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Abstract

There are domain-specific libraries for many domains, enabling rapid and cost-effective de-
velopment of complex applications. On the other hand, domain-specific languages are rare
despite the performance advantages of compilation. We believe the reason is the multiple
orders-of-magnitude higher cost of building a compiler compared to building a library. We
propose commensal compilation, a new strategy for compiling embedded domain-specific
languages by reusing the massive investment in modern language virtual machine plat-
forms. Commensal compilers use the host language’s front-end, use an autotuner instead
of optimization heuristics, and use host platform APIs that enable back-end optimizations
by the host platform JIT. The cost of implementing a commensal compiler is only the cost
of implementing the domain-specific optimizations. We demonstrate the concept by im-
plementing a commensal compiler for the stream programming language StreamJIT atop
the Java platform. The StreamJIT commensal compiler takes advantage of the structure of
stream programs to find the right amount of parallelism for a given machine and program.
Our compiler achieves 2.4 times better performance than StreamIt’s native code (via GCC)
compiler with considerably less implementation effort.
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Chapter 1

Introduction

Today’s software is built on multiple layers of abstraction which make it possible to rapidly
and cost-effectively build complex applications. These abstractions are generally provided
as domain-specific libraries, such as LAPACK [ABB+99] in the linear algebra domain and
ImageMagick [Ima] in the image processing domain. However, applications using these
performance critical domain libraries lack the compiler optimization support needed for
higher performance, such as judicious parallelization or fusing multiple functions for locality.
On the other hand, domain-specific languages and compilers are able to provide orders of
magnitude more performance by incorporating such optimizations, giving the user both
simple abstractions and high performance. In the image processing domain, for example,
Halide [RKBA+13] programs are both faster than hand-optimized code and smaller and
simpler than naive code.

Despite these benefits, compiled domain-specific languages are extremely rare compared
to library-based implementations. This is mainly due to the enormous cost of developing
a robust and capable compiler along with tools necessary for a practical language, such as
debuggers and support libraries. There are attempts to remedy this by building reusable
DSL frameworks such as Delite [BSL+11], but it will require a huge investment to make
these systems as robust, portable, usable and familiar as C++, Java, Python, etc. Systems

like StreamHs [KN13] generate high-performance binary code with an external compiler,
but incur the awkwardness of calling it through a foreign function interface and cannot reuse
existing code from the host language. Performance-critical domains require the ability to
add domain-specific optimizations to existing libraries without the need to build a full-
fledged optimizing compiler.

In this thesis we introduce a new strategy, commensal compilation, for implementing
embedded domain-specific languages by reusing the existing infrastructure of modern lan-
guage VMs. Commensal1 compilers use the host language’s front-end as their front-end, an
autotuner to replace their middle-end optimization heuristics and machine model, and the
dynamic language and standard JIT optimization support provided by the virtual machine
as their back-end code generator. Only the essential complexity of the domain-specific op-
timizations remains. The result is good performance with dramatically less implementation
effort compared to a compiler targeting virtual machine bytecode or native code. Com-
mensal compilers inherit the portability of their host platform, while the autotuner ensures
performance portability. We prove the concept by implementing a commensal compiler

1In ecology, a commensal relationship between species benefits one species without affecting the other
(e.g., barnacles on a whale).
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for the stream programming language StreamJIT atop the Java platform. Our compiler
achieves performance on average 2.4 times better than StreamIt’s native code (via GCC)
compiler with considerably less implementation effort.

StreamJIT programs are dataflow graphs of workers connected by channels. Workers
perform atomic, data-independent operations on the data items flowing through the stream
graph. Workers specify the number of data items they produce and consume each time they
are invoked (their data rates). The StreamJIT compiler uses the data rates to compute
a schedule of worker executions that leaves buffer sizes unchanged. All communication
between workers occurs via the channels and most workers are stateless, so the StreamJIT
compiler is free to exploit data, task and pipeline parallelism when executing the schedule.

As StreamJIT makes no language extensions, user code written against the StreamJIT
API is compiled with standard javac, and for debugging, StreamJIT can be used as “just a
library”, in which StreamJIT programs run as any other Java application. For performance,
the StreamJIT commensal compiler applies domain-specific optimizations to the stream
program and computes a static schedule for automatic parallelization. Writing portable
heuristics is very difficult because the best combination of optimizations depends on both
the JVM and the underlying hardware; instead, the StreamJIT compiler uses the Open-
Tuner extensible autotuner [AKV+13] to make its optimization decisions. The compiler
then performs a simple pattern-match bytecode rewrite and builds a chain of MethodHan-
dle (the JVM’s function pointers) combinators to be compiled by the JVM JIT. The JVM
has complete visibility through the method handle chain, enabling the full suite of JIT
optimizations. By replacing the traditional compiler structure with this existing infrastruc-
ture, we can implement complex optimizations such as fusion of multiple filters, automatic
data parallelization and distribution to a cluster with only a small amount of compilation,
control and communication code.

Our specific contributions are

• commensal compilation, a novel compilation strategy for embedded domain-specific
languages, that dramatically reduces the effort required to implement a compiled
domain-specific language,

• a commensal compiler for the stream programming language StreamJIT, which demon-
strates the feasibility of commensal compilation by achieving on average 2.4 times
better performance than StreamIt’s native code compiler with an order of magnitude
less code.

Chapter 2 discusses related work. Chapter 3 explains commensal compilers abstractly,
separate from any particular language; chapter 4 provides implementation details specific to
the Java platform. Chapter 5 describes and evaluates the StreamJIT system, and chapter 6
presents alternative approaches and lessons learned during StreamJIT development.
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Chapter 2

Related Work

In this chapter we review related work on compilers for embedded languages, stream pro-
gramming (and particularly the StreamIt language), use of autotuners in compilers, and
relevant aspects of the Java platform.

2.1 Embedded Language Compilers

The Delite DSL compiler framework [BSL+11] uses Lightweight Modular Staging [RO10]
to build a Scala-level intermediate representation (IR), which can be raised to Delite IR
to express common parallel patterns like foreach and reduce. DSLs can provide additional
domain-specific IR nodes to implement, e.g., linear algebra transformations. The Delite run-
time then compiles parts of the IR to Scala, C++ or CUDA and heuristically selects from
these compiled implementations at runtime. Delite represents the next step of investment
beyond commensal compilers; where commensal compilers reuse existing platform infras-
tructure, Delite is a platform unto itself. The Forge meta-DSL [SGB+13] adds abstractions
to shield DSL authors and users from having to understand Delite.

Truffle [WW12], built on top of the Graal extensible JIT compiler [W1̈1], aims to effi-
ciently compile abstract syntax tree interpreters by exploiting their steady-state type infor-
mation. Truffle optimizes languages that have already invested in a separate front-end and
interpreter by adding specialized node implementations, while our method handle strategy
enables the JVM’s existing type profiling and devirtualization. Our compiler is portable to
all Java 7 JVMs, while Truffle is dependent on Graal.

2.2 Stream Programming

Stream programs apply a fixed, regular series of operations to a large set of input data
items, called the stream. Operations are grouped into atomic units called actors or filters,
each of which independently consumes one or more data items from its input and produces
one or more data items from its output. By connecting the input of one filter to the output
of another, complex programs called stream graphs can be created out of small, reusable
components. While a filter might occasionally send an out-of-band control message to
another filter in response to a data item, the majority of filter communication is by passing
items through the data stream in a regular pattern. Some filters require state, but most
operations can be performed by stateless filters, or by filters whose computation refers to
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(peeks at) future inputs. Application domains from suitable for stream programming include
signal processing, media compression, and XML processing.

Stream programming is primarily influenced by Kahn process networks [Kah74], Hoare’s
communicating sequential processes [Hoa78], and synchronous dataflow [LM87]. All three
of these models can be interpreted as graphs whose nodes compute on data items passed
through the channels, differing mostly in what synchronization behavior is implied by the
channels. Nodes in Kahn process networks block when reading from an empty channel, but
can always output. A CSP process blocks on both input and output and no buffering is
provided (processes must rendezvous to transfer data), but processes can wait on multiple
channels simultaneously. Synchronous dataflow nodes statically declare their input and
output rates (items consumed/produced per firing), but can be scheduled to execute without
blocking. Other models related to stream programming include petri nets, computation
graphs, and actors; for a review of streaming in languages, see [Ste97].

2.2.1 StreamIt

StreamJIT is strongly inspired by StreamIt [Thi09], a domain-specific language for stream
programming following the synchronous dataflow (SDF) paradigm. In SDF, filters in the
stream graph declare how many input items they consume per execution (their pop rate)
and how many output items they produce per execution (their push rate). Filters that peek
at future inputs without consuming them also declare a peek rate. Data items are notionally
copied when placed into a channel; thus StreamIt has no pointers. StreamIt stream graphs
are based around filters, vertical containers called pipelines, and horizontal containers called
splitjoins (with special filters called splitters and joiners that have multiple outputs or
inputs respectively). These stream graphs are called structured streams by analogy with
structured programming. Together, the combination of defined rates, lack of aliasing, and
structured streams allows the StreamIt compiler [Gor10] great insight into the program
structure, allowing for analyses that fuse filters together or fiss them apart to arrive at
an optimal amount of parallelism for a particular machine. By buffering a large number
of data items, the StreamIt compiler generates a steady-state schedule (consisting of an
ordering of filter executions) that allows each filter to execute the number of times specified
in the schedule on data not used by other filters, such that synchronization is not required
to ensure mutual exclusion. The StreamIt compiler is heuristically-driven and its heuristics
require modification when it is ported to a new machine. As a statically-compiled language,
StreamIt programs must commit to their structure at compile time; applications needing
parameterized streams must compile many variants and select one at runtime.

Some applications require limited out-of-band communication between filters, often in a
way synchronized with the data stream. For example, a video decoder processing a variable
bit rate video might need to transmit compression parameters upstream from the filter that
recognizes them to the filters doing the decompression. This communication must occur at
a defined time relative to the data stream; if the new parameters arrive too early or too late,
subsequent frames of the video will be garbled and the decoder may desynchronize from
the compressed data stream. StreamIt supports this type of communication with teleport
messaging [TKS+05]. In teleport messaging, filters that wish to receive messages declare a
message handler that will be invoked when the message arrives to modify the filter’s state.
Filters can then send messages through a portal to broadcast to filters registered with that
portal. The semantics are as if outgoing data items produced by the sender are tagged with
the message; receivers execute their message handler when the tagged data item arrives.

12



Messages can also be sent with a specified latency, which logically tags items that many
executions later; negative latencies can be used for communicating with upstream filters.
Unlike shared-memory communication, teleport messaging is fully visible to the compiler
and can be integrated into the schedule.

Some stream applications inherently have dynamic data rates, such as decompressors.
StreamIt supports dynamic rate declarations, which allow a filter to specify a minimum,
maximum and average rate, or a fully unknown rate. The StreamIt compiler compiles static
subgraphs of the stream graph as normal, then dynamically fires them at runtime [SGA+13].

2.2.2 Other Streaming Languages

Many other streaming languages exist, which we will broadly categorize here. Prototyping
environments, typified by Ptolemy [BHLM91], are used to simulate and validate complex
systems; some environments can also generate code from the prototype design, though its
quality varies. Dataflow languages such as Lucid [AW77], Id [KP78], and VAL [AD78]
only allow each variable to be assigned once and without side-effects, effectively reducing
control flow to data dependencies, yielding a very fine-grained stream graph. Functional
languages using lazy evaluation over lists [HMJ76] can be thought of as stream programming
languages in the same way as dataflow languages. Synchronous languages such as Esterel
[BG92] target real-time control and communication applications in which control flow is
driven by real-time events; in these programs, filters transform input events into output
actions of the controlled system. Finally, general-purpose languages with stream support
include Occam [Inm88], based on CSP, and Erlang [Arm07], based on actors. Other general-
purpose languages have been the basis of domain-specific derived or embedded languages
for streaming, a few of which we will examine further.

