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ABSTRACT

Future graphics and imaging applications—from self-driving cards, to 4D light �eld cameras,
to pervasive sensing—demand orders of magnitude more computation than we currently
have. �is thesis argues that the e�ciency and performance of an application are determined
not only by the algorithm and the hardware architecture on which it runs, but critically
also by the organization of computations and data on that architecture. Real graphics and
imaging applications appear embarrassingly parallel, but have complex dependencies, and are
limited by locality (the distance over which data has to move, e.g., from nearby caches or far
away main memory) and synchronization. Increasingly, the cost of communication—both
within a chip and over a network—dominates computation and power consumption, and
limits the gains realized from shrinking transistors. Driven by these trends, writing high-
performance image processing code is challenging because it requires global reorganization
of computations and data, not simply the local optimization of an inner loop.

Traditional programming languages make it di�cult for clear and composable code to
express optimized organizations because they con�ate the intrinsic algorithms being de�ned
with their organization. To address the challenge of productively building e�cient, high-
performance programs, this thesis presents the Halide language and compiler for image
processing. Halide explicitly separates what computations de�ne an algorithm from the
choices of execution structure which determine parallelism, locality, memory footprint, and
synchronization. For image processing algorithms with the same complexity—even the exact
same set of arithmetic operations and data—executing on the same hardware, the order and
granularity of execution and placement of data can easily change performance by an order of
magnitude because of locality and parallelism. I will show that, for data-parallel pipelines
common in graphics, imaging, and other data-intensive applications, the organization of
computations and data for a given algorithm is constrained by a fundamental tension between
parallelism, locality, and redundant computation of shared values. I will present a systematic
model of “schedules” which explicitly trade o� these pressures by globally reorganizing the
computations and data for an entire pipeline, and an optimizing compiler that synthesizes
high performance implementations from a Halide algorithm and a schedule. �e end result
is much simpler programs, delivering performance o�en many times faster than the best
prior hand-tuned C, assembly, and CUDA implementations, while scaling across radically
di�erent architectures, from ARM mobile processors to massively parallel GPUs.
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1
INTRODUCTION

Image processing underlies, and is a dominant cost, in many
of the most important applications of computation to the phys-
ical world. Image processing and computational photography
algorithms require highly e�cient implementations to be used
in practice, especially on power-constrained mobile devices.
Algorithms and computational hardware constantly evolve
and improve, but as they do it becomes more and more dif-
�cult for researchers and developers to extract the required
performance and e�ciency from image processing code. �is
is not a simple matter of programming in a low-level language
like C.�e performance di�erence between naive C and highly
optimized C is o�en an order of magnitude. E�cient im-
plementations on modern hardware require complex global
transformations of the computation and data structures, far be-
yond the inner loops. Unfortunately, this optimization usually
comes at the cost of programmer pain and code complexity,
as computation must be reorganized to e�ciently exploit the
memory hierarchy and parallel execution hardware.

Image processing pipelines1 1. �roughout this thesis, and in
much of the literature surrounding
Halide, I refer to “image process-
ing pipelines.” By this I mean the
largely feed-forward pixel process-
ing common in low-level image
processing for computational pho-
tography and computer vision.
We do not mean only strict single-
producer, single-consumer data
�ow, but rather general graphs of
computation over arrays of pixels.
In Halide, we even allow a limited
form of recursion (cycles) within
these graphs (discussed further in
Chapter 3).

combine the challenges of
stencil computation and stream programs. �ey are composed
of large graphs of many di�erent operations, most of which
are stencil computations. �ey also contain non-stencil stages,
including complex reductions, and stages with global or data-
dependent access patterns. For example, an implementation
of one recent algorithm, local Laplacian �lters [67, 10], is a
graph of approximately 100 di�erent stages, including many
di�erent stencils and a large data-dependent resampling.

�ese pipelines are simultaneously wide and deep: each
stage exhibits massive data parallelism across the many pixels
it processes, and whole pipelines consist of long sequences of
di�erent operations, which individually have low arithmetic in-
tensity (the ratio of computation performed to data read from
prior stages and written to later stages). Gains in speed there-

1



fore come not just from optimizing the inner loops, but also
from global program transformations such as tiling and fusion
that exploit producer-consumer locality down the pipeline.
�e performance di�erence between a naive implementation
of a pipeline and an optimized one is o�en an order of mag-
nitude; unfortunately, the optimized code is also an order of
magnitude more complex. E�cient implementations require
optimization of both parallelism and locality, but due to the
nature of stencils, there is a fundamental tension between
parallelism, locality, and introducing redundant recomputa-
tion of shared values. �ese tradeo�s must be explored to
�nd the ideal balance. �e best choice of transformations is
architecture-speci�c: implementations optimized for an x86
multicore and for a modern GPU o�en bear little resemblance
to each other. Programmers are thus forced to choose between
high performance and simple, modular, and portable code.
Worse, production-quality code requires a proliferation of spe-
cialized versions of each core algorithm, each targeted to a
di�erent architecture or fused into a di�erent pipeline2 2. For example, there are at least

four di�erent optimized implemen-
tations of the bilateral �lter in the
codebase of Adobe Photoshop [69].

. Op-
timizing image processing pipelines under these competing
pressures is challenging, time-consuming, and expensive.

I argue that the root of this challenge is that traditional
programming languages con�ate the de�nition of image pro-
cessing algorithms, and their composition into larger pipelines,
with the way their computations and data are organized on the
underlying machine. �is makes it hard to write algorithms,
compose them into larger pipelines and applications, organize
them for e�cient execution on a given machine, or reorganize
them to execute e�ciently on di�erent architectures.

I argue that the right way to program image processing
pipelines is to decouple the de�nition of the algorithm from
its organization on the underlying machine. Based on this
philosophy, this thesis presents Halide, a new language which
explicitly separates the de�nition of image processing algo-
rithms from the concerns of their organization, and a compiler
which synthesizes e�cient code implementing an algorithm
given an organization on a particular machine. �e separation
of concerns is a common goal in systems and programming
languages, but Halide is unusual in promoting choices of or-
ganization to an orthogonal, �rst-class part of the language,
directly controllable by the programmer, independently of
their algorithm.
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Halide enables much simpler programs to deliver perfor-
mance o�en many times faster than the best prior hand-tuned
C, assembly, and CUDA implementations of image processing
pipelines. �ese programs are portable across radically di�er-
ent architectures, from ARM mobile processors to massively
parallel GPUs, by making changes in the organization, where
traditionally optimized implementations are highly speci�c to
a single target architecture. �ey are also modular and com-
posable, where traditional implementations have to fuse many
operations into a monolithic whole for performance. And
this is being proven in production use. We released Halide in
2012 and continue to develop it in collaboration with a grow-
ing open source community.3 3. http://halide.ioOver the past year and a half,
dozens of engineers have written tens of thousands of lines of
Halide code, shipping in millions of devices, including Google
Glass and the latest Nexus phones, and running on tens of
thousands of data center cores.

1.1 the state of the art
To understand the challenge of e�cient image processing,
consider a 3 × 3 box �lter implemented as separate horizontal
and vertical passes. �e �rst stage, bh, computes a horizontal
blur of the input by averaging over a 3 × 1 window:

bh(x , y) = (in(x − 1, y) + in(x , y) + in(x + 1, y))/3
�e second stage, bv, computes the �nal isotropic blur by aver-
aging a 1 × 3 window of the output from the �rst stage:

bv(x , y) = (bh(x , y − 1) + bh(x , y) + bh(x , y + 1))/3
�is example is much simpler than real image processing
pipelines—in particular, it is much shorter, where real pipelines
are o�en tens or hundreds of stages deep—but it is useful to
make concrete the essential challenges. We might write this
in C++ as a sequence of two loop nests:

void blur(const Image &in, Image &bv) {
Image bh(in.width(), in.height());

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;

}
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On a 3.5ghz quad core Intel Core i7-3770, this organization
takes 47 ms/megapixel to process a 30 megapixel image.4 4. Compiled with Halide—a GCC

4.9-compiled version of this exact
code is actually slower.

An e�cient implementation on a modern CPU requires
SIMD vectorization and multithreading. However, once we
start to exploit parallelism, the algorithm becomes bottle-
necked on memory bandwidth. Simply parallelizing and vec-
torizing this version improves performance by 7.5×, relative
to a theoretical combined parallel speedup on this machine
of 32×. Computing the entire horizontal pass before the verti-
cal pass destroys producer-consumer locality—horizontally
blurred intermediate values are computed long before they
are consumed by the vertical pass—doubling the storage and
memory bandwidth required.

Improving locality requires interleaving the two stages.
For example, we can tile and fuse the loops. Tiles must be
carefully sized for alignment, and e�cient fusion requires sub-
tleties like redundantly computing values on the overlapping
boundaries of intermediate tiles. �e resulting implementa-
tion is 2× faster still, but together these optimizations have
fused two simple, independent steps into a single intertwined,
non-portable mess:

void fast_blur(const Image &in, Image &bv) {
__m128i one_third = _mm_set1_epi16(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
__m128i a, b, c, sum, avg;
__m128i bh[(256/8)*(32+2)];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
__m128i *bhPtr = bh;
for (int y = -1; y < 32+1; y++) {
const uint16_t *inPtr = &(in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8) {
a = _mm_loadu_si128((__m128i*)(inPtr-1));
b = _mm_loadu_si128((__m128i*)(inPtr+1));
c = _mm_load_si128((__m128i*)(inPtr));
sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
avg = _mm_mulhi_epi16(sum, one_third);
_mm_store_si128(bhPtr++, avg);
inPtr += 8;

}}
bhPtr = bh;
for (int y = 0; y < 32; y++) {
__m128i *outPtr = (__m128i *)(&(bv(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a = _mm_load_si128(bhPtr+(2*256)/8);
b = _mm_load_si128(bhPtr+256/8);
c = _mm_load_si128(bhPtr++);
sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
avg = _mm_mulhi_epi16(sum, one_third);
_mm_store_si128(outPtr++, avg);

}}}}}

4



I argue that the complexity in optimizing even this simple
two-stage blur algorithm is all about reorganizing its compu-
tations and intermediate data. To understand what I mean,
let’s take a more systematic look the ways this example can be
organized.

A natural way to think about organizing this pipeline is
from the perspective of the output stage (bv): how should it
compute its input (bh)? �ere are three obvious choices for
this pipeline.

in blurx out

Figure 1.1: breadth �rst - each
function is entirely evaluated before
the next one.

First, we could compute and store every required point in
bh before evaluating any points in bv. Applied to a 6 megapixel
(3k × 2k) image, this is equivalent to the loop nest:

allocate bh[2048][3072]
for all y = 0 to 2048

for all x = 0 to 3072
bh[x , y] = in[x − 1, y] + in[x , y] + in[x + 1, y]

allocate bv[2046][3072]
for all y = 1 to 2047

for all x = 0 to 3072
bv[x , y] = bh[x , y − 1] + bh[x , y] + bh[x , y + 1]

�is is the most common strategy in hand-written pipelines,
and what results from composing library routines together:
each stage executes breadth-�rst across its input before passing
its entire output to the next stage. �ere is abundant paral-
lelism available, since all the required points in each stage can
be computed and stored independently of one another, but
there is little producer-consumer locality, since all the values
of bh must be computed and stored before the �rst one is used
by bv. As before, without parallelism, the organization takes
47 ms/megapixel on a modern desktop x86; fully parallelized
and vectorized, it takes 6 ms/megapixel.

At the other extreme, the bv stage could compute each
point in bh immediately before the point which uses it. �is
opens up a further choice: should points in bh which are used
by multiple points in bv be stored and reused, or recomputed
independently by each consumer?

in blurx out

Figure 1.2: total fusion - values are
computed on the �y each time that
they are needed.

Interleaving the two stages, without storing the intermedi-
ate results across uses, is equivalent to the loop nest:

allocate bv[2046][3072]
for all y = 1 to 2047

for all x = 0 to 3072
allocate bh[−1..1]
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for all i = −1 to 1
bh[i] = in[x−1, y−1+ i]+in[x , y−1+ i]+in[x+1, y−1+ i]

bv[x , y] = bh[0] + bh[1] + bh[2]
Each pixel can be computed independently, providing the
same abundant data parallelism from the breadth-�rst strategy.
�e distance from producer to consumer is small, maximizing
locality. But because shared values in bh are not reused across
iterations, this strategy performs redundant work. �is can be
seen as the result of applying classical loop fusion through a
stencil dependence pattern: the body of the �rst loop is moved
into the second loop, but its total work is multiplied by the
size of the stencil.

in blurx out

Figure 1.3: sliding window - in-
termediate values are computed
immediately before their �rst use,
and freed immediately a�er their
last use. For each new intermediate
value produced, one is freed and
three are consumed to produce one
output value. �e computation of
new intermediate and output val-
ues is tightly coupled in a sliding
window over the image.

�e two stages can also be interleaved while storing the
values of bh across uses:

allocate bv[2046][3072]
allocate bh[3][3072]
for all y = −1 to 2047

for all x = 0 to 3072
bh[x , (y + 1) mod 3] = in[x − 1, y + 1]

+in[x , y + 1]
+in[x + 1, y + 1]

if y < 1: continue
bv[x , y] = bh[x , (y − 1) mod 3]

+bh[x , y mod 3]
+bh[x , (y + 1) mod 3]

�is interleaves the computation over a sliding window, with
bv trailing bh by the stencil radius (one scanline). It wastes
no work, computing each point in bh exactly once, and the
maximum distance between a value being produced in bh and
consumed in bv is proportional to the stencil height (three
scanlines), not the entire image. But to achieve this, we in-
troduced a dependence between the loop iterations: a given
iteration of bv depends on the last three outer loop iterations
of bh. �is only works if these loops are evaluated sequen-
tially. Interleaving the stages while producing each value only
once requires tightly synchronizing the order of computation,
sacri�cing parallelism.

in blurx out

Figure 1.5: tiles - overlapping re-
gions are processed in parallel,
functions are evaluated one a�er
another.

Each of these strategies has a major pitfall: lost locality, re-
dundant work, or limited parallelism (Figure 1.4). In practice,
the right choice for a given pipeline is almost always some-
where in between these extremes. For our two-stage example,
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Span Maximum reuse Work
Strategy (iterations) distance (ops) ampli�cation

Breadth-�rst ≥ 3072 × 2046 3072 × 2048 × 3 1.0×
Full fusion ≥ 3072 × 2046 3 × 3 2.0×

Sliding window 3072 3072 × (3 + 3) 1.0×
Tiled ≥ 3072 × 2046 34 × 32 × 3 1.0625×

Sliding in tiles ≥ 3072 × 2048/8 3072 × (3 + 3) 1.25×

Figure 1.4: Di�erent points in the choice space in Figures 1.1-1.6 each
make di�erent trade-o�s between locality, redundant recomputation,
and parallelism. Here we quantify these e�ects for our two-stage blur
pipeline. �e span measures the constraints on parallel execution, by
counting the sequential critical path assuming in�nite parallel pro-
cessors. �e Max. reuse distance measures locality, by counting the
maximum number of operations that can occur between computing a
value and reading it back. Work ampli�cation measures redundant work,
by comparing the number of arithmetic operations done to the breadth-
�rst case. Each of the �rst three strategies represent an extreme point
of the choice space, and is weak in one regard. �e fastest schedules are
mixed strategies, such as the tiled ones in the last two rows.

a better balance can be struck by interleaving the computation
of bh and bv at the level of tiles:

allocate bv[2046][3072]
for all ty = 0 to 2048

32
for all tx = 0 to 3072

32
allocate bh[−1..33][32]
for y = −1 to 33

for x = 0 to 32
bh[x , y] = in[tx × 32 + x − 1, ty × 32 + y]

+in[tx × 32 + x , ty × 32 + y]
+in[tx × 32 + x + 1, ty × 32 + y]

for y = 0 to 32
for x = 0 to 32

bv[tx × 32 + x , ty × 32 + y] = bh[x , y − 1]
+bh[x , y]
+bh[x , y + 1]

�is trades o� a small amount of redundant computation on
tile boundaries for much greater producer-consumer local-
ity, while still leaving parallelism unconstrained both within
and across tiles. (In the iterated stencil computation liter-
ature, the redundant regions are o�en called “ghost zones,”
and this strategy is sometimes called “overlapped tiling” [58,
91].) On a modern x86, this strategy is almost exactly 2×
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faster than the breadth-�rst strategy (3 ms/megapixel), using
the same amount of multithreaded and vector parallelism.
�is is because the lack of producer-consumer locality leaves
the breadth-�rst version limited by bandwidth; the tiled ver-
sion uses half the memory bandwidth of the breadth-�rst ver-
sion on this two-stage pipeline. �is di�erence grows as the
pipeline gets longer, increasing the ratio of intermediate data
to inputs and outputs, and it will only grow further as the com-
putational resources scale exponentially faster than external
memory bandwidth under Moore’s Law (Cf. Chapter 2).

blurxin out

Figure 1.6: sliding window within
tiles - tiles are evaluated in parallel,
using sliding windows internally.

�e very fastest strategy we found on this architecture
interleaves the computation of the two stages using a sliding
window over scanlines, while splitting the image into strips of
independent scanlines which are processed in parallel:

allocate bv[2046][3072]
for all ty = 0 to 2048

8
allocate bh[−1..1][3072]
for y = −2 to 8

for x = 0 to 3072
bh[x , (y + 1) mod 3] = in[tx × 32 + x − 1, ty × 8 + y + 1]

+in[tx × 32 + x , ty × 8 + y + 1]
+in[tx × 32 + x + 1, ty × 8 + y + 1]

if y < 0: continue
for x = 0 to 3072

bv[x , ty × 8 + y] = bh[x , (y − 1) mod 3]
+bh[x , y mod 3]
+bh[x , (y + 1) mod 3]

Relative to the original sliding window strategy, this sacri-
�ces two scanlines of redundant work on the overlapping tops
and bottoms of independently-processed strips of bh to in-
stead reclaim �ne-grained parallelism within each scanline
and coarse-grained parallelism across scanline strips. �e end
result is 10% faster still than the tiled strategy on one bench-
mark machine, but 10% slower on another. �e best choice
between these and many other strategies varies across di�erent
target architectures. �e ideal balance depends on the compu-
tational characteristics of the stages, and the architecture of
the target machine.
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LUT: look-up table
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SUB: subtraction
   O(x,y) ← I1(x,y) − I2(x,y)

COPY COPY

SUB

UP

DDA
COPYCOPY

UP
ADD

ADD

... ... ... ... ...The algorithm uses 8 pyramid levels

level size
w × h

w × h
2 2

w  ×   h128 128

Figure 1.7: Local Laplacian �lters.

Real pipelines are both wide and deep.

�e blur algorithm explored so far is highly simpli�ed for clar-
ity; with only two stages, it is wide (each stage operates over
many pixels), but not deep. Real image processing pipelines
are both wide and deep: they have tens to hundreds of stages,
connected in a large graph of dependencies. Consider the fast
local Laplacian �lters algorithm [10]. �e algorithm can be
decomposed into roughly 100 stages connected in a complex
graph (Figure 1.7). A hand-optimized version used in Photo-
shop is thousands of lines long, and represents only a single
step in the much larger Camera Raw pipeline. Even a clean,
reference C++ version is over 300 lines of code. As a result
of this scale, the overall space of choices for organizing the
interaction among all the stages in real algorithms like this is
enormous. �e version in the Camera Raw pipeline delivers
10× the performance of the reference implementation. �is
performance di�erence comes primarily from reorganizing the
computation, including manually multithreading and hand-
coding for SSE. In this case, the production version represents
about three months of implementation and optimization ef-
fort, but in that time the developer could explore only a few
di�erent organizations.

�ere are global consequences to the decisions made for
each stage in a larger pipeline, so the ideal choice of organi-
zation depends on the composition of stages, not just each
individual stage in isolation. �e most critical choices in the
organization, both for locality and for the granularity and
coherence of parallelism, relate to the interaction between
stages. �is is also why libraries of optimized code cannot
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deliver e�cient performance when building real image pro-
cessing pipelines: individually optimized subroutines do not
compose into an optimized whole, since they cannot reorganize
computation for locality or parallel execution across function
boundaries.

1.2 the halide solution
I believe the right way to program image processing pipelines
is to separate the intrinsic algorithm—what is computed—from
the concerns of e�ciently organizing it for machine execution—
decisions about storage and the ordering of computation. �is
is the core design philosophy of the Halide language. Con-
cretely, in the blur example, the intrinsic algorithm speci�es
the arithmetic de�nition of bh and bv at each pixel; all the
choices we explored in the previous section do not change this
algorithm, only the order in which these pixels are computed
and where their intermediate values are stored. I call these
choices of how to map an algorithm onto resources in space
and time a schedule. In the Halide approach, the programmer
speci�es an algorithm and its schedule separately. �is makes
it easy to explore various optimization strategies without ob-
fuscating the code or accidentally modifying the algorithm
itself.

Halide makes this space of schedule choices a �rst-class
part of the language, directly expressible in code. For example,
the complete optimized blur algorithm and organization is
speci�ed by the code:

Func halide_blur(Func in) {
Func bh, bv;
Var x, y, xo, yo, xi, yi;

// The algorithm
bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;

// The schedule
bv.tile(x, y, xo, yo, xi, yi, 256, 32)

.vectorize(xi, 8).parallel(yo);
bh.compute_at(bv, xo).vectorize(x, 8);

return bv;
}

�e schedule precisely de�nes a global loop nest over the re-
quired regions of all functions in the pipeline, which is synthe-
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sized by the compiler.5 5. Halide’s schedules parameterize
the space of semiperfect loop nests, a
concept I de�ne below.

�is generates nearly identical machine
code, and identical performance, to the hand-optimized C++.

In practice, this design has proven surprisingly powerful.
For example, where Adobe’s implementation of local Laplacian
�lters took three months and thousands of lines of hand-tuned,
architecture-speci�c code to implement and optimize, we built
and optimized a Halide equivalent in less than two days and
60 lines of code which ran twice as fast on the same machine.
�e added performance did not come from any compiler trick;
rather, because of the ease with which we could explore di�er-
ent organizations, within a few hours we found organizations
which the original developer did not have time to try in three
months. �en, with a few more changes to the schedule, we
generated a GPU version several times faster, still, where the
original implementation would have required months more
to rewrite in CUDA or OpenCL. Since then, Halide is now
in regular use by dozens of engineers at several companies.
Most visible is Google, where several dozen developers in the
mobile imaging and photo sharing groups have shipped over
ten thousand lines of Halide code on Glass, Android phones,
and data centers.

A language of image processing algorithms
Functional languages provide a natural model for separating
the what from the when and where. Divorced from explicit
storage, in Halide, images are no longer arrays populated by
procedures, but are instead pure functions that de�ne the value
at each point in terms of arithmetic, local iteration, and the
application of other functions. A functional representation
also allows us to omit boundaries, making images functions
over an in�nite integer domain.

Concretely, Halide models image processing algorithms
as a rooted directed acyclic graph (DAG) of image functions.
Most image functions are pure functions of their arguments
(coordinates in their domain), other functions, input images,
and scalar parameters. Edges in the graph correspond to caller-
callee dependencies that pass pixel data between image func-
tions. �e root of the graph is the output of the pipeline.

For example, Halide would model the two-stage box �lter
algorithm with a simple two-function pipeline, exactly as we
sketched it before:

11



bh(x , y) = in(x − 1, y) + in(x , y) + in(x + 1, y)
bv(x , y) = bh(x , y − 1) + bh(x , y) + bh(x , y + 1)

�at is, as a graph of 2D functions, bh is de�ned at any point
x , y as the sum of three points in the input, while the output,
bv, is de�ned at any point x , y as the sum of three points in
bh.

Functions may call other functions at arbitrary, dynami-
cally computed coordinates—accesses need not be constant,
a�ne, or otherwise constrained6 6. However, they are easier to ana-

lyze when they are.
. Functions may also be it-

eratively re-de�ned at potentially dynamic locations in their
domain via a series of recursive update de�nitions, which are
layered on top of the initial de�nition. �is allows e�cient ex-
pression of operations not easily modeled as statically-unrolled
chains of pure gather stages—things like histograms, reduc-
tions, and scans—but this model of computation is still in-
tentionally restricted. In particular, recursion is only allowed
within a single function, using update de�nitions, and the
recursion is bounded to a �xed depth before it begins by an
explicit reduction domain. As a result, Halide’s language of al-
gorithms is not Turing-complete, but is amenable to extensive
analysis and transformation.

A language of schedules
In the Halide representation, the algorithm only de�nes the
value of each function at any point; a schedule speci�es speci-
�es the organization of computation over all points in all func-
tions. Halide’s schedules specify the organization of computa-
tion as a loop nest over the required regions of all functions in
an algorithm. �ey specify the storage and communication of
intermediate data as an allocation granularity within this loop
nest for each function’s results, and the linearized mapping
of each function’s domain into addresses within its allocation.
Halide represents schedules as a set of four choices for each
function in the algorithm:

• �e domain order, or order in which points in the domain of
the function are evaluated, including row- vs. column-major
orders, tiling, and the exploitation of parallelism and mapping
onto SIMD execution units.

• �e storage order, or layout of the bu�er into which the eval-
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uation of a function is stored.
• �e computation granularity at which points in the domain

of one function are evaluated relative to points in the domain of
the others that depend on it, which interleaves their execution.

• �e storage granularity of intermediate storage for function
results, which dictates whether a value is recomputed, or from
where in the memory hierarchy it is loaded, at each point a
function is used.

For example, the naive row-major, breadth-�rst organiza-
tion of the simple blur algorithm is speci�ed by the following
choices:

bh:
domain order:

y → x
x ∶ parallel
y ∶ parallel

storage order: y → x
compute at: root granularity
store at: root granularity

bv:
domain order:

y → x
x ∶ parallel
y ∶ parallel

storage order: y → x
compute at: root granularity
store at: root granularity

which describes the organization:

allocate bh
parallel for bh.y

parallel for bh.x
compute bh(bh.x, bh.y) using in

allocate bv
parallel for bv.y

parallel for bv.x
compute bv(bv.x, bv.y) using bh

Once these order and granularity choices are �xed, the size
of the regions computed for each function, and the depen-
dence order between producers and consumers, are dictated
by and inferred from the algorithm7

7. In the blur examples, the fact
that bh must be computed before
bv, and the minimum required
regions of bh needed by bv at any
given granularity of interleaving,
are implied by the de�nition of the
algorithm in → bh → bv. �ese are
not exposed as choices, and are not
speci�ed by the schedule.

. Required regions are
modeled conservatively as simple multidimensional intervals
(axis-aligned bounding boxes of the dimensionality of the
function). With region de�nitions symbolically expanded, the
simple blur organization becomes:

// the required region of bv, given as min and max in x and y,
// is a parameter to the pipeline
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bh.y.min = bv.y.min − 1
bh.y.max = bv.y.max + 1
bh.y.extent = bh.y.max − bh.y.min
bh.x.min = bv.x.min
bh.x.max = bv.x.max
bh.x.extent = bh.x.max − bh.x.min
allocate bh[bh.y.extent][bh.x.extent]
parallel for bh.y = bh.y.min to bh.y.max

parallel for bh.x = bh.x.min to bh.x.max
compute bh(bh.x, bh.y) using in([bh.x−1, bh.x+1], bh.y)

allocate bv[bv.y.extent][bv.x.extent]
parallel for bv.y = bv.y.min to bv.y.max

parallel for bv.x = bv.x.min to bv.x.max
compute bv(bv.x, bv.y) using bh(bv .x , [bv .y− 1, bv .y+ 1])

Halide schedules describe semiperfect loop nests.
Conceptually, each function is computed by a perfectly-nested
loop[41] which scans points in the required region of its do-
main. Because required regions are axis-aligned bounding
boxes, the bounds of di�erent dimensions of a function’s do-
main cannot be interdependent; the bounds of the whole do-
main must be �xed before entering its loop nest. However,
the overall organization is a sequence of loop nests which com-
putes the required regions of all functions. In general, the
granularity at which a function is evaluated—its computation
granularity—is speci�ed as a level in the loop nest evaluating
the domains of its callers. As a result, the loop nest for each
function may be inserted at any level of the loop nests of its
caller functions, creating an imperfect loop nest over all re-
gions of all functions. �e end result is that Halide’s schedules
are restricted to a subset of all possible orders of execution over
the required regions of each function which we call semiperfect
loop nests.

Formally, I de�ne a semiperfect loop nest as a sequence of
statements where:

• �e collection of loops and statements which compute the
domain of any single function form a perfectly-nested loop
with respect to each other8 8. Ignoring statements and loops

which compute other functions.
. �at is, each block is either a

sequence of non-loop statements with a single entry and single
exit, or one perfectly-nested loop containing exactly one block
as its body.
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• �e loop nests for each function are interleaved at any gran-
ularity and in any order which respects producer-consumer
dependence between functions.

• �e allocation of the bu�er into which a function’s results are
stored are at a granularity which encloses where the function’s
loop nest is interleaved.

A tiled and interleaved organization of the simple blur algo-
rithm, like that used in the hand-optimized C++ implementa-
tion shown earlier, is speci�ed by the schedule:

bh:
domain order:

y → x
compute at: bv.xo
store at: bv.xo

bv:
domain order:

split y → yo , yi by 8
split x → xo , xi by 8
yo → xo → yi → xi
yo ∶ parallel

�e domain orders separately describe a local perfect-loop
nest over the required region of each function:

for bh.y
for bh.x

compute bh(bh.x, bh.y) using in

and

parallel for bv.yo
for bv.xo

for bv.yi
for bv.xi

compute bv(bv.xo × 8+ bv.xi , bv.yo × 8+ bv.yi) using
bh

�en, the compute and storage granularities chosen for bh de-
�ne the levels in the loop nest of bv at which the computation
and storage of the �rst function should interleaved, giving the
semiperfect loop nest which computes the entire pipeline:

allocate bv
parallel for bv.yo

for bv.xo
allocate bh
for bh.y

for bh.x
compute bh(bh.x, bh.y) using in
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for bv.yi
for bv.xi

compute bv(bv.xo × 8+ bv.xi , bv.yo × 8+ bv.yi) using
bh

Halide’s schedules only model a subset of all possible
organizations.
Halide’s schedules only model part of the space of all possible
organizations of computation and storage for pipelines ex-
pressible as Halide algorithms. In particular, they only express
some possible interleavings of the computations in an algo-
rithm. Computations can only be interleaved as allowed by
semiperfect loop nests, expressible through the space of mean-
ingful domain order and computation granularity choices for
each function in an algorithm. Computation cannot be inter-
leaved at �ner granularity than the evaluation of a function at
a point in its domain. Finally, the required region of each func-
tion is tracked conservatively as a multidimensional interval,
which may include points not actually required to compute
the output of the pipeline.

�ese constraints restrict the space of possible organiza-
tions representable in Halide, but they provide a model which
is simple, from which it is easy to generate fast code, whose
meaning and performance is reasonably easy to understand,
which can express most commonly-used patterns in optimized
image processing code, and which naturally maps to GPU and
SIMD multicore programming models.

Code generation from scheduled algorithms
Once the programmer has speci�ed an algorithm and a sched-
ule, our compiler combines them into an e�cient implemen-
tation. Optimizing execution for a given architecture requires
modifying the schedule, but not the algorithm. �e repre-
sentation of the schedule is compact and does not a�ect the
correctness of the algorithm, so exploring the performance
of many options is fast and easy. �e schedule can be written
separately from the algorithm, by an architecture expert if nec-
essary. Halide can most �exibly schedule operations which are
data parallel, with statically analyzable access patterns, while
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still allowing the reductions, scans, and bounded irregular
access patterns that occur in image processing.

1.3 dissertation overview
�e rest of this thesis motivates, explains, and evaluates the
design and implementation of the Halide language as follows:

• Chapter 2 provides broader context for the problem of organiz-
ing computation for e�ciency in image processing pipelines.

• Chapter 3 describes Halide’s language for functional algorithm
speci�cation.

• Chapter 4 explores the problem of organizing computation in
image processing pipelines.

• Chapter 5 describes Halide’s model for the organization of
computation, and its embodiment in the language of schedules.

• Chapter 6 demonstrates the application of Halide schedules
to describe and explore the space of optimized organizations
in real image processing pipelines, and discusses methods for
�nding e�cient schedules for Halide algorithms.

• Chapter 7 presents an algebraic view of Halide’s schedule space.
• Chapter 8 explains how the Halide compiler translates func-

tional algorithms and optimized schedules into e�cient ma-
chine code for x86 and ARM, including SSE and NEON SIMD
instructions, and CUDA and OpenCL GPUs, including syn-
chronization and placement of data throughout the specialized
memory hierarchy.

• Chapter 9 evaluates Halide implementations of a range of ap-
plications composed of common image processing operations
such as convolutions, histograms, image pyramids, and com-
plex stencils. Using di�erent schedules, we compile them into
optimized programs for x86 and ARM CPUs, and a CUDA
GPU. For these applications, the Halide code is compact, and
performance is state of the art. �is chapter additionally evalu-
ates an autotuner for automatically scheduling programs using
stochastic search, and discusses several cases of the adoption
and deployment of Halide in the real world.

• Chapter 10 puts Halide in the context of related work in pro-
gramming languages, compilers, and image processing.

• Chapter 11 discusses and analyzes our experience with Halide,
and suggests directions for future work.
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• A deeper, example-driven introduction to using the Halide
language is provided as an appendix.
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2
THE OPPORTUNITY AND
CHALLENGE OF IMAGE
PROCESSING

Image processing matters for much more than just photog-
raphy: from self-driving cars, to high throughput gene se-
quencing, to neural scanning and connectomics, today most
complex sensing uses imaging under the hood [79, 86, 5]. Im-
age sensors o�er a simple, high resolution building block for
digitizing the physical world, including both spatial and spec-
tral information, while image processing and computer vision
let us analyze and comprehend the captured data in numerous
ways. As a result, imaging is used for everything from local-
ization and tracking to human-computer interaction to vital
sign monitoring, tra�c analysis, mapping, bar code scanning,
and industrial defect detection [46, 80, 59, 55, 78].

�e resulting explosion of sensors o�ers an enormous op-
portunity to build graphics and imaging applications orders
of magnitude richer than any we have today; however, doing
so will require exponentially more computation. For example,
replacing video with real-time 4D light �elds, imaging the con-
nectome of a complete human brain, and building machines
which pervasively understand the visual world all require or-
ders of magnitude more computational power than we have
today. Orders of magnitude more energy e�ciency will let us
leverage cheap, high data rate cameras for everything from
human-computer interaction to search, and move powerful
image processing and analysis into our glasses and clothing
where it will transform how we see, think, remember, and are
entertained. Always-on cameras will passively monitor our
vital signs and health every moment of our lives. Even existing
applications—from Instagram and Photoshop, to object detec-
tion and recognition, to Microso� Kinect, to personal genome
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sequencing—all demand extremely high performance to cope
with the rapidly rising resolution, frame rate, and sheer num-
ber of image sensors, as well as the increasing complexity of
imaging and vision algorithms. At the same time, the cameras,
mobile devices, and data centers on which these applications
run require extremely high e�ciency to stay within thermal
limits, or to last more than a few minutes on battery power.

Unlike other domains of low-power, high-throughput com-
putation, the answer cannot simply be traditional hardware
specialization: while radio basebands and video CODECs
implement slow-changing standards which can be built into
custom hardware, image processing algorithms are rapidly
evolving and diverse, requiring high performance so�ware
implementations. Neither can we simply ship pixels to the
cloud for processing: it takes a cellular radio four orders of
magnitude more energy to transmit each pixel than a sensor
spends to capture it (Figure 2.2).
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Figure 2.1: Projected ASIC logic
density (millions of 4-input NAND
gates per mm2) (Source: ITRS
Report, 2013 [1]).

Future imaging systems need large capacity for so�ware-
controlled image processing, as close to the image sensor as
possible. �e good news is that the transistor scaling trends
we have come to call “Moore’s Law” are alive and well: we can
expect more than an order of magnitude increase in density
over the next decade (Figure 2.1); the challenge will be in
keeping tens of billions of transistors busy.

Performance requires complex tradeo�s between
parallelism, locality, and the total amount of
computation.
One of the major challenges is exposing more and more par-
allelism for future hardware to exploit [81]. Super�cially, this
seems easy: imaging algorithms are enormously data-parallel,
which should make them easy to scale on highly parallel hard-
ware. �e real challenge is that their millions of data-parallel
computations are not independent—they need to be able to
communicate with each other, and to share data over time
through memory. Real imaging and vision algorithms have
complex dependencies, and are limited by locality (the dis-
tance over which data has to move, e.g., from nearby caches or
far away main memory) and synchronization. �e same hard-
ware trends which have pushed us from uniprocessors to lots of
parallel cores have made communication and data movement—
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ALU op 1.0 pJ–4.0 pJ 1×

Move 10mm across
chip (LVDS) 2.6 pJ–10 pJ 2.5×

Read from SRAM 5 pJ–20 pJ 5×

Move 10mm across
chip (CMOS) 26 pJ–44 pJ 25×

Send o� chip 200 pJ–800 pJ 200×

Send to DRAM 200 pJ–800 pJ 200×

Read from image
sensor (4x8b) 3.2 nJ–4 nJ 4,000×

Send over LTE 50 uJ–600 uJ 50,000,000×

Figure 2.2: Energy cost of di�erent operations on 32-bit values in a
leading 45nm foundry process . Communication and storage are signi�-
cantly more expensive than computation, and their cost is proportional
to the distance data is moved.

both within a chip and over a network—dominate the cost
of computation, and limit the gains realized from shrinking
transistors. Today, relative to the energy cost of doing some
arithmetic operation on a piece of data, loading or storing that
data in a small local SRAM like a cache can be several times
more expensive; moving the result 10 millimeters across the
chip is an order of magnitude more expensive; and moving it
to or from o�-chip RAM is three to four orders of magnitude
more expensive than computing the value in the �rst place
(Figure 2.2). �is disparity is only growing over time.

Because of the inversion in the cost of communication and
computation, it can o�en be most e�cient to make surprising
tradeo�s, like redundantly recomputing values used in multi-
ple places instead of storing and reloading them from memory.
In this way, there is a tension between locality and the total
amount of computation performed: it is possible to improve
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locality by redundantly recomputing values. Further, we �nd
that this fundamental tension exists between all three factors
we want to minimize for performance and e�ciency:

• order constraints, which limit parallelism;
• data movement, which reduces locality;
• and the total amount of work performed.

tradeoff
space

parallelism locality

redundant
work

Figure 2.3: Parallelism, locality,
and redundant work are o�en in
tension, and must be traded o�
with each other to maximize the
overall e�ciency of an algorithm on
a particular architecture.

We can sacri�ce parallelism to tightly couple producers and
consumers; we can save and reload values from far away to
avoid redundant work; or we can recompute values near in-
dependent consumers to avoid moving them long distances.
�e only thing we can not do in the presence of nontrivial
dependencies among operations is simultaneously minimize
all three.

Optimization is challenging because these are not discrete
tradeo�s. �e best strategies balance them all in di�erent ways
in di�erent parts and at di�erent granularities of an overall sys-
tem. �e ideal balance depends on the interaction between the
individual algorithms, the hardware architecture onto which
they are being mapped, and the larger pipeline into which
they are composed. �e best tradeo�s for a given pipeline on
a given architecture are rarely obvious, and �nding them o�en
requires extensive experimentation.

Tradeo�s between parallelism, locality, and redundant
computation are determined by the organization of
computation.
I argue that, driven by these tradeo�s, the e�ciency and per-
formance of an application are determined not just by the
algorithm and the hardware architecture on which it runs,
but critically also by the organization of the computations
and data on that hardware. For algorithms with the same
complexity—even the exact same set of arithmetic operations
and data—executing on the same hardware, the order and gran-
ularity of execution and placement of data can easily change
performance by an order of magnitude because of locality and
parallelism.

Consider a simple loop nest which computes a 2D grid
of values. Because of locality, switching from column-major
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to row-major execution order can change performance by an
order of magnitude:

⇒

I argue that these are, in fact, the same algorithm, reorganized
to compute its values and access memory in a di�erent order.

�is simple reorganization is well known, and something
many compilers will do today. In this thesis, I will model and
exploit a much wider range of organizations. Especially in
multi-stage algorithms like image processing pipelines, the
di�erence in e�ciency between di�erent organizations comes
not from the optimization of individual stages in isolation, but
from the global interleaving of computations and data. For ex-
ample, computing each stage completely before the next—even
with the optimal inner loop, spread over thousands of threads
on a GPU—destroys producer-consumer locality, repeatedly
pushing intermediate data to and from main memory.

Exploring the space of potential optimizations is challeng-
ing because making di�erent tradeo�s requires globally reor-
ganizing the computations and data throughout a pipeline. In
a traditional language, this means rewriting all of the code.
Even once you �nd an e�cient organization, you can rarely
reuse it in a new context: because locality requires interleaving
operations and data across stages, libraries of even the best
optimized subroutines do not compose into e�cient pipelines;
and the best organization of a given pipeline varies enormously
across common architectures, from mobile multicores to server
GPUs. �is challenge is combinatorial: the complexity scales
with the combination of individual algorithms, pipelines, and
target architectures. As a result, e�cient image processing
code is hard to write, modify, port across architectures, or com-
pose into new pipelines. Worst of all, the sacri�ces program-
mers must make to the gods of performance and e�ciency—in
the form of painfully complex, manual reorganization of com-
putations and data, for each system and each architecture—
will only grow more dear as the trends driven by “Moore’s
Law” scaling demand ever more extreme transformations for
parallelism and locality just to keep each new generation of
hardware busy.
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Halide de�nes a new way of programming to
address these challenges.
To address this, we propose a new programming language with
a unique programming model. Halide decouples choices of or-
ganization from the de�nition and composition of algorithms.
Halide de�nes image processing algorithms as graphs of pure
functions from pixel coordinates to values. �is de�nes the by
which to compute each pixel value, but excludes all choices of
the order of computation of pixels within each function, and
their storage and communication through memory. Halide
then describes the organization of the algorithm separately
from their arithmetic de�nition. It elevates organization to a
�rst-class feature in the programming model, using an explicit
co-language of schedules. Schedules are de�ned by annotating
functions used in a pipeline with a handful of basic primitives;
complex organizations are described by composing multiple
primitive annotations in di�erent ways.

