography, specifically targeted towards image processing pipelines that contain several stages.

Halide separates the scheduling of the image processing stages from the expression of the

kernels themselves, allowing expert programmers to dictate complex schedules that result in high

performance.

The Halide project originally integrated an autotuner, which was removed from the project

because it became too complex to maintain and was rarely used in practice. We hope that our new

OpenTuner-based autotuner for Halide, presented here, will be easier to maintain, both because it

benefits from some of the lessons learned from the original autotuner and because it provides a clear

separation between the search techniques and the definition of the search space. Unfortunately,

the original Halide autotuner cannot be used as a baseline to compare against, because the Halide

code base has changed too much since its removal.

The autotuning problem in Halide is to synthesize execution schedules that control how Halide

generates code. As an example, the hand-tuned schedule (against which we compare our autotuner)

for the blur example is:

1 b lu r y . s p l i t (y , y , yi , 8)

2 . p a r a l l e l (y)

3 . v e c t o r i z e (x , 8) ;

4 b lu r x . s t o r e a t (b lur y , y)

5 . compute at (b lur y , y i)

6 . v e c t o r i z e (x , 8) ;

blur y(x, y) and blur y(x, y) are Halide functions in the program. The scheduling operators

which the autotuner can use to synthesize schedules are:

• split introduces a new variable and loop nest by adding a layer of blocking. We limit the

number of splits to at most 4 per dimension of each function, which is sufficient in practice.

We represent each of these splits as a PowerOfTwoParameter, where setting the size of the

split to 1 corresponds to not using the split operator.

206

• parallel, vectorize, and unroll cause the loop nest associated with a given variable in the

function to be executed in parallel, SSE vectorized, or unrolled. OpenTuner represents these

operators as an EnumParameter for each variable/function pair including temporary variables

possibly introduced by splits to decide on an operator, including no operator as a choice.

• reorder / reorder storage take a list of variables and reorganizes the loop nest order or

storage order for those variables. We represent this is as a PermutationParameter, which

includes all possible variables introduced by splits.

• compute at / store at cause the execution or storage for a given function to be embedded

inside of the loop nest of a different function. We represent this as an EnumParameter with

all legal function/variable pairs and special tokens for global and inline as options.

The most difficult parameter to search is compute at because most choices combinations for this

parameter will create invalid schedules are are rejected by the compiler. We created a custom

domain specific technique which attempted to create more legal schedules by biasing the search of

the parameter.

Figure 9.6 presents results for blur and the inverse Daubechies wavelet transform written in

Halide. For both of these examples OpenTuner is able to create schedules that beat the hand

optimized schedules shipping with the Halide source code. Results were collected on an 8-core

Core i7 920 processor using a development build of Halide.

9.2.3 High Performance Linpack

The High Performance Linpack benchmark [57] is used to evaluate floating point performance of

machines ranging from small multiprocessors to large-scale clusters, and is the evaluation criterion

for the Top 500 [145] supercomputer benchmark. The benchmark measures the speed of solving

a large random dense linear system of equations using distributed memory. Achieving optimal

performance requires tuning about fifteen parameters, including matrix block sizes and algorithmic

parameters. To assist in tuning, HPL includes a built in autotuner that uses exhaustive search over

user-provided discrete values of the parameters.

207

 8.6

 8.65

 8.7

 8.75

 8.8

 8.85

 8.9

 8.95

 9

 9.05

 0 200 400 600 800 1000 1200 1400 1600 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Vendor-optimized
OpenTuner

Figure 9.7: High Performance Linpack: Execution time (lower is better) as a function of
autotuning time. Aggregated performance of 30 runs of OpenTuner, error bars indicate median,
20th, and 80th percentiles.

We run HPL on a 2.93 GHz Intel Sandy Bridge quad-core machine running Linux kernel

3.2.0, compiled with GCC 4.5 and using the Intel Math Kernel Library (MKL) 11.0 for optimized

math operations. For comparison purposes, we evaluate performance relative to Intel’s optimized

HPL implementation 1. We encode the input tuning parameters for HPL as näıvely as possible,

without using any machine-specific knowledge. For most parameters, we utilize EnumParameter

or SwitchParameter, as they generally represent discrete choices in the algorithm used. The

major parameter that controls performance is the blocksize of the matrix; this we represent as an

IntegerParameter to give as much freedom as possible for the autotuner for searching. Another

major parameter controls the distribution of the matrix onto the processors; we represent this by

enumerating all 2D decompositions possible for the number of processors on the machine.

Figure 9.7 shows the results of 30 tuning runs using OpenTuner, compared with the vendor-

provided performance. The median performance across runs, after 1200 seconds of autotuning,

exceeds the performance of Intel’s optimized parameters. Overall, OpenTuner obtains a best

1Available at http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download.

208

http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(a) Poisson

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(b) Sort

 0

 0.05

 0.1

 0.15

 0.2

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(c) Strassen

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(d) Tridiagonal Solver

Figure 9.8: PetaBricks: Execution time (lower is better) as a function of autotuning time.
Aggregated performance of 30 runs of OpenTuner, error bars indicate median, 20th, and 80th
percentiles.

performance of 86.5% of theoretical peak performance on this machine, while exploring a miniscule

amount of the overall search space. Furthermore, the blocksize chosen is not a power of two, and

is generally a value unlikely to be guessed for use in hand-tuning.

9.2.4 PetaBricks

Figure 9.8 compares OpenTuner to the PetaBricks autotuner on 4 PetaBricks benchmarks, described

in Chapter 4. The PetaBricks autotuner uses a different strategy, described in Chapter 6, that starts

with tests on very small problem inputs and incrementally works up to full sized inputs. In all

cases, the autotuners arrive at similar solutions, and for Strassen, the exact same solution. For

209

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 0 10 20 30 40 50 60

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Tests

Optimal
OpenTuner

(a) Laplacian

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 10 20 30 40 50 60

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Tests

Optimal
OpenTuner

(b) Divergence

Figure 9.9: Stencil: Execution time (lower is better) as a function of tests. Aggregated performance
of 30 runs of OpenTuner, error bars indicate median, 20th, and 80th percentiles.

Sort and Tridiagonal Solver, OpenTuner beats the native PetaBricks autotuner, while for Poisson

the PetaBricks autotuner arrives at a better solution, but has much higher variance.

The Poisson equation solver (Figure 9.8(a)) presents the most difficult search space. The search

space for Poisson in PetaBricks is described in detail in Chapter 5. It is a variable accuracy

benchmark where the goal of the autotuner is to find a solution that provides 8-digits of accuracy

while minimizing time. All points in Figure 9.8(a) satisfy the accuracy target, so we do not

display accuracy. OpenTuner uses the ThresholdAccuracyMinimizeTime objective described in

Section 9.1.4. The Poisson search space selects between direct solvers, iterative solvers, and

multigrid solvers where the shape of the multigrid V-cycle/W-cycle is defined by the autotuner.

The optimal solution is a poly-algorthm composed of multigrid W-cycles. However, it is difficult

to obtain 8-digits of accuracy with randomly generated multigrid cycle shapes, but is easy with a

direct solver (which solves the problem exactly). This creates a large “plateau” which is difficult

for the autotuners to improve upon, and is shown near 0.16. The native PetaBricks autotuner is

less affected by this plateau because it constructs algorithms incrementally bottom up; however the

use of these smaller input sizes causes larger variance as mistakes early on get amplified.

210

9.2.5 Stencil

In [86], the authors describe a generalized system for autotuning memory-bound stencil

computations on modern multicore machines and GPUs. By composing domain-specific

transformations, the authors explore a large space of implementations for each kernel; the original

autotuning methodology involves exhaustive search over thousands of implementations for each

kernel.

We obtained the raw execution data, courtesy of the authors, and use OpenTuner instead of

exhaustive search on the data from a Nehalem-class 2.66 GHz Intel Xeon machine, running Linux

2.6. We compare against the optimal performance obtained by the original autotuning system

through exhaustive search. The search space for this problem involves searching for parameters for

the parallel decomposition, cache and thread blocking, and loop unrolling for each kernel; to limit

the impact of control flow and cache misalignment, these parameters depend on one another (for

example, the loop unrolling will be a small integer divisor of the thread blocking). We encode these

parameters as PowerOfTwoParameters but ensure that invalid combinations are discarded.

Figure 9.9 shows the results of using OpenTuner for the Laplacian and divergence kernel

benchmarks, showing the median performance obtained over 30 trials as a function of the number

of tests. OpenTuner is able to obtain peak performance on Laplacian after less than 35 tests

of candidate implementations and 25 implementations for divergence; thus, using OpenTuner, less

than 2% of the search space needs to be explored to reach optimal performance. These results show

that even for problems where exhaustive search is tractable (though it may take days), OpenTuner

can drastically improve convergence to the optimal performance with little programmer effort.

9.2.6 Unitary Matrices

As a somewhat different example, we use OpenTuner in an example from physics, namely the

quantum control problem of synthesizing unitary matrices in SU(2) in optimal time, using a finite

control set composed of rotations around two non-parallel axes. (Such rotations generate the

complete space SU(2).)

211

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 10 20 30 40 50 60

A
cc

ur
ac

y

Autotuning Time (seconds)

OpenTuner (easy problem instances)
OpenTuner (hard problem instances)

Figure 9.10: Unitary: Accuracy (higher is better) as a function of autotuning time. Aggregated
performance of 30 runs of OpenTuner, error bars indicate median, 20th, and 80th percentiles.