KernelC and StreamC are C-derived languages designed for the Imagine media processor
architecture [Mat02]. Stream programs for Imagine are written using StreamC to connect
kernels written in KernelC. KernelC is a restricted subset of C, without global variables,
pointers, function calls, or conditional control flow, but with added operations for stream
programming, such as a loop-over-stream construct, conditional assignments, and condi-
tional reads and writes. StreamC is a C++ extension, with built-in classes representing
streams and built-in functions for creating, draining and copying between streams. Kernels
are represented as functions taking input and output streams as arguments. In the Imagine
system, the KernelC compiler is responsible for allocating functional units and instruction-
level scheduling, while the StreamC compiler is responsible for scheduling data movement
through the on-chip memory to keep the kernels fed.

Brook is a C-derived stream programming language intended to maximize the ratio
of computation to memory bandwidth. Originally designed for the Merrimac stream su-
percomputer [DLD+03], Brook was retargeted to provide abstractions for portable GPU
programming without compromising performance [BFH+04]. Allowing most operations of
C, including pointers, Brook is highly programmable, but this flexibility complicates com-
piler analysis, and performance gains beyond those driven by new GPUs are limited.

PeakStream [Pap07] and Accelerator [TPO06] are C++ and C# libraries, respectively,
for just-in-time compilation of data-parallel array operations to GPU code. Like Brook,
these libraries focus on GPU abstraction while retaining most of the semantics of tradi-
tional languages. Neither library provides a stream abstraction; the programmer manually
marshals data into and out of data-parallel array objects. Accelerator performs limited op-
timizations on expression trees during the just-in-time compilation, obtaining performance
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competitive with hand-coded pixel shaders performing the same operations.

The Feldspar DSL for signal processing [ACD+10] embeds a low-level C-like language

in Haskell, generating parallelized C code for a C compiler; StreamHs [KN13] embeds
StreamIt in Haskell to add metaprogramming capabilities StreamIt lacks, then invokes the
usual StreamIt compiler. Commensal compilers use their host language directly, so users
write programs in a familiar language and the compiled programs (not just the language)
can be embedded without using a foreign function interface.

Lime [ABCR10] is a major Java extension aiming to exploit both conventional homoge-
neous multicores and heterogeneous architectures including reconfigurable elements such as
FPGAs. Similar to Delite, the Lime compiler generates Java code for the entire program,
plus OpenCL code for GPUs and Verilog for FPGAs for subsets of the language, then the
Liquid Metal runtime [ABB+12] selects which compiled code to use.

StreamFlex [SPGV07] is a Java runtime framework for real-time event processing using
a stream programming paradigm; while it uses Java syntax, it requires a specially-modified
JVM to provide latency bounds.

Flextream [HCK+09] implements a hybrid static-dynamic parallelizing compiler for
StreamIt targeting the Cell architecture, based on the Multicore Streaming Layer runtime
[ZLRA08]. Flextream statically compiles optimistically for a large resource budget, then
uses heuristics to dynamically rebalance the schedule to the resources available. Flextream
cannot scale up a schedule if more resources are available at runtime than assumed during
static compilation, and it uses heuristics tuned for the Cell processor.

Other streaming languages have dropped static data rates in favor of dynamic fork-
join parallelism, becoming more expressive at the cost of performance. XJava [OPT09a,
OPT09b, OSDT10] is a Java extension also closely inspired by StreamIt. Its runtime ex-
poses a small number of tuning parameters; [OSDT10] gives heuristics performing close
to exhaustive search. Java 8 introduces java.util.stream [Thea], a fluent API for bulk
operations on collections similar to .NET’s LINQ [MBB06]. Without data rates, fusion and
static scheduling are impossible, so these libraries cannot be efficiently compiled.

Dryad [IBY+07] is a low-level distributed execution engine supporting arbitrary rateless
stream graphs. DryadLINQ [YIF+08] heuristically maps LINQ expressions to a stream
graph for a Dryad cluster. Spark [ZCF+10] exposes an interface similar to DryadLINQ’s,
but focuses on resiliently maintaining a working set. Besides lacking data rates, these
systems are more concerned with data movement than StreamJIT’s distributed runtime,
which distributes computation.

2.3 Autotuning

ATLAS [WD98] uses autotuning to generate optimized linear algebra kernels. SPIRAL
[XJJP01] autotunes over matrix expressions to generate FFTs; FFTW [FJ98] also tunes
FFTs. Hall et al [TCC+09] use autotuning to find the best order to apply loop opti-
mizations. PetaBricks [ACW+09] uses autotuning to find the best-performing combination
of multiple algorithm implementations for a particular machine (e.g, trading off between
mergesort, quicksort and insertion sort). These systems use autotuning to generate op-
timized implementations of small, constrained kernels, whereas StreamJIT tunes larger
programs.

SiblingRivalry [APW+12] is an online autotuning system that maintains quality-of-
service while autotuning by running a known safe configuration in parallel with an ex-
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perimental configuration, taking the result of whichever completes first. While this requires
dividing the available resources in half, it permits learning while preventing the application
from getting stuck in pathological configurations. Despite the resource division, the au-
thors report performance better than a statically computed known-safe configuration using
the whole machine, especially when adapting to changing loads caused by other programs.
StreamJIT’s online autotuning could adopt this system.

Wang et al [WO08] apply machine learning to train a performance predictor for filter
fusion and fission in StreamIt graphs, then search the space of partitions for the best
predicted value, effectively learning a heuristic. StreamJIT uses an autotuner to search the
space directly to ensure performance portability.

2.4 The Java Platform

The Java platform consists of the Java Virtual Machine (JVM) [LYBB14] and the Java
standard libraries. The JVM executes programs specified by platform-independent Java
bytecode, whether compiled from the Java programming language or other source languages,
or generated at runtime. Java bytecode uses symbolic representations that closely mirror
the Java programming language; for example, object fields are accessed by their name and
type, not by an offset into the storage allocated for the object. This allows the Java standard
libraries to provide rich reflective information, which commensal compilers can use.

Java 7 introduced MethodHandles along with the invokedynamic instruction [Ros09]
to support efficient implementation of dynamic languages. Direct method handles act as
function pointers that can point to any method, constructor, or field accessible to the
code creating the handle. Adaptor method handles transform the arguments or return
values of an existing method handle; for example, an adapter method handle could bind an
argument to implement partial function application. Major JVM JIT compilers implement
optimizations for code using method handles ([TR10] describes the OpenJDK JIT compiler
changes; [Hei11] describes J9’s).

JRuby [Nut11] and Jython [Bha11], among other languages, use method handles for their
original purpose. Garcia [Gar12] proposed using method handles encapsulating individual
statements to implement primitive specializations for Scala. JooFlux [PM12] uses method
handles for live code modification during development and aspect-oriented programming.
To our knowledge, we are the first to use method handles for DSL code generation.

JVMs employ sophisticated adaptive optimizing compilers to improve performance com-
pared to bytecode interpretation. Many JVMs begin by interpreting methods, gathering
both high-level (method frequency) and low-level (type profiles of receiver objects at indi-
vidual virtual call instructions) profiling information. Methods executed frequently (“hot”
methods) are compiled to native code, using the low-level profiling information to aid code
generation. For example, type profiles of receiver objects can be used to implement inline
caches for faster dynamic dispatch. Because code generation is deferred to run time, the
JVM can also perform speculative optimizations such as devirtualization, deoptimizing if
the assumptions required to make the optimization safe are invalidated (in the case of de-
virtualization, when dynamic class loading loads another class in the inheritance hierarchy).
For an overview of adaptive optimizations performed by virtual machines, see [AFG+05].
The optimizations implemented by individual JVMs varies widely; see their documentation
or developer resources (e.g., OpenJDK’s HotSpot compiler [HS]).

Domain-specific languages may want to check semantic properties not enforced by a
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general-purpose compiler such as javac. Java 8 introduced type annotations [Theb], which
can be used to check custom properties at compile time via an annotation processor. The
Checker Framework [DDE+11] uses type annotations to extend Java’s type system, notably
to reason about uses of null. A commensal compiler can also perform checks as part of its
compilation; for example, StreamJIT enforces that pipelines and splitjoins do not contain
themselves during compilation.
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Chapter 3

Commensal Compiler Design

Commensal compilers are defined by their reuse of existing infrastructure to reduce the cost
of implementing an optimizing compiler. In this chapter we explain the design of commensal
compiler front-, middle- and back-ends.

Front-end Commensal compilers compile embedded domain-specific languages expressed
as libraries (not language extensions) in a host language that compiles to bytecode for
a host platform virtual machine. To write a DSL program, users write host language
code extending library classes, passing lambda functions, or otherwise using standard host
language abstraction features. This includes code to compose these new classes into a
program, allowing the DSL program to be generated at runtime in response to user input.
This host language code is compiled with the usual host language compiler along with
the rest of the application embedding the DSL program. Implementing a DSL using a
library instead of with a traditional front-end reduces implementation costs, allows users to
write code in a familiar language, reuse existing code from within the DSL program, easily
integrate into the host application build process, and use existing IDEs and analysis tools
without adding special language support.

At run time, the compiled code can be executed directly, as “just a library”, analogous
to a traditional language interpreter. In this interpreted mode, users can set breakpoints
and inspect variables with standard graphical debuggers. By operating as a normal host
language application, the DSL does not require debugging support code.

Middle-end For increased performance, a commensal compiler can reflect over the com-
piled code, apply domain-specific optimizations, and generate optimized code. A commensal
compiler leaves standard compiler optimizations such as constant subexpression elimination
or loop unrolling to the host platform, so its intermediate representation can be at the do-
main level, tailored to the domain-specific optimizations.

In a few domains, using simple algorithms or heuristics to guide the domain-specific op-
timizations results in good (or good enough) performance, but most domains require a nu-
anced understanding of the interaction between the program and the underlying hardware.
In place of complex heuristics and machine performance models, commensal compilers can
delegate optimization decisions to an autotuner, simultaneously reducing implementation
costs and ensuring performance portability.

17



Back-end Many platforms provide APIs for introspectable expressions or dynamic lan-
guage support that can be reused for code generation in place of compiling back to byte-
code. Code generators using these APIs can compose normal host language code instead of
working at the bytecode level, keeping the code generator modular enough to easily swap
implementation details at the autotuner’s direction. Finally, code generated through these
APIs can include constant references to objects and other runtime entities, allowing the
host platform’s JIT compiler to generate better code than if the DSL compiled to bytecode.

The compiled DSL code runs on the host platform as any other code, running in the
same address space with the same data types, threading primitives and other platform
features, so interaction with the host application is simple; a foreign function interface is
not required. Existing profilers and monitoring tools continue to report an accurate picture
of the entire application, including the DSL program.

Result The result of these design principles is an efficient compiler without the traditional
compiler costs: the front-end is the host front-end, the middle-end eliminates all but domain-
specific optimizations using an autotuner, and the back-end leaves optimizations to the host
platform. Only the essential costs of the domain-specific optimizations remains.