�e explicit separation of algorithm de�nition from organi-
zation dramatically simpli�es the de�nition and composition
of image processing pipelines. �e ability to describe numer-
ous complex organizations of a single algorithm by composing
a handful of scheduling primitives makes exploring the enor-
mous space of organizations to �nd e�cient implementations
on di�erent architectures dramatically faster and easier than
it is in traditional languages used for high performance im-
age processing so�ware. �e end result are simpler programs,
which can match or exceed the performance of state-of-the-
art hand-tuned implementations, while being portable and
scalable across a wide range of architectures with di�erent
balances of parallelism, locality, and recomputation vs. storage
cost.
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3
REPRESENTING IMAGE
PROCESSING
ALGORITHMS

�e Halide language is best thought of in two parts: a language
of algorithms, and a complementary language of schedules.
�is chapter describes Halide’s representation of image pro-
cessing algorithms. To simplify analysis, and to maintain the
�exibility to apply many di�erent schedules to a given algo-
rithm, we de�ne a new domain-speci�c representation for
image processing algorithms. �e language of algorithms is
explicitly designed to omit speci�cation of the order of eval-
uation and the allocation and layout of intermediate storage.
�is gives both the programmer and the compiler extreme �ex-
ibility in scheduling when and where these functions should
be computed and stored. �is representation also dramatically
simpli�es common image processing algorithms relative to
alternatives like C and CUDA, and simpli�es the composition
of large algorithms from many parts.

Halide represents image processing operations in a simple
functional form. In a traditional imperative language, “images”
are represented as mutable arrays, passed between subroutines
which explicitly iterate over pixels. In Halide, images are in-
stead functions from coordinates to values; pixels are de�ned
by how they are computed, not by where they are stored. We
represent images as pure functions de�ned over an in�nite
integer domain, where the value of a function at a point repre-
sents the color of the corresponding pixel. Imaging pipelines
are speci�ed as chains or graphs of functions. Functions may
either be simple expressions in their arguments, or a sequence
of iterative updates applied over a bounded domain. �e ex-
pressions which de�ne functions are side-e�ect free, and are
much like those in any simple functional language, including:
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• arithmetic and logical operations;
• if-then-else expressions;
• references to named values, which may be the free variables in

a function’s de�nition, Uniform values, or expressions de�ned
by a functional let construct;

• calls to other functions, including loads from external images
or scalar calls to external C ABI functions.

For example, we can de�ne a two-dimensional function f :
f (x , y) = x + y
f is de�ned in terms of the free variables, x and y, mapping
its two-dimensional domain. �ese variables, bound on the
le�-hand side of the de�nition, may be used in the expression
on the right-hand side to de�ne the value at the corresponding
coordinate. �eir range is not speci�ed, and the function may
be evaluated anywhere in its in�nite domain. Points in the
function are free to be evaluated, cached, duplicated, or thrown
away and recomputed without a�ecting their meaning.

Image processing algorithms are built by composing func-
tions together into graphs, using �rst-order function applica-
tion. For example, we can compute an (unnormalized) 3 × 3
box �lter of the input in with a simple two-stage pipeline:

bh(x , y) = in(x − 1, y) + in(x , y) + in(x + 1, y)
bv(x , y) = bh(x , y − 1) + bh(x , y) + bh(x , y + 1)

Each function is de�ned over its own in�nite domain, and
the algorithm does not specify the regions to be computed.
Rather, the compiler automatically analyzes the dependence
between functions (using a bounds analysis, discussed in Chap-
ter 8); given the output region a program wants to compute,
all intermediate bounds are inferred. �is is important for two
reasons:

1. It leaves the compiler free to compute more of a given function
than is required, which is o�en useful to improve alignment or
simplify control �ow, and can be controlled by the schedule.

2. It dramatically simpli�es the algorithm code, eliminating most
complex indexing and explicit boundary handling.

Language primitives
�e core primitives of the language are:
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• Func, a pure function, de�ning image values over some do-
main.

• Var, a free variable in the domain of a function.
• IterDom, a multi-dimension iteration domain, e�ectively an

ordered list of bounded variables.[ˆIn the current implemen-
tation, what I here call an IterDom is instead named RDom.]

• Expr, an expression de�ning the value of a function in terms
of the free variables which make up its domain, as well as
constants, iteration domains, parameters, and the application
of other functions.

• Image, an immutable reference to an external memory bu�er,
visible to the algorithm as a function which may be applied
only over the �nite domain given by the image’s dimensions.

• Param, a runtime variable parameter, providing a scalar argu-
ment to the algorithm.

All expressions are unambiguously typed as �oating point,
or signed or unsigned integer values, of a speci�c bit width,
or Tuples of these atomic types. In the current implementa-
tion, only the most commonly supported widths are allowed1 1. 16, 32, & 64-bit �oating point

8, 16, 32, & 64-bit signed and un-
signed integer

.
Boolean values, as returned by logical expressions, are of type
UInt(1). �e types of all intermediate expressions are inferred
from their operands using type promotion rules similar to C,
and may be controlled by explicit arithmetic cast operations .2 2. �e exact type promotion rules

are more conservative than C about
implicitly widening data types,
since this o�en impairs vectorized
code quality.

Expressions may only describe these simple scalar numeric
types, or static tuples thereof; there are no pointers, references,
or more complex data structures like lists or trees. �e core
Halide model allows only simple �rst-order functions, with-
out recursion: functions simply map from integer coordinates
to a scalar or statically-sized tuple result. Higher-order func-
tions, general recursion, and dynamically-sized tuples are not
allowed.

�is representation is simpler than most functional lan-
guages, but it is su�cient to describe a wide range of image
processing algorithms. �ese constraints enable extremely
�exible analysis and transformation of algorithms during com-
pilation. In this representation, all applications of a callee are
statically analyzable, and they are always free to be evaluated
before any applications of a caller (properties we will exploit
to e�ciently and �exibly schedule the execution of generated
code). Constrained versions of more advanced features such
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as higher-order functions are added as syntactic sugar, but
they do not change the underlying representation.

Iterative functions
In order to express operations like histograms, convolution by
dynamically-sized kernels, summations, and scans [12], Halide
also needs to express iterative or recursive computations. To
do so, we introduce two additional primitives to the language:

• Beyond their initial pure de�nition, functions may have one
or more recursive update de�nitions, which rede�ne the value
at points given by an output coordinate expression in terms of
prior values of the function. �eir initial pure de�nition is
treated as the initial value function, which speci�es a value at
each point in the output domain as a pure function of its input
coordinates. All updates must be applied before the function
may be used by any other function. �e value of the function
is de�ned at any point as the result of any updates which a�ect
that point, applied in the order of their de�nition, to the initial
value.

• Beyond pure variables, updates may be de�ned in terms of
an iteration domain of one or more dimensions. An update
de�ned with an iteration domain is iteratively evaluated and
reapplied for every point in the domain. �e programmer
speci�es a minimum value expression and an extent expression
for each dimension of the iteration domain, as well as the
relative order of the dimensions. �e bounds of the iteration
domain must be de�ned prior to the function in which it is
used, and cannot depend on the function’s value.

For example, we can compute the sum of all values over an
entire image:

IterDom r(0, in.width(), 0, in.height())
s() = 0
s()+ = in(r.x , r.y)

Update de�nitions may also include pure variables, as well as
iteration domain variables. For example, we can convolve an
image by a variable-sized box:

Param w // dynamic size parameter
Var x , y
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IterDom r(−w , 2 ×w ,−w , 2 ×w)

// iteration over w ×w kernel in a single function:
f (x , y) = 0
f (x , y)+ = in(x + r.x , y + r.y)

Together, these two extensions provide an imperative escape
hatch in Halide’s otherwise purely-functional model of algo-
rithms. �ey let Halide describe a range of algorithms outside
the scope of traditional stencil computation, but essential to
image processing pipelines, in a way that still isolates the order
constraints of imperative execution and bounds side e�ects.3 3. �e e�ects of these imperative

features are isolated and bounded
by the combination of the fact that
functions may never be updated
a�er they are used, and the fact that
iteration domains must be bounded
independently of and prior to the
evaluation of the function in which
they are used.

From the perspective of a caller, the result of the reduction is
de�ned over an in�nite domain, like any other function. At
points which are never speci�ed by an output coordinate, the
value is the initial expression. �e pure variables used in each
update can still be evaluated in any order, as with pure func-
tions; if an update de�nition is associative, even the iterative
dimensions can be reordered or evaluated in parallel without
changing the function’s meaning.

In order to isolate the e�ect of updates, and provide schedul-
ing �exibility for their computation without changing their
meaning, there is a subtle constraint on the de�nition of up-
date steps: pure variables in the le� hand side of an update
de�nition must appear unadorned (as bare variables, not com-
pound expressions) in the same arguments of the recursive
calls to the function on the right hand side of the update de�-
nition. For example:

Func f ; Var x; Expr e
f (x , e) = x + f (x , e + x) // ok
f (x , e) = x + f (x + 1, e + x) // illegal
f (x , e) = x + f (e , x) // illegal

Scope
�e speci�c, constrained scope of this programming model
gives enormous �exibility in scheduling. Several constraints
are particularly important to note:

1. Halide only models �rst-order functions over regular grids,
up to �ve dimensions in the current implementation. �e pro-
gramming model trivially generalizes to higher-dimensional
functions, but the current implementation’s assumption of
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dense, regular storage and iteration domains does not practi-
cally scale to high dimensionality.

2. Halide focuses on feed-forward pipelines. It can express scat-
ters and iterative mutations, but these have bounded depth
and range at the time they are invoked. �is means the Halide
programming model is not Turing-complete, because it would
need in�nite-sized pipelines to express arbitrary complexity
computations.4 4. Intuitively, iteration domains

guarantee that all iterations have
bounded extent independent of
the execution of the expressions
they iterate. As a result, all Halide
algorithms are guaranteed to halt,
and cannot be Turing-complete.

3. Halide omits most explicit conditional control �ow, allowing
only conditional selection among multiple, potentially eagerly
evaluated expressions. �is maps well to the functional model
of image processing, and makes vectorized code generation
simple and �exible, but it can cause unnecessary evaluation of
expressions which are never used.

4. To work well, the compiler needs to be able to infer accurate
dependence patterns for how functions access each other. For
most patterns, our analyses are general and precise. However,
in some cases, the programmer might need to explicitly clamp
an index expression to a reasonable range to avoid allocating
or computing unnecessary values.

�is representation is su�cient to describe a wide range
of image processing algorithms, and these constraints enable
�exible analysis and transformation of algorithms during com-
pilation. Critically, this representation is naturally data parallel
within the domain of each function. Also, since functions are
de�ned over an in�nite domain, boundary conditions can be
handled safely and e�ciently by computing arbitrary guard
bands of extra values as needed. Guard bands are a common
pattern in image processing code, both for performance con-
cerns like alignment, and for safety. Wherever speci�c bound-
ary conditions matter to the meaning of an algorithm, the
function may de�ne its own.

Di�erences from simple stencils
As constrained as it is, our model of algorithms more general
than the well-studied domain of iterated stencil computations
in several ways which are essential to expressing many real
image processing pipelines.

Where stencil computations access their inputs through
a single, static, shi�-invariant set of taps (the stencil), Halide
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functions can also gather values from dynamically computed
or data-dependent coordinates in other functions.

�rough update de�nitions, Halide pipelines can include
iteration more general than the time axis of an iterated sten-
cil computation. In particular, a function’s update steps may
update each point in the domain di�erently. �is allows the
formulation, for example, of spatially iterative algorithms like
scans, as opposed to iterating only in the temporal dimension,
uniformly over all spatial points, as in iterated stencil com-
putations. Further, the coordinates to be updated in a given
iteration may be computed or data-dependent, allowing gen-
eral scatters. �e bounded iteration domain tightly constrains
these more general computational patterns within the overall
pipeline.

A simple histogram equalization algorithm combines mul-
tiple iterative functions, expressing a histogram reduction and
a sum scan, with a data-dependent gather. All of these opera-
tions are beyond the scope of simple stencil computations:

ImageParam in(UInt(8), 2)
IterDom r(0, in.width(), 0, in.height()), ri(0.255)
Var x , y, i; Func histogram, cdf , out
histogram(i) = 0
histogram(in(r.x , r.y))+ = 1
cdf (i) = 0
cdf (ri) = cdf (ri − 1) + histogram(ri)
out(x , y) = cdf (in(x , y))

In detail, the histogram populated by a scattering update de�-
nition which iterates over all pixels in the input, a recursive
sum scan integrates the histogram into a cumulative distribu-
tion function, and a pure function remaps the input using a
data-dependent gather from the CDF. �e iteration bounds
for the histogram reduction and the sum scan are expressed by
the programmer using explicit iteration domains (IterDoms):
the �rst (r) over the domain of the input image, the second
(ri) over the domain of all histogram buckets.

Finally, where iterated stencil computations recursively ap-
ply one or a small number of stencils numerous times, image
processing pipelines are large graphs of di�erent functions—
di�erent stencils, as well as more general gathers, scatters,
and iterative functions—each of which is only applied once.
Halide’s pure functions express the common case of a sin-
gle stencil iteration, while the call graph describes the entire
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pipeline. Iterated stencils can still be expressed as iterative
update functions, but this is the exception, not the rule, in
image processing.

Embedding & Metaprogramming
�e current implementation of Halide is an embedded DSL
in C++. It is a simple type-based embedding.5 5. �ere is also a Python embedding

with a similar implementation.
Halide code

is C++ code written using the Func, Var, and other types to
construct a Halide algorithm.6 6. �e core C++ types for de�ning a

Halide program are: Func, Var, Expr,
Image, Param, ImageParam, and IterDom

(called RDom in existing literature).

Function and expression def-
initions are embedded in C++ syntax using simple opera-
tor overloading on the corresponding types. For example,
Expr::operator*(int) is overloaded such that e*2 evaluates not
to a concrete value, but to another Expr symbolically represent-
ing the operation e × 2 in Halide IR.

In practice, Halide is best thought of as a staged language[82]
in C++. �e run-time of this C++ code is really elaboration-
time of the Halide algorithm de�nition. �e complete data
structure representing a fully-elaborated Halide pipeline is
then passed, along with a corresponding schedule, to Halide’s
compilation logic to emit machine code, either into memory
for just-in-time execution, or to an object �le on disk for link-
ing into a separate program.

As a consequence of this staged nature, C++ allows power-
ful metaprogramming of Halide programs.7 7. �is should not be confused with

so-called “template metaprogramming[4],”
which is not used anywhere in
Halide’s implementation.

C++ logic which
evaluates to concrete numeric values become compile-time
constant values in the Halide program. For example, e*sqrtf(2.0f)
evaluates to the expression e × 1.4142 at elaboration time; the
resulting Halide algorithm will never execute a square root.

More generally, while control �ow is highly constrained
in Halide, arbitrary C++ control �ow can execute during elab-
oration of a Halide program to simplify or parameterize its
construction. For example, we could write a C++ function
which programmatically constructs a chain of simple box �l-
ters of parameterized length, applied to an input function and
returning an output function:

Func boxchain(Func in, int length) {
Func cur, prev = in;
Var x, y;
for (int i = 0; i < length; i++) {

cur(x,y) = 0.5f*prev(x-1,y) + 0.5f*in(x+1,y);
prev = cur;

}
return cur;
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}

�is is a regular C++ function, operating on objects of Halide
types, not itself a Halide algorithm. �e function can be ap-
plied to di�erent input functions, with di�erent values for the
length parameter. At any given invocation, it will elaborate
a statically unrolled chain chain of Halide functions, of the
speci�ed length, beginning with the given input function. �e
resulting Halide algorithm is a �at sequence of functions, with
no control �ow; the C++ for loop, subroutine interface, and
length argument are never part of the compiled or executed
Halide pipeline.
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4
PERFORMANCE
TRADEOFFS AND THE
ORGANIZATION OF
COMPUTATION

My thesis argues that the performance of image processing
pipelines is limited by fundamental tradeo�s between paral-
lelism, locality, and redundant computation; that these tradeo�s
are determined by the way computations and data are orga-
nized; and that we can more e�ectively program and optimize
image processing pipelines by explicitly modeling the space
of possible organizations as part of the program, and decou-
pling the description of organization from the de�nition of
the underlying algorithm. �is chapter will de�ne a model
of the problem of organizing computation in image process-
ing pipelines. I will show how the characteristics we wish
to optimize—parallelism, locality, and the amount of work—
emerge from choices of the organization of computation, and
how they are in tension with each other. Chapter 5 will build
on this to de�ne a compact but expressive language for the
space of organizations, and demonstrate how we can apply
it to describe optimized implementations by balancing the
tradeo�s fundamental to this domain.

To understand these ideas, �rst, it is useful to de�ne exactly
what I mean by “algorithm” and “organization” in the context
of feed-forward image processing pipelines.

4.1 algorithms
�e intrinsic algorithm de�nes each value as an arithmetic
expression and its dependencies on other values. Formally,
I model the algorithm as a directed acyclic graph (DAG) of
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arithmetic expressions. For example, a simple dot product
corresponds to a DAG which multiplies and accumulates the
terms of two vectors (Figure 4.1).

x1 x2 x3
y1 y2 y3

× × ×

+

Figure 4.1: A 3D dot product as a
task graph.

A three pixel box �lter over a
�ve pixel input, with three output pixels, is represented by the
DAG in Figure 4.2, where each node in the in row corresponds
to an input pixel, and each node in the outt row computes the
average of its three inputs by evaluating the expression:

i1 i2 i3 i4 i5

o1 o2 o3

in

out

Figure 4.2: Blur algorithm as a task
graph.

out i = (ini + ini+1 + ini+2) ×
1
3

noindent �is DAG representation models the class of
“straight-line” programs, su�cient to describe many numer-
ical algorithms, but it cannot express the Turing-complete
generality of “branching” programs [76]. Conditional and
data-dependent evaluation are allowed through conditional
expressions, but the topology of the program’s dependence
graph is �xed. For example, we can constrain the range of an
output value by specifying each as:

1 2 3 4 5

1 2 3

in'

out'

Figure 4.3: Algorithms have �xed
structure, whether or not de�ned
using conditional expressions.

out′ i = let v = (in′ i + in′ i+1 + in′ i+2) ×
1
3 in

if v < 0 then 0
else if v > 1 then 1
else v

�e value of out i depends conditionally on the result of the
box �lter (v), but the control �ow and dependence of the algo-
rithm’s DAG is una�ected. You can think of this as predicated
execution. �e structure of the DAG for three pixels of out′
computed from �ve pixels of in′ (Figure 4.3) is unchanged
from the non-conditional version; only the expressions at the
nodes, and the values they actually compute, have changed. In
this sense, data values may be conditional on inputs, but their
control and connectivity remain �xed (Figure 4.3). �ere may
still be heterogeneous structure, but it must be encoded into
the topology of the DAG, itself. �is representation can also
encode a trace, or unrolling, of any general branching program,
but a single graph can only represent a single control �ow
path.

Halide’s constraints
�is model makes concrete some of the features and con-
straints of the Halide algorithm language introduced in the
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previous chapter. In particular, Halide’s view of an algorithm as
a composition of functions over integer domains corresponds
to grouping the nodes of a DAG into discrete layers, each cor-
responding to a single function. All nodes in a given layer are
then de�ned by the same expression (Figure 4.4).

ini = 1

fi = 2 × ini
gi = fi + 3

Figure 4.4: Nodes are grouped into
functions.

�ese nodes
are also embedded in an integer domain, and the expressions
may be de�ned in terms of their coordinates in this domain.
Because of this, I will usually express indices as arguments
using function notation, rather than subscripts. For example,
the three pixel box �lter can be represented by the graph:

1 2 3 4 5

1 2 3

in(x) = array[x]

out(x) = (in(x) + in(x + 1) + in(x + 2)) × 1
3

�ese domains generalize to n dimensions, and extend in-
�nitely in all directions:

-∞,0 0,0 1,0… … ∞,0

∞,1…… 1,10,1-∞,

…………
… … … …

∞,∞…… 1,∞0,∞-∞,∞

∞,-∞…… 1,-∞0,-∞-∞,-∞ -1,-∞

-1,∞

…
…

-1,1

-1,0

-1,-1 ∞,-1…… 1,-10,-1-∞,-1

f(x ,y)  =  …

�e dependence structure of the arithmetic expressions de�n-
ing each function are shi�-invariant with respect to the do-
main. As a result, a program can be represented as a set of
local DAGs for each function:

x in(x) = array[x] x out(x) = (in(x) + in(x + 1) + in(x + 2)) ×

x+1x x+2 in

It is important to note, however, that the resulting image op-
erations are not necessarily shi�-invariant. Even the indices
of the upstream functions consumed may be shi�-dependent,
but the structure of the DAG for a single output pixel remains
the same:

x f (x) = x × in(x)

x in

x g (x) = in(x2 ) + in(x3 )

x2 inx3

�ese shi�-invariant functions may be evaluated anywhere,
unrolling into the complete DAG for a given output range,
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which also reveals reuse of indices in one function by multiple
indices in its caller:

1 2 3 4 5 6 7 8

1 2 3 4 5 6

i j k Different levels
of task reuse

�is DAG representation, as presented, also ignores the re-
stricted form of recursion allowed by Halide’s iterative update
functions1 1. Iterative update functions are

beyond the scope of straight-line
programs, and introduce restricted
branching functionality.

. For the purposes of this analysis, I will assume that
the graph has been unrolled across the full output domain to
expose all reuse of shared values, and to remove any recursion.

�is de�nition of the intrinsic algorithm omits choices
of the order of execution and placement of data. I instead
consider these as complementary choices, de�ning how the
algorithm’s computation is organized.

4.2 organization of
computation

�e organization de�nes an order of evaluation, including
choices of parallelism, as well as the allocation of storage/com-
munication and placement of intermediate data. I represent
the organization of computation as a scheduled task graph. �e
task graph is constructed by unrolling the algorithm into a
set of nodes su�cient to compute the desired output. �e
nodes of the algorithm become tasks. Tasks compute a value
based on their dependencies. For example, consider a simple
two-stage box �lter algorithm:

in(x) = . . .
blur1(x) = (in(x − 1) + in(x) + in(x + 1)) × 1

3
blur2(x) = (blur1(x − 1) + blur1(x) + blur1(x + 1)) × 1

3
Unrolled to compute four pixels of output, its tasks and depen-
dencies are:

task
dependency

�is view remains functional, in that tasks are side e�ect-free:
they yield a single output value, passed along dependence
edges to any consumers. We can then organize the resulting
computation in the task graph by imposing an order and gran-
ularity of evaluation, as well as an allocation of storage and
placement of values within it.
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Execution order and locality
To start, consider just the order of evaluation. Ignoring par-
allelism, a schedule de�nes a total order over the tasks. Valid
schedules must respect the dependencies in the algorithm—
visiting producers before their consumers in the DAG—and
they must visit all required outputs.

in

blur1

blur2

in

blur1

blur2
Figure 4.5: Two orders of execution
for the task graph of the two-stage
blur algorithm.

�e computation of a two-stage box �lter can be orga-
nized into many di�erent orders. For example, all nodes in
a given stage can be computed before moving on to the next
(Figure 4.5, top). Alternatively, each consumer can be com-
puted as soon as all of its producers are complete (Figure 4.5,
bottom).

in

blur1

blur2

in

blur1

blur2

Figure 4.6: Use distance from a task
to its consumer in two di�erent
organizations of the same blur
algorithm.

With just this choice, we can already see a key cost emerge:
locality corresponds to the use distance along the path, from
the node where a value is computed, to a node where it is
consumed. �is metric applies to every producer-consumer
pair in the DAG; locality for a whole program corresponds to
the distribution of use distances over all producer-consumer
pairs, which can be summarized by scalar metrics like the
average use distance, or the maximum use distance (equivalent
to the maximum working set or footprint of intermediate data
in the organization). In the box �lter examples, the second
organization, which evaluates consumers as soon as their in-
puts are complete, has much shorter average use distance, and
therefore better overall locality (Figure 4.6).

Parallelism
I model parallelism in the task graph by ordering tasks to
execute in parallel between special fork and join nodes:

fork

join
leaf task
parallel block

By allowing tasks to nest hierarchically, but requiring the chil-
dren of each task to be either purely parallel or totally ordered
at a given level of nesting, we can model the general series-
parallel structure commonly assumed in the analysis of parallel
algorithms2

2. �e nested series-parallel struc-
ture naturally represents any pro-
gram consisting of parallel for
loops, general nested data paral-
lelism as in, e.g., NESL, and fork-
join constructs, including nearly all
patterns expressed by Cilk. (�is
structure is commonly assumed
even in analysis of Cilk programs.)

. Each node in a series-parallel task graph is com-
posed of either a totally-ordered sequence of child tasks, or
a parallel block, with a single fork point at the start, a set of
parallel (unordered) child tasks, and a single join point at the
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end. �e leaves of the hierarchy are the atomic tasks which
perform actual computation (the same nodes which made up
the entire task graph before introducing parallelism).

fork

join
leaf task

parallel block
sequential
sub-block

Figure 4.7: Nested parallel task
blocks.

For example, the pixels in each stage of the chained box
�lter can be evaluated in parallel:

parallel blocks

Following [23] and [13], I analyze the amount of parallelism
as the ratio of two properties of a scheduled task graph:

1. �e work, de�ned as the number of leaf tasks, gives the total
size of the problem to be computed.

2. Conversely, the span (or critical path) of the whole graph—
the length of the longest path which cannot be executed in
parallel—gives an upper bound on the parallel speedup assum-
ing in�nite parallel processors.

Given these two terms, the amount of parallelism in a given
organization can be understood as the work

span ratio.
In practice, the amount of parallelism must be traded o�

against the granularity of parallel tasks. I de�ne granularity
as the number of subtasks contained by each task in a parallel
block. Real parallel execution usually imposes some overhead
for each task in a parallel block; granularity recognizes the
tradeo� between the shortened span brought by increased
parallelism, and the increased execution and synchronization
overhead of organizing computation into more, �ner-grained
tasks.

For example, the simple parallel organization of the two
stage blur has six parallel tasks in the �rst stage, four in the sec-
ond, and two in the third. For a similar organization over O(n)
output pixels, the work in each stage is ≈ n. �is organization
reduces the span from O(n) in the sequential organizations,
to ≈ 3. �e granularity of the tasks is extremely �ne, each
computing a single value. Alternatively, we can coarsen the
parallel tasks, to trade parallelism for less per-task overhead,
by hierarchically decomposing each parallel region into sets
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of tasks:

granularity = 2

sp
an

 =
 6

work = 36

Locality in parallel task graphs
Considering locality, however, note that both of these orga-
nizations evaluate the entirety of each stage before moving
on to the next. �is is much like the breadth-�rst sequen-
tial organization, but for our understanding of use distance,
the parallel edges in this graph do not capture the fact that
all tasks in each stage are evaluated before any in the next
(the meaning of the join point at the end of a parallel block).
Instead, I use another common simpli�cation from the analy-
sis of parallel algorithms and de�ne a sequential semantics on
which to analyze locality. �e sequential semantics are de�ned
simply by trivially �attening the hierarchical composition of
sequential tasks into a single sequential order, and �attening
the sub-graph of each parallel block by imposing a simple (e.g.,
lexicographic) total order on the tasks within3

3. Sequential semantics are a good
�t for many real systems which
exploit locality with caches, since
caches are a fundamentally se-
quential construct. Any sequential
ordering maintains the same aver-
age use distance from parallel sets
of producers to consumers, though
di�erent sequential orderings can
change the overall distribution. It
is easy to see that, regardless of the
permutation of tasks within a par-
allel block, the average use distance
to consumers of any tasks within
the block remains unchanged. By
de�nition, in a valid organization,
any consumers must come a�er the
join point completes the parallel
block, so the change in use distance
corresponds only to the change in
distance from a node to end of the
parallel block, the average of which
is unchanged by permutation.

. Under the se-
quential semantics, the average use distance between stages
of both granularities of breadth-�rst parallel organization is
identical to our initial breadth-�rst sequential organization:

sequential
semantics

Figure 4.8: A locality-optimized
interleaving allows virtually no
parallelism.

Looking back at the alternative locality-optimized order
(Figure 4.5), moving consumer tasks as soon a�er their produc-
ers as possible required a precise ordering of tasks. �is �xed
sequential ordering is fundamentally at odds with parallelism.
�e only parallel decomposition of this organization which
does not a�ect the average use distance in the graph is only
able to compute the �rst three pixels in parallel (Figure 4.8).
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�is organization has a maximum parallelism of three, a mini-
mum parallelism of one, and a span just two shorter than the
fully sequential version (≈ n − 2).

Here, we begin to see how the twin goals of parallelism and
locality are in tension with each other: given a �xed task graph,
an organization cannot simultaneously minimize use distance,
which requires constraining the order of execution to move
producers near consumers, and maximize parallelism, which
requires unconstrained order over large collections of tasks.
As a result, there is no meaningfully parallel organization
equivalent to the locality-optimized sequential order.

�e tension between these goals is rooted in the depen-
dencies between producers and consumers in the original
algorithm. Maximizing locality constrains order, and particu-
larly limits regular parallelism, because it requires executing
a producer task as close as possible not just to one consumer,
but to all of its consumers. In this way, maximizing locality
for a producer interlocks the order of all of its consumer tasks.
With stencil computations, so fundamental in image process-
ing pipelines, tasks with multiple consumers are the common
case. But this also points to a third way we can organize the
computation: we can transform the task graph to break depen-
dencies where multiple consumers depend on the value from a
single producer. �is opens up the possibility of di�erent orga-
nizations, which maximize both locality and parallelism, but
breaking dependencies requires duplicating nodes consumed
by multiple downstream tasks.

Redundant computation
�e third major tradeo� I consider in organizing computa-
tion is the possibility of intentionally introducing redundant
computation to break dependencies in an algorithm, enabling
simultaneous optimization of parallelism and locality. For
example, returning to the two-stage box �lter, notice that each
task depends on a set of prior tasks also shared by its neighbors:

shared dependence
non-shared dependence

By breaking the dependence of neighboring consumers on a
single producer, we can decouple their execution, splitting the
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computation into multiple independent subgraphs, but doing
so requires duplicating the shared producer in each subgraph:

1 2 3 4 4321

32

2 3 41 1 432

2 3 32

2 3 41

break dependencies

duplicate
shared
tasks

redundant computation

�ese subgraphs can be executed in parallel, and the worst-
case use distance for the shared nodes is reduced by replicating
them as near as possible to each consumer, but this comes at
the expense of redundantly recomputing the duplicated nodes.
In this way, we see it is also possible to trade o� the total
amount of computation to improve both parallelism and lo-
cality. I measure excess computation in the task graph as the
ratio of the number of nodes computed to the minimum num-
ber required by the intrinsic algorithm (which is the set of all
dependencies of the desired outputs).

When the four output, two-stage blur is split into two tiles,
we introduced �ve pixels of redundant excess computation.
In general, the amount of excess computation is proportional
both to the amount of reuse in the original graph—the number
of consumer tasks which depend on each producer, given by
the size of the stencil—and also to the granularity at which the
graph is split.

Together, parallelism, locality, and the total amount of
computation are fundamentally in tension in the organization
of computation. (�is is not a limitation of the series-parallel
structure, but applies similarly to any parallel organization.)
In practice, the ideal organization for a given algorithm on a
given architecture must balance all three, the possible choices
for how to do so are combinatorially complex, and the best
choice subtle and unpredictable.

Placement of data
�e organization of computation is also responsible for map-
ping intermediate data passed between computations to loca-
tions in memory. So far, while focussed on ordering, I have
assumed that each task is mapped to a unique storage loca-
tion for potential access by any later consumer. Depending
on the order of execution, however, it is usually possible to
reuse memory locations for multiple values, reducing the total
storage footprint. I formulate this last aspect of organization
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as a matter of choosing when and where storage (memory)
is reused during execution. I model this in the task graph by
grouping nodes into allocations, and overlaying reuse edges
between allocations which map to the same storage.

reuse
storage

Figure 4.9: Storage reuse.

For ex-
ample, in the breadth-�rst organization of the two-stage box
�lter, a simple allocation strategy groups each stage into its
own allocation, and reuses the same storage for the �rst and
third stages (Figure 4.9).

A legal schedule requires that the storage for a node not
be reused until all of its consumers have executed. In the task
graph, this means that the destination of a reuse edge must
come strictly a�er the destinations of all dependence edges
along the path given by the execution order edges.

I de�ne the cost of storage as the allocation footprint, mea-
sured as the size of all allocations in the task graph which do
not have any incident reuse edges. �e size of each allocation is
the maximum number of nodes covered by any of its uses (con-
nected by reuse edges).

reused storagenew allocation

Figure 4.10: Fine-grained storage
reuse in a locality-optimized order-
ing.

For example, the locality-optimized
ordering of the two-stage box �lter enables a storage mapping
with a much smaller footprint than the breadth-�rst organi-
zation (Figure 4.10). However, as with �ne-grained parallel
tasks, there is also cost associated with tracking many inde-
pendent memory allocations. In real implementations, it is
common to allocate and free large bu�ers shared statically by
many grouped values. �is model allows allocations to span
groups of tasks. �e granularity of storage allocation is given
by the number of nodes shared within the allocation.

4.3 summary
�is chapter proposes a model for understanding a wide class
of programs as two separate concerns:

1. �e intrinsic algorithm de�nes a basic graph of tasks connected
by dependence edges.

2. �e organization optionally duplicates nodes to split shared de-
pendence edges; hierarchically groups tasks for nested parallel
execution; overlays this graph with ordering edges; and �nally
overlays the graph with reuse edges, mapping the output of
tasks to shared memory locations.
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Taking these two concerns together, we can model programs
as scheduled task graphs. �e major characteristics which
determine performance and e�ciency on modern machines
are directly visible in this graph:

• Locality relates to the reuse distance between dependent tasks
along the order of computation.

• Parallelism is summarized by the work
span ratio in the scheduled

graph.
• Task granularity is given by the work within a single parallel

task.
• Redundant work corresponds to the number of nodes executed

relative to the minimum number required by the intrinsic
algorithm.

• Storage footprint corresponds to the number of nodes without
incoming reuse edges.

• Allocation granularity relates to the ratio of storage footprint
to the number of unique allocation groups.

tradeoff
space

parallelism locality

redundant
work

Figure 4.11: Parallelism, locality,
and redundant work are o�en in
tension, and must be traded o�
with each other to maximize the
overall e�ciency of an algorithm on
a particular architecture.

I have shown how, for a given algorithm, these costs are de-
termined by the organization of computation. In addition,
because of the structure of dependencies in image processing
algorithms, the key costs are o�en intrinsically in tension with
each other. �e next chapter will build on this view to de�ne
a model and language for compactly describing the organiza-
tion of computation in the task graphs of image processing
pipelines, independently of the algorithm de�nition.
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5
SCHEDULES: MODELING
THE ORGANIZATION OF
COMPUTATION

�is chapter introduces a model and language of schedules.
Schedules compactly describe the organization of computa-
tion in image processing and stencil pipelines, independently
of the algorithm de�nition. As we saw in the previous chap-
ter, we are primarily concerned with the order of execution
across the task graph making up the computation of a com-
plete pipeline, where tasks represent individual operations on
individual pixels. �e Halide model is based �rst on de�ning
an order of execution, and then determining the duplication
of intermediate computations, and the allocation of storage
for intermediate results, within the constraints of that order.

Treating each function on each pixel as a separate task, the
space of possible organizations of a given image processing al-
gorithm is enormous.1 1. �e space of execution orders

is at least O(2n) for common task
graphs.

I argue, however, that the most fruitful
organizations can be described compactly, by the composition
of a few simple choices. �ese choices, and the rules by which
they compose, form our model of schedules.

Looking at a task graph formed from our restricted model
of algorithms (graphs of functions over regular grids), we see
an obvious division of the organization problem into two sets
of choices:

1. Choices of organization within each stage (layer of the graph)
2. Choices of organization across stages

Halide’s schedules model the organization of computation
based on each stage choosing at what granularity to compute
each of its inputs, at what granularity to store each for reuse,
and, within those grains, in what order its domain should be
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traversed.
For simplicity and e�ciency, schedules only model orders

which can be compactly encoded as loop-nests which scan
the required region of each stage, for all stages in the pipeline.
�e loops over the dimensions of each function, in isolation,
must form a perfect loop nest (the domain order).

Schedules model parallelism by making some of the loops
in this loop nest parallel; since tasks within a domain are
always independent, they may be interleaved in any order by
parallel execution. �e granularity of parallelism corresponds
to the number of tasks contained within each iteration of a
parallel loop.

Schedules exploit locality by then interleaving the com-
putation of subsets of interdependent tasks across multiple
stages. Organization across stages is constrained by producer-
consumer dependencies: for schedules to be valid, values must
be computed and stored before they are consumed, and freed
a�er. Halide’s schedules de�ne organization across stages as
the granularity at which values are grouped and interleaved
between producer and consumer stages, described in terms
of the levels in the loop nest encapsulating a consuming stage
at which a producer stage is computed and stored for reuse
(the call schedule). �is interleaves the perfect loop nests over
the domains the individual functions into a single semiperfect
loop nest which computes the required pixels of all stages in
an entire pipeline.

Finally, the required region of each stage is inferred from
its use, recursively back from the output, and tracked as an n-
dimensional interval (“axis-aligned bounding box”). Neither
the schedule nor the algorithm explicitly speci�es the bounds
to be computed; they are inferred from context using interval
analysis[60].

�e Domain Order: organization within
stages
Halide’s language of schedules �rst de�nes the order in which
the required region of each function’s domain should be tra-
versed, which we call the domain order. Given a multidimen-
sional interval (axis-aligned bounding box) specifying the
region required of a function, the domain order de�nes a per-
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fectly nested loop which subdivides the required region of the
function and speci�es the order in which it should be com-
puted. Ordering within each stage is unconstrained for pure
functions, since the de�nition of a stage does not allow depen-
dence between values within it, so any ordering of the tasks
within a single stage is valid.

�e choice of loops is built up by construction from a
default order which simply loops over the natural dimensions
of the function in row-major order. For example, for the simple
two-dimensional function f (x , y), the default order traverses
the y dimension outside the x dimension:

for y = ymin to ymax
for x = xmin to xmax

compute f (x , y)
Halide speci�es the domain order for a function using a tra-
ditional set of loop transformation concepts, applied to the
dimensions of the function. In the language, these choices are
applied as annotations on each function.

• Each dimension can be traversed sequentially (the default)
or in parallel. In the Halide language, this is written as, e.g.,
f.parallel(y).

• Constant-size dimensions can be unrolled (f.unroll(x)) or
vectorized (f.vectorize(x)).2 2. Vectorization and unrolling of

general dimensions are modeled
by �rst splitting a dimension by the
vector width or unrolling factor,
and then scheduling the new inner
dimension as vectorized or unrolled:
f.vectorize(x, 4) is syntactic sugar
for:

split f .x → ( f .xo , f .x i) by 4
vectorize f .x i

• Dimensions can be reordered (e.g., from column- to row-major:
f.reorder(y, x)).

• Dimensions can be split by some factor, creating two new di-
mensions: an outer dimension, over the old range divided
by the factor, and an inner dimension, which iterates within
the factor (f.split(x,outer,inner,factor). A�er splitting, ref-
erences to the original index become outer × factor + inner.

• Finally, dimensions can be fused, turning two dimensions
into one (f.fuse(x, y)). �e new dimension iterates over the
product of the range of the two original dimensions, and ref-
erences to the original indices become fused

innerwidth and fused mod
innerwidth.

Splitting recursively opens up further choices, and enables
many common patterns like tiling when combined with other
transformations.3

3. A 2D tiled loop over x , y corre-
sponds to the domain order trans-
formation:

split x → (xo , x i) by tw id th
split y → (yo , y i) by the i ght
reorder x i → (y i , xo) by yo

�is gives the loop structure:
for yo

for xo
for y i

for x i
. . .Fusing dimensions, meanwhile, does not alter the order of

47



traversal of the outer and inner loops, it simply allows them
to be treated as a unit. �is can be useful in several contexts.
In particular, fusing two loops into one and evaluating it in
parallel can have lower overhead than relying on nested paral-
lelism applied to both loops simultaneously4 4. �e overhead of nested parallel

loops comes from additional tasks
in the task system, while the over-
head of fused loops comes from
the added cost of the div and mod
ops to compute the corresponding
indices.

. Fusing multiple
dimensions also allows them to be vectorized together. For
example, some computations are naturally organized with in-
terleaved color channels, but the number of color channels
is o�en smaller than the machine vector width; in this case,
fusing the innermost (x) dimension with the dimension of
color channels (c) allows them to be vectorized together, using
any desired vector width up to the width of the product of both
fused dimensions.

Because Halide’s model of functions is data parallel by con-
struction, dimensions can be interleaved in any order, and
any dimension may be scheduled serial, parallel, or vectorized.
For reduction functions, the dimensions of the reduction do-
main may only be reordered or parallelized if the reduction
update is associative. �e free variable dimensions of reduc-
tion functions may be scheduled in any order, just as with pure
functions.

�e Call Schedule: organization across stages
In addition to the order of evaluation within the domain of
each function, the schedule also speci�es the granularity with
which to interleave the computation and storage of each func-
tion with the domain of the functions that call it. We call
these choices the call schedule. Halide speci�es a unique call
schedule for each function in a pipeline. Each function’s call
schedule is de�ned by the points in the loop nest of its callers
where it is computed and stored for reuse.

