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ABSTRACT

Many image processing and simulation tasks are naturally expressed as a pipeline
of small computational kernels known as stencils. Halide is a popular domain-
specific language and compiler designed to implement stencil algorithms. Halide
uses simple language constructs to express what to compute and a separate schedul-
ing co-language for expressing how to perform the computation. This approach has
demonstrated performance comparable to or better than hand-optimized code. Un-
til now, Halide has been restricted to parallel shared memory execution, limiting its
performance and applicability to tomorrow’s terapixel image processing tasks.

In this thesis we present an extension to Halide to support distributed-memory
parallel execution of stencil pipelines. These extensions compose with the exist-
ing scheduling constructs in Halide, allowing expression of complex computation
and communication strategies. Existing Halide applications can be distributed with
minimal changes, allowing programmers to explore the tradeoff between recompu-
tation and communication with little effort. Approximately 10 new of lines code are
needed even for a 200 line, 99 stage application.

On nine image processing benchmarks, my extensions give up to a 1.4× speedup
on the same number of cores over regular multithreaded execution by mitigating the
effects of non-uniform memory access. The image processing benchmarks achieve
up to 18× speedup on a 16 node testing machine and up to 57× speedup on 64
nodes of the NERSC Cori supercomputer. A 3D heat finite-difference simulation
benchmark achieves linear scaling from 64 to 512 Cori nodes on a 10, 0003, or 1
terapixel, input. We also demonstrate scalability results for two of the image pro-
cessing benchmarks on 1 terapixel inputs, and make the argument that supporting
such large scale is essential for tomorrow’s image processing and simulation needs.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3





ACKNOWLEDGEMENTS

The road to this thesis was difficult, and one person who put up with my late

nights, early mornings, and general grumpiness deserves particular thanks. With-

out the unfailing support, understanding and love of my wife, Charliss, I cer-

tainly could not have gotten to this point or survived with wits intact: I cannot

thank you enough! My parents and brother also played a central role in pro-

viding the support necessary to accomplish the work described in this thesis. I

would also like to thank my friends and labmates Fredrik Kjølstad and Aparna

Chandramowlishwaran for many intriguing discussions and occasional comic

relief.

On a more technical note, I would like to thank Shoaib Kamil, Vlad Kirian-

sky and my advisor Saman Amarasinghe for their invaluable help in designing

experiments and interpreting their results. Without their help and insight, this

work would likely still be an unintelligible pile of numbers. Finally, I would like

to thank my undergraduate research advisor and mentor, Professor Gene Coop-

erman, whose lessons and advice I still use and lean on daily.

5





Contents

Contents 7

List of Figures 9

List of Tables 10

1 Introduction 11

2 Halide Background 17

3 Distributed Scheduling 22

3.1 Data Distribution via DistributedImage . . . . . . . . . . . . . . 23

3.2 Computation Distribution . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Recomputation versus Communication . . . . . . . . . . . . . . . . 34

3.5 On-Node Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Code Generation 41

4.1 Ghost Zone Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Communication Code Generation . . . . . . . . . . . . . . . . . . . . 45

4.3 Rank Iteration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation 51

7



Contents

5.1 OpenCV Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 On-Node Speedup from NUMA-Aware Distribution . . . . . . . . . 62

5.4 Scalability on Cori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Terapixel Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Related Work 71

7 Conclusions and Future Work 74

References 77

A Distributed Scheduling Tutorial 83

A.1 Halide Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Distributing a Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.3 Distributed Pipeline with Communication . . . . . . . . . . . . . . . 88

A.4 Using compute_rank() . . . . . . . . . . . . . . . . . . . . . . . . 91

A.5 Nested Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8



List of Figures

1.1 Data dependencies in a local Laplacian filter. Each box represents

intermediate data, and arrows represent functions (color-coded with

their bodies on the right) defining the data. Image reproduced with

permission from [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Communication for 1D blur. Dotted lines represent on-node access,

solid lines represent communication. . . . . . . . . . . . . . . . . . . . . 33

3.2 Visual impact of border exchange on 4 nodes. . . . . . . . . . . . . . . . 34

3.3 Visual impact of border exchange on 16 nodes. . . . . . . . . . . . . . . 35

3.4 Communication for the Gaussian pyramid computation in the Local

Laplacian benchmark. The final three levels after the “distribution

threshold” are redundantly computed by every rank. . . . . . . . . . . 38

5.1 Network point-to-point latency and bandwidth measurements for our

testing environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Scaling results across all benchmarks with varying input sizes. . . . . . 58

5.3 Two data distributions in transpose. By distributing the input along

the opposite dimension as the output, only local accesses (dotted lines)

are required to transpose the input, as opposed to the explicit commu-

nication (solid lines) in the other case. . . . . . . . . . . . . . . . . . . . 59

5.4 Scaling results across all benchmarks with varying input sizes on the

Cori supercomputer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9



List of Tables

3.1 Owned and required regions of the input buffer for the one-dimensional

blur pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Points in the redundant computation versus communication tradeoff

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1 Speedup of Distributed Halide box blur over OpenCV. . . . . . . . . . 56

5.2 Speedup of Distributed Halide Sobel edge detection over OpenCV. . . 56

5.3 Speedup of transpose on 23000×23000 image with different input dis-

tributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4 Communication and computation time for each benchmark. . . . . . . 61

5.5 LLC miss resolutions during 23,000×23,000 blur under several NUMA

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.6 Runtime and speedup on a single node and the same number of cores

with NUMA-aware distribution over two ranks, using each bench-

mark’s maximum sized input. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Scaling results for three benchmarks on terapixel inputs. ∗The baseline

number of nodes for Blur 2D was 66. . . . . . . . . . . . . . . . . . . . . 69

10



Chapter 1

Introduction

High-throughput and low-latency image processing algorithms are of increasing

importance due to their wide applicability in fields such as computer graphics

and vision, scientific and medical visualization, and consumer photography. The

resolution and framerate of images that must be processed is rapidly increasing

with the improvement of camera technology and the falling cost of storage space.

For example, the Digitized Sky Survey [1] is a collection of several thousand im-

ages of the night sky, ranging in resolution from 14,000×14,000 to 23,040×23,040

pixels, or 200 to 500 megapixels. Canon, a consumer-grade camera manufac-

turer, recently introduced a 250 megapixel image sensor [2]. Processing such

large images is a non-trivial task: on modern multicore hardware, a medium-

complexity filter such as a bilateral grid [13] can easily take up to 10 seconds for

a 500 megapixel image.
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While today’s typical image sizes may be in the mega- to gigapixel range, the

world is rapidly approaching a point where terapixel-sized inputs will be more

commonplace. Particularly in satellite and celestial imaging there are already

numerous projects to provide interactive exploration of monolithic terapixel im-

ages, e.g. [18, 4]. However, preprocessing of these terapixel images is a daunting

task; the techniques used in [18] took approximately 7 hours on 512 cores to pro-

duce the final 802GB terapixel image. As this scale of image processing becomes

more common, the need for a dedicated language and framework increases.

A widely used class of scientific simulations known as finite-difference sim-

ulations are on a similar trajectory. The modern approach to problem solving in

medical, physical and environmental sciences often begins with the simulation of

a new drug or model. As the science progresses, the required simulations quickly

become intractable to solve except with the dedicated use of a supercomputer.

Supporting terapixel-sized domains could mean the difference between simulat-

ing a single blood vessel versus the entire heart, or higher resolution and more

accurate weather predictions. By making it possible for scientists to quickly and

easily solve these types of problems on a very large scale, the pace of scientific

advancement can increase.

Halide [31] is a popular domain-specific language for high-performance sten-

cil pipelines, used in Google+ Photos, and the Android and Glass platforms [30].

A major advantage of Halide is that it separates what is being computed (the algo-

rithm) from how it is computed (the schedule), enabling programmers to write the

12
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Figure 1. Imaging pipelines employ large numbers of interconnected, heterogeneous stages. Here we show the structure of the local Laplacian
filter [3, 22], which is used for a variety of tasks in photographic post-production. Each box represents intermediate data, and each arrow
represents one or more functions that define that data. The pipeline includes horizontal and vertical stencils, resampling, data-dependent
gathers, and simple pointwise functions.

and computer graphics, where stencils are common, but often in a
very different form: stencil pipelines. Stencil pipelines are graphs of
different stencil computations. Iteration of the same stencil occurs,
but it is the exception, not the rule; most stages apply their stencil
only once before passing data to the next stage, which performs
different data parallel computation over a different stencil.

Graph-structured programs have been studied in the context
of streaming languages [4, 11, 29]. Static communication analy-
sis allows stream compilers to simultaneously optimize for data
parallelism and producer-consumer locality by interleaving compu-
tation and communication between kernels. However, most stream
compilation research has focussed on 1D streams, where sliding win-
dow communication allows 1D stencil patterns. Image processing
pipelines can be thought of as programs on 2D and 3D streams and
stencils. The model of computation required by image processing is
also more general than stencils, alone. While most stages are point
or stencil operations over the results of prior stages, some stages
gather from arbitrary data-dependent addresses, while others scatter
to arbitrary addresses to compute operations like histograms.

Pipelines of simple map operations can be optimized by tradi-
tional loop fusion: merging multiple successive operations on each
point into a single compound operation improves arithmetic intensity
by maximizing producer-consumer locality, keeping intermediate
data values in fast local memory (caches or registers) as it flows
through the pipeline. But traditional loop fusion does not apply to
stencil operations, where neighboring points in a consumer stage
depend on overlapping regions of a producer stage. Instead, sten-
cils require a complex tradeoff between producer-consumer locality,
synchronization, and redundant computation. Because this tradeoff
is made by interleaving the order of allocation, execution, and com-
munication of each stage, we call it the pipeline’s schedule. These
tradeoffs exist in scheduling individual iterated stencil computations
in scientific applications, and the complexity of the choice space
is reflected by the many different tiling and scheduling strategies
introduced in past work [10, 16, 19]. In image processing pipelines,
this tradeoff must be made for each producer-consumer relationship
between stages in the graph—often dozens or hundreds—and the
ideal schedule depends on the global interaction among every stage,
often requiring the composition of many different strategies.

1.2 Contributions
Halide is an open-source domain-specific language for the complex
image processing pipelines found in modern computational pho-
tography and vision applications [26]. In this paper, we present the
optimizing compiler for this language. We introduce:

• a systematic model of the tradeoffs between locality, parallelism,
and redundant recomputation in stencil pipelines;

• a scheduling representation that spans this space of choices;
• a DSL compiler based on this representation that combines

Halide programs and schedule descriptions to synthesize points
anywhere in this space, using a design where the choices for how
to execute a program are separated not just from the definition
of what to compute, but are pulled all the way outside the black
box of the compiler;

• a loop synthesizer for data parallel pipelines based on simple
interval analysis, which is simpler and less expressive than
polyhedral model, but more general in the class of expressions
it can analyze;

• a code generator that produces high quality vector code for
image processing pipelines, using machinery much simpler than
the polyhedral model;

• and an autotuner that can infer high performance schedules—up
to 5⇥ faster than hand-optimized programs written by experts—
for complex image processing pipelines using stochastic search.
Our scheduling representation composably models a range of

tradeoffs between locality, parallelism, and avoiding redundant
work. It can naturally express most prior stencil optimizations,
as well as hierarchical combinations of them. Unlike prior stencil
code generation systems, it does not describe just a single stencil
scheduling strategy, but separately treats every producer-consumer
edge in a graph of stencil and other image processing computations.