Unlike other examples, which use OpenTuner as a traditional autotuner to optimize a program,

the Unitary example uses OpenTuner to perform a search over the problem space as a subroutine

at runtime in a program. The problem has a fixed set of operators (or controls), represented as

matrices, and the goal is to find a sequence of operators that, when multiplied together, produce

a given target matrix. The objective function is an accuracy value defined as a function of the

distance of the product of the sequence to the goal (also called the trace fidelity).

Figure 9.10 shows the performance of the Unitary example on both easy and hard instances of

the problem. For both types of problem instance OpenTuner is able to meet the accuracy target

within the first few seconds. This is example shows that OpenTuner can be used for more types of

search problems than just program autotuning.

9.2.7 Results Summary

While implementing these six autotuners in OpenTuner, the biggest lesson we learned reinforced

a core message of this thesis of the need for domain-specific representations and domain-specific

212

search techniques in autotuning. As an example, the initial version of the PetaBricks autotuner

we implemented just used a point in high dimensional space as the configuration representation.

This generic mapping of the search space did not work at all. It produced final configurations

an order of magnitude slower than the results presented from our autotuner that uses selector

parameter types. Similarly, Halide’s search space strongly motivates domain specific techniques

that make large coordinated jumps, for example, swapping scheduling operators on x and y across

all functions in the program. We were able to add domain-specific representations and techniques

to OpenTuner at a fraction of the time and effort of building a fully custom system for that project.

OpenTuner was able to seamlessly integrate the techniques with its ensemble approach.

213

214

Chapter 10

Related Work

PetaBricks primarily differentiates from prior work in that it is the first programming language to

incorporate algorithmic choice, variable accuracy, and autotuning. Most of this chapter will focus

on related projects that use autotuning. A major different between PetaBricks and the majority of

other projects is the size of the search spaces. PetaBricks has massive and complex search spaces,

containing up to 103000 configuration and difficult non-linear dependencies created by algorithmic

selectors. The majority of related projects are dealing with far simpler search spaces. Often these

search spaces are small enough to search exhaustively. In other cases the search spaces are simple

enough that hill climbers (such as Nelder-Mead [103]) suffice. We believe hat these search spaces

are small both because there was not a good way to represent algorithmic choice and, in some cases,

because programmers perform manual pruning of their search space in order to fit the search space

to a limited search technique. PetaBricks and OpenTuner can expand the scope of autotuning by

creating and then being able to search far more complex search spaces than have previously been

used.

10.1 Autotuning

A number of offline empirical autotuning frameworks have been developed for building efficient,

portable libraries in specific domains; selected projects and techniques used are summarized in

Figure 10.1. PHiPAC [30] is an autotuning system for dense matrix multiply, generating portable

215

Package Domain Search Method

Active Harmony [137] Runtime System Nelder-Mead

ATLAS [155] Dense Linear Algebra Exhaustive

FFTW [66] Fast Fourier Transform Exhaustive/Dynamic Prog.

Insieme [84] Compiler Differential Evolution

Milepost GCC [71] Compiler IID Model + Central DB

OSKI [151] Sparse Linear Algebra Exhaustive+Heuristic

PATUS [42] Stencil Computations Nelder-Mead or Evolutionary

SEEC / Heartbeats [77,100] Runtime System Control Theory

Sepya [87] Stencil Computations Random-Restart Gradient Ascent

SPIRAL [118] DSP Algorithms Pareto Active Learning

Figure 10.1: Summary of selected related projects using autotuning

C code and search scripts to tune for specific systems. ATLAS [155, 156] utilizes empirical

autotuning to produce a cache-contained matrix multiply, which is then used in larger matrix

computations in BLAS and LAPACK. FFTW [65,66] uses empirical autotuning to combine solvers

for FFTs. Other autotuning systems include: SPARSITY [80] for sparse matrix computations,

SPIRAL [63, 118, 147] for digital signal processing, UHFFT [4] for FFT on multicore systems,

PATUS [42] and Sepya [87] for stencil computations, OSKI [151] for sparse matrix kernels, and

autotuning frameworks for optimizing sequential [95, 96] and parallel [108] sorting algorithms,

PHiPAC [30] is an autotuning system for dense matrix multiply, generating portable C code and

searching scripts to tune for specific systems, UHFFT [4] for FFT on multicore systems, and

autotuning frameworks for optimizing sequential [96] and parallel [108] sorting algorithms. Finally,

there exists a large variety of work related to PetaBrick’s autotuning approach of optimizing

programs. For example, a number of empirical autotuning frameworks have been developed for

building efficient, portable libraries in specific domains. PHiPAC [30] is an autotuning system for

dense matrix multiply. ATLAS [155] utilizes empirical autotuning to produce a cache-contained

matrix multiply. FFTW [66] uses empirical autotuning to combine solvers for FFTs. A system

by Kessler et al. [7, 89] automatically composes algorithms using emperical techniques. Other

autotuning systems include SPARSITY [80] for sparse matrix computations, SPIRAL [63,118,147]

for digital signal processing, UHFFT [4] for FFT on multicore systems, and OSKI [151] for sparse

matrix kernels. ActiveHarmony [45, 144] provides a general framework for tuning configurable

216

libraries and exploring different compiler optimizations. Diniz and Rinard [54] present a system

to automatically switch between a fixed number of compiler optimization settings at runtime for

different blocks of code using alternating sampling an production phases. In addition to these

systems, various performance models and tuning techniques [35,91,157,164] have been proposed to

evaluate and guide automatic performance tuning. There exists a large variety of work related to

PetaBrick’s approach of autotuning computer programs. PHiPAC [30] is an autotuning system for

dense matrix multiply, generating portable C code and search scripts to tune for specific systems.

ATLAS [155] utilizes empirical autotuning to produce a cache-contained matrix multiply, which

is then used in larger matrix computations in BLAS and LAPACK. FFTW [66] uses empirical

autotuning to combine solvers for FFTs. Other autotuning systems include SPARSITY [80] for

sparse matrix computations, SPIRAL [118] for digital signal processing, UHFFT [4] for FFT on

multicore systems, and OSKI [151] for sparse matrix kernels.

In addition to these systems, various performance models and tuning techniques [35, 91, 150,

157,162,164] have been proposed to evaluate and guide automatic performance tuning.

The area of iterative compilation contains many projects that use different machine learning

techniques to optimize lower level compiler optimizations [1, 5, 112]. These projects change both

the order that compiler passes are applied and the types of passes that are applied. Moss and

Page [101] introduce techniques for exploring many different fine grained instruction orderings.

Donadio et al. [56] introduced a language for expressing families of loop transformations with

different parameters.

MILEPOST GCC [2,39,40,58,68–71,102,142] and cTuning.org is a particularly notable project

in the area of iterative compilation and collective optimization. They maintain a high quality

machine learning enabled version GCC that uses a centralized knowledge database. They are

unquestionably a research leader in the area optimizing traditional compiler optimizations. Their

later focus is on building collective knowledge bases to share tuning information between different

machine types and from many sources.

There are a number of systems that provide high-level abstractions to ease the burden of

programming adaptive applications. STAPL [141] is an C++ template library that support

217

adaptive algorithms and autotuning. Paluska et al. propose a programming framework [111] that

allows programmers to specify goals of application behavior and techniques to satisfy those goals.

The application hierarchically decomposes different situations and adapts to them dynamically.

Andersson et al. [7] and Kessler et al. [89] provide a framework for composing parallel algorithmic

components.

Additionally, there has been a large amount of work [22,55,148,149] in the dynamic optimization

space, where information available at runtime is used combined with static compilation techniques

to generate higher performing code. Such dynamic optimizations differ from dynamic autotuning

because each of the optimizations is hand crafted in a way that makes it likely lead to an

improvement of performance when applied. Conversely, autotuning searches the space of many

available program variations without a priori knowledge of which configurations will perform better.

In the dynamic autotuning space, there have been a number of systems developed [24,27,38,77,

78,88,137] that focus on creating applications that can monitor and automatically tune themselves

to optimize a particular objective. Many of these systems employ a control systems based autotuner

that operates on a linear model of the application being tuned. For example, PowerDial [78]

converts static configuration parameters that already exist in a program into dynamic knobs that

can be tuned at runtime, with the goal of trading QoS guarantees for meeting performance and

power usage goals. The system uses an offline learning stage to construct a linear model of the

choice configuration space which can be subsequently tuned using a linear control system. The

system employs the heartbeat framework [76] to provide feedback to the control system. A similar

technique is employed in [77], where a simpler heuristic-based controller dynamically adjusts the

degree of loop perforation performed on a target application to trade QoS for performance. The

principle theme of these studies is to react to dynamic changes in the system behavior rather than

proactively adapt algorithm configurations based on the characteristics of program inputs.

Atune-IL [129] allows programmers to annotate their parallel programs with different

parameters. Their system then uses autotuning techniques to set these parameters and improve

performance.

218

FLAME [74] is a domain-specific tuning system, providing a formal approach to the design

of linear algebra methods. The system produces C and Fortran implementations from high-level

specifications via code generation.