In this thesis we present a commensal compiler for the stream programming language
StreamJIT. The host language is Java, the host platform is the Java Virtual Machine, and
code generation is via the MethodHandle APIs originally for dynamic language support,
with a small amount of bytecode rewriting. But commensal compilers are not specific
to Java. The .NET platform’s System.Reflection.Emit [NETa] allows similar bytecode
rewriting and the Expression Trees [NETb] feature can replace method handles.
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Chapter 4

Commensal Compilers in Java

This chapter presents techniques for implementing commensal compilers targeting the Java
platform. While this chapter uses examples from StreamJIT, the focus is on the com-
piler’s platform-level operations; the StreamJIT language is described in section 5.1 and
the StreamJIT compiler’s domain-specific optimizations are explained in section 5.5. As
StreamJIT is implemented in Java, this chapter assumes the host language is the Java
programming language.

4.1 Front-end

Commensal compilers use their host language’s front-end for lexing and parsing, implement-
ing their domain-specific abstractions using the host language’s abstraction features. In the
case of Java, the embedded domain-specific language (EDSL) is expressed using classes,
which the user can extend and instantiate to compose an EDSL program.

The basic elements of a StreamJIT program are instances of the abstract classes Filter,
Splitter or Joiner. User subclasses pass rate information to the superclass constructor
and implement the work method using peek, pop and push to read and write data items
flowing through the stream. (Filter’s interface for subclasses is shown in figure 4-1; see
figure 5-3 for an example implementation.)

User subclasses are normal Java classes and the work method body is normal Java code,
which is compiled to bytecode by javac as usual. By reusing Java’s front-end, StreamJIT
does not need a lexer or parser, and can use complex semantic analysis features like generics
with no effort.

Filter contains implementations of peek, pop and push, along with some private helper
methods, allowing work methods to be executed directly by the JVM without using the
commensal compiler. By using the javac-compiled bytecodes directly, users can debug
their filters with standard graphical debuggers such as those in the Eclipse and NetBeans
IDEs. In this “interpreted mode”, the EDSL is simply a library. (Do not confuse the EDSL
interpreted mode with the JVM interpreter. The JVM JIT compiler can compile EDSL
interpreted mode bytecode like any other code running in the JVM.)

StreamJIT provides common filter, splitter and joiner subclasses as part of the library.
These built-in subclasses are implemented the same way as user subclasses, but because they
are known to the commensal compiler, they can be intrinsified. For example, StreamJIT’s
built-in splitters and joiners can be replaced using index transformations (see section 5.5.3).

Users then compose filters, splitters and joiners using the Pipeline and Splitjoin con-
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public abstract class Filter<I, O> extends Worker<I, O>

implements OneToOneElement<I, O> {

public Filter(int popRate, int pushRate);

public Filter(int popRate, int pushRate, int peekRate);

public Filter(Rate popRate, Rate pushRate, Rate peekRate);

public abstract void work();

protected final I peek(int position);

protected final I pop();

protected final void push(O item);

}

Figure 4-1: Filter’s interface for subclasses. Subclasses pass rate information to one of
Filter’s constructors and implement work using peek, pop and push to read and write
data items flowing through the stream. See figure 5-3 for an example implementation.

tainer classes to produce a stream graph. This stream graph is the input to the interpreter
or commensal compiler.

4.2 Middle-end

A commensal compiler’s middle-end performs domain-specific optimizations, either using
heuristics or delegating decisions to an autotuner. Commensal compilers use high-level
intermediate representations (IR) tailored to their domain. In Java, input programs are
object graphs, so the IR is typically a tree or graph in which each node decorates or
mirrors a node of the input program. Basic expression-level optimizations such as common
subexpression elimination are left to the host platform’s JIT compiler, so the IR need not
model Java expressions or statements. (The back-end may need to understand bytecode;
see section 4.3).

The input program can be used directly as the IR, using package-private fields and
methods in the library superclasses to support compiler optimizations. Otherwise, the IR is
built by traversing the input program, calling methods implemented by the user subclasses
or invoking reflective APIs to obtain type information or read annotations. In particular,
reflective APIs provide information about type variables in generic classes, which serve as
a basis for type inference through the DSL program to enable unboxing.

The StreamJIT compiler uses the unstructured stream graph as its intermediate repre-
sentation, built from the input stream graph using the visitor pattern. In addition to the
filter, splitter or joiner instance, the IR contains input and output type information recov-
ered from Java’s reflection APIs. Type inference is performed when exact types have been
lost to Java’s type erasure (see section 5.5.4). Other IR attributes support StreamJIT’s
domain-specific optimizations; these include the schedule (section 5.5.2) and index func-
tions used for built-in splitter and joiner removal (section 5.5.3). The high-level IR does
not model lower-level details such as the expressions or control flow inside work methods,
as StreamJIT leaves optimizations at that level to the JVM JIT compiler.

StreamJIT provides high performance by using the right combination of data, task and
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pipeline parallelism for a particular machine and program. Finding the right combination
heuristically requires a detailed model of each machine the program will run on; Java
applications additionally need to understand the underlying JVM JIT and garbage collector.
As StreamJIT programs run wherever Java runs, the heuristic approach would require
immense effort to develop and maintain many machine models. Instead, the StreamJIT
compiler delegates its optimization decisions to the OpenTuner extensible autotuner as
described in section 5.6.

Autotuner use is not essential to commensal compilers. Commensal compilers for lan-
guages with simpler optimization spaces or that do not require maximum performance might
prefer the determinism of heuristics over an autotuner’s stochastic search.

4.3 Back-end

The back-end of a commensal compiler generates code for further compilation and optimiza-
tion by the host platform. A commensal compiler targeting the Java platform can either
emit Java bytecode (possibly an edited version of the user subclasses’ bytecode) or generate
a chain of java.lang.invoke.MethodHandle objects which can be invoked like function
pointers in other languages.

The Java Virtual Machine has a stack machine architecture in which bytecodes push
operands onto the operand stack, then other bytecodes perform some operation on the
operands on top of the stack, pushing the result back on the stack. Each stack frame
also contains local variable slots with associated bytecodes to load or store slots from the
top of the stack. Taking most operands from the stack keeps Java bytecode compact. In
addition to method bodies, the Java bytecode format also includes symbolic information
about classes, such as the class they extend, interfaces they implement, and fields they
contain. Commensal compilers can emit bytecode from scratch through libraries such as
ASM [ASM] or read the bytecode of existing classes and emit a modified version. Either
way, the new bytecode is passed to a ClassLoader to be loaded into the JVM.

Method handles, introduced in Java 7, act like typed function pointers for the JVM.
Reflective APIs can be used to look up a method handle pointing to an existing method,
then later invoked through the method handle. Method handles can be partially applied
as in functional languages to produce a bound method handle that takes fewer arguments.
Method handles are objects and can be used as arguments like any other object, allowing for
method handle combinators (see the loop combinator in figure 4-2). These combinators can
be applied repeatedly to build a chain of method handles encapsulating arbitrary behavior.
The bound arguments are constants to the JVM JIT compiler, so if a method handle chain
is rooted at a constant (such as a static final variable), the JVM JIT can fully inline
through all the method handles, effectively turning method handles into a code generation
mechanism.

StreamJIT uses bytecode rewriting to enable use of method handles for code generation.
The StreamJIT compiler copies the bytecode of each filter, splitter or joiner class that
appears in the stream graph, generating a new work method with calls to peek, push and pop

replaced by invocations of new method handle arguments. To support data-parallelization,
initial read and write indices are passed as additional arguments and used in the method
handle invocations. (See section 5.5.5 for details and figure 5-10 for an example result.)

For each instance in the stream graph, a method handle is created pointing to the new
work method. The method handle arguments introduced by the bytecode rewriting are
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private static void loop(MethodHandle loopBody,

int begin, int end, int increment) throws Throwable {

for (int i = begin; i < end; i += increment)

loopBody.invokeExact(i);

}

Figure 4-2: This loop combinator invokes the loopBody argument, a method handle taking
one int argument, with every increment-th number from begin to end. StreamJIT uses
similar loop combinators with multiple indices to implement a schedule of filter executions
(see section 5.5.2).

bound to method handles that read and write storage objects (see section 5.5.6). The
resulting handle (taking initial read and write indices) is bound into loop combinators
similar to the one in figure 4-2 to implement the schedule, producing one method handle
chain per thread. To make the root method handles of these chains compile-time constants
for the JVM JIT, the StreamJIT compiler emits bytecode that stores them in static final

fields and immediately calls them.
Because the root method handles are JIT-compile-time constants, the methods they

point to will not change, so the JVM JIT can inline the target methods. The bound
arguments are also constants, so all the method handles will inline all the way through
the chain, loops with constant bounds can be unrolled, and the addresses of the storage
arrays can be baked directly into the generated native code. Using method handles for code
generation is easier than emitting bytecode, yet produces faster machine code.
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Chapter 5

StreamJIT

In this chapter we present StreamJIT, a Java-embedded stream programming language with
a commensal compiler. We first describe the StreamJIT API and user workflow. We then
present the StreamJIT commensal compiler in detail, followed by how the compiler presents
problems to the autotuner. Next we describe the distributed back-end. Finally, we evaluate
the implementation effort and performance of StreamJIT by comparison with StreamIt.

5.1 StreamJIT API

5.1.1 Overview

Stream programs apply a fixed series of operations to a stream of data items. Consider
figure 5-1, which presents a block diagram of an FM radio receiver with an equalizer.
Starting with samples from an antenna, this receiver filters out high-frequency noise, then
demodulates the signal to recover audio samples. These samples are duplicated into each
band of the equalizer, which uses a band-pass filter (built out of two low-pass filters and a
subtractor) to select just that band. Each band’s amplification factors are applied and the
results are summed to produce the final output to a speaker.

The corresponding StreamJIT program directly mirrors the block diagram’s structure.
Each operation is specified by a worker class whose work method reads data items from its
input and writes them to its output. Filters are single-input, single-output workers, while
splitters and joiners have multiple outputs and inputs respectively. StreamJIT programs
are stream graphs built using pipelines and splitjoins, which compose workers vertically or
horizontally, respectively (see figure 5-2). The FM radio has four nesting levels of compo-
sition: the top-level pipeline contains a splitjoin for each equalizer band, which in turn is a
pipeline containing a splitjoin forming a band-pass filter. This stream graph is the input to
the StreamJIT commensal compiler.

Data rates To enable automatic parallelization, workers are required to declare data
rates. Workers declare peek rates stating how many items they examine on each input,
pop rates stating how many of those items they consume, and push rates stating how many
items they produce on each input for each execution of their work method. A worker’s work
method can be invoked any time enough input is available to satisfy its input requirements
(peek and pop rates), and multiple executions of stateless workers can proceed in parallel.
All communication between workers occurs by the flow of data items through the channels in
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Figure 5-1: Block diagram of an FM radio receiver with an equalizer. The boxed components
are replicated six times, one for each equalizer band. DuplicateSplitters replicate their
input to each of their outputs; RoundrobinJoiner interleaves its inputs to its output. The
StreamJIT program implementing this FM radio receiver mirrors this structure.
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(a) Pipelines compose one-to-one elements (fil-
ters, pipelines or splitjoins) by connecting each el-
ement’s output to the input of the next element.

S
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(b) Splitjoins compose a splitter, a joiner, and one
or more one-to-one elements (filters, pipelines or
splitjoins) by connecting the splitter’s outputs to
the inputs of the branches and the outputs of the
branches to the joiner’s input.

Figure 5-2: StreamJIT composition structures.

the graph, exposed to the StreamJIT commensal compiler, so the compiler can use the data
rates to compute a parallel schedule of filter executions tailored for a particular program
and machine.