In the language of Halide’s schedules, we control the call
schedule of each function with two annotations:

• f.compute_at(g, v) speci�es the granularity at which to realize
regions of the function f as required at each iteration of the
variable v in the loops over the domain of the function g. Each
function must be computed in a scope at or enclosing the
scope where it is consumed.

• f.store_at(g, v) similarly speci�es the granularity at which
to allocate memory to store and reuse values of f as within
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each iteration of v in the loops over the domain of g. Each
function must be stored in a scope at or enclosing the scope
where it is computed.

Di�erent choices of call schedule make di�erent tradeo�s be-
tween locality and redundant computation for the values pro-
duced by one function (here, f ) and consumed by another
(here, g). �e exact e�ect and interaction of domain order
and call schedule choices are explained in depth in the re-
mainder of this chapter, but intuitively call schedules make
the following tradeo�s:

Computing at �ner granularity improves locality, alternat-
ing between producing and consuming smaller collections of
results, and minimizing reuse distance between where values
are produced by one function and consumed by others. By
default, the compute and storage granularity are the same: the
results of a single region of f are allocated, produced, con-
sumed by g, and then discarded, making the grains of compu-
tation of f independent. However, the region consumed in g
by successive iterations o�en overlaps .5 5. �is is always true for stencil

access patterns.
When this happens,

each grain of f must redundantly recompute any values in its
domain shared with other iterations.

Storing at coarser granularity keeps values around longer
for potential reuse. �is can avoid redundant computation
of values shared between multiple computation grains of f.
However, capturing reuse across multiple iterations requires
constraining the order of execution across the grains of com-
putation, so they can be synchronized to avoid redundantly
recomputing shared values. �is constrains the available par-
allelism. In Halide’s semiperfect loop nests, it means that any
dimension between the storage and computation granularities
along which a function captures reuse over multiple compute
iterations must be traversed sequentially.6 6. Splitting and reordering are

perfectly valid, but parallelism—
including vectorization—precludes
reuse.

Finally, while most of my explanation focusses on schedul-
ing a single function with respect to one other, real image pro-
cessing pipelines contain graphs of dozens or hundreds of func-
tions. Schedules are speci�ed per-function, so the overall orga-
nization of computation is composed globally by the domain
order and call schedule choices at each producer-consumer
relationship in a large graph of functions.
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Bounds inference
A schedule’s speci�cation of organization both within and
across stages as a semiperfect loop nest is agnostic of the ac-
tual bounds of the resulting loops. All choices are speci�ed
independent of, and without reference to, the actual bounds of
the required region of the function. Given a domain order for
a function, the bounds of the resulting loops can all be symbol-
ically inferred from the use of the function in the algorithm,
and it’s placement within the scheduled pipeline according to
its call schedule. �is dramatically simpli�es schedule speci�-
cation, and makes it impossible for any meaningful schedule
to specify a loop nest which will not correctly satisfy each
stage’s producer-consumer relationships. 7 7. �e only interaction that may

occur between the schedule and
the meaningful bounds over which
a pipeline may be computed is
due to splitting: the minimum
bounds of a split dimension must
be rounded up to at least the split
factor, but this e�ect is still inferred,
not explicitly speci�ed.

�e Halide model only considers axis-aligned bounding
regions, not general polytopes—a practical simpli�cation for
image processing and many other applications. �is also al-
lows the regions to be de�ned and analyzed using simple in-
terval analysis. Since the simple model of domain order relies
on later compiler inference to determine the actual bounds
of evaluation and storage for each function and loop, it is
essential that bounds analysis be capable of analyzing every
expression and construct in the Halide language. Interval anal-
ysis is simpler than modern tools like polyhedral analysis, but
it can e�ectively analyze a wider range of expressions, which
is essential for this design.

5.1 understanding
scheduling as loop
synthesis

To understand Halide’s schedules in more detail, it is helpful to
work through the actual loops described by various scheduling
choices. Consider the organization of the simple blur pipeline:

in(x , y) = . . .
bx(x , y) = in(x − 1, y) + in(x , y) + in(x + 1, y)
by(x , y) = bx(x , y − 1) + bx(x , y) + bx(x , y + 1)

First, we can de�ne a simple tiled domain order for by:
split x → (xo , xi) by 4
split y → (yo , yi) by 4
reorder (xi , yi , xo , yo)
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�roughout this section, we will use
a loop pseudocode to help demon-
strate the organization described
by di�erent schedules. For clarity
and brevity, this pseudocode is
written more as a sketch than a pre-
cise de�nition. Most signi�cantly,
coordinates used are the logical
coordinates within functions’ do-
mains, wherever possible, including
to address values stored in memory
bu�ers. �e vagaries of addressing
values as o�sets within arrays and
similar details are ignored to better
highlight the essential structure.

�is de�nes a four-dimensional loop nest over the domain of
by:

// a
for yo

// b
for xo

// c
for yi

// d
for xi

// e
compute by(xo × 4 + xi , yo × 4 + yi)

Computing a producer at a granularity of its consumer
Since bx is called by by, it must be computed somewhere before
by. In the Halide model, the call schedule for bx allows it to
be computed at any loop level enclosing its consumer (labeled
a through e). �e level at which we compute bx determines
the granularity of pieces which are interleaved between the
two stages in the pipeline. For example, bx may be computed
at the granularity required for a single point in by (at e); at
the granularity required for a single row of one tile of by (at
d); at the granularity required for a full tile of by (at c); at the
granularity required for a strip of four scanlines of by (at b);
or at the granularity required for all uses by any points ever
computed in by (at a). We describe the call schedule by saying
that bx is “computed at a dimension of a downstream function.”
Each point in the loop nest is named by the dimension of the
function to which it corresponds. �e coarsest granularity,
outside all loops, is given the special name “root.”8 8. For example, we would say

bx.compute_at(by, xi) for point e;
bx.compute_at(by, xo) for point c; or
bx.compute_root() for point a.

A common pattern in hand-optimized image processing
pipelines is to interleave stages at the granularity of tiles. In
this case, that corresponds to bx.compute_at(by, xo). Given
the default domain order for bx, that computes the two stages
with the loop nest:

for by.yo
for by.xo

for bx .y
for bx .x

compute bx(bx .x , bx .y)
for by.yi

for by.xi
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compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)
�is also implies that we allocate storage for a whole tile of
bx to store all the intermediate results from the loops which
compute bx to where they are used to compute by:9 9. Implicitly, bx.store_at(by, xo)

for by.yo
for by.xo

allocate bx[. . . ]
for bx .y

for bx .x
bx[bx .x , bx .y] ← compute bx(bx .x , bx .y)

for by.yi
for by.xi

compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)

Inferring the bounds of required regions
�e sizes of the allocation and computation of bx implicitly
depend on the bounds required for the corresponding uses in
by. Recall that these bounds are not speci�ed by the schedule,
but are inferred as the minimum intervals required to satisfy
the ordering and granularity speci�ed in the schedule. Adding
symbolic bounds to the loops and allocations gives the full
structure of the generated loops for the sub-pipeline from bx
to by:

for by.yo = by.yo .min to by.yo .max
for by.xo = by.xo .min to by.xo .max

allocate bx[bx.x.extent × bx.y.extent]
for bx .y = bx.y.min to bx.y.max

for bx .x = bx.x.min to bx.x.max
bx[bx .x , bx .y] ← compute bx(bx .x , bx .y)

for by.yi = by.yi.min to by.yi.max
for by.xi = by.xi.min to by.xi.max

compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)

�e actual values of the min, max, and extent (= min −max)
terms are computed by bounds inference, recursively from the
required region of the output. �e actual intervals computed
are unimportant, but it is worth noting one feature of this
pipeline: because by accesses bx through a stencil (by(x , y) =
bx(x − 1, y) + bx(x , y) + bx(x + 1, y)), neighboring points in
the domain of by depend on overlapping points in the domain
of bx. �e region of bx required to compute a single tile of by
is actually two pixels wider than the tile of by, and the region
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required by neighboring tiles of by overlaps in bx . Because bx
is allocated and computed at the granularity of tiles of by (i.e.,
at by.xo), for each tile (iteration of by.xo), this organization
recomputes an overlapping tile of bx, performing redundant
work where the tile boundaries overlap.

Storing a function at a di�erent granularity than its
computation
From the view of Halide’s schedules, this is not just because
we interleaved the producer-consumer computation at this
granularity, but because we also chose only to store values of
bx for reuse at this granularity. �is is the other choice made
by a call schedule. In spite of the redundant computation, this
is o�en an e�cient organization; it completely decouples the
computation of tiles, leaving them free to execute in parallel,
and removing any intermediate data �owing between them,
which could hurt locality. �e model of call schedules allows
another choice: we can allocate and store values of bx for
reuse at another, coarser granularity in the computation of by.
For example, we can store and reuse bx at by.yo (i.e., at the
granularity of tile strips):

for by.yo
allocate bx[bx.x.extent × bx.y.extent]
for by.xo

for bx .y
for bx .x

bx[bx .x , bx .y] ← compute bx(bx .x , bx .y)
for by.yi

for by.xi
compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)

�e bu�er allocated for intermediate results is larger because
the extent required of bx is larger at this level (it now spans all
iterations of by.xo), but this larger bu�er captures all uses of
bx across a whole strip of by.

Because values of bx are no longer thrown away a�er each
tile (iteration of by.xo), each subsequent tile of bx can notice
what was already computed and begin where the previous one
le� o�. �is still computes small tiles of bx immediately before
they are consumed by the corresponding tiles of by, giving the
locality bene�t of interleaving producer and consumer with
�ne granularity, but it avoids redundantly recomputing values
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in bx reused by neighboring tiles of by. It is even possible to
optimize the storage footprint for bx by recognizing that any
value is only reused by three neighboring pixels in by (bx(x , y)
will never be used again a�er the computation of by(x + 1, y)
in this organization), so the storage can be remapped into a
smaller circular bu�er10

10. In the Halide design, this is
le� as a lower-level optimization
to be discovered by the compiler,
not explicitly described by the
schedule. �is optimization, which
we call storage folding is discussed
in Chapter 8.

However, exploiting all of these patterns which emerge
when a function is stored for reuse at a coarser granularity
than it is computed depends on knowing the order of evalu-
ation: each iteration can only statically know both what has
been computed before, and what will never be needed again,
given deterministic ordering of the loops between the storage
and computation granularities (here, by.xo). In practice, the
Halide model requires that the loops between the storage and
computation granularities be sequential in order to capture
reuse and fold storage.

Inlined evaluation
�e space of call schedules in Halide also includes a special
case, called inline: inline computation uniquely computes a
function as required at every separate call site. As the name
implies, a call to a function scheduled to be computed inline
is simply replaced with its de�nition. As a granularity, this is
equivalent to computing and storing at the innermost loop of
the caller’s domain order, but does so separately for every caller.
Inline functions do not have a meaningful domain order or
storage granularity, since every point is inlined and evaluated
independently. �e Halide compiler treats this case specially:
inline-computed results are passed through registers wherever
possible, and never allocate storage on the heap.

In the case of the two-stage blur, computing bx inline e�ec-
tively merges the two separate 1D convolutions into a single
2D convolution:

for y
for x

by(x , y) = 1
9
(bx(x − 1, y − 1) + bx(x , y − 1) + bx(x + 1, y − 1)

+bx(x − 1, y) + bx(x , y) + bx(x + 1, y)
+bx(x − 1, y + 1) + bx(x , y + 1) + bx(x + 1, y + 1) )

54



Scheduling a third function
�e call schedule de�nes the granularity of interleaving be-
tween each function and the subsequent stages of the pipeline
which depend on it. In general, the available granularities are
not limited to the domain of the immediately calling function,
but include any enclosing loop in-scope where the function is
used.

Continuing with our blur pipeline, consider also the input
function, in, used in bx:

in(x , y) = . . .
bx(x , y) = in(x − 1, y) + in(x , y) + in(x + 1, y)
by(x , y) = bx(x , y − 1) + bx(x , y) + bx(x , y + 1)

Given our initial tiled schedule, where bx is computed at by.xo,
at what granularities could we compute in and store it for reuse?
Returning to the loop structure, we see:

// a
for by.yo

// b
for by.xo

// c
for bx .y

// d
for bx .x

// e
compute bx(bx .x , bx .y) // uses in

for by.yi
// f
for by.xi

// g
compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)

in is used to compute bx, so each grain must be computed
before we compute bx. As with the call schedule for bx in
by, in can be computed anywhere in the domain order of bx
(points d and e), but it may also be computed at any enclosing
granularity within which bx is computed: as required for every
tile of by (point c); as required for every four scanlines of by
(point b); or as required for all pixels in the output (point
a). �ese latter three points relate to the domain order of the
downstream function by, not the immediate caller of in. It
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may not, however, be computed at granularities which do not
enclose the computation of bx, since these do not correspond
to meaningful granularities at which the function in is actually
used (here, points f and g actually come a�er the computation
of bx, which requires the computation of in).

Scheduling functions with multiple consumers
Because we specify the call schedule per-function, while func-
tions may be called in multiple di�erent stages, a valid call
schedule must compute every function at a level which is in
scope for all of its callers. Consider the simplest case of a func-
tion which is called separately by two unrelated functions:

in(x , y) = . . .
f (x) = in(x) × 2
g(x) = in(x − 1) + in(x + 1)
h(x) = f (x) + g(x × 2)
�is forms a diamond dependence pattern: in is used in-

dependently by both f and g, which are then used together
to compute h. Because in is used separately in both f and
g, it must be computed and stored at some granularity which
encompasses its uses in both functions. Concretely, it must be
scheduled at some granularity at or a�er the point at which
these two branches of the pipeline re-join in the evaluation of
h.

We can still express unique call schedules for each separate
call site of a single function by restructuring the graph: by
inserting a separate identity function which proxies the shared
function at each unique call site, we can schedule the shared
function to be computed inline, and then separately control the
computation granularity of each call site via its unique proxy
function. For example, we can rewrite our simple example as:

in(x , y) = . . .
in f (x) = in(x)
f (x) = in f (x) × 2
ing(x) = in(x)
g(x) = ing(x − 1) + ing(x + 1)
h(x) = f (x) + g(x × 2)
�en, by computing in inline, we have e�ectively created

two new functions, inF and inG, which may be computed
independently within f and g, respectively.
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Interaction between call schedules and domain
order
Together, the call schedule and domain order de�ne an algebra
for scheduling stencil pipelines on rectangular grids. Com-
posing these choices can de�ne an in�nite range of schedules,
including the vast majority of common patterns exploited by
practitioners in hand-optimized image processing pipelines.

�e loop transformations de�ned by the domain order
interact with the inter-stage interleaving granularity chosen
by the call schedule because the call schedule is de�ned by
specifying the loop level at which to store or compute. A func-
tion call site may be stored or computed at any loop from the
innermost dimensions of the directly calling function, to the
surrounding dimensions at which it is itself scheduled to be
computed, and so on through its chain of consumers. Splitting
dimensions allows the call schedule to be speci�ed with �ner
precision than the intrinsic dimensionality of the calling func-
tions, for example interleaving by blocks of scanlines instead
of individual scanlines, or tiles of pixels instead of individual
pixels. Since every value computed needs a logical location
into which its result can be stored, the storage granularity must
be equal to, or coarser than, the computation granularity.

�e interleaving de�ned by the call schedule intertwines
the order of execution of every function in an entire pipeline.
One consequence of this is that choices of parallelism applied
to the domain order of one function can implicitly in�uence
other functions upstream. Consider again the blur pipeline.
Scheduling both bx and in to be computed at the granularity
of tiles of by means that any parallel execution of the tiles of
by implicitly also evaluates bx and in within the same parallel
tasks:

// parallel loops include in, bx
parallel for by.yo

parallel for by.xo
for in.y

for in.x
compute in(in.x , in.y)

for bx .y
for bx .x

compute bx(bx .x , bx .y)
for by.yi
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for by.xi
compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)

�is occurs even though the domain order of neither in nor
bx speci�es any of their dimensions to be evaluated in parallel.
Conversely, parallel execution of by within the granularity at
which in and bx are computed creates �ner-grained parallel
tasks which do not include computation of in or bx, leaving
them evaluated sequentially:

for by.yo
for by.xo

for in.y
for in.x

compute in(in.x , in.y)
for bx .y

for bx .x
compute bx(bx .x , bx .y)

// parallel loops do not include in, bx
parallel for by.yi

parallel for by.xi
compute by(by.xo × 4 + by.xi , by.yo × 4 + by.yi)

Changing storage layout
Halide’s schedules also allow controlling the mapping of each
function’s logical domain into linear memory addresses. �is
is done using the reorder_storage operator, de�ned much like
the reorder operation on the domain order, but instead de�n-
ing the precedence of dimensions in the storage layout. Storage
layout is always de�ned in terms of the intrinsic dimensions
of a function11 11. �ere is currently no equivalent

to the split operator for storage
layout. �is is a straightforward
extension, but has not yet proven
important in practice. Contrary
to historical belief, tiled storage
layouts, in the program’s virtual
address, space are rarely important
for common image sizes on mod-
ern processor architectures and
memory systems.

. �e default storage order is identical to the de-
fault domain order: the le�-most dimension is innermost (the
least-signi�cant bits of the storage index), and the right-most
dimension is outermost.

For example, consider the 2D function f (x , y). Regardless
of its domain order, addresses in memory storing values of f
will by default map 2D x , y coordinates into 1D o�sets of the
form y × f .x .extent + x. �at is, values of f are stored in row-
major order. �is can be changed to a column-major order—
without changing any aspects of the domain order of f , its call
schedule, or the schedules of its consumers or the functions it
consumes—with the operation f .reorderstorage(y, x).
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5.2 scheduling iteration
domains

�e biggest limitation of Halide’s current model of organiza-
tion is its dependence on the properties of pure functions.
Speci�cally, the freedom to split, reorder, and parallelize di-
mensions depends on the independence of a pure function’s
meaning at each point in its domain. Iteration domains, as
de�ned in Halide, do not share this property: because of the
recursive nature of the update step, the �nal value of an iter-
ative function depends on earlier computations in the itera-
tion12 12. �e update step can be viewed

as a loop nest over the reduction
domain which mutates the values
of the function, at a mixture of pure
and computed coordinates, in each
iteration.

. �is means that we cannot safely allow the same general
changes in the order of iteration dimensions as in the case of
pure functions. (In practice, we allow changes, but warn the
user that they may be unsafe unless we can statically prove
otherwise.)

Much like pure functions, functions de�ned in multiple
update steps default to being computed as required for the
innermost dimension of the calling function. However, accord-
ing to the semantics, they must evaluate all required values of
any the computed coordinates of their own output domain (ef-
fectively breadth-�rst within their own update domain) within
each iteration in their iteration domain.

// pure dimensions outermost
for y

// reduction dimensions
for r.x

// free variables used in computed coordinates
for x

// update f (y, x + r.x)

Reorganizing general iterative updates
Reorganizing reduction functions more generally is o�en fea-
sible, using generalizations of the same primitives described
here. For example, in the case of associative reductions, split-
ting and parallelizing dimensions of the reduction domain
requires duplicating the intermediate storage for each parallel
task and then recombining the results from each.13

13. �e common case of point-wise
reductions, applied independently
to every pixel in the output do-
main, is very o�en associative. �is
pattern is built into the language
via simple macros for point-wise
sum, product, minimum, maximum,
argmin, and argmax.

Where
splitting a pure variable produces two pure variables, splitting
a reduction domain variable produces a pure outer variable,
whose iterations are independent and whose storage is dupli-
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cated, and an iterative inner variable which walks over a subset
of the prior reduction domain.

Reorganization becomes more complex in the case of gen-
eral iterative updates with recursive dependence simultane-
ously across both pure dimensions (space) and the iteration
domain (time), but is still feasible for many classes of scans and
other operations. Formalizing our reorganization primitives
for iterative reduction domains remains future work.

5.3 scheduling gpu
execution

Halide’s schedules map portions of computation to GPU ex-
ecution explicitly. �ere is a straightforward isomorphism
between Halide’s loop nests over regular rectangular grids and
the grids and blocks in GPU compute programming mod-
els [16, 64]. Schedules describe GPU execution by labeling spe-
ci�c loops to correspond to speci�c GPU thread and block di-
mensions. Scheduling macros including gpu(var) and gpu_tile(x,

y, w, h) provide syntactic sugar for common forms of this
transformation.

Computation outside loops mapped to thread blocks map
to host execution exactly as before; computation inslide each
loop nest mapped to GPU threads are compiled into a cor-
responding GPU kernel and the host-side runtime logic to
launch it over the required domain and manage its data. Mul-
tiple functions may be computed inside a single set of blocks
by computing them at the granularity of the innermost thread
block. �is generates phases of thread-level computations
separated by local, block-level barriers between sets of thread
loops. Memory allocated at block granularity is mapped to the
GPU’s block-level scratchpad (“shared memory”). �is map-
ping is shown in more detail, by example, in Appendix A.12.
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6
ORGANIZING IMAGE
PROCESSING PIPELINES
WITH HALIDE SCHEDULES

�is chapter explores how Halide’s schedule primitives—its
two-part model for organizing computation in image process-
ing pipelines—can be composed to express a wide range of
optimized organizations. �e key underlying principle is the
deep connection between computation and storage granular-
ity, and the fundamental tension between parallelism, locality,
and redundant work. For single-producer, single-consumer
pipelines—or, more generally, the relationship between a sin-
gle pair of stages—there is a direct correspondence between
the valid half of the 2D space of computation and storage
granularities, and the three qualities we wish to optimize: the
extremes of the space each completely sacri�ce one metric,
while the interior of the space balances them all di�erently
(Figure 6.1). In this sense, the space of compute and storage
granularities is, in fact, isomorphic to the space of tradeo�s
between parallelism, locality, and redundant work. �is rela-
tionship becomes more complex for real applications, which
contain many stages; the computation and storage granular-
ity can be di�erent for each stage, schedule choices interact
across stages, and the overall balance is determined by the
global organization. Finally, in Section 6.2, I will discuss two
ways of �nding good schedules: manual exploration, o�en
by an optimization expert, and fully automatic search using
autotuning.

valid
schedules

storage
granularity

compute
granularity

coarsest

coarsest sacrifice
locality

constrain
parallelism

perform
redundant
work

Figure 6.1: �e space of schedules
directly corresponds to the space
of tradeo�s between parallelism,
locality, and redundant work.

6.1 scheduling a single pair
of functions

To start, we will look more deeply at the tradeo�s in a version
of our recurring blur example, simpli�ed by reduction to one
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dimension for easier visualization:
blur1(x) = in(x − 1) + in(x) + in(x + 1)
blur2(x) = blur1(x − 1) + blur1(x) + blur1(x + 1)

Extreme points in the space of schedules
�e obvious starting points are the extremes of the choice
space for how the �rst stage (blur1) can be interleaved with the
second (blur2):

• coarse-grained computation and storage interleaving,
• �ne-grained computation and storage interleaving, or
• �ne-grained computation interleaving with coarse-grained

storage interleaving.

Breadth-�rst organization sacri�ces locality.
Assuming a default domain order for each function (y outside
x), blur1 may �rst be computed and stored at the coarsest
granularity (root):

allocate blur1
for all x = −1 to w + 1

blur1[x] = in[x − 1] + in[x] + in[x + 1]
allocate blur2
for all x = 0 to w

blur2[x] = blur1[x − 1] + blur1[x] + blur1[x + 1]

root

x

compute and
store at root

x

load

blur2

blur1

�is computes and stores an entire intermediate image contain-
ing all results of blur1 prior to computing any pixels in blur2.
�is requires storage for an entire intermediate image through-
out the pipeline, and it introduces a long (≈ n) reuse distance
between where each value is computed in blur1 and where it is
used in blur2. Still, it computes each value only once, perform-
ing no redundant work, and it allows total freedom to execute
the computations in each stage in parallel. A simple choice of
parallel domain order for a modern multicore would split each
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x dimension to some granularity (bluri.split(x, tile_width,

xo, xi)), compute the outer dimension in parallel threads
(bluri.parallel(xo)), and vectorize the innermost component
of the x dimension (bluri.vectorize(xi, vector_width)). �is
would give relatively coarse-grained parallel tasks (≈ tile width),
but more than enough of them (also ≈ n/tile width) to saturate
a reasonably-sized machine.

Fine-grained computation and storage wastes work.
At the other extreme, blur1 may be computed and stored at the
innermost granularity of blur2 (blur2.x or inline):

allocate blur2
for all x = 0 to w

allocate blur1
for all x′ = x − 1 to x + 1

blur1[x′] = in[x′ − 1] + in[x′] + in[x′ + 1]
blur2[x] = blur1[x − 1] + blur1[x] + blur1[x + 1]

…

root

x

compute and
store at x of blur2

x

load

blur2

blur1

�is computes each value of blur1 immediately before con-
suming them to compute the corresponding value of blur2,
giving a maximum use distance of just three tasks, maximiz-
ing producer-consumer locality. Each value is freed as soon as
it is consumed, requiring a storage footprint of three pixels for
intermediate results of blur1. Parallelism is unconstrained: the
domain of blur2 can be parallelized and vectorized arbitrarily,
and the corresponding parallel tasks will include parallel com-
putation of intermediate values from blur1. Most signi�cantly,
however, the total amount of work is tripled: each value in
blur1 is computed, consumed, and thrown away by each of
three separate consumers in blur2. �is is the cost of maximiz-
ing locality (minimizing use distance) while leaving no reuse
dependence between tasks in blur2.
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Sliding-window interleaving constraints parallelism.
Lastly, we can compute blur1 at the innermost granularity,
while storing it for reuse at the coarsest granularity1 1. compute at by.x; store at root.:

allocate blur1, blur2
for x = 0 to w

x′min = if (x = 0) then x − 1 else x + 1 // skip already computed
for all x′ = x′min to x + 1

blur1[x′] = in[x′ − 1] + in[x′] + in[x′ + 1]
blur2[x] = blur1[x − 1] + blur1[x] + blur1[x + 1]

root

x

store at root

compute at x
of blur2

x
store

load

…

blur2

blur1

�is couples the execution of neighboring tasks in blur2 which
reuse common values in blur1. �is increases both the storage
footprint and the maximum use distance for values in blur1
by a small constant factor (≈ 3).2 2. �roughout this chapter, I as-

sume automatic discovery of storage
folding opportunities, as performed
by the Halide compiler and de-
scribed in Chapter 8. Storage fold-
ing only a�ects footprint, not use
distance.

Values are still used in blur2
nearly as soon as they are produced in blur1, but they are
computed only once and reused. �is performs no redundant
work, and retains very short use distance between tasks in blur1
and their use in blur2, but to do so it requires coupling the
execution of neighboring tasks in blur2 to exploit reuse. �is
constrains the order of execution: if neighboring tasks in blur2
are to share inputs from blur1 with minimal use distance, they
must be executed together. Because of the overlapping nature
of neighboring stencils, this order dependence propagates
across the entire domain of blur2, requiring it to be executed
in sequential order. �is constrains the possible parallelism in
blur2 and increases the critical path by ≈ n.

�e space of schedules spans the space of
tradeo�s fundamental to image processing
pipelines.
�ese three organizations represent extremes of both the space
of possible producer-consumer organizations for this two-
stage pipeline, viewed along the axes of computation and stor-
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valid
schedules

storage
granularity

compute
granularity

coarse-grained storage
no redundant computation

fine-grained storage
redundant computation

coarse interleaving
low locality

fine interleaving
high locality

high parallelism
low locality

more parallelism
less synchronization

breadth first

sliding
window

overlapping tiles

full fusion

enlarged
sliding windows

sliding windows
within tiles

Figure 6.2: A natural way to visualize the space of scheduling choices
is by granularity of storage (x-axis), and granularity of computation
(y-axis). Breadth-�rst execution does coarse-grain computation into
coarse-grain storage. Total fusion performs �ne-grain computation into
�ne-grain storage (small temporary bu�ers). Sliding window strategies
allocate enough space for the entire intermediate stage, but compute
it in in �ne-grain chunks as late as possible. �ese extremes each have
their pitfalls. Breadth-�rst execution has poor locality, total fusion o�en
does redundant work, and using sliding windows to avoid redundant
recomputation constrains parallelism by introducing dependencies
across loop iterations. �e best strategies tend to be mixed, and lie
somewhere in the middle of the space.

age granularity de�ned by our call schedule, and the space of
tradeo�s between locality, redundant work, and parallelism:

• �e breadth-�rst schedule both stores and computes blur1 at the
coarsest granularity (which we call the root level—outside any
other loops). It computes every required value exactly once,
and it does not constrain possible parallelism, but it completely
sacri�ces producer-consumer locality between stages.

• �e fused schedule both stores and computes blur1 at the �nest
granularity, inside the innermost (x) loop of blur2. At this
granularity, values are produced and consumed in the same
iteration, maximizing locality, but they must be reallocated
and recomputed on each iteration, independently, introducing
redundant computation.

• �e sliding window schedule stores at the root granularity, while
computing at the �nest granularity. With this interleaving, val-
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ues of blur1 are computed in the same iteration as their �rst
use, but persist across iterations. To exploit this by reusing
shared values in subsequent iterations, the loops between the
storage and computation levels must be strictly ordered, so that
a single unique �rst iteration exists for each point, which can
compute it for later consumers. �is precludes executing iter-
ations in parallel; it maintains locality and avoids redundant
computation at the expense of parallelism.

Composing organizations
�ese tradeo�s can be balanced by further composing our
scheduling primitives to express compound organizations.

Interleaved tiles trade redundant work for locality.
For example, �e �rst organization we considered for the blur
pipeline in the previous chapter split the output domain into
independent tiles, and interleaved the computation of inter-
mediate stages at the granularity of those tiles. �is is a com-
mon organization in optimized so�ware image processing
pipelines. �is organization applies similarly in 1D. First we
tile the domain of the �nal function by a tile width parameter
(tw): blur2.split(x, xo, xi, tw). �en, we compute and store
each intermediate function at the granularity of tiles of the
output: blur1.compute_at(blur2, xo). �is completely decou-
ples tiles of computation and storage. Tiles may be computed
in parallel (blur2.parallel(xo)). �e resulting parallel tasks
have granularity de�ned by the size of the tiles. Internally,
tiles are also free to exploit �ne-grained data parallelism (e.g.,
by vectorizing blur2.xi and blur1.x). Use distance and storage
footprint for each task is constrained to the size of the tile
(≈ tilewidth).

allocate blur2
for all xo = 0 to w/tw

allocate blur1
for all x′ = xo × tw − 1 to (xo + 1) × tw − 1 + 1

blur1[x′] = in[x′ − 1] + in[x′] + in[x′ + 1]
for all xi = 0 to tw

let x′ = xo × tw + xi
blur2[x′] = blur1[x′ − 1] + blur1[x′] + blur1[x′ + 1]
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xi

root

xo

compute and
store at xo of blur2

x

compute and
store at root

x

load

load

blur2

blur1

input

�e tradeo� for the controlled locality and storage footprint,
and the decoupled parallel execution across tiles, is redundant
computation of overlapping values on the boundary between
tiles. �ese tradeo�s are balanced by changing the granularity
of tiles in the pipeline: large tiles minimize the fraction of
redundant computation and provide low parallel scheduling
overhead from coarse-grained tasks at the expense of locality
and storage, while small tiles minimize use distance and stor-
age footprint at the expense of more redundant computation.
�e amount of excess computation introduced is ≈ stencil width−1

tile width
(in this case, 2

tile width ).

Enlarged sliding windows trade locality for �ne-grained
parallelism.
We can open up opportunities for �ne-grained parallelism in a
sliding window organization by interleaving computation at a
coarser granularity. In the 1D blur, this corresponds to splitting
the second stage into segments of width sw (blur2.split(x,
xo, xi, sw)), computing the �rst stage at the granularity of
these segments (blur1.compute_at(blur2, xo)), and storing it
for reuse globally (blur1.store_root()).

allocate blur1, blur2
for xo = 0 to w/sw

x′min = if (xo = 0) then xo × sw − 1 else xo × sw + 1
for all x′ = x′min to (xo + 1) × sw + 1

blur1[x′] = in[x′ − 1] + in[x′] + in[x′ + 1]
for all xi = 0 to sw

x = xo × sw + xi
blur2[x] = blur1[x − 1] + blur1[x] + blur1[x + 1]
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Compared to pixel-level sliding window interleaving of the
two stages, this organization increases the use distance and
storage footprint from three pixels to being proportional to
the segment width (≈ segment width). It still requires sequen-
tial iteration over interleaved segments, but it has several ad-
vantages over the per-pixel sliding window order. First, it
tracks values for reuse at coarser granularity, which can have
lower overhead than interleaving computation per-pixel. Sec-
ond, because of this, it exposes �ne-grained data-parallelism
(≈ segment width) within each segment; while scanlines must
be executed sequentially, pixels within each scanline need not
be. �is �ne-grained parallelism is naturally exploited on
many processors by vectorization.

Sliding windows within tiles trade redundant work for
coarse-grained parallelism.
We can expose coarse-grained parallelism by starting from
a �ne-grained sliding window schedule and moving in the
opposite direction. Again splitting the second stage into seg-
ments(blur2.split(x, xo, xi, sw)), but computing the �rst
stage at the innermost granularity (blur1.compute_at(blur2,
xi)), and storing it for reuse at the level of segments (blur1.store_at(blur2,
xo)) performs �ne-grained interleaving within a each of sev-
eral segments, but decouples the computation of the segments
by redundantly computing a fringe along their boundaries.

allocate blur2
for all xo = 0 to w/sw

allocate blur1
for xi = 0 to sw

x = xo × sw + xi
x′min = if (x = 0) then x−1 else x+1 // skip already computed

for all x′ = x′min to x + 1
blur1[x′] = in[x′ − 1] + in[x′] + in[x′ + 1]

blur2[x] = blur1[x − 1] + blur1[x] + blur1[x + 1]
Compared to pixel-level sliding window interleaving of the
two stages, this organization retains the same minimal use
distance, and still requires sequential iteration over the indi-
vidual pixels within each segment, but it decouples execution
across segments. Because of this, it exposes coarse-grained par-
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allelism (≈ width
segment width ) across segments. �is coarse-grained

parallelism is naturally exploited on many processors by mul-
tithreading.

Line-bu�ering is a special case of enlarged and tiled
sliding windows.
A common variant of these organizations is widely used in
image processing pipelines containing only small stencils, like
the camera pipeline in mobile image signal processors (ISPs).
A special case of enlarged sliding window interleaving, this
organization is o�en called “line-bu�ering” [53, 83] and be-
comes clearer in 2D, so I will brie�y return to the original 2D
blur algorithm, consisting of functions bh and bv.

In a line-bu�ered organization, the granularity of inter-
leaving is enlarged by one loop level, and intermediate data is
bu�ered between stencil stages at the granularity of scanlines,
with the minimal number of scanlines required to support
each stage’s stencil stored in circular bu�ers which slide down
the image in a synchronous fashion between all stages. In
the Halide representation, this organization is modeled by
interleaving computation at the granularity of scanlines (here,
computing bh at bv.y), while storing values for reuse at the
root granularity:

allocate bh, bv
for y = 0 to h

y′min = if (y = 0) then y − 1 else y + 1 // skip already computed
for all y′ = y′min to y + 1

for all x = 0 to width
bh[x , y′] = in[x − 1, y′] + in[x , y′] + in[x + 1, y′]

for all x = 0 to width
bv[x , y] = bh[x , y − 1] + bh[x , y] + bh[x , y + 1]

�is design pattern is common in hardware image processing
pipelines, where �ne-grained control is relatively inexpensive,
and abundant �ne-grained data parallelism is su�cient to
keep even very wide pipelines busy.

Multicore general-purpose processors, by contrast, o�en
also require coarse-grained parallel tasks, with minimal cou-
pling between them, to distribute across far-away cores. Even
a single �xed-function hardware pipeline might want to limit
the maximum size of scanlines bu�ered between stages, decou-
pling the execution beyond this granularity to limit bu�ering
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of intermediate data. In both cases, the line-bu�ering organi-
zation can be modi�ed to introduce some redundant compu-
tation to decouple coarse-grained parallel tasks and control
use distance and bu�er footprint across stages. We can express
this transformation by splitting and reordering the output do-
main to be computed in strips (split by.x → (by.xo , by.xi)

by strip width; reorder by.xi , by.y, by.xo). Within each strip,
the pipeline is still locally line-bu�ered (compute bx at by.y,
and store for reuse at by.xo), but across strips intermediate re-
sults are recomputed rather than being stored for reuse; strips
are free to be executed in parallel (parallel by.xo) . �is lim-
its producer-consumer use distance and bu�er footprint to
≈ 3 × stripwidth. It still allows ≈ stripwidth �ne-grained data
parallelism, but also yields ≈ numstrips coarse-grained parallel
tasks. Decoupling strips introduces redundant work where
stencils overlap on strip boundaries (here, ≈ 2 × numstrips ×
√

n).

6.2 finding good schedules
Given our model of the organization of computation, the last
question that remains is: how can we determine good sched-
ules? We have worked on two strategies: optimizing the sched-
ule by hand, and automatically searching the space of possible
schedules using autotuning.

Hand-optimized schedules
Developers can manually specify schedules as part of their
Halide program. �is was our focus for the �rst year of Halide’s
existence, and it remains the most common practice. Even
with fully hand-tuned schedules, exploring a wide range of po-
tentially fruitful organizations using our terse and composable
description of algorithms and schedules is much easier than
manually reorganizing computation in a traditional language
like C or CUDA. �is is for several reasons.

First, Halide’s representation of the algorithm is much
more terse, both because of domain-speci�c syntax, and be-
cause it ignores order of execution, and all bounds and mem-
ory allocations are implicit, and inferred automatically.
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Second, the representation of even a complex optimized
schedule is terse relative to the equivalent C. �e description
of common patterns like vectorization and multithreaded par-
allelism is extremely compact3 3. f.parallel(dim)

f.vectorize(dim, width)

. Sensible defaults for domain
order and interleaving, combined with inferred indexing and
bounds computation even for complex tiled and interleaved
sequences of stages, mean that the schedule only speci�es non-
obvious choices in the organization. Even beyond this, real
scheduling code is made even more compact by the combi-
nation of syntactic sugar for common patterns (e.g., the tile
operator), and host-language metaprogramming to simultane-
ously apply related schedule directives to related functions.

�ird, even radical changes in organization expressible
by our schedule operators do not change the algorithm code,
or the resulting computation, at all. �e algorithm generally
represents the large majority of total code to describe an op-
timized Halide pipeline (around 75 − 90% in our benchmark
suite, presented in Chapter 9). It is sometimes necessary to
change the intrinsic algorithm de�nition during optimiza-
tion, both to tune the actual computation as bottlenecks are
revealed, and to better enable di�erent organizations, but in
practice we have found, once we have a good initial algorithm,
the large majority of time optimizing is spent simply tuning
the schedule.

Finally, changes in the schedule are o�en orthogonal to
one another, and the generated code is correct by construction.
It is o�en possible to rapidly explore many di�erent organi-
zations simply by changing one or a few schedule directives,
re-compiling, and re-running a performance test.

Manual search
In practice, the way we generally do manual optimization in
Halide proceeds in two steps.

First, relatively simple intuition and design patterns go
a long way in pointing towards likely fruitful organizations.
A common starting point is simply to inline functions with
point-wise dependence, tile and interleave functions with
small stencils, and compute functions with large stencils or
unpredictable dependence patterns. In addition, for conven-
tional multicores, we generally begin vectorizing the inner-
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most dimensions of most functions, and parallelizing outer
dimensions at relatively coarse granularity.

Second, given that starting point, we quickly test di�er-
ent hypotheses to improve the performance of the pipeline by
changing features of the organization and re-running bench-
marks. E�ectively, this process is a heuristic search of the space
of possible schedules, guided by expert intuition. �e perfor-
mance space for complex pipelines on modern architectures is
complex and unpredictable, so, while this intuition is valuable,
it is very common to be surprised by the performance of many
seemingly promising optimizations.

A detailed discussion of our experience manually tuning
the local Laplacian �lters pipeline is presented in Chapter 9.

Portability
A key advantage of Halide’s split representation is portabil-
ity. �e best optimized organizations vary from one architec-
ture to another. Variation among general-purpose multicores,
with di�erent memory hierarchies, degrees of parallelism, and
compute to bandwidth ratios can be modest; the di�erence
between the best organization for more widely varied architec-
tures, like mobile multicores and workstation GPUs, is o�en
enormous. Reorganizing computations and data in a tradi-
tional language o�en requires rewriting nearly the entire code.

With the algorithm strictly separated from choices of orga-
nization encoded in the schedule, optimized implementations
for many di�erent targets can share the same algorithm code,
while using di�erent schedules to express di�erent organi-
zations for each target. In practice, we �nd that ranges of
di�erent general-purpose multicores (e.g., small ARM mobile
SoCs, single-socket x86 PC CPUs, and large multi-core, multi-
socket x86 server CPUs) are o�en well targeted by a common
family of organizations, sharing most scheduling code, but
with some parameters (e.g., vector width, unrolling factors,
tile sizes) changing between targets. GPUs, by contrast, usu-
ally demand very di�erent organizations, o�en relying less on
staging intermediate data through caches and more on global
memory, as well as o�en allowing a larger share of redundant
computation to save bandwidth.
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Autotuning
We can also automatically search the space of schedules using
auto-tuning. For the same reasons that our schedule represen-
tation enables far easier, more rapid manual exploration of
possible optimizations, it provides a natural representation in
which to automatically search for e�cient organizations. �e
space is far too large to search exhaustively4

4. For example in the local Lapla-
cian �lters pipeline, we estimate
a lower bound of 10720 schedules.
�is is derived by labeling functions
with three tilings per function and
all possible store and compute gran-
ularities. �e actual dimensionality
of the space is likely much higher.
�e optimal schedule dependends
on machine architecture, image
dimensions, and code generation in
complex ways, and exhibits global
dependencies between choices due
to loop fusion and caching behav-
ior.

