
Experimental Implementations of Stereo Matching
Algorithms in Halide

by

Min Zhang

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Certified by. .
Saman Amarasinghe

Professor
Thesis Supervisor

Accepted by .
Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Experimental Implementations of Stereo Matching Algorithms

in Halide

by

Min Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on , in partial fulfillment of the
requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract

Currently, most stereo matching algorithms focus their efforts on increasing accuracy
at the price of losing run-time performance. However, applications such as robotics
require high performance stereo algorithms to perform real time tasks. The problem
is due to the difficulty of hand optimizing the complicated stereo matching pipelines.

Halide is a programming language that has been widely used in writing high-
performance image processing codes. In this work, we explore the usability of Halide
in the area of real-time stereo algorithms by implementing several stereo algorithms
in Halide. Because of Halide’s ability to reduce the computation cost of dense algo-
rithms, we focus on local dense stereo matching algorithms, including the simple box
matching algorithm and the adaptive window stereo matching algorithms. Although
we have found Halide’s limitation in scheduling dynamic programming and recursive
filters, our results demonstrate that Halide programs can achieve comparable perfor-
mance as hand-tuned programs with much simpler and understandable code. Lastly,
we also include a design solution to support dynamic programming in Halide.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

3

4

Acknowledgments

I would like to express my sincere gratitude to my adviser Saman Amarasinghe, for his

constant guidance and insights throughout my research. I would like to thank Shoaib

Kamil for his timely feedbacks and advisory throughout the many discussions which

helped me out when I get stuck. I would also like to thank Sudeep Pillai for sharing

his insights on stereo algorithms with me when I was looking for the appropriate

algorithms in this field to study. I would also like to thank Gaurav Chaurasia for his

inputs on writing high performance Halide programs when I was new to this field.

Without any of you, this thesis would not be possible.

Finally I would like to thank my family and friends for their constant love and

support throughout this entire process.

5

6

Contents

1 Introduction 11

2 Background 13

2.1 Stereo Matching Algorithms . 13

2.2 Halide . 16

3 Implementing Stereo Algorithms 19

3.1 Box Filter . 19

3.2 The Box Matching Algorithm (stereoBM) 21

3.2.1 Algorithm Description . 21

3.2.2 Scheduling . 23

3.3 The Guided Filter Matching Algorithm (stereoGF) 31

3.3.1 Guided Filter . 31

3.3.2 Algorithm Description . 34

3.3.3 Scheduling . 35

4 Experimental Results 37

4.1 Evaluation of stereoBM Implementations 37

4.2 Evaluation of stereoGF Implementations 42

5 Design for Supporting Dynamic Programming in Halide 45

6 Conclusion 49

7

8

List of Figures

2-1 Example Inputs and Output of Stereo Matching Algorithms. The two

input images are rectified. (c) is the ground truth depth image where

the depth information is represented by color. Blue corresponds to

large disparity values. Red corresponds to small disparity values. . . . 13

2-2 A Simple Example Stereo Matching Pipeline 14

3-1 Box filter defined as two-pass sum, 𝑟 = 2 20

3-2 Box filter using integral image technique, 𝑟 = 2 20

3-3 Schedule 1 of stereobm, 𝑟 = 2. For simplicity, we only split the y direc-

tion in this figure, but the actual schedule splits both x, y directions.

Tiles are evaluated in parallel. Red pixels are the pixels being evalu-

ated at the current iteration. Yellow pixels are the ones used at this

iteration. Blue pixels are the ones stored but not used at this iteration. 23

3-4 Schedule 2 of stereobm, 𝑟 = 2. Tiles are evaluated in parallel. For

simplicity, we only visualize computation of the top-left tile. Green

pixels are the overlapping region between tiles. The d dimensions of

vsum and cSAD are not plotted because their intermediate memory

allocations have width 1 along the d dimension. 25

3-5 Schedule 3 of stereobm, 𝑟 = 2. Tiles are evaluated in parallel. 27

3-6 Schedule 4 of stereobm, 𝑟 = 2. Tiles are evaluated in parallel. The in-

nermost dimension di is plotted here. All computations are vectorized

along di. 28

3-7 Performances of Schedule 2, 3, 4 of stereoBM for different window sizes 30

9

4-1 Accuracies of Halide and OpenCV’s implementations of stereoBM . . 38

4-2 Runtime of Halide and OpenCV’s implementations of stereoBM . . . 38

4-3 The throughput of Halide and OpenCV’s implementations of stereoBM

vs. number of cores . 39

4-4 The throughput of Halide and OpenCV’s implementations of stere-

oBM vs. resolution scales. Q, H, F stand for quarter resolution, half

resolution and full resolution, respectively. 40

4-5 The throughput of Halide and OpenCV’s implementations of stereoBM

vs. disparity range . 41

4-6 The best runtimes of optimized Halide implementation for quarter-

resolution images . 42

4-7 The speedup curves of stereoGF for quarter-resolution images vs. num-

ber of cores . 43

4-8 Performances of stereoGF for images with different resolutions vs.

number of cores . 44

4-9 Performances of stereoGF vs. disparity range 44

10

Chapter 1

Introduction

Stereo matching has been well studied as many vision applications require high-

accuracy dense disparity maps in real-time. However, most state-of-the-art stereo

algorithms have focused their efforts on improving the algorithm accuracy and avoided

optimizing the run-time performance. Most top ranked submissions in the Middel-

bury and KITTI datasets take seconds or even minutes to process a 720× 480 image

[6, 12], which is far from meeting the requirements of real-time applications. While

many implementations are unoptimized for run-time, the performance difference be-

tween a naive implementation of a given algorithm and a highly optimized one can

be an order of magnitude or more.