Yi and Whaley proposed a framework [161] to automate the production of optimized general-

purpose library kernels. An embedded scripting language, POET, is used to describe custom

optimizations for an algorithm. Specification files written in POET are fed into a transformation

engine, which then generates and tunes different implementations. The POET system requires

programmers to describe specific algorithmic optimizations, rather than allowing the compiler to

explore choices automatically.

SPL [159] is a domain-specific language and compiler system targeted to digital signal

processing. The compiler takes signal processing transforms represented by SPL formulas and

explores different transformations and optimizations to produce efficient C and Fortran code.

However, the SPL system was designed only for tuning sequential machines.

A number of studies have considered program inputs in library constructions [29, 64, 81, 117,

140, 154]. They concentrate on some specific library functions (e.g., FFT, sorting) while the

algorithmic choices in these studies are limited. Tian and others have proposed an input-centric

framework [143] for dynamic program optimizations and showed the benefits in enhancing Just-

In-Time compilation. Jung and others have considered inputs when selecting the appropriate data

structures to use [85]. Several recent studies have explored the influence of program inputs on GPU

program optimizations [97,127].

10.2 Variable Accuracy

Techniques such as Loop Perforation [100], Code Perforation [77], and Task Skipping [124, 125]

automatically transform existing computations and/or programs to achieve higher performance.

The resulting new computations may skip subcomputations (for example loop iterations or tasks)

that may not be needed to achieve a certain level of accuracy. The computation may perform

less computational work and therefore execute more quickly and/or consume less energy. While

this approach can be performed robustly in many cases, it is not sound and therefore may require

219

additional programmer time to verify the correctness of the perforated code (should such verification

be needed or desired). In contrast, our system provides a new language and compiler that enables

programmers to safely write programs with variable accuracy in mind right from the start. In

addition to altering loop iterations, our language allows programmers to specify entirely different

algorithmic choices and data representations that may be optimal for different accuracies.

PowerDail [78] is a system that converts static configuration parameters that already exist in

a program into dynamic knobs that can be tuned at runtime. Their system can then change these

knobs at runtime to make the program meet performance and power usage goals. They use an

application wide quality of service metric to measure the loss or gain in accuracy.

Our work also bears similarities to the Green system [24], whose primary goal is to lower the

power requirements of programs. Green uses pragma-like annotations to allow multiple versions

of a function that have different power requirements and resulting accuracies. Green uses a global

quality of service metric to monitor the impact of running the various approximate versions of the

code. PetaBricks differs from Green in that it supports multiple accuracy metrics per program,

allows the definition of a much larger class of algorithmic choices, has parallelism integrated with

its choice model, and contains a robust genetic autotuner.

Seeking approximating program outputs is a common technique for determining solutions to

computationally hard tasks, such as NP-complete problems. For such problems, programmers often

manually employ soft computing, fuzzy logic and artificial intelligence techniques to trade precision

for computational tractability [165]. Likewise, in a similar manner, precision is often sacrificed for

performance when real-time constraints make precise algorithms unfeasible. However, despite this,

few systems exists today to help programmers develop such programs.

There has been a fair amount of research focusing on approximating floating-point computations.

For example, Hull et al. developed Numeric Turing [79], a programming language for scientific

computation that allows developers to dynamically specify the desired precision of floating-

point values throughout their program. Numeric Turing works in conjunction with a specialized

coprocessor that performs the variable accuracy arithmetic needed to maintain the desired precision.

While effective, the specialized hardware incurs a fairly large barrier to entry.

220

The way in which PetaBricks defines correctness for variable accuracy in terms of an accuracy

metric and performs a search for correct programs is similar to Program Synthesis. Program

Synthesis [132–135] defines the correctness of a program in terms of assertions, such as equivalence

between a “sketch“ and a specification. The search is performed using a SAT solver and guarantees

correctness for all inputs. This is a more powerful guarantee than the statistical guarantees of

PetaBricks, however, the technique does not scale as well to large programs.

10.3 Multigrid

Some multigrid solvers using algorithmic choice have been presented in the past. SuperSolvers [28]

is not an autotuner but rather a system for designing composite algorithms that leverage multiple

algorithmic choices to solve sparse linear systems reliably. Our approach differs by the use of tuning

algorithmic choice at different levels of the multigrid hierarchy and the use of tuned subproblems

during recursion. Unfortunately, no direct performance comparison was possible for this chapter

due to the lack of availability of source code.

Cache-aware implementations of multigrid have also been developed. In [131], [126], and [90]

optimizations improve cache utilization by reducing capacity and conflict misses during linear

relaxation and inter-grid transfers. An autotuner was presented in [47] to automatically search

the space of cache and memory optimizations for the relaxation step over a variety of hardware

architectures. The optimizations presented in these related works are for the most part orthogonal

to the approach taken in this thesis. There is no reason lower-level optimizations cannot be

combined with algorithmic tuning at the level of cycle shape.

10.4 Autotuning Techniques

Layered learning, [136], used for robot soccer, is broadly related to our work. Like INCREA,

layered learning is used when a mapping directly from inputs to outputs is not tractable and when

a task can be decomposed to be solved bottom up. In layered learning however, composition

occurs through learning, in the general sense of abstracting and solving the local concept-learning

221

task. (See [75] where genetic programming is used for learning.) INCREA combines optimizations,

in contrast. Both approaches use domain specific knowledge to determine appropriate learning

granularity: input size doubling in INCREA) and subtask definition in layered learning. Layered

learning occurs separately on each hand designed level with a hand designed interface between

each level. In contrast, INCREA incorporates the entire composition into one algorithm which

automatically lengthens the genome only as needed.

Using an adaptive sampling strategy for fitness estimation dates back to [3]. A combination

of approaches from [36, 138] inform INCREA’s strategy. In [36] a t-test is evaluated and found

to be effective when an appropriate population size is not known. In [138] individuals are further

evaluated only if there is some chance that the outcome of the tournaments they participate in can

change. The GPEA may derive some of its robustness to noise from its use of a relatively large

population. See [18,33] for discussions of this robustness.

There is one evolutionary algorithm, named Differential Evolution (DE) [115], that takes a

comparison-based approach to search like our online learner. However DE compares a parent to

its offspring, while we compare a safe configuration to the experimental configuration. These two

configurations (safe and external) are not related. Further, DE does not generate offspring using

mutators.

Our approach to multi-objective optimization is a hybrid of a pareto-based EA [51, 168] and a

weighted objectives EA. Our approach avoids the O(nlogn) computational complexity of pareto-

based EAs such as the very commonly used NSGA-II [51]. In the latter, these are incurred to

identify successive Pareto-fronts and to compute the distance between the solutions on each front.

Our approach of using multiple weight combinations and preserving dominating configurations for

each is more robust than using only one.

10.5 Online Autotuning

In the context of methods in evolutionary algorithms that provide parameter adjustment or

configuration, the taxonomy of Eiben [59] distinguishes between offline “parameter tuning” and

online “parameter control”. Operator selection is similar to parameter control because it is online.

222

However, it differs from parameter control because the means of choosing among a set of operators

contrasts to refining a scalar parameter value.

Adaptive methods, in contrast to self-adaptive methods, explicitly use isolated feedback about

past performance of an operator to guide how a parameter is updated. An adaptive operator

strategy has two components: operator credit assignment and an operator selection rule. The

credit assignment component assigns a weight to an operator based on its past performance.

An operator’s performance is generally measured in terms related to the objective quality of the

candidate solutions it has generated. The operator selection rule is a procedure for choosing one

operator among the eligible set based upon the weight of each. There are three popular adaptive

methods: probability matching, adaptive pursuit and multi-armed bandit. Fialho has authored (in

collaboration with assorted others) a large body of work on adaptive operation selection, see, for

example, [61, 62]. The strategy we implement is multi-armed bandit with AUC credit assignment.

This strategy is comparison-based and hence invariant to the scale of the fitness function which

can vary significantly between PetaBricks programs. The invariance is important to the feasibility

of hyperparameter selection on a general, rather than a per-program, basis.

There is one evolutionary algorithm, differential evolution [116], that takes a comparison-based

approach to search like our autotuner. However, differential evolution compares a parent to its

offspring, while our algorithm is not always competing parent and offspring. The current best

solution is one contestant in the competition and its competitor is not necessarily its offspring.

Differential evolution also uses a method different from applying program-dependent mutation

operators to generate its offspring.

10.6 Autotuning Heterogeneous Architectures

The use of autotuning techniques is even more commonplace when optimizing GPGPU programs.

Autotuning is typically applied in a program or domain-specific fashion. Such systems use

autotuners to construct poly-algorithms for solving large tridiagonal systems [48], for tuning

GPU sorting algorithms [72], autotuning 3D FFT with a focus on padding and bandwidth

optimizations [105], autotuning sparse matrix-vector multiply by building performance models [41],

223

and to tune dense linear algebra with a mix of model-driven and empirical techniques [146]. These

techniques are often specific to a problem or class of problems.

Besides problem-specific techniques, there is a high-level directive-based GPU programming

that uses HMPP workbench to automatically generate CUDA/OpenCL code, and auto-tunes on

the optimization space on the generated GPU kernels [73]. However, this technique and the previous

ones only point towards autotuning as a necessity in order to get the best performance on modern

GPUs; they do not address how to utilize all available resources together to achieve the best

performance on a heterogeneous system.

Several methods to efficiently distribute workload between different devices have been studied.