. We have focussed
on stochastic search. Our autotuner is implemented using the
OpenTuner framework .

�ere are two key challenges in automatically searching
the space of schedules.

Representing schedules for autotuning
�e �rst challenge is representing and enumerating the space
of possible organizations in a way that enables rapid explo-
ration of all useful choices while also enabling heuristic search
strategies like genetic optimization. �e operators of our sched-
ule algebra provide a natural foundation.

Concretely, many heuristic search algorithms require some
notion of combining di�erent points in the search space—o�en
a linear (weighted) combination. �is operation is su�cient to
implement many genetic optimization algorithms and other
heuristics. Our current implementation maps into the exist-
ing partially-ordered list parameter type in OpenTuner, which
natively supports these operations, and so supports many dif-
ferent heuristic search strategies.

We map complete Halide schedules to OpenTuner primi-
tives as follows. We map each loop of each function into a pair
of tokens in the sorted list, and map the computation of each
function into an additional token. We de�ne partial-order con-
straint edges between the computation nodes of each pair of
functions with a direct caller-callee relationship, and between
each function’s computation node and the open and close
tokens of its loops (which must happen before and a�er, re-
spectively). Loop type (parallelism, unrolling, vectorization)
is a conventional discrete selection selection parameter for
each loop. We also add a normalization step which ensures
all schedule lists map to valid schedules.

As future work, we hope to explore direct search over
algebraic transformations of the schedule tree representation
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de�ned in the previous chapter.

Domain-speci�c search heuristics
�e second challenge is steering the search quickly towards
useful parts of the space. We have worked on a number of
domain-speci�c heuristics to bootstrap the search process.

One valid starting schedule is to label all functions as com-
puted and stored breadth-�rst (at the outermost, root granular-
ity). �e tuner converges from this starting point, albeit slowly.
We can o�en do better by seeding the initial population with
reasonable schedules. For each function we �nd its rectangu-
lar footprint relative to the caller (via bounds inference) and
inline functions with footprint one. Remaining functions are
stochastically scheduled as either:

1. fully parallelized and tiled, or
2. simply parallelized over y.

We de�ne fully parallelized and tiled as tiled over the �rst
and second (x and y) dimensions, vectorized within the tile’s
inner (x) coordinate, and parallelized over the outer (y) tile
dimension. �is allows us to o�en discover good starting
points for functions that vectorize well, or fall back to naive
parallelism when that is not the case. �e dimensions x and
y are chosen from adjacent dimensions at random, except
when there are optional bounds annotations provided by the
Halide programmer (such as the number of color channels);
dimensions with small bound are never tiled.

6.3 summary
In this chapter, I have shown how Halide’s schedules can sim-
ply describe many di�erent organizations of computation for
image processing pipelines. �e most important detail not to
lose in my o�en simpli�ed examples is that schedules are not
speci�ed once for a whole pipeline; rather, real pipelines are
compositions of many functions, and these choices are made
separately for every function, and together they determine how
these many functions globally interact. Finally, I discussed
the current methods by which users can �nd good schedules
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for their Halide programs: manual tuning, enabled by our
compact and expressive model combined with automatic code
synthesis, and autotuning using stochastic search.
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7
AN ALGEBRA OF
SCHEDULES

�e key features of Halide’s model of schedules are their com-
posability, their decoupling from the intrinsic algorithm, and
the ability to transform one schedule into another. In this
chapter, we de�ne an algebra on transformations of sched-
ules. �is algebra is largely equivalent to Halide’s language
of schedules, but it is not the same. �is chapter focuses on
a transformational perspective, and its algebraic properties,
while the Halide language speci�es call schedules declaratively,
which is signi�cantly more terse, but harder to reason about
systematically.

7.1 representing schedules
We represent the space of schedules as a family of trees, cor-
responding to the semiperfect loop nests that will compute
the requested values of a given pipeline. A schedule tree has
nodes of several types: loop nodes, store nodes, compute nodes,
and a root node. We de�ne them as an algebraic data type:

node = loop node
| compute node
| store node
| root

root = { children : node list }
loop node = {

func : Func
var : Var
type : enum { sequential | parallel | vectorized | unrolled }
children : node list

}
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store node = {
func : Func
children : node list

}
compute node = {

func : Func
children : compute node list

}

r

g.y

g.x

f

f.x

f e

g

parallel

root

loops
over g

store f

compute f

loops
over f compute g

compute e
(inline)

Figure 7.1: Schedule tree for a sim-
ple pipeline.

A schedule tree is always anchored by exactly one root node
corresponding to its root, the outermost scope of the generated
pipeline. Below this are recursive subtrees de�ning the storage
allocation, loops, and computation of each function in the
pipeline. Importantly, the children of each node are encoded
as a list since they are ordered; the meaning of a node depends
on the order of its children.

All non-root nodes are associated with a speci�c function.
Loop nodes specify the variable in the domain of the function
to which they correspond. �ey also carry a type attribute
describing the nature of the loop over this dimension (whether
it should be sequential, parallel, vectorized, or unrolled).

Store nodes specify the point in the tree at which a par-
ticular function is stored for reuse. Only the children of a
function’s store node may reference it, either to compute or
consume its values (except in the special case of inline func-
tions).

Compute nodes are generally terminal, forming the leaves
of the tree where useful work is actually done. �ey are allowed
to have only other compute nodes as children, to encode the
special call schedule of inline, in which a called function’s own
domain is not traversed, but rather each call site is directly
replaced by the de�nition of the function.

Each function in the algorithm has exactly one compute
node. If it is computed inline, it has no other associated nodes.
Otherwise, it has exactly one store node, and one loop node for
each variable in its domain order (i.e., for each dimension of
the function, a�er dimension splitting and fusion have been
applied).

A function’s store node must be an ancestor of its loop
nodes and the compute nodes of any of its calling functions.
A function’s compute node must be a descendant of its loop
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nodes.
�e output function, by de�nition, cannot be computed

inline, so it always has a full set of loop nodes. By convention,
the output function has no store node, since its storage is allo-
cated and passed in by the caller; it is stored at root granularity,
by de�nition.

An example schedule tree
r

by.yo

by.xo

bx

bx.y

bx by

parallel

root

loops
over tiles

store bx

compute bx

loops
over bx

(inside tiles)

compute by

by.yi

by.xibx.x

loops
over by
(inside tiles)

incompute in
(inline)

Figure 7.2: Schedule tree for tiled
blur.

Consider as an example the two-stage blur algorithm we have
studied before. �e tiled and interleaved schedule of these
two stages can be represented as a simple tree with loop nodes
for each of blury.yo, blury.xo, blury.yi , blury.xi , blurx.y, and
blurx.x. �e storage of blurx is the immediate child of the
blury.xo loop. Below that, the loops over blurx’s and blury’s
inner dimensions, and the computation of each function, are
peer subtrees, with the blurx subtree before the blury subtree,
to respect producer-consumer ordering.

Legality rules
Within this schedule tree representation, several constraints
must be met for a schedule to be legal. �ese are determined by
the space of meaningful choices which can actually compute
an algorithm as speci�ed. In particular:

• A function must be computed before it is consumed: a func-
tion’s compute node must occur before the compute nodes of
its calling functions in a depth-�rst traversal of the schedule
tree.

• Storage must be allocated and in scope to be used: a function’s
store node must be an ancestor both of its compute node and
of its callers’ compute nodes.

• Beyond the rules speci�ed in the de�nitions above, constraints
of practical code generation make certain patterns illegal. In
particular, we only allow vectorization of an innermost loop (a
loop node which is not the ancestor of any other loop nodes),
and we only allow vectorization and unrolling of constant-
width loops.
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�e semantics of schedules
�e semantics of the schedule tree de�ne its mapping into a
loop nest, including stack-style allocation and deallocation of
intermediate storage for each function. �ey are as follows.

�e tree is visited in depth-�rst order, starting from the
root, respecting the order of the child lists at each node. For
each node,

• if it is a loop node, it opens the corresponding loop with the
appropriate attributes (parallel, vectorized, unrolled), recur-
sively visits each child in order, and closes the corresponding
loop;

• if it is a store node, it allocates the corresponding storage, re-
cursively visits each child, and deallocates the storage;

• if it is a compute node, it computes the value of the correspond-
ing function at the location in its domain de�ned by its loops
and stores the value in its allocated storage, or, if it is inline,
simply returns the required value to the appropriate site in the
calling compute node’s de�nition.

Considering again the tiled schedule for the two-stage
blur algorithm, the semantics of the schedule tree map to the
following loop nest:

r

by.y

bx

bx.y

bx

by

by.x

bx.x

in

allocate bx
for by.y
    for bx.y
        for bx.x
            compute bx(bx.x, bx.y) // w/in inlined
    for by.x
        compute by(by.x, by.y)
free bx

�e starting point: from an algorithm to a default
schedule
Since this algebraic model of schedules is transformational,
we need a well-de�ned starting point. �e default schedule
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maps the dependence graph of functions in a Halide algorithm
to its initial schedule tree. �e default schedule has a root
node, above a series of loop nodes for each dimension of the
output function, from outermost to innermost, followed by a
compute node for the output function. Every other function
is scheduled to be computed inline by default, so the subtree
rooted at the compute node for the output function directly
mirrors the call graph of the original algorithm, with each
function f called in a function g represented by a further
subtree beginning at f . A function with multiple callers has
has the subtree rooted at its compute node duplicated as an
immediate child of each caller’s compute node.

r

h.y

h.x

h

f ge

f

h()

f ()

g () e()

dependencies

algorithm
(function call graph)

schedule tree

default
schedule

7.2 schedule
transformations

To traverse the space of possible organizations, we de�ne a
family of operators with which to transform schedule trees.

Split variable
f.xy

…

a b d

f.y

…

a

b

df.x

fuse (f, x, y)

c

c

Figure 7.3: Split f .x. Note that each
variable is uniquely identi�ed using
not just the variable name, but also
the function in which it is used.

split(func, var) splits one variable in the tree into two. �is
replaces a single loop node into a pair of loop nodes, with the
inner node (farther from the root) inheriting the children of
the original node, the outer node (closer to the root) replacing
the original node as the child of its parent, and the inner node
as the only child of the outer node.
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Fuse variables
f.xy

…

a b d

f.y

…

a

b

df.x

fuse (f, x, y)

c

c

Figure 7.4: Fuse f .x and f .y.

fuse(func, var, var) merges two adjacent loop nodes from the
same function in the tree into one loop node. �e new node
remains at the same location in the tree as the original outer
loop node, and the children of each are concatenated, with
the children of the original outer variable coming before the
children of the original inner variable.

Reorder variables
reorder(func, var list) reorders (a subset of) the loop nodes
associated with a given function. It simply exchanges the
variables associated with each node in the list to match the
desired order. Topology is unchanged, and for simplicity, the
loop types are le� in their original, topological locations, rather
than being carried with the variable to which they had �rst
been applied.

f.x

…

a
f.y

d

c

f.z

b

parallel f.y

…

a
f.z

d

c

f.x

b

parallel

reorder (x, z, y)

Figure 7.5: Reorder three variables
of f .

Change loop type
f.x

…

f.x

…

parallelparallel (f, x)

……

Figure 7.6: Change loop type of f.x
to parallel.

loop type(func, var, type) changes the type of a given loop to
one of the set sequential, parallel, unrolled, or vectorized. �is
simply changes an attribute on the corresponding loop node.

Hoist computation …

a

f

g.y

g.x

f.y

f.x

f

g

…

a

f

g.y

g.xf.y

f.x

f

g

hoist
compute (f)

Figure 7.7: Hoist computation of f.

hoist compute(func) coarsens the granularity at which a func-
tion is computed by moving the subtree beginning at its outer-
most loop node one generation closer to the root of the tree.
A function’s computation cannot be hoisted past its storage
node; in general, the subtree rooted at the outermost loop of
a function cannot be hoisted past the storage nodes of any
functions whose compute nodes are within the subtree.

Lower computation …

a

f

g.y

g.x

f.y

f.x

f

g

…

a

f

g.y

g.xf.y

f.x

f

g

lower
compute (f)

Figure 7.8: Lower computation of f.

lower compute(func) is the inverse operation of hoist compute.
It moves the subtree rooted at the function’s outermost loop
one generation farther from the root, closer to its consumer,
making �ner the granularity at which the function is com-
puted.
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Lowering is only legal when all functions computed within
the corresponding subtree are consumed only within the sub-
tree rooted at a single sibling of that subtree, making the di-
rection of lowering obvious; in cases where there are multiple
sibling subtrees which consume functions produced in the sub-
tree being lowered, lowering would correspond to computing
some function outside the scope of its consumer(s).

…

a

f

g.y h.yf.y

f.x

f

h.xg.x

g h

dependencies
Figure 7.9: It is not possible to lower
compute(f) if the union of f and
anything in the subtree a are used
in both g and h.

Hoist storage
hoist storage(func) coarsens the granularity at which a function
is stored for reuse by moving its storage node one generation
closer to the root of the tree. �is swaps the function’s storage
node with its immediate parent in the tree. �e storage node
takes the place of its former parent in its former grandparent’s
child list, while the former parent becomes the sole child of
the storage node. Former children of the storage node are
inserted into the child list of the former parent in the location
formerly occupied by the storage node.
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Figure 7.10: Hoist storage of f .Lower storage
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Figure 7.11: Lower storage of f .

lower storage(func) is the inverse operation of hoist storage. It
moves a function’s storage node away from the root, towards
both the function’s own loop nodes and the compute nodes of
functions which consume it. �e operation exchanges a stor-
age node with its child along the path towards its consumers
and its own computation node. If multiple immediate children
of the storage node contain either the computation node of the
corresponding function, or computations which consume it,
the storage may not be lowered any further. Storage may not
be lowered past the outermost loop node of the corresponding
function.

Inline function

inline f

…

g

f

g.xf.x h.x

f g h

…

g

g.x h.x

g h

f f

Figure 7.12: Inline computation of f .

inline(func) transforms a function to be computed inline. �is
removes all storage and loop nodes for the function, and makes
the function’s compute node a child of its immediate caller’s
compute node. If a function has multiple callers, its compute
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node is duplicated as a child of each caller’s compute node.
If any of the removed nodes have children which are loop or
storage nodes from other functions, these children become
children of the next node closer to the root; they are e�ectively
hoisted out of the deleted subtree, while maintaining the same
relative topological order.

Deinline function
deinline(func) is the inverse operation of inlining. It reconsti-
tutes the storage and default loop nodes for a function. It �rst
places the storage node immediately between the compute
node closest to the root in the subtree where the function was
inlined, and that node’s former parent. �en in makes the loop
nodes for the function the immediately preceding child of the
newly created storage node.

de-inline f
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Figure 7.13: De-inline computation
of f .
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Figure 7.14: De-inline computation
of a function with multiple callers.

If a function has multiple callers, its storage node is placed
at the nearest (non-compute node) dominator of all compute
nodes which directly call it, unifying all uses of the function.

7.3 summary
�is representation forms an algebra of schedules: valid sched-
ule trees de�ne a space of possible schedules for an algorithm,
while the transformations are operators which map between
points in this space. Intuitively, the tree structure of this space
corresponds directly to the semiperfect loop nests synthe-
sized by Halide schedules, and the canonical inline-everything
schedule tree corresponds to the default Halide schedule. �e
transformations can implement the schedule declarations in
Halide’s language of schedules1 1. �e algebra, as presented, does

not address iteration domains or
multi-stage update functions. �is
is a straightforward extension.

. Domain order operations all
have direct corollaries in these transformations (split, fuse, re-
order, and changing loop type). �ese operations in Halide are
transformational in nature, so their correspondence is very
direct. Call schedules in Halide, meanwhile, are speci�ed in
a declarative way, while compute and storage granularity are
changed transformationally in this algebra. Intuitively, how-
ever, it is clear that any valid schedule can be modeled by
a schedule tree, and that the composition of inline/deinline,
hoist/lower storage, and hoist/lower computation operations
can span the space of valid schedules for a given tree. �erefore,
any valid Halide call schedule can be described by composing
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a series of these operations, starting from the default schedule
tree for the algorithm.
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8
COMPILING SCHEDULED
PIPELINES

Our compiler combines the functions describing a Halide
pipeline, with a fully-speci�ed schedule for each function, to
synthesize the machine code for a single procedure which
implements the entire pipeline. �e generated pipeline is ex-
posed as a C ABI callable function which takes bu�er pointers
for input and output data, as well as scalar parameters. �e
implementation is multithreaded and vectorized according
to the schedule, internally manages the allocation of all in-
termediate storage, and optionally includes synthesized GPU
kernels which it also manages automatically.

�e compiler makes no heuristic decisions about which
loop transformations to apply or what will generate fast code.
For all such questions we defer to the schedule. At the same
time, the generated code is safe by construction. �e bounds
of all loops and allocations are inferred. Bounds inference
generates loop bounds that ultimately depend only on the size
of the output image. Bounded loops are our only means of
control �ow, so we can guarantee termination. All allocations
are large enough to cover the regions used by the program.

Given the functions de�ning a Halide pipeline and a fully
speci�ed schedule as input (Figure 8.1, le�), our compiler pro-
ceeds through the major steps below.

8.1 lowering and loop
synthesis

�e �rst step of our compiler is a lowering process that synthe-
sizes a single, complete set of loop nests and allocations, given
a Halide pipeline and a fully-speci�ed schedule (Figure 8.1,
middle).
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algorithm flatteninglowering bound
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COMPILER
sliding window
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& storage folding

Input: Algorithm
blurx(x,y)  = in(x-1,y)
 + in(x,y)
 + in(x+1,y)

out(x,y)  = blurx(x,y-1)
 + blurx(x,y)
 + blurx(x,y+1)

Sec 4.1: Lowering out
par for out.yo in 0..out.y.extent/4
 for out.xo in 0..out.x.extent/4
  for out.yi in 0..4
   vec for out.xi in 0..4
    out(4*xo+xi,4*yo+yi) =
     blurx(xi,yi-1)
     + blurx(xi,yi)
     + blurx(xi,yi+1)

Sec 4.2: Bounds inference
let blurx.y.min = 
 4*out.yo.min + out.yi.min - 1

Sec 4.5: Vectorization
vec for blurx.xi in 0..4
 blurx[blurx.y.stride*blurx.y+4*blurx.xo+xi) = ...
 ↓ 
blurx[blurx.y.stride*blurx.y+4*blurx.xo+ramp(4)]
= in[in.y.stride*(blurx.y.min+blurx.y)+4*blurx.xo+ramp(4)]
+ ...

Sec 4.4: Flattening
out[out.y.stride*(4*(out.yo-out.yo.min)+out.yi)
    +4*(out.xo-out.xo.min)+out.xi]
= blurx[blurx.y.stride*(out.yi-1-blurx.y.min)+out.xi-blurx.x.min]
+ blurx[blurx.y.stride*(out.yi  -blurx.y.min)+out.xi-blurx.x.min]
+ blurx[blurx.y.stride*(out.yi+1-blurx.y.min)+out.xi-blurx.x.min]Sec 4.1: Lowering blurx

alloc blurx[blurx.y.extent][blurx.x.extent]
for blurx.y in blurx.y.min..blurx.y.max
 for blurx.xo in blurx.x.min/4..blurx.x.max/4
  vec for blurx.xi in 0..4
   blurx(4*xo+xi,y) =
    in(4*xo+xi-1,y)
    + in(4*xo+xi,y)
    + in(4*xo+xi+1,y)

Input: Schedule
blurx: split x by 4 → xo, xi

 vectorize: xi

 store at out.x0

 compute at out.yi

out: split x by 4 → xo, xi

   split y by 4 → yo, yi

 reorder: yo, xo, yi, xi

 parallelize: yo

 vectorize: xi

Figure 8.1: �e core of the Halide compiler lowers a functional representation of an imaging pipeline to impera-
tive code using a schedule. It does this by �rst constructing a loop nest producing the �nal stage of the pipeline
(in this case out), and then recursively injecting the storage and computation of earlier stages of the pipeline
at the loop levels speci�ed by the schedule. �e locations and sizes of regions computed are symbolic at this
point. �ey are resolved by the subsequent bound inference pass, which injects interval arithmetic computations
in a preamble at each loop level that set the region produced of each stage to be at least as large as the region
consumed by subsequent stages. Next, sliding window optimization and storage folding remove redundant
computation and excess storage where the storage granularity is above the compute granularity. A simple �at-
tening transform converts multidimensional coordinates in the in�nite domain of each function into simple
one-dimensional indices relative to the base of the corresponding bu�er. Vectorization and unrolling passes
replace loops of constant with k scheduled as vectorized or unrolled with the corresponding k-wide vector code
or k copies of the loop body. Finally, backend code generation emits machine code for the scheduled pipeline
via LLVM.

Lowering begins from the function de�ning the output (in
this case, out). Given the function’s domain order from the
schedule, it generates a loop nest covering the required region
of the output, whose body evaluates the function at a single
point in that domain (Figure 8.1, middle-top). �e order of
loops is given by the schedule, and includes additional loops
for split dimensions. Loops are de�ned by their minimum
value and their extent, and all loops implicitly stride by 1. �is
process rounds up the total traversed domain of dimensions
which have been split to the nearest multiple of the split factor,
since all loops have a single base and extent expression.

At this stage, loop bounds are le� as simple symbolic ex-
pressions of the required region of the output function, which
is resolved later. �e bounds cannot have inter-dependent
dimensions between the loops for a single function, so they
represent a dense iteration over an axis-aligned bounding box.
Each loop is labeled as being serial, parallel, unrolled, or vec-
torized, according to the schedule.
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Lowering then proceeds recursively up the pipeline, from
callers to callees (here, from out to blurx). Callees (apart from
those scheduled inline) are scheduled to be computed at the
granularity of some dimension of some caller function. �is
corresponds to an existing loop in the code generated so far.
�is site is located, and code evaluating the callee is injected at
the beginning of that loop body. �is code takes the form of a
loop nest constructed using the domain order of the callee. �e
allocation for the callee is similarly injected at some contain-
ing loop level speci�ed by the schedule. In Figure 8.1, middle,
blurx is allocated at the level of tiles (out.xo), while it is com-
puted as required for each scanline within the tile (out.yi).
�e allocation and computation for blurx are inserted at the
corresponding points in the loop nest.

Reductions are lowered to a pair of loop nests: the �rst
initializes the domain, and the second applies the reduction
rule. Both allocation and loop extents are tracked as symbols
of the required region of the function used by its callers. Once
lowering has recursed to the end of the pipeline, all functions
have been synthesized into a single set of loops.

8.2 bounds inference
At this stage, for allocation sizes and loop bounds the pipeline
relies on symbolic bounds variables for each dimension of
each function. �e next stage of lowering generates and in-
jects appropriate de�nitions for these variables. Like function
lowering, bounds inference proceeds recursively back from
the output. For each function, it symbolically evaluates the
bounds of each dimension based on the bounds required of
its caller and the symbolic indices at which the caller invokes
it. At each step, the required bounds of each dimension are
computed by interval analysis of the expressions in the caller
which index that dimension, given the previously computed
bounds of all downstream functions.

A�er bounds inference has recursed to the top of the
pipeline, it walks back down to the output, injecting de�ni-
tions for the bounds variables used as stand-ins during lower-
ing. �ey are de�ned by expressions which compute concrete
bounds as a preamble at each loop level (e.g., in Figure 8.1,
right, the minimum bound of blurx.y is computed from in-
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terval analysis of the index expressions at which it is accessed
combined with the bounds of the calling function, out). In
practice, hoisting dynamic bounds evaluation expressions to
the outermost loop level possible makes the runtime overhead
of more complex bounds expressions negligible.

Interval analysis is an unusual choice in a modern loop
synthesis and code generation system. �e resulting min/-
max bounds for each dimension are less expressive than the
polyhedral model. �ey can only describe iteration over axis-
aligned boxes, rather than arbitrary polytopes. However, it is
trivial to synthesize e�cient loops for any set of intervals, in
contrast to the problem of scanning general polyhedra. For
many domains, including image processing, this is an accept-
able simpli�cation: most functions are applied over rectilinear
regions.

Most critically, interval analysis can analyze a more general
class of expressions: it is straightforward to compute intervals
through nearly any computation, from basic arithmetic, to
conditional expressions, to transcendentals, and even loads
from memory. As a result, this analysis can be used pervasively
to infer the complete bounds of every loop and allocation in
any pipeline represented in Halide. It also generalizes through
constructs like symbolic tile sizes, which are beyond the scope
of polyhedral analysis. For cases where interval analysis is over-
conservative (e.g., when computing the bounds of a �oating
point number loaded from memory which the programmer
knows will be between 0 and 1), Halide includes a simple clamp
operator, which simultaneously declares and enforces a bound
on an expression.

8.3 sliding window
optimization and
storage folding

A�er bounds inference, the compiler traverses the loop nests
seeking opportunities for sliding window optimizations. If a
realization of a function is stored at higher loop level than its
computation, with an intervening serial loop, then iterations
of that loop can reuse values generated by previous iterations.
Using the same interval analysis machinery as in bounds infer-
ence, we shrink the interval to be computed at each iteration
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by excluding the region computed by all previous iterations.
It is this transformation that lets us trade o� parallelism (be-
cause the intervening loop must be serial) for reuse (because
we avoid recomputing values already computed by previous
iterations.)

For example, in Figure 8.1, blurx is stored for reuse within
each tile of out, but computed as needed, for each scanline
within the tile. Because scanlines (out.yi) are traversed se-
quentially, intermediate values of blurx are computed imme-
diately before the �rst scanline of out which needs them, but
may be reused my later scanlines within the tile. For each iter-
ation of out.yi, the range of blurx.y is computed to exclude
the interval covered by all prior iterations computed within
the tile.

Storage folding is a second similar optimization employed
at this stage of lowering. If a region is allocated outside of a
serial loop but only used within it, and the subregion used by
each loop iteration marches monotonically across the region
allocated, we can “fold” the storage, by rewriting indices used
when accessing the region by reducing them modulo the max-
imum extent of the region used in any given iteration. For
example, in Figure 8.1, each iteration of out.yi only needs ac-
cess to the last 3 scanlines of blurx, so the storage of blurx can
be reduced to just 3 scanlines, and the value blurx(x,y+3) will
reuse the same memory address as blurx(x,y), blurx(x,y-3),
and so on. �is reduces peak memory use and working set
size.

8.4 flattening
Next, the compiler �attens multi-dimensional loads, stores,
and allocations into their single-dimensional equivalent. �is
happens in the conventional way: a stride and a minimum
o�set are computed for each dimension, and the bu�er index
corresponding to a multidimensional site is the dot product
of the site coordinates and the strides, minus the minimum.
(Cf. Figure 8.1, right.) By convention, we always set the stride
of the innermost dimension to 1, to ensure we can perform
dense vector loads and stores in that dimension. For images,
this lays them out in memory in scanline order. While our
model of scheduling allows extreme �exibility in the order of

89



execution, we do not support more unusual layouts memory,
such as tiled or sparse storage. (We have found that modern
caching memory hierarchies largely obviate the need for tiled
storage layouts, in practice.)

8.5 vectorization and
unrolling

A�er �attening, vectorization and unrolling passes replace
loops of constant size scheduled as vectorized or unrolled with
transformed versions of their loop bodies. Unrolling replaces
a loop of size n with n sequential statements performing each
loop iteration in turn. �at is, it completely unrolls the loop.
Unrolling by lesser amounts is expressed by �rst splitting a
dimension into two, and then unrolling the inner dimension.

Vectorization completely replaces a loop of size n with a
single statement. For example, in Figure 8.1 (lower right), the
vector loop over blurx.xi is replaced by a single 4-wide vector
expression. Any occurrences of the loop index (blurx.xi)
are replaced with a special value ramp(n) representing the
vector [0 1...n − 1]. A type coercion pass is then run over
this to promote any scalars combined with this special value
to n-wide broadcasts of the scalar expression. All of our IR
nodes are meaningful for vector types: loads become gathers,
stores become scatters, arithmetic becomes vector arithmetic,
ternary expressions become vector selects, and so on. Later,
during code generation, loads and stores of a linear expression
of k × ramp(n) + o will become dense vector loads and stores
if the coe�cient k = 1, or strided loads and stores with stride
k otherwise. In contrast to many languages, Halide has no
divergent control �ow, so this transformation is always well-
de�ned and straight-forward to apply. In our representation,
we never split a vector into a bundle of scalars. It is always a
single expression containing ramps and broadcast nodes. We
have found that this yields extremely e�cient code without
any sort of generalized loop auto-vectorization.
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8.6 back-end code
generation

Finally, we perform low-level optimizations and emit machine
code for the resulting pipeline. Our primary backends use
LLVM for low-level code generation. We �rst run a standard
constant-folding and dead-code elimination pass on our IR,
which also performs symbolic simpli�cation of common pat-
terns produced by bounds inference. At this point, the repre-
sentation is ready to be lowered to LLVM IR. �ere is mostly a
one-to-one mapping between our representation and LLVM’s,
but two speci�c patterns warrant mention.

First, parallel for loops are lowered to LLVM code that
�rst builds a closure containing state referred to in the body
of a for loop. �e loop body is lowered to a separate function
that accepts the closure as an argument and performs one
iteration of the loop. We �nally generate code that enqueues
the iterations of the loop onto a task queue, which a thread
pool consumes at runtime.

Second, many vector patterns are di�cult to express or gen-
erate poor code if passed directly to LLVM. We use peephole
optimization to reroute these to architecture-speci�c intrinsics.
For example, we perform our own analysis pass to determine
alignment of vector loads and stores, and we catch common
patterns such as interleaving stores, strided loads, vector av-
erages, clamped arithmetic, �xed-point arithmetic, widening
or narrowing arithmetic, etc. By mapping speci�c expression
IR patterns to speci�c SIMD opcodes on each architecture,
we provide a means for the programmer to make use of all
relevant SIMD operations on ARM (using NEON) and x86
(using SSE and AVX).

GPU Code Generation
�e data parallel grids de�ning a Halide pipeline are a natural
�t for GPU programming models. Our compiler uses the same
scheduling primitives, along with a few simple conventions,
to model GPU execution choices. GPU kernel launches are
modeled as dimensions (loops) scheduled to be parallel and
annotated with the GPU block and thread dimensions to which
they correspond.
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�e limitations of GPU execution place a few constraints
on how these dimensions can be scheduled. In particular, a se-
quence of block and thread loops must be contiguous, with no
other intervening loops between the block and thread levels,
since a kernel launch corresponds to a single multidimen-
sional, tiled, parallel loop nest. Sets of kernel loops may not
be nested within each other on current GPUs which do not
directly implement nested data parallelism. Additionally, the
extent of the thread loops must �t within the corresponding
limits of the target device. Other than that, all the standard
looping constructs may still be scheduled outside or within the
block and grid dimensions. �is corresponds to loops which
internally launch GPU kernels, and loops within each thread
of a GPU kernel, respectively.

Given a schedule annotated with GPU block and thread
dimensions, our compiler proceeds exactly as before, synthe-
sizing a single set of loop nests for the entire pipeline. No stage
before the backend is aware of GPU execution; block and
thread dimensions are treated like any other loops. �e GPU
backend extends the x86 backend, including its full feature
set. Outside the loops over block and thread dimensions, the
compiler generates the same optimized SSE code as it would in
the pure CPU target. At the start of each GPU block loop nest,
we carve o� the sub-nest much like a parallel for loop in the
CPU backend, only it is spawned on the GPU. We �rst build a
closure over all state which �ows into the GPU loops. We then
generate a GPU kernel from the body of those loops. And
�nally, we generate the host API calls to launch that kernel at
the corresponding point in the host code, passing the closure
as an argument. We also generate dynamic code before and
a�er launches to track which bu�ers need to be copied to or
from the device. Every allocated bu�er which is used on the
GPU has a corresponding device memory allocation, and their
contents are lazily copied only when needed.

�e end result is not individual GPU kernels, but large
graphs of hybrid CPU/GPU execution, described by the same
scheduling model which drives the CPU backends. A small
change in the schedule can transform a graph of dozens of
GPU kernels and vectorized CPU loop nests, tied together by
complex memory management and synchronization, into an
entirely di�erent graph of kernels and loops which produce
the same result, expressively modeling an enormous space of
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possible fusion and other choices in mapping a given pipeline
to a heterogeneous machine.
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9
RESULTS & EVALUATION

�is chapter evaluates the e�ectiveness of the Halide language
and compiler in implementing, optimizing, and compiling
real applications. My primary focus is evaluating the expe-
rience of building and manually scheduling a range of real
image processing pipelines relative to existing state-of-the-art
equivalents implemented in traditional languages including
C/C++, CUDA, MATLAB, and assembly. Section 9.1 presents
case studies of di�erent image processing applications on
three classes of target architecture: x86-64 multicores, ARMv7
multicores, and CUDA GPUs. I will show how, for the same
algorithm, di�erent schedules can have very di�erent perfor-
mance. Optimizing schedules enables simple algorithm code
to compile to state-of-the-art performance on a range of di�er-
ent architectures. I will show that it is feasible to do this auto-
matically using stochastic search and autotuning to search the
space: section 9.2 presents initial results automatically schedul-
ing several of these applications with a prototype autotuner.
Finally, I show how it’s proving useful in real production ap-
plications: Section 9.3 discusses Halide’s wider adoption and
deployment in its �rst two years.

9.1 image processing
applications in halide

To evaluate our representation and compiler, we applied them
to a range of image processing applications. We reimple-
mented each in Halide, and compared both code complexity,
and hand- and auto-tuned schedule performance generated
by our compiler, to the best previously published expert imple-
mentation we could �nd. We selected this set of examples to
cover a diversity of algorithms and communication patterns.
It includes pipelines ranging from two to 99 stages, and includ-

94



ing many di�erent stencils, data-dependent access patterns,
histograms, and reductions. We describe each application and
our experiences implementing and optimizing it below.

Blur
Blur is the simple two-stage box �lter example used through-
out this thesis. It convolves an input image with two 3 × 1 box
kernels in two steps, a horizontal 3 × 1 kernel followed by a
vertical 1 × 3 kernel. �is is a simple example of two consecu-
tive stencils. Our reference comparison is a hand-optimized,
manually fused and multithreaded loop nest de�ned almost
entirely in SSE intrinsics [74]. �is version is 36 lines of code,
and is 12× faster than a simple pair of loops in C compiled by
GCC 4.7. �e Halide version expresses the same algorithm
in two lines, and exact same organization as the optimized
reference in two lines of schedule (�ve total directives).

�e blur reference implementation was initially developed
during early Halide development, to establish a baseline for op-
timized code performance on a simple chain of small stencils.
It is hand-coded in SSE, with manually tiled and interleaved
loops, OpenMP parallelism, and all pixel computation imple-
mented as SSE intrinsics on 16-bit �xed point values. Starting
from a trivial pair of scalar loop nests expressing the basic
algorithm1 1. for all y

for all x
compute bh(x , y)

for all y
for all x

compute bv(x , y)

, many alternative organizations were explored over
the course of several days, initially on a quad core Core 2
Xeon Mac Pro. Vectorization and multithreaded parallelism
improved performance over the initial organization, but by far
less than the theoretical factor of perhaps 16× (four cores, each
with eight-way SIMD parallelism through the critical path,
vs. 2-3 wide superscalar execution of the primary pixel com-
putations on a single core). Rather, the pipeline was limited
by memory bandwidth. �e most e�cient organization found
computed the whole pipeline on 256× 32 tiles, interleaving the
computation of tiles between stages, and storing intermediate
results of the bx stage only brie�y in a per-thread tile bu�er.
�e resulting code was 11× faster than the trivial pair of loop
nests.

�e Halide expression of the same algorithm and organiza-
tion generates nearly identical machine code and performance
on the same machine. Using it, we also quickly explored even
more organizations. We found several alternatives which bal-
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anced locality and redundant computation in di�erent ways.
Several provided similar performance on the original Core 2
Mac Pro, but di�erent organizations performed an additional
10 − 15% faster than the initial tiled organization on Sandy-
bridge and Ivybridge-generation quad core CPUs.

Camera Pipeline

Camera Raw Pipeline

51 msQuad-core x86:

463 lines
772 ms

Optimized NEON ASM:
Nokia N900:

145 lines
23 lines
741 ms

Halide algorithm:
schedule:

Nokia N900:

2.75x shorter
5% faster than tuned assembly

Port to different architecture:

Figure 9.1

Camera pipeline transforms the raw data recorded by an
image sensor into a usable image. It comprises four steps:
hot-pixel suppression, demosaicking, color correction, and
tone adjustment (i.e., gamma correction and contrast enhance-
ment). �is combination of processes mixes a wide variety
of operations including complex, heterogeneous stencils and
convolutions, and is optimized for a mixture of 16-bit �xed
computation and �oating point transcendentals. Its demo-
saicking, alone, is a complex combination of 21 interleaved
and inter-dependent stencils.

�e reference comparison comes from the Frankencamera
and takes two forms, each expressing the same basic hand-
optimized organization [2], one hard-coded for ARM NEON,
the other in pure C++. Both versions use a single carefully
tiled and fused loop nest. �e pure C++ version is 306 lines
in total. �e hand-vectorized ARM version is a heavily opti-
mized mixture of vector intrinsics and inline ARM originally
assembly targeted at a Cortex A8 core (speci�cally, the OMAP3
processor in the Nokia N900), taking 463 lines in total. �e
tightly bounded stencil communication down the pipeline
makes fusion of stages to save bandwidth and storage a crit-
ical optimization for this application. In both versions, all
producer-consumer communication is staged through scratch
bu�ers, and tiles are distributed over parallel threads using
OpenMP. In the pure C++ version, the tight inner loops are
at least partially autovectorized by GCC; in the ARM-speci�c
version, virtually all operations performed are highly tuned 4-
and 8-wide NEON vector instructions.

�e Halide algorithm is 145 lines describing 32 functions
and 22 di�erent stencils. It is dramatically simpler than even
the pure C++ version; it was literally translated from the pseu-
docode in the comments explaining the original source. We
can express the same optimizations used in the Frankencam-
era assembly, separately from the algorithm: the output is
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tiled, and each intermediate stage is computed and stored at tile
granularity. �e innermost dimension of each function is vec-
torized. �is requires one line of scheduling choices (roughly
two directives each) per function in the pipeline.

Our implementation takes 741 ms to process a 5 megapixel
raw image on a Nokia N900 running the Frankencamera code,
while the Frankencamera implementation takes 772 ms. Our
implementation is also portable, whereas the Frankencamera
assembly is entirely platform speci�c: the same Halide code
compiles to multithreaded x86 SSE code, which takes 51 ms
on our quad-core desktop.

�e Frankencamera pure C++ fallback code takes 54 ms,
multithreaded with OpenMP and autovectorized by GCC 4.7.
the Halide version takes 14 ms.

�e Halide implementation uses a schedule modeled di-
rectly a�er the optimized ARM version. Performance di�er-
ence is largely due to vector code quality.

Multi-scale Interpolation
Interpolate uses an image pyramid to interpolate pixel data for
seamless compositing. �is requires dealing with data at many
di�erent resolutions. �e resulting pyramids are chains of
stages which locally resample over small stencils, but through
which dependence propagates globally across the entire image.
�is algorithm is used in Adobe Photoshop and Camera Raw
to implement the healing brush.

�e reference implementation is a carefully-structured set
of loop nests, written as 152 lines of C++, which were hand-
tuned by an Adobe engineer to generate a vectorized imple-
mentation in GCC . �e Halide algorithm is 7× simpler (21
lines). On a single core of a Core i7-3770, the two implementa-
tions deliver similar performance, requiring 25 ms/megapixel
processed; on four cores, the Halide version scales almost
perfectly, requiring 7 ms/megapixel.

Fast Fourier Transform
�e fast Fourier transform is widely used in image processing
and other domains, but the algorithm is more similar to dense
linear algebra than traditional image processing pipelines. To
test the appicability of Halide to di�erent application domains
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and computational patterns, we implemented a complement of
2D fast Fourier transform variants in Halide. �e implementa-
tions share most logic and total under 350 lines of code for 2D
complex-to-complex, real-to-complex, and complex-to-real,
including optimized schedules for a Core i7-3770 x86 proces-
sor with AVX. Performance is competitive with autotuned
FFTW, long regarded as the state-of-the-art FFT implemen-
tation for x86 processors. For a 32 × 32 complex-to-complex
2D FFT on �oating point data, the Halide implementation
currently outperforms the best autotuned FFTW implementa-
tion by 15% (29.7 GFLOP/s for Halide, vs. 26.2 GFLOP/s for
FFTW). On a 64 × 64 FFT, the same Halide schedule thrashes
the cache hierarchy, delivering just over half the performance
(15.3 GFLOP/s), where FFTW scales smoothly (25.1 GFLOP/s).
A di�erent schedule for the larger block size could likely close
the gap. �e Halide implementation of complex-to-real trans-
formation di�ers slightly in semantics from FFTW (it returns
a transposed result), so it is less perfectly comparable, but for
both 32×32 and 64×64 the Halide implementations are nearly
twice as fast as the FFTW variants tuned on this machine,
starting from far simpler code.

Level Set Image Segmentation

67 lines
3800 ms

3 ms (1250x)CUDA GPU:

148 lines
7 lines
55 ms

Vectorized MATLAB:
Quad-core x86:

Halide algorithm:
schedule:

Quad-core x86:

Snake Image Segmentation

2.2x longer
70x faster

Schedule for different architecture:

Figure 9.2

Active contour selection (a.k.a., snake [47]) is a method for
segmenting objects from a background (Figure 9.2). Level-set
methods [15] are an e�ective way to implement such tech-
niques when the objects of interest are likely to be smooth and
when the number of connected components is not known a
priori. It is well suited for medical applications (e.g., to seg-
ment cells). We implemented the algorithm proposed by Li
et al. [52]. �e algorithm is iterative, and can be interpreted
as a gradient-descent optimization of a 2D function. Each
update of this function is composed of three terms, each of
them being a combination of di�erential quantities computed
with small 3 × 1 and 1 × 3 stencils, and point-wise nonlinear
operations, such as normalizing the gradients.