The reason behind avoiding optimizing for performance is the complexity of state-

of-the-art stereo matching algorithms. Many are almost infeasible to optimize by

hand. Aside from the challenge of writing in a low-level programming language like

C, efficient implementations also require global optimization of computation organi-

zation and data structures based on the entire pipeline, instead of simply combining

the locally optimized components. Thus, the complexity of optimizing an algorithm

grows exponentially with the length of the algorithm. Even for the simplest box

matching algorithm, although the OpenCV implementation (stereobm) achieves peak

performance by hand-writing parallel and vectorized code in low-level C, the imple-

mentation is over 1000 lines long and methods are twisted together which makes it

extremely difficult to understand or modify for customized usage. Hand optimizing

11

the state-of-the-art stereo algorithms would be a formidable task, considering the

complexity of those algorithms.

Halide is a new programming language designed as a tool to make it easy to

write high performance code for image processing tasks [9]. It provides options for

programmers to write simple code to explore different optimization tricks such as

storage and computation reordering, parallelism and vectorization. In respect to

such structure, the power of Halide is maximized for dense algorithms where identical

computations are applied to all pixels. In applications such as bilateral filtering and

local laplacian, Halide shows 2-4× speedup comparing to the expert tuned code while

the expert tuned code is around 4× longer than the Halide programs.

Although it has already shown great success in many image processing applications

both in simplifying the implementation process and achieving the same or better

performance as hand-optimized code, it is rarely applied in vision algorithms. As we

have discussed, real-time stereo algorithms are in great demand while most stereo

algorithms do not have an optimized implementation. In this thesis, we explore the

opportunities of developing high performance implementations of stereo matching

algorithms in Halide. We particularly choose to study dense stereo algorithms which

use the local approach since Halide is best suited for such algorithms.

We begin this thesis by a review of current state-of-the-art stereo matching al-

gorithms and a brief introduction to Halide to explain why we choose dense stereo

algorithms to study. In chapter 3, we discuss the implementation details of the two

algorithms we implemented, stereoBM and stereoGF. In chapter 4, we compare the

performance of our implementation with other hand-written implementations. Lastly,

in chapter 5, we discuss the problems we encountered when developing Halide pro-

grams for stereo matching algorithms and propose potential solutions for future work.

12

Chapter 2

Background

2.1 Stereo Matching Algorithms

(a) Input image taken from
left viewpoint

(b) Input image taken from
right viewpoint

(c) Output depth image
(ground truth)

Figure 2-1: Example Inputs and Output of Stereo Matching Algorithms. The two
input images are rectified. (c) is the ground truth depth image where the depth
information is represented by color. Blue corresponds to large disparity values. Red
corresponds to small disparity values.

Stereo matching studies the problem of extracting depth information from two

images from different viewpoints. Given two images taken from different viewpoints,

stereo matching algorithms output the correspondence between pixels in the two

images. To simplify the problem, the input images are usually rectified to align the

epipolar lines with the horizontal coordinate axis so that the matching point of a

given point (𝑥0, 𝑦0) in one image lies on the horizontal line 𝑦 = 𝑦0 in the other image

[5]. The disparity level (depth) for a given point is then defined as its distance from

13

its matching point. The output of the stereo matching algorithms in this case is a

disparity map mapping each pixel to its disparity level. Figure 2-1 shows an example

of inputs and outputs of stereo matching algorithms.

Figure 2-2: A Simple Example Stereo Matching Pipeline

For the rest of this section, we provide an overview of existing stereo matching

algorithms. As [13] suggests, classical stereo matching methods generally consists of

the following four steps. Figure 2-2 is a simple example stereo matching pipeline with

4 × 4 gray scale input images.

1. Cost Initialization, which generates a 3D cost volume by calculating the

matching costs for assigning different disparity levels to different pixels. In the

example, the cost of matching two pixels are defined as the absolute difference

between their values and the disparity range is from 0 to 1.

2. Cost Aggregation, which aggregates the initial matching costs spatially for

each pixel. In the example, the aggregated cost for a pixel is calculated as sum

of the costs in a 3 × 3 squared window centered at that pixel with repeated

boundary condition.

3. Disparity Optimization, which selects the best disparity hypothesis for each

14

pixel to minimize a local or global cost function. In the example, we simply

select the disaprity level with the lowest cost.

4. Disparity Refinement, which applies post-processing to the disparity maps

generated from the last step to remove discrepancies or provide sub-pixel esti-

mates.

Depending on the disparity optimization step, stereo matching algorithms can

be divided into two categories, local and global methods. Global methods work

by adding a pairwise smoothness term to the cost function which enforces spacial

continuity across pixels and aligned assignments across edges [10]. Although global

methods generally perform better than local methods in handling object boundaries

and avoiding unambiguous matching, these advantages come at a price. The global

optimization problem is usually NP-hard. An estimated solution usually involves

using global energy minimization approaches such as graph cut or belief propagation

[4, 15], both require expensive computation that are non-parallelizable. As a result,

most existing real-time algorithms still rely on the simple winner-takes-all (WTA)

approach for disparity optimization. For the same reason, we focus our efforts on

local methods in this work.

The cost aggregation step can be considered as applying a spacial filter to the

cost volume [10]. Which filter to use highly affects the performance of the resulting

stereo matching algorithm. The most straightforward approach is to use a box filter,

which uses the average of costs of assigning disparity 𝑑 to all pixels within a squared

window centered at pixel 𝑝 as the cost of assigning 𝑑 to 𝑝. This is referred to as the

box matching algorithm. The implicit assumption of this method is that all pixels in

the squared window share similar disparities, which does not hold at boundaries of

objects, resulting in blurred edges in the generated disparity maps.

To overcome the above limitations, Yoon and Kweon [17] first adopted the edge-

preserving bilateral filter for cost aggregation and showed that their algorithm outper-

formed many global optimization based approaches. However, the naive implementa-

tion of bilateral filter is very time consuming. Richard et al. [11] provided a real-time

15

implementation as an approximate of the bilateral filter, although the approximation

degrades the accuracy of the algorithm, diminishing the edge-preserving advantages

of the bilateral filtering. To overcome this problem, Rhemann et al. [10] proposed a

solution that uses a guided filter to smooth the cost volume. The guided filter was

first introduced by He et al. in [3] as an alternative to the bilateral filter. It not

only provides the edge-preserving property but also can be implemented efficiently.