Structured streams To promote composition and reuse, StreamJIT enforces the use of
pipelines and splitjoins, preventing the creation of arbitrary graph structures, an approach
we term structured streams by analogy to structured programming. Filters, pipelines and
splitjoins are collectively called one-to-one elements or simply elements because they all
have one input and one output. Pipeline bodies and splitjoin branches can contain arbi-
trary one-to-one elements, including other pipelines and splitjoins, allowing for convenient
recursive composition. Structured streams also promote reuse by enforcing a standard num-
ber of inputs and outputs, allowing existing components to be easily plugged in to a new
program. Structured streams are occasionally limiting, but their benefits outweigh their
costs. (See section 6.1 for further discussion.)

The next subsections describe writing worker classes and composing stream graphs,
using the FM radio as an example.

5.1.2 Implementing Workers

Users write workers by subclassing Filter, StatefulFilter, Splitter, or Joiner. The
worker’s computation is specified by the work method, operating on data items read from
input with the peek and pop methods and writing items to the output with push. Filters
pass their data rates to the superclass constructor; splitters and joiners have more output
or input rates respectively, and implement rate-getters instead.

Filters are workers with a single input and a single output. Despite their name, filters are
not restricted to filtering their input; the name is derived from signal processing. Figure 5-3
shows the code for LowPassFilter from the FM radio example. This filter uses the peek-
push-pop pattern: it computes its output by peeking at its input, pushes that output, then
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class LowPassFilter extends Filter<Float, Float> {

private final float rate, cutoff;

private final int taps, decimation;

private final float[] coeff;

LowPassFilter(float rate, float cutoff, int taps, int decimation) {

//pop, push and peek rates

super(1 + decimation, 1, taps);

/* ...initialize fields... */

}

public void work() {

float sum = 0;

for (int i = 0; i < taps; i++)

sum += peek(i) * coeff[i];

push(sum);

for (int i = 0; i < decimation; i++)

pop();

pop();

}

}

Figure 5-3: LowPassFilter from the FMRadio benchmark. Peeks (nonconsuming read) at
its input, pushes its output, and pops (consuming read) the input it is finished with. Peeks,
pops and pushes can be freely intermixed, but the peek-push-pop style is common in our
benchmarks.

pops some of the input it read. Peeks, pops and pushes can be freely intermixed (as long
as the total number of each conforms to the declared data rates), but this style is common
in our benchmark suite.

Splitters and joiners are written similarly, except their push or pop method (respec-
tively) takes an additional parameter to select the output or input. Figure 5-4 shows
the code for RoundrobinJoiner from the FM radio example. RoundrobinJoiner copies
itemsPerInput from each input to its output in order, effectively interleaving the in-
puts. The supportedInputs method specifies how many inputs the joiner supports (in this
case, an unlimited number), and the rate getters return the joiner’s data rates. Because
it is commonly used and presents special optimization opportunities (see section 5.5.3),
RoundrobinJoiner is part of the StreamJIT API, but its code is the same as if it had been
written by a user.

Restrictions on work methods Work methods may contain nearly arbitrary Java code
(including library calls), with the following restrictions to permit automatic parallelization:

• Workers with state must extend StatefulFilter to avoid being data-parallelized.
(StreamJIT currently does not support stateful splitters or joiners, though they could
be trivially added by creating StatefulSplitter and StatefulJoiner classes.)

• Stateless workers must be reentrant to permit data parallelization. If a physically
stateful but logically stateless (parallelizable) worker, such as a pseudorandom number
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public final class RoundrobinJoiner<T> extends Joiner<T, T> {

private final int itemsPerInput;

public RoundrobinJoiner() {

this(1);

}

public RoundrobinJoiner(int itemsPerInput) {

this.itemsPerInput = itemsPerInput;

}

@Override

public void work() {

for (int i = 0; i < inputs(); ++i)

for (int j = 0; j < itemsPerInput; ++j)

push(pop(i));

}

@Override

public int supportedInputs() {

return Joiner.UNLIMITED;

}

@Override

public List<Rate> getPeekRates() {

return Collections.nCopies(inputs(), Rate.create(0));

}

@Override

public List<Rate> getPopRates() {

return Collections.nCopies(inputs(), Rate.create(itemsPerInput));

}

@Override

public List<Rate> getPushRates() {

return Arrays.asList(Rate.create(itemsPerInput * inputs()));

}

}

Figure 5-4: RoundrobinJoiner, a built-in joiner provided by the StreamJIT API and used
in many programs, including the FMRadio benchmark. In joiners, pop takes an argument
to specify which input to pop from.
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new Pipeline<>(

new Splitjoin<>(

new DuplicateSplitter<Float>(),

new RoundrobinJoiner<Float>(),

new LowPassFilter(rate, low, taps, 0),

new LowPassFilter(rate, high, taps, 0)

),

new Subtractor()

);

Figure 5-5: BandPassFilter from the FMRadio benchmark, instantiating Pipeline and
Splitjoin directly.

generator, needs to synchronize to protect state, it must do so reentrantly to avoid
deadlocking if the StreamJIT compiler schedules multiple executions of the worker in
parallel.

• To avoid data races with other workers, workers may modify data items only after
popping them, and all workers must not modify data items after pushing them to an
output. Data items that will be modified by a downstream worker may not even be
read after being pushed.

StreamJIT does not attempt to verify these properties. While simple workers can be
easily verified, workers that call into libraries would require sophisticated analysis, which
we leave for future work.

5.1.3 Composing Graphs Using Pipelines and Splitjoins

The StreamJIT API classes Pipeline and Splitjoin are used to compose stream graphs,
either instantiated directly or subclassed. When used directly, workers or one-to-one ele-
ments are provided to the container’s constructor. Direct instantiation is convenient for
elements only used once in the stream graph, while subclassing allows reuse at multiple
points in the stream graph. Figure 5-5 gives the code to create the band-pass filter used in
the FM radio using Pipeline and Splitjoin directly; compare the BandPassFilter class
given in figure 5-6.

A splitjoin’s branches must have the same effective data rate (outputs pushed by the
last worker in the branch per input popped by the first worker). If the branch rates are
unbalanced, either one or more branches will halt for lack of input or input buffers on
other branches will grow without bound. In either case, the graph cannot be compiled.
For debugging, StreamJIT provides a CheckVisitor class that can identify the offending
splitjoin.

5.1.4 Compiling Stream Graphs

The constructed stream graph along with input and output sources (e.g., input from an
Iterable or file, output to a Collection or file) is passed to a StreamCompiler for execu-
tion. The graph will execute until the input is exhausted (when all workers’ input rates can-
not be satisfied), which the application can poll or wait for using the CompiledStream object
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class BandPassFilter extends Pipeline<Float, Float> {

BandPassFilter(float rate, float low, float high, int taps) {

super(new Splitjoin<>(

new DuplicateSplitter<Float>(),

new RoundrobinJoiner<Float>(),

new LowPassFilter(rate, low, taps, 0),

new LowPassFilter(rate, high, taps, 0)),

new Subtractor());

}

}

Figure 5-6: BandPassFilter from the FMRadio benchmark, extending Pipeline to create
a reusable component. This pipeline is instantiated once for each equalizer band.

Input<Float> input = Input.fromBinaryFile(Paths.get("fmradio.in"),

Float.class, ByteOrder.LITTLE_ENDIAN);

Output<Float> output = Output.toBinaryFile(Paths.get("fmradio.out"),

Float.class, ByteOrder.LITTLE_ENDIAN);

StreamCompiler compiler = new Compiler2StreamCompiler(24);

OneToOneElement<Float, Float> graph = new FMRadioCore();

CompiledStream stream = compiler.compile(graph, input, output);

stream.awaitDrained();

Figure 5-7: Compiling the FMRadio benchmark for 24 cores.

returned by the StreamCompiler. The user can switch between the StreamJIT interpreter,
commensal compiler and distributed back-end just by using a differentStreamCompiler im-
plementation; no changes to the stream graph are required. Figure 5-7 shows how to compile
the FM radio example, whose top-level element is a FMRadioCore instance.

5.2 StreamJIT Compared to StreamIt

The StreamJIT language is strongly inspired by StreamIt (see section 2.2.1), making similar
use of data rates to enable parallelism and structured streams for composition and reuse.
The most obvious difference is that StreamJIT is embedded in Java whereas StreamIt is a
separate language. The embedding allows the non-streaming parts of an application to be
written in Java rather than shoehorned into StreamJIT. In StreamIt, MPEG-2 bitstream
parsing is parallelizable but can only implemented with a filter that only executes once for
the entire program (hence why the MPEG2 benchmark starts from a parsed bitstream);
a StreamJIT application could perform the parallel parse outside the stream. StreamJIT
programs can also transparently call existing Java libraries, where StreamIt did not provide
even a foreign function interface.

The embedding also allows stream graph construction at run time in response to user
input. For example, a video decoder can be instantiated for the video’s size and chroma
format. In StreamIt, a separate stream graph must be statically compiled for each set
of parameters, then the correct graph loaded at run time, leading to code bloat and long
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compile times when code changes are made (as each graph is recompiled separately).

At the language level, StreamJIT supports user-defined splitters and joiners where
StreamIt provides only built-in roundrobin and duplicate splitters and roundrobin joiners.
StreamJIT currently does not implement teleport messaging; it would be easy to implement
in the interpreter but challenging in the compiler and distributed back-end.

5.3 StreamJIT Workflow

We now break down the StreamJIT workflow to describe what occurs at development time
(when the user is writing their code), at compile time, and at run time.

Development time At development time, users implement worker subclasses and write
code to assemble and compile stream graphs.

Compile time StreamJIT does not make any language extensions, so user code (both
workers and graph construction code) is compiled with a standard Java compiler such as
javac, producing standard Java class files that run on unmodified JVMs. Thus integrating
StreamJIT into an application’s build process merely requires referencing the StreamJIT
JAR file, without requiring the use of a separate preprocessor or compiler.

Run time At run time, user code constructs the stream graph (possibly parameterized
by user input) and passes it to a StreamCompiler. During execution, here are two levels
of interpretation or compilation. The StreamJIT level operates with the workers in the
stream graph, while the JVM level operates on all code running in the JVM (StreamJIT
or otherwise). (See figure 5-8.) The two levels are independent: even when StreamJIT
is interpreting a graph, the JVM is switching between interpreting bytecode and running
just-in-time-compiled machine code as usual for any Java application. The user’s choice of
StreamCompiler determines whether StreamJIT interprets or compiles the graph.

The StreamJIT runtime can partition StreamJIT programs to run in multiple JVMs
(usually on different physical machines). The partitions are then interpreted or compiled in
the same way as the single-JVM case, with data being sent via sockets between partitions.
The partitioning is decided by the autotuner, as described in section 5.7.

5.4 StreamJIT Interpreted Mode

In interpreted mode, the StreamJIT runtime runs a fine-grained pull schedule (defined in
[Thi09] as executing upstream workers the minimal number of times required to execute
the last worker) on a single thread using the code as compiled by javac, hooking up peek,
pop and push behind the scenes to operate on queues. Because interpreted mode uses the
original bytecode, users can set breakpoints and inspect variables in StreamJIT programs
with their IDE’s graphical debugger.