�e reference comparison is the original authors’ imple-
mentation, which is 67 lines of MATLAB. MATLAB is noto-
riously slow when misused, but this code expresses all opera-
tions in the array-wise notation that MATLAB executes most
e�ciently.
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In Halide, we factored this algorithm into three feed-forward
pipelines. Two pipelines create images that are invariant to
the optimization loop, and one primary pipeline performs a
single iteration of the optimization loop. While Halide can
represent bounded iteration over the outer loop using a re-
duction, it is more naturally expressed in the imperative host
language. At 148 lines, the Halide implementation is longer,
but this is largely due to the combination of syntactic over-
head in the C++ embedding (e.g., each function or variable
must be declared before it is used, while the MATLAB syntax
does not require explicit declaration), and the absence of some
built-in MATLAB operations which must instead be expressed
explicitly as a sequence of multiple operations in Halide.

On a 1600 × 1200 test image, our Halide implementation
of active contour segmentation takes 55 ms per iteration of the
optimization loop on our quad-core x86 desktop, while the
MATLAB reference implementation takes 3.8 seconds. Our
schedule is expressed in a single line: we parallelize and vec-
torize the output of each iteration, while leaving every other
function to be inline by default. �e bulk of the speedup comes
not from vectorizing or parallelizing; without them, our im-
plementation still takes just 202 ms per iteration. �e biggest
di�erence is that we have completely fused the operations that
make up one iteration. MATLAB expresses algorithms as se-
quences of many simple array-wise operations, and is heavily
limited by memory bandwidth. It is equivalent to scheduling
every operation as root, which is a poor choice for algorithms
like this one.

�e fully-fused form of this algorithm is also ideal for the
GPU, where it takes 3 ms per iteration.

Bilateral Grid
�e bilateral �lter smoothes an image while preserving edges [68].
It is used for denoising or to decompose images into local and
global details. It is e�ciently computed with the bilateral grid
algorithm [20, 66]. �is algorithm �rst scatters the image
data into a 3D grid, e�ectively building a windowed histogram
in each column of the grid, then blurs the grid along each
of is axes with three 5-point stencils. Finally, the output im-
age is constructed by trilinear interpolation within the grid at
locations determined by the input image.
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Bilateral Grid

11 ms (42x)CUDA GPU:

122 lines
472ms

34 lines
6 lines
80 ms

Tuned C++:
Quad-core x86:

Halide algorithm:
schedule:

Quad-core x86:

23 msHand-written CUDA:
[Chen et al. 2007] 

3x shorter
5.9x faster

Schedule for different architecture:

Figure 9.3

�e CPU reference code is a tuned but clean implemen-
tation from the original authors in 122 lines of C++. It is
partially autovectorized by GCC, but is nontrivial to multi-
thread (a naive OpenMP parallelization of major stages results
in a slowdown on our benchmark CPU), so the reference is
single-threaded. �e Halide algorithm is 34 lines.

We implemented this algorithm in Halide and found that
the best schedule for the CPU simply parallelizes each stage
across an appropriate axis. �e only stage regular enough to
bene�t from vectorization is the small-footprint blur, but for
commonly used �lter sizes the time taken by the blur is in-
signi�cant. Using this schedule on our quad-core x86 desktop,
we compute a bilateral �lter of a four megapixel input using
typical �lter parameters (spatial standard deviation of 8 pix-
els, range standard deviation of 0.1) in 80 ms. In comparison,
the moderately-optimized C++ version provided by Paris and
Durand [66] takes 472 ms using a single thread on the same
machine. Our single-threaded runtime is 254 ms; some of our
speedup is due to parallelism, and some is due to generating
superior scalar code. We use 34 lines of code to describe the
algorithm, and 6 for its schedule, compared to 122 lines in the
C++ reference.

We �rst tried running the same algorithm on the GPU
using a schedule which performs the reduction over each tile
of the input image on a single CUDA block, with each thread
responsible for one input pixel. Halide detected the parallel
reduction, and automatically inserted atomic �oating point
adds to memory. �e runtime was 40 ms—only 2× faster
than our optimized CPU code, due to atomic contention. �e
latest hand-written GPU implementation by Chen et al. [20]
expresses the same algorithm and a similar schedule in 370
lines of CUDA C++, and takes 24 ms on the same GPU.

With the rapid schedule exploration enabled by Halide,
we quickly found a better schedule that trades o� some paral-
lelism to reduce atomics contention. We modi�ed the schedule
to use one thread per tile of the input, with each thread walk-
ing serially over the reduction domain. �is one-line change
in schedule gives us a runtime of 11 ms for the same image.
When we rewrite the hand-tuned CUDA implementation to
match the schedule found with Halide, it takes 8 ms. �e 3
ms improvement over Halide comes from the use of texture
units for the slicing stage. Halide does not currently use tex-
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ture hardware. In general, hand-tuned CUDA can surpass the
performance Halide achieves when there is a signi�cant win
from clever use of speci�c CUDA features not expressible in
our schedule, but exploring di�erent optimization strategies is
much harder than in Halide. Compared to the original CUDA
bilateral grid, the schedule found with Halide saved 13 ms,
while the clever use of texture units saved 3 ms.

With the �nal GPU schedule, the same 34-line Halide al-
gorithm runs over 40× faster than the more verbose reference
C++ implementation on the CPU, and twice as fast as the
reference CUDA implementation using 1/10th the code.

Local Laplacian Filters

Local Laplacian Filter

48 ms (7x)CUDA GPU:

262 lines
335 ms

62 lines
7 lines
158 ms

C++, OpenMP+IPP:
Quad-core x86:

Halide algorithm:
schedule:

Quad-core x86:

3.7x shorter
2.1x faster

Schedule for different architecture:

Figure 9.4

One of the most important tasks in producing compelling
photographic images is adjusting local contrast. Local Lapla-
cian �lters uses a multi-scale approach to tone map images and
enhance local contrast in an edge-respecting fashion [67, 10].
It is used in the clarity, tone mapping, and other �lters in
Adobe Photoshop and Lightroom. It works by building a set
of multiple Gaussian and Laplacian image pyramids, with
complex dependencies between them. �e �lter output is ulti-
mately produced by a data-dependent resampling from several
pyramids. �e resulting pipeline mixes many images at many
di�erent resolutions with a complex network of dependen-
cies. With the parameters we used, the pipeline contains 99
di�erent stages, operating at many scales, and with di�erent
computational patterns.

�e reference implementation is 262 lines of C++, devel-
oped at Adobe, and carefully parallelized with OpenMP, and
o�oading most intensive kernels to tuned assembly routines
from Intel Performance Primitives [65, 40]. It has very similar
performance to a version deployed in their products, which
took several months to develop, including at least 2-3 weeks
dedicated to optimization. It is 10× faster than an algorithmi-
cally identical reference version written by the authors in pure
C++, without IPP or OpenMP.�e Halide version was written
in two days, in 52 lines of code. A third implementation, in
ispc [70], using OpenMP to distribute the work across mul-
tiple cores, used 288 lines of code. It is longer than in Halide
due to explicit boundary handling, memory management, and
C-style kernel syntax.
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Figure 9.5: Results from manual tuning of the local Laplacian �lters
schedule across two x86 machines and a dual-core ARM machine, in the
order schedules were tried.

We implemented local Laplacian �lters in Halide, and ex-
plored multiple strategies for scheduling it e�ciently on sev-
eral di�erent machines. �e statement of the algorithm did
not change during the exploration of plausible schedules. We
found e�ective schedules for the local Laplacian �lter by man-
ually testing and re�ning a small, hand-tuned schedule, across
a range of multicore CPUs. �e overall progress of relative
performance on each platform during this process is plotted
in Figure 9.5, and some major steps are highlighted. To begin,
all functions were scheduled to be computed sequentially, at
root granularity. �en, each stage was parallelized over its
outermost dimension (a). Computing the Laplacian pyramid
levels inline improves locality, at the cost of redundant com-
putation (b). However, excessive inlining is dangerous: the
high spike in runtimes results from additionally inlining ev-
ery other Gaussian pyramid level (d). �e best performance
on the x86 processors required additionally inlining only the
bottom-most Gaussian pyramid level, and vectorizing across
the x dimension (e). �e ARM performs slightly better with a
similar schedule, but no vectorization. �e entire optimization
process took only a couple of hours.

Ultimately, we found that on several x86 platforms, the
best performance came from a complex schedule involving in-
lining certain stages, and vectorizing and parallelizing the rest.

102



�e schedule is speci�ed using seven lines of code. Using this
schedule on our quad-core laptop, processing a 4 megapixel im-
age takes 158 ms. On the same processor the hand-optimized,
OpenMP/IPP version developed by Aubry et al. takes 335 ms.
A third implementation, in ispc, takes 327 ms to process the
4-megapixel image. �e Halide implementation is faster due
to fusion down the pipeline. �e ispc implementation can be
manually fused by rewriting it, but this would signi�cantly
lengthen and complicate the code, and .

A schedule equivalent to naive parallel C, with all major
stages scheduled as root but evaluated in parallel over the
outer dimensions, performs much less redundant computa-
tion than the fastest schedule, but takes 296 ms because it
sacri�ces producer-consumer locality and is limited by mem-
ory bandwidth. �is organization is roughly equivalent to the
OpenMP/IPP and ispc implementations.

�e best schedule on a dual core ARM OMAP4 processor
is slightly di�erent. While the same stages should be inlined,
vectorization is not worth the extra instructions, as the algo-
rithm is bandwidth-bound rather than compute-bound. On
the ARM processor, the algorithm takes 5.5 seconds with vec-
torization and 4.2 seconds without. Naive evaluation takes 9.7
seconds. �e best schedule for the ARM takes 278 ms on the
x86 laptop—75% longer than the best x86 schedule.

�is algorithm maps well to the GPU, where processing the
same four-megapixel image takes only 49 ms. �e best sched-
ule evaluates most stages as root, but fully fuses (inlines) all of
the Laplacian pyramid levels wherever they are used, trading
increased computation for reduced bandwidth and storage,
similar to the x86 and ARM schedules. Each stage is split into
32 × 32 tiles that each map to a single CUDA block. �e same
algorithm statement then compiles to 83 total invocations of
25 distinct CUDA kernels, combined with host CPU code that
precomputes lookup tables, manages device memory and data
movement, and synchronizes the long chain of kernel invoca-
tions. Writing such code by hand is a daunting prospect, and
would not allow for the rapid performance-space exploration
that Halide provides.
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9.2 automatic scheduling
using autotuning

To test the feasibility of automatically discovering good sched-
ules using stochastic search over the space of schedules, we
tested our prototype autotuner on �ve applications on an x86
target, and three on a CUDA GPU. �e resulting performance
relative to our expert-tuned handwritten reference applica-
tions is shown in Figure 9.6. �e autotuner consistently �nds
schedules which match or exceed the performance of these
hand-optimized C++, CUDA, and intrinsics implementations
on the same machine. Autotuned performance is generally
similar to or slightly better than the best hand-coded sched-
ules we found on the speci�c tests for which the schedules
were tuned, but they generally used more total schedule pa-
rameters than the hand-written schedules. �ese examples
took between 2 hours and 2 days to tune (from 10s to 100s of
generations). In all cases, the tuner converged to within 15%
of the �nal performance a�er less than one day tuning on a
single machine. Improvements to the compiling and tuning
infrastructure (for example, distributing tests across a cluster)
could reduce these times signi�cantly.

Over-�tting
One challenge with autotuning is over-�tting to the exact
benchmark used in tuning. In image processing, a major vari-
able which a�ects the performance of di�erent schedules is
image size; common image sizes vary from thousands to tens
of millions of pixels. To evaluate the potential over-�tting ef-
fect of training on very di�erent image sizes, we cross-tested
three algorithms on two image sizes, varying by at least an
order of magnitude. �e smaller size (640 × 480) was chosen
to easily �t in the on-chip caches of the target processor. �e
larger size varied by application, but was chosen to be larger
than the largest on-chip cache.

We generally found the tuned schedules to be insensitive
to moderate changes in resolution or architecture, but extreme
changes can cause the best schedule to change dramatically.
Figure 9.7 shows experiments in cross-testing schedules tuned
at these di�erent resolutions. We observe that schedules gener-
alize better from low resolutions to high resolutions. We tested
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x86

Halide Expert
autotuned hand-tuned Speedup

Blur 11 ms 13 ms 1.2×
Bilateral grid 36 ms 158 ms 4.4×

Camera pipeline 14 ms 49 ms 3.4×
Interpolation 32 ms 54 ms 1.7×

Local Laplacian 113 ms 189 ms 1.7×

CUDA

Halide Expert
autotuned hand-tuned Speedup

Bilateral grid 8.1 ms 18 ms 2.3×
Interpolation 9.1 ms 54 ms* 5.9×

Local Laplacian 21 ms 189 ms* 9×

Figure 9.6: Comparison of autotuned Halide program running times to
hand-optimized programs created by domain experts in C, intrinsics,
and CUDA. Halide programs are both faster and require fewer lines of
code. (*No GPU reference available, compared to CPU reference.)

the degree to which schedules �t the architecture on which
they are tuned by mapping the best GPU schedule for local
Laplacian �lter to the CPU, and found that this is 7× slower
than the best CPU schedule.

9.3 deployment
At the time of writing, Halide has been used by students and
engineers for research, products, and teaching many compa-
nies and institutions. Here, I highlight four publicly-known
examples.

Several groups within Google are heavy users of Halide.
Several dozen engineers write image processing code in Halide
in their day-to-day work. Over 10,000 lines of Halide code are
in use in production in various products. �e largest user is
Google+ Photos. �e image processing of their auto-enhance
pipeline is written in Halide. For every user photo uploaded
to Google’s servers, a large amount of Halide code runs in
a data center (primarily on x86/SSE multicores) to enhance
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Autotuned
Source size Target size on target Cross-tested Slowdown

Blur 0.3 MP 30 MP 13 ms 11 ms 1.2×
Bilateral grid 0.3 MP 2 MP 35 ms 36 ms 0.97×

Interpolate 0.3 MP 2 MP 31 ms 32 ms 0.97×

Blur 30 MP 0.3 MP 1.1 ms 0.07 ms 16×
Bilateral grid 2 MP 0.3 MP 9.6 ms 6.7 ms 1.4×

Interpolate 2 MP 0.3 MP 9.7 ms 5.2 ms 1.9×

Figure 9.7: Cross-testing of autotuned schedules across resolutions. Each program is autotuned on a source im-
age size. �e resulting schedule is tested on a target image size giving a “cross-tested time." �is is compared to
the result of running the autotuner directly on the target resolution. We report the ratio of the cross-tested time
to the autotuned-on-target time as the “slowdown." Note that schedules generalize better from low resolutions
to high resolutions. In theory the slow-down should always be at least one, but due to the stochastic nature of
the search some schedules were slower when autotuned on the target.

it for display. On Android cell phones, auto-enhance in the
photos app runs the same Halide algorithm, compiled with
a schedule optimized for mutlicore ARM/NEON in mobile
devices. Google’s HDR+ pipeline is also written partially in
Halide. �is code processes every photo taken on Google
Glass, and implements the HDR+ mode in the o�cial camera
application on recent Android devices, notably the Nexus 5.
Of note, the fact that Halide is embedded in C++, rather than
being a “new” language or being embedded in something less
established, was essential to its widespread adoption being
allowed at Google.

Multiple research and product teams at Adobe are also
experimenting with Halide. In July 2012, I worked with the en-
gineer responsible for the Camera Raw pipeline in Photoshop
and at the core of Lightroom to prototype replacement of his
implementation of local Laplacian �lters with a Halide equiva-
lent. �e Halide version took less than a day to adapt from our
existing local Laplacian �lters implementation and integrate
into Lightroom. It required 60 lines of code, and represented
less than two days of total implementation e�ort, relative to
several thousand lines and about three month of work for the
hand-tuned original. We quickly found a schedule which per-
formed twice as fast as the hand-tuned version on the same 8
core Nehalem x86 workstation, and another which performed
9× faster on a Tesla C2070 GPU. So far, this remains a proto-
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type. Production deployment was initially limited by the need
to integrate with complex custom tile scheduling and mem-
ory management common in Adobe’s systems, which limited
Halide integration to kernels operating within individual tiles;
it is now feasible to fuse complex Halide pipelines directly with
such systems thanks to the addition of extern Image functions
in Halide, but doing so at Adobe remains ongoing work.

Researchers on the Department of Energy X-STACK project
have implemented several kernels from the CloverLeaf hydro-
dynamics and HPGMG multigrid benchmarks. Initial results
outperform simple OpenMP equivalents.

Finally, Halide was used last fall by over 50 MIT under-
graduate and graduate students in the 6.815/6.865 computa-
tional photography course to implement and schedule several
algorithms, including basic convolution and Harris corner
detection. As the �nal part of their assignment, students even
implemented basic autotuning by automatically generating
and testing many di�erent schedules. �e class was otherwise
taught in Python (using the NumPy library for e�cient array
storage and processing [43]), and many students surprisingly
commented that they found Halide enjoyably concise, even
relative to unoptimized Python. (�is extra concision in al-
gorithm expression was largely due to the removal of explicit
loops, boundary handling, and complex indexing thanks to
Halide’s function notation and automatic bounds inference.)
Reasoning about call schedules and computation granular-
ity while scheduling was the most signi�cant challenge for
most students, but the best students quickly mastered schedul-
ing and were able to exceed the performance of a vectorized
NumPy implementation of Harris corner detection by up to
two orders of magnitude.

107



10
RELATED WORK

�is chapter highlights connections between the design and
implementation of Halide and several areas of prior work.
Halide draws on decades of ideas, systems, languages, and
compilers. Particular emphasis is placed on the concept of
explicitly modeling the schedule as a �rst-class part of the
language, as well as the areas of stencil computation, stream
processing, loop transformation, and high-performance image
processing and graphics systems.

Split languages
One of the more unusual features of the Halide language is
its simultaneous decoupling of the de�nition of algorithms
from the organization of their computation, and promotion of
the organization to a �rst-class, programmer-controlled part
of the language in the form of explicit schedules. �is idea is
mirrored in a few other notable systems.

SPIRAL
�e SPIRAL system [73] uses a domain-speci�c language to
specify linear signal processing operations at a very high level
of abstraction, independent of many implementation choices.
Given that, a series of transformation algebras progressively
describes how an optimized implementation should be gener-
ated. First, a family of equivalence transformations maps from
signal processing operations to more e�cient equivalent oper-
ations. �en, separate mapping functions describe how these
operations should be turned into e�cient code for a particular
architecture. For general-purpose processors, these mappings
are described using a loop synthesis algebra which maps from
high-level linear signal processing operations to concrete loop
nests which implement them. �ese latter transformations
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are particularly similar to our own scheduling algebra. Alto-
gether, SPIRAL enables high performance across a range of
architectures by making deep use of mathematical identities
on linear �lters. Image processing and computational photog-
raphy algorithms o�en do not �t within a strict linear �ltering
model. Our work can be seen as an attempt to generalize this
approach to a broader class of programs.

Sequoia & Legion
�e Sequoia language de�nes a model where a user-de�ned
“mapping” describes how to execute tasks on a tree-like mem-
ory hierarchy [29]. �is parallels our model of scheduling, but
focuses on hierarchical problems like blocked matrix multiply,
rather than pipelines of images. Sequoia’s mappings, which
are highly explicit, are also more verbose than our schedules,
which are designed to infer many details not speci�ed by the
programmer.

Legion is a successor to Sequoia, focussed on dynamic
scheduling and irregular computation where Sequoia was ini-
tially limited to static scheduling [11]. Legion carries over the
concept of mappings, but implements them as user-de�ned
subroutines which execute as part of the dynamic scheduler
at runtime.

Sequoia’s and Legion’s mappings, and SPIRAL’s loop synthe-
sis and other transformation algebras, echo Halide’s separation
of the model of scheduling from the description of the algo-
rithm, and its li�ing outside our compiler. Legions mappings
are executed repeatedly at runtime, while Sequoia’s mappings,
SPIRAL’s transformation algebras, and Halide’s schedules all
direct the structure of code synthesized at compile time.

A key di�erence between Sequoia’s mappings and Halide’s
schedules is the computational generality of their expression.
In Sequoia, mappings are expressed by statically enumerat-
ing all choices for a given program in what amounts to an
exhaustive con�guration �le. �e key challenge with this split
representation is the rapid increase in complexity of mappings
as the algorithms, themselves, become more complex.

At the outset, I expected to face similar challenges in
Halide. By nature, the space of possible choices about the
organization of computation grows combinatorially with pro-
gram size. In practice, however, I was surprised to �nd how
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easily direct speci�cation of Halide schedules scaled, within
the scope of image processing pipelines we have studied so far.
I believe there are three fundamental reasons:

1. �e richer features of the general-purpose programming lan-
guage (C++) in which our schedule speci�cations were embedded—
including powerful facilities for abstraction, composition, and
control �ow—o�en made schedules of a given complexity
much more concise to express than when statically enumer-
ated.1

1. As a simple example, it is com-
mon for fragments of similar
scheduling choices to be applied
to many related functions. Rather
than enumerating every choice, we
can simply abstract the common
choices into a subroutine, and apply
it to each Halide function using a
simple for loop.

Syntactic sugar for common scheduling patterns even
proved useful enough to include in the core language.2

2. tile, cuda, and other scheduling
choices are implemented as simple
macros atop lower-level schedule
primitives.

2. Halide programs, in practice, are limited in size. We have
mostly focussed on algorithms and pipelines up to about 100
stages. �ese individual algorithms may be composed into
even more complex systems, but we are never likely to face a
single end-to-end pipeline of hundreds of thousands of di�er-
ent functions which must be scheduled together.

3. Even for our most complex pipelines, the actual complexity
of optimized schedules seemed to grow at worst linearly with
program size. �e space of possible choices is certainly combi-
natorial, but while interactions between functions in a pipeline
graph are, in principle, global and unbounded, most are, in
practice, relatively local. �is limits the complexity of the
schedules we have ever actually needed to write.

Stencil optimization
Stencils are a common computational pattern in numerical
algorithms . �ey have been well studied in the form of iter-
ated stencil computations, where one or a few small stencils
are applied to the same grid over many iterations [30, 49, 63].
Critically, many optimizations for iterated stencil computa-
tions are based on the assumption that the time dimension of
iteration is large relative to the spatial dimension of the grid.
In contrast, Halide was designed to target other applications,
in image processing and computer graphics, where stencils are
common, but o�en in a very di�erent form: stencil pipelines.
Stencil pipelines are graphs of di�erent stencil computations.
Iteration of the same stencil occurs, but it is the exception,
not the rule; most stages apply their stencil only once before
passing data to the next stage, which performs di�erent data
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parallel computation over a di�erent stencil. In image process-
ing pipelines, most individual stencils are applied only once,
while images are millions of pixels in size. Image processing
pipelines also include more types of computation than stencils
alone, and scheduling them requires choices not only of dif-
ferent parameters, but of entirely di�erent strategies, for each
of many heterogeneous stages, which is infeasible with either
exhaustive search or polyhedral optimization.

Iterated stencil computations are important to many scien-
ti�c applications, and have been studied for decades. Frigo and
Strumpen proposed a cache oblivious traversal for e�cient
stencil computation [30]. �eir view of locality optimization
by interleaving the application of stencils in space and time
inspired our model of scheduling. �e Pochoir compiler auto-
matically transforms C++ stencil algorithms from serial loop
form into a parallel cache oblivious form using similar algo-
rithms [84].

Overlapping tiling (also called tiling with “ghost zones”) is
a strategy which divides a stencil computation into tiles, and
trades o� redundant computation along tile boundaries to
improve locality and parallelism [49, 58]. �is is a common
pattern in optimizing both iterated stencil computations and
image processing algorithms, and was a key early target for our
design3 3. Overlapped tiling is modeled

in our schedule representation as
interleaving both the storage and
computation of producer stages
inside the tile loops of their con-
sumer.

. Many other tiling strategies represent di�erent points
in the tradeo� space modeled by our representation [63].

Past compilers have automatically synthesized parallel
loop nests with overlapped tiling on CPUs and GPUs [49, 36].
�ese compilers focussed on synthesizing high quality code
given a single, user-de�ned set of overlapped tiling parameters.
Autotuning has also been applied to iterated stencil computa-
tions, but past tuning work has focussed on exhaustive search
of small parameter spaces for one or a few hard-coded strate-
gies [44, 21].

Stream processing
Graph-structured programs have been studied in the context
of streaming languages [85, 31, 17]. Streaming languages en-
code data and task parallelism in graphs of kernels. Compil-
ers automatically schedule these graphs using tiling, fusion,
and �ssion [45]. Static communication analysis allows stream
compilers to simultaneously optimize data parallelism and
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producer-consumer locality by interleaving computation and
communication between kernels. Most stream compilation
research has focussed on 1D streams, where sliding window
communication allows 1D stencil patterns [87, 72, 33]. Intel’s
Concurrent Collections system provides a stream program-
ming model in C++ [19].

Image processing pipelines can be thought of as programs
on 2D and 3D streams and stencils. As I have shown, even with
1D streams and stencils, sliding window schedules are only
one extreme point in a complex family of tradeo�s between
locality, parallelism, and the amount of computation. �e
model of computation required by image processing is also
more general than stencils, alone. While most stages are point
or stencil operations over the results of prior stages, some
stages gather from arbitrary data-dependent addresses, while
others scatter to arbitrary addresses to compute operations
like histograms.

StreamIt
�e StreamIt language models programs as graphs of kernels
connected by streams. Data parallelism and communication
are made explicit by split-join operators on streams. Work on
StreamIt focussed heavily on communication optimization
of cyclostatic data�ow within this framework. To implement
stencils over streams, a StreamIt kernel peeks back some dis-
tance into its input stream. Research focussed on e�ciently
implementing peeking kernels using sliding window sched-
ules, where producer-consumer rates and intermediate storage
were automatically optimized for overlapping stencil data ac-
cesses in 1D streams [31]. �is model fundamentally relies on
synchronous execution of producer and consumer stages, con-
straining the order of computation and limiting parallelism. It
also requires all data be cast as 1D streams. Implementing 2D
stencils over image data �attened into 1D streams would create
very large (O(n)) peeking windows, requiring large intermedi-
ate bu�ering and limiting producer-consumer locality. In this
case, it is o�en more e�cient to decouple producer and con-
sumer computations by redundantly recomputing some values
within the stencil, reducing its e�ective size. Our model of
scheduling addresses the problem of overlapping multidimen-
sional (2D and 3D) stencils, where storage footprint, locality,
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parallelism, and the total amount of work become a critical
but complex choice.

Brook
�e Brook stream processing language similarly models stream
programs as graphs of kernels connected by streams [17]. Brook
modeled the complex dependencies between streams intro-
duced by stencils using a family of explicit “stream operators.”
However, because of the complex tradeo�s and global sched-
ule transformations required by stencil pipelines, this feature
was never fully implemented or automatically optimized by
the Brook compilers. �e most widely-deployed Brook com-
piler, targeting GPUs, did not allow any stream operators, only
map and reduce-style kernels.

Multidimensional streaming
�e synchronous data�ow model at the root of streaming
programming models was generalized to multidimensional
streams by the long-running Ptolemy project [26, 61, 18]. Mul-
tidimensional data�ow framework is a powerful framework
for analyzing a subset of the computations expressible in Halide,
and would be a natural starting point for further reasoning
about and automatically optimizing Halide programs. How-
ever, it does not model arbitrary scatter and gather dependen-
cies between stages, which are a critical in many image process-
ing pipelines. Ptolemy also does not consider the potential of
introducing redundant recomputation of intermediate values
to enable a wider range of optimized data�ow schedules.

Loop optimization
Pipelines of simple map operations can be optimized by tra-
ditional loop fusion: merging multiple successive operations
on each point into a single compound operation improves
arithmetic intensity by maximizing producer-consumer lo-
cality, keeping intermediate data values in fast local memory
(caches or registers) as it �ows through the pipeline [90, 6, 7].
But traditional loop fusion does not apply to stencil opera-
tions, where neighboring points in a consumer stage depend
on overlapping regions of a producer stage. Instead, stencils
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require a complex tradeo� between producer-consumer lo-
cality, synchronization, and redundant computation. Because
this tradeo� is made by interleaving the order of allocation,
execution, and communication of each stage, we call it the
pipeline’s schedule. �ese tradeo�s exist in scheduling individ-
ual iterated stencil computations in scienti�c applications, and
the complexity of the choice space is re�ected by the many
di�erent tiling and scheduling strategies introduced in past
work [49, 30, 63]. In image processing pipelines, this tradeo�
must be made for each producer-consumer relationship be-
tween stages in the graph—o�en dozens or hundreds—and
the ideal schedule depends on the global interaction among
every stage, o�en requiring the composition of many di�erent
strategies.

Data parallel & collection-oriented languages
Closely related to the classes of looping programs most o�en
targeted by loop optimizers are numerous data parallel and
collection-oriented languages, dating back at least to APL [42].
Since then, many data-parallel languages have been proposed.
*Lisp and C* languages for the Connection Machines were
notable early examples [50, 25]. Intel’s Array Building Blocks
provides an embedded language for data-parallel array pro-
cessing in C++ [62]. Like with Halide’s image functions, whole
pipelines of operations are built up and optimized globally by
a JIT compiler.

Particularly relevant in graphics, CUDA and OpenCL ex-
pose an imperative, single program-multiple data program-
ming model which can target both GPUs and multicore CPUs
with SIMD units [16, 64]. ispc provides a similar abstraction
for SIMD processing on x86 CPUs [70]. �eir semantics
closely model the underlying machine. Like C, they allow
the speci�cation of very high performance implementations
for many algorithms. But because parallel work distribution,
synchronization, kernel fusion, and memory are all explicitly
managed by the programmer, complex algorithms are o�en
not composable in these languages, and the optimizations re-
quired are o�en speci�c to an architecture, so code must be
rewritten for di�erent platforms. An OpenCL pipeline opti-
mized for a modern GPU will o�en be quite di�erent from the
same algorithm optimized for a multicore CPU, which will be
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di�erent still from a mobile CPU version. Even optimizing for
di�erent GPUs can require di�erent programs.

Image processing languages & systems
Domain-speci�c languages for image processing go back at
least as far as Bell Labs’ Pico and POPI [38, 37]. Most prior im-
age processing languages and systems have focused on e�cient
expression of individual kernels. �e most notable recent com-
mercial examples are Apple’s CoreImage system and Adobe’s
PixelBender [22, 71]. Both focus on high performance for
individual kernels by exposing a simple data-parallel program-
ming model which can be easily compiled to multithreaded
SIMD code or GPU shaders. Optimizing compilers for Pixel-
Bender can perform traditional kernel fusion on stages with
trivial dependence, in the absence of stencils. Neon embeds
a similar kernel language in C# [32]. Recently, Cornwall et
al. demonstrated fast GPU code generation for image process-
ing code using polyhedral optimization [24].

At the other extreme, extensible image processing frame-
works used in compositing systems and Adobe Photoshop [77,
3] do not address the performance of individual kernels, and in-
stead focus entirely on providing a runtime model for compos-
ing individual image processing operations into large graphs
while guaranteeing a �xed memory footprint. �ey do this
by requiring all operations to conform to an explicitly tiled
interface. Each operation must be able to produce an arbitrary-
sized tile of output pixels requested by its caller, and for this
region, it additionally reports what regions it requires of each
of its inputs. A centralized scheduler manages resources by
producing a tiled execution plan for the whole graph, querying
each operation to determine its resource requirements under
the plan, and reducing tile sizes until it can meet its memory
budget across all operations in the graph.

Spreadsheets for Images extended the spreadsheet metaphor
as a functional programming model for imaging operations [51].
Spreadsheets correspond to the functional-reactive program-
ming model. Spreadsheets of image computations allowed
lazy reevaluation of only the parts of large processing graphs
which are changing, not unlike the compositing graphs of
Shantzis [77].
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Pan introduced a functional model for image processing
much like our own, in which images are functions from coor-
dinates to values [27]. Modest di�erences exist (Pan’s images
are functions over a continuous coordinate domain, while in
ours the domain is discrete), but Pan is a close sibling of our
intrinsic algorithm representation. However, it has no corol-
lary to our model of scheduling and ultimate compilation. It
exists as an interpreted embedding within Haskell, and as
source to source compiler to C containing basic scalar and
loop optimizations [28].

At its core, the representation of algorithms in the Halide
language is similar to Pan, an embedded DSL for functional
image synthesis in Haskell [27]. �ere are two major di�er-
ences, both of which arise from our focus on generating high
performance code:

1. In Halide, functions are de�ned over a discrete (integer) do-
main, while Pan’s functions apply to continuous (�oating point)
coordinates. Pan supplements this with a built-in notion of
sampling from continuous functions to discrete images. We
chose to encode images on a discrete domain because it maps
more directly to machine operation and storage (iteration over
pixels; discrete memory locations). �is makes the transla-
tion from algorithm to machine code performed by the code
generator more direct, and makes it easier for the program-
mer to reason about performance. Resampling operations and
other functionality may still be added as library functionality,
or even as future syntactic sugar, but we have fundamentally
chosen to make sampling part of the intrinsic de�nition of
imaging operations, rather than trying to make it orthogonal
to other choices.

2. While Pan is interpreted by the full Haskell runtime, Halide
uses a staged compilation model to ultimately emit static code.
A programmer’s Halide code �rst constructs a complete Halide
program (a graph of functions), and then compiles it into static
machine code. In practice, this means that, while Pan sup-
ports much of Haskell’s high-level functionality directly in a
programmer’s image processing code, Halide programs may
only use the full functionality of the host language (C++) at
elaboration time, while constructing the program graph; dur-
ing execution of the generated Halide code, only the native
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operations and types provided by Halide may be used.

Image processing architectures & optimization
As important an application as image processing is, enor-
mous e�ort has gone into implementing many e�cient and
high-performance image processing pipelines. Several com-
mon patterns emerge from the fundamental structure of these
pipelines in many di�erent designs, both of so�ware systems
and of hardware architectures:

• �e greatest single pressure is to maximize producer-consumer
locality between stages.

• Computational parallelism comes �rst from exploiting highly
regular, �ne-grained data parallelism at the pixel level.

• Additional coarse-grained parallelism can be exposed, without
sacri�cing locality, by introducing some redundant work to
decouple sets of pixels for independent computation.

�e hardware image signal processors (ISPs) at the core of
most cameras perform most processing using the line bu�er-
ing computational pattern [53, 83]. In a line-bu�ered pipeline,
intermediate data �owing between stages is bu�ered in small
circular bu�ers, just large enough to hold a few scanlines of
data. Line bu�ers are sized to �t just enough data to cover the
stencil footprint of each successive stage, minimizing inter-
mediate storage and maximizing producer-consumer locality.
�is core design optimizes locality. From here, exploiting paral-
lelism requires tradeo�s. Fine-grained data parallelism can be
exploited within scanlines by computing and bu�ering batches
larger than the minimum required by the stencil footprint of
each stage. Coarse-grained parallelism can be exposed by de-
coupling line bu�ered regions and redundantly recomputing
shared values along their boundaries Halide was speci�cally
designed to model patterns and tradeo�s like these.

Shading languages & the graphics pipeline
Elsewhere in graphics, the real-time graphics pipeline, as em-
bodied by OpenGL and Direct3D, has been a hugely successful
abstraction for high performance parallel programming pre-
cisely because the schedule is separated from the speci�cation
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of user code in programmable shaders [14, 48, 54, 56]. �is
allows GPUs and drivers to e�ciently execute a wide range
of programs with little programmer control over parallelism
and memory management. �is separation of concerns is
extremely e�ective, but it is speci�c to the design of a single
pipeline. �at pipeline also exhibits di�erent characteristics
than image processing pipelines, where reductions and stencil
communication are common, and kernel fusion is essential
for e�ciency.

Embedded DSLs
Halide is designed as an embedded domain-speci�c language
in C++. �e language is built using a type-directed embed-
ding: Halide functions and expressions are constructed using
Halide-provided types, which overload common arithmetic
operators to provide natural, native syntax for basic expres-
sions. �is is not to be confused with “template metapro-
gramming,” commonly discussed in C++ [4], for example to
embed shaders directly inside a C++ OpenGL program [57];
Halide’s implementation uses virtually no templates. Tem-
plate metaprogramming approaches rely on statically expand-
ing programs at C++ compile-time (speci�cally, at template
expansion-time); Halide programs are constructed dynami-
cally, at C++ run-time, by the dynamic construction of C++
objects and execution of C++ functions. Internally, these ob-
jects construct an abstract syntax tree (AST) for the Halide
program.

�is design allows programmers to use the entire C++
“host language” as a metaprogramming layer while construct-
ing Halide pipelines. For example, C++ control �ow logic can
de�ne parameterized pipeline constructors; C++ for-loops can
tersely describe the construction of whole families of related
Halide computations; the construction of common pipeline
functionality can be abstracted behind C++ functions. �e
same host language metaprogramming can also be applied
to the description of Halide pipelines’ schedules. Again, all of
this host language logic is evaluated at run-time of the C++
program which de�nes the Halide pipeline, which is actually
program-construction time for the Halide pipeline (equivalent
to template-expansion time in C++, itself). �is is similar to
macro evaluation-time in a Lisp [34].
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Halide is compiled using a multi-stage programming ap-
proach [82]. Rather than being directly executed while or a�er
being constructed, the Halide program, built by the user at
run-time of their C++ program de�ning the Halide algorithm,
is then compiled directly from this representation into opti-
mized machine code. �e resulting machine code can either
be emitted to an object �le on disk (along with a C header
declaring its interface), or directly emitted into memory to be
called by the compiling process via JIT-compilation.
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11
CONCLUSION

I have argued that the performance of image processing pipelines
is limited by fundamental tradeo�s between parallelism, local-
ity, and the amount of computation performed. �ese trade-
o�s are determined not just by the algorithms used, but by the
way their computations and data are organized. My thesis is
that we can explicitly model the space of possible organizations
for image processing pipelines at once generally enough to de-
scribe and compose many state-of-the-art optimizations, and
precisely enough to automatically generate code competitive
with hand-tuned expert implementations. By constraining our
model of organization to a set of choices on semiperfect loop
nests, we can describe an enormous space of useful organiza-
tions with the composition of a few primitive concepts, while
also enabling predictably high-performance code generation
for a wide range of architectures—from CPU SIMD units to
GPUs—without the complexity of autoparallelization or au-
tovectorization. We can then explicitly decouple the de�nition
of the intrinsic algorithms from the way they are organized.
Programming image processing pipelines this way is better
than with existing languages: it enables dramatically simpler
code to run faster than hand-tuned implementations, portably
across a wide range of di�erent architectures, while maintain-
ing modularity and composability far greater than comparably
optimized implementations in a traditional language C or
CUDA.

�e results achieved so far with real image processing
pipelines in Halide demonstrate the feasibility and power of
separating algorithms from their schedules. Changing the
schedule enables a single algorithm de�nition to achieve high
performance on a diversity of machines. On a single machine,
it enables rapid performance space exploration. �e algorithm
speci�cation also becomes considerably more concise once
scheduling concerns are separated.
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Across a range of image processing applications and tar-
get architectures, Halide’s scheduling representation is able
to model, the Halide compiler is able to generate, and our
autotuner is able to discover implementation strategies which
deliver state-of-the-art performance. �is performance comes
from careful navigation of the extremely high dimensional
space of tradeo�s between locality, parallelism, and redun-
dant recomputation in image processing pipelines. Making
these tradeo�s by hand is challenging enough, as shown by the
much greater complexity of hand-written implementations,
but �nding the ideal points is daunting when each change a
programmer might want to test can require completely rewrit-
ing a complex loop nest hundreds of lines long. �e perfor-
mance advantage of the Halide implementations is a direct
result of simply testing many more points in the space than a
human programmer ever could manually describe at the level
of explicit loops.

�e complexity of optimized organizations is
compositional.
It is widely accepted that writing and tuning optimized code
is challenging, and that future architectures—with their ever-
growing demand for parallelism and memory system optimization—
will likely only make it harder. �e challenge comes from the
large and complex the space of plausible optimizations, the
complexity of the code necessary to express each point in
this space, and the o�en extreme change is this code required
to move from one point to another. But is this complexity
fundamental to the problem of optimization on modern archi-
tectures?

�is thesis suggests not. �e success of the Halide ap-
proach reveals a profound characteristic of the apparent com-
plexity which makes optimization challenging: at least in the
domain of image processing pipelines, the complexity in the
space of useful organizations is mostly compositional. �at is,
most useful reorganizations to balance parallelism, locality,
and the total amount of computation can be cast in terms of a
few fundamental patterns. In Halide’s schedules, we decom-
pose these into the order of evaluation within each stage, and
the granularity of interleaving between stages. Individually,
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these patterns are simple; the complexity emerges from their
composition to globally optimize an entire pipeline.

�is compositional nature makes sense. While inner-loop
code will always matter, it is easily optimized locally, and af-
ter decades of compiler research, it is e�ectively addressed
by existing techniques; the key challenges in optimization un-
solved by existing compilers come at the points of interaction
between pieces of a larger algorithm or system. �e set of
most useful ways individual pairs of pieces can be composed
is small, but the complexity emerges from the combinatoric
space of choices for all pairs in a large system.

Why a DSL?
Traditional libraries, based on subroutine composition, are
no longer su�cient for high performance programming, be-
cause parallelism and locality—the key to performance and
e�ciency on modern hardware—are determined by global
program structure, not local optimizations. Because of this,
I argue that a DSL are the natural successor to a traditional
library in providing �exible computation atop a given class of
data structures.