Rhemann et al. showed that by using the guided filter, the local WTA method could

achieve state-of-the-art performance.

In this work, we implement two algorithms in Halide, the simple box matching

algorithm (stereoBM) and Rhemann et al.’s algorithm using guided filter (stereoGF).

We specifically choose these two algorithms because they serve as good representa-

tives of the family of those stereo algorithms which use different filtering techniques

for cost aggregation and then use the local WTA approach. StereoBM is the simplest

algorithm in this family and is used as one component in many more complicated

stereo algorithms such as SGBM (semi-global box matching) while stereoGF is the

algorithm that performs the best among all existing local approaches which have

reasonable runtime. We believe that if Halide could perform well on these two algo-

rithms, it is strong evidence that Halide could work on other stereo algorithms using

the local approach as well.

2.2 Halide

Halide is an open source programming language that is originally designed for writing

efficient image processing code that takes advantages of memory locality, vectorization

computation and parallelism on CPUs and GPUs [8, 9]. Comparing with traditional

hand-tuned codes, programs written in Halide are usually much simpler, many times

faster, and highly portable. The front-end of Halide is embedded in C++, and it can

be compiled to back-end languages including x86/SSE, ARM v7/NEON, CUDA, Na-

tive Client, and OpenCL on different architectures from mobile platforms, multicore

SIMD to GPUs.

16

The main principal of Halide is to decouple the definition of the algorithm from

the way how its calculation is organized [8]. This decoupling brings two benefits: i)

the algorithm definition is simplified since irrelevant information such as boundary

conditions is eliminated; ii) programmers can explore scheduling strategies separately

without worrying about changing the algorithm. The Halide scheduling language

provide options to adjust storage granularity and compute granularity to achieve the

right tradeoff between parallelism, locality and redundant recomputation.

As a result of the above structure, Halide target in applications where iterated

homogeneous computations are applied to high dimensional data points because tech-

niques such as reodering data dimensions, interleaving memory allocations between

stages and vectorization work the best on such computation and data structure. For

example, Halide perform extremely well on image processing applications in the form

of graphs of stencil computations. On the contrary, sparse algorithms such as [7] are

not in Halide’s target domain because of their heterogeneous computation structure.

This is also one of the reasons that we restrict our attention to dense local stereo

matching algorithms.

We do not include the details of the Halide language here. More information

about Halide design can be found in [8, 9]. A tutorial of Halide’s syntax and usage

can be found in [1].

17

18

Chapter 3

Implementing Stereo Algorithms

Before we describe the implementation details of the stereoBM algorithm and the

stereoGF algorithm, we will begin this chapter by discussing different ways to imple-

ment box filter, as it is involved in both algorithms.

3.1 Box Filter

The most straight forward implementation would be to use a two-pass approach –

the first pass computes the sum along the horizontal scanline, while the second pass

computes along the vertical scanline. Figure 3-1 shows a illustrative interpretation of

this algorithm.

RDom rk(-r, 2*r+1, "rk");

Func vsum("vsum"), box_sum("box_sum");

vsum(x, y, d) = sum(in(x + rk, y, d));

box_sum(x, y, d) = sum(vsum(x, y + rk, d));

A valid schedule which exploits both parallelism and memory locality for the above

algorithm is

box_sum.compute_root()

.tile(x, y, xo, yo, xi, yi, x_tile_size, y_tile_size)

.vectorize(xi, vector_width).parallel(yo).parallel(xo);

vsum .compute_at(box_sum, xo).vectorize(xi, vector_width);

19

Figure 3-1: Box filter defined as two-pass sum, 𝑟 = 2

Figure 3-2: Box filter using integral image technique, 𝑟 = 2

The above strategy achieves quite good locality and parallelism by interleaving

the computation of box_sum and vsum at the level of tiles. However, it has a major

pitfall: redundant recomputation. To compute box_sum and vsum, the program

needs to do 2𝑟 + 1 additions at each pixel. As in both stereoBF and stereoGF, the

box filters used have large window size, the above strategy is not satisfying.

A more efficient way is to use the integral image technique [2] as follows.

vsum(x,y,d) = vsum(x-1,y,d) + in(x,y,d) - in(x-r-1,y,d);

box_sum(x,y,d) = box_sum(x,y-1,d) + vsum(x,y,d) - vsum(x,y-r-1,d);

The complete algorithm in Halide is,

RDom rk(-r, 2*r+1, "rk");

RDom rx(1, width-1, "rx"), ryi(1, height-1, "ry");

vsum(x,y,d) = undef<ushort>();

vsum(0,y,d) = sum(in(rk, y, d));

20

vsum(rx,y,d) = vsum(rx-1,y,d) + in(rx,y,d) - in(rx-r-1,y,d);

box_sum(x,y,d) = undef<ushort>();

box_sum(0,y,d) = sum(vsum(rk,y,d));

box_sum(x,ry,d) = box_sum(x,ry-1,d) + vsum(x,ry,d)

- vsum(x,ry-r-1,d);

We will discuss various scheduling strategies for the box filter at the next section

since it is important to consider the entire pipeline when seeking for the optimal

performance.