5.5 The StreamJIT Commensal Compiler

In compiled mode, the StreamJIT commensal compiler takes the input stream graph, applies
domain-specific optimizations, then (using worker rate declarations) computes a parallelized
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Figure 5-8: StreamJIT workflow. At compile time, user worker classes and graph construc-
tion code are compiled by javac just like the surrounding application code. At runtime, the
StreamJIT interpreter runs javac’s output as is, while the compiler optimizes and builds
a method handle chain. Either way, the executed code can be compiled by the JVM JIT
like any other code. The compiler can optionally report performance to the autotuner and
recompile in a new configuration (see section 5.6).

schedule of worker executions. To implement this schedule, the compiler emits new bytecode
from the javac bytecode by replacing peek, pop and push with invocations of method
handles that read and write backing storage, reflects these new work methods as method
handles, and composes them with storage implementations and loop combinators. The
StreamJIT runtime then repeatedly calls these method handles until the schedule’s input
requirements cannot be met, after which execution is transferred to the interpreter to process
any remaining input and drain buffered data.

The JVM JIT sees all values bound into the method handle chains as compile time
constants, allowing the JVM to emit specialized code for each core. Constant loop vari-
ables and array lengths enable unrolling, constant object references enable devirtualization
without type guards, and the JVM is able to inline as far down as it deems profitable,
enabling better JVM optimizations than if the loops were implemented with bytecode. At
the same time, building the method handle chain is much easier than emitting bytecode.
The loop combinators are simply static methods containing loops, storage implementations
are classes implementing the storage interface, and the chain-building code is normal Java
code calling the method handle APIs. (See section 4.3 for background information on how
bytecode and method handles are uesd in Java-based commensal compilers.)

This section describes the compiler flow in temporal order. Sections 5.5.5 and 5.5.8
describe code generation; the other sections explain StreamJIT’s domain-specific optimiza-
tions. In this section we note which decisions are made by the autotuner, but defer discussion
of the search space parameterization until section 5.6.

5.5.1 Fusion

The compiler first converts the input stream graph made of pipelines and splitjoins into
an unstructured stream graph containing only the workers. The compiler then fuses work-
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ers into groups. Groups have no internal buffering, while enough data items are buffered
on inter-group edges to break the data dependencies between groups (software pipelining
[RG81]). This enables independent data-parallelization of each group without synchroniza-
tion. Each worker initially begins in its own group. As directed by the autotuner, each
group may be fused upward, provided it does not peek and all of its predecessor workers
are in the same group. Peeking workers are never fused upward as they would introduce
buffering within the group. Stateful filters (whose state is held in fields, not as buffered
items) may be fused, but their statefulness infects the entire group, preventing it from being
data-parallelized.

5.5.2 Scheduling

To execute with minimal synchronization, the compiler computes a steady-state schedule of
filter executions which leaves the buffer sizes unchanged [Kar02]. Combined with software
pipelining between groups, synchronization is only required at the end of each steady-state
schedule. The buffers are filled by executing an initialization schedule. When the input is
exhausted, the stream graph is drained by migrating buffered data and worker state to the
interpreter, which runs for as long as it has input. Draining does not use a schedule, but
migration to the interpreter uses liveness information tracking the data items that are live
in each buffer.

The compiler finds schedules by formulating integer linear programs. The variables are
execution counts (of workers or groups); the constraints control the buffer delta using push
and pop rates as coefficients. For example, to leave the buffer size unchanged between
worker x1 with push rate 3 and worker x2 with pop rate 4, the compiler would add the
constraint 3x1 − 4x2 = 0; to grow the buffer by (at least) 10 items, the constraint would
be 3x1 − 4x2 ≥ 10. (See figure 5-9 for a steady-state example.) The resulting programs are
solved using lp solve1. While integer linear programming is hard in the general case, in our
experience with StreamJIT, the instances arising from scheduling are easy.

Steady-state scheduling is hierarchical. First intra-group schedules are computed by
minimizing the total number of executions of the group’s workers, provided each worker ex-
ecutes at least once and buffer sizes are unchanged. Then the inter-group schedule minimizes
the number of executions of each group’s intra-group schedule, provided each group executes
at least once and buffer sizes are unchanged. The inter-group schedule is multiplied by an
autotuner-directed factor to amortize the cost of synchronizing at the end-of-steady-state
barrier.

The compiler then computes an initialization inter-group schedule to introduce buffering
between groups as stated above. Each group’s inputs receive at least enough buffering to run
a full steady-state schedule (iterations of the intra-group schedule given by the inter-group
schedule), plus additional items if required to satisfy a worker’s peek rate. The initialization
and steady-state schedules share the same intra-group schedules.

Based on the initialization schedule, the compiler computes the data items buffered on
each edge. This liveness information is updated during splitter and joiner removal and
used when migrating data from initialization to steady-state storage and during draining
(all described below).

1http://lpsolve.sourceforge.net/
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S
pop 1

push 1, 3

A
pop 1
push 2

B
pop 6
push 4

J
pop 1, 1
push 5

S −A = 0
3S − 6B = 0
2A− J = 0
4B − J = 0

S ≥ 0
A ≥ 0
B ≥ 0
J ≥ 0

S + A + B + J ≥ 1

Figure 5-9: An example stream graph group and the constraints generated for it during
intra-group steady-state scheduling. Each variable represents the number of executions of
the corresponding worker in the steady-state schedule. The first four constraints (one per
edge) enforce that the buffer sizes do not change after items are popped and pushed. The
second four (one per worker) enforce that workers do not execute negative times, and the
last ensures at least one execution happens (progress is made). Inter-group scheduling is
the same, except with groups instead of workers.

5.5.3 Built-in Splitter and Joiner Removal

The built-in RoundrobinSplitter, DuplicateSplitter, and RoundrobinJoiner (and their
variants taking weights) classes split or join data in predictable patterns without modifying
them. As directed by the autotuner, these workers can be replaced by modifying their neigh-
boring workers to read (for splitters) or write (for joiners) in the appropriate pattern. For
example, a RoundrobinSplitter(2) instance with three downstream workers distributes
two items to its first, second and third outputs in turn. It can be removed by modifying its
downstream workers to read from indices 6i, 6i+ 2 and 6i+ 4 in the splitter’s input. Joiner
removal results in similar transformations of write indices. Nested splitjoins may result in
multiple removals, in which the index transformations are composed.

Instances of the built-in Identity filter, which copies its input to its output, could also
be removed at this stage (with no index transformation), but the current implementation
does not.

When a worker is removed, liveness information from its input edge(s) is propagated
to the input edges of its downstream workers via simulation. Because the interpreter does
not perform removal, the liveness information remembers on which edge the data item was
originally buffered and its index within that buffer so it can be returned to its original
location for draining. When removing a DuplicateSplitter, the compiler duplicates the
liveness information, but marks all but one instance as a duplicate so only one item is
restored when draining.

Splitter and joiner removal is performed after scheduling to ensure each removed worker
executes an integer number of times (enforced by the ILP solver). Otherwise, splitters and
joiners may misdistribute their items during initialization or draining.
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5.5.4 Type Inference and Unboxing

StreamJIT workers define their input and output types using Java generics. The types of a
Filter<Integer, Integer> can be recovered via reflection, but reflecting a Filter<I, O>

only provides the type variables, not the actual type arguments of a particular instance.
Using the Guava library’s TypeToken [Typ], the compiler follows concrete types through
the graph to infer the actual arguments. For example, if a Filter<Float, Integer> is
upstream of a Filter<T, List<T>>, the compiler can infer T to be Integer. Storage types
are then inferred to be the most specific common type among the output types of workers
writing to that storage. This analysis depends on finding at least some concrete types
via reflection; if the entire graph’s types are type variables, the analysis cannot recover the
actual types. In practice, most graphs have enough “inference roots” to find uses of wrapper
types for unboxing.

After type inference, worker input and output types and edge storage types may be
unboxed, as directed by the autotuner. Input, output and storage decisions are independent;
the JVM will introduce boxing or unboxing later if, e.g., a storage location was unboxed
while a downstream worker’s input was not. (Primitives are stored more compactly than
wrapper objects, which may make up for the boxing cost with better cache usage.) Separate
unboxing decisions are made for each instance of a worker class (indeed, each instance may
have different input and output types). However, the multiple outputs or inputs of a splitter
or joiner instance will either all be unboxed or not unboxed.

5.5.5 Bytecode Generation

The original worker bytecode as compiled by javac (and used by the interpreter) assumes a
serial execution strategy, popping and pushing items in queues. To run multiple iterations
of a worker in parallel, the compiler must transform the bytecode. For each worker class, the
compiler creates an archetype class containing one or more static archetypal work methods.
One archetypal work method is created for each pair of actual input and output types for
workers of that class; for example, a HashCodeFilter<T, Integer> could result in genera-
tion of HashCodeFilterArchetype containing workObjectInteger, workIntegerInteger
and workObjectint methods. Because workers may use private fields, a seperate field holder
class is also created to work around access control, containing copies of the worker class
fields accessible by the archetype class.

All filter work methods share the signature void (FieldHolderSubclass state,

MethodHandle readHandle, MethodHandle writeHandle, int readIndex, int

writeIndex). The read and write handles provide indexed access to the worker’s
input and output channels, while the indices define which iteration of the worker is being
executed. If a worker has pop rate o and push rate u, the tth iteration has read index to
and write index tu. Splitters and joiners have multiple outputs or inputs respectively, so
their work methods take arrays of indices and their read or write handles take an additional
parameter selecting the channel.

The original worker’s work method bytecode is cloned into each archetypal work method’s
body. References to worker class fields are remapped to state holder fields. peek(i) and
pop() calls are replaced with read handle invocations at the read index (plus i for peeks);
pop() additionally increments the read index. Similarly, push(x) is replaced by writing x

at the current write index via the write handle, then incrementing the write index. If the
input or output types have been unboxed, existing boxing or unboxing calls are removed.
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class LowPassFilterArchetype {

public static void workfloatfloat(LowPassFilterStateHolder state,

MethodHandle readHandle, MethodHandle writeHandle,

int readIndex, int writeIndex) {

float sum = 0;

for (int i = 0; i < state.taps; i++)

sum += readHandle.invokeExact(readIndex + i) * state.coeff[i];

writeHandle.invokeExact(writeIndex, sum);

writeIndex++;

for (int i = 0; i < state.decimation; i++) {

readHandle.invokeExact(readIndex);

readIndex++;

}

readHandle.invokeExact(readIndex);

readIndex++;

}

}

Figure 5-10: LowPassFilterArchetype: the result of bytecode rewriting on LowPassFilter
from figure 5-3, before performing StreamJIT’s only bytecode-level optimization (see the
text). StreamJIT emits bytecode directly; for purposes of exposition, this figure shows the
result of decompiling the generated bytecode back to Java.

Figure 5-10 shows the result of rewriting the example filter from figure 5-3.

A bytecode optimization is performed for the common case of filters that peek, push
and pop in that order (as in the example in figure 5-3). The pops are translated into unused
read handle invocations. If splitter or joiner removal introduced index transformations, the
JVM JIT cannot always prove the read handle calls to be side-effect-free due to potential
index-out-of-bounds exceptions. The StreamJIT compiler knows the indices will always be
valid based on the schedule, so the unused invocations can be safely removed. The JVM
can then remove surrounding loops and read index increments as dead code. This is the
only bytecode-level optimization the StreamJIT compiler performs; teaching the JVM JIT
about more complex index expressions may obviate it.

5.5.6 Storage Allocation

The compiler allocates separate storage for the initialization and steady-state schedules.
To compute initialization buffer sizes, the compiler multiplies the initialization inter-group
schedule by the intra-group schedules to find each worker’s total number of executions,
then multiplies by the push rate to find the total items written to each storage. Steady-
state buffer sizes are computed similarly using the steady-state inter-group schedule, but
additional space is left for the buffering established by the initialization schedule. The
storage implementation is a composition of backing storage with an addressing strategy. It
provides read and write handles used by archetypal work methods, plus an adjust handle
that performs end-of-steady-state actions.