Compiled DSLs provide two critical advantages over li-
braries of subroutines and data types:

1. Global program transformations require extensive code gener-
ation. To optimize parallelism and locality, an e�cient system
must defer computation until an entire program has been built,
transform the result, and then compile it into e�cient code.
Compilers are the tool for mechanizing the transformation of
computations.

2. Controlling the implementation of the core data structure, and
deeply understanding the dependence across computations on
this data structure, are essential to being able to perform global
optimization. �ese are the key things we get from de�ning
our own language, and making it aware of our particular data
structures (domain-speci�c).

�e functional model we chose for Images is both more �exi-
ble and easier to reason about than the traditional model of
expressing image processing operations by mutating arrays
of intermediate data. Even a�er starting down the path of
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building a DSL to perform global program transformations
for parallelism and locality, we �rst tried to describe image
processing pipelines as loops mutating bu�ers of intermediate
data, which connected producer to consumer stages. Transfor-
mations in this model quickly became too complex to reason
about. In particular, the freedom to expand the bounds of a
computation or redundantly recompute values comes trivially
when doing global loop synthesis from the functional model,
but reasoning about guard bands and redundant computation
explodes in complexity when successively applying individual
transformations on imperative loops and memory allocations.

11.1 limitations & future
work

While initial results are promising, and Halide is seeing signi�-
cant adoption, our work is far from done. I expect the greatest
impact to come from work on a few key outstanding problems.

Automatic schedule inference
While manual scheduling is o�en feasible—even desirable—
for optimization experts, and our initial results suggest that
stochastic search combined with domain-speci�c heuristics
can make autotuning feasible for realistic Halide programs,
more traditional model-driven optimization is still important.
Many programmers do not want to learn how to schedule
their algorithms, and autotuning alone is not su�cient for
many uses. First, where traditional compiler optimizations
take as input just the program itself, autotuning requires a
test harness and benchmark data, requiring more work from
the programmer. Above all, even when �nal code will be
optimized using autotuning, it is important for algorithms in
development to deliver reasonable performance with seconds—
not hours or days—of compile time.

Fortunately, Halide’s model of schedules is just as suited
to model-driven optimization as it is to stochastic search.
Schedules provide a powerful parameterization of the space
of choices to be made during global optimization of a pipeline,
and the the schedule algebra (Chapter 7) provides a repre-
sentation within which to reason about the composition of
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transformations. �e other key component of a model-driven
optimizer is a cost model, for which the task graph analysis of
metrics related to parallelism, locality, and redundant (Chap-
ter 4) work o�ers a strong foundation.

Modularity & composition
While Halide works well for individual algorithms and pipelines
on the order of dozens of stages, several limitations make it
challenging to build systems past this scale.

First, while Halide’s decoupling of schedules from the de�-
nition of algorithms makes algorithm fragments easily com-
posable, the semantics of schedules are still global and highly
inter-dependent—both on the composition of the algorithm
and on other choices made in the schedule. �is limits modu-
larity, and poses a particular challenge for building libraries
of generic image processing algorithms: how can program-
mers schedule library modules without knowledge of their
implementation, and how can library implementers schedule
their modules without knowledge of the pipeline into which
is is composed? Automatic schedule inference is one natural
solution. Another interesting direction is improving support
for composition in the scheduling language, itself.

Compile time for very large pipelines is another issue.
Global synthesis of a single loop nest, and in particular static
bounds inference via interval analysis through an entire pipeline,
have costs which scale super-linearly with program complex-
ity. A practical solution is to allow limited dynamic dispatch
and bounds inference to decouple large pipelines into smaller
pieces, and allow separate compilation.

Irregular algorithms & data structures
My choice of the phrase “image processing” to describe Halide’s
existing target domain is deliberate: so far, I think we have
most e�ectively addressed only those algorithms which actu-
ally focus on processing at the level of pixels. However, many
algorithms related to images—especially those in higher-level
computer vision—require irregular algorithms and irregular
data structures. It is easy to see how the Halide programming
model can extend from dense regular grids to grids with sparse
dimensions, and from static to dynamic dependence-based
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scheduling. It is much harder to imagine how the existing
Halide language can generalize to encapsulate trees and other
data structures in a uni�ed and e�cient way. At its core, this
points to the issue of DSL composability: if domain-speci�c
languages replace traditional libraries for interaction with im-
portant individual data structure classes, how can algorithms
written in multiple di�erent DSLs, using complementary data
structures, compose into an e�cient application?

Algorithms which depend on data-dependent early termi-
nation conditions, like sliding windows and boosted feature
cascades common in state-of-the-art feature detectors [89, 88],
are another challenge for the existing Halide model, which re-
quires non-output-dependent bounds on all iterative updates.
Extending the Halide model to allow isolated stream com-
paction steps appears to be a fruitful direction for e�ciently
bounding many types of irregularity [39].

New target architectures
New target architectures are a natural direction for future re-
search and development. In particular, targets for distributed
memory systems could allow Halide algorithms to process
gigapixel- and terapixel-scale images like those in used in satel-
lite imaging and mapping applications; targeting digital signal
processors (DSPs) and future programming image signal pro-
cessors (ISPs) could provide greater e�ciency than existing
CPU and GPU architectures for common image processing
workloads; and directly synthesizing specialized logic for FP-
GAs or ASICs could provide even greater e�ciency, still. In
separate work, we have also shown that, by further restricting
the Halide model to pure stencil operations without resam-
pling, it is feasible both to automatically schedule line-bu�ered
pipelines with optimal bu�ering, and to automatically synthe-
size e�cient FPGA and ASIC implementations [35].

125



REFERENCES

[1] International technology roadmap for semiconductors. Technical report, 2013. Cited on
p. 20.

[2] A. Adams, E. Talvala, S. H. Park, D. E. Jacobs, B. Ajdin, N. Gelfand, J. Dolson, D. Va-
quero, J. Baek, M. Tico, H. P. A. Lensch, W. Matusik, K. Pulli, M. Horowitz, and M. Levoy.
�e Frankencamera: An experimental platform for computational photography. ACM
Transactions on Graphics, 29(4), 2010. Cited on p. 96.

[3] Adobe. �e adobe photoshop CC SDK. http://www.adobe.com/devnet/photoshop/sdk.html,
2013. Cited on p. 115.

[4] Andrei Alexandrescu. Modern C++ Design. Addison-Wesley Professional, 2001. Cited on
pp. 32 and 118.

[5] A. Paul Alivisatos, Miyoung Chun, George M. Church, Ralph J. Greenspan, Michael L.
Roukes, and Rafael Yuste. �e brain activity map project and the challenge of functional
connectomics. Neuron, 74, 2012. Cited on p. 19.

[6] Saman Amarasinghe. Parallelizing Compiler Techniques based on Linear Inequalities. PhD
thesis, Stanford University, 1997. Cited on p. 113.

[7] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In Proceedings of the
�ird ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. IEEE
Computer Society Press, 1991. Cited on p. 113.

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.
PetaBricks: A language and compiler for algorithmic choice. In ACM Programming
Language Design and Implementation, 2009. Cited on p. ii.

[9] J. Ansel, S. Kamil, K. Veeramachaneni, U.M. O’Reilly, and S. Amarasinghe. OpenTuner: An
extensible framework for program autotuning. Technical Report MIT-CSAIL-TR-2013-026,
Massachusetts Institute of Technology, 2013. Cited on p. ii.

[10] M. Aubry, S. Paris, S. W. Hasino�, J. Kautz, and F. Durand. Fast and robust pyramid-based
image processing. Technical Report MIT-CSAIL-TR-2011-049, Massachusetts Institute of
Technology, 2011. Cited on pp. 1, 9, and 101.

126

http://www.adobe.com/devnet/photoshop/sdk.html


[11] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. Legion: Expressing locality
and independence with logical regions. In ACM/IEEE Conference on Supercomputing, 2012.
Cited on p. 109.

[12] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers,
C-38(11):1526–1538, November 1989. Cited on p. 28.

[13] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85–
97, March 1996. Cited on p. 39.

[14] David Blythe. �e Direct3D 10 system. ACM Transactions on Graphics, pages 724–734,
2006. Cited on p. 118.

[15] David Breen, Ron Fedkiw, Ken Museth, Stanley Osher, Guillermo Sapiro, and Ross
Whitaker. Level Set and PDE Methods for Computer Graphics, 2004. Course at ACM
SIGGRAPH. Cited on p. 98.

[16] I. Buck. GPU computing: Programming a massively parallel processor. In IEEE/ACM
International Symposium on Code Generation and Optimization, 2007. Cited on pp. 60
and 114.

[17] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Hous-
ton, and Pat Hanrahan. Brook for GPUs: Stream computing on graphics hardware. In
SIGGRAPH, 2004. Cited on pp. 111 and 113.

[18] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Multirate signal processing in Ptolemy.
In Proceedings of the Internationl Conference on Acoustics, Speech, and Signal Processing,
1991. Cited on p. 113.

[19] Z. Budimlić, M. Burke, V. Cavél, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D. Peixotto1,
V. Sarkar, F. Schlimbach, and S. Taşırlar. Concurrent collections. Scienti�c Programming,
18(3–4):203–217, 2010. Cited on p. 112.

[20] J. Chen, S. Paris, and F. Durand. Real-time edge-aware image processing with the bilateral
grid. ACM Trans. Graph., 26(3), 2007. Cited on pp. 99 and 100.

[21] M. Christen, O. Schenk, and H. Burkhart. Patus: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures. In
IPDPS, 2011. Cited on p. 111.

[22] CoreImage. Apple CoreImage programming guide, 2006. Cited on p. 115.

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. �e
MIT Press, 3rd edition, 2009. Cited on p. 39.

127



[24] J. L. T. Cornwall, L. Howes, P. H. J. Kelly, P. Parsonage, and B. Nicoletti. High-performance
SIMT code generation in an active visual e�ects library. In Conference on Computing
Frontiers, 2009. Cited on p. 115.

[25] �inking Machines Corporation. C* reference manual. 1987. Cited on p. 114.

[26] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendor�er, S. Sachs, and
Y. Xiong. Taming heterogeneity—the ptolemy approach. Proceedings of the IEEE, 91(2),
January 2003. Cited on p. 113.

[27] C. Elliott. Functional image synthesis. In Proceedings of Bridges, 2001. Cited on p. 116.

[28] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded languages. Journal
of Functional Programming, 13(2), 2003. Updated version of paper by the same name that
appeared in SAIG ’00 proceedings. Cited on p. 116.

[29] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M. Ren,
A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia: programming the memory hierarchy. In
ACM/IEEE Conference on Supercomputing, 2006. Cited on p. 109.

[30] M. Frigo and V. Strumpen. Cache oblivious stencil computations. In ICS, 2005. Cited on
pp. 110, 111, and 114.

[31] M. I. Gordon, W. �ies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger, A. A. Lamb, J. Wong,
H. Ho�man, D. Z. Maze, and S. Amarasinghe. A stream compiler for communication-
exposed architectures. In International Conference on Architectural Support for Program-
ming Languages and Operating Systems, 2002. Cited on pp. 111 and 112.

[32] Brian Guenter and Diego Nehab. �e neon image processing language. Technical Report
MSR-TR-2010-175, Microso� Research, 2010. Cited on p. 115.

[33] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier. Signal – A data �ow-oriented
language for signal processing. IEEE Transactions on Acoustics, Speech and Signal Processing,
34(2):362–374, 1986. Cited on p. 112.

[34] Timothy P. Hart. MACRO de�nitions for Lisp. Technical Report AIM-057, Massachusetts
Institute of Technology, 1963. Cited on p. 118.

[35] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell, A. Vasilyev,
M. Horowitz, and P. Hanrahan. Darkroom: Compiling high-level image processing code
into hardware pipelines. ACM Transactions on Graphics, 33(4), 2014. Cited on p. 125.

[36] J. Holewinski, L. Pouchet, and P. Sadayappan. High-performance code generation for
stencil computations on gpu architectures. In ICS, 2012. Cited on p. 111.

[37] Gerard Holzmann. Beyond Photography: �e Digital Darkroom. Prentice Hall, 1988. Cited
on p. 115.

128



[38] Gerard J. Holzmann. Pico—a picture editor. AT&T Technical Journal, 66(2):2–13,
March/April 1987. Cited on p. 115.

[39] Daniel Horn. Stream reduction operations for gpgpu applications. In Matt Pharr, editor,
GPU Gems 2, chapter 36. 2006. Cited on p. 125.

[40] IPP. Intel Integrated Performance Primitives. http://software.intel.com/en-us/articles/intel-
ipp/. Cited on p. 101.

[41] François Irigoin. Partitionnement des boucles imbriquées - Une technique d’optimisation
pour les programmes scienti�ques. PhD thesis, Université PARIS-VI, 1989. Cited on p. 14.

[42] Kenneth Iverson. Chapter 6: a programming language. In Fred Brook and Kenneth Iverson,
editors, DRAFT copy for Automatic Data Processing. 1960. Cited on p. 114.

[43] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scienti�c tools for
Python. http://www.scipy.org/, 2001–. Cited on p. 107.

[44] S. Kamil, C. Chan, L. Oliker, J. Shalf, , and S. Williams. An auto-tuning framework for
parallel multicore stencil computations. In IPDPS, 2010. Cited on p. 111.

[45] U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles. Stream scheduling.
Concurrent VLSI Architecture Tech Report 122, Stanford University, March 2002. Cited
on p. 111.

[46] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M.E. Munich.
�e vSLAM algorithm for robust localization and mapping. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, 2005. Cited on p. 19.

[47] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, 1(4), 1988. Cited on p. 98.

[48] John Kessenich, Dave Baldwin, and Randi Rost. �e OpenGL shading language. 2004.
Cited on p. 118.

[49] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam, A. Rountev, and P. Sa-
dayappan. E�ective automatic parallelization of stencil computations. In PLDI, 2007. Cited
on pp. 110, 111, and 114.

[50] Cli�ord Lasser and Stephen M Omohundro. �e essential Star-lisp manual. �inking
Machines Corporation, 1986. Cited on p. 114.

[51] Marc Levoy. Spreadsheets for images. In Proceedings of SIGGRAPH 94, Computer Graphics
Proceedings, Annual Conference Series, pages 139–146, July 1994. Cited on p. 115.

129

http://software.intel.com/en-us/articles/intel-ipp/
http://software.intel.com/en-us/articles/intel-ipp/
http://www.scipy.org/


[52] C. Li, C. Xu, C. Gui, and M. D. Fox. Distance regularized level set evolution and its
application to image segmentation. IEEE Transactions on Image Processing, 19(12):3243–
3254, December 2010. Cited on p. 98.

[53] Tao Lin. Color interpolator and horizontal/vertical edge enhancer using two line bu�er
and alternating even/odd �lters for digital camera, November 1999. Cited on pp. 69 and 117.

[54] Erik Lindholm, Mark J Kilgard, and Henry Moreton. A user-programmable vertex engine.
In In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (ACM SIGGRAPH 2001. ACM Press, 2001. Cited on p. 118.

[55] Richard F. Lyon. �e optical mouse, and an architectural methodology for smart digital
sensors. 1981. Cited on p. 19.

[56] William R. Mark, R. Steven, Glanville Kurt, Akeley Mark, and J. Kilgard. Cg: A system
for programming graphics hardware in a C-like language. ACM Transactions on Graphics,
22:896–907, 2003. Cited on p. 118.

[57] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader metaprogramming. In
Graphics Hardware 2002, pages 57–68, September 2002. Cited on p. 118.

[58] J. Meng and K. Skadron. A performance study for iterative stencil loops on gpus with ghost
zone optimizations. In IJPP, 2011. Cited on pp. 7 and 111.

[59] �omas B. Moeslund and Erik Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding, 81, 2001. Cited on p. 19.

[60] R. Moore. Interval Analysis. 1966. Cited on p. 46.

[61] P. K. Murthy and E. A. Lee. Multidimensional synchronous data�ow. IEEE Transactions
on Signal Processing, 50(7), July 2002. Cited on p. 113.

[62] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. D. Toit, Z. G. Wang, Z. H. Du,
Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang. Intel’s Array Building Blocks: A retargetable,
dynamic compiler and embedded language. In IEEE/ACM International Symposium on
Code Generation and Optimization, 2011. Cited on p. 114.

[63] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey. 3.5-d blocking optimization for
stencil computations on modern cpus and gpus. In Supercomputing, 2010. Cited on pp. 110,
111, and 114.

[64] OpenCL. �e OpenCL speci�cation, version 1.2. http://www.khronos.org/registry/cl/specs/
opencl-1.2.pdf, 2011. Cited on pp. 60 and 114.

[65] OpenMP. OpenMP. http://openmp.org/. Cited on p. 101.

130

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://openmp.org/


[66] S. Paris and F. Durand. A fast approximation of the bilateral �lter using a signal processing
approach. International Journal of Computer Vision, 81(1), 2009. Cited on pp. 99 and 100.

[67] S. Paris, S. W. Hasino�, and J. Kautz. Local Laplacian �lters: Edge-aware image processing
with a Laplacian pyramid. ACM Trans. Graph., 30(4), 2011. Cited on pp. 1 and 101.

[68] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand. Bilateral �ltering: �eory and ap-
plications. Foundations and Trends in Computer Graphics and Vision, 2009. Cited on
p. 99.

[69] Sylvain Paris. personal communication. Cited on p. 2.

[70] Matt Pharr and William R. Mark. ispc: A SPMD compiler for high-performance CPU
programming. In Proceedings of Innovative Parallel Computing (InPar), 2012. Cited on
pp. 101 and 114.

[71] PixelBender. Adobe PixelBender reference, 2010. Cited on p. 115.

[72] Harry Printz. Automatic Mapping of Large Signal Processing Systems to a Parallel Machine.
Ph.D. �esis, Carnegie Mellon University, 1991. Cited on p. 112.

[73] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer, J. Xiong,
F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL:
Code generation for DSP transforms. In Proceedings of the IEEE, volume 93, 2005. Cited
on p. 108.

[74] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and F. Durand. Decoupling
algorithms from schedules for easy optimization of image processing pipelines. ACM
Transactions on Graphics, 31(4), 2012. Cited on pp. ii and 95.

[75] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe. Halide: A
language and compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. In PLDI, 2013. Cited on p. ii.

[76] John E. Savage. Models of Computation. Addison-Wesley, 1998. Cited on p. 35.

[77] M. A. Shantzis. A model for e�cient and �exible image computing. In ACM SIGGRAPH,
1994. Cited on p. 115.

[78] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard
Moore, Alex Kipman, and Andrew Blake. Real-time human pose recognition in parts from
a single depth image. In Conference on Computer Vision and Pattern Recongition, 2011.
Cited on p. 19.

[79] Lloyd M. Smith, Jane Z. Sanders, Robert H. Kaiser, Peter Hughes, Chris Dodd, Charles R.
Connell, Cheryl Heiner, Stephen B. H. Kent, and Leroy E. Hood. Fluorescence detection
in automated DNA sequence analysis. Nature, 321, 1986. Cited on p. 19.

131



[80] Noah Snavely, Steven M. Seitz, and Richard Szeliski. Photo tourism: Exploring photo
collections in 3d. In SIGGRAPH Conference Proceedings, pages 835–846, New York, NY,
USA, 2006. ACM Press. Cited on p. 19.

[81] Herb Sutter. �e free lunch is over: A fundamental turn toward concurrency in so�ware.
Dr. Dobb’s Journal, 30, 2005. Cited on p. 20.

[82] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. SIGPLAN
Notices, 32(12):203–217, December 1997. Cited on pp. 32 and 119.

[83] Tsutomu Takayama. White balance control for still image sensing apparatus, April 1990.
Cited on pp. 69 and 117.

[84] Y. Tang, R. Chowdhury, B. Kuszmaul, C-K Luk, and C. Leiserson. �e Pochoir stencil
compiler. In SPAA, 2011. Cited on p. 111.

[85] W. �ies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for streaming
applications. In International Conference on Compiler Construction, 2002. Cited on p. 111.

[86] Sebastian �run, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron,
James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Ho�mann, Kenny Lau,
Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal Stang, Sven Strohband, Cedric Dupont,
Lars-Erik Jendrossek, Christian Koelen, Charles Markey, Carlo Rummel, Joe van Niekerk,
Eric Jensen, Philippe Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian
Kaehler, Ara Ne�an, and Pamela Mahoney. Stanley: �e robot that won the DARPA Grand
Challenge. Journal of Field Robotics, 23, 2006. Cited on p. 19.

[87] Ping-Sheng Tseng. A Parallelizing Compiler for Disributed Memory Parallel Computers.
PhD thesis, Carnegie Mellon University, 1989. Cited on p. 112.

[88] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Conference on Computer Vision and Pattern Recongition, 2001. Cited on p. 125.

[89] Paul Viola and Michael Jones. Robust real-time object detection. 2001. Cited on p. 125.

[90] M.E. Wolf and M.S. Lam. A loop transformation theory and an algorithm to maximize
parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4), Oct 1991. Cited
on p. 113.

[91] X. Zhou, J.-P. Giacalone, M. J. Garzarán, R. H. Kuhn, Y. Ni, and D. Padua. Hierarchical
overlapped tiling. In Proc. CGO, 2012. Cited on p. 7.

132



APPENDICES



A
WRITING HALIDE
PROGRAMS

a.1 basics
// Halide tutorial lesson 1.

// This lesson demonstrates basic usage of Halide as a JIT compiler for imaging.

// On linux, you can compile and run it like so:
// g++ lesson_01*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_01
// LD_LIBRARY_PATH=../bin ./lesson_01

// On os x:
// g++ lesson_01*.cpp -g -I ../include -L ../bin -lHalide -o lesson_01
// DYLD_LIBRARY_PATH=../bin ./lesson_01

// The only Halide header file you need is Halide.h. It includes all of Halide.
#include <Halide.h>

// We’ll also include stdio for printf.
#include <stdio.h>

int main(int argc, char **argv) {

// This program defines a single-stage imaging pipeline that
// outputs a grayscale diagonal gradient.

// A ’Func’ object represents a pipeline stage. It’s a pure
// function that defines what value each pixel should have. You
// can think of it as a computed image.
Halide::Func gradient;

// Var objects are names to use as variables in the definition of
// a Func. They have no meaning by themselves.
Halide::Var x, y;

// Funcs are defined at any integer coordinate of its variables as
// an Expr in terms of those variables and other functions.
// Here, we’ll define an Expr which has the value x + y. Vars have
// appropriate operator overloading so that expressions like
// ’x + y’ become ’Expr’ objects.
Halide::Expr e = x + y;

// Now we’ll add a definition for the Func object. At pixel x, y,
// the image will have the value of the Expr e. On the left hand
// side we have the Func we’re defining and some Vars. On the right
// hand side we have some Expr object that uses those same Vars.
gradient(x, y) = e;

// This is the same as writing:
//
// gradient(x, y) = x + y;
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//
// which is the more common form, but we are showing the
// intermediate Expr here for completeness.

// That line of code defined the Func, but it didn’t actually
// compute the output image yet. At this stage it’s just Funcs,
// Exprs, and Vars in memory, representing the structure of our
// imaging pipeline. We’re meta-programming. This C++ program is
// constructing a Halide program in memory. Actually computing
// pixel data comes next.

// Now we ’realize’ the Func, which JIT compiles some code that
// implements the pipeline we’ve defined, and then runs it. We
// also need to tell Halide the domain over which to evaluate the
// Func, which determines the range of x and y above, and the
// resolution of the output image. Halide.h also provides a basic
// templatized Image type we can use. We’ll make an 800 x 600
// image.
Halide::Image<int32_t> output = gradient.realize(800, 600);

// Halide does type inference for you. Var objects represent
// 32-bit integers, so the Expr object ’x + y’ also represents a
// 32-bit integer, and so ’gradient’ defines a 32-bit image, and
// so we got a 32-bit signed integer image out when we call
// ’realize’. Halide types and type-casting rules are equivalent
// to C.

// Let’s check everything worked, and we got the output we were
// expecting:
for (int j = 0; j < output.height(); j++) {

for (int i = 0; i < output.width(); i++) {
// We can access a pixel of an Image object using similar
// syntax to defining and using functions.
if (output(i, j) != i + j) {

printf("Something went wrong!\n"
"Pixel %d, %d was supposed to be %d, but instead it’s %d\n",
i, j, i+j, output(i, j));

return -1;
}

}
}

// Everything worked! We defined a Func, then called ’realize’ on
// it to generate and run machine code that produced an Image.
printf("Success!\n");

return 0;
}
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a.2 input images
// Halide tutorial lesson 2.

// This lesson demonstrates how to pass in input images.

// On linux, you can compile and run it like so:
// g++ lesson_02*.cpp -g -I ../include -L ../bin -lHalide `libpng-config --cflags --ldflags` -lpthread -ldl -o lesson_02
// LD_LIBRARY_PATH=../bin ./lesson_02

// On os x:
// g++ lesson_02*.cpp -g -I ../include -L ../bin -lHalide `libpng-config --cflags --ldflags` -o lesson_02
// DYLD_LIBRARY_PATH=../bin ./lesson_02

// The only Halide header file you need is Halide.h. It includes all of Halide.
#include <Halide.h>

// Include some support code for loading pngs. It assumes there’s an
// Image type, so we’ll pull the one from Halide namespace;
using Halide::Image;
#include "image_io.h"

int main(int argc, char **argv) {

// This program defines a single-stage imaging pipeline that
// brightens an image.

// First we’ll load the input image we wish to brighten.
Halide::Image<uint8_t> input = load<uint8_t>("images/rgb.png");

// Next we define our Func object that represents our one pipeline
// stage.
Halide::Func brighter;

// Our Func will have three arguments, representing the position
// in the image and the color channel. Halide treats color
// channels as an extra dimension of the image.
Halide::Var x, y, c;

// Normally we’d probably write the whole function definition on
// one line. Here we’ll break it apart so we can explain what
// we’re doing at every step.

// For each pixel of the input image.
Halide::Expr value = input(x, y, c);

// Cast it to a floating point value.
value = Halide::cast<float>(value);

// Multiply it by 1.5 to brighten it. Halide represents real
// numbers as floats, not doubles, so we stick an ’f’ on the end
// of our constant.
value = value * 1.5f;

// Clamp it to be less than 255, so we don’t get overflow when we
// cast it back to an 8-bit unsigned int.
value = Halide::min(value, 255.0f);

// Cast it back to an 8-bit unsigned integer.
value = Halide::cast<uint8_t>(value);

// Define the function.
brighter(x, y, c) = value;

// The equivalent one-liner to all of the above is:
//
// brighter(x, y, c) = Halide::cast<uint8_t>(min(input(x, y, c) * 1.5f, 255));
//
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// In the shorter version:
// - I skipped the cast to float, because multiplying by 1.5f does
// that automatically.
// - I also used integer constants in clamp, because they get cast
// to match the type of the first argument.
// - I left the Halide:: off clamp. It’s unnecessary due to Koenig
// lookup.

// Remember. All we’ve done so far is build a representation of a
// Halide program in memory. We haven’t actually processed any
// pixels yet. We haven’t even compiled that Halide program yet.

// So now we’ll realize the Func. The size of the output image
// should match the size of the input image. If we just wanted to
// brighten a portion of the input image we could request a
// smaller size. If we request a larger size Halide will throw an
// error at runtime telling us we’re trying to read out of bounds
// on the input image.
Halide::Image<uint8_t> output = brighter.realize(input.width(), input.height(), input.channels());

// Save the output for inspection. It should look like a bright parrot.
save(output, "brighter.png");

printf("Success!\n");
return 0;

}
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a.3 debugging, part 1
// Halide tutorial lesson 3

// This lesson demonstrates how to inspect what the Halide compiler is producing.

// On linux, you can compile and run it like so:
// g++ lesson_03*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_03
// LD_LIBRARY_PATH=../bin ./lesson_03

// On os x:
// g++ lesson_03*.cpp -g -I ../include -L ../bin -lHalide -o lesson_03
// DYLD_LIBRARY_PATH=../bin ./lesson_03

#include <Halide.h>
#include <stdio.h>

// This time we’ll just import the entire Halide namespace
using namespace Halide;

int main(int argc, char **argv) {

// We’ll start by defining the simple single-stage imaging
// pipeline from lesson 1.

// This lesson will be about debugging, but unfortunately in C++,
// objects don’t know their own names, which makes it hard for us
// to understand the generated code. To get around this, you can
// pass a string to the Func and Var constructors to give them a
// name for debugging purposes.
Func gradient("gradient");
Var x("x"), y("y");
gradient(x, y) = x + y;

// Realize the function to produce an output image. We’ll keep it
// very small for this lesson.
Image<int> output = gradient.realize(8, 8);

// That line compiled and ran the pipeline. Try running this
// lesson with the environment variable HL_DEBUG_CODEGEN set to
// 1. It will print out the various stages of compilation, and a
// pseudocode representation of the final pipeline.

// If you set HL_DEBUG_CODEGEN to a higher number, you can see
// more and more details of how Halide compiles your pipeline.
// Setting HL_DEBUG_CODEGEN=2 shows the Halide code at each stage
// of compilation, and also the llvm bitcode we generate at the
// end.

// If you’d prefer to read C code, the compile_to_c method emits C
// code that implements the Halide pipeline. It can’t compile
// as-is without you also implementing some support functions, but
// it can be helpful for understanding what the Halide pipeline is
// doing. You pass it the name of the file, a list of arguments
// the generated function should take (none in this case), and the
// name of the generated function. Have a look inside gradient.cpp
// after compiling and running this lesson.
gradient.compile_to_c("gradient.cpp", std::vector<Argument>(), "gradient");

// Using these two tricks -- setting HL_DEBUG_CODEGEN and calling
// compile_to_c -- you can usually figure out what code Halide is
// generating. In the next lesson we’ll see how to snoop on Halide
// at runtime.

printf("Success!\n");
return 0;

}
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a.4 debugging, part 2
// Halide tutorial lesson 4

// This lesson demonstrates how to follow what Halide is doing at runtime.

// On linux, you can compile and run it like so:
// g++ lesson_04*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_04
// LD_LIBRARY_PATH=../bin ./lesson_04

// On os x:
// g++ lesson_04*.cpp -g -I ../include -L ../bin -lHalide -o lesson_04
// DYLD_LIBRARY_PATH=../bin ./lesson_04

#include <Halide.h>
#include <stdio.h>
using namespace Halide;

int main(int argc, char **argv) {

Func gradient("gradient");
Var x("x"), y("y");

// We’ll define our gradient function as before.
gradient(x, y) = x + y;

// And tell Halide that we’d like to be notified of all
// evaluations.
gradient.trace_stores();

// Realize the function over an 8x8 region.
printf("Evaluating gradient\n");
Image<int> output = gradient.realize(8, 8);

// This will print out all the times gradient(x, y) gets
// evaluated.

// Now that we can snoop on what Halide is doing, let’s try our
// first scheduling primitive. We’ll make a new version of
// gradient that processes each scanline in parallel.
Func parallel_gradient("parallel_gradient");
parallel_gradient(x, y) = x + y;

// We’ll also trace this function.
parallel_gradient.trace_stores();

// Things are the same so far. We’ve defined the algorithm, but
// haven’t said anything about how to schedule it. In general,
// exploring different scheduling decisions doesn’t change the code
// that describes the algorithm.

// Now we tell Halide to use a parallel for loop over the y
// coordinate. On linux we run this using a thread pool and a task
// queue. On os x we call into grand central dispatch, which does
// the same thing for us.
parallel_gradient.parallel(y);

// This time the printfs should come out of order, because each
// scanline is potentially being processed in a different
// thread. The number of threads should adapt to your system, but
// on linux you can control it manually using the environment
// variable HL_NUMTHREADS.
printf("\nEvaluating parallel_gradient\n");
parallel_gradient.realize(8, 8);

printf("Success!\n");
return 0;

}

139



a.5 scheduling, part 1
// Halide tutorial lesson 5

// This lesson demonstrates how to manipulate the order in which you
// evaluate pixels in a Func, including vectorization,
// parallelization, unrolling, and tiling.

// On linux, you can compile and run it like so:
// g++ lesson_05*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_05
// LD_LIBRARY_PATH=../bin ./lesson_05

// On os x:
// g++ lesson_05*.cpp -g -I ../include -L ../bin -lHalide -o lesson_05
// DYLD_LIBRARY_PATH=../bin ./lesson_05

#include <Halide.h>
#include <stdio.h>
using namespace Halide;

int main(int argc, char **argv) {

// We’re going to define and schedule our gradient function in
// several different ways, and see what order pixels are computed
// in.

Var x("x"), y("y");

// First we observe the default ordering.
{

Func gradient("gradient");
gradient(x, y) = x + y;
gradient.trace_stores();

// By default we walk along the rows and then down the columns.
printf("Evaluating gradient row-major\n");
Image<int> output = gradient.realize(4, 4);

// The equivalent C is:
printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {

for (int x = 0; x < 4; x++) {
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
}
printf("\n\n");

}

// Reorder variables.
{

Func gradient("gradient_col_major");
gradient(x, y) = x + y;
gradient.trace_stores();

// If we reorder x and y, we can walk down the columns
// instead. The reorder call takes the arguments of the func,
// and sets a new nesting order for the for loops that are
// generated. The arguments are specified from the innermost
// loop out, so the following call puts y in the inner loop:
gradient.reorder(y, x);

printf("Evaluating gradient column-major\n");
Image<int> output = gradient.realize(4, 4);

printf("Equivalent C:\n");
for (int x = 0; x < 4; x++) {

for (int y = 0; y < 4; y++) {
printf("Evaluating at %d, %d: %d\n", x, y, x + y);
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}
}
printf("\n\n");

}

// Split a variable into two.
{

Func gradient("gradient_split");
gradient(x, y) = x + y;
gradient.trace_stores();

// The most powerful primitive scheduling operation you can do
// to a var is to split it into inner and outer sub-variables:
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);

// This breaks the loop over x into two nested loops: an outer
// one over x_outer, and an inner one over x_inner. The last
// argument to split was the "split factor". The inner loop
// runs from zero to the split factor. The outer loop runs
// from zero to the extent required of x (4 in this case)
// divided by the split factor. Within the loops, the old
// variable is defined to be outer * factor + inner. If the
// old loop started at a value other than zero, then that is
// also added within the loops.

printf("Evaluating gradient with x split into x_outer and x_inner \n");
Image<int> output = gradient.realize(4, 4);

printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {

for (int x_outer = 0; x_outer < 2; x_outer++) {
for (int x_inner = 0; x_inner < 2; x_inner++) {

int x = x_outer * 2 + x_inner;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
}

}
printf("\n\n");

// Note that the order of evaluation of pixels didn’t actually
// change! Splitting by itself does nothing, but it does open
// up all of the scheduling possibilities that we will explore
// below.

}

// Fuse two variables into one.
{

Func gradient("gradient_fused");
gradient(x, y) = x + y;

// The opposite of splitting is ’fusing’. Fusing two variables
// merges the two loops into a single for loop over the
// product of the extents. Fusing is less important that
// splitting, but it also sees use (as we’ll see later in this
// lesson). Like splitting, fusing by itself doesn’t change
// the order of evaluation.
Var fused;
gradient.fuse(x, y, fused);

printf("Evaluating gradient with x and y fused\n");
Image<int> output = gradient.realize(4, 4);

printf("Equivalent C:\n");
for (int fused = 0; fused < 4*4; fused++) {

int y = fused / 4;
int x = fused % 4;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);
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}
}

// Evaluating in tiles.
{

Func gradient("gradient_tiled");
gradient(x, y) = x + y;
gradient.trace_stores();

// Now that we can both split and reorder, we can do tiled
// evaluation. Let’s split both x and y by a factor of two,
// and then reorder the vars to express a tiled traversal.
//
// A tiled traversal splits the domain into small rectangular
// tiles, and outermost iterates over the tiles, and within
// that iterates over the points within each tile. It can be
// good for performance if neighboring pixels use overlapping
// input data, for example in a blur. We can express a tiled
// traversal like so:
Var x_outer, x_inner, y_outer, y_inner;
gradient.split(x, x_outer, x_inner, 2);
gradient.split(y, y_outer, y_inner, 2);
gradient.reorder(x_inner, y_inner, x_outer, y_outer);

// This pattern is common enough that there’s a shorthand for it:
// gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 2, 2);

printf("Evaluating gradient in 2x2 tiles\n");
Image<int> output = gradient.realize(4, 4);

printf("Equivalent C:\n");
for (int y_outer = 0; y_outer < 2; y_outer++) {

for (int x_outer = 0; x_outer < 2; x_outer++) {
for (int y_inner = 0; y_inner < 2; y_inner++) {

for (int x_inner = 0; x_inner < 2; x_inner++) {
int x = x_outer * 2 + x_inner;
int y = y_outer * 2 + y_inner;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
}

}
}
printf("\n\n");

}

// Evaluating in vectors.
{

Func gradient("gradient_in_vectors");
gradient(x, y) = x + y;
gradient.trace_stores();

// The nice thing about splitting is that it guarantees the
// inner variable runs from zero to the split factor. Most of
// the time the split-factor will be a compile-time constant,
// so we can replace the loop over the inner variable with a
// single vectorized computation. This time we’ll split by a
// factor of four, because on X86 we can use SSE to compute in
// 4-wide vectors.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 4);
gradient.vectorize(x_inner);

// Splitting and then vectorizing the inner variable is common
// enough that there’s a short-hand for it. We could have also
// said:
//
// gradient.vectorize(x, 4);
//
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// which is equivalent to:
//
// gradient.split(x, x, x_inner, 4);
// gradient.vectorize(x_inner);
//
// Note that in this case we reused the name ’x’ as the new
// outer variable. Later scheduling calls that refer to x
// will refer to this new outer variable named x.
//
// Our snoop function isn’t set-up to print out vectors, this
// is why we included one called snoopx4 above.

// This time we’ll evaluate over an 8x4 box, so that we have
// more than one vector of work per scanline.
printf("Evaluating gradient with x_inner vectorized \n");
Image<int> output = gradient.realize(8, 4);

printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {

for (int x_outer = 0; x_outer < 2; x_outer++) {
// The loop over x_inner has gone away, and has been
// replaced by a vectorized version of the
// expression. On x86 processors, Halide generates SSE
// for all of this.
int x_vec[] = {x_outer * 4 + 0,

x_outer * 4 + 1,
x_outer * 4 + 2,
x_outer * 4 + 3};

int val[] = {x_vec[0] + y,
x_vec[1] + y,
x_vec[2] + y,
x_vec[3] + y};

printf("Evaluating at <%d, %d, %d, %d>, <%d, %d, %d, %d>: <%d, %d, %d, %d>\n",
x_vec[0], x_vec[1], x_vec[2], x_vec[3],
y, y, y, y,
val[0], val[1], val[2], val[3]);

}
}
printf("\n\n");

}

// Unrolling a loop.
{

Func gradient("gradient_in_vectors");
gradient(x, y) = x + y;
gradient.trace_stores();

// If multiple pixels share overlapping data, it can make
// sense to unroll a computation so that shared values are
// only computed or loaded once. We do this similarly to how
// we expressed vectorizing. We split a dimension and then
// fully unroll the loop of the inner variable. Unrolling
// doesn’t change the order in which things are evaluated.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);
gradient.unroll(x_inner);

// The shorthand for this is:
// gradient.unroll(x, 2);

printf("Evaluating gradient unrolled by a factor of two\n");
Image<int> result = gradient.realize(4, 4);

printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {

for (int x_outer = 0; x_outer < 2; x_outer++) {
// Instead of a for loop over x_inner, we get two
// copies of the innermost statement.
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{
int x_inner = 0;
int x = x_outer * 2 + x_inner;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
{

int x_inner = 1;
int x = x_outer * 2 + x_inner;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
}

}

}

// Splitting by factors that don’t divide the extent.
{

Func gradient("gradient_split_5x4");
gradient(x, y) = x + y;
gradient.trace_stores();

// Splitting guarantees that the inner loop runs from zero to
// the split factor, which is important for the uses we saw
// above. So what happens when the total extent we wish to
// evaluate x over isn’t a multiple of the split factor? We’ll
// split by a factor of two again, but now we’ll evaluate
// gradient over a 5x4 box instead of the 4x4 box we’ve been
// using.
Var x_outer, x_inner;
gradient.split(x, x_outer, x_inner, 2);

printf("Evaluating gradient over a 5x4 box with x split by two \n");
Image<int> output = gradient.realize(5, 4);

printf("Equivalent C:\n");
for (int y = 0; y < 4; y++) {

for (int x_outer = 0; x_outer < 3; x_outer++) { // Now runs from 0 to 3
for (int x_inner = 0; x_inner < 2; x_inner++) {

int x = x_outer * 2;
// Before we add x_inner, make sure we don’t
// evaluate points outside of the 5x4 box. We’ll
// clamp x to be at most 3 (5 minus the split
// factor).
if (x > 3) x = 3;
x += x_inner;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
}

}
printf("\n\n");

// If you read the output, you’ll see that some coordinates
// were evaluated more than once! That’s generally OK, because
// pure Halide functions have no side-effects, so it’s safe to
// evaluate the same point multiple times. If you’re calling
// out to C functions like we are, it’s your responsibility to
// make sure you can handle the same point being evaluated
// multiple times.

// The general rule is: If we require x from x_min to x_min + x_extent, and
// we split by a factor ’factor’, then:
//
// x_outer runs from 0 to (x_extent + factor - 1)/factor
// x_inner runs from 0 to factor
// x = min(x_outer * factor, x_extent - factor) + x_inner + x_min
//
// In our example, x_min was 0, x_extent was 5, and factor was 2.
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// However, if you write a Halide function with an update
// definition (see lesson 9), then it is not safe to evaluate
// the same point multiple times, so we won’t apply this
// trick. Instead the range of values computed will be rounded
// up to the next multiple of the split factor.