StarPU applies work-stealing framework to balance work among subsystems [21]. However, StarPU

requires the programmer to write separate CPU and GPU code, and relies entirely on dynamic

work-stealing guided by automatic hints to distribute tasks. CnC-HC automatically generates

CPU, GPU, and FPGA code and uses a work-stealing scheduler to distribute work among different

devices guided by manual hints only [128]. Qilin, automatically generates code and uses adaptive

mapping for performance tuning [98]. During the training run, Qilin executes the program on

different input sizes on CPUs and GPUs separately, and uses the result to determine workload

partitions between the CPUs and the GPUs. However, the mapping of these systems may not be

ideal. Our system automates the entire process, both translating kernels to different targets, and

empirically determining where they should run in our hybrid work-stealing/work-pushing runtime.

For real applications, the ideal mapping is globally non-linearly inter-dependent with all other

choices, and our global optimization captures this during autotuning. Our results demonstrate the

importance of global learning.

CGCM [82] uses a technique for automatic management of GPU/CPU memory communication.

This technique is similar to our analysis for determining when lazy or eager copy-outs are used.

Their technique uses a conservative reachability analysis to determine where to insert calls into a

runtime that dynamically tracks and maps data to different memories. They focus on a number of

optimizations to this technique to reduce runtime overhead. While CGCM manages data movement

automatically, it requires some programmer help when managing parallelism.

224

A number of other programming languages attempt to make programming for GPGPU devices

easier. CUDA-lite [166], automates some of the parallelization and memory management tasks in

writing CUDA. JCUDA [160] alleviates many of the difficulties in using the GPU from Java code.

There have also been efforts to map subsets of C to the GPU [25,94]. These techniques put affine

data access restrictions on the program. There have been other efforts to map OpenMP to the

GPU [92]. While these efforts make running code on the GPU easier, they will produce the same

code for each heterogeneous system and do not allow algorithmic choice, or empirically infer the

best mapping for each machine.

Researchers have also studied the relative throughput of the CPU and the GPU and discovered

contradictory findings with some studies showing 100x performance differences and others just

2.5x [93]. Our work sheds more light on this debate, showing that both claims can be correct.

The best device to use is highly dependant both on the architecture and algorithmic choices and

cannot be determined by simple relative performance numbers. We also show cases where the best

throughput is obtained by using both the CPU and the GPU in parallel.

225

226

Chapter 11

Conclusions

The overriding goal of this thesis was to automate the process of optimizing computer programs

to create programs that can adapt to work optimally in different environments and to conform to

different requirements. We presented the PetaBricks programming language which focuses on ways

for expressing program implementation search spaces at the language level and OpenTuner which

provides sophisticated techniques for searching these spaces in a way that can easily be adopted by

other projects.

PetaBricks, introduced in Chapter 2 and discussed throughout this thesis, is the first language

that allows programmers to naturally express algorithmic choice explicitly so as to empower the

compiler to perform deeper optimization. We have created a compiler and an autotuner that is

not only able to compose a complex program using fine-grained algorithmic choices but also find

the right choice for many other parameters. In Chapters 4 and 5 we showed the efficacy of this

system by developing a non-trivial suite of benchmark applications. Many of these benchmarks

also exposes the accuracy of different choices to the compiler. Our results show that the autotuned

hybrid programs are always better than any of the individual algorithms.

PetaBricks introduces a new programming model where trade-offs between time and accuracy

are exposed at the language level to the compiler. To the best of our knowledge, this is the

first programming language that incorporates a comprehensive solution for choices relating to

algorithmic accuracy. We have developed novel techniques to automatically search the space of

227

algorithms and parameters to construct an optimized algorithm for each accuracy level required.

Using these benchmarks, we have provided evidence of the importance of exposing accuracy and

algorithmic choices to the compiler when autotuning variable accuracy programs.

As a notable demonstration of this programming model, in Chapter 5 we introduced a novel

dynamic programming approach to autotuning multigrid algorithms. Our approach tunes with an

awareness of accuracy that allows fair comparison between various direct, iterative, and recursive

algorithmic types such that optimal solutions are built from the bottom up. We demonstrated

that the resulting tuned cycles achieve excellent performance compared to algorithmically static

implementations of multigrid.

The PetaBricks autotuner, which we discussed in Chapter 6, is an evolutionary algorithm that

is efficiently designed for problems which are suited to incremental shortcuts and require them

because of they have large search spaces and expensive solution evaluation. It also efficiently handles

problems which have noisy candidate solution quality. In the so called “real world”, problems of

this sort abound. This improves over a general purpose evolutionary algorithm that ignores the

incremental structure that exists in these problems and, while it may identify a solution, it wastes

computation, takes too long and produces error prone results. The PetaBricks autotuner solves

smaller to larger problem instances as generations progress and it expands and shrinks its genome

and population each generation. For further efficiency, it cuts off work that doesn’t appear to

promise a fruitful result. It addresses noisy solution quality efficiently by focusing on resolving it

for small solutions which have a much lower cost of evaluation.

Chapter 7 shows a two level solution to the problem of input sensitivity in autotuning that,

first, clusters to find input sets that are similar in the multi-dimensional property space and uses

an evolutionary autotuner to build an optimized program each of these clusters, and then builds an

adaptive overhead aware classifier which assigns each input to a specific input optimized program.

This provides a general means of automatically determining what algorithmic optimization to use

when different optimization strategies suit different inputs. Though this work, we are able to extract

principles for understanding the performance and accuracy space of a program across a variety of

inputs, and achieve speedups of up to 3x. While at first input sensitivity seems to be excessively

228

complicated issue where one must deal with large optimization spaces and complex input spaces,

we show that input sensitivity can be handled with simple extensions to an existing autotuning

system. We also showed that there are fundamental diminishing returns as more and more input

adaptation is added to a system and that a little bit of input adaption can go a long way.

Our online autotuner, SiblingRivalry (Chapter 8), demonstrates that it can sometimes be more

effective to devote resources to learning the smart thing to do, than to simple throw resources at a

potentially suboptimal configuration. Our technique devotes half of the system resources to trying

something different, to enable online adaption to the system environment. SiblingRivalry is able to

fully eliminate the offline learning step, making the process fully transparent to users, which is the

biggest impediment to the acceptance of autotuning. By eliminating any extra steps, we believe

that SiblingRivalry can bring autotuning to the mainstream program optimization. As we keep

increasing the core counts of our processors, autotuning via SiblingRivalry help exploit them in a

purposeful way.

Finally, Chapter 9 presents OpenTuner, a new framework for building domain-specific

multi-objective program autotuners. OpenTuner supports fully customizable configuration

representations and an extensible technique representation to allow for domain-specific techniques.

OpenTuner introduces the concept of ensembles of search techniques in autotuning, which allow

many search techniques to work together to find an optimal solution and provides a more robust

search than a single technique alone. OpenTuner is free and open source [153] and as the community

adds more techniques and representations to this flexible framework, there will be less of a need to

create a new representation or techniques for each project and we hope that the system will work

out-of-the-box for most creators of autotuners. OpenTuner pushes the state of the art forward

in program autotuning in a way that can easily be adopted by other projects. We hope that

OpenTuner will be an enabling technology that will allow the expanded use of program autotuning

both to more domains and by expanding the role of program autotuning in existing domains.

We have presented a variety of results in this thesis. In Chapter 4, we saw that PetaBricks

can provide significant speedups over using a single algorithm or a hard coded heuristic; that by

trading accuracy for performance one can meet changing quality of service targets without wasted

229

resources; and that vastly different configurations are needed on different heterogenous machines

and processor/coprogressor types. Chapter 5 showed a novel dynamic programming technique

for creating multigrid V-cycle shapes tailored to a specific problem and execution environment.

Chapter 6 showed how our botton-up evolutionary algorithm outperforms more traditional evolution

autotuners. Chapter 7 showed that many programs are input sensitive, and demonstrated speedups

by automatically adapting algorithms to best fit program inputs. Chapter 8 demonstrated our

online autotuner and showed speedups when having programs adapt to load on a system. Finally,

Chapter 9 introduced OpenTuner and showed how sophisticated autotuning techniques can be used

to provide speedups for other projects.

In this thesis we showed the importance of autotuning and that there is no one size fits all

solution to program optimization. One needs to use different techniques and optimizations to get

performance in different situations. We identified many important problems in autotuning and

provided viable solutions to each. We believe autotuning is ripe for general adoption and may soon

be ubiquitous in software development and deployment toolchains. We envision a future where

programs are more dynamic and automatically adapt to fit their environment, inputs, available

resources, and changing requirements.

Perhaps send me that paragraph alone before

230

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’boyle, J. Thomson,

M. Toussaint, and C. K. I. Williams. Using machine learning to focus iterative optimization.

In Symposium on Code Generation and Optimization, 2006.

[2] Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin, Michael F. P.

O’Boyle, John Thomson, Mark Toussaint, and Christopher K. I. Williams. Using machine

learning to focus iterative optimization. In Proceedings of the International Symposium on

Code Generation and Optimization, CGO’06, pages 295–305, Washington, DC, USA, 2006.

IEEE Computer Society.

[3] Akiko N. Aizawa and Benjamin W. Wah. Scheduling of genetic algorithms in a noisy

environment. Evolutionary Computation, 2(2):97–122, 1994.

[4] Ayaz Ali, Lennart Johnsson, and Jaspal Subhlok. Scheduling FFT computation on SMP and

multicore systems. In Proceedings of the ACM/IEEE Conference on Supercomputing, pages

293–301, New York, NY, USA, 2007.