3.2 The Box Matching Algorithm (stereoBM)

3.2.1 Algorithm Description

As we introduced earlier, stereoBM is the simplest stereo matching algorithm us-

ing the local approach. Like all local method, it has four stages: cost initialization,

cost aggregation, disparity optimization and disparity refinement. It uses the WTA

method for disparity optimization and box filtering for cost aggregation. Implemen-

tation details of initialization and disparity refinement may vary between different

implementations. In our work, we follow OpenCV’s implementation details since we

use it as a baseline for performance comparison. We first apply a Sobel filter [14] to

compute the gradient of intensities along the 𝑥 axis and then compute the cost of

assigning disparity level 𝑑 to pixel (𝑥, 𝑦) as the absolute difference between gradients

of pixel (𝑥, 𝑦) at the left image and pixel (𝑥− 𝑑, 𝑦) at the right image, i.e.,

𝐶(𝑥, 𝑦, 𝑑) =

⃒⃒⃒⃒
𝜕𝐼0
𝜕𝑥

(𝑥, 𝑦) − 𝜕𝐼1
𝜕𝑥

(𝑥− 𝑑, 𝑦)

⃒⃒⃒⃒
.

For disparity refinement, we simply run a left right consistency check to detect

mismatch.

The entire pipeline is in the following.

// prefilter the image using the Sobel filter

21

Var x("x"), y("y"), c("c"), d("d");

Func gradient0 = prefilterXSobel(I0, width, height);

Func gradient1 = prefilterXSobel(I1, width, height);

// cost initialization

Func diff("diff");

diff(x,y,d) = cast<ushort>(abs(gradient0(x,y) - gradient1(x-d,y)));

// cost aggregation

Func vsum("vsum"), cSAD("cSAD");

RDom rk(-r, 2*r+1, "rk");

RDom rx(1, width-1, "rx"), ryi(1, height-1, "ry");

vsum(x,y,d) = undef<ushort>();

vsum(0,y,d) = sum(diff(rk, y, d));

vsum(rx,y,d) = vsum(rx-1,y,d) + diff(rx,y,d) - diff(rx-r-1,y,d);

cSAD(x,y,d) = undef<ushort>();

cSAD(x,0,d) = sum(vsum(x,ry,d));

cSAD(x,ry,d) = cSAD(x,ry-1,d) + vsum(x,ry,d) - vsum(x,y-ry-1,d);

// disparity optimization

RDom rd(minDisparity, numDisparities);

Func disp_left("disp_left");

disp_left(x, y) = {cast<ushort>(minDisparity), cast<ushort>((2<<16)-1)};

disp_left(x, y) = tuple_select(

cSAD(x, y, rd) < disp_left(x, y)[1],

{cast<ushort>(rd), cSAD(x, y, rd)},

disp_left(x, y));

// diparity refinement

Func disp("disp");

disp(x, y) = disp_left(x, y)[0];

22

Figure 3-3: Schedule 1 of stereobm, 𝑟 = 2. For simplicity, we only split the y direction
in this figure, but the actual schedule splits both x, y directions. Tiles are evaluated
in parallel. Red pixels are the pixels being evaluated at the current iteration. Yellow
pixels are the ones used at this iteration. Blue pixels are the ones stored but not used
at this iteration.

3.2.2 Scheduling

The most difficult part of scheduling the stereoBM pipeline lies on how to schedule the

box filter. An optimal schedule needs to make tradeoffs between locality, parallelism

and computation. We have tried different schedules during implementation and we

will list all of them here and discuss the advantages and drawbacks for each one of

them.

Schedule 1

Note that to compute vsum(x,y,d) only requires vsum(x-1,y,d), in(x,y,d),

and in(x-r-1,y,d) and that to compute cSAD(x,y,d) also only requires

cSAD(x,y-1,d), vsum(x,y,d) and vsum(x,y-r-1,d). Thus, we can use a

sliding window to store vsum(x,y-r-1. . .y-1,d). We compute diff on demand

instead of memoizing it because computing diff takes little computation.

23

The schedule is illustrated in Figure 3-3. The pseudo-code is in Algorithm 1.

for y = ymin...ymax do
for x = xmin...xmax do

for d = dmin...dmax do
calculate diff(x, y, d)
calculate vsum(x, y, d)
calculate cSAD(x, y, d)
if cSAD(x, y, d) < minDisp(x, y) then

disp(x, y) = d
minDisp(x, y) = cSAD(x, y, d)

end
end

end
end

Algorithm 1: Pseudocode for Schedule 1 of stereoBM

We omit parallelization and vectorization code here to keep the pseudo-code terse.

To parallelize the process, we tile the whole image to small tiles and carry the above

computation strategy in parallel for all tiles. For vectorization, we simply vectorize

the innermost dimension d.

The above schedule achieves near-maximal locality as the program only allocates

about (2r+2)×diparities for intermediate memory and most functions are con-

sumed immediately after it is produced. By choosing reasonable tile sizes according

to the image size and the window size, it can also achieve near-optimal parallelism

and negligible redundant recomputation. In fact, this is the schedule that OpenCV

uses for their stereobm implementation.

Unfortunately, the above schedule cannot be expressed by the current Halide lan-

guage. In this schedule, we keep vsum(x, y-r-1. . .y-1, d) to compute cSAD(x,

y, d), i.e., the footprint of cSAD is variable as the algorithm iterates through 𝑦.

However, Halide only supports constant footprints. We will discuss this again in

Section 5 and propose possible solutions to resolve this issue.

24

Figure 3-4: Schedule 2 of stereobm, 𝑟 = 2. Tiles are evaluated in parallel. For
simplicity, we only visualize computation of the top-left tile. Green pixels are the
overlapping region between tiles. The d dimensions of vsum and cSAD are not plotted
because their intermediate memory allocations have width 1 along the d dimension.