The actual backing storage may be a plain Java array, or for primitive types, a direct
NIO Buffer or native memory allocated with sun.misc.Unsafe. Each implementation
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provides read and write method handles taking an index. Steady-state backing storage
implementations are chosen by the autotuner on a per-edge basis; initialization always uses
Java arrays.

Addressing strategies translate worker indices into physical indices in backing storage.
Direct addressing simply passes indices through to the backing storage and is used during
initialization and for storage fully internal to a group (read and written only by the group).
Storage on other edges needs to maintain state across steady-state executions (to maintain
software pipelining). Circular addressing treats the backing storage as a circular buffer by
maintaining a head index; at the end of each steady-state execution, elements are popped by
advancing the index. Double-buffering alternates reading and writing between two separate
backing storage implementations at the end of each steady-state execution, but can only
be used when the storage is fully external to all groups that use it (read or written but
not both), as otherwise items written would need to be read before the buffers are flipped.
Steady-state addressing strategies are chosen by the autotuner on a per-edge basis.

Data parallelization assumes random access to storage, including the overall input and
output of the stream graph. If the overall input edge is part of the compilation and the
source provides random access (e.g., a List or a memory-mapped file), the storage nor-
mally allocated for that edge may be replaced by direct access to the source; otherwise data
is copied from the source into the storage. This copy-avoiding optimization is important
because the copy is performed serially at the end-of-steady-state barrier. A similar optimiza-
tion could be performed for random-access output sinks, but the current implementation
does not.

5.5.7 Work Allocation

The compiler then divides the steady-state inter-group schedule among the cores, as di-
rected by the autotuner. Each core receives some or all executions of some or all groups.
The buffering established by the initialization schedule ensures there are no data depen-
dencies between the groups, so the compiler is free to choose any allocation, except for
groups containing a stateful filter, which must be allocated to a single core to respect
data-dependence on the worker state. The initialization schedule itself does not have this
guarantee, so all work is allocated to one core in topological order.

5.5.8 Code Generation

To generate code to run the initialization and steady-state schedules, the compiler builds a
method handle chain for each core. (For background information on method handle chains,
see section 4.3.) For each worker, its corresponding state holder class is initalized with the
values of worker fields. The archetypal work method for the worker is reflected as a method
handle and the state holder instance, plus the read and write handles for the storage used
by the worker, are bound (the handle is partially applied), yielding a handle taking a read
and write index.

This worker handle is bound into a worker loop combinator that executes a range of
iterations of the worker, computing the read and write indices to pass to the worker handle
using the worker’s pop and push rates. The worker loop handles for all workers in a group
are then bound into a group loop combinator that executes a range of interations of the
intra-group schedule, multiplying the group iteration index by the intra-group schedule’s
worker execution counts to compute the worker iteration indices to pass to the worker
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core10 handle

group0 loop(iter 0 to 256)

worker0 loop(iter _*4 to _*4+4)

AdderArchetype::workObjectint(stateholder,

stor0.readHandle, stor1.writeHandle,

_*worker0.pop, _*worker0.push)

worker1 loop(iter _*2 to _*2+2)

AdderArchetype::workintint(stateholder,

stor1.readHandle, stor2.writeHandle,

_*worker1.pop, _*worker1.push)

group4 loop(iter 512 to 2048)

worker4 loop(iter _*2 to _*2+2)

MultArchetype::workintint(stateholder,

stor4.readHandle, stor8.writeHandle,

_*worker4.pop, _*worker4.push)

Figure 5-11: Structure of a core code handle. Underscores represent the indices being
computed in the loops; named values are bound constants. No executions of the group
containing workers 2 and 3 were allocated to this core.

loops. Finally, the group’s iteration range allocated for that core is bound into the group
loop and the group loops are bound by a sequence combinator to form a core handle. (See
figure 5-11.)

5.5.9 Preparing for Run Time

At the end of compilation, the compiler creates a host instance, which is responsible for
managing the compiled stream graph through the lifecycle phases described in section 5.5.2:
initialization, steady-state and draining. From the compiler, the host receives the initializa-
tion and steady-state core code handles, liveness information, and counts of the items read
and written from and to each graph input and output. The host creates the threads that
execute the method handles and the barrier at which the threads will synchronize at the
end of each steady-state iteration. The barrier also has an associated barrier action, which
is executed by one thread after all threads have arrived at the barrier but before they are
released.

The code actually run by each thread is in the form of newly-created Runnable proxies
with static final fields referencing the core code method handles. Because the handles
are compile-time constant, the JVM JIT can inline through them and their constituent
handles, including object references bound into the handle chain. For example, a circular
buffer storage computes a modulus to contain the index in the bounds of the backing storage,
but the JVM JIT sees the modulus field as a constant and can avoid generating a division
instruction. The JVM’s visibility into the generated code is essential to good performance.

5.5.10 Run Time

At run time, threads run core code and synchronize at the barrier. The behavior of each
thread and of the barrier action is managed using SwitchPoint objects, which expose the
lifecycle changes to the JVM. The JVM will speculatively compile assuming the switch point
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switch point 1

no-op switch point 2

run steady-state
core code

no-op

Figure 5-12: Thread behavior during the host lifecycle. Initialization and draining are
single-threaded, so they occur at the barrier action. no-op (no operation) indicates a method
handle that does nothing.

switch point 1

run init core code,
migrate data from init
to steady-state storage,

read inputs

switch point 2

write outputs,
adjust storage,
read inputs or

drain

no-op
(unreached)

Figure 5-13: Barrier action behavior during the host lifecycle. In the steady-state, if insuf-
ficient inputs can be read for the next steady-state iteration, draining begins immediately.
After draining is complete, the threads stop before returning to the barrier, so the third
method handle (rightmost node in the figure) is never called.
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points to its first target, then recompile when the switch point is invalidated, avoiding
branching on each call. The first switch point is invalidated when transitioning to the
steady-state after initialization and the second is invalidated after draining is complete.
Figures 5-12 and 5-13 show thread behavior and barrier action behavior, respectively.

Initialization Initially, the core code is a no-op, so all threads immediately reach the
barrier. The barrier action calls the initialization core handle after reading data from graph
inputs. Any output produced is written to graph outputs, data buffered in initialization
storage is migrated to steady-state storage using the liveness information, and input is
read for the steady-state. The first switch point is then invalidated to transition to the
steady-state phase and the cores are released from the barrier.

Steady-state In the steady-state phase, the core code is the core method handle built
during compilation. When all cores come to the barrier after running their core handle,
output is written to the graph outputs, storage is adjusted (e.g., circular buffer head indices
are incremented), and input is read from graph inputs to be used in the next cycle. This
phase continues until not enough input remains to execute the steady-state code, at which
point draining begins (still in the barrier action).

Draining During draining, data buffered in steady-state storage is migrated into queues
for the interpreter based on the liveness information. The interpreter runs until the input is
exhausted or progress stops due to unsatisfiable input (peek and pop) rates. When online
autotuning, any remaining buffered data is passed to the StreamJIT runtime for use in a
future compilation. The StreamJIT runtime requests the threads to stop, the second switch
point is invalidated, and the cores are released from the barrier. Invalidating the second
switch point makes the core code a no-op, to make race conditions between the cores and
the StreamJIT runtime harmless.

5.6 Autotuning

In place of heuristics, the StreamJIT compiler uses the OpenTuner [AKV+13] extensible
autotuner to make its optimization decisions. The compiler defines the tuner’s search space
with a number of parameters based on the stream graph being compiled. The tuner requests
throughput measurements for a particular set of values (called a configuration), allocating
trials between different search techniques according to their payoff. Tuning can be performed
offline, in which the program state is reset for each trial, or online, in which the stream
graph is recompiled preserving the state of the previous compilation.

Search space For each non-peeking worker in the graph, a boolean parameter determines
whether that worker is fused upward. For each built-in splitter or joiner in the graph, a
boolean parameter determines whether that splitter or joiner is removed. For each worker,
two boolean parameters control unboxing that worker’s input and output types. For each
edge, one boolean parameter controls whether that edge’s storage is unboxed, one enumer-
ated parameter selects the backing storage (Java array, NIO Buffer or native memory via
sun.misc.Unsafe), and one enumerated parameter selects between double-buffering and
circular addressing strategies if that storage is not internal to a group.
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Core allocation is controlled by four parameters per worker: a count n and permutation
parameter that define a subset of the available cores to allocate to (the first n cores in the
permutation), plus a bias count b and a bias fraction f between 0 and 1. The parameters
corresponding to the first worker in each group are selected. Stateful groups cannot be
data-parallelized, so if the group contains a stateful worker, all group executions in the
inter-group schedule are assigned to the first core in the permutation. Otherwise, the group
executions are divided equally among the n cores in the subset. Then the first b cores (or
n− 1 if b ≥ n) have f times their allocation removed and redistributed equally among the
other n−b cores. Biasing allows the autotuner to load-balance around stateful groups while
preserving equal allocation for optimal data-parallelization.

Interactions between parameters may leave some parameters unused or ignored in some
configurations; the search space has varying dimensionality. For example, if after (not)
fusing preceding groups, a group has more than one predecessor, it cannot be fused upward,
so the corresponding fusion parameter is ignored. Throughput is very sensitive to the core
allocation, and both fusion and removal parameters affect which sets of core allocation
parameters are used. Unused sets accumulate random mutations, which can prevent the
tuner from recognizing profitable changes in fusion or removal because the resulting core
allocation is poor. To address this, all unused core allocation parameters in each group are
overwritten with the used set’s values, which empirically gives better tuning performance.
More elegant ways to search spaces of varying dimensionality are a topic for future work in
optimization.

Custom techniques In addition to its standard optimization algorithms, OpenTuner can
be extended with custom techniques, which StreamJIT uses in two ways. One technique
suggests three fixed configurations with full fusion, removal and unboxing, equal allocation
to all cores (maximum data parallelism), and multipliers of 128, 1024 and 4096. These
configurations help the tuner find a “pretty good” portion of the search space more quickly
than by testing random configurations.

For most stream graphs, fusion, splitter and joiner removal, and unboxing are profitable
at all but a few places in the graph. Fusion, for example, is usually good except for
stateful workers whose state infects their entire group, preventing data parallelism. To
convey this knowledge to the tuner, three custom techniques modify the current best known
configuration by applying full fusion, removal or unboxing. If the result has already been
tested, the techniques proceed to the second-best configuration and so on. These techniques
keep the tuner in a portion of the search space more likely to contain the best configuration,
from which the tuner can deviate in a small number of parameters where the optimizations
are not profitable. However, these techniques are merely suggestions. Because the tuner
allocates trials to techniques based on their expected payoff, if for example a graph contains
many stateful workers, the tuner will learn to ignore the full-fusion technique.

Online autotuning Online tuning works similarly to offline tuning, except that graph
edges may contain buffered items left behind by the previous execution. The initialization
schedule cannot remove buffering from within fused groups because it shares intra-group
code with the steady-state schedule, so the downstream groups on those edges cannot be
fused upward. Removal of splitters and joiners on these edges is also disabled due to a bug
in the implementation. While this limits online tuning performance compared to offline
tuning (which never has previous buffered items), the graph is drained as completely as
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possible before recompiling, so usually only a few edges are affected.