[5] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves,

Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effective compilation

sequences. In Conference on Languages, Compilers, and Tools for Embedded Systems, New

York, NY, USA, 2004.

[6] Ed Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, James Demmel, Jack

Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, A. McKenney, and

231

Danny Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,

Philadelphia, PA, third edition, 1999.

[7] Jesper Andersson, Morgan Ericsson, Christoph Kessler, and Welf Lowe. Profile-guided

composition. Lecture Notes in Computer Science, 4954:157–164, March 2008.

[8] Jason Ansel. Petabricks: A language and compiler for algorithmic choice. S.m. thesis,

Massachusetts Institute of Technology, Cambridge, MA, Sep 2009.

[9] Jason Ansel, Yee Lok Won ans Cy Chan, Marek Olszewski, Alan Edelman, and Saman

Amarasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms.

Technical Report MIT/CSAIL Technical Report MIT-CSAIL-TR-2010-032, Massachusetts

Institute of Technology, Cambridge, MA, Jul 2010.

[10] Jason Ansel, Kapil Arya, and Gene Cooperman. Dmtcp: Transparent checkpointing for

cluster computations and the desktop. In International Parallel and Distributed Processing

Symposium, Rome, Italy, May 2009.

[11] Jason Ansel and Cy Chan. Petabricks: Building adaptable and more efficient programs for

the multi-core era. Crossroads, The ACM Magazine for Students (XRDS), 17(1):32–37, Sep

2010.

[12] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and

Saman Amarasinghe. Petabricks: A language and compiler for algorithmic choice. In

ACM SIGPLAN Conference on Programming Language Design and Implementation, Dublin,

Ireland, Jun 2009.

[13] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Una-May O’Reilly, and Saman

Amarasinghe. Opentuner: An extensible framework for program autotuning. In Manuscript

submitted for review, July 2013.

[14] Jason Ansel, Petr Marchenko, Ulfar Erlingsson, Elijah Taylor, Brad Chen, Derek Schuff,

David Sehr, Cliff Biffle, , and Bennet Yee. Language-independent sandboxing of just-in-

232

time compilation and self-modifying code. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, San Jose, CA, Jun 2011.

[15] Jason Ansel, Maciej Pacula, Saman Amarasinghe, and Una-May O’Reilly. An efficient

evolutionary algorithm for solving bottom up problems. In Annual Conference on Genetic

and Evolutionary Computation, Dublin, Ireland, July 2011.

[16] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Olszewski, Una-May O’Reilly,

and Saman Amarasinghe. Siblingrivalry: Online autotuning through local competitions. In

International Conference on Compilers Architecture and Synthesis for Embedded Systems,

Tampere, Finland, Oct 2012.

[17] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman

Amarasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms.

In International Symposium on Code Generation and Optimization, Chamonix, France, Apr

2011.

[18] Dirk V. Arnold and Hans-Georg Beyer. On the benefits of populations for noisy optimization.

Evolutionary Computation, 11(2):111–127, 2003.

[19] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In ACM-SIAM

Symposium on Discrete Algorithms, January 2007.

[20] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic

multiarmed bandit problem. SIAM J. Comput., 32(1):48–77, 2003.

[21] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU:

a unified platform for task scheduling on heterogeneous multicore architectures. Concurrency

and Computation: Practice and Experience, 23(2), 2011.

[22] Joel Auslander, Matthai Philipose, Craig Chambers, Susan J. Eggers, and Brian N. Bershad.

Fast, effective dynamic compilation. In PLDI, pages 149–159, 1996.

233

[23] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York NY,

1996.

[24] Woongki Baek and Trishul Chilimbi. Green: A framework for supporting energy-

conscious programming using controlled approximation. In ACM SIGPLAN Conference on

Programming Language Design and Implementation, June 2010.

[25] Muthu Baskaran, J. Ramanujam, and P. Sadayappan. Automatic c-to-CUDA code generation

for affine programs. In Rajiv Gupta, editor, Compiler Construction, volume 6011. Springer

Berlin / Heidelberg, 2010.

[26] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli,

S. Scott, A. Snavely, T. Sterling, S. Williams, and K. Yelick. Exascale computing study:

Technology challenges in achieving exascale systems, 2008.

[27] V. Bhat, M. Parashar, . Hua Liu, M. Khandekar, N. Kandasamy, and S. Abdelwahed.

Enabling self-managing applications using model-based online control strategies. In

Proceedings of the 2006 IEEE International Conference on Autonomic Computing, pages

15–24, Washington, DC, USA, 2006.

[28] Sanjukta Bhowmick, Padma Raghavan, and Keita Teranishi. A combinatorial scheme for

developing efficient composite solvers. In Proceedings of the International Conference on

Computational Science-Part II, pages 325–334, London, UK, 2002.

[29] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using

PHiPAC: A portable, high-performance, ANSI C coding methodology. In Proceedings of the

ACM International Conference on Supercomputing, pages 340–347, 1997.

[30] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. Optimizing matrix multiply

using PHiPAC: a portable, high-performance, ANSI C coding methodology. In Proceedings of

the ACM/IEEE Conference on Supercomputing, pages 340–347, New York, NY, USA, 1997.

234

[31] Guy E. Blelloch, Charles E. Leiserson, Bruce M. Maggs, C. Greg Plaxton, Stephen J. Smith,

and Marco Zagha. A comparison of sorting algorithms for the connection machine cm-2. In

Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and Architectures,

SPAA ’91, pages 3–16, New York, NY, USA, 1991. ACM.

[32] Andrew P. Bradley. The use of the area under the ROC curve in the evaluation of machine

learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

[33] Jurgen Branke. Creating robust solutions by means of evolutionary algorithms. In Agoston

Eiben, Thomas Baeck, Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem

Solving from Nature, PPSN V, volume 1498 of Lecture Notes in Computer Science, pages

119–. Springer Berlin / Heidelberg, 1998.

[34] Jurgen Branke, Christian Schmidt, and Hartmut Schmec. Efficient fitness estimation in noisy

environments. In Proceedings of Genetic and Evolutionary Computation, pages 243–250, 2001.

[35] Eric A. Brewer. High-level optimization via automated statistical modeling. In Proceedings of

the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

80–91, New York, NY, USA, 1995.

[36] Erick Cantu-Paz. Adaptive sampling for noisy problems. In Genetic and Evolutionary

Computation, GECCO 2004, volume 3102 of Lecture Notes in Computer Science, pages 947–

958. Springer Berlin / Heidelberg, 2004.

[37] Cy Chan, Jason Ansel, Yee Lok Wong, Saman Amarasinghe, and Alan Edelman. Autotuning

multigrid with petabricks. In ACM/IEEE Conference on Supercomputing, Portland, OR, Nov

2009.

[38] Fangzhe Chang and Vijay Karamcheti. A framework for automatic adaptation of tunable

distributed applications. Cluster Computing, 4:49–62, March 2001.

[39] Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Olivier

Temam, and Chengyong Wu. Deconstructing iterative optimization. ACM Transactions

on Architecture and Code Optimization (TACO), 9(3):21:1–21:30, October 2012.

235

[40] Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier Temam,

and Chengyong Wu. Evaluating iterative optimization across 1000 datasets. In Proceedings of

the 2010 ACM SIGPLAN conference on Programming language design and implementation,

PLDI’10, pages 448–459, New York, NY, USA, 2010. ACM.

[41] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse matrix-

vector multiply on GPUs. In Symposium on Principles and Practice of Parallel Programming,

New York, NY, USA, 2010.

[42] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation

and autotuning framework for parallel iterative stencil computations on modern

microarchitectures. In IPDPS, pages 676–687. IEEE, 2011.

[43] Gene Cooperman, Jason Ansel, and Xiaoqin Ma. Adaptive checkpointing for master-worker

style parallelism. In IEEE Computer Society International Conference on Cluster Computing,

Boston, MA, Sep 2005.

[44] Gene Cooperman, Jason Ansel, and Xiaoqin Ma. Transparent adaptive library-based

checkpointing for master-worker style parallelism. In IEEE International Symposium on

Cluster Computing and the Grid, Singapore, May 2006.

[45] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active harmony: towards

automated performance tuning. In Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, Supercomputing ’02, pages 1–11, Los Alamitos, CA, USA, 2002. IEEE

Computer Society Press.

[46] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag. Adaptive operator

selection with dynamic multi-armed bandits. In Proceedings of the 10th annual conference on

Genetic and evolutionary computation, GECCO ’08, pages 913–920, New York, NY, USA,

2008.

[47] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid

Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation optimization

236

and auto-tuning on state-of-the-art multicore architectures. In SC ’08: Proceedings of the

2008 ACM/IEEE conference on Supercomputing, pages 1–12, Piscataway, NJ, USA, 2008.

IEEE Press.

[48] Andrew Davidson, Yao Zhang, and John D. Owens. An auto-tuned method for solving large

tridiagonal systems on the GPU. In Parallel and Distributed Processing Symposium. IEEE,

May 2011.

[49] Lawrence Davis. Adapting operator probabilities in genetic algorithms. In J. David Schaffer,

editor, ICGA, pages 61–69, 1989.

[50] Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within

1+epsilon in linear time. Combinatorica, 1(4):349–355, 1981.