Our split representation, which separates schedules from the
underlying algorithm, combined with the inside-out design of
our compiler, allows our compiler to automatically search for the
best schedule. The space of possible schedules is enormous, with
hundreds of inter-dependent dimensions. It is too high dimensional
for the polyhedral optimization or exhaustive parameter search
employed by existing stencil compilers and autotuners. However,
we show that it is possible to discover high quality schedules using
stochastic search.

Given a schedule, our compiler automatically synthesizes high
quality parallel vector code for x86 and ARM CPUs with SSE/AVX
and NEON, and graphs of CUDA kernels interwoven with host
management code for hybrid GPU execution. It automatically infers
all internal allocations and a complete loop nest using simple
but general interval analysis [18]. Directly mapping data parallel
dimensions to SIMD execution, including careful treatment of
strided access patterns, enables high quality vector code generation,
without requiring any general-purpose loop auto-vectorization.

Figure 1.1: Data dependencies in a local Laplacian filter. Each box represents
intermediate data, and arrows represent functions (color-coded with their bodies
on the right) defining the data. Image reproduced with permission from [31].

algorithm once in a high-level language, and then quickly try different strategies

to find a high-performing schedule. Halide code often outperforms hand-written

expert-optimized implementations of the same algorithm. Although originally

intended for image processing, the stencil model of computation can be directly

applied to finite-difference simulations, a very common and widely used class.

When many stencils are composed into deep pipelines such as the local Lapla-

cian filter [29], the inter-stage data dependencies easily become very complex, as

visualized in Figure 1.1. In the case of a local Laplacian filter, many different re-

sampling, data-dependent gathers and horizontal and vertical stencils combine

to create a complex network of dependencies. Such complexity makes rewriting

a program to experiment with different optimization strategies for computation

extremely time consuming. A programmer can easily explore this space with

Halide’s separation of algorithm and schedule.

Halide is currently limited to shared-memory execution. For the common
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case where a stencil pipeline is memory-bandwidth bound, the performance ceil-

ing of these tasks is solely determined by the memory bandwidth of the execut-

ing system. Adding additional parallelism with more threads for such pipelines

therefore does not result in higher performance. And, with modern multi-socket

platforms embracing a non-uniform memory access (NUMA) architecture, sim-

plistic parallel scheduling such as the work queue used by Halide often achieves

poor parallel efficiency due to frequent misses into remote memory or cache. Ad-

ditionally, even typical supercomputing platforms contain less than 128 to 256 GB

of main memory per node, limiting the total problem size that can be easily tack-

led on a single shared-memory machine.

We address this challenge with our distributed language and compiler exten-

sions. By augmenting Halide programs with the ability to seamlessly distribute

data and execution across many compute nodes, distributed Halide offers the

ability to overcome the limitations of shared-memory pipelines with very lit-

tle effort. Distributed Halide pipelines gain access to more parallelism and in-

creased memory bandwidth, and exhibit better hardware utilization of each indi-

vidual node. The language extensions for distribution fit well within the existing

scheduling language constructs, which can still be used to explore schedules for

the on-node computation. The ability to use the a single scheduling language for

both distribution and on-node scheduling is important, since depending on the

distribution strategy, different on-node schedules yield the best overall perfor-

mance.
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Contributions

In this thesis, we present language extensions for distributing pipelines and a

new compiler backend that generates distributed code. In particular, the contri-

butions are:

• A Halide language extension for distributing image processing pipelines,

requiring programmers to write only approximately 10 new lines of code.

We show that it is possible to describe complex organizations of data and

computation both on-node and across multiple machines using a single,

unified scheduling language.

• The implementation of a Halide compiler backend generating distributed

code via calls to an MPI library.

• A demonstration of how distributed pipelines can achieve a 1.4× speedup

on a single node with the same number of cores over regular multithreaded

execution by mitigating NUMA effects.

• Evaluation of nine distributed image processing benchmarks scaling up to

2,048 cores, with an exploration of redundant work versus communication

tradeoff.

• Evaluation of two image processing benchmarks and one simulation bench-

mark on terapixel-sized input, scaling up to 16,384 cores.

15



The rest of this thesis is organized as follows. Chapter 2 summarizes the nec-

essary background on Halide including simple scheduling semantics. Chapter 3

introduces the new distributed scheduling directives and Chapter 4 discusses

distributed code generation. Chapter 5 evaluates distributed Halide on several

benchmarks. Chapter 6 discusses related work, and Chapter 7 concludes. Ap-

pendix A contains a brief tutorial on the new language features.
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Chapter 2

Halide Background

Halide [31] is a domain-specific language embedded in C++ for image process-

ing. One of its main points of novelty is the fundamental, language-level separa-

tion between the algorithm and schedule for a given image processing pipeline.

The algorithm specifies what is being computed, and the schedule specifies how

the computation takes place. By separating these concerns in the language, a pro-

grammer only writes an algorithm once. When hardware requirements change,

or new features such as larger vector registers or larger caches become available,

the programmer must only modify the schedule to take advantage of them.

As a concrete example, consider a simple 3×3 box blur. One typical method

to compute this is a 9-point stencil, computing an output pixel as the average

value of the neighboring input pixels. In Halide, such a blur can be expressed

in two stages: first a horizontal blur over a 1×3 region of input pixels, followed

17



by a vertical 3×1 blur. This defines the algorithm of the blur, and is expressed in

Halide as:

bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y)) / 3;

bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1)) / 3;

where each output pixel output(x,y) = bv(x,y).

Halide schedules express how a pipeline executes. For example, one natural

schedule computes the entire bh horizontal blur stage before computing the bv

stage. In Halide’s scheduling language, this is known as computing the function

at “root” level, and is expressed as:

bh.compute_root();

With this schedule, our blur pipeline is compiled to the following pseudo-code

of memory allocations and loop nests:

allocate bh[]

for y:

for x:

bh[y][x] = (in[y][x-1] + in[y][x] + in[y][x+1]) / 3

for y:

for x:

bv[y][x] = (bh[y-1][x] + bh[y][x] + bh[y+1][x]) / 3

By opting to completely compute the horizontal blur before beginning the verti-

cal blur, we schedule the pipeline such that there is no redundant computation:

each intermediate pixel in bh is only calculated once. However, this sacrifices

18



temporal locality. A pixel stored into the bh temporary buffer may not be avail-

able in higher levels of the memory hierarchy by the time it is needed to compute

bv. This time difference is known as reuse distance: a low reuse distance is equiv-

alent to good temporal locality.

Because the horizontal blur is so cheap to compute, a better schedule may

compute some pixels of bh multiple times to improve reuse distance. One pos-

sibility is to compute a subset of the horizontal blur for every row of the vertical

blur. Because a single row of the vertical blur requires three rows in bh (the row

itself and the rows above and below), we can compute only those three rows of

bh in each iteration of bv.y. In Halide, the schedule:

bh.compute_at(bv, y);

is lowered to the loop nest:

for y:

allocate bh[]

for y’ from y-1 to y+1:

for x:

bh[y’][x]=(in[y’][x-1] + in[y’][x] + in[y’][x+1])/3

for x:

bv[y][x] = (bh[y-1][x] + bh[y][x] + bh[y+1][x]) / 3

Note that the inner iteration of y’ ranges from y-1 to y+1: the inner loop nest

is calculating the currently needed three rows of bh. Some details such as buffer

indexing and how the Halide compiler determines loop bounds have been elided

here for clarity, but the essence is the same. The tradeoff explored by these two

19



schedules is that of recomputation versus locality. In the first schedule, there is

no recomputation, but locality suffers, while in the second schedule, locality im-

proves, as values in bh are computed soon before they are needed, but we redun-

dantly compute rows of bh.

Halide also offers a simple mechanism for adding parallelism to pipelines on

a per-stage per-dimension basis. To compute rows of output pixels in parallel,

the schedule becomes:

bh.compute_at(bv, y);

bv.parallel(y);

which is lowered to the same loop nest as above, but with the outermost bv.y

loop now a parallel for loop. The Halide compiler generates a function with the

body of the parallel loop parameterized by the value of the induction variable

(here bv.y). At runtime, a closure is created of this function for each value of

the induction variable, and inserted into a work queue. Threads from a thread

pool (implemented using, for example, pthreads) pull iterations from the work

queue and execute them in parallel. This dynamic scheduling of parallelism can

be a source of cache inefficiencies or NUMA effects, as we explore in Chapter 5.

In particular, there is no effort to schedule parallel iterations according to spatial

locality in the induction variable domain, potentially leading to poor use of cache.

Designing good schedules in general is a non-trivial task. For the 3×3 box

blur the most efficient schedule we have found, and the one we compare against

in the evaluation is the following:

20



bh.store_at(bv, y).compute_at(bv, yi).vectorize(x, 8);

bv.split(y, y, yi, 8).vectorize(x, 8).parallel(y);

For large pipelines such as the local Laplacian benchmark consisting of approxi-

mately 100 stages, the space of possible schedules is enormous.

One solution to the problem of finding schedules is applying an autotuning

system to automatically search for efficient schedules, as was explored in [31].

Other more recent autotuning systems such as OpenTuner [10] could also be ap-

plied to the same end. Empirically, however, autotuning schedules for complex

pipelines is not a realistic solution. For one complex pipeline we ran the auto-

tuner for a full week on a dedicated machine; by the end of the week the auto-

tuner had not even found a valid schedule. When we decomposed the problem

and allowed the autotuner to search for schedules for only individual stages of

the pipeline, it did discover valid schedules. However, when evaluating the au-

totuned schedule inside of the full pipeline, the net result was actually slower

execution. Potential solutions to this problem are described (as future work) in

Chapter 7. Until these problems are solved, manual experimentation is the pre-

ferred method to design efficient schedules.
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Chapter 3

Distributed Scheduling

One of the major benefits of the algorithm plus schedule approach taken by

Halide is the ability to quickly experiment to find an efficient schedule for a par-

ticular pipeline. In keeping with this philosophy, we designed the distributed

Halide language extensions to be powerful enough to express complex computa-

tion and communication schemes, but simple enough to require very little effort

to find a high-performance distributed schedule.

There are many possible language-level approaches to express data and com-

putation distributions. We strove to ensure that the new scheduling constructs

would compose well with the existing language both in technical (i.e. the exist-

ing compiler should not need extensive modification) and usability terms. The

new extensions needed to be simple enough for programmers to easily grasp but

powerful enough to express major tradeoffs present in distributed-memory pro-
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3.1. Data Distribution via DistributedImage

grams.

Striking a balance between these two points was accomplished by adding two

new scheduling directives, distribute() and compute_rank(), as well as a

new data type, DistributedImage, that uses a simple syntax to specify data

distributions. In this chapter we will show that these extensions are simple to

understand, compose with the existing language, and allow complex pipelines

to be scheduled for excellent scalability.

3.1 Data Distribution via DistributedImage

Input and output buffers in Halide are represented using the user-facing Image

type. Images are multidimensional Cartesian grids of pixels and support simple

methods to access and modify pixel values at given coordinates. In distributed

Halide, we implemented a user-facing DistributedImage buffer type which

supports additional methods to specify the distribution of data to reside in the

buffer.

A DistributedImage is declared by the user with the dimensions’ global

extents and names. A data distribution for each DistributedImage is specified

by the user by using the placement()method, which returns an object support-

ing a subset of the scheduling directives used for scheduling Halide functions, in-

cluding the new distribute() directive. “Scheduling” the placement specifies

a data distribution for that image. Once a data distribution has been specified,
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3.1. Data Distribution via DistributedImage

memory can be allocated for the local region of the DistributedImage. The

following example declares a DistributedImage with global extents width

and height but distributed along the y dimension.