5.7 Automatic Distribution

To scale to multiple nodes, the StreamJIT runtime partitions the stream graph into con-
nected subgraphs, which are compiled or interpreted separately. Because StreamJIT uses
an autotuner to find the partitioning instead of heuristics, implementing distribution only
requires defining some autotuning parameters and writing the communication code.

Each partition is a connected subgraph and the graph of partitions is acyclic. (See
figure 5-14.) Compiled partitions execute dynamically once enough input to execute their
schedule is available. Because each worker is placed in only one partition, it is not possible
to data-parallelize a worker across multiple nodes; adding nodes exploits task and pipeline
parallelism only. As a workaround, the user can introduce a roundrobin splitjoin (simulating
data parallelism as task parallelism), allowing the autotuner to place each branch in a
different partition, allowing task parallelism across nodes.

Autotuning partitioning The partitioning is decided by the autotuner. Usually one
partition per node provides the best throughput by minimizing communication, but some-
times the better load-balancing allowed by using more partitions then nodes overcomes the
extra communication cost of creating extra data flows.

A naive parameterization of the search space would use one parameter per worker spec-
ifying which node to place it on, then assemble the workers on each node into the largest
partitions possible (keeping the workers in a partition connected). Empirically this results
in poor autotuning performance, as most configurations result in many small partitions
spread arbitrarily among the nodes. Small partitions inhibit fusion, resulting in inefficient
data-parallelization, and poor assignment causes a large amount of inter-node communica-
tion.

Instead, some workers in the graph are selected as keys (highlighted in figure 5-14)
which are assigned to nodes. Every kth worker in a pipeline is a key, starting with the
first. Splitjoins containing s or fewer workers total are treated as though they are single
workers; otherwise, the splitter, joiner, and first worker of each branch are keys and key
selection recurses on each branch. For each key, one parameter specifies which node to place
it on and another parameter selects how many workers after this key to cut the graph (0
up to the distance to the next key). If there are too many partitions, most configurations
have unnecessary communication back and forth between nodes, but if there are too few
partitions, load balancing becomes difficult. We chose k = 4 and s = 8 empirically as a
balance that performs well on our benchmarks. These constants could be meta-autotuned
for other programs.

Given a configuration, the graph is then cut at the selected cut points, resulting in
partitions containing one key each, which are then assigned to nodes based on the key’s
assignment parameter. Adjacent partitions assigned to the same node are then combined
unless doing so would create a cycle among the partition graph (usually when a partition
contains a splitter and joiner but not all the intervening branches). The resulting partitions
are then compiled and run.

Sockets Partitions send and receive data items over TCP sockets using Java’s blocking
stream I/O. Each partition exposes its initialization and steady-state rates on each edge,
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Figure 5-14: Partitioning a stream graph for distribution. Hatched workers are keys; arrows
represent the cut-distance parameters. Both inner splitjoins are treated as single workers;
the left does not have a cut-distance parameter as it’s immediately followed by another key.
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User API (plus private interpreter plumbing) 1213
Interpreter 1032
Compiler 5437
Distributed runtime 5713
Tuner integration 713
Compiler/interp/distributed common 4222
Bytecode-to-SSA library 5166
Utilities (JSON, ILP solver bindings etc.) 2536

Total (non-test) 26132
Benchmarks and tests 7880

Total 33912

Figure 5-15: StreamJIT Java code breakdown, in non-blank, non-comment lines of code.
An additional 1087 lines of Python are for tuner integration.

allowing the required buffer sizes to be computed using the ILP solver, which avoids having
to synchronize to resize buffers. However, execution of the partitions is dynamically (not
statically) scheduled to avoid a global synchronization across all nodes. The runtime on the
node initiating the compilation additionally communicates with each partition to coordinate
draining, which proceeds by draining each partition in topological order. During draining,
buffers dynamically expand to prevent deadlocks in which one partition is blocked waiting
for output space while a downstream partition is blocked waiting for input on a different edge
(which reading would free up output space). When using online autotuning, the initiating
node then initiates the next compilation.

5.8 Evaluation

5.8.1 Implementation Effort

Excluding comments and blank lines, StreamJIT’s source code consists of 33912 lines of
Java code (26132 excluding benchmarks and tests) and 1087 lines of Python code (for
integration with OpenTuner, which is written in Python); see figure 5-15 for a breakdown. In
comparison, the StreamIt source code (excluding benchmarks and tests) consists of 266029
lines of Java, most of which is based on the Kopi Java compiler with custom IR and passes,
plus a small amount of C in StreamIt runtime libraries. StreamIt’s Eclipse IDE plugin alone
is 30812 lines, larger than the non-test code in StreamJIT.

5.8.2 Comparison versus StreamIt

Single-node offline-tuned StreamJIT throughput was compared with StreamIt on ten bench-
marks from the StreamIt benchmark suite [TA10]. When porting, the algorithms used
in the benchmarks were not modified, but some implementation details were modified to
take advantage of StreamJIT features. For example, where the StreamIt implementations
of DES and Serpent use a roundrobin joiner immediately followed by a filter computing
the exclusive or of the joined items, the StreamJIT implementations use a programmable
joiner computing the exclusive or. The ported benchmarks produce the same output as the
originals modulo minor differences in floating-point values attributable to Java’s differing
floating-point semantics.
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benchmark StreamJIT StreamIt relative perf

Beamformer 2320186 1204215 1.9
BitonicSort 9771987 6451613 1.5
ChannelVocoder 551065 796548 0.7
DCT 23622047 6434316 3.7
DES 17441860 6469003 2.7
FFT 25210084 2459016 10.3
Filterbank 924499 1785714 0.5
FMRadio 2272727 2085143 1.1
MPEG2 32258065 - -
Serpent 2548853 6332454 0.4
TDE-PP 12605042 2357564 5.3
Vocoder 406394 - -

Figure 5-16: Single-node 24-core throughput comparison, in outputs per second. Relative
performance is StreamJIT throughput divided by StreamIt throughput. StreamIt fails to
compile MPEG2 and Vocoder.

Benchmarking was performed on a cluster of 2.4GHz Intel Xeon E5-2695v2 machines
with two sockets and 12 cores per socket and 128GB RAM. HyperThreading was enabled
but not used (only one thread was bound to each core).

StreamIt programs were compiled with strc --smp 24 -O3 -N 1000 benchmark.str.
The emitted C code was then compiled by gcc (Ubuntu/Linaro 4.6.3-1ubuntu5) 4.6.3

with gcc -std=gnu99 -O3 -march=corei7-avx -mtune=corei7-avx. strc was built with
the SMP backend’s FAKE IO option enabled, which replaces file output with a write to a
volatile variable; this ensures I/O does not affect performance while preventing GCC from
optimizing code away. strc’s -N option adds instrumentation to count the CPU cycles per
output generated by the stream graph when executing the steady-state schedule, which is
converted to nanoseconds per output by multiplying by the CPU cycle time. StreamIt is
no longer maintained and strc fails to compile MPEG2 and Vocoder, so while we present
StreamJIT performance, we cannot compare on those benchmarks.

StreamJIT programs ran on 64-bit OpenJDK build 1.8.0-ea-b124. StreamJIT programs
were autotuned for 12 hours in three independent sessions. In each trial, the program is
compiled with the autotuner’s requested configuration, the initialization schedule is run, and
the steady-state schedule is run for at least 10 seconds (rounded up to a whole schedule) to
ensure the JVM JIT compiles the steady-state code. Then for at least 5 seconds rounded
up to a whole schedule, the number of output items is counted and this count is divided by
the actual elapsed time (measured with System.nanoTime()) to compute the throughput.
The throughput of the best-performing configurations from each tuning run is averaged for
comparison purposes.

Across all ten benchmarks, StreamJIT’s average throughput is 2.8 times higher than
StreamIt, despite being implemented with considerably less effort. The results are shown in
figure 5-16. StreamJIT’s autotuner chooses better parallelizations than StreamIt’s heuris-
tics, but GCC vectorizes much more than HotSpot (the OpenJDK JIT compiler). On our
benchmarks, parallelization generally outweighs vectorization, but on ChannelVocoder and
Filterbank StreamJIT cannot overcome the vectorization disadvantage.
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5.8.3 Online Autotuning and Distribution

The StreamIt benchmarks have a high communication-to-computation ratio, for which our
task-parallel distribution strategy performs poorly. Our naive communication code com-
pounds this flaw by making multiple unnecessary copies. In the current implementation,
online autotuning is implemented using the distributed runtime with one node, incurring
the cost of loopback sockets and the extra copies. In this section we use modified versions
of the benchmarks, so the numbers presented are not directly comparable to single-node
offline performance.

Online single-node throughput Single-node online tuning was evaluated on the same
machines used above for single-node offline tuning (with 24 cores). Figure 5-17 shows on-
line tuning performance on the modified ChannelVocoder benchmark and figure 5-18 shows
the same metric for the modified FMRadio benchmark. The graph shows the time taken
to output 30000 data items after reaching the steady-state in each configuration (inverse
throughput, thus lower numbers are better), as well as the time of the best configuration
found so far. Both graphs show the variance increasing when the autotuner has not dis-
covered a new best configuration, then decreasing again when it does. The autotuner is
making a tradeoff between exploring the search space and exploiting the parts of the space
it already knows give high performance. If this oscillation is unacceptable for a particular
program, the current best configuration could be run in parallel with the search to provide
a fallback, as in SiblingRivalry [APW+12].

Offline distributed throughput Distributed offline tuning was evaluated on the same
machines used for single-node offline tuning, but using only 16 cores per node for the
StreamJIT compiler to leave cores free for the distributed runtime’s communication thread.
Figure 5-19 shows speedup on the modified FMRadio and ChannelVocoder benchmarks
across 4, 8 and 16 nodes relative to 2-node performance after a 24-hour tuning run. Chan-
nelVocoder, the more compute-intensive of the two benchmarks, scales well up to 16 nodes.
FMRadio has less computation and only scales well up to 4 nodes.

Figure 5-20 compares tuning progress for the modified FMRadio benchmark using 2, 4,
8, and 16 nodes over the 24-hour tuning run (figure 5-19 is based on the best configuration
found during these runs). Each trial tests the time to produce 30000 stream graph outputs.
The number of trials performed in each tuning run varies based on autotuner randomness.
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Figure 5-17: Online autotuning progress on the (modified) ChannelVocoder benchmark,
showing the time in milliseconds to produce 30000 outputs (inverse throughput, lower is
better).
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Figure 5-18: Online autotuning progress on the (modified) FMRadio benchmark, showing
the time in milliseconds to produce 30000 outputs (inverse throughput, lower is better).

Benchmark 2 nodes 4 nodes 8 nodes 16 nodes

ChannelVocoder 1.00 1.38 3.58 10.13
FMRadio 1.00 3.18 3.75 4.60

Figure 5-19: Speedup after distributed offline autotuning on 4, 8 and 16 nodes, relative to
2 nodes.
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Figure 5-20: Distributed offline autotuning progress on the (modified) FMRadio benchmark,
showing the time in milliseconds to produce 30000 outputs (inverse throughput, lower is
better) of the best configuration up to that point. The benchmark was tuned for each node
count for 24 hours.
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Chapter 6

Lessons Learned

This chapter describes lessons learned during StreamJIT development – things usually left
unpublished, but very useful to know when building on prior work.

6.1 Structured versus Unstructured Streams

Early in StreamJIT’s development we considered supporting unstructured stream graphs.
Unstructured streams turned out to provide little benefit and their own difficulties, so
StreamJIT returned to structured streams. If, in exploring new applications, unstructured
stream patterns turn out to be common, we plan to support them with additional compo-
sition structures.