}

// Fusing, tiling, and parallelizing.
{

// We saw in the previous lesson that we can parallelize
// across a variable. Here we combine it with fusing and
// tiling to express a useful pattern - processing tiles in
// parallel.

// This is where fusing shines. Fusing helps when you want to
// parallelize across multiple dimensions without introducing
// nested parallelism. Nested parallelism (parallel for loops
// within parallel for loops) is supported by Halide, but
// often gives poor performance compared to fusing the
// parallel variables into a single parallel for loop.

Func gradient("gradient_fused_tiles");
gradient(x, y) = x + y;
gradient.trace_stores();

// First we’ll tile, then we’ll fuse the tile indices and
// parallelize across the combination.
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient.tile(x, y, x_outer, y_outer, x_inner, y_inner, 2, 2);
gradient.fuse(x_outer, y_outer, tile_index);
gradient.parallel(tile_index);

// The scheduling calls all return a reference to the Func, so
// you can also chain them together into a single statement to
// make things slightly clearer:
//
// gradient
// .tile(x, y, x_outer, y_outer, x_inner, y_inner, 2, 2)
// .fuse(x_outer, y_outer, tile_index)
// .parallel(tile_index);

printf("Evaluating gradient tiles in parallel\n");
Image<int> output = gradient.realize(4, 4);

// The tiles should occur in arbitrary order, but within each
// tile the pixels will be traversed in row-major order.

printf("Equivalent (serial) C:\n");
// This outermost loop should be a parallel for loop, but that’s hard in C.
for (int tile_index = 0; tile_index < 4; tile_index++) {

int y_outer = tile_index / 2;
int x_outer = tile_index % 2;
for (int y_inner = 0; y_inner < 2; y_inner++) {

for (int x_inner = 0; x_inner < 2; x_inner++) {
int y = y_outer * 2 + y_inner;
int x = x_outer * 2 + x_inner;
printf("Evaluating at %d, %d: %d\n", x, y, x + y);

}
}

}
printf("\n\n");

}

// Putting it all together.
{

// Are you ready? We’re going to use all of the features above now.
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Func gradient_fast("gradient_fast");
gradient_fast(x, y) = x + y;

// We’ll process 256x256 tiles in parallel.
Var x_outer, y_outer, x_inner, y_inner, tile_index;
gradient_fast

.tile(x, y, x_outer, y_outer, x_inner, y_inner, 256, 256)

.fuse(x_outer, y_outer, tile_index)

.parallel(tile_index);

// We’ll compute two scanlines at once while we walk across
// each tile. We’ll also vectorize in x. The easiest way to
// express this is to recursively tile again within each tile
// into 4x2 subtiles, then vectorize the subtiles across x and
// unroll them across y:
Var x_inner_outer, y_inner_outer, x_vectors, y_pairs;
gradient_fast

.tile(x_inner, y_inner, x_inner_outer, y_inner_outer, x_vectors, y_pairs, 4, 2)

.vectorize(x_vectors)

.unroll(y_pairs);

// Note that we didn’t do any explicit splitting or
// reordering. Those are the most important primitive
// operations, but mostly they are buried underneath tiling,
// vectorizing, or unrolling calls.

// Now let’s evaluate this over a range which is not a
// multiple of the tile size.

// If you like you can turn on tracing, but it’s going to
// produce a lot of printfs. Instead we’ll compute the answer
// both in C and Halide and see if the answers match.
Image<int> result = gradient_fast.realize(800, 600);

printf("Checking Halide result against equivalent C...\n");
for (int tile_index = 0; tile_index < 4 * 3; tile_index++) {

int y_outer = tile_index / 4;
int x_outer = tile_index % 4;
for (int y_inner_outer = 0; y_inner_outer < 256/2; y_inner_outer++) {

for (int x_inner_outer = 0; x_inner_outer < 256/4; x_inner_outer++) {
// We’re vectorized across x
int x = std::min(x_outer * 256, 800-256) + x_inner_outer*4;
int x_vec[4] = {x + 0,

x + 1,
x + 2,
x + 3};

// And we unrolled across y
int y_base = std::min(y_outer * 256, 600-256) + y_inner_outer*2;
{

// y_pairs = 0
int y = y_base + 0;
int y_vec[4] = {y, y, y, y};
int val[4] = {x_vec[0] + y_vec[0],

x_vec[1] + y_vec[1],
x_vec[2] + y_vec[2],
x_vec[3] + y_vec[3]};

// Check the result.
for (int i = 0; i < 4; i++) {

if (result(x_vec[i], y_vec[i]) != val[i]) {
printf("There was an error at %d %d!\n", x_vec[i], y_vec[i]);
return -1;

}
}

}
{

// y_pairs = 1
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int y = y_base + 1;
int y_vec[4] = {y, y, y, y};
int val[4] = {x_vec[0] + y_vec[0],

x_vec[1] + y_vec[1],
x_vec[2] + y_vec[2],
x_vec[3] + y_vec[3]};

// Check the result.
for (int i = 0; i < 4; i++) {

if (result(x_vec[i], y_vec[i]) != val[i]) {
printf("There was an error at %d %d!\n", x_vec[i], y_vec[i]);
return -1;

}
}

}
}

}
}

}

// Note that in the Halide version, the algorithm is specified
// once at the top, separately from the optimizations, and there
// aren’t that many lines of code total. Compare this to the C
// version. There’s more code (and it isn’t even parallelized or
// vectorized properly). More annoyingly, the statement of the
// algorithm (the result is x plus y) is buried in multiple places
// within the mess. This C code is hard to write, hard to read,
// hard to debug, and hard to optimize further. This is why Halide
// exists.

printf("Success!\n");
return 0;

}
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a.6 realizing over shifted domains
// Halide tutorial lesson 6.

// This lesson demonstrates how to evaluate a Func over a domain that
// does not start at (0, 0).

// On linux, you can compile and run it like so:
// g++ lesson_06*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_06
// LD_LIBRARY_PATH=../bin ./lesson_06

// On os x:
// g++ lesson_06*.cpp -g -I ../include -L ../bin -lHalide -o lesson_06
// DYLD_LIBRARY_PATH=../bin ./lesson_06

#include <Halide.h>
#include <stdio.h>

using namespace Halide;

int main(int argc, char **argv) {

// The last lesson was quite involved, and scheduling complex
// multi-stage pipelines is ahead of us. As an interlude, let’s
// consider something easy: evaluating funcs over rectangular
// domains that do not start at the origin.

// We define our familiar gradient function.
Func gradient("gradient");
Var x("x"), y("y");
gradient(x, y) = x + y;

// And turn on tracing so we can see how it is being evaluated.
gradient.trace_stores();

// Previously we’ve realized gradient like so:
//
// gradient.realize(8, 8);
//
// This does three things internally:
// 1) Generates code than can evaluate gradient over an arbitrary
// rectangle.
// 2) Allocates a new 8 x 8 image.
// 3) Runs the generated code to evaluate gradient for all x, y
// from (0, 0) to (7, 7) and puts the result into the image.
// 4) Returns the new image as the result of the realize call.

// What if we’re managing memory carefully and don’t want Halide
// to allocate a new image for us? We can call realize another
// way. We can pass it an image we would like it to fill in. The
// following evaluates our Func into an existing image:
printf("Evaluating gradient from (0, 0) to (7, 7)\n");
Image<int> result(8, 8);
gradient.realize(result);

// Let’s check it did what we expect:
for (int y = 0; y < 8; y++) {

for (int x = 0; x < 8; x++) {
if (result(x, y) != x + y) {

printf("Something went wrong!\n");
return -1;

}
}

}

// Now let’s evaluate gradient over a 5 x 7 rectangle that starts
// somewhere else -- at position (100, 50). So x and y will run
// from (100, 50) to (104, 56) inclusive.
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// We start by creating an image that represents that rectangle:
Image<int> shifted(5, 7); // In the constructor we tell it the size.
shifted.set_min(100, 50); // Then we tell it the top-left corner.

printf("Evaluating gradient from (100, 50) to (104, 56)\n");

// Note that this won’t need to compile any new code, because when
// we realized it the first time, we generated code capable of
// evaluating gradient over an arbitrary rectangle.
gradient.realize(shifted);

// From C++, we also access the image object using coordinates
// that start at (100, 50).
for (int y = 50; y < 57; y++) {

for (int x = 100; x < 105; x++) {
if (shifted(x, y) != x + y) {

printf("Something went wrong!\n");
return -1;

}
}

}
// The image ’shifted’ stores the value of our Func over a domain
// that starts at (100, 50), so asking for shifted(0, 0) would in
// fact read out-of-bounds and probably crash.

// What if we want to evaluate our Func over some region that
// isn’t rectangular? Too bad. Halide only does rectangles :)

printf("Success!\n");
return 0;

}
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a.7 multi-stage pipelines
// Halide tutorial lesson 7

// This lesson demonstrates how express multi-stage pipelines.

// On linux, you can compile and run it like so:
// g++ lesson_07*.cpp -g -I ../include -L ../bin -lHalide `libpng-config --cflags --ldflags` -lpthread -ldl -o lesson_07
// LD_LIBRARY_PATH=../bin ./lesson_07

// On os x:
// g++ lesson_07*.cpp -g -I ../include -L ../bin -lHalide `libpng-config --cflags --ldflags` -o lesson_07
// DYLD_LIBRARY_PATH=../bin ./lesson_07

#include <Halide.h>
#include <stdio.h>

using namespace Halide;

// Support code for loading pngs.
#include "image_io.h"

int main(int argc, char **argv) {
// First we’ll declare some Vars to use below.
Var x("x"), y("y"), c("c");

// Now we’ll express a multi-stage pipeline that blurs an image
// first horizontally, and then vertically.
{

// Take a color 8-bit input
Image<uint8_t> input = load<uint8_t>("images/rgb.png");

// Upgrade it to 16-bit, so we can do math without it overflowing.
Func input_16("input_16");
input_16(x, y, c) = cast<uint16_t>(input(x, y, c));

// Blur it horizontally:
Func blur_x("blur_x");
blur_x(x, y, c) = (input_16(x-1, y, c) + 2*input_16(x, y, c) + input_16(x+1, y, c))/4;

// Blur it vertically:
Func blur_y("blur_y");
blur_y(x, y, c) = (blur_x(x, y-1, c) + 2*blur_x(x, y, c) + blur_x(x, y+1, c))/4;

// Convert back to 8-bit.
Func output("output");
output(x, y, c) = cast<uint8_t>(blur_y(x, y, c));

// Each Func in this pipeline calls a previous one using
// familiar function call syntax (we’ve overloaded operator()
// on Func objects). A Func may call any other Func that has
// been given a definition. This restriction prevents
// pipelines with loops in them. Halide pipelines are always
// feed-forward graphs of Funcs.

// Now let’s realize it...

// Image<uint8_t> result = output.realize(input.width(), input.height(), 3);

// Except that the line above is not going to work. Uncomment
// it to see what happens.

// Realizing this pipeline over the same domain as the input
// image requires reading pixels out of bounds in the input,
// because the blur_x stage reaches outwards horizontally, and
// the blur_y stage reaches outwards vertically. Halide
// detects this by injecting a piece of code at the top of the
// pipeline that computes the region over which the input will
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// be read. When it starts to run the pipeline it first runs
// this code, determines that the input will be read out of
// bounds, and refuses to continue. No actual bounds checks
// occur in the inner loop; that would be slow.
//
// So what do we do? There are a few options. If we realize
// over a domain shifted inwards by one pixel, we won’t be
// asking the Halide routine to read out of bounds. We saw how
// to do this in the previous lesson:
Image<uint8_t> result(input.width()-2, input.height()-2, 3);
result.set_min(1, 1);
output.realize(result);

// Save the result. It should look like a slightly blurry
// parrot, and it should be two pixels narrower and two pixels
// shorter than the input image.
save(result, "blurry_parrot_1.png");

// This is usually the fastest way to deal with boundaries:
// don’t write code that reads out of bounds :) The more
// general solution is our next example.

}

// The same pipeline, with a boundary condition on the input.
{

// Take a color 8-bit input
Image<uint8_t> input = load<uint8_t>("images/rgb.png");

// This time, we’ll wrap the input in a Func that prevents
// reading out of bounds:
Func clamped("clamped");

// Define an expression that clamps x to lie within the the
// range [0, input.width()-1].
Expr clamped_x = clamp(x, 0, input.width()-1);
// Similarly clamp y.
Expr clamped_y = clamp(y, 0, input.height()-1);
// Load from input at the clamped coordinates. This means that
// no matter how we evaluated the Func ’clamped’, we’ll never
// read out of bounds on the input. This is a clamp-to-edge
// style boundary condition, and is the simplest boundary
// condition to express in Halide.
clamped(x, y, c) = input(clamped_x, clamped_y, c);

// Upgrade it to 16-bit, so we can do math without it
// overflowing. This time we’ll refer to our new Func
// ’clamped’, instead of referring to the input image
// directly.
Func input_16("input_16");
input_16(x, y, c) = cast<uint16_t>(clamped(x, y, c));

// The rest of the pipeline will be the same...

// Blur it horizontally:
Func blur_x("blur_x");
blur_x(x, y, c) = (input_16(x-1, y, c) + 2*input_16(x, y, c) + input_16(x+1, y, c))/4;

// Blur it vertically:
Func blur_y("blur_y");
blur_y(x, y, c) = (blur_x(x, y-1, c) + 2*blur_x(x, y, c) + blur_x(x, y+1, c))/4;

// Convert back to 8-bit.
Func output("output");
output(x, y, c) = cast<uint8_t>(blur_y(x, y, c));

// This time it’s safe to evaluate the output over the some
// domain as the input, because we have a boundary condition.
Image<uint8_t> result = output.realize(input.width(), input.height(), 3);
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// Save the result. It should look like a slightly blurry
// parrot, but this time it will be the same size as the
// input.
save(result, "blurry_parrot_2.png");

}

printf("Success!\n");
return 0;

}
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a.8 scheduling, part 2
// Halide tutorial lesson 8

// This lesson demonstrates how schedule multi-stage pipelines.

// On linux, you can compile and run it like so:
// g++ lesson_08*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_08
// LD_LIBRARY_PATH=../bin ./lesson_08

// On os x:
// g++ lesson_08*.cpp -g -I ../include -L ../bin -lHalide -o lesson_08
// DYLD_LIBRARY_PATH=../bin ./lesson_08

#include <Halide.h>
#include <stdio.h>

using namespace Halide;

int main(int argc, char **argv) {
// First we’ll declare some Vars to use below.
Var x("x"), y("y");

// Let’s examine various scheduling options for a simple two stage
// pipeline. We’ll start with the default schedule:
{

Func producer("producer_default"), consumer("consumer_default");

// The first stage will be some simple pointwise math similar
// to our familiar gradient function. The value at position x,
// y is the sqrt of product of x and y.
producer(x, y) = sqrt(x * y);

// Now we’ll add a second stage which adds together multiple
// points in the first stage.
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// We’ll turn on tracing for both functions.
consumer.trace_stores();
producer.trace_stores();

// And evaluate it over a 5x5 box.
printf("\nEvaluating producer-consumer pipeline with default schedule\n");
consumer.realize(4, 4);

// There were no messages about computing values of the
// producer. This is because the default schedule fully
// inlines ’producer’ into ’consumer’. It is as if we had
// written the following code instead:

// consumer(x, y) = (sqrt(x * y) +
// sqrt(x * (y + 1)) +
// sqrt((x + 1) * y) +
// sqrt((x + 1) * (y + 1)));

// All calls to ’producer’ have been replaced with the body of
// ’producer’, with the arguments subtituted in for the
// variables.

// The equivalent C code is:
float result[4][4];
for (int y = 0; y < 4; y++) {

for (int x = 0; x < 4; x++) {
result[y][x] = (sqrt(x*y) +

sqrt(x*(y+1)) +
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sqrt((x+1)*y) +
sqrt((x+1)*(y+1)));

}
}
printf("\n");

}

// Next we’ll examine the next simplest option - computing all
// values required in the producer before computing any of the
// consumer. We call this schedule "root".
{

// Start with the same function definitions:
Func producer("producer_root"), consumer("consumer_root");
producer(x, y) = sqrt(x * y);
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// Tell Halide to evaluate all of producer before any of consumer.
producer.compute_root();

// Turn on tracing.
consumer.trace_stores();
producer.trace_stores();

// Compile and run.
printf("\nEvaluating producer.compute_root()\n");
consumer.realize(4, 4);

// Reading the output we can see that:
// A) There were stores to producer.
// B) They all happened before any stores to consumer.

// Equivalent C:

float result[4][4];

// Allocate some temporary storage for the producer.
float producer_storage[5][5];

// Compute the producer.
for (int y = 0; y < 5; y++) {

for (int x = 0; x < 5; x++) {
producer_storage[y][x] = sqrt(x * y);

}
}

// Compute the consumer. Skip the prints this time.
for (int y = 0; y < 4; y++) {

for (int x = 0; x < 4; x++) {
result[y][x] = (producer_storage[y][x] +

producer_storage[y+1][x] +
producer_storage[y][x+1] +
producer_storage[y+1][x+1]);

}
}

// Note that consumer was evaluated over a 4x4 box, so Halide
// automatically inferred that producer was needed over a 5x5
// box. This is the same ’bounds inference’ logic we saw in
// the previous lesson, where it was used to detect and avoid
// out-of-bounds reads from an input image.

}

// Let’s compare the two approaches above from a performance
// perspective.
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// Full inlining (the default schedule):
// - Temporary memory allocated: 0
// - Loads: 0
// - Stores: 16
// - Calls to sqrt: 64

// producer.compute_root():
// - Temporary memory allocated: 25 floats
// - Loads: 64
// - Stores: 39
// - Calls to sqrt: 25

// There’s a trade-off here. Full inlining used minimal temporary
// memory and memory bandwidth, but did a whole bunch of redundant
// expensive math (calling sqrt). It evaluated most points in
// ’producer’ four times. The second schedule,
// producer.compute_root(), did the mimimum number of calls to
// sqrt, but used more temporary memory and more memory bandwidth.

// In any given situation the correct choice can be difficult to
// make. If you’re memory-bandwidth limited, or don’t have much
// memory (e.g. because you’re running on an old cell-phone), then
// it can make sense to do redundant math. On the other hand, sqrt
// is expensive, so if you’re compute-limited then fewer calls to
// sqrt will make your program faster. Adding vectorization or
// multi-core parallelism tilts the scales in favor of doing
// redundant work, because firing up multiple cpu cores increases
// the amount of math you can do per second, but doesn’t increase
// your system memory bandwidth or capacity.

// We can make choices in between full inlining and
// compute_root. Next we’ll alternate between computing the
// producer and consumer on a per-scanline basis:
{

// Start with the same function definitions:
Func producer("producer_y"), consumer("consumer_y");
producer(x, y) = sqrt(x * y);
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// Tell Halide to evaluate producer as needed per y coordinate
// of the consumer:
producer.compute_at(consumer, y);

// This places the code that computes the producer just
// *inside* the consumer’s for loop over y, as in the
// equivalent C below.

// Turn on tracing.
producer.trace_stores();
consumer.trace_stores();

// Compile and run.
printf("\nEvaluating producer.compute_at(consumer, y)\n");
consumer.realize(4, 4);

// Reading the log you should see that producer and consumer
// alternate on a per-scanline basis. Let’s look at the
// equivalent C:

float result[4][4];

// There’s an outer loop over scanlines of consumer:
for (int y = 0; y < 4; y++) {
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// Allocate space and compute enough of the producer to
// satisfy this single scanline of the consumer. This
// means a 5x2 box of the producer.
float producer_storage[2][5];
for (int py = y; py < y + 2; py++) {

for (int px = 0; px < 5; px++) {
producer_storage[py-y][px] = sqrt(px * py);

}
}

// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {

result[y][x] = (producer_storage[0][x] +
producer_storage[1][x] +
producer_storage[0][x+1] +
producer_storage[1][x+1]);

}
}

// The performance characteristics of this strategy are in
// between inlining and compute root. We still allocate some
// temporary memory, but less that compute_root, and with
// better locality (we load from it soon after writing to it,
// so for larger images, values should still be in cache). We
// still do some redundant work, but less than full inlining:

// producer.compute_at(consumer, y):
// - Temporary memory allocated: 10 floats
// - Loads: 64
// - Stores: 56
// - Calls to sqrt: 40

}

// We could also say producer.compute_at(consumer, x), but this
// would be very similar to full inlining (the default
// schedule). Instead let’s distinguish between the loop level at
// which we allocate storage for producer, and the loop level at
// which we actually compute it. This unlocks a few optimizations.
{

Func producer("producer_store_root_compute_y"), consumer("consumer_store_root_compute_y");
producer(x, y) = sqrt(x * y);
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// Tell Halide to make a buffer to store all of producer at
// the outermost level:
producer.store_root();
// ... but compute it as needed per y coordinate of the
// consumer.
producer.compute_at(consumer, y);

producer.trace_stores();
consumer.trace_stores();

printf("\nEvaluating producer.store_root().compute_at(consumer, y)\n");
consumer.realize(4, 4);

// Reading the log you should see that producer and consumer
// again alternate on a per-scanline basis. It computes a 5x2
// box of the producer to satisfy the first scanline of the
// consumer, but after that it only computes a 5x1 box of the
// output for each new scanline of the consumer!
//
// Halide has detected that for all scanlines except for the
// first, it can reuse the values already sitting in the
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// buffer we’ve allocated for producer. Let’s look at the
// equivalent C:

float result[4][4];

// producer.store_root() implies that storage goes here:
float producer_storage[5][5];

// There’s an outer loop over scanlines of consumer:
for (int y = 0; y < 4; y++) {

// Compute enough of the producer to satisfy this scanline
// of the consumer.
for (int py = y; py < y + 2; py++) {

// Skip over rows of producer that we’ve already
// computed in a previous iteration.
if (y > 0 && py == y) continue;

for (int px = 0; px < 5; px++) {
producer_storage[py][px] = sqrt(px * py);

}
}

// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {

result[y][x] = (producer_storage[y][x] +
producer_storage[y+1][x] +
producer_storage[y][x+1] +
producer_storage[y+1][x+1]);

}
}

// The performance characteristics of this strategy are pretty
// good! The numbers are similar compute_root, except locality
// is better. We’re doing the minimum number of sqrt calls,
// and we load values soon after they are stored, so we’re
// probably making good use of the cache:

// producer.store_root().compute_at(consumer, y):
// - Temporary memory allocated: 10 floats
// - Loads: 64
// - Stores: 39
// - Calls to sqrt: 25

// Note that my claimed amount of memory allocated doesn’t
// match the reference C code. Halide is performing one more
// optimization under the hood. It folds the storage for the
// producer down into a circular buffer of two
// scanlines. Equivalent C would actually look like this:

{
// Actually store 2 scanlines instead of 5
float producer_storage[2][5];
for (int y = 0; y < 4; y++) {

for (int py = y; py < y + 2; py++) {
if (y > 0 && py == y) continue;
for (int px = 0; px < 5; px++) {

// Stores to producer_storage have their y coordinate bit-masked.
producer_storage[py & 1][px] = sqrt(px * py);

}
}

// Compute a scanline of the consumer.
for (int x = 0; x < 4; x++) {

// Loads from producer_storage have their y coordinate bit-masked.
result[y][x] = (producer_storage[y & 1][x] +

producer_storage[(y+1) & 1][x] +
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producer_storage[y & 1][x+1] +
producer_storage[(y+1) & 1][x+1]);

}
}

}
}

// We can do even better, by leaving the storage outermost, but
// moving the computation into the innermost loop:
{

Func producer("producer_store_root_compute_y"), consumer("consumer_store_root_compute_y");
producer(x, y) = sqrt(x * y);
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// Store outermost, compute innermost.
producer.store_root().compute_at(consumer, x);

producer.trace_stores();
consumer.trace_stores();

printf("\nEvaluating producer.store_root().compute_at(consumer, x)\n");
consumer.realize(4, 4);

// Reading the log, you should see that producer and consumer
// now alternate on a per-pixel basis. Here’s the equivalent C:

float result[4][4];

// producer.store_root() implies that storage goes here, but
// we can fold it down into a circular buffer of two
// scanlines:
float producer_storage[2][5];

// For every pixel of the consumer:
for (int y = 0; y < 4; y++) {

for (int x = 0; x < 4; x++) {

// Compute enough of the producer to satisfy this
// pixel of the consumer, but skip values that we’ve
// already computed:
if (y == 0 && x == 0)

producer_storage[y & 1][x] = sqrt(x*y);
if (y == 0)

producer_storage[y & 1][x+1] = sqrt((x+1)*y);
if (x == 0)

producer_storage[(y+1) & 1][x] = sqrt(x*(y+1));
producer_storage[(y+1) & 1][x+1] = sqrt((x+1)*(y+1));

result[y][x] = (producer_storage[y & 1][x] +
producer_storage[(y+1) & 1][x] +
producer_storage[y & 1][x+1] +
producer_storage[(y+1) & 1][x+1]);

}
}

// The performance characteristics of this strategy are the
// best so far. One of the four values of the producer we need
// is probably still sitting in a register, so I won’t count
// it as a load:
// producer.store_root().compute_at(consumer, x):
// - Temporary memory allocated: 10 floats
// - Loads: 48
// - Stores: 56
// - Calls to sqrt: 40
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}

// So what’s the catch? Why not always do
// producer.store_root().compute_at(consumer, x) for this type of
// code?
//
// The answer is parallelism. In both of the previous two
// strategies we’ve assumed that values computed on previous
// iterations are lying around for us to reuse. This assumes that
// previous values of x or y happened earlier in time and have
// finished. This is not true if you parallelize or vectorize
// either loop. Darn. If you parallelize, Halide won’t inject the
// optimizations that skip work already done if there’s a parallel
// loop in between the store_at level and the compute_at level,
// and won’t fold the storage down into a circular buffer either,
// which makes our store_root pointless.

// We’re running out of options. We can make new ones by
// splitting. We can store_at or compute_at at the natural
// variables of the consumer (x and y), or we can split x or y
// into new inner and outer sub-variables and then schedule with
// respect to those. We’ll use this to express fusion in tiles:
{

Func producer("producer_store_root_compute_y"), consumer("consumer_store_root_compute_y");
producer(x, y) = sqrt(x * y);
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// Tile the consumer using 2x2 tiles.
Var x_outer, y_outer, x_inner, y_inner;
consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 2, 2);

// Compute the producer per tile of the consumer
producer.compute_at(consumer, x_outer);

// Notice that I wrote my schedule starting from the end of
// the pipeline (the consumer). This is because the schedule
// for the producer refers to x_outer, which we introduced
// when we tiled the consumer. You can write it in the other
// order, but it tends to be harder to read.

// Turn on tracing.
producer.trace_stores();
consumer.trace_stores();

printf("\nEvaluating:\n"
"consumer.tile(x, y, x_outer, y_outer, x_inner, y_inner, 2, 2);\n"
"producer.compute_at(consumer, x_outer);\n");

consumer.realize(4, 4);

// Reading the log, you should see that producer and consumer
// now alternate on a per-tile basis. Here’s the equivalent C:

float result[4][4];

// For every tile of the consumer:
for (int y_outer = 0; y_outer < 2; y_outer++) {

for (int x_outer = 0; x_outer < 2; x_outer++) {
// Compute the x and y coords of the start of this tile.
int x_base = x_outer*2;
int y_base = y_outer*2;

// Compute enough of producer to satisfy this tile. A
// 2x2 tile of the consumer requires a 3x3 tile of the
// producer.
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float producer_storage[3][3];
for (int py = y_base; py < y_base + 3; py++) {

for (int px = x_base; px < x_base + 3; px++) {
producer_storage[py-y_base][px-x_base] = sqrt(px * py);

}
}

// Compute this tile of the consumer
for (int y_inner = 0; y_inner < 2; y_inner++) {

for (int x_inner = 0; x_inner < 2; x_inner++) {
int x = x_base + x_inner;
int y = y_base + y_inner;
result[y][x] = (producer_storage[y - y_base][x - x_base] +

producer_storage[y - y_base + 1][x - x_base] +
producer_storage[y - y_base][x - x_base + 1] +
producer_storage[y - y_base + 1][x - x_base + 1]);

}
}

}
}

// Tiling can make sense for problems like this one with
// stencils that reach outwards in x and y. Each tile can be
// computed independently in parallel, and the redundant work
// done by each tile isn’t so bad once the tiles get large
// enough.

}

// Let’s try a mixed strategy that combines what we have done with
// splitting, parallelizing, and vectorizing. This is one that
// often works well in practice for large images. If you
// understand this schedule, then you understand 95% of scheduling
// in Halide.
{

Func producer("producer_mixed"), consumer("consumer_mixed");
producer(x, y) = sqrt(x * y);
consumer(x, y) = (producer(x, y) +

producer(x, y+1) +
producer(x+1, y) +
producer(x+1, y+1));

// Split the y coordinate of the consumer into strips of 16 scanlines:
Var yo, yi;
consumer.split(y, yo, yi, 16);
// Compute the strips using a thread pool and a task queue.
consumer.parallel(yo);
// Vectorize across x by a factor of four.
consumer.vectorize(x, 4);

// Now store the producer per-strip. This will be 17 scanlines
// of the producer (16+1), but hopefully it will fold down
// into a circular buffer of two scanlines:
producer.store_at(consumer, yo);
// Within each strip, compute the producer per scanline of the
// consumer, skipping work done on previous scanlines.
producer.compute_at(consumer, yi);
// Also vectorize the producer (because sqrt is vectorizable on x86 using SSE).
producer.vectorize(x, 4);

// Let’s leave tracing off this time, because we’re going to
// evaluate over a larger image.
// consumer.trace_stores();
// producer.trace_stores();

Image<float> halide_result = consumer.realize(800, 600);

// Here’s the equivalent (serial) C:
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float c_result[600][800];

// For every strip of 16 scanlines
for (int yo = 0; yo < 600/16 + 1; yo++) { // (this loop is parallel in the Halide version)

// 16 doesn’t divide 600, so push the last slice upwards to fit within [0, 599] (see lesson 05).
int y_base = yo * 16;
if (y_base > 600-16) y_base = 600-16;

// Allocate a two-scanline circular buffer for the producer
float producer_storage[2][801];

// For every scanline in the strip of 16:
for (int yi = 0; yi < 16; yi++) {

int y = y_base + yi;

for (int py = y; py < y+2; py++) {
// Skip scanlines already computed *within this task*
if (yi > 0 && py == y) continue;

// Compute this scanline of the producer in 4-wide vectors
for (int x_vec = 0; x_vec < 800/4 + 1; x_vec++) {

int x_base = x_vec*4;
// 4 doesn’t divide 801, so push the last vector left (see lesson 05).
if (x_base > 801 - 4) x_base = 801 - 4;
// If you’re on x86, Halide generates SSE code for this part:
int x[] = {x_base, x_base + 1, x_base + 2, x_base + 3};
float vec[4] = {sqrtf(x[0] * py), sqrtf(x[1] * py), sqrtf(x[2] * py), sqrtf(x[3] * py)};
producer_storage[py & 1][x[0]] = vec[0];
producer_storage[py & 1][x[1]] = vec[1];
producer_storage[py & 1][x[2]] = vec[2];
producer_storage[py & 1][x[3]] = vec[3];

}
}

// Now compute consumer for this scanline:
for (int x_vec = 0; x_vec < 800/4; x_vec++) {

int x_base = x_vec * 4;
// Again, Halide’s equivalent here uses SSE.
int x[] = {x_base, x_base + 1, x_base + 2, x_base + 3};
float vec[] = {

(producer_storage[y & 1][x[0]] +
producer_storage[(y+1) & 1][x[0]] +
producer_storage[y & 1][x[0]+1] +
producer_storage[(y+1) & 1][x[0]+1]),

(producer_storage[y & 1][x[1]] +
producer_storage[(y+1) & 1][x[1]] +
producer_storage[y & 1][x[1]+1] +
producer_storage[(y+1) & 1][x[1]+1]),

(producer_storage[y & 1][x[2]] +
producer_storage[(y+1) & 1][x[2]] +
producer_storage[y & 1][x[2]+1] +
producer_storage[(y+1) & 1][x[2]+1]),

(producer_storage[y & 1][x[3]] +
producer_storage[(y+1) & 1][x[3]] +
producer_storage[y & 1][x[3]+1] +
producer_storage[(y+1) & 1][x[3]+1])};

c_result[y][x[0]] = vec[0];
c_result[y][x[1]] = vec[1];
c_result[y][x[2]] = vec[2];
c_result[y][x[3]] = vec[3];

}

}
}
// Look on my code, ye mighty, and despair!
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// Let’s check the C result against the Halide result. Doing
// this I found several bugs in my C implementation, which
// should tell you something.
for (int y = 0; y < 600; y++) {

for (int x = 0; x < 800; x++) {
float error = halide_result(x, y) - c_result[y][x];
// It’s floating-point math, so we’ll allow some slop:
if (error < -0.001f || error > 0.001f) {

printf("halide_result(%d, %d) = %f instead of %f\n",
x, y, halide_result(x, y), c_result[y][x]);

return -1;
}

}
}

}

// This stuff is hard. We ended up in a three-way trade-off
// between memory bandwidth, redundant work, and
// parallelism. Halide can’t make the correct choice for you
// automatically (sorry). Instead it tries to make it easier for
// you to explore various options, without messing up your
// program. In fact, Halide promises that scheduling calls like
// compute_root won’t change the meaning of your algorithm -- you
// should get the same bits back no matter how you schedule
// things.

// So be empirical! Experiment with various schedules and keep a
// log of performance. Form hypotheses and then try to prove
// yourself wrong. Don’t assume that you just need to vectorize
// your code by a factor of four and run it on eight cores and
// you’ll get 32x faster. This almost never works. Modern systems
// are complex enough that you can’t predict performance reliably
// without running your code.

// We suggest you start by scheduling all of your non-trivial
// stages compute_root, and then work from the end of the pipeline
// upwards, inlining, parallelizing, and vectorizing each stage in
// turn until you reach the top.

// Halide is not just about vectorizing and parallelizing your
// code. That’s not enough to get you very far. Halide is about
// giving you tools that help you quickly explore different
// trade-offs between locality, redundant work, and parallelism,
// without messing up the actual result you’re trying to compute.

printf("Success!\n");
return 0;

}
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a.9 update definitions
// Halide tutorial lesson 9

// This lesson demonstrates how to define a Func in multiple passes, including scattering.

// On linux, you can compile and run it like so:
// g++ lesson_09*.cpp -g -I ../include -L ../bin -lHalide `libpng-config --cflags --ldflags` -lpthread -ldl -fopenmp -o lesson_09
// LD_LIBRARY_PATH=../bin ./lesson_09

// On os x (will only work if you actually have g++, not Apple’s pretend g++ which is actually clang):
// g++ lesson_09*.cpp -g -I ../include -L ../bin -lHalide `libpng-config --cflags --ldflags` -fopenmp -o lesson_09
// DYLD_LIBRARY_PATH=../bin ./lesson_09

#include <Halide.h>
#include <stdio.h>

// We’re going to be using x86 SSE intrinsics later on in this lesson.
#ifdef __SSE2__
#include <emmintrin.h>
#endif

// We’ll also need a clock to do performance testing at the end.
#include "clock.h"

using namespace Halide;

// Support code for loading pngs.
#include "image_io.h"

int main(int argc, char **argv) {
// Declare some Vars to use below.
Var x("x"), y("y");

// Load a grayscale image to use as an input.
Image<uint8_t> input = load<uint8_t>("images/gray.png");

// You can define a Func in multiple passes. Let’s see a toy
// example first.
{

// The first definition must be one like we have seen already
// - a mapping from Vars to an Expr:
Func f;
f(x, y) = x + y;
// We call this first definition the "pure" definition.

// But the later definitions can include computed expressions on
// both sides. The simplest example is modifying a single point:
f(3, 7) = 42;

// We call these extra definitions "update" definitions, or
// "reduction" definitions. A reduction definition is an
// update definition that recursively refers back to the
// function’s current value at the same site:
f(x, y) = f(x, y) + 17;

// If we confine our update to a single row, we can
// recursively refer to values in the same column:
f(x, 3) = f(x, 0) * f(x, 10);

// Similarly, if we confine our update to a single column, we
// can recursively refer to other values in the same row.
f(0, y) = f(0, y) / f(3, y);

// The general rule is: Each Var used in an update definition
// must appear unadorned in the same position as in the pure
// definition in all references to the function on the left-
// and right-hand sides. So the following definitions are
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// legal updates:
f(x, 17) = x + 8; // x is used, so all uses of f must have x as the first argument.
f(0, y) = y * 8; // y is used, so all uses of f must have y as the second argument.
f(x, x + 1) = x + 8;
f(y/2, y) = f(0, y) * 17;

// But these ones would cause an error:
// f(x, 0) = f(x + 1, 0) <- First argument to f on the right-hand-side must be ’x’, not ’x + 1’.
// f(y, y + 1) = y + 8 <- Second argument to f on the left-hand-side must be ’y’, not ’y + 1’.
// f(y, x) = y - x; <- Arguments to f on the left-hand-side are in the wrong places.
// f(3, 4) = x + y; <- Free variables appear on the right-hand-side but not the left-hand-side.

// We’ll realize this one just to make sure it compiles. The
// second-to-last definition forces us to realize over a
// domain that is taller than it is wide.
f.realize(100, 101);

// For each realization of f, each step runs in its entirety
// before the next one begins. Let’s trace the loads and
// stores for a simpler example:
Func g("g");
g(x, y) = x + y; // Pure definition
g(2, 1) = 42; // First update definition
g(x, 0) = g(x, 1); // Second update definition

g.trace_loads();
g.trace_stores();

g.realize(4, 4);

// Reading the log, we see that each pass is applied in turn. The equivalent C is:
int result[4][4];
// Pure definition
for (int y = 0; y < 4; y++) {

for (int x = 0; x < 4; x++) {
result[y][x] = x + y;

}
}
// First update definition
result[1][2] = 42;
// Second update definition
for (int x = 0; x < 4; x++) {

result[0][x] = result[1][x];
}

}

// Putting update passes inside loops.
{

// Starting with this pure definition:
Func f;
f(x, y) = x + y;

// Say we want an update that squares the first fifty rows. We
// could do this by adding 50 update definitions:

// f(x, 0) = f(x, 0) * f(x, 0);
// f(x, 1) = f(x, 1) * f(x, 1);
// f(x, 2) = f(x, 2) * f(x, 2);
// ...
// f(x, 49) = f(x, 49) * f(x, 49);

// Or equivalently using a compile-time loop in our C++:
// for (int i = 0; i < 50; i++) {
// f(x, i) = f(x, i) * f(x, i);
// }

// But it’s more manageable and more flexible to put the loop
// in the generated code. We do this by defining a "reduction
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// domain" and using it inside an update definition:
RDom r(0, 50);
f(x, r) = f(x, r) * f(x, r);
Image<int> halide_result = f.realize(100, 100);

// The equivalent C is:
int c_result[100][100];
for (int y = 0; y < 100; y++) {

for (int x = 0; x < 100; x++) {
c_result[y][x] = x + y;

}
}
for (int x = 0; x < 100; x++) {

for (int r = 0; r < 50; r++) {
// The loop over the reduction domain occurs inside of
// the loop over any pure variables used in the update
// step:
c_result[r][x] = c_result[r][x] * c_result[r][x];

}
}

// Check the results match:
for (int y = 0; y < 100; y++) {

for (int x = 0; x < 100; x++) {
if (halide_result(x, y) != c_result[y][x]) {

printf("halide_result(%d, %d) = %d instead of %d\n",
x, y, halide_result(x, y), c_result[y][x]);

return -1;
}

}
}

}

// Now we’ll examine a real-world use for an update definition:
// computing a histogram.
{

// Some operations on images can’t be cleanly expressed as a pure
// function from the output coordinates to the value stored
// there. The classic example is computing a histogram. The
// natural way to do it is to iterate over the input image,
// updating histogram buckets. Here’s how you do that in Halide:
Func histogram("histogram");

// Histogram buckets start as zero.
histogram(x) = 0;

// Define a multi-dimensional reduction domain over the input image:
RDom r(0, input.width(), 0, input.height());

// For every point in the reduction domain, increment the
// histogram bucket corresponding to the intensity of the
// input image at that point.
histogram(input(r.x, r.y)) += 1;

Image<int> halide_result = histogram.realize(256);

// The equivalent C is:
int c_result[256];
for (int x = 0; x < 256; x++) {

c_result[x] = 0;
}
for (int r_y = 0; r_y < input.height(); r_y++) {

for (int r_x = 0; r_x < input.width(); r_x++) {
c_result[input(r_x, r_y)] += 1;

}
}
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// Check the answers agree:
for (int x = 0; x < 256; x++) {

if (c_result[x] != halide_result(x)) {
printf("halide_result(%d) = %d instead of %d\n",

x, halide_result(x), c_result[x]);
return -1;

}
}

}

// Scheduling update steps
{

// The pure variables in an update step and can be
// parallelized, vectorized, split, etc as usual.

// Vectorizing, splitting, or parallelize the variables that
// are part of the reduction domain is trickier. We’ll cover
// that in a later lesson.