Schedule 2

Another strategy is to put d to the outermost dimension, tile the image and compute

vsum and cSAD at the tile level. Figure 3-6 illustrates the schedule. The code of the

schedule also follows.

disp.compute_root()

.tile(x, y, xo, yo, xi, yi, x_tile_size, y_tile_size)

.vectorize(xi, vector_width)

.parallel(yo).parallel(xo);

disp_left.compute_at(disp).vectorize(x, vector_width)

.update()

.reorder(x, y, rd).vectorize(x, vector_width);

cSAD.compute_at(disp_left, rd).vectorize(x, vector_width)

.update() .vectorize(x, vector_width);

cSAD.update(1).reorder(x, ry, d).vectorize(x, vector_width);

vsum.compute_at(disp_left, rd).vectorize(x, vector_width);

In fact, the above schedule will not work in Halide and we need to do some tricks

to make it work. The bound inference process in Halide will infer that the footprints

25

of vsum and cSAD are the whole image because of the range of the reduction do-

mains rx, ry in their update definitions. Thus, even though our desired schedule

is to compute vsum and cSAD at each tile, the actual code produced by the above

schedule would compute vsum and cSAD for the whole image at each tile, resulting

in unnecessary redundant recomputation. To solve the above problem, we need to

modify the definitions of vsum and cSAD to explicitly tile the image in the function

definitions as follows, by which we force Halide to maintain the footprints of vsum

and cSAD at the tile level.

RDom rx(1, x_tile_size-1, "rx"), ryi(1, y_tile_size-1, "ry");

vsum(xi,yi,xo,yo,d) = undef<ushort>();

vsum(0, yi,xo,yo,d) = sum(diff(rk,yi,xo,yo,d));

vsum(rx,yi,xo,yo,d) = vsum(rx-1,yi,xo,yo,d) + diff(rx,yi,xo,yo,d)

- diff(rx-r-1,yi,xo,yo,d);

cSAD(xi,yi,xo,yo,d) = undef<ushort>();

cSAD(xi,0, xo,yo,d) = sum(vsum(xi,ry,xo,yo,d));

cSAD(xi,ry,xo,yo,d) = cSAD(xi,ry-1,xo,yo,d) + vsum(xi,ry,xo,yo,d)

- vsum(xi,y-ry-1,xo,yo,d);

This schedule achieves a good balance between locality and parallelism if we choose

reasonable tile sizes. The pitfall in this schedule is that it does not vectorize the second

update stage of vsum because the innermost dimension rx is recursive and vectorizing

y yields no performance benefit. By not vectorizing this stage, we lose the significant

improvement in performance that would have been provided by vectorization.

There are two other scheduling options in which we can vectorize vsum,

∙ Use the simple sum definition instead of the image integral trick for vsum.

∙ Split d to two dimensions d_i and d_o and reorder the storage such that d_i

is the innermost dimension. This way, we can vectorize d_i.

We will discuss these two options in Schedule 3 and 4.

26

Figure 3-5: Schedule 3 of stereobm, 𝑟 = 2. Tiles are evaluated in parallel.

Schedule 3

The schedule is similar to Schedule 2, except that we change the definition of vsum

to summations to vectorize vsum. The scheduling code follows. This schedule also

achieves good locality and parallelism. Its disadvantage results from the redundant

recomputation caused by the sum definition of vsum. As the window size increases,

the schedule will result in longer runtime.

RDom rx(1, x_tile_size-1, "rx"), ryi(1, y_tile_size-1, "ry");

vsum(xi,yi,xo,yo,d) = sum(diff(rk,yi,xo,yo,d));

cSAD(xi,yi,xo,yo,d) = undef<ushort>();

cSAD(xi,0, xo,yo,d) = sum(vsum(xi,ry,xo,yo,d));

cSAD(xi,ry,xo,yo,d) = cSAD(xi,ry-1,xo,yo,d) + vsum(xi,ry,xo,yo,d)

- vsum(xi,y-ry-1,xo,yo,d);

vsum.compute_at(disp_left, rd)

.reorder(xi, yi, xo, yo, d).vectorize(xi, vector_width);

cSAD.compute_at(disp_left, rd)

.reorder(xi, yi, xo, yo, d).vectorize(xi, vector_width)

.update()

.reorder(xi, xo, yo, d).vectorize(xi, vector_width);

cSAD.update(1)

.reorder(xi, ryi, xo, yo, d).vectorize(xi, vector_width);

27

Figure 3-6: Schedule 4 of stereobm, 𝑟 = 2. Tiles are evaluated in parallel. The
innermost dimension di is plotted here. All computations are vectorized along di.

Schedule 4

The key idea of this schedule is to split the dimension d into to dimensions di, d_o

and make di the innermost dimension so that we can vectorize di. We include the

pipeline in the following.

/***************************schedule 4**********************/

//cost aggregation

Expr d_ = di + d_o * vector_width + minDisparity;

vsum(di, xi, yi, xo, yo, d_o) = undef<ushort>();

vsum(di, xi, 0, xo, yo, d_o) = sum(diff_T(d_, xi, rk, xo, yo));

vsum(di, xi, ryi, xo, yo, d_o) = vsum(di, xi, ryi-1, xo, yo, d_o)

+ diff_T(d_, xi, ryi+win2, xo, yo)

- diff_T(d_, xi, ryi-win2-1, xo, yo);

cSAD(di, xi, yi, xo, yo, d_o) = undef<ushort>();

cSAD(di, 0, yi, xo, yo, d_o) = sum(vsum(di, rk, yi, xo, yo, d_o));

cSAD(di, rxi, yi, xo, yo, d_o) = cSAD(di, rxi-1, yi, xo, yo, d_o)

+ vsum(di, rxi + win2, yi, xo, yo, d_o)

- vsum(di, rxi - win2 -1, yi, xo, yo, d_o);

//disparity optimizaiton

RDom rd(0, vector_width, 0, numDisparities/vector_width);

Expr d_ = rd[0] + rd[1] * vector_width + minDisparity;

disp_left_raw(di, xi, yi, xo, yo) =

{cast<ushort>(minDisparity), cast<ushort>((2<<16)-1)};

disp_left_raw(rd[0], xi, yi, xo, yo) = tuple_select(

cSAD(rd[0], xi, yi, xo, yo, rd[1]) < disp_left_raw(rd[0], xi, yi, xo, yo)[1],

{cast<ushort>(d_), cSAD(rd[0], xi, yi, xo, yo, rd[1])},

disp_left_raw(rd[0], xi, yi, xo, yo));