[51] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A fast elitist non-

dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Marc

Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Evelyne Lutton, Juan Julian Merelo,

and Hans-Paul Schwefel, editors, Parallel Problem Solving from Nature – PPSN VI, pages

849–858, Berlin, 2000. Springer.

[52] James W. Demmel. Applied Numerical Linear Algebra. August 1997.

[53] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May O’Reilly, and

Saman Amarasinghe. Autotuning algorithmic choice for input sensitivity. In Manuscript

submitted for review, July 2013.

[54] Pedro Diniz and Martin Rinard. Eliminating synchronization overhead in automatically

parallelized programs using dynamic feedback. ACM Trans. Comput. Syst., 17:89–132, May

1999.

[55] Pedro C. Diniz and Martin C. Rinard. Dynamic feedback: an effective technique for adaptive

computing. In Proceedings of the ACM SIGPLAN 1997 conference on Programming language

design and implementation, PLDI ’97, pages 71–84, New York, NY, USA, 1997.

237

[56] Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov, Denis Barthou, Albert

Cohen, Mara Jesus Garzaran, David Padua, Keshav Pingali, Bull Sa, and Inria Futurs. A

language for the compact representation of multiple program versions. In In Languages and

Compilers for Parallel Computers (LCPC’05), page 15, 2005.

[57] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Benchmark: past,

present and future. Concurrency and Computation: Practice and Experience, 15(9):803–820,

2003.

[58] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grigori Fursin, and Michael F. P.

O’Boyle. Portable compiler optimisation across embedded programs and microarchitectures

using machine learning. In Proceedings of the 42nd Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO 42, pages 78–88, New York, NY, USA, 2009. ACM.

[59] A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary algorithms.

Evolutionary Computation, IEEE Transactions on, 3(2):124 –141, July 1999.

[60] Xiang Fan. Optimize your code: Matrix multiplication. https://tinyurl.com/kuvzbp9,

2009.

[61] Álvaro Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Université Paris-

Sud XI, Orsay, France, December 2010.

[62] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michele Sebag. Analyzing bandit-based

adaptive operator selection mechanisms. Annals of Mathematics and Artificial Intelligence –

Special Issue on Learning and Intelligent Optimization, 2010.

[63] Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel. Operator

language: A program generation framework for fast kernels. In IFIP Working Conference on

Domain Specific Languages (DSL WC), volume 5658 of Lecture Notes in Computer Science,

pages 385–410. Springer, 2009.

[64] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of the

IEEE, 93(2):216–231, 2005.

238

https://tinyurl.com/kuvzbp9

[65] Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for the

FFT. In Proceedings of the IEEE International Conference on Acoustics Speech and Signal

Processing, volume 3, pages 1381–1384, 1998.

[66] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings

of the IEEE, 93(2):216–231, February 2005. Invited paper, special issue on “Program

Generation, Optimization, and Platform Adaptation”.

[67] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the Cilk-5

multithreaded language. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 212–223, Montreal, Quebec, Canada, Jun 1998.

Proceedings published ACM SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

[68] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,

Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois

Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John Thomson, Christopher Williams,

and Michael F. P. OBoyle. Milepost gcc: Machine learning enabled self-tuning compiler.

International Journal of Parallel Programming, 39:296–327, 2011. 10.1007/s10766-010-0161-

2.

[69] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Ayal

Zaks, Bilha Mendelson, Phil Barnard, Elton Ashton, Eric Courtois, Francois Bodin, Edwin

Bonilla, John Thomson, Hugh Leather, Chris Williams, and Michael O’Boyle. MILEPOST

GCC: machine learning based research compiler. In Proceedings of the GCC Developers’

Summit, June 2008.

[70] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Ayal

Zaks, Bilha Mendelson, Phil Barnard, Elton Ashton, Eric Courtois, Francois Bodin, Edwin

Bonilla, John Thomson, Hugh Leather, Chris Williams, and Michael O’Boyle. Milepost gcc:

machine learning based research compiler. In Proceedings of the GCC Developers’ Summit,

June 2008.

239

[71] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov,

Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thomson, Hugh Leather, Chris

Williams, Michael O’Boyle, Phil Barnard, Elton Ashton, Eric Courtois, and Francois Bodin.

MILEPOST GCC: machine learning based research compiler. In GCC Developers’ Summit,

Jul 2008.

[72] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: High

performance graphics coprocessor sorting for large database management. In ACM SIGMOD,

2006.

[73] Scott Grauer-Gray, Lifan Xu, Robert Ayalasomayajula, and John Cavazos. Auto-tuning a

high-level language targeted to GPU codes. In Innovative Parallel Computing Conference.

IEEE, May 2012.

[74] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME:

Formal Linear Algebra Methods Environment. ACM Transactions on Mathematical Software,

27(4):422–455, December 2001.

[75] Steven M. Gustafson and William H. Hsu. Layered learning in genetic programming for a co-

operative robot soccer problem. In Julian F. Miller, Marco Tomassini, Pier Luca Lanzi, Conor

Ryan, Andrea G. B. Tettamanzi, and William B. Langdon, editors, Genetic Programming,

Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 291–301, Lake Como, Italy, 18-20

April 2001. Springer-Verlag.

[76] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant

Agarwal. Application heartbeats: a generic interface for specifying program performance

and goals in autonomous computing environments. In Proceeding of the 7th international

conference on Autonomic computing, ICAC ’10, pages 79–88, New York, NY, USA, 2010.

[77] Henry Hoffmann, Sasa Misailovic, Stelios Sidiroglou, Anant Agarwal, and Martin Rinard.

Using code perforation to improve performance, reduce energy consumption, and respond to

240

failures. Technical Report MIT-CSAIL-TR-2209-042, Massachusetts Institute of Technology,

Sep 2009.

[78] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and

Martin Rinard. Power-aware computing with dynamic knobs. In Proceedings of the 16th

International Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS 2011, 2011.

[79] T.E. Hull, M.S. Cohen, and C.B. Hall. Specifications for a variable-precision arithmetic

coprocessor. In In proceedings of the 10th IEEE Symposium on Computer Arithmetic., June

1991.

[80] Eun-jin Im and Katherine Yelick. Optimizing sparse matrix computations for register reuse

in SPARSITY. In Proceedings of the International Conference on Computational Science,

pages 127–136, 2001.

[81] Eun-Jin Im, Katherine Yelick, and Richard Vuduc. Sparsity: Optimization framework for

sparse matrix kernels. Int. J. High Perform. Comput. Appl., 18(1):135–158, 2004.

[82] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Nick P. Johnson, Stephen R. Beard,

and David I. August. Automatic CPU-GPU communication management and optimization.

In Programming language design and implementation, New York, NY, USA, 2011.

[83] David S. Johnson and Michael R. Garey. A 71/60 theorem for bin packing. Journal of

Complexity, 1(1):65 – 106, 1985.

[84] Herbert Jordan, Peter Thoman, Juan J. Durillo, Simone Pellegrini, Philipp Gschwandtner,

Thomas Fahringer, and Hans Moritsch. A multi-objective auto-tuning framework for parallel

codes. In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’12, pages 10:1–10:12, Los Alamitos, CA, USA, 2012.

IEEE Computer Society Press.

[85] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and Santosh Pande. Brainy:

effective selection of data structures. In Proceedings of the 32nd ACM SIGPLAN conference

241

on Programming language design and implementation, PLDI ’11, pages 86–97, New York,

NY, USA, 2011. ACM.

[86] S. Kamil, C. Chan, L. Oliker, J. Shalf, and S. Williams. An auto-tuning framework for

parallel multicore stencil computations. In International Symposium on Parallel Distributed

Processing (IPDPS), pages 1–12, 2010.

[87] Shoaib Ashraf Kamil. Productive High Performance Parallel Programming with Auto-

tuned Domain-Specific Embedded Languages. PhD thesis, EECS Department, University of

California, Berkeley, Jan 2013.

[88] Gabor Karsai, Akos Ledeczi, Janos Sztipanovits, Gabor Peceli, Gyula Simon, and Tamas

Kovacshazy. An approach to self-adaptive software based on supervisory control. In In

2nd International Workshop in Self-adaptive software, (IWSAS-01), Robert Laddaga, Howard

Shrobe, and Paul, 2001.

[89] Christoph W. Kessler and Welf Lowe. A framework for performance-aware composition of

explicitly parallel components. In PARCO, volume 15 of Advances in Parallel Computing,

pages 227–234, 2007.

[90] Markus Kowarschik and Christian Wei. Dimepack – a cache-optimized multigrid library.

In The International Conference on Parallel and Distributed Processing Techniques and

Applications, pages 425–430. CSREA, CSREA Press, 2001.

[91] Michail G. Lagoudakis and Michael L. Littman. Algorithm selection using reinforcement

learning. In Proceedings of the International Conference On Machine Learning, pages 511–

518, 2000.

[92] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann. OpenMP to GPGPU: a compiler

framework for automatic translation and optimization. SIGPLAN Not., 44, February 2009.

[93] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D.

Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund,

242

Ronak Singhal, and Pradeep Dubey. Debunking the 100X GPU vs. CPU myth: an evaluation

of throughput computing on CPU and GPU. In international symposium on Computer

architecture, New York, NY, USA, 2010.