DistributedImage<int> input(width, height);

input.set_domain(x, y);

input.placement().distribute(y);

input.allocate();

It is important to note that the amount of backing memory allocated on each rank

with the allocate() call is only the amount of the per-rank size of the image.

The size of the local region is determined by the logic explained next in Sec-

tion 3.2. The call to allocate() must occur separately and after all scheduling

has been done via placement() in order to calculate the per-rank size.

For a rank to initialize its input image, the DistributedImage type sup-

ports conversion of local buffer coordinates to global coordinates and vice versa.

This design supports flexible physical data distributions. For example, if a mono-

lithic input image is globally available on a distributed file system, each rank can

read only its local portion from the distributed file system by using the global

coordinates of the local region. Or, if input data is generated algorithmically,

each rank can initialize its data independently using local or global coordinates

as needed. In either case, at no point does an individual rank allocate or initialize

the entire global image. Output data distribution is specified in exactly the same

manner.
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3.2. Computation Distribution

3.2 Computation Distribution

To support scheduling of distributed computations, we introduce two new schedul-

ing directives: distribute() and compute_rank().

The distribute() directive is applied to dimensions of individual pipeline

stages, meaning each stage may be distributed independently of other stages.

Because dimensions in Halide correspond directly to levels in a loop nest, a dis-

tributed dimension corresponds to a distributed loop in the final loop nest. The

iteration space of a distributed loop dimension is split into slices according to a

block distribution. Each rank is responsible for exactly one contiguous slice of

iterations of the original loop dimension.

The compute_rank() directive is applied to an entire pipeline stage, spec-

ifying that the computed region of the stage is the region required by all of its

consumers on the local rank (we adopt the MPI terminology “rank” to mean the

ID of a distributed process). Scheduling a pipeline stage with compute_rank()

ensures that locally there will be no redundant computation, similar to the se-

mantics of compute_root() in existing Halide. However, different ranks may

redundantly compute some regions of compute_rank() functions. Therefore,

compute_rank() allows the expression of globally redundant but locally nonre-

dundant computation, a new point in the Halide scheduling tradeoff space. This

is explored in more detail in Section 3.4.

The block distribution is defined as follows. Let R be the number of MPI
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processes or ranks available and let w be the global extent of a loop dimension

being distributed. Then the slice size s = dw/Re, and each rank r is responsible

for iterations

[rs, min(w, (r + 1)s))

where [u, v) denotes the half-open interval from u to v. This has the effect of

assigning the last rank fewer iterations in the event R does not evenly divide w.

The slicing of the iteration space is parameterized by the total number of ranks

R and the current rank r. The code generation (explained in Chapter 4) uses

symbolic values for these parameters; thus, running a distributed Halide pipeline

on different numbers of ranks does not require recompiling the pipeline.

The distribute() directive can also be applied to two or three dimensions

of a function to specify multidimensional (or nested) distribution. For nested dis-

tribution, the user must specify the size of the desired processor grid to distribute

over: currently, parametric nested distributions as in the one dimensional case are

not supported. The nested block distribution is defined as follows. Let x and y

respectively be the inner and outer dimensions in a 2D nested distribution, let w

and h be their respective global extents and let a and b be the respective extents of

the specified processor grid. Then the slice sizes are sx = dw/ae and sy = dh/be.

Each rank r is responsible for a 2D section of the original iteration space, namely:

x ∈ [r (mod a)sx, min(w, (r (mod a) + 1)sx))

y ∈ [(r\a)sy, min(h, (r\a + 1)sy))
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where u\v denotes integer division of u and v. For 3D distribution, letting d be

the extent of the third dimension z, c be the third extent of the specified processor

grid, sz = dd/ce, the iteration space for rank r is:

x ∈ [(r (mod ab)) (mod a)sx,

min(w, ((r (mod ab)) (mod a) + 1)sx))

y ∈ [((r (mod ab))\a)sy,

min(h, (((r (mod ab))\a) + 1)sy))

z ∈ [(r\(ab))sz, min(d, (r\(ab) + 1)sz)).

Supporting nested distribution is essential for scalability due to the well-known

surface area vs. volume effect; nested distribution reduces the overall amount of

communication required for a pipeline versus a one-dimensional distribution as

the number of ranks increases. In distributed stencil computations, the surface

area of the iteration space “chunk” correlates directly to the amount of communi-

cation needed for the border exchange, and the volume correlates to the amount

of local computation that can be performed. By minimizing the ratio of surface

area to volume, one minimizes the ratio of communication versus computation,

a quality necessary to achieve good scaling properties.

Consider as an example a two-dimensional input of size n× n. Given R ranks,

a one-dimensional distribution of this input would have volume V1 = n2

R and
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surface area S1 = 2n. Then the surface area to volume ratio

S1

V1
= 2n · R

n2 =
2R
n

.

The same input with a 2D nested distribution across a
√

R×
√

R processor grid

would have volume V2 = n√
R
· n√

R
= n2

R , the same as V1. However, the surface

area S2 = 4n√
R

, yielding a surface area to volume ratio

S2

V2
=

4
√

R
n

.

Therefore, the 2D nested distribution is preferred when

S2

V2
<

S1

V1

4
√

R
n

<
2R
n

4 < R.

A similar argument can be made for 3D versus 2D. Other discussion and analysis

can be found in the literature on this topic, for example in [24].

When R is not a perfect square, the size of the processor grid should be chosen

to come as close to
√

R on each dimension as possible, to minimize the surface

area and maximize the number of utilized processors. In particular, for non-

square R, we wish to find a, b such that ab ≤ R, and |a−
√

R| and |b−
√

R| are

minimized. Then the processor grid size is a× b. For 3D distribution and non-

cube R we wish to find a, b, c such that abc ≤ R, and |a− 3
√

R|, |b− 3
√

R|, |c− 3
√

R|
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are all minimized. The following algorithms APPROXFACTORSNEARSQRT and

APPROXFACTORSNEARCUBERT determine these values iteratively.

Algorithm APPROXFACTORSNEARSQRT

Input Number of ranks R

Output Pair of integers (a, b) such that ab ≤ R and |a−
√

R|, |b−
√

R|

are minimized.

1. Let s = b
√

Rc

2. If s · s = R then return (s, s).

3. While s > 0 do

a) Let a = R\s, b = R\a.

b) If a · b ≤ R then break.

c) Else let s = s− 1.

4. Return (a, b).
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Algorithm APPROXFACTORSNEARCUBERT

Input Number of ranks R

Output Triple of integers (a, b, c) such that abc ≤ R and |a − 3
√

R|, |b −
3
√

R|, |c− 3
√

R| are minimized.

1. Let s = b 3
√

Rc

2. If s · s · s = R then return (s, s, s).

3. While s > 0 do

a) Let (a, b) = APPROXFACTORSNEARSQRT(R\s).

b) Let c = R\(ab).

c) If a > 0, b > 0, c > 0 and abc ≤ R then break.

d) Else let s = s− 1.

4. Return (a, b, c).

Coupling this analysis with the ease of programming in distributed Halide

yields an effective solution for well-performing pipelines at any scale. While not

yet implemented, in principle one could use the existing Halide specialize()

scheduling directive to apply a one- or two-dimensional distribution depending

on the number of ranks available at runtime. The specialize() directive takes

as an argument a predicate that can be evaluated at runtime, and only applies

the subsequent scheduling transformations if the predicate is true. A pipeline

utilizing this technique might then be:
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f(x, y) = ...;

f.compute_root();

Pair p = ApproxFactorsNearSqrt(num_ranks);

f.distribute(y).specialize(num_ranks > 4)

.distribute(x, y, p.a, p.b);

Traditional distributed applications or libraries supporting this type of dynamism

would require programmers to implement and maintain both code paths; with

distributed Halide it would become a matter of changing a single line of code.

Finally, supporting parametric nested distribution (i.e. letting the user omit

the processor grid size) could be done by code generating a runtime call to AP-

PROXFACTORSNEARSQRT or APPROXFACTORSNEARCUBERT to determine val-

ues for parameters a, b or a, b, c. Then the scheduling syntax for nested distribu-

tion would directly mirror one-dimensional scheduling, i.e. one could write:

f(x, y) = ...;

f.compute_root();

f.distribute(y).specialize(num_ranks > 4).distribute(x, y);

This syntactic sugar has not yet been implemented.

3.3 Introductory Example

As an example, consider a simple one-dimensional blur operation:

f(x) = (input(x - 1) + input(x + 1)) / 2;
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3.3. Introductory Example

We can distribute this single-stage pipeline using the two new language features

(eliding the boilerplate set_domain() and allocate() calls):

DistributedImage input(width);

input.placement().distribute(x);

f.distribute(x);

With this schedule, the input buffer is distributed along the same dimension as

its consumer stage f.

We call the slice of the input buffer residing on each rank the owned region.

Because f is a stencil, we must also take into account the fact that to compute an

output pixel f(x) requires input(x-1) and input(x+1). We denote this the

required region of buffer input.

Suppose that the width of input is 10 pixels, and we have 3 ranks to dis-

tribute across. Then Table 3.1 enumerates each rank’s owned and required re-

gions of input, according to the distributed schedule. Because the input buffer

is distributed independently from its consumer, and distributed slices are always

disjoint by construction, the required region is larger than the owned region for

buffer input. Therefore, the required values of input will be communicated

from the rank that owns them. In this example, rank 1 will send input(4) to

rank 0 and input(7) to rank 2 (and receive from both ranks 0 and 2 as well).

The communication is illustrated in Figure 3.1.

The region required but not owned is usually termed the ghost zone (see e.g.

[24]), and the process of exchanging data is called border exchange or boundary ex-
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3.3. Introductory Example

Rank 0 Rank 1 Rank 2

f.x 0–3 4–7 8–9
input owned 0–3 4–7 8–9

input required 0–4 3–8 7–9

Table 3.1: Owned and required regions of the input buffer for the one-
dimensional blur pipeline.

Rank 0 Rank 1 Rank 2 

input

f.x

0 3 4 7 8 9

Figure 3.1: Communication for 1D blur. Dotted lines represent on-node access,
solid lines represent communication.

change. In distributed Halide, ghost zones are automatically inferred by the com-

piler based on the schedule, and the communication code is inserted automati-

cally. The mechanics of how the ghost zones are calculated and communicated

are detailed in Chapter 4.

The importance of performing border exchange can be seen in Figures 3.2 and

3.3. In the first example, the input image in Figure 3.2a was run through the So-

bel edge-detection benchmark program, yielding the output in Figure 3.2b. The

output in Figure 3.2c is from running the benchmark distributed across 4 nodes

with border exchange disabled; clear seams are visible at the edge of each node’s

owned region. While the error in this output may be tolerable depending on

the particular application of the algorithm, a more extreme example is shown in

Figure 3.3. The input image in Figure 3.3a was run through the local Laplacian
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(a) Original image (b) With border exchange (c) Without border exchange

Figure 3.2: Visual impact of border exchange on 4 nodes.

benchmark program, yielding the output image in Figure 3.3b. When distribut-

ing on 16 nodes without border exchange, the output is completely garbled, as

shown in Figure 3.3c.

This introductory example described a single-stage pipeline. In a multistage

pipeline, data must be communicated between the stages. Between each dis-

tributed producer and consumer, ghost zones are determined and communica-

tion code is automatically inserted by the compiler, just as the case above of com-

municating input to the ranks computing f.