RDom rdi(0, vector_width);

28

disp_left(xi, yi, xo, yo) =

{cast<ushort>(minDisparity), cast<ushort>((2<<16)-1)};

disp_left(xi, yi, xo, yo) = tuple_select(

disp_left_inter(rdi, xi, yi, xo, yo)[1] < disp_left(xi, yi, xo, yo)[1],

disp_left_inter(rdi, xi, yi, xo, yo),

disp_left(xi, yi, xo, yo));

disp(x, y) = select(

x>xmax-xmin || y>ymax-ymin,

cast<ushort>(FILTERED),

cast<ushort>(disp_left(x%x_tile_size, y%y_tile_size,

x/x_tile_size, y/y_tile_size)[0])

);

//schedule

disp_left.reorder_storage(xi, yi, xo, yo);

vsum .reorder_storage(di, xi, yi, xo, yo, d_o);

cSAD .reorder_storage(di, xi, yi, xo, yo, d_o);

disp_left.compute_at(disp, xo)

.reorder(xi, yi, xo, yo).vectorize(xi, vector_width)

.update()

.reorder(rdi, xi, yi, xo, yo).unroll(rdi);

disp_left_raw.compute_at(disp_left, xo)

.reorder(di, xi, yi, xo, yo).vectorize(di, vector_width)

.update()

.reorder(rd[0], xi, yi, xo, yo, rd[1]).vectorize(rd[0]);

cSAD.compute_at(disp_left_inter, xo)

.reorder(di, xi, yi, xo, yo, d_o) .vectorize(di, vector_width)

.update()

.reorder(di, yi, xo, yo, d_o) .vectorize(di, vector_width);

cSAD.update(1)

.reorder(di, rxi, yi, xo, yo, d_o).vectorize(di, vector_width);

vsum.compute_at(disp_left_inter, xo)

.reorder(di, xi, yi, xo, yo, d_o) .vectorize(di, vector_width)

.update()

.reorder(di, xi, xo, yo, d_o) .vectorize(di, vector_width);

vsum.update(1)

.reorder(di, xi, ryi, xo, yo, d_o).vectorize(di, vector_width);

The pitfall of this schedule is that it uses more intermediate memory than the

other schedules. In schedule 4, vsum and cSAD both need vector_width ×

x_tile_size× y_tile_size memory while in schedule 2 and 3, they only need

29

x_tile_size× y_tile_size memory.

Choosing the schedule

Each of the above schedule has its own advantages and drawbacks. To decide which

schedule to use, we implemented all of them and tested their performances for different

window sizes. Information of the test machine and the test cases is included in Section

4. We run the tests using 4 cores on 15 test images which have up to 750×500 pixels.

The average runtime is shown in Figure 3.2.2.

Figure 3-7: Performances of Schedule 2, 3, 4 of stereoBM for different window sizes

We observe that Schedule 2 is always outperformed by Schedule 3 and 4, which

is expected since Schedule 2 bears the loss of no vectorization of vsum. Another

important observation is that the runtime of Schedule 2 and 4 change very little

by window size, while the runtime of Schedule 3 increases as window size increases.

When window size is 9, Schedule 3 outperforms Schedule 4. When window size is 17,

they have similar performance, and Schedule 4 outperforms Schedule 3 when window

size is 19. In our setting, we usually set window size to 11, thus we choose Schedule

3.

30

3.3 The Guided Filter Matching Algorithm (stere-

oGF)

In this section we describe the stereoGF algorithm that was introduced in [10]. We

start by introducing the guided filter.

3.3.1 Guided Filter

Guided filter is an edge preserving filter that was first introduced by [3]. It follows a

local linear model, where the output of the filter at a pixel 𝑝 is a weightd average of all

pixels in a squared window centered at 𝑝. The weights are determined by the contents

of a guidance image, which could be the filtered image itself or another image, in a

way such that the weights reflect edges in the guidance image.

Denote the guided image as 𝐼 and the image to be filtered as 𝑝. Then, the filtering

output 𝑞 at pixel 𝑖 = (𝑥, 𝑦) is expressed as,

𝑞𝑖 =
∑︁
𝑗∈𝜔𝑖

𝑊𝑖,𝑗(𝐼)𝑝𝑗, (3.1)

where 𝜔𝑖 is a squared window with dimensions (2𝑟 + 1) × (2𝑟 + 1), centered at

pixel 𝑖. The weights 𝑊𝑖,𝑗(𝐼) is given by,

𝑊𝑖,𝑗(𝐼) =
1

|𝜔|2
∑︁

𝑘:𝑖,𝑗∈𝜔𝑘

(︀
1 + (𝐼𝑖 − 𝜇𝑘)𝑇 (𝜎𝑘 + 𝜖𝑈)−1(𝐼𝑗 − 𝜇𝑘)

)︀
, (3.2)

where 𝜇𝑘 and Σ𝑘 are the mean and the covariance matrix of 𝐼 in the window 𝜔𝑘,

|𝜔| = (2𝑟 + 1)2 denotes the number of pixels in 𝜔𝑘 and 𝜖 is a smoothness parameter.

Note that here 𝐼𝑖, 𝐼𝑗 and 𝜇𝑘 are 3× 1 color vectors and the covariance matrix Σ𝑘 and

the identity matrix 𝑈 are 3 × 3 matrices.

[3] also showed that the guided filter can be implemented efficiently as a sequence

of box filters. We also present the technique here because we are going to use it in

our implementation.

31

The filter can be expressed in this way.