[94] Allen Leung, Nicolas Vasilache, Benoit Meister, Muthu Baskaran, David Wohlford, Cedric

Bastoul, and Richard Lethin. A mapping path for multi-GPGPU accelerated computers

from a portable high level programming abstraction. In Workshop on General-Purpose

Computation on Graphics Processing Units, New York, NY, USA, 2010.

[95] Xiaoming Li, Maria Jesus Garzaran, and David Padua. A dynamically tuned sorting library.

In Proceedings of the International Symposium on Code Generation and Optimization, pages

111–122, March 2004.

[96] Xiaoming Li, Mara Jess Garzarn, and David Padua. Optimizing sorting with genetic

algorithms. In Proceedings of the International Symposium on Code Generation and

Optimization, pages 99–110, 2005.

[97] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for gpu programs

optimization. In Proceedings of International Parallel and Distribute Processing Symposium

(IPDPS), pages 1–10, 2009.

[98] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping. In International Symposium on

Microarchitecture, New York, NY, USA, 2009.

[99] Carol A. Markowski and Edward P. Markowski. Conditions for the effectiveness of a

preliminary test of variance. 1990.

[100] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffman, and Martin Rinard. Quality of service

profiling. In International Conference on Software Engineering, Cape Town, South Africa,

May 2010.

243

[101] Andrew Moss and Dan Page. Program interpolation. In Proceedings of the 2009 ACM

SIGPLAN workshop on Partial evaluation and program manipulation, pages 31–40, New

York, NY, USA, 2009.

[102] Mircea Namolaru, Albert Cohen, Grigori Fursin, Ayal Zaks, and Ari Freund. Practical

aggregation of semantical program properties for machine learning based optimization. In

Proceedings of the 2010 international conference on Compilers, Architectures and Synthesis

for Embedded Systems, CASES’10, pages 197–206, New York, NY, USA, 2010. ACM.

[103] J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal,

7:308–313, 1965.

[104] Kristoffer Nordkvist. Solving TSP with a genetic algorithm in C++. https://tinyurl.com/

lq3uqlh, 2012.

[105] Akira Nukada and Satoshi Matsuoka. Auto-tuning 3-d FFT library for CUDA GPUs. In

High Performance Computing Networking, Storage and Analysis, New York, NY, USA, 2009.

[106] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: Efficient deterministic

multithreading in software. In The International Conference on Architectural Support for

Programming Languages and Operating Systems, Washington, DC, Mar 2009.

[107] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Scaling deterministic

multithreading. In Workshop on Determinism and Correctness in Parallel Programming

(WoDet), Newport Beach, CA, Mar 2011.

[108] Marek Olszewski and Michael Voss. Install-time system for automatic generation of optimized

parallel sorting algorithms. In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, pages 17–23, 2004.

[109] Marek Olszewski, Qin Zhao, David Koh, Jason Ansel, and Saman Amarasinghe. Aikido:

Accelerating shared data dynamic analyses. In The International Conference on Architectural

Support for Programming Languages and Operating Systems, London, UK, March 2012.

244

https://tinyurl.com/lq3uqlh
https://tinyurl.com/lq3uqlh

[110] Maciej Pacula, Jason Ansel, Saman Amarasinghe, and Una-May O’Reilly. Hyperparameter

tuning in bandit-based adaptive operator selection. In European Conference on the

Applications of Evolutionary Computation, Malaga, Spain, Apr 2012.

[111] Justin Mazzola Paluska, Hubert Pham, Umar Saif, Grace Chau, Chris Terman, and Steve

Ward. Structured decomposition of adaptive applications. In Proceedings of the Annual

IEEE International Conference on Pervasive Computing and Communications, pages 1–10,

Washington, DC, USA, 2008.

[112] Eunjung Park, L.-N. Pouche, J. Cavazos, A. Cohen, and P. Sadayappan. Predictive modeling

in a polyhedral optimization space. In Symposium on Code Generation and Optimization,

April 2011.

[113] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley, and Saman

Amarasinghe. Portable performance on heterogeneous architectures. In The International

Conference on Architectural Support for Programming Languages and Operating Systems,

Houston, TX, March 2013.

[114] Scratch Pixel. 3D Basic Lessons: Writing a simple raytracer. https://tinyurl.com/

lp8ncnw, 2012.

[115] Kenneth Price, Rainer Storn, and Jouni Lampinen. Differential Evolution: A Practical

Approach to Global Optimization. Natural Computing Series. Springer-Verlag, Berlin,

Germany, 2005.

[116] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A Practical

Approach to Global Optimization (Natural Computing Series). Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 2005.

[117] M. Puschel, J.M.F. Moura, J.R. Johnson, D. Padua, M.M. Veloso, B.W. Singer, Jianxin

Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo.

SPIRAL: code generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

245

https://tinyurl.com/lp8ncnw
https://tinyurl.com/lp8ncnw

[118] Markus Püschel, José M. F. Moura, Bryan Singer, Jianxin Xiong, Jeremy R. Johnson,

David A. Padua, Manuela M. Veloso, and Robert W. Johnson. Spiral: A generator for

platform-adapted libraries of signal processing alogorithms. IJHPCA, 18(1):21–45, 2004.

[119] J.R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[120] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe,

and Frédo Durand. Decoupling algorithms from schedules for easy optimization of image

processing pipelines. ACM Trans. Graph., 31(4):32:1–32:12, July 2012.

[121] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and

Saman Amarasinghe. Halide: a language and compiler for optimizing parallelism, locality,

and recomputation in image processing pipelines. In Proceedings of the 34th ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’13, pages 519–530,

New York, NY, USA, 2013. ACM.

[122] Richard H. Rand. Computer algebra in applied mathematics: an introduction to MACSYMA.

Number 94 in Research notes in mathematics. London, UK, 1984.

[123] Michael Rieker, Jason Ansel, and Gene Cooperman. Transparent user-level checkpointing for

the native posix thread library for linux. In The International Conference on Parallel and

Distributed Processing Techniques and Applications, Las Vegas, NV, Jun 2006.

[124] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard

tasks. In ICS ’06: Proceedings of the 20th annual international conference on Supercomputing,

pages 324–334, 2006.

[125] Martin Rinard. Using early phase termination to eliminate load imbalances at barrier

synchronization points. In ACM SIGPLAN Conference on Object-oriented Programming

Systems and Applications, pages 369–386, 2007.

[126] Gabriel Rivera and Chau-Wen Tseng. Tiling optimizations for 3d scientific computations.

In Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference on Supercomputing

(CDROM), page 32, Washington, DC, USA, 2000. IEEE Computer Society.

246

[127] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke. Adaptive input-aware

compilation for graphics engines. In Proceedings of ACM SIGPLAN 2012 Conference on

Programming Language Design and Implementation, 2012.

[128] Alina Sb̂ırlea, Yi Zou, Zoran Budimĺıc, Jason Cong, and Vivek Sarkar. Mapping a data-

flow programming model onto heterogeneous platforms. In International Conference on

Languages, Compilers, Tools and Theory for Embedded Systems, New York, NY, USA, 2012.

[129] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy. Atune-IL: An instrumentation

language for auto-tuning parallel applications. In Euro-Par Conference, August 2009.

[130] Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph, editors. Parallel

Problem Solving from Nature, volume 6238 of Lecture Notes in Computer Science, 2010.

[131] Sriram Sellappa and Siddhartha Chatterjee. Cache-efficient multigrid algorithms. Int. J.

High Perform. Comput. Appl., 18(1):115–133, 2004.

[132] Armando Solar-Lezama, Gilad Arnold, Liviu Tancau, Rastislav Bodik, Vijay Saraswat, and

Sanjit Seshia. Sketching stencils. In Proceedings of the 2007 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’07, pages 167–178, New York,

NY, USA, 2007. ACM.

[133] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent

data structures. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’08, pages 136–148, New York, NY, USA, 2008.

ACM.

[134] Armando Solar-Lezama, Rodric Rabbah, Rastislav Bod́ık, and Kemal Ebcioğlu. Programming

by sketching for bit-streaming programs. In Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’05, pages 281–

294, New York, NY, USA, 2005. ACM.

[135] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.

Combinatorial sketching for finite programs. In Proceedings of the 12th International

247

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XII, pages 404–415, New York, NY, USA, 2006. ACM.

[136] Peter Stone and Manuela Veloso. Layered learning. In Ramon Lopez de Montaras and Enric

Plaza, editors, Machine Learning: ECML 2000, volume 1810 of Lecture Notes in Computer

Science, pages 369–381. Springer Berlin / Heidelberg, 2000.

[137] Cristian Tapus, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active harmony: Towards

automated performance tuning. In In Proceedings from the Conference on High Performance

Networking and Computing, pages 1–11, 2003.

[138] Astro Teller and David Andre. Automatically choosing the number of fitness cases: The

rational allocation of trials. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B.

Fogel, Max Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997:

Proceedings of the Second Annual Conference, pages 321–328, Stanford University, CA, USA,

13-16 July 1997. Morgan Kaufmann.

[139] Dirk Thierens. Adaptive strategies for operator allocation. In Fernando G. Lobo, Cláudio F.

Lima, and Zbigniew Michalewicz, editors, Parameter Setting in Evolutionary Algorithms,

volume 54 of Studies in Computational Intelligence, pages 77–90. 2007.

[140] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M. Amato, and L. Rauchwerger. A

framework for adaptive algorithm selection in STAPL. In Proceedings of the Tenth ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 277–288,

2005.