3.4 Recomputation versus Communication

A fundamental tradeoff exposed by the new scheduling directives distribute()

and compute_rank() is recomputation versus communication. In some cases, it

may be advantageous to locally recompute data in the ghost zone, instead of com-

municating it explicitly from the rank that owns the data. While there are models
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(a) Original image (b) With border exchange (c) Without border exchange

Figure 3.3: Visual impact of border exchange on 16 nodes.

of distributed computation and communication (e.g. [8]) that can be applied to

make one choice over the other, these models are necessarily approximations of

the real world. For optimal performance, this choice should be made empirically

on a per-application basis. With distributed Halide, we can explore the tradeoff

not just per application, but per stage in an image processing pipeline.

In distributed Halide, there are three points on the spectrum of this tradeoff.

Globally and locally non-redundant work is expressed by the compute_root()

and distribute() directives, ensuring the function is computed exactly once

by a single rank for a given point in the function’s domain. This is the typical case,
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3.4. Recomputation versus Communication

Global Redundant Local Redundant Communication Schedule

X X × compute_at
X × × compute_rank
× × X compute_root

Table 3.2: Points in the redundant computation versus communication tradeoff
space.

but communication may be required for consumers of a pipeline stage distributed

in this manner. Globally redundant but locally non-redundant work is expressed

by the new compute_rank() directive, meaning a given point in the function

domain may be computed by multiple ranks, but on each rank it is only ever

computed once. No communication is required in this case, as each rank com-

putes all of the data it will need for the function’s consumers. Finally, globally

and locally redundant work is expressed by scheduling a function compute_at

inside of its distributed consumer. A given point in the function domain may

be computed multiple times within a single rank as well as across ranks, but no

communication is required.

Table 3.2 summarizes the tradeoff space of redundant computation versus

communication exposed by the new scheduling directives. No one point on this

tradeoff spectrum is most efficient for all applications. Distributed Halide ex-

poses this tradeoff to the user, allowing the best choice to be made on a case-by-

case basis.

Recalling the 3×3 box blur example from Chapter 2, this distributed schedule

expresses globally and locally redundant computation of bh:
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bh.compute_at(bv, y);

bv.parallel(y).distribute(y);

Crucially, even though the pipeline is distributed, there is no communication of bh,

but instead each rank computes the region of bh it needs for each of the rows

it produces in bv. Because the computation of bh occurs within the distributed

dimension bv.y, each rank computes bh separately. This means the overlapping

rows of bh that are required for each iteration of bv.y are computed redundantly

and locally. Communication is still required for the region of the input buffer

needed to compute the local portion of bv, but no communication is required for

the bh stage.

An alternative schedule that contains no redundant computation, but requires

communication of both the input buffer and the bh stage is:

bh.compute_root().distribute(y);

bv.parallel(y).distribute(y);

The horizontal blur is computed entirely before the vertical blur begins. Before

computing bh, the ghost zone data (required but not owned data) of the input

buffer must be communicated between ranks. Then, the overlapping rows of

bh.y in the ghost zone must be communicated before computation of bv can

begin. This is a case where there is no redundant computation (all pixels of bh

are computed exactly once globally).

A more extreme version of redundant computation is the following:
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Gn-3 ... Gn

Gn-3 ... Gn

Input Image G0

G1

G2

Communication
Copy

Distribution
Threshold

Rank 0

Rank 1

Rank 2

Gn-3 ... Gn

Figure 3.4: Communication for the Gaussian pyramid computation in the Local
Laplacian benchmark. The final three levels after the “distribution threshold” are
redundantly computed by every rank.

bh.compute_root();

bv.parallel(y).distribute(y);

With this schedule, the entire horizontal blur (i.e. over the entire global input

image) is evaluated on every rank. This is wasteful in terms of computation,

as each rank will compute more of bh than it needs. However, locally there is

no redundant computation, and globally there is no communication required for

bh. Using this particular strategy is crucial for scalability on the local Laplacian

benchmark, as shown in Figure 3.4. The final three stages of the image pyramid

in Figure 3.4 are recomputed on every node, as the data is small enough that

recomputation is faster than communication.

Finally, this schedule express globally redundant but locally non-redundant

computation:

bh.compute_rank();
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bv.parallel(y).distribute(y);

Each rank will non-redundantly (i.e. at root level on each rank) compute only

the region of bh required to compute the local portion of bv. No communication

is required in this case. However, neighboring ranks will compute overlapping

rows of bh, meaning globally there is some redundant computation.

3.5 On-Node Scheduling

The new distribute() and compute_rank() directives compose with exist-

ing Halide scheduling directives. All ranks inherit the same schedule for com-

puting the local portion of a global computation (typically referred to as the

single program, multiple data or SPMD pattern). To express the common idiom

of distributing data across ranks and locally parallelizing the computation on

each rank, the parallel() directive can be used in conjunction with the new

distribute() directive.The various existing scheduling directives, modulo sev-

eral current limitations, can be composed arbitrarily to arrive at complex sched-

ules of computation and communication. For example, the following schedule

taken from the block transpose benchmark causes f to be computed by locally

splitting the image into 16 × 16 tiles, vectorizing and unrolling the computation

of each tile, distributing the rows of f and locally parallelizing over the rows of

tiles:
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f.tile(x, y, xi, yi, 16, 16)

.vectorize(xi).unroll(yi)

.parallel(y).distribute(y);

The flexibility of this approach allows programmers to specify efficient on-node

schedules and freely distribute the computation of each stage, without worrying

about calculating ghost zones or writing communication code.

3.6 Limitations

The current implementation of distributed Halide supports all of the features de-

scribed above, but there are several engineering challenges remaining to be ad-

dressed. In particular, ahead of time compilation has not yet been implemented;

currently only JITted pipelines can be distributed. Only dimensions that can

be parallelized can be distributed, i.e. distributing data-dependent dimensions

(as used in a histogram, for example) is unimplemented. Nested distributions

with a parametric processor grid are not yet supported, as previously mentioned

in Section 3.2. Any stage writing to a distributed output buffer must currently

have the same distribution as the output buffer. Reordering storage with the

reorder_storage() scheduling directive is not yet supported for distributed

dimensions.
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Chapter 4

Code Generation

This section details the new analysis and lowering passes added to the Halide

compiler to generate code for distributed pipelines. There are two components of

code generation: determining ghost zones for each distributed producer-consumer

relationship in the pipeline, and generating MPI calls to communicate required

data in the ghost zones. The mechanisms presented here are similar to those

in previous work such as [16] for affine loop nests; see Chapter 6 for a discus-

sion of their work. The main advantage of this approach lies in the simplicity of

ghost zone inference and code generation. We can generate efficient communi-

cation code with these simple mechanisms due the to additional domain-specific

knowledge about the pipeline available to the Halide compiler.
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4.1 Ghost Zone Inference

Ghost zone inference relies heavily on the axis-aligned bounding box bounds in-

ference already present in the Halide compiler. In regular Halide, bounds infor-

mation is needed to determine allocation sizes of intermediate temporary mem-

ory, iteration spaces of pipeline stages and out-of-bounds checks, among other

things. We use the bounds inference subsystem to construct both a global and

local picture of the regions of buffers belonging to each rank.

For each consumer stage in the pipeline, we generate the owned and required

information for its inputs, which may be DistributedImages or earlier stages

in the pipeline. We derive the owned and required regions in terms of the global

buffer bounds the programmer provides via the DistributedImage type. All

derived bounds throughout the pipeline will be in terms of these global sizes.

Recall the iteration space slicing from Section 3.2 and the one-dimensional

blur f from Section 3.3. Applying bounds inference to the distributed loop nest

generates the symbolic owned and required regions for computing f (omitting

boundary conditions for simplicity):

Rank r

f.x rs to (r + 1)s

input owned rs to (r + 1)s

input required rs− 1 to (r + 1)s + 1
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Identical inference is done for every producer-consumer in the distributed pipeline.

Multidimensional buffers are handled with the same code: the bounds inference

information generalizes across arbitrary dimensions, including nested distribu-

tion of dimensions.

Because these regions are parameterized by a rank variable, any particular

rank r can determine the owned and required regions for another rank r′. A

global mapping of rank to owned region is never explicitly computed or stored;

instead it is computed dynamically when needed. By computing data locations

lazily, we avoid creating and accessing a mapping of global problem space to

compute rank.

Border exchange is required for the distributed inputs of each consumer in the

pipeline. The inputs could be DistributedImages or earlier distributed stages

in the pipeline. In the following discussion we will refer to these collectively as

“data sources,” as the owned and required regions are computed the same way

no matter the type of input.

To perform a border exchange for data source b between two ranks r and r′,

each must send data it owns to the other rank if it requires it. Let H(b; r) be the

owned (or “have”) region of data source b by rank r and let N(b; r) be the required

(or “need”) region. If H(b; r) intersects N(b; r′), rank r owns data required by r′,

and symmetric send/receive calls must be made on each rank.

The H and N regions are represented by multidimensional axis-aligned bound-

ing boxes, where each dimension has a minimum and maximum value. Com-
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puting the intersection I of the two bounding boxes is done using the following

equations:

Id(b, r, r′).min = max{Hd(b; r).min, Nd(b; r′).min}

Id(b, r, r′).max = min{Hd(b; r).max, Nd(b; r′).max}

where Bd(·).min/max denotes the minimum or maximum in dimension d of

bounding box B. Applying to the one-dimensional blur yields:

Region Value

H(input; r) rs to (r + 1)s

N(input; r′) r′s− 1 to (r′ + 1)s + 1

I(input, r, r′)
max{rs, r′s− 1} to

min{(r + 1)s, (r′ + 1)s + 1}

We generate the communication code using this static representation of the inter-

section between what a rank r has and what a rank r′ needs.

The intersections are calculated using global coordinates (relative to the global

input and output buffer extents). The actual buffers allocated on each rank are

only the size of the local region. Thus, before passing the intersection regions to

the MPI library, they must be converted to local coordinates, offset from 0 instead

of rs. For rank r and a region X of data source b in global coordinates, define

L(X, b; r) to be X in coordinates local to rank r. L is computed by subtracting the
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global minimum from the global offset to compute a local offset:

Ld(X, b; r).min = Xd.min− Hd(b; r).min

Ld(X, b; r).max = Xd.max− Hd(b; r).min.

4.2 Communication Code Generation

Preceding each consumer stage in the pipeline, we inject MPI calls to communi-

cate the ghost zone region of all distributed inputs required by the stage. This

process is called the border exchange.

Recall the distributed one-dimensional blur from Section 3.3. As was illus-

trated in Table 3.1, the owned region of buffer input is smaller than the required

region. Thus, we must perform a border exchange on the input buffer as was

depicted in Figure 3.1. An initial lowering pass converts the loop nest for f into

a distributed loop nest by slicing the iteration space:

let R = mpi_num_ranks()

let r = mpi_rank()

let s = ceil(w/R)

for x from r*s to min(w-1, (r+1)*s):

f[x] = (input[x-1] + input[x+1]) / 2

The number of ranks R and the current rank r are symbolic values determined at

runtime by calls to MPI. Keeping these values symbolic means that the bounds

inference applied to this loop nest will be in terms of these symbols. This allows

us to not require recompilation when changing the number of ranks.
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Generating the code to perform border exchange uses the inferred symbolic

ghost zone information. For a data source b, the function border_exchange(b)

is generated with the following body:

function border_exchange(b):

let R = mpi_num_ranks()

let r = mpi_rank()

for r’ from 0 to R-1:

// What r has and r’ needs:

let I = intersect(H(b,r), N(b,r’))

// What r needs and r’ has:

let J = intersect(H(b,r’), N(b,r))

if J is not empty:

let LJ = local(J, b, r)

mpi_irecv(region LJ of b from r’)

if I is not empty:

let LI = local(I, b, r)

mpi_isend(region LI of b to r’)

mpi_waitall()

Inserting a call to the border exchange before computation begins completes the

code generation process:

let R = mpi_num_ranks()

let r = mpi_rank()

let s = ceil(w/R)

border_exchange(input)

for x from r*s to min(w-1, (r+1)*s):

f[x] = (input[x-1] + input[x+1]) / 2
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In the border exchange algorithm the i prefix on isend and irecv denotes

the non-blocking version of that communication function. Using non-blocking

calls allows the communication of multiple buffers to overlap. Additionally, this

strategy avoids potential deadlocks on resource availability (e.g. memory for

MPI to allocate communication buffers it needs). All of the outstanding commu-

nication requests will be queued until resources become freed by the completion

of a previous request.