𝑎𝑘 = (Σ𝑘 + 𝜖𝑈)−1

(︃
1

|𝜔|2
∑︁
𝑖∈𝑤𝑘

𝐼𝑖𝑝𝑖 − 𝜇𝑘𝑝𝑘

)︃
, (3.3)

𝑏𝑘 = 𝑝𝑘 − 𝑎𝑇𝑘 𝜇𝑘, (3.4)

𝑞𝑖 = 𝑎̄𝑖𝐼𝑖 + 𝑏̄𝑖, (3.5)

where 𝑝𝑘 = 1
|𝜔|
∑︀

𝑖∈𝜔𝑘
𝑝𝑖 is the mean of 𝑝 in 𝜔𝑘, 𝑎̄𝑖 = 1

|𝜔|
∑︀

𝑗∈𝜔𝑖
𝑎𝑗, and 𝑏̄𝑖 =

1
|𝜔|
∑︀

𝑗∈𝜔𝑖
𝑏𝑗. All summations here are box filters and can be computed efficiently

using the techniques in Section 3.2. We include the Halide pipeline for the guided

filter in the following.

Func left_gradient = gradientX(left);

Func right_gradient = gradientX(right);

Func cost_left("cost_left");

Func diff("diff");

diff(x, y, c, d) = abs(left(x, y, c) - right(x-d, y, c));

Expr color_diff = clamp((diff(x, y, 0, d) + diff(x, y, 1, d) + diff(x, y, 2, d))/3, 0, threshColor);

Expr gradient_diff = clamp(abs(left_gradient(x, y) - right_gradient(x-d, y)), 0, threshGrad);

cost_left(x, y, d) = (1 - alpha) * color_diff + alpha * gradient_diff;

Var x("x"), y("y"), c("c"), d("d");

float scale = 1.0f/(2*r+1)/(2*r+1);

Func mu = mean(I, r);

Func square("square");

Func ind2pair("ind2pair"), pair2ind("pair2ind");

ind2pair(c) = {0,c};

ind2pair(3) = {1,1};

ind2pair(4) = {1,2};

ind2pair(5) = {2,2};

pair2ind(c, d) = undef<int>();

pair2ind(0, 0) = 0;

pair2ind(0, 1) = 1;

pair2ind(0, 2) = 2;

pair2ind(1, 0) = 1;

pair2ind(1, 1) = 3;

pair2ind(1, 2) = 4;

pair2ind(2, 0) = 2;

pair2ind(2, 1) = 4;

32

pair2ind(2, 2) = 5;

Expr row = clamp(ind2pair(c)[0], 0, 2), col = clamp(ind2pair(c)[1], 0, 2);

square(x, y, c) = I(x, y, row) * I(x, y, col);

Func s_m = mean(square, r);

Func sigma("sigma");

sigma(x, y, c) = s_m(x, y, c) - mu(x, y, row) * mu(x, y, col);

Expr a11 = sigma(x, y, 0) + epsilon, a12 = sigma(x, y, 1), a13 = sigma(x, y, 2);

Expr a22 = sigma(x, y, 3) + epsilon, a23 = sigma(x, y, 4);

Expr a33 = sigma(x, y, 5) + epsilon;

Func inv_("inv_"), inv("inv");

inv_(x, y, c) = undef<float>();

inv_(x, y, 0) = a22 * a33 - a23 * a23;

inv_(x, y, 1) = a13 * a23 - a12 * a33;

inv_(x, y, 2) = a12 * a23 - a22 * a13;

inv_(x, y, 3) = a11 * a33 - a13 * a13;

inv_(x, y, 4) = a13 * a12 - a11 * a23;

inv_(x, y, 5) = a11 * a22 - a12 * a12;

Expr det = a11 * inv_(x, y, 0) + a12 * inv_(x, y, 1) + a13 * inv_(x, y, 2);

inv(x, y, c) = inv_(x, y, c) / det;

Func prod("prod");

prod(x, y, c, d) = I(x, y, c) * p(x, y, d);

Func prod_m = mean(prod, r);

Func p_m = mean(p, r);

Func temp("temp");

temp(x, y, c, d) = prod_m(x, y, c, d) - mu(x, y, c) * p_m(x, y, d);

Func a("a"), b("b");

RDom k(0, 3, "k");

a(x, y, c, d) = sum(inv(x, y, clamp(pair2ind(c, k), 0, 5)) * temp(x, y, k, d));

b(x, y, d) = p_m(x, y, d) - sum(a(x, y, k, d) * mu(x, y, k));

Func a_m = mean(a, r);

Func b_m = mean(b, r);

Func q("q");

q(x, y, d) = sum(a_m(x, y, k, d) * I(x, y, k)) + b_m(x, y, d);

33

3.3.2 Algorithm Description

The framework of this stereo matching algorithm still follows the local approach.

Cost Initialization: The matching cost is a combination of a truncated absolute

difference of the color and the gradient at the matching pixels.

𝐶(𝑥, 𝑦, 𝑑) = (1 − 𝛼) · min(||𝐼0(𝑥, 𝑦) − 𝐼1(𝑥− 𝑑, 𝑦)||, 𝜏1)

+𝛼 · min(||𝜕𝐼0
𝜕𝑥

(𝑥, 𝑦) − 𝜕𝐼1
𝜕𝑥

(𝑥− 𝑑, 𝑦)||, 𝜏2)
(3.6)

Cost Aggregation: We then use the guided filter to filter the cost volume, using 𝐼0

as the guidance image.

The complete pipeline expressed in Halide is in the following.