Structured stream limitations StreamIt introduced structured streams, stream graphs
containing single-input, single-output filters composed with pipelines and splitjoins. While
most of the signal-processing applications targeted by StreamIt can be conveniently ex-
pressed in structured streams, implementing some patterns between filters requires mul-
tiplexing data items through otherwise-unnecessary splitjoins (see figure 6-1). The com-
piler can recover the unstructured graph after performing splitter and joiner removal (what
StreamIt calls synchronization removal), so the only effect of the transformation is to com-
plicate the program, requiring the programmer to remember how data items are being
multiplexed. [Thi09] figure 2-19 gives an example from the 3GPP StreamIt benchmark.

[Thi09] section 2.5 offers two possible solutions, tagged structs and teleport messaging,
while noting that neither is satisfactory. By encapsulating the data items flowing through
the structured graph in structs, a tag field can be added to define which edge in the un-
structured graph the data is logically flowing on. Special splitters and joiners could then
perform the multiplexing without programmer attention. However, filters must be modified
to use tagged structs, limiting where in the stream graph the filter can be reused. Teleport
messages, a general feature for communication separate from stream graph edges (not im-
plemented in StreamJIT), are not limited by stream structure, but their out-of-band nature
and lack of declared rates prevent them from being efficiently compiled.

Structured streams are also inconvenient for programs with multiple inputs or outputs,
which must be multiplexed into or demultiplexed from a stream graph’s single input and
output. For example, the Beamformer benchmark processes inputs from multiple radar
antennas.
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(b) The same graph, transformed into a structured
graph expressible in StreamJIT by multiplexing
data items through (weighted) roundrobin split-
ters and joiners.

Figure 6-1: Unstructured to structured conversion.

StreamJIT wires API With these concerns in mind, the first StreamJIT API proposal
did not require structured streams. Pipelines and splitjoins could still be used, but filters
could also be composed by manually connecting output channels to input channels. We
referred to this design as the wires API as the channel connection feature is reminiscent of
hardware description languages.

We quickly decided against the wires API proposal as manual channel connection is
error-prone and the resulting programs are difficult to read. When writing against the
wires API, it is easy to forget or mix up connections, especially with splitters and joiners.
When reading a wires API program, some effort is required to understand the graph being
constructed. Even for the case of unstructured graphs, programs using manual connection
are not much clearer than structured graphs using multiplexing. Finally, the wires API
makes it easy to accidentally introduce loops, which we chose not to implement in StreamJIT
because they cannot be efficiently compiled.

Bypass and other structures We proceeded to implement a structured streams API.
Up to this point, we have focused on matching StreamIt performance on StreamIt bench-
mark applications, so being restricted to structured streams is not an issue. If future
applications require unstructured constructs, additional composition structures besides the
built-in Pipeline and Splitjoin classes can be introduced to support them within the
framework of structured streams. For the pattern in figure 6-1, a Bypass class would com-
pose two splitters, two joiners (including one at the end of the bypass structure) and an
arbitrary one-to-one stream element into a one-to-one element that can be intermixed with
pipelines and splitjoins.
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Splitter a = new ASplitter(), b = new BSplitter();

Filter c = new CFilter();

Joiner d = new DJoiner(), e = new EJoiner();

a.connect(0, b);

a.connect(1, d, 0);

b.connect(0, c);

b.connect(1, d, 1);

c.connect(e, 0);

d.connect(e, 1);

Figure 6-2: Connecting filters using the wires API. connect connects the receiver’s output
to another worker’s input, with indices provided when connecting from or to splitters and
joiners. This code creates the unstructured graph shown in figure 6-1.

6.2 The Bytecode Compiler

Before building the StreamJIT compiler described in chapter 5, we built a one-pass compiler
that did not use method handles, but instead used bytecode generation only. In this section,
we will refer to the compilers as the bytecode compiler and method handle compiler. Like
the method handle compiler, the bytecode compiler is a just-in-time compiler that runs
during the surrounding application’s run time. The bytecode compiler performs fusion,
scheduling, and bytecode generation similarly to the method handle compiler, but as a
one-pass compiler, it does not perform splitter and joiner removal or unboxing.

At the beginning of the StreamJIT project, we were concerned that StreamJIT programs
would be hopelessly inefficient due to overheads inherent in the Java virtual machine. The
bytecode compiler dispelled these fears by demonstrating performance within an order of
magnitude of the StreamIt native code compiler. We abandoned development of the byte-
code compiler soon after, partially because its one-pass nature made splitter and joiner
removal tricky to implement, but mostly because Java code that generates bytecode is diffi-
cult to maintain, especially when multiple forms (chosen via autotuning) must be generated.

Consider backing storage selection. The bytecode compiler uses Java arrays, which
are passed directly to the archetypal work methods and indexed with the arraylength

bytecode instruction. The obvious way to support multiple storage implementations is to
introduce a Storage interface with get and set methods. The archetypal work methods
then take Storage references as arguments. The interface invocation inhibits optimization.
If only one storage implementation is used with a particular work method, the JVM JIT
can inline the storage methods, but must emit a type guard; while the type check is cheap,
it will be performed millions of times per second, and even if it were free, its presence limits
what reorderings the JVM can perform. If multiple implementations are used, the JVM
will either inline multiple methods with multiple type guards (a polymorphic inline cache)
or fall back to a slow virtual call. Using an interface is clean and idiomatic, but incurs
overheads not appropriate for a high-performance system.

If a run-time abstraction introduces too much overhead, how about a compile-time one?
The code generation differences between storage implementations could be encapsulated
behind a StorageGenerator interface with methods that return the parameter type and
generate the bytecode that reads or writes the storage. (Splitters and joiners would require
coordination between generators to handle their multiple outputs or inputs.) Where the
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run-time abstraction used a problematic interface call, the compile-time abstraction uses
separate archetypal work methods for each combination of input and output storage, elim-
inating the type guards at the expense of some code bloat. This approach resolves the
performance issues, but complicates the compiler.

The method handle compiler takes the best of these two worlds: the method handles
provide the Storage interface abstraction, while allowing full inlining as the method handles
bound into the method handle chain are compile-time constants to the JVM JIT. Using
method handles has the side benefit that Java code that generates bytecode for an operation
(e.g., writing storage) can be replaced by Java code directly performing that operation,
making the compiler more maintainable. Only the archetypal work method generation
requires working at the bytecode level, using essentially the same code as the bytecode
compiler.

At the time we built the method handle compiler, our underlying JVM (OpenJDK with
the HotSpot JIT compiler) was reluctant to inline method handles. In particular, as the
StreamJIT schedule multiplier increased, the method handle chain was invoked less often to
do the same amount of work, fooling the JVM into treating it as cold code. By dynamically
creating new classes that directly call a constant method handle, combined with judicious
use of the CompileThreshold and ClipInlining JVM flags, we convinced HotSpot to
inline all the way through and generate specialized machine code for each core, resulting
in performance comparable to the bytecode compiler. More recent versions of HotSpot use
different compilation heuristics for method handles (including incremental inlining) that
render precise flag adjustments unnecessary.

6.3 Autotuner Search Space Design

OpenTuner seems to promise users that if they can describe their search space in terms of
standard parameters, OpenTuner can find good configurations without requiring the user to
understand the search algorithms. Unfortunately, we found this to be a leaky abstraction;
autotuning performance is strongly dependent on good search space design.

The search space can be viewed as an undirected graph where the vertices are config-
urations and the edges connect configurations that are “close” (can be reached by small
mutations). The autotuner will trade off between exploring the search space by testing
random configurations and exploiting good configurations by testing other nearby configu-
rations to find improvements. If most configurations are bad, exploring will be unprofitable.
If most configurations “nearby” a good configuration are worse instead of better, exploita-
tion will be unprofitable. When designing the initial parameterizations of the StreamJIT
search space, we focused on covering the entire space without regard to how easy the graph
was to search, resulting in poor tuning performance.

In this section, we present how the search space for work allocation evolved over time.

The first parameterization for work allocation used one integer parameter per core per
group specifying the number of iterations of the group to put on that core, allocated begin-
ning with the first core. For example, if the schedule specified 30 iterations and one group’s
eight core parameters were 25, 18, 35, 6, 1, 10, 23 and 40, the first core would be allocated
25 iterations, the second core the remaining 5, and the remaining six cores 0. Random con-
figurations tend to allocate all the work to the first few cores, and once all iterations have
been allocated, modifications to the remaining parameters have no effect. In theory, this
parameterization fully covers all possible allocations, but in practice the autotuner cannot
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find configurations that allocate equal work to all cores.
Our next attempt abandoned covering the search space to make equal division more

discoverable, in the hope that searching a small space well would produce better average
results than searching a large space poorly. Each group used a bitset parameter that
controlled which cores the group would be allocated to, then the iterations were divided
equally. This configuration still resulted in poor performance because using all the cores
(the typical best configuration) requires setting all the bits. When using n cores, this
configuration is only 1

2n of the search space, making it hard to discover; in expectation over
random configurations, only half the cores will be used. Improving a random configuration
is difficult for mutators that toggle each bit with equal probability; as more bits are set,
additional mutations are more likely to clear bits than set additional ones.

We next turned to OpenTuner’s support for domain-specific parameters with custom
mutators. Our composition parameter was composed of an array of floats (one per core)
normalized to sum to 1, representing the fraction of work to assign to that core. As equal
division over all cores is frequently the best configuration, one mutator set all the floats to
1
n . Other mutators added a core by moving a fraction of each non-zero float to a zero float,
removed a core by zeroing a float and distributing its value over the other floats, or shuffled
the floats (for load balancing when some cores have more work than others). OpenTuner’s
search algorithms can also manipulate the floats directly, to allow hill-climbing. Providing
an equal-division mutator allowed OpenTuner to quickly find the equal-division configu-
ration, but tuning progress quickly stopped on graphs containing stateful filters (which
require unequal allocations for load balancing). Hill-climbing algorithms were confused by
the normalization, while algorithms using our mutators could not make enough progress by
just adding or removing cores.

At this point we concluded that OpenTuner could not magically discover the best con-
figurations. Instead we thought about what good configurations would typically look like:
equal work divided among some number of cores, with a few cores receiving less work to
load-balance around unparallelizable stateful filters. The important variables were the num-
ber of cores to use, the amount of work to move for load balancing, and which particular
cores to use (core identity becomes important when load balancing). This analysis lead to
the subset-bias parameterization described in section 5.6. While random configurations use
only half the cores on average, hillclimbers can quickly increase the total core count and
decrease the bias count.

Of course, better parameterizations may exist. The subset-bias parameterization per-
forms well on our particular benchmarks, but the empirical nature of autotuning prevents
generalization to all StreamJIT programs.
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Chapter 7

Conclusion

Modern applications are built on the abstractions provided by domain libraries. While
domain-specific languages can offer better performance through domain-specific optimiza-
tions, the cost of implementing an optimizing compiler has caused few domain-specific
languages to be built. Commensal compilers substantially reduce compiler implementa-
tion effort by leveraging existing infrastructure. By reusing their host language’s front-end,
delegating middle-end decisions to an autotuner, and using existing APIs to enable opti-
mized code generation by the virtual machine back-end, commensal compilers need only
implement domain-specific optimizations. We demonstrated the power of our approach by
implementing a commensal compiler for StreamJIT, a Java-embedded stream programming
language, that gives performance on average 2.4 times higher than StreamIt’s native code
compiler with an order of magnitude less code. We additionally implemented automatic
distribution over multiple nodes at the low cost of writing the socket communication code.
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