Performing border exchanges for multidimensional buffers requires more spe-

cialized handling. In particular, the regions of multidimensional buffers being

communicated may not be contiguous in memory. We handle this case using

MPI derived datatypes, which allow a non-contiguous region of memory to be

sent or received with a single MPI call. The MPI implementation automatically

performs the packing and unpacking of the non-contiguous region, as well as

allocation of scratch memory as needed.

Due to the parameterization with the number of ranks, the precise shape of

the region being sent is not known at compile time. Thus, we must also gen-

erate code to create and commit the MPI derived datatypes at runtime. Each

call to mpi_irecv or mpi_isend in the border exchange first goes through a

thin wrapper function implemented in the Halide runtime. Before the call to this

wrapper function, code is generated to calculate the size and byte offset of the re-

gion being communicated. This is straightforward to calculate given the bound-

ing box information discussed in the previous section. The wrapper functions

47



4.3. Rank Iteration Space

use these values to construct an MPI subarray datatype, which is then commit-

ted via MPI_Type_commit. These committed types are pushed to a small queue

so that they may be freed by the runtime once they are no longer needed (after

the termination of the waitall() MPI call).

The ability to use derived datatypes for communicating non-contiguous data,

along with wide support on a variety of popular distributed architectures, was

among the reasons we chose to use MPI as the target of our code generation.

4.3 Rank Iteration Space

The border exchange algorithm could be improved using additional domain knowl-

edge available to the Halide compiler, namely the footprint sizes of each stage in

the pipeline. Using this information can, in some cases, allow the communication

loop to only iterate over a subset instead of all ranks. This would lead to better

scaling behavior with large numbers of ranks. While not yet implemented, this

section discusses an algorithm that could be used to implement this optimiza-

tion. All of the experimental results in Chapter 5 were measured without this

optimization in place.

Consider again the one-dimensional blur example stencil:

f(x) = (input(x - 1) + input(x + 1)) / 2;

Suppose that both stage f and DistributedImage input were distributed

along x. In this example, when communicating the required region N(input; r)
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4.3. Rank Iteration Space

for to rank r, it suffices to communicate only with rank r − 1 and r + 1, due to

the shape (or “footprint”) of the f stencil. In other words, ranks beyond a radius

of 1 do not have input data needed to compute f on rank r. Let k be that rank

radius required for communication. Using the statically-available footprint size

of the f stencil, a value for k can be determined at compile time. In general, the

rank radius is dependent on the particular data source being communicated as

well as the particular stage consuming it, i.e. let K( f , b) be the rank radius for

communicating data source b for consumer stage f .

Let F( f , b, d) be the footprint size of consumer stencil f for data source b along

dimension d, and let F∗( f , b) be the maximum footprint size across all dimen-

sions, i.e.

F∗( f , b) = max
d

F( f , b, d).

Let E(b, d) be the extent of data source b in dimension d. In the case where d is

distributed, this is equal to the global extent of d divided by the number of ranks

R. Then let E∗(b) be the minimum extent across all dimensions of b:

E∗(b) = min
d

E(b, d).

Then

K( f , b) =
⌈

F∗( f , b)
E∗(b)

⌉
.

The footprint F∗ cannot be used directly as the rank radius K. This is because

K also depends on the ownership of the data source b. For example, a footprint

size of 4 may have a rank radius of 1 if the extent of b on each rank is ≥ 4.

49



4.3. Rank Iteration Space

However, if each rank owns ≤ 4 of b, then a footprint of 4 must communicate

with a greater radius than just 1.

When the extents of a data source are explicitly known at compile time, both

the F∗ and E∗ functions can be statically evaluated. Otherwise, symbolic expres-

sions can be generated for these functions to compute a value of K at runtime.

This optimization can only be performed when footprint sizes are fixed and

known statically. Notably, this excludes the optimization from being applied in

cases with input-dependent stencils such as in the computation of a histogram,

or reduction domain over an entire data source.
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Chapter 5

Evaluation

We evaluated distributed Halide by taking nine existing image processing bench-

marks written in Halide and distributing them using the new scheduling direc-

tives and the new data type DistributedImage. The benchmarks range in

complexity from the simple two-stage box blur to an implementation of a local

Laplacian filter with 99 stages. For each, we began with the single-node sched-

ule tuned by the author of the benchmark. All schedules were parallelized, and

usually used some combination of vectorization, loop unrolling, tiling and vari-

ous other optimizations to achieve excellent single-node performance. We then

modified the schedules to use the distributed Halide extensions. Many of the

benchmarks are the same as in the original Halide work [31]. A brief description

of each benchmark follows.
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Bilateral grid This filter blurs the input image while preserving edges [13]. It

consists of a sequence of three-dimensional blurs over each dimension of the in-

put image, a histogram calculation and a linear interpolation over the blurred

results.

Blur An implementation of the simple 2D 9-point box blur filter as two separa-

ble 3-point stencil stages.

Camera pipe An implementation of a pipeline used in digital cameras, which

transforms the raw data collected by the image sensors into a usable digital im-

age. This pipeline contains more than 20 interleaved stages of interpolation, de-

mosaicing, and color correction, and transforms a two-dimensional input into a

three-dimensional output image.

Interpolate A multi-scale image pyramid [7] is used to interpolate an input im-

age at many different resolutions. The image pyramid consists of 10 levels of

inter-dependent upsampling and downsampling and interpolation between the

two.

Local Laplacian This filter [29] performs a complex edge-preserving contrast

and tone adjustment using an image pyramid approach. The pipeline contains

99 stages and consists of multiple 10-level image pyramids including a Gaus-

sian pyramid and Laplacian pyramid. Between each stage are complex and data-
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dependent interactions, leading to an incredibly large schedule space. This is our

most complex benchmark.

Resize This filter implements a 130% resize of the input image using cubic in-

terpolation, consisting of two separable stages.

Sobel An implementation of image edge-detection using the well-known Sobel

kernel.

Transpose An implementation of a blocked image transpose algorithm.

Wavelet A Daubechies wavelet computation.

The testing environment was a 16 node Intel Xeon E5-2695 v2 @ 2.40GHz In-

finiband cluster with Ubuntu Linux 14.04 and kernel version 3.13.0-53. Each node

had two sockets, and each socket had 12 cores, for a total of 384 cores. Hyper-

threading was enabled, and the Halide parallel runtime was configured to use

as many worker threads as logical cores. The network topology was fully con-

nected.

To analyze the network performance of the test machine we ran the Ohio State

microbenchmark suite [28]. The point-to-point MPI latency and effective band-

width measurements are reported in Figures 5.1a and 5.1b respectively.

Due to the presence of hyperthreading and the dynamic load balancing per-

formed by the Halide parallel runtime, the performance numbers had nonnegli-
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Figure 5.1: Network point-to-point latency and bandwidth measurements for our
testing environment.

gible noise. As the input size decreases for a multithreaded Halide pipeline, the

variance in runtime increases. For a 1000×1000 parallel blur with unmodified

Halide, over 1,000 iterations we recorded a standard deviation of 21.3% of the

arithmetic mean runtime. At 23,000×23,000, we recorded a standard deviation of

2.1%. In a distributed pipeline, even though the global input may be large enough

to lower the variance, each rank has a smaller region of input and therefore higher

variance. To mitigate this variance as much as possible in our measurements of

distributed Halide, we take median values of 50 iterations across for each node

and report the maximum recorded median. The timing results were taken using

clock_gettime(CLOCK_MONOTONIC), a timer available on Linux with nanosec-

ond resolution.

We first compare two benchmarks to popular open-source optimized versions
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5.1. OpenCV Comparison

to illustrate the utility of parallelizing these benchmarks, even at small input

sizes. We then report performance of distributed Halide in two categories: scal-

ing and on-node speedup.

5.1 OpenCV Comparison

To establish the utility of using Halide to parallelize and distribute these bench-

marks, we first compare against reference sequential implementations of the box

blur and edge-detection benchmarks. We chose to compare against OpenCV [5],

a widely-used open source collection of many classical and contemporary com-

puter vision and image processing algorithms. The OpenCV implementations

have been hand-optimized by experts over the almost 20 years it has been in

development.

We chose box blur and edge-detection to compare because OpenCV contains

optimized serial implementations of both kernels, whereas both Halide bench-

marks are fully parallelized. We built OpenCV on the test machine using the

highest vectorization settings (AVX) defined by its build system. The results are

summarized in Tables 5.1 and 5.2. For the largest tested input size, the parallel

single-node Halide implementation was 8.5× faster for box blur and 11× faster

for Sobel. Even for these simple pipelines there is a need for parallelism.
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5.2. Scaling

Input Size Distr. Halide OpenCV Speedup
(s) (s)

1000× 1000 0.002 0.002 1.0×
2000× 2000 0.002 0.009 1.255×
4000× 4000 0.004 0.033 8.252×

10000× 10000 0.023 0.223 9.697×
20000× 20000 0.096 0.917 9.552×
50000× 50000 0.688 5.895 8.568×

Table 5.1: Speedup of Distributed Halide box blur over OpenCV.

Input Size Distr. Halide OpenCV Speedup
(s) (s)

1000× 1000 0.003 0.004 1.020×
2000× 2000 0.004 0.019 4.752×
4000× 4000 0.010 0.074 7.4×

10000× 10000 0.054 0.446 8.259×
20000× 20000 0.183 1.814 9.913×
50000× 50000 1.152 12.674 11.001×

Table 5.2: Speedup of Distributed Halide Sobel edge detection over OpenCV.

5.2 Scaling

To test the scalability of distributed Halide, we ran each benchmark on increasing

numbers of ranks with a fixed input size. Then, we repeated the scaling exper-

iments with several input sizes up to a maximum value. These results measure

the benefit of distributed computation when the communication overhead is out-

stripped by the performance gained from increased parallelism.

As a baseline, for each benchmark and input size, we ran the non-distributed

version on a single node. As mentioned previously, the parallel runtime was con-
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5.2. Scaling

figured to use as many threads as logical cores. Therefore, for all benchmarks we

normalized to the non-distributed, single-node, 24-core/48-thread median run-

time on the given input size.

When increasing the number of nodes, we adopted a strategy of allocating

two ranks per node. This maximized our distributed performance by mitigat-

ing effects of the NUMA architecture, explored in more detail in the following

section.

Scaling results from all nine benchmarks are presented in Figure 5.2. Broadly

speaking, the results fall into three categories.

In the first category are the bilateral grid, blur, resize, Sobel, transpose and

wavelet benchmarks. This category represents benchmarks exhibiting predictable

and well-scaling results. The distribution strategy in bilateral grid, blur and

wavelet was the same, utilizing multiple stages with redundant computation.