[141] Nathan Thomas, Gabriel Tanase, Olga Tkachyshyn, Jack Perdue, Nancy M. Amato, and

Lawrence Rauchwerger. A framework for adaptive algorithm selection in STAPL. In

Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 277–288, New York, NY, USA, 2005.

[142] John Thomson, Michael O’Boyle, Grigori Fursin, and Björn Franke. Reducing training time

in a one-shot machine learning-based compiler. In Proceedings of the 22nd international

248

conference on Languages and Compilers for Parallel Computing, LCPC’09, pages 399–407,

Berlin, Heidelberg, 2009. Springer-Verlag.

[143] K. Tian, Y. Jiang, E. Zhang, and X. Shen. An input-centric paradigm for program dynamic

optimizations. In the Conference on Object-Oriented Programming, Systems, Languages, and

Applications (OOPSLA), 2010.

[144] Ananta Tiwari, Chun Chen, Cha Jacqueline, Mary Hall, and Jeffrey K. Hollingsworth. A

scalable auto-tuning framework for compiler optimization. In Proceedings of the 2009 IEEE

International Symposium on Parallel&Distributed Processing, pages 1–12, Washington, DC,

USA, 2009. IEEE Computer Society.

[145] Top500. Top 500 supercomputer sites. http://www.top500.org/, 2010.

[146] V. Volkov and J.W. Demmel. Benchmarking GPUs to tune dense linear algebra. In

Supercomputing, November 2008.

[147] Yevgen Voronenko, Frédéric de Mesmay, and Markus Püschel. Computer generation of

general size linear transform libraries. In International Symposium on Code Generation and

Optimization (CGO), pages 102–113, 2009.

[148] Michael Voss and Rudolf Eigenmann. Adapt: Automated de-coupled adaptive program

transformation. In Proceedings of the International Conference on Parallel Processing, pages

163–170, 2000.

[149] Michael Voss and Rudolf Eigenmann. High-level adaptive program optimization with adapt.

ACM SIGPLAN Notices, 36(7):93–102, 2001.

[150] Richard Vuduc, James W. Demmel, and Jeff A. Bilmes. Statistical models for empirical

search-based performance tuning. International Journal of High Performance Computing

Applications, 18(1):65–94, 2004.

[151] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. OSKI: A library of

automatically tuned sparse matrix kernels. In Proceedings of the Scientific Discovery through

249

Advanced Computing Conference, Journal of Physics: Conference Series, San Francisco, CA,

USA, June 2005.

[152] P. Waldemar and T. Ramstad. Hybrid KLT-SVD image compression. In IEEE International

Conference on Acoustics, Speech, and Signal Processing, page 2713, Washington, DC, USA,

1997.

[153] OpenTuner Website. https://opentuner.org/, 2013.

[154] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimizations of software

and the ATLAS project. Parallel Computing, 27(1-2):3–35, 2001.

[155] Richard Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software.

In ACM/IEEE Conference on Supercomputing, pages 1–27, Washington, DC, USA, 1998.

[156] Richard Clint Whaley and Antoine Petitet. Minimizing development and maintenance costs in

supporting persistently optimized BLAS. Software: Practice and Experience, 35(2):101–121,

February 2005.

[157] Samuel Webb Williams, Andrew Waterman, and David A. Patterson. Roofline: An insightful

visual performance model for floating-point programs and multicore architectures. Technical

Report UCB/EECS-2008-134, EECS Department, University of California, Berkeley, Oct

2008.

[158] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 programs:

characterization and methodological considerations. In proceedings of 22nd Annual

International Symposium on Computer Architecture News, pages 24–36, June 1995.

[159] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. SPL: a language

and compiler for DSP algorithms. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 298–308, New York, NY, USA,

2001.

250

https://opentuner.org/

[160] Yonghong Yan, Max Grossman, and Vivek Sarkar. JCUDA: A programmer-friendly interface

for accelerating Java programs with CUDA. In Henk Sips, Dick Epema, and Hai-Xiang Lin,

editors, Euro-Par 2009 Parallel Processing, volume 5704. Springer Berlin / Heidelberg, 2009.

[161] Qing Yi and Richard Clint Whaley. Automated transformation for performance-critical

kernels. In Proceedings of the ACM SIGPLAN Symposium on Library-Centric Software

Design, Oct. 2007.

[162] Kamen Yotov, Xiaoming Li, Gang Ren, Michael Cibulskis, Gerald DeJong, Maria Garzaran,

David Padua, Keshav Pingali, Paul Stodghill, and Peng Wu. A comparison of empirical

and model-driven optimization. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, pages 63–76, New York, NY, USA, 2003.

[163] DM Young. Iterative solution of large linear systems. Dover Publications, 2003.

[164] Hao Yu, Dongmin Zhang, and Lawrence Rauchwerger. An adaptive algorithm selection

framework. In Proceedings of the International Conference on Parallel Architectures and

Compilation Techniques, pages 278–289, Washington, DC, USA, 2004.

[165] Lotfi A. Zadeh. Fuzzy logic, neural networks, and soft computing. Commun. ACM, 37(3):77–

84, 1994.

[166] Sain zee Ueng, Melvin Lathara, Sara S. Baghsorkhi, and Wen mei W. Hwu. CUDA-Lite:

Reducing GPU programming complexity. In Workshops on Languages and Compilers for

Parallel Computing. Springer, 2008.

[167] Yao Zhang, Jonathan Cohen, and John D. Owens. Fast tridiagonal solvers on the GPU. In

Symposium on Principles and Practice of Parallel Programming, January 2010.

[168] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength pareto

evolutionary algorithm for multiobjective optimization. In K. Giannakoglou, D. Tsahalis,

J. Periaux, K. Papailiou, and T. Fogarty, editors, Evolutionary Methods for Design,

Optimisation and Control. CIMNE, Barcelona, Spain, 2002.

251

	Abstract
	Acknowledgments
	Introduction
	Contributions
	Language
	Process and Compilation
	Autotuning Techniques

	The PetaBricks Language
	Sorting as an Example of Algorithmic Choice
	Iteration Order Choices
	Variable Accuracy
	K-Means Example
	Language Support for Variable Accuracy
	Variable Accuracy Language Features
	Accuracy Guarantees

	Input Features
	A More Complex Example
	The Choice Space for SeparableConvolution

	Language Specification
	Transform Header Flags
	Rule Header Flags
	Matrix Definitions
	Matrix Regions

	The PetaBricks Compiler
	PetaBricks Compiler
	Parallelism in Output Code
	Autotuning System and Choice Framework
	Runtime Library
	Code Generation for Heterogeneous Architectures
	OpenCL Kernel Generation
	Data Movement Analysis
	Runtime System
	Memory Management
	GPU Choice Representation to the Autotuner

	Choice Space Representation
	Choice Configuration Files

	Deadlocks and Race Conditions
	Automated Consistency Checking

	Benchmarks and Experimental Analysis
	Fixed Accuracy Benchmarks
	Symmetric Eigenproblem
	Sort
	Matrix Multiply

	Autotuning Parallel Performance
	Effect of Architecture on Autotuning
	Variable Accuracy Benchmarks
	Bin Packing
	Clustering
	Image Compression
	Preconditioned Iterative Solvers

	Experimental Results
	Analysis
	Programmability

	Heterogeneous Architectures Experimental Results
	Methodology
	Benchmark Results and Analysis
	Heterogeneous Results Summary

	Summary

	Multigrid Benchmarks
	Autotuning Multigrid
	Algorithmic choice in multigrid
	Full dynamic programming solution
	Discrete dynamic programming solution
	Extension to Autotuning Full Multigrid
	Limitations

	Results
	Autotuned multigrid cycle shapes
	Performance
	Effect of Architecture on Autotuning

	The PetaBricks Autotuner
	The Autotuning Problem
	Properties of the Autotuning Problem

	A Bottom Up EA for Autotuning
	Experimental Evaluation
	GPEA
	Experimental Setup
	INCREA vs GPEA
	Representative runs

	Input Sensitivity
	Usage
	Input Aware Learning
	A Simple Design and Its Issues
	Design of the Two Level Learning
	Level 1
	Level 2
	Discussion of the Two Level Learning

	Evaluation
	Input Features and Inputs
	Experimental Results
	Input Generation
	Model of Diminishing Returns with More Landmark Configurations

	Online Autotuning
	Competition Execution Model
	Other Splitting Strategies
	Time Multiplexing Races

	SiblingRivalry Online Learner
	High Level Function
	Online Learner Objectives
	Selecting the Safe and Seed Configuration
	Adaptive Mutator Selection (AMS)
	Population Pruning

	Experimental Results and Discussion
	Sources of Speedups
	Load on a System
	Migrating Between Microarchitectures

	Hyperparameter Tuning
	Tuning the Tuner
	Evaluation metrics
	Results
	Hyperparameter Robustness

	OpenTuner
	The OpenTuner Framework
	OpenTuner Usage
	Search Techniques
	Configuration Manipulator
	Objectives
	Search Driver and Measurement
	Results Database

	Experimental Results
	GCC/G++ Flags
	Halide
	High Performance Linpack
	PetaBricks
	Stencil
	Unitary Matrices
	Results Summary

	Related Work
	Autotuning
	Variable Accuracy
	Multigrid
	Autotuning Techniques
	Online Autotuning
	Autotuning Heterogeneous Architectures

	Conclusions
	Bibliography