// Consider the definition:
Func f;
f(x, y) = x*y;
// Set the second row to equal the first row.
f(x, 1) = f(x, 0);
// Set the second column to equal the first column plus 2.
f(1, y) = f(0, y) + 2;

// The pure variables in each stage can be scheduled
// independently. To control the pure definition, we schedule
// as we have done in the past. The following code vectorizes
// and parallelizes the pure definition only.
f.vectorize(x, 4).parallel(y);

// We use Func::update(int) to get a handle to an update step
// for the purposes of scheduling. The following line
// vectorizes the first update step across x. We can’t do
// anything with y for this update step, because it doesn’t
// use y.
f.update(0).vectorize(x, 4);

// Now we parallelize the second update step in chunks of size
// 4.
Var yo, yi;
f.update(1).split(y, yo, yi, 4).parallel(yo);

Image<int> halide_result = f.realize(16, 16);

// Here’s the equivalent (serial) C:
int c_result[16][16];

// Pure step. Vectorized in x and parallelized in y.
for (int y = 0; y < 16; y++) { // Should be a parallel for loop

for (int x_vec = 0; x_vec < 4; x_vec++) {
int x[] = {x_vec*4, x_vec*4+1, x_vec*4+2, x_vec*4+3};
c_result[y][x[0]] = x[0] * y;
c_result[y][x[1]] = x[1] * y;
c_result[y][x[2]] = x[2] * y;
c_result[y][x[3]] = x[3] * y;

}
}

// First update. Vectorized in x.
for (int x_vec = 0; x_vec < 4; x_vec++) {

int x[] = {x_vec*4, x_vec*4+1, x_vec*4+2, x_vec*4+3};
c_result[1][x[0]] = c_result[0][x[0]];
c_result[1][x[1]] = c_result[0][x[1]];
c_result[1][x[2]] = c_result[0][x[2]];
c_result[1][x[3]] = c_result[0][x[3]];
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}

// Second update. Parallelized in chunks of size 4 in y.
for (int yo = 0; yo < 4; yo++) { // Should be a parallel for loop

for (int yi = 0; yi < 4; yi++) {
int y = yo*4 + yi;
c_result[y][1] = c_result[y][0] + 2;

}
}

// Check the C and Halide results match:
for (int y = 0; y < 16; y++) {

for (int x = 0; x < 16; x++) {
if (halide_result(x, y) != c_result[y][x]) {

printf("halide_result(%d, %d) = %d instead of %d\n",
x, y, halide_result(x, y), c_result[y][x]);

return -1;
}

}
}

}

// That covers how to schedule the variables within a Func that
// uses update steps, but what about producer-consumer
// relationships that involve compute_at and store_at? Let’s
// examine a reduction as a producer, in a producer-consumer pair.
{

// Because an update does multiple passes over a stored array,
// it’s not meaningful to inline them. So the default schedule
// for them does the closest thing possible. It computes them
// in the innermost loop of their consumer. Consider this
// trivial example:
Func producer, consumer;
producer(x) = x*17;
producer(x) += 1;
consumer(x) = 2 * producer(x);
Image<int> halide_result = consumer.realize(10);

// The equivalent C is:
int c_result[10];
for (int x = 0; x < 10; x++) {

int producer_storage[1];
// Pure step for producer
producer_storage[0] = x * 17;
// Update step for producer
producer_storage[0] = producer_storage[0] + 1;
// Pure step for consumer
c_result[x] = 2 * producer_storage[0];

}

// Check the results match
for (int x = 0; x < 10; x++) {

if (halide_result(x) != c_result[x]) {
printf("halide_result(%d) = %d instead of %d\n",

x, halide_result(x), c_result[x]);
return -1;

}
}

// For all other compute_at/store_at options, the reduction
// gets placed where you would expect, somewhere in the loop
// nest of the consumer.

}

// Now let’s consider a reduction as a consumer in a
// producer-consumer pair. This is a little more involved.
{

{
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// Case 1: The consumer references the producer in the pure step only.
Func producer, consumer;
// The producer is pure.
producer(x) = x*17;
consumer(x) = 2 * producer(x);
consumer(x) += 1;

// The valid schedules for the producer in this case are
// the default schedule - inlined, and also:
//
// 1) producer.compute_at(x), which places the computation of
// the producer inside the loop over x in the pure step of the
// consumer.
//
// 2) producer.compute_root(), which computes all of the
// producer ahead of time.
//
// 3) producer.store_root().compute_at(x), which allocates
// space for the consumer outside the loop over x, but fills
// it in as needed inside the loop.
//
// Let’s use option 1.

producer.compute_at(consumer, x);

Image<int> halide_result = consumer.realize(10);

// The equivalent C is:
int c_result[10];
// Pure step for the consumer
for (int x = 0; x < 10; x++) {

// Pure step for producer
int producer_storage[1];
producer_storage[0] = x * 17;
c_result[x] = 2 * producer_storage[0];

}
// Update step for the consumer
for (int x = 0; x < 10; x++) {

c_result[x] += 1;
}

// All of the pure step is evaluated before any of the
// update step, so there are two separate loops over x.

// Check the results match
for (int x = 0; x < 10; x++) {

if (halide_result(x) != c_result[x]) {
printf("halide_result(%d) = %d instead of %d\n",

x, halide_result(x), c_result[x]);
return -1;

}
}

}

{
// Case 2: The consumer references the producer in the update step only
Func producer, consumer;
producer(x) = x * 17;
consumer(x) = x;
consumer(x) += producer(x);

// Again we compute the producer per x coordinate of the
// consumer. This places producer code inside the update
// step of the producer, because that’s the only step that
// uses the producer.
producer.compute_at(consumer, x);

// Note however, that we didn’t say:
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//
// producer.compute_at(consumer.update(0), x).
//
// Scheduling is done with respect to Vars of a Func, and
// the Vars of a Func are shared across the pure and
// update steps.

Image<int> halide_result = consumer.realize(10);

// The equivalent C is:
int c_result[10];
// Pure step for the consumer
for (int x = 0; x < 10; x++) {

c_result[x] = x;
}
// Update step for the consumer
for (int x = 0; x < 10; x++) {

// Pure step for producer
int producer_storage[1];
producer_storage[0] = x * 17;
c_result[x] += producer_storage[0];

}

// Check the results match
for (int x = 0; x < 10; x++) {

if (halide_result(x) != c_result[x]) {
printf("halide_result(%d) = %d instead of %d\n",

x, halide_result(x), c_result[x]);
return -1;

}
}

}

{
// Case 3: The consumer references the producer in
// multiple steps that share common variables
Func producer, consumer;
producer(x) = x * 17;
consumer(x) = producer(x) * x;
consumer(x) += producer(x);

// Again we compute the producer per x coordinate of the
// consumer. This places producer code inside both the
// pure and the update step of the producer. So there ends
// up being two separate realizations of the producer, and
// redundant work occurs.
producer.compute_at(consumer, x);

Image<int> halide_result = consumer.realize(10);

// The equivalent C is:
int c_result[10];
// Pure step for the consumer
for (int x = 0; x < 10; x++) {

// Pure step for producer
int producer_storage[1];
producer_storage[0] = x * 17;
c_result[x] = producer_storage[0] * x;

}
// Update step for the consumer
for (int x = 0; x < 10; x++) {

// Another copy of the pure step for producer
int producer_storage[1];
producer_storage[0] = x * 17;
c_result[x] += producer_storage[0];

}
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// Check the results match
for (int x = 0; x < 10; x++) {

if (halide_result(x) != c_result[x]) {
printf("halide_result(%d) = %d instead of %d\n",

x, halide_result(x), c_result[x]);
return -1;

}
}

}

{
// Case 4: The consumer references the producer in
// multiple steps that do not share common variables
Func producer, consumer;
producer(x, y) = x*y;
consumer(x, y) = x + y;
consumer(x, 0) = producer(x, x-1);
consumer(0, y) = producer(y, y-1);

// In this case neither producer.compute_at(consumer, x)
// nor producer.compute_at(consumer, y) will work, because
// either one fails to cover one of the uses of the
// producer. So we’d have to inline producer, or use
// producer.compute_root().

// Let’s say we really really want producer to be
// compute_at the inner loops of both consumer update
// steps. Halide doesn’t allow multiple different
// schedules for a single Func, but we can work around it
// by making two wrappers around producer, and scheduling
// those instead:

// Attempt 2:
Func producer_wrapper_1, producer_wrapper_2, consumer_2;
producer_wrapper_1(x, y) = producer(x, y);
producer_wrapper_2(x, y) = producer(x, y);

consumer_2(x, y) = x + y;
consumer_2(x, 0) += producer_wrapper_1(x, x-1);
consumer_2(0, y) += producer_wrapper_2(y, y-1);

// The wrapper functions give us two separate handles on
// the producer, so we can schedule them differently.
producer_wrapper_1.compute_at(consumer_2, x);
producer_wrapper_2.compute_at(consumer_2, y);

Image<int> halide_result = consumer_2.realize(10, 10);

// The equivalent C is:
int c_result[10][10];
// Pure step for the consumer
for (int y = 0; y < 10; y++) {

for (int x = 0; x < 10; x++) {
c_result[y][x] = x + y;

}
}
// First update step for consumer
for (int x = 0; x < 10; x++) {

int producer_wrapper_1_storage[1];
producer_wrapper_1_storage[0] = x * (x-1);
c_result[0][x] += producer_wrapper_1_storage[0];

}
// Second update step for consumer
for (int y = 0; y < 10; y++) {

int producer_wrapper_2_storage[1];
producer_wrapper_2_storage[0] = y * (y-1);
c_result[y][0] += producer_wrapper_2_storage[0];

}
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// Check the results match
for (int y = 0; y < 10; y++) {

for (int x = 0; x < 10; x++) {
if (halide_result(x, y) != c_result[y][x]) {

printf("halide_result(%d, %d) = %d instead of %d\n",
x, y, halide_result(x, y), c_result[y][x]);

return -1;
}

}
}

}

{
// Case 5: Scheduling a producer under a reduction domain
// variable of the consumer.

// We are not just restricted to scheduling producers at
// the loops over the pure variables of the consumer. If a
// producer is only used within a loop over a reduction
// domain (RDom) variable, we can also schedule the
// producer there.

Func producer, consumer;

RDom r(0, 5);
producer(x) = x * 17;
consumer(x) = x + 10;
consumer(x) += r + producer(x + r);

producer.compute_at(consumer, r);

Image<int> halide_result = consumer.realize(10);

// The equivalent C is:
int c_result[10];
// Pure step for the consumer.
for (int x = 0; x < 10; x++) {

c_result[x] = x + 10;
}
// Update step for the consumer.
for (int x = 0; x < 10; x++) {

for (int r = 0; r < 5; r++) { // The loop over the reduction domain is always the inner loop.
// We’ve schedule the storage and computation of
// the producer here. We just need a single value.
int producer_storage[1];
// Pure step of the producer.
producer_storage[0] = (x + r) * 17;

// Now use it in the update step of the consumer.
c_result[x] += r + producer_storage[0];

}
}

// Check the results match
for (int x = 0; x < 10; x++) {

if (halide_result(x) != c_result[x]) {
printf("halide_result(%d) = %d instead of %d\n",

x, halide_result(x), c_result[x]);
return -1;

}
}

}
}

171



// A real-world example of a reduction inside a producer-consumer chain.
{

// The default schedule for a reduction is a good one for
// convolution-like operations. For example, the following
// computes a 5x5 box-blur of our grayscale test image with a
// clamp-to-edge boundary condition:

// First add the boundary condition.
Func clamped;
Expr x_clamped = clamp(x, 0, input.width()-1);
Expr y_clamped = clamp(y, 0, input.height()-1);
clamped(x, y) = input(x_clamped, y_clamped);

// Define a 5x5 box that starts at (-2, -2)
RDom r(-2, 5, -2, 5);

// Compute the 5x5 sum around each pixel.
Func local_sum;
local_sum(x, y) = 0; // Compute the sum as a 32-bit integer
local_sum(x, y) += clamped(x + r.x, y + r.y);

// Divide the sum by 25 to make it an average
Func blurry;
blurry(x, y) = cast<uint8_t>(local_sum(x, y) / 25);

Image<uint8_t> halide_result = blurry.realize(input.width(), input.height());

// The default schedule will inline ’clamped’ into the update
// step of ’local_sum’, because clamped only has a pure
// definition, and so its default schedule is fully-inlined.
// We will then compute local_sum per x coordinate of blurry,
// because the default schedule for reductions is
// compute-innermost. Here’s the equivalent C:

Image<uint8_t> c_result(input.width(), input.height());
for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {
int local_sum[1];
// Pure step of local_sum
local_sum[0] = 0;
// Update step of local_sum
for (int r_y = -2; r_y <= 2; r_y++) {

for (int r_x = -2; r_x <= 2; r_x++) {
// The clamping has been inlined into the update step.
int clamped_x = std::min(std::max(x + r_x, 0), input.width()-1);
int clamped_y = std::min(std::max(y + r_y, 0), input.height()-1);
local_sum[0] += input(clamped_x, clamped_y);

}
}
// Pure step of blurry
c_result(x, y) = (uint8_t)(local_sum[0] / 25);

}
}

// Check the results match
for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {
if (halide_result(x, y) != c_result(x, y)) {

printf("halide_result(%d, %d) = %d instead of %d\n",
x, y, halide_result(x, y), c_result(x, y));

return -1;
}

}
}

}

// Reduction helpers.
{
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// There are several reduction helper functions provided in
// Halide.h, which compute small reductions and schedule them
// innermost into their consumer. The most useful one is
// "sum".
Func f1;
RDom r(0, 100);
f1(x) = sum(r + x) * 7;

// Sum creates a small anonymous Func to do the reduction. It’s equivalent to:
Func f2;
Func anon;
anon(x) = 0;
anon(x) += r + x;
f2(x) = anon(x) * 7;

// So even though f1 references a reduction domain, it is a
// pure function. The reduction domain has been swallowed to
// define the inner anonymous reduction.

Image<int> halide_result_1 = f1.realize(10);
Image<int> halide_result_2 = f2.realize(10);

// The equivalent C is:
int c_result[10];
for (int x = 0; x < 10; x++) {

int anon[1];
anon[0] = 0;
for (int r = 0; r < 100; r++) {

anon[0] += r + x;
}
c_result[x] = anon[0] * 7;

}

// Check they all match.
for (int x = 0; x < 10; x++) {

if (halide_result_1(x) != c_result[x]) {
printf("halide_result_1(%d) = %d instead of %d\n",

x, halide_result_1(x), c_result[x]);
return -1;

}
if (halide_result_2(x) != c_result[x]) {

printf("halide_result_2(%d) = %d instead of %d\n",
x, halide_result_2(x), c_result[x]);

return -1;
}

}
}

// A complex example that uses reduction helpers.
{

// Other reduction helpers include "product", "minimum",
// "maximum", "argmin", and "argmax". Using argmin and argmax
// requires understanding tuples, which come in a later
// lesson. Let’s use minimum and maximum to compute the local
// spread of our grayscale image.

// First, add a boundary condition to the input.
Func clamped;
Expr x_clamped = clamp(x, 0, input.width()-1);
Expr y_clamped = clamp(y, 0, input.height()-1);
clamped(x, y) = input(x_clamped, y_clamped);

RDom box(-2, 5, -2, 5);
// Compute the local maximum minus the local minimum:
Func spread;
spread(x, y) = (maximum(clamped(x + box.x, y + box.y)) -

minimum(clamped(x + box.x, y + box.y)));
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// Compute the result in strips of 32 scanlines
Var yo, yi;
spread.split(y, yo, yi, 32).parallel(yo);

// Vectorize across x within the strips. This implicitly
// vectorizes stuff that is computed within the loop over x in
// spread, which includes our minimum and maximum helpers, so
// they get vectorized too.
spread.vectorize(x, 16);

// We’ll apply the boundary condition by padding each scanline
// as we need it in a circular buffer (see lesson 08).
clamped.store_at(spread, yo).compute_at(spread, yi);

Image<uint8_t> halide_result = spread.realize(input.width(), input.height());

// The C equivalent is almost too horrible to contemplate (and
// took me a long time to debug). This time I want to time
// both the Halide version and the C version, so I’ll use sse
// intrinsics for the vectorization, and openmp to do the
// parallel for loop (you’ll need to compile with -fopenmp or
// similar to get correct timing).
#ifdef __SSE2__

// Don’t include the time required to allocate the output buffer.
Image<uint8_t> c_result(input.width(), input.height());

double t1 = current_time();

// Run this one hundred times so we can average the timing results.
for (int iters = 0; iters < 100; iters++) {

#pragma omp parallel for
for (int yo = 0; yo < (input.height() + 31)/32; yo++) {

int y_base = std::min(yo * 32, input.height() - 32);

// Compute clamped in a circular buffer of size 8
// (smallest power of two greater than 5). Each thread
// needs its own allocation, so it must occur here.

int clamped_width = input.width() + 4;
uint8_t *clamped_storage = (uint8_t *)malloc(clamped_width * 8);

for (int yi = 0; yi < 32; yi++) {
int y = y_base + yi;

uint8_t *output_row = &c_result(0, y);

// Compute clamped for this scanline, skipping rows
// already computed within this slice.
int min_y_clamped = (yi == 0) ? (y - 2) : (y + 2);
int max_y_clamped = (y + 2);
for (int cy = min_y_clamped; cy <= max_y_clamped; cy++) {

// Figure out which row of the circular buffer
// we’re filling in using bitmasking:
uint8_t *clamped_row = clamped_storage + (cy & 7) * clamped_width;

// Figure out which row of the input we’re reading
// from by clamping the y coordinate:
int clamped_y = std::min(std::max(cy, 0), input.height()-1);
uint8_t *input_row = &input(0, clamped_y);

// Fill it in with the padding.
for (int x = -2; x < input.width() + 2; x++) {

int clamped_x = std::min(std::max(x, 0), input.width()-1);
*clamped_row++ = input_row[clamped_x];

}
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}

// Now iterate over vectors of x for the pure step of the output.
for (int x_vec = 0; x_vec < (input.width() + 15)/16; x_vec++) {

int x_base = std::min(x_vec * 16, input.width() - 16);

// Allocate storage for the minimum and maximum
// helpers. One vector is enough.
__m128i minimum_storage, maximum_storage;

// The pure step for the maximum is a vector of zeros
maximum_storage = (__m128i)_mm_setzero_ps();

// The update step for maximum
for (int max_y = y - 2; max_y <= y + 2; max_y++) {

uint8_t *clamped_row = clamped_storage + (max_y & 7) * clamped_width;
for (int max_x = x_base - 2; max_x <= x_base + 2; max_x++) {

__m128i v = _mm_loadu_si128((__m128i const *)(clamped_row + max_x + 2));
maximum_storage = _mm_max_epu8(maximum_storage, v);

}
}

// The pure step for the minimum is a vector of
// ones. Create it by comparing something to
// itself.
minimum_storage = (__m128i)_mm_cmpeq_ps(_mm_setzero_ps(),

_mm_setzero_ps());

// The update step for minimum.
for (int min_y = y - 2; min_y <= y + 2; min_y++) {

uint8_t *clamped_row = clamped_storage + (min_y & 7) * clamped_width;
for (int min_x = x_base - 2; min_x <= x_base + 2; min_x++) {

__m128i v = _mm_loadu_si128((__m128i const *)(clamped_row + min_x + 2));
minimum_storage = _mm_min_epu8(minimum_storage, v);

}
}

// Now compute the spread.
__m128i spread = _mm_sub_epi8(maximum_storage, minimum_storage);

// Store it.
_mm_storeu_si128((__m128i *)(output_row + x_base), spread);

}
}

free(clamped_storage);
}

}

double t2 = current_time();

// Skip the timing comparison if we don’t have openmp
// enabled. Otherwise it’s unfair to C.
#ifdef _OPENMP

// Now run the Halide version again without the
// jit-compilation overhead. Also run it one hundred times.
for (int iters = 0; iters < 100; iters++) {

spread.realize(halide_result);
}

double t3 = current_time();

// Report the timings. On my machine they both take about 3ms
// for the 4-megapixel input (fast!), which makes sense,
// because they’re using the same vectorization and
// parallelization strategy. However I find the Halide easier

175



// to read, write, debug, modify, and port.
printf("Halide spread took %f ms. C equivalent took %f ms\n",

(t3 - t2)/100, (t2 - t1)/100);

#endif // _OPENMP

// Check the results match:
for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {
if (halide_result(x, y) != c_result(x, y)) {

printf("halide_result(%d, %d) = %d instead of %d\n",
x, y, halide_result(x, y), c_result(x, y));

return -1;
}

}
}

#endif // __SSE2__

}

printf("Success!\n");
return 0;

}
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a.10 ahead-of-time compilation
// Halide tutorial lesson 10.

// This lesson demonstrates how to use Halide as an more traditional
// ahead-of-time (AOT) compiler.

// This lesson is split across two files. The first (this one), builds
// a Halide pipeline and compiles it to an object file and header. The
// second (lesson_10_aot_compilation_run.cpp), uses that object file
// to actually run the pipeline. This means that compiling this code
// is a multi-step process.

// On linux, you can compile and run it like so:
// g++ lesson_10*generate.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_10_generate
// LD_LIBRARY_PATH=../bin ./lesson_10_generate
// g++ lesson_10*run.cpp lesson_10_halide.o -lpthread -o lesson_10_run
// ./lesson_10_run

// On os x:
// g++ lesson_10*generate.cpp -g -I ../include -L ../bin -lHalide -o lesson_10_generate
// DYLD_LIBRARY_PATH=../bin ./lesson_10_generate
// g++ lesson_10*run.cpp lesson_10_halide.o -o lesson_10_run
// ./lesson_10_run

// The benefits of this approach are that the final program:
// - Doesn’t do any jit compilation at runtime, so it’s fast.
// - Doesn’t depend on libHalide at all, so it’s a small, easy-to-deploy binary.

#include <Halide.h>
#include <stdio.h>
using namespace Halide;

int main(int argc, char **argv) {

// We’ll define a simple one-stage pipeline:
Func brighter;
Var x, y;

// The pipeline will depend on one scalar parameter.
Param<uint8_t> offset;

// And take one grayscale 8-bit input buffer. The first
// constructor argument gives the type of a pixel, and the second
// specifies the number of dimensions (not the number of
// channels!). For a grayscale image this is two; for a color
// image it’s three. Currently, four dimensions is the maximum for
// inputs and outputs.
ImageParam input(type_of<uint8_t>(), 2);

// If we were jit-compiling, these would just be an int and an
// Image, but because we want to compile the pipeline once and
// have it work for any value of the parameter, we need to make a
// Param object, which can be used like an Expr, and an ImageParam
// object, which can be used like an Image.

// Define the Func.
brighter(x, y) = input(x, y) + offset;

// Schedule it.
brighter.vectorize(x, 16).parallel(y);

// This time, instead of calling brighter.realize(...), which
// would compile and run the pipeline immediately, we’ll call a
// method that compiles the pipeline to an object file and header.
//
// For AOT-compiled code, we need to explicitly declare the
// arguments to the routine. This routine takes two. Arguments are
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// usually Params or ImageParams.
std::vector<Argument> args(2);
args[0] = input;
args[1] = offset;
brighter.compile_to_file("lesson_10_halide", args);

// If you’re using C++11, you can just say:
// brighter.compile_to_file("lesson_10_halide", {input, offset});

printf("Halide pipeline compiled, but not yet run.\n");

// To continue this lesson, look in the file lesson_10_aot_compilation_run.cpp

return 0;
}
// Before reading this file, see lesson_10_aot_compilation_generate.cpp

// This is the code that actually uses the Halide pipeline we’ve
// compiled. It does not depend on libHalide, so we won’t be including
// Halide.h.
//
// Instead, it depends on the header file that lesson_10_generate
// produced when we ran it:
#include "lesson_10_halide.h"

#include <stdio.h>

int main(int argc, char **argv) {
// Have a look in the header file above (it won’t exist until you’ve run
// lesson_10_generate).

// It starts with a definition of a buffer_t:
//
// typedef struct buffer_t {
// uint64_t dev;
// uint8_t* host;
// int32_t extent[4];
// int32_t stride[4];
// int32_t min[4];
// int32_t elem_size;
// bool host_dirty;
// bool dev_dirty;
// } buffer_t;
//
// This is how Halide represents input and output images in
// pre-compiled pipelines. There’s a ’host’ pointer that points to the
// start of the image data, some fields that describe how to access
// pixels, and some fields related to using the GPU that we’ll ignore
// for now (dev, host_dirty, dev_dirty).

// Let’s make some input data to test with:
uint8_t input[640 * 480];
for (int y = 0; y < 480; y++) {

for (int x = 0; x < 640; x++) {
input[y * 640 + x] = x ^ (y + 1);

}
}

// And the memory where we want to write our output:
uint8_t output[640 * 480];

// In AOT-compiled mode, Halide doesn’t manage this memory for
// you. You should use whatever image data type makes sense for
// your application. Halide just needs pointers to it.

// Now we make a buffer_t to represent our input and output. It’s
// important to zero-initialize them so you don’t end up with
// garbage fields that confuse Halide.
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buffer_t input_buf = {0}, output_buf = {0};

// The host pointers point to the start of the image data:
input_buf.host = &input[0];
output_buf.host = &output[0];

// To access pixel (x, y) in a two-dimensional buffer_t, Halide
// looks at memory address:

// host + elem_size * ((x - min[0])*stride[0] + (y - min[1])*stride[1])

// The stride in a dimension represents the number of elements in
// memory between adjacent entries in that dimension. We have a
// grayscale image stored in scanline order, so stride[0] is 1,
// because pixels that are adjacent in x are next to each other in
// memory.
input_buf.stride[0] = output_buf.stride[0] = 1;

// stride[1] is the width of the image, because pixels that are
// adjacent in y are separated by a scanline’s worth of pixels in
// memory.
input_buf.stride[1] = output_buf.stride[1] = 640;

// The extent tells us how large the image is in each dimension.
input_buf.extent[0] = output_buf.extent[0] = 640;
input_buf.extent[1] = output_buf.extent[1] = 480;

// We’ll leave the mins as zero. This is what they typically
// are. The host pointer points to the memory location of the min
// coordinate (not the origin!). See lesson 6 for more detail
// about the mins.

// The elem_size field tells us how many bytes each element
// uses. For the 8-bit image we use in this test it’s one.
input_buf.elem_size = output_buf.elem_size = 1;

// To avoid repeating all the boilerplate above, We recommend you
// make a helper function that populates a buffer_t given whatever
// image type you’re using.

// Now that we’ve setup our input and output buffers, we can call
// our function. Looking in the header file, it’s signature is:

// int lesson_10_halide(buffer_t *_input, const int32_t _offset, buffer_t *_brighter);

// The return value is an error code. It’s zero on success.

int offset = 5;
int error = lesson_10_halide(&input_buf, offset, &output_buf);

if (error) {
printf("Halide returned an error: %d\n", error);
return -1;

}

// Now let’s check the filter performed as advertised. It was
// supposed to add the offset to every input pixel.
for (int y = 0; y < 480; y++) {

for (int x = 0; x < 640; x++) {
uint8_t input_val = input[y * 640 + 480];
uint8_t output_val = output[y * 640 + 480];
uint8_t correct_val = input_val + offset;
if (output_val != correct_val) {

printf("output(%d, %d) was %d instead of %d\n",
x, y, output_val, correct_val);

return -1;
}

}
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}

// Everything worked!
printf("Success!\n");
return 0;

}
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a.11 cross compilation
// Halide tutorial lesson 11.

// This lesson demonstrates how to use Halide as a cross-compiler.

// On linux, you can compile and run it like so:
// g++ lesson_11*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_11
// LD_LIBRARY_PATH=../bin ./lesson_11

// On os x:
// g++ lesson_11*.cpp -g -I ../include -L ../bin -lHalide -o lesson_11
// DYLD_LIBRARY_PATH=../bin ./lesson_11

#include <Halide.h>
#include <stdio.h>
using namespace Halide;

int main(int argc, char **argv) {

// We’ll define the simple one-stage pipeline that we used in lesson 10.
Func brighter;
Var x, y;

// Declare the arguments.
Param<uint8_t> offset;
ImageParam input(type_of<uint8_t>(), 2);
std::vector<Argument> args(2);
args[0] = input;
args[1] = offset;

// Define the Func.
brighter(x, y) = input(x, y) + offset;

// Schedule it.
brighter.vectorize(x, 16).parallel(y);

// The following line is what we did in lesson 10. It compiles an
// object file suitable for the system that you’re running this
// program on. For example, if you compile and run this file on
// 64-bit linux on an x86 cpu with sse4.1, then the generated code
// will be suitable for 64-bit linux on x86 with sse4.1.
brighter.compile_to_file("lesson_11_host", args);

// We can also compile object files suitable for other cpus and
// operating systems. You do this with an optional third argument
// to compile_to_file which specifies the target to compile for.

// Let’s use this to compile a 32-bit arm android version of this code:
Target target;
target.os = Target::Android; // The operating system
target.arch = Target::ARM; // The CPU architecture
target.bits = 32; // The bit-width of the architecture
std::vector<Target::Feature> arm_features; // A list of features to set
target.set_features(arm_features);
brighter.compile_to_file("lesson_11_arm_32_android", args, target); // Pass the target as the last argument.

// And now a Windows object file for 64-bit x86 with AVX and SSE 4.1:
target.os = Target::Windows;
target.arch = Target::X86;
target.bits = 64;
std::vector<Target::Feature> x86_features;
x86_features.push_back(Target::AVX);
x86_features.push_back(Target::SSE41);
target.set_features(x86_features);
brighter.compile_to_file("lesson_11_x86_64_windows", args, target);

// And finally an iOS mach-o object file for one of Apple’s 32-bit
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// ARM processors - the A6. It’s used in the iPhone 5. The A6 uses
// a slightly modified ARM architecture called ARMv7s. We specify
// this using the target features field. Support for Apple’s
// 64-bit ARM processors is very new in llvm, and still somewhat
// flaky.
target.os = Target::IOS;
target.arch = Target::ARM;
target.bits = 32;
std::vector<Target::Feature> armv7s_features;
armv7s_features.push_back(Target::ARMv7s);
target.set_features(armv7s_features);
brighter.compile_to_file("lesson_11_arm_32_ios", args, target);

// Now let’s check these files are what they claim, by examining
// their first few bytes.

// 32-arm android object files start with the magic bytes:
uint8_t arm_32_android_magic[] = {0x7f, ’E’, ’L’, ’F’, // ELF format

1, // 32-bit
1, // 2’s complement little-endian
1, // Current version of elf
3, // Linux
0, 0, 0, 0, 0, 0, 0, 0, // 8 unused bytes
1, 0, // Relocatable
0x28, 0}; // ARM

FILE *f = fopen("lesson_11_arm_32_android.o", "rb");
uint8_t header[32];
if (!f || fread(header, 32, 1, f) != 1) {

printf("Object file not generated\n");
return -1;

}
fclose(f);

if (memcmp(header, arm_32_android_magic, sizeof(arm_32_android_magic))) {
printf("Unexpected header bytes in 32-bit arm object file.\n");
return -1;

}

// 64-bit windows object files start with the magic 16-bit value 0x8664
// (presumably referring to x86-64)
uint8_t win_64_magic[] = {0x64, 0x86};

f = fopen("lesson_11_x86_64_windows.o", "rb");
if (!f || fread(header, 32, 1, f) != 1) {

printf("Object file not generated\n");
return -1;

}
fclose(f);

if (memcmp(header, win_64_magic, sizeof(win_64_magic))) {
printf("Unexpected header bytes in 64-bit windows object file.\n");
return -1;

}

// 32-bit arm iOS mach-o files start with the following magic bytes:
uint32_t arm_32_ios_magic[] = {0xfeedface, // Mach-o magic bytes

12, // CPU type is ARM
11, // CPU subtype is ARMv7s
1}; // It’s a relocatable object file.

f = fopen("lesson_11_arm_32_ios.o", "rb");
if (!f || fread(header, 32, 1, f) != 1) {

printf("Object file not generated\n");
return -1;

}
fclose(f);

182



if (memcmp(header, arm_32_ios_magic, sizeof(arm_32_ios_magic))) {
printf("Unexpected header bytes in 32-bit arm ios object file.\n");
return -1;

}

// It looks like the object files we produced are plausible for
// those targets. We’ll count that as a success for the purposes
// of this tutorial. For a real application you’d then need to
// figure out how to integrate Halide into your cross-compilation
// toolchain. There are several small examples of this in the
// Halide repository under the apps folder. See HelloAndroid and
// HelloiOS here:
// https://github.com/halide/Halide/tree/master/apps/
printf("Success!\n");
return 0;

}
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a.12 using the gpu
// Halide tutorial lesson 12.

// This lesson demonstrates how to use Halide to run code on a GPU.

// On linux, you can compile and run it like so:
// g++ lesson_12*.cpp -g -I ../include -L ../bin -lHalide -lpthread -ldl -o lesson_12
// LD_LIBRARY_PATH=../bin ./lesson_12

// On os x:
// g++ lesson_12*.cpp -g -I ../include -L ../bin -lHalide -lpng -o lesson_12
// DYLD_LIBRARY_PATH=../bin ./lesson_12

#include <Halide.h>
#include <stdio.h>
using namespace Halide;

// Include some support code for loading pngs.
#include "image_io.h"

// Include a clock to do performance testing.
#include "clock.h"

// Define some Vars to use.
Var x, y, c, i;

// We’re going to want to schedule a pipeline in several ways, so we
// define the pipeline in a class so that we can recreate it several
// times with different schedules.
class Pipeline {
public:

Func lut, padded, padded16, sharpen, curved;
Image<uint8_t> input;

Pipeline(Image<uint8_t> in) : input(in) {
// For this lesson, we’ll use a two-stage pipeline that sharpens
// and then applies a look-up-table (LUT).

// First we’ll define the LUT. It will be a gamma curve.

lut(i) = cast<uint8_t>(clamp(pow(i / 255.0f, 1.2f) * 255.0f, 0, 255));

// Augment the input with a boundary condition.
padded(x, y, c) = input(clamp(x, 0, input.width()-1),

clamp(y, 0, input.height()-1), c);

// Cast it to 16-bit to do the math.
padded16(x, y, c) = cast<uint16_t>(padded(x, y, c));

// Next we sharpen it with a five-tap filter.
sharpen(x, y, c) = (padded16(x, y, c) * 2-

(padded16(x - 1, y, c) +
padded16(x, y - 1, c) +
padded16(x + 1, y, c) +
padded16(x, y + 1, c)) / 4);

// Then apply the LUT.
curved(x, y, c) = lut(sharpen(x, y, c));

}

// Now we define methods that give our pipeline several different
// schedules.
void schedule_for_cpu() {

// Compute the look-up-table ahead of time.
lut.compute_root();

// Compute color channels innermost. Promise that there will
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// be three of them and unroll across them.
curved.reorder(c, x, y)

.bound(c, 0, 3)

.unroll(c);

// Look-up-tables don’t vectorize well, so just parallelize
// curved in slices of 16 scanlines.
Var yo, yi;
curved.split(y, yo, yi, 16)

.parallel(yo);

// Compute sharpen as needed per scanline of curved, reusing
// previous values computed within the same strip of 16
// scanlines.
sharpen.store_at(curved, yo)

.compute_at(curved, yi);

// Vectorize the sharpen. It’s 16-bit so we’ll vectorize it 8-wide.
sharpen.vectorize(x, 8);

// Compute the padded input at the same granularity as the
// sharpen. We’ll leave the cast to 16-bit inlined into
// sharpen.
padded.store_at(curved, yo)

.compute_at(curved, yi);

// Also vectorize the padding. It’s 8-bit, so we’ll vectorize
// 16-wide.
padded.vectorize(x, 16);

// JIT-compile the pipeline for the CPU.
curved.compile_jit();

}

// Now a schedule that uses CUDA or OpenCL.
void schedule_for_gpu() {

// We make the decision about whether to use the GPU for each
// Func independently. If you have one Func computed on the
// CPU, and the next computed on the GPU, Halide will do the
// copy-to-gpu under the hood. For this pipeline, there’s no
// reason to use the CPU for any of the stages. Halide will
// copy the input image to the GPU the first time we run the
// pipeline, and leave it there to reuse on subsequent runs.

// As before, we’ll compute the LUT once at the start of the
// pipeline.
lut.compute_root();

// Let’s compute the look-up-table using the GPU in 16-wide
// one-dimensional thread blocks. First we split the index
// into blocks of size 16:
Var block, thread;
lut.split(i, block, thread, 16);
// Then we tell cuda that our Vars ’block’ and ’thread’
// correspond to CUDA’s notions of blocks and threads, or
// OpenCL’s notions of thread groups and threads.
lut.gpu_blocks(block)

.gpu_threads(thread);

// This is a very common scheduling pattern on the GPU, so
// there’s a shorthand for it:

// lut.gpu_tile(i, 16);

// Func::gpu_tile method is similar to Func::tile, except that
// it also specifies that the tile coordinates correspond to
// GPU blocks, and the coordinates within each tile correspond
// to GPU threads.
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// Compute color channels innermost. Promise that there will
// be three of them and unroll across them.
curved.reorder(c, x, y)

.bound(c, 0, 3)

.unroll(c);

// Compute curved in 2D 8x8 tiles using the GPU.
curved.gpu_tile(x, y, 8, 8);

// This is equivalent to:
// curved.tile(x, y, xo, yo, xi, yi, 8, 8)
// .gpu_blocks(xo, yo)
// .gpu_threads(xi, yi);

// We’ll leave sharpen as inlined into curved.

// Compute the padded input as needed per GPU block, storing the
// intermediate result in shared memory. Var::gpu_blocks, and
// Var::gpu_threads exist to help you schedule producers within
// GPU threads and blocks.
padded.compute_at(curved, Var::gpu_blocks());

// Use the GPU threads for the x and y coordinates of the
// padded input.
padded.gpu_threads(x, y);

// JIT-compile the pipeline for the GPU. CUDA or OpenCL are
// not enabled by default. We have to construct a Target
// object, enable one of them, and then pass that target
// object to compile_jit. Otherwise your CPU will very slowly
// pretend it’s a GPU, and use one thread per output pixel.

// Start with a target suitable for the machine you’re running
// this on.
Target target = get_host_target();

// Then enable OpenCL or CUDA.

// We’ll enable OpenCL here, because it tends to give better
// performance than CUDA, even with NVidia’s drivers, because
// NVidia’s open source LLVM backend doesn’t seem to do all
// the same optimizations their proprietary compiler does.
target.set_feature(Target::OpenCL);

// Uncomment the next line and comment out the line above to
// try CUDA instead.
// target.set_feature(Target::CUDA);

// If you want to see all of the OpenCL or CUDA API calls done
// by the pipeline, you can also enable the Debug
// flag. This is helpful for figuring out which stages are
// slow, or when CPU -> GPU copies happen. It hurts
// performance though, so we’ll leave it commented out.
// target.set_feature(Target::Debug);

curved.compile_jit(target);
}

void test_performance() {
// Test the performance of the scheduled Pipeline.

// If we realize curved into a Halide::Image, that will
// unfairly penalize GPU performance by including a GPU->CPU
// copy in every run. Halide::Image objects always exist on
// the CPU.

// Halide::Buffer, however, represents a buffer that may
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// exist on either CPU or GPU or both.
Buffer output(UInt(8), input.width(), input.height(), input.channels());

// Run the filter once to initialize any GPU runtime state.
curved.realize(output);

// Now take the best of 3 runs for timing.
double best_time;
for (int i = 0; i < 3; i++) {

double t1 = current_time();

// Run the filter 100 times.
for (int j = 0; j < 100; j++) {

curved.realize(output);
}

// Force any GPU code to finish by copying the buffer back to the CPU.
output.copy_to_host();

double t2 = current_time();

double elapsed = (t2 - t1)/100;
if (i == 0 || elapsed < best_time) {

best_time = elapsed;
}

}

printf("%1.4f milliseconds\n", best_time);
}

void test_correctness(Image<uint8_t> reference_output) {
Image<uint8_t> output = curved.realize(input.width(), input.height(), input.channels());

// Check against the reference output.
for (int c = 0; c < input.channels(); c++) {

for (int y = 0; y < input.height(); y++) {
for (int x = 0; x < input.width(); x++) {

if (output(x, y, c) != reference_output(x, y, c)) {
printf("Mismatch between output (%d) and "

"reference output (%d) at %d, %d, %d\n",
output(x, y, c),
reference_output(x, y, c),
x, y, c);

}
}

}
}

}
};

int main(int argc, char **argv) {
// Load an input image.
Image<uint8_t> input = load<uint8_t>("images/rgb.png");

// Allocated an image that will store the correct output
Image<uint8_t> reference_output(input.width(), input.height(), input.channels());

printf("Testing performance on CPU:\n");
Pipeline p1(input);
p1.schedule_for_cpu();
p1.test_performance();
p1.curved.realize(reference_output);

printf("Testing performance on GPU:\n");
Pipeline p2(input);
p2.schedule_for_gpu();
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p2.test_performance();
p2.test_correctness(reference_output);

return 0;
}

188


	Abstract
	Contents
	Introduction
	The state of the art
	The Halide solution
	Dissertation Overview

	The Opportunity and Challenge of Image Processing
	Representing image processing algorithms
	Performance Tradeoffs and the Organization of Computation
	Algorithms
	Organization of computation
	Summary

	Schedules: Modeling the organization of computation
	Understanding scheduling as loop synthesis
	Scheduling iteration domains
	Scheduling GPU Execution

	Organizing image processing pipelines with Halide schedules
	Scheduling a single pair of functions
	Finding good schedules
	Summary

	An algebra of schedules
	Representing schedules
	Schedule transformations
	Summary

	Compiling Scheduled Pipelines
	Lowering and Loop Synthesis
	Bounds Inference
	Sliding Window Optimization and Storage Folding
	Flattening
	Vectorization and Unrolling
	Back-end Code Generation

	Results & Evaluation
	Image processing Applications in Halide
	Automatic scheduling using autotuning
	Deployment

	Related Work
	Conclusion
	Limitations & future work

	References
	Appendices
	Writing Halide Programs
	Basics
	Input images
	Debugging, part 1
	Debugging, part 2
	Scheduling, part 1
	Realizing over shifted domains
	Multi-stage pipelines
	Scheduling, part 2
	Update definitions
	Ahead-of-time compilation
	Cross compilation
	Using the GPU