The only data source requiring communication for these benchmarks was the in-

put buffer itself: once the (relatively small) input ghost zones were received, each

rank could proceed independently, maximizing parallel efficiency. On bilateral

grid, even the smallest input size achieved a 8.8× speedup on 16 nodes, with the

maximum input size achieving 12.1× speedup. On blur and wavelet, the small-

est input size achieved a speedup only around 4×: both blur and wavelet have

very low arithmetic complexity, meaning with small input sizes each rank was

doing very little computation.

Transpose, which belongs to the first category, demonstrated good scaling
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(a) Bilateral grid
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(b) Blur
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(c) Camera pipe
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(d) Interpolate

0 50 100 150 200 250 300 350
# cores

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

2000x2000

4000x4000

10000x10000

15000x15000

Linear

(e) Local Laplacian
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(f) Resize
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(g) Sobel
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(h) Transpose
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Figure 5.2: Scaling results across all benchmarks with varying input sizes.

when distributing the input and output buffers along opposite dimensions. We

distributed the input along the x dimension and output along the y dimension,

requiring only on-node data access to perform the transpose. If we distributed

58



5.2. Scaling

input.distribute(x)
output.distribute(y)

input.distribute(y)
output.distribute(y)

Figure 5.3: Two data distributions in transpose. By distributing the input along
the opposite dimension as the output, only local accesses (dotted lines) are re-
quired to transpose the input, as opposed to the explicit communication (solid
lines) in the other case.

# nodes Input Distr. Runtime (s) Speedup

1 N/A 0.119 1.0 ×
16 y 0.067 1.779 ×
16 x 0.007 16.172 ×

Table 5.3: Speedup of transpose on 23000×23000 image with different input dis-
tributions.

both the input and output along the same dimension, the ghost zone for the in-

put on each rank would have required communication. These two strategies are

visualized in Figure 5.3. In Table 5.3 we compare the speedup of transpose with

16 nodes using each data distribution. The difference between the two data dis-

tributions is an order of magnitude of speedup gained.

The second category consists of camera pipe and local Laplacian. These bench-

marks exhibit less scalability than those in the first category. Both the camera

pipe and local Laplacian pipelines are complex, leading to a large schedule space,

59



5.2. Scaling

and we expect that by exploring further schedules, even better scalability can be

achieved. Regardless of their suboptimal schedules, local Laplacian and cam-

era pipe achieved a 7.7× and 11.2× speedup on 16 nodes, respectively, for their

largest input sizes.

The final category consists of interpolate. This benchmark displayed super-

linear scaling for larger input sizes. The image-pyramid based interpolation

displayed some of the best scaling behavior, even at a maximum input size of

20,000×20,000. We accomplished this in part by utilizing redundant computa-

tion in the later stages of the pyramid, using the strategy visualized in Figure 3.4.

In addition, the distributed pipeline exhibits better hardware utilization: as the

working set size decreases per rank, each processor can make more effective use

of its cache, leading to better memory bandwidth utilization. Finally, NUMA-

aware data partitioning leads to better on-node parallel efficiency, and is explored

in more detail in the following subsection.

To measure an estimation of scaling efficiency, we also measured the com-

munication overhead for each benchmark on the smallest input and a mid-range

input size (1000× 1000 and 20000× 20000 respectively), on a single node (with

two MPI ranks) and 16 nodes (with 32 MPI ranks, one per socket). We used the

MPIP [34] library to gather these results over all iterations. The results are sum-

marized in Table 5.4. The “1k/1N” column refers to the input size of 1,000 on 1

node; similarly for the other columns. The “App” and “MPI%” columns refer to

the aggregate application execution time in seconds and the percentage of that
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5.2. Scaling

Benchmark 1k/1N 1k/16N 20k/1N 20k/16N
App. (s) MPI% App. MPI% App. MPI% App. MPI%

bilateral grid 2.43 0.04 9.83 53.65 809 0.08 847 2.47
blur 0.19 14.16 5.87 93.46 16.4 0.82 28.8 12.93

camera pipe 0.86 13.24 – – 78.5 0.42 140 28.24
interpolate 1.27 22.64 23.6 68.31 188 3.64 250 44.05

local laplacian 3.07 10.5 30.6 61.83 360 6.42 813 72.26
resize 0.6 7.61 3.96 71.45 59.3 1.42 131 42.09
sobel 0.13 12.32 7.16 92.93 18.6 1.22 30.7 23.41

transpose 0.09 7.58 1.01 69.66 9.83 0.10 14.7 39.84
wavelet 0.20 10.81 2.05 66.15 13 0.67 20.9 27.52

Table 5.4: Communication and computation time for each benchmark.

time spent in the MPI library. Roughly speaking, the benchmarks which exhibit

poor scaling (the second category) have a larger fraction of their execution time

consumed by communication; for example, nearly 75% of the execution time of

local Laplacian across 16 nodes is spent communicating or otherwise in the MPI

library. This indicates that the distributed schedules for these benchmarks are not

ideal. Further experimentation with distributed scheduling would likely lead to

improved scalability on these benchmarks. We were unable to run the 1k/16N

case for camera pipe because this benchmark contains a distributed dimension of

only extent 30 with an input size of 1,000, which cannot be distributed across 32

ranks.
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5.3. On-Node Speedup from NUMA-Aware Distribution

5.3 On-Node Speedup from NUMA-Aware

Distribution

To quantify the portion of speedup seen with “distributing” a Halide pipeline

on a single node, we used the open-source Intel PMU profiling tools [6]. These

expose a wider range of symbolic hardware performance counters than is read-

ily available in the standard Linux perf tool. For this experiment, we ran a

23,000×23,000 2D box blur under different NUMA configurations. During each

run we gathered several performance counters for LLC (last level cache) misses

satisfied by relevant sources. In particular we looked at:

• LLC demand read misses, any resolution

(offcore_response_demand_data_rd_llc_miss_any_response)

• LLC demand read misses resolved by local DRAM

(offcore_response_demand_data_rd_llc_miss_local_dram)

• LLC demand read misses resolved by remote DRAM

(offcore_response_demand_data_rd_llc_miss_remote_dram)

Demand misses in this context refer to misses that were not generated by the

prefetcher. We also measured misses resolved by hits in remote L2 cache, but

these amounted to less than 0.1% of the total misses, so are not reported here.
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5.3. On-Node Speedup from NUMA-Aware Distribution

We gathered these performance counters under four NUMA configurations of

the 2D blur. In all cases, the schedule we used evaluated rows of the second blur

stage in parallel (i.e blur_y .parallel(y)). For the distributed case, we sim-

ply distributed along the rows as well, i.e. blur_y.parallel(y).distribute(y).

The four configurations were:

• Halide: Regular multithreaded Halide executing on all 24 cores.

• NUMA Local: Regular Halide executing on 12 cores on socket 0, and mem-

ory pinned to socket 0.

• NUMA Remote: Regular Halide executing on 12 cores on socket 0, but

memory pinned to socket 1.

• Distr. Halide: Distributed Halide executing on all 24 cores, but with one

MPI rank pinned to each socket.

For the “local” and “remote” NUMA configurations, we used the numactl tool

to specify which cores and sockets to use for execution and memory allocation.

The “local” NUMA configuration is invoked with numactl -m 0 -C 0-11,24-35,

specifying that memory should be allocated on socket 0, but only cores 0-11 (and

hyperthread logical cores 24-35) on socket 0 should be used for execution. The

“remote” configuration used numactl -m 1 -C 0-11,24-35.

The results of these four scenarios are summarized in Table 5.5. The results

indicate that approximately 50% of the last-level cache misses during regular
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5.3. On-Node Speedup from NUMA-Aware Distribution

multithreaded Halide execution required a fetch from remote DRAM. By using

distributed Halide to pin one rank to each socket (the “distributed Halide” con-

figuration), we achieve near-optimal NUMA performance, where 99.5% of LLC

misses were able to be satisfied from local DRAM.

Another item of note in the Table 5.5 is the total number of LLC misses from

regular to distributed Halide in this scenario. This is due to the partially static,

partially dynamic scheduling that occurs with the distributed schedule. In effect,

each rank is statically responsible for the top or bottom half of the rows of the

input. Then, parallelization using the dynamic scheduling happens locally over

each half. Restricting the domain of parallelism results in better cache utilization

on each socket, meaning many of the accesses that missed LLC in regular Halide

become hits in higher levels of cache with distributed Halide.

Table 5.6 summarizes the benefit of using a distributed pipeline to form NUMA-

aware static partitions. For each benchmark, we report the runtime of the max-

imum input size of the regular Halide pipeline versus the distributed pipeline.

The distributed pipeline was run on a single node with the same number of cores,

but one rank was assigned to each of the two sockets. The numbers are the me-

dian runtimes of 50 iterations.

While taking advantage of NUMA could also be done in the parallel runtime,

our approach allows the distributed scheduling to generalize to handle NUMA-

aware static scheduling, while maintaining the dynamic load balancing already

present. This fits within the general Halide philosophy of exposing choices like
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Config Total #
Misses

% Local
DRAM

% Remote
DRAM

Halide 3.85× 109 51.5% 48.5%
NUMA Local 2.36× 109 99.6% 0.4%

NUMA Remote 3.48× 109 3.6% 96.4%
Distr. Halide 2.29× 109 99.5% 0.5%

Table 5.5: LLC miss resolutions during 23,000×23,000 blur under several NUMA
configurations.

Benchmark Halide (s) Distr. Halide (s) Speedup

bilateral grid 9.772 10.116 0.966 ×
blur 0.657 0.585 1.122 ×

camera pipe 4.081 4.889 0.834 ×
interpolate 2.588 1.822 1.420 ×

local laplacian 11.826 10.003 1.182 ×
resize 3.712 3.076 1.206 ×
sobel 1.104 1.172 0.941 ×

transpose 0.641 0.610 1.050 ×
wavelet 0.673 0.712 0.944 ×

Table 5.6: Runtime and speedup on a single node and the same number of cores
with NUMA-aware distribution over two ranks, using each benchmark’s maxi-
mum sized input.

these as scheduling directives: in effect, the distribute() directive can also

become a directive for controlling NUMA-aware partitioning of computation.

5.4 Scalability on Cori

In order to support next-generation large-scale image processing, it is necessary

for distributed Halide to scale to much higher core counts, such as what would
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used on supercomputer scale problems. Our testbed machine configuration is

not quite representative of typical supercomputer architectures, not least due to

the fact that our test network topology is fully connected. To measure how well

our results generalize to a real supercomputer, we repeated the scalability mea-

surements on “Cori,” the newest supercomputer available at NERSC [3].

Cori is a Cray XC40 supercomputer, with a theoretical peak performance of

1.92 Petaflops per second. It has 1,630 compute nodes totaling 52,160 cores. Each

compute node has two sockets, each of which is Intel Xeon E5-2698 v3 @ 2.3GHz.

The network infrastructure is Cray Aries, with the “Dragonfly” topology. Each

node has 128GB of main memory. More details can be found at [3]. We ran our

scalability tests up to a total of 64 nodes, or 2,048 cores.

The findings are summarized in Figure 5.4. The scalability of the benchmarks

is similar to those observed on our testing machine. On 64 nodes, the blur bench-

mark achieves a 57× speedup for a parallel efficiency of 89%, similar to the 86%

efficiency on the 16 node test machine. The benchmarks that exhibited a falloff

in scaling on our testing machine (such as local Laplacian) unsurprisingly do not

scale on Cori. In the case of interpolate and resize, benchmarks that exhibited

decent scaling on our testing machine, the falloff in scalability is due to strong

scaling. We were unable to measure a single-node baseline for larger input sizes

on these two benchmarks due to memory constraints. Thus, the curves quickly

fall off as the limits of useful distribution are reached.

The transpose benchmark appears to display an accelerating scaling curve on
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smaller inputs, but these results should be taken with a grain of salt. We included

small input sizes up to 20,000×20,000 for consistency across benchmark results,

but the absolute difference in execution time between 32 and 64 nodes (1,024

and 2,048 cores) is less than 0.01 seconds, and the baseline is on the order of 0.1

seconds, as reported in Table 5.6. Thus, the overall effect on execution time is

nearly negligible from 32 to 64 nodes.

In general, a larger input size is required to see similar scaling at the 384 core

count of our test machine. Most likely this is due to increased network contention

during execution. In particular, the compute nodes assigned by the Cori job

scheduler are not chosen based on locality, meaning the number of hops required

for point-to-point communication can be much larger than on our test machine

(which was fully connected). Additionally, Cori is a shared resource, meaning

network contention with unrelated jobs could also have a non-negligible impact

on scalability of these applications.

5.5 Terapixel Results

We evaluated distributed Halide on terapixel-sized inputs (1012 pixels) on two

of the image processing benchmarks and one representative simulation bench-

mark. The two image processing benchmarks, blur and Sobel, were chosen be-

cause image smoothing and edge detection are two common tasks for stitching

disparate input images into a monolithic output, a typical scenario today at the
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terapixel scale. Additionally, because Cori is a shared and accounted resource,

long-running large-scale jobs are difficult to schedule; blur and Sobel had the

added advantage of a relatively short wallclock execution time. The input size

for these benchmarks was 1, 000, 000× 1, 000, 000.

The simulation benchmark was a simple 3D heat equation solver discretized

using the finite difference method, namely the 7-point stencil

Ut(x, y, z) = c0Ut−1(x, y, z) + c1(Ut−1(x + 1, y, z) + Ut−1(x− 1, y, z)+

Ut−1(x, y + 1, z) + Ut−1(x, y− 1, z)+

Ut−1(x, y, z + 1) + Ut−1(x, y, z− 1)).

The timings reported for the heat benchmark are for a single timestep of the

solver, meaning the scaling can be directly extrapolated for arbitrary numbers

of timesteps. The input size for this benchmark was 10, 000× 10, 000× 10, 000.

The baseline for these benchmarks was the minimum number of Cori nodes

with enough aggregate main memory to process the terapixel-sized image. Each

benchmark tested used four-byte pixels, leading to a 4× 1012/240 = 3.64 terabyte

image. Each compute node must have memory enough at least for the input

and output image sections; on Cori, each node has roughly 120 GB of usable

main memory, leading to a minimum of 7.28TB/0.12TB = 62 nodes, which was

rounded up to 64.

The results are summarized in Table 5.7. The runtime reported is the median

runtime of 50 iterations of the benchmark (an “iteration” in the heat benchmark is
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5.5. Terapixel Results

# nodes Heat Blur 1D Blur 2D Sobel
Time (s) × Time × Time × Time ×

∗64 5.218 1× 4.628 1× 3.708 1× 7.137 1×
128 2.612 2.0× 2.341 2.0× 1.485 2.5× 3.687 1.9×
256 1.273 4.1× 1.901 2.4× 0.702 5.3× 1.809 3.9×
512 0.627 8.3× 4.233 1.1× 0.335 11.1× 0.905 7.9×

Table 5.7: Scaling results for three benchmarks on terapixel inputs. ∗The baseline
number of nodes for Blur 2D was 66.

a single timestep). The heat benchmark (using 3D distribution) displays slightly

superlinear scaling, a good sign that the hardware is being very well utilized. The

Sobel benchmark (using 1D distribution) displays similar scaling as reported in

the previous sections on smaller inputs.

However, when initially running these experiments, we found that the blur

schedule used to gather the experimental results in Sections 5.2, 5.3 and 5.4 dis-

played poor scaling for the terapixel input. The “Blur 1D” column in Table 5.7

reports these numbers. The 1D refers to the fact that the schedule was using a

one dimensional distribution. When we moved to a two-dimensional distribu-

tion (the “Blur 2D” column) the benchmark exhibited much better and superlin-

ear scaling. This provides concrete evidence of the power of distributed Halide:

when a particular schedule displays poor scaling, it is a matter of only a sim-

ple schedule modification to achieve much better performance, even at these ex-

tremely large scales. (Note that due to the increased size and number of ghost

zones, the baseline execution of Blur 2D required 66 Cori nodes for an aggregate

memory requirement of 8.2 TB) .
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(a) Bilateral grid
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(b) Blur
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(c) Camera pipe
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(d) Interpolate
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(e) Local Laplacian
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(f) Resize
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(g) Sobel
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(h) Transpose
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Figure 5.4: Scaling results across all benchmarks with varying input sizes on the
Cori supercomputer.
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Chapter 6

Related Work

Distributed Scheduling Finding an optimal allocation of tasks to distributed

workers in order to minimize communication is an NP-hard problem in gen-

eral [15]. As such, there is a wealth of research devoted to approximate algo-

rithms for finding task allocations to minimize communication, e.g. [35, 15, 9, 22,

21, 17]. The distributed Halide compiler does not attempt to automatically deter-

mine distributed schedules. This follows the Halide philosophy in allowing the

programmer to quickly try many different distributed schedules and empirically

arrive at a high-performing distributed schedule. To semi-automate the search

process, one can apply an autotuning approach as in [10].

In [16], the authors formulate a static polyhedral analysis algorithm to gener-

ate efficient communication code for distributed affine loop nests. This work uses

a notion of “flow-out intersection flow-in” sets, derived using polyhedral analy-
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sis, to minimize unnecessary communication present in previous schemes. Our

approach of required region intersection is similar to their approach. However,

because our code generation can take advantage of domain-specific information

available in Halide programs (for example, stencil footprints), our system has ad-

ditional information that allows our code generation to be much simpler. A more

general approach like flow-out intersection flow-in could be used, but would add

unnecessary complexity.

Distributed Languages and Libraries In [25], an edge-detection benchmark

was distributed on a network of workstations. The data partitioning scheme they

adopted was to initially distribute all input required by each workstation, mean-

ing no communication was required during execution. However, the software

architecture in this work requires the distribution strategy to be implemented

on their master workstation, and reimplementing a new data distribution in this

architecture requires a non-trivial amount of work.

Some distributed languages such as X10 [12] and Titanium [20] include rich

array libraries that allow users to construct distributed multidimensional struc-

tured grids, while providing language constructs that make it easy to communi-

cate ghost zones between neighbors. However, exploring schedules for on-node

computation requires rewriting large portions of the code.

DataCutter [11] provides a library approach for automatically communicating

data requested by range queries on worker processors. Their approach requires
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generating an explicit global indexing structure to satisfy the range queries, where

our approach maps data ranges to owners with simple arithmetic.

Image Processing DSLs Other than Halide, other efforts at building domain-

specific languages for image processing include Forma [32], a DSL by Nvidia

for image processing on the GPU and CPU; Darkroom, which compiles image

processing pipelines into hardware; and Polymage [27], which implements the

subset of Halide for expressing algorithms and uses a model-driven compiler

to find a good schedule automatically. None of these implement distributed-

memory code generation.

Stencil DSLs Physis [26] takes a compiler approach for generating distributed

stencil codes on heterogeneous clusters. They implement a high-level language

for expressing stencil code algorithms, and their compiler automatically performs

optimizations such as overlap of computation and communication. Physis does

not have analogy to Halide’s scheduling language, meaning performance of a

distributed stencil code completely depends on the automatic compiler optimiza-

tions. Other stencil DSLs [33, 23, 14, 19] do not support distributed code genera-

tion, though they do generate shared-memory parallel code.
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Chapter 7

Conclusions and Future Work

In this thesis we proposed several new features for the Halide language to sup-

port scheduling pipelines for distributed execution, and evaluated their efficacy.

The new language features fit well within the existing Halide language and are

simple enough to easily understand, yet powerful enough in composition to ex-

press sophisticated data and computation distributions. With the work of this

thesis, programmers can quickly experiment to optimize distributed image pro-

cessing or simulation applications both globally, in terms of communication of

shared data, and locally in terms of on-node computation, using a single uni-

fied language. Prior to the work presented in this thesis, Halide was restricted

to shared-memory execution only, a major limitation for terapixel-and-beyond

input sizes.

On nine image processing benchmarks, we demonstrated up to a superlinear
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18× speedup on 384 cores distributed across 16 compute nodes and up to 57×

speedup on 2,048 cores across 64 compute nodes on the NERSC Cori supercom-

puter. We also demonstrated up to a 1.4× speedup on single-node execution by

mitigating NUMA architectural effects. We demonstrated near-linear scaling of

three benchmarks on terapixel inputs, including a 3D heat stencil, up to 16,384

cores across 512 Cori nodes.

There are a number of intriguing avenues to extend this work in the future.

Perhaps the most obvious is to extend distributed Halide to support heteroge-

neous execution on CPU/GPU distributed systems. As Halide already contains

a backend capable of generating GPU code, this is a natural extension. Addition-

ally, many stencil pipelines in both the image processing and simulation domains

are very easily adapted to the GPU model of computation, meaning a heteroge-

neous distributed Halide backend could offer many times better performance on

capable systems.

While the scheduling language approach of Halide is orders of magnitude

beyond the previous state of the art for optimizing stencil pipeline performance,

there is still much to be desired from a user perspective, as finding good sched-

ules can still be a difficult task. Another natural extension of this thesis would be

to extend the existing autotuning approach to handle the new distributed Halide

constructs. This would allow for automatic search not only for efficient on-node

schedules, but also efficient data layouts and computation distributions.

Finally, while autotuning is one potential method for automatic distributed
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scheduling, there is much work in the literature analyzing the performance of

distributed stencils, including many models used for performance predictions.

These heuristics could be encapsulated in a Halide compiler pass to automati-

cally schedule distributed Halide pipelines. Then, a schedule search either by an

autotuner or the programmer can be started from this new baseline, potentially

vastly reducing the time to arrive at an optimal schedule.

76



References

[1] Digitized Sky Survey. URL http://archive.stsci.edu/dss/.

[2] Canon 250 Megapixel Image Sensor, Press Release. URL http://www.

canon.com/news/2015/sep07e.html.

[3] NERSC Cori Supercomputer System. URL http://www.nersc.gov/

users/computational-systems/cori/.

[4] Gigapan, Inc. URL http://www.gigapan.com/.

[5] The OpenCV Library. URL http://code.opencv.org.

[6] Intel PMU Profiling Tools. URL https://github.com/andikleen/

pmu-tools.

[7] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden.

Pyramid methods in image processing. RCA engineer, 29(6):33–41, 1984.

[8] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. Loggp: in-

corporating long messages into the logp modelâĂŤone step closer towards
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Appendix A

Distributed Scheduling Tutorial

This appendix contains an overview of the new distributed Halide language fea-

tures in the context of several examples. Each example builds on the previous

one.

A.1 Halide Introduction

#include <Halide.h>

int main(int argc, char **argv) {

// A non-distributed example to start, a Halide program

// to brighten a grayscale image. To keep this simple,

// we’ll omit filesystem I/O details and just

// arithmetically initialize the input image pixel

// values.
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A.1. Halide Introduction

// Declare and allocate a 100x100 input and output

// image.

Halide::Image<int> input(100, 100), output(100, 100);

// Define the first pipeline stage needed here, which

// simply multiplies input pixels by a brighten factor.

const float factor = 1.25f;

Halide::Func brighten;

Halide::Var x, y;

brighten(x, y) = factor * input(x, y);

// Define a second pipeline stage to convert the new

// pixel values back to integers and clamp their values

// to [0,255].

Halide::Func clampint;

clampint(x, y) = clamp(Halide::cast<int>(brighten(x, y)),

0, 255);

// The definition of the Halide pipeline is

// complete. Now we compile it..

clampint.compile_jit();

// ...initialize the input with an arithmetic

// progression...

for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {

input(x, y) = x + y;

}

}
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A.2. Distributing a Pipeline

// ...and execute it into the output image.

clampint.realize(output);

return 0;

}

A.2 Distributing a Pipeline

#include <Halide.h>

#include <mpi.h>

int main(int argc, char **argv) {

// We’ll take the pipeline from the previous example and

// turn it into a distributed pipeline using the new

// language features.

// This is now an MPI program, so we need to initialize

// the MPI library.

MPI_Init(&argc, &argv);

// Declare and allocate a 100x100 input and output

// image. Now that these are DistributedImages, the

// 100x100 refers to the global extents, not the extents

// on each rank.

Halide::DistributedImage<int> input(100, 100),

output(100, 100);

// The pipeline definition (i.e. the algorithm) is

// identical to the non-distributed example. Nothing

// changes here.

const float factor = 1.25f;
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A.2. Distributing a Pipeline

Halide::Func brighten;

Halide::Var x, y;

brighten(x, y) = factor * input(x, y);

// Define a second pipeline stage to convert the new

// pixel values back to integers and clamp their values

// to [0,255].

Halide::Func clampint;

clampint(x, y) = clamp(Halide::cast<int>(brighten(x, y)),

0, 255);

// Now distribute the pipeline on the y dimension. Each

// rank will be responsible for computing a contiguous

// "slice" of rows for the ’clampint’ stage. The

// ’brighten’ stage is unscheduled, which means the

// ’brighten’ function will be inlined into ’clampint’.

clampint.distribute(y);

// The definition and scheduling of the distributed

// Halide pipeline is complete. Now we can specify the

// data distribution. This has to occur after scheduling

// the pipeline so that the input image can be allocated

// with room for any border exchanges (here there are

// none). Here we specify both the input and output

// images should also be distributed on the y dimension.

input.set_domain(x, y);

input.placement().distribute(y);

input.allocate();

output.set_domain(x, y);

output.placement().distribute(y);
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A.2. Distributing a Pipeline

output.allocate();

// Compile.

clampint.compile_jit();

// Initialize the pixel values with an arithmetic

// progression. Now the x and y iterate over the

// rank-local section of ’input’. We can access the

// global extents with ’input.global_height()’ and

// ’input.global_width()’.

for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {

// Because x and y are local coordinates, we use

// the DistributedImage::global() function to

// convert local x to global x and local y to

// global y.

const int global_x = input.global(0, x);

const int global_y = input.global(1, y);

input(x, y) = global_x + global_y;

}

}

// Execute it into the rank-local portion of the output

// image.

clampint.realize(output);

MPI_Finalize();

return 0;

}
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A.3. Distributed Pipeline with Communication

A.3 Distributed Pipeline with Communication

#include <Halide.h>

#include <mpi.h>

int main(int argc, char **argv) {

// The previous example, while a proper distributed

// pipeline, did not actually involve any

// communication. The pipeline stencils were pointwise,

// meaning they did not access neighboring pixels, and

// thus each rank had all of the data it needed to

// compute everything locally. Now we move to a new

// example, the 3x3 box blur, which does involve

// communication.

// Initialize the MPI library.

MPI_Init(&argc, &argv);

// Declare and allocate a 100x100 input and output

// image.

Halide::DistributedImage<int> input(100, 100),

output(100, 100);

// Because our pipeline now accesses the input image

// through a stencil, we need to impose a boundary

// condition which specifies what to do when attempting

// out-of-bounds accesses. Here we impose a simple

// clamp-to-edge boundary condition. Note that the x, y

// coordinates are being clamped to the global extents

// of the input image. This means that accesses on a

// particular rank may be to pixels owned by a different
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A.3. Distributed Pipeline with Communication

// rank, but no rank will access pixels outside of the

// global input image.

Halide::Func clamped;

Halide::Var x, y;

clamped(x, y) = input(clamp(x, 0, input.global_width()-1),

clamp(y, 0, input.global_height()-1));

// The definition of the 3x3 box blur in two stages. The

// algorithm definition contains no special syntax to

// indicate that there may be communication needed: the

// communication is inferred by the compiler passes.

Halide::Func blur_x, blur_y;

blur_x(x, y) = (clamped(x-1, y) +

clamped(x, y) +

clamped(x+1, y))/3;

blur_y(x, y) = (blur_x(x, y-1) +

blur_x(x, y) +

blur_x(x, y+1))/3;

// We’ll give a simple distributed schedule to the

// pipeline: compute both stages separately, both

// distributed on the y dimension.

blur_x.compute_root().distribute(y);

blur_y.compute_root().distribute(y);

// Allocate the images now that the pipeline is

// scheduled. Note that now we must pass the last stage

// of the pipeline to the allocate() function for

// ’input’: this is so that the local portion of ’input’

// can be allocated large enough for any border exchange

// to happen.

input.set_domain(x, y);
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A.3. Distributed Pipeline with Communication

input.placement().distribute(y);

input.allocate(blur_y, output);

output.set_domain(x, y);

output.placement().distribute(y);

output.allocate();

// Compile.

blur_y.compile_jit();

// Initialize the pixel values with an arithmetic

// progression.

for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {

const int global_x = input.global(0, x);

const int global_y = input.global(1, y);

input(x, y) = global_x + global_y;

}

}

// Execute it into the rank-local portion of the output

// image. Communication code has been generated for the

// border exchanges. Because we distributed everything

// along the y dimension, there will be no communication

// for ’input’ because ’blur_x’ does not access input

// through a stencil in the y dimension. However, there

// will be communication of the intermediate ’blur_x’

// buffer in order to compute ’blur_y’. Each rank will

// need to send and receive the top and bottommost rows

// to and from its neighboring ranks.

blur_y.realize(output);
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MPI_Finalize();

return 0;

}

A.4 Using compute_rank()

#include <Halide.h>

#include <mpi.h>

int main(int argc, char **argv) {

// This example builds on the box blur, but illustrates

// the use of the new compute_rank() scheduling

// directive.

// Initialize the MPI library.

MPI_Init(&argc, &argv);

// Declare and allocate a 100x100 input and output

// image.

Halide::DistributedImage<int> input(100, 100),

output(100, 100);

// Impose a simple clamp-to-edge boundary condition.

Halide::Func clamped;

Halide::Var x, y;

clamped(x, y) = input(clamp(x, 0, input.global_width()-1),

clamp(y, 0, input.global_height()-1));

// The definition of the 3x3 box blur in two stages.

Halide::Func blur_x, blur_y;

blur_x(x, y) = (clamped(x-1, y) +
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clamped(x, y) +

clamped(x+1, y))/3;

blur_y(x, y) = (blur_x(x, y-1) +

blur_x(x, y) +

blur_x(x, y+1))/3;

// We schedule the first stage using the new

// compute_rank() directive. The second stage is

// scheduled as before.

blur_x.compute_rank();

blur_y.compute_root().distribute(y);

// Allocate the images now that the pipeline is

// scheduled.

input.set_domain(x, y);

input.placement().distribute(y);

input.allocate(blur_y, output);

output.set_domain(x, y);

output.placement().distribute(y);

output.allocate();

// Compile.

blur_y.compile_jit();

// Initialize the pixel values with an arithmetic

// progression.

for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {

const int global_x = input.global(0, x);

const int global_y = input.global(1, y);
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input(x, y) = global_x + global_y;

}

}

// Execute it into the rank-local portion of the output

// image. In the previous example, there was no

// communication of the ’input’ buffer in order to

// compute ’blur_x’. However, the meaning of

// compute_rank is to compute all of the particular

// function required to compute all of its consumers

// locally. The only consumer of ’blur_x’ is

// ’blur_y’. Because ’blur_y’ *does* access input

// through a stencil in the y dimension, now ’blur_x’

// needs the additional top and bottom rows of input to

// compute the necessary region. Therefore, in this new

// schedule, there will be communication of ’input’ to

// compute ’blur_x’, but *no communication* of ’blur_x’

// to compute ’blur_y’, which is the definition of

// compute_rank.

blur_y.realize(output);

MPI_Finalize();

return 0;

}

A.5 Nested Distribution

#include <Halide.h>

#include <mpi.h>

int main(int argc, char **argv) {
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// This final example also uses the box blur, but

// illustrates the use of nested distribution composing

// with compute_rank().

// Initialize the MPI library.

int rank = 0, numprocs = 0;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

// Declare and allocate a 100x100 input and output

// image.

Halide::DistributedImage<int> input(100, 100),

output(100, 100);

// Impose a simple clamp-to-edge boundary condition.

Halide::Func clamped;

Halide::Var x, y;

clamped(x, y) = input(clamp(x, 0, input.global_width()-1),

clamp(y, 0, input.global_height()-1));

// The definition of the 3x3 box blur in two stages.

Halide::Func blur_x, blur_y;

blur_x(x, y) = (clamped(x-1, y) +

clamped(x, y) +

clamped(x+1, y))/3;

blur_y(x, y) = (blur_x(x, y-1) +

blur_x(x, y) +

blur_x(x, y+1))/3;

// We schedule the first stage using the new

// compute_rank() directive. The second stage is now
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// scheduled as nested 2D distribution.

blur_x.compute_rank();

// Use the utility ’approx_factors_near_sqrt’ function.

auto proc_grid = Halide::approx_factors_near_sqrt(numprocs);

int p = proc_grid.first, q = proc_grid.second;

if (rank == 0) printf("Using process grid %dx%d\n", p, q);

blur_y.compute_root().distribute(x, y, p, q);

// Allocate the images now that the pipeline is

// scheduled. 2D distribution on the data as well.

input.set_domain(x, y);

input.placement().distribute(x, y, p, q);

input.allocate(blur_y, output);

output.set_domain(x, y);

output.placement().distribute(x, y, p, q);

output.allocate();

// Compile.

blur_y.compile_jit();

// Initialize the pixel values with an arithmetic

// progression.

for (int y = 0; y < input.height(); y++) {

for (int x = 0; x < input.width(); x++) {

const int global_x = input.global(0, x);

const int global_y = input.global(1, y);

input(x, y) = global_x + global_y;

}

}
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// Execute it into the rank-local portion of the output

// image. Now each processor computes a 2D section of

// the output image, the exact extents of which depend

// on the number of MPI ranks available at runtime. If

// you compile this and run with different numbers of

// ranks, you will see the processor grid message

// changes to reflect the difference.

blur_y.realize(output);

MPI_Finalize();

return 0;

}

96


	Contents
	List of Figures
	List of Tables
	Introduction
	Halide Background
	Distributed Scheduling
	Data Distribution via DistributedImage
	Computation Distribution
	Introductory Example
	Recomputation versus Communication
	On-Node Scheduling
	Limitations

	Code Generation
	Ghost Zone Inference
	Communication Code Generation
	Rank Iteration Space

	Evaluation
	OpenCV Comparison
	Scaling
	On-Node Speedup from NUMA-Aware Distribution
	Scalability on Cori
	Terapixel Results

	Related Work
	Conclusions and Future Work
	References
	Distributed Scheduling Tutorial
	Halide Introduction
	Distributing a Pipeline
	Distributed Pipeline with Communication
	Using compute_rank()
	Nested Distribution