Var x("x"), y("y"), c("c"), d("d");

Func left_gradient = gradientX(left);

Func right_gradient = gradientX(right);

Func cost_left("cost_left"), cost_right("cost_right");

Func diff("diff");

diff(x, y, c, d) = abs(left(x, y, c) - right(x-d, y, c));

Expr color_diff = clamp((diff(x, y, 0, d) + diff(x, y, 1, d) + diff(x, y, 2, d))/3, 0, threshColor);

Expr gradient_diff = clamp(abs(left_gradient(x, y) - right_gradient(x-d, y)), 0, threshGrad);

cost_left(x, y, d) = (1 - alpha) * color_diff + alpha * gradient_diff;

cost_right(x, y, d) = cost_left(x + d, y, d);

Func filtered_left = guidedFilter(left, cost_left, r, epsilon);

Func filtered_right = guidedFilter(right, cost_right, r, epsilon);

RDom rd(0, numDisparities);

Func disp_left("disp_left"), disp_right("disp_right");

disp_left(x, y) = {0, INFINITY};

disp_left(x, y) = tuple_select(

filtered_left(x, y, rd) < disp_left(x, y)[1],

{rd, filtered_left(x, y, rd)},

disp_left(x, y));

disp_right(x, y) = {0, INFINITY};

disp_right(x, y) = tuple_select(

filtered_right(x, y, rd) < disp_right(x, y)[1],

{rd, filtered_right(x, y, rd)},

disp_right(x, y));

34

Func disp = postprocessing(disp_left, disp_right);

3.3.3 Scheduling

We will not include the complete schedule here because of the length of the pipeline.

The general idea is to tile the image and use Schedule 3 in Section 3.2 for all box

filters. We include the schedule of the major functions in the following. All other

intermediate functions are either scheduled inline or at the tile level with the guideline

of minimizing redundant recomputation and maximizing locality.

disp.compute_root().vectorize(x, vector_width);

disp_left.compute_root().vectorize(xi, vector_width)

.update().reorder(xi, yi, rd, xo, yo)

.vectorize(xi, vector_width)

.parallel(yo).parallel(xo);

filtered_left.compute_at(disp_left, rd).vectorize(xi, vector_width);

left.compute_root().vectorize(x, vector_width);

mean_left.compute_root()

.tile(x, y, xo, yo, xi, yi, x_tile_size, y_tile_size)

.reorder(xi, yi, c, xo, yo).vectorize(xi, vector_width)

.parallel(yo).parallel(xo);

inv_left.compute_root()

.tile(x, y, xo, yo, xi, yi, x_tile_size, y_tile_size)

.reorder(c, xi, yi, xo, yo).vectorize(xi, vector_width)

.parallel(yo).parallel(xo);

cost_left.compute_at(disp_left, rd).vectorize(xi, vector_width);

35

36

Chapter 4

Experimental Results

We conducted several experiments to evaluate the performances of the algorithms we

implemented in Halide as discussed in Section 3. All experiments are performed on an

Intel Xeon E5-2680 CPU with 48 cores. We use the 2014 Middlebury stereo evaluation

datasets [12]. Since we did not modify the algorithms, we focus our attention on the

runtime performance of our implementations. We include accuracy measurement of

our implementation only to verify the correctness of our implementations.

4.1 Evaluation of stereoBM Implementations

To test the performance of our implementation of the stereo box matching algorithm

(stereoBM), we use OpenCV’s implementation cv::StereoBM as baseline. We choose

Schedule 3 in section 3.2 as Halide’s implementation to compare. We evaluate both

implementations on their performances under different settings with different image

sizes, disparity range and number of cores.

First we include the accuracy measurement of both implementations. Figure 4-1

shows that the output of these two implementations are essentially equivalent. The

slight difference may be caused by difference between the two implementations in

converting images to gray-scale.

The computation time required by both implementations is plotted in Figure 4-2.

It is evaluated with window size 11 × 11 using 1, 4, 16, and 48 cores. The following

37

(a) Percentages of bad pixels with error
threshold set to 1

(b) Average error between output disparity
map and the ground truth

Figure 4-1: Accuracies of Halide and OpenCV’s implementations of stereoBM

can be observed from the results.

(a) Runtime with 1 core (b) Runtime with 4 cores

(c) Runtime with 16 cores (d) Runtime with 48 cores

Figure 4-2: Runtime of Halide and OpenCV’s implementations of stereoBM

38

∙ When using only a single core, OpenCV’s implementation outperforms Halide’s

implementation, because OpenCV’s implementation maximizes memory locality

and minimize redundant recomputation, as we discussed in Section 3.2.

∙ The two implementations have similar performances with 4 cores and our im-

plementation outperforms OpenCV’s with more than 16 cores, indicating that

the former exploits parallelism better than the latter. In OpenCV’s implemen-

tation, the images are divided into stripes by splitting the 𝑦 direction, while

in our implementation, images are divided into tiles by splitting both 𝑥 and 𝑦

directions.

To further see the scalability of these two algorithms with different number of

cores, we plot the relationship of their throughput vs. number of cores in Figure

4-3. The throughput is calculated as the number of megapixels times the number of

disparities being processed per second. We can observe that Halide’s implementation

scales to 16 cores while OpenCV’s implementation only scales to 4 cores and its

performance drops from 4 cores to 8 cores.

Figure 4-3: The throughput of Halide and OpenCV’s implementations of stereoBM
vs. number of cores

39

We have also studied the performances of both implementations for images of

different resolutions from the Middlebury dataset. Quarter resolution images are up

to 750× 500, half resolution images are up to 1500× 1000, and full resolution images

are up to 3000× 2000. To avoid the effects of parallelism, we have run all tests using

only 1 core. We have also set disparity ranges of all tests to 64. The result is shown

in Figure 4-4.

We can observe from the result that both implementations handle high resolution

images well as the throughput does not drop by much for high resolution images. We

also observe that Halide’s implementations performs better for half-resolution images.

(a) The throughput of Halide for different res-
olutions

(b) The throughput of OpenCV for different
resolutions

(c) The average throughput of Halide vs.
OpenCV. The data is scaled so that the
throughput of both for quater resolution is 1.

Figure 4-4: The throughput of Halide and OpenCV’s implementations of stereoBM
vs. resolution scales. Q, H, F stand for quarter resolution, half resolution and full
resolution, respectively.

40

(a) The throughput of Halide with different
disparity ranges

(b) The throughput of OpenCV with different
disparity ranges

(c) The average throughput of Halide vs.
OpenCV. The data is scaled so that the
throughput of both for quater resolution is 1.

Figure 4-5: The throughput of Halide and OpenCV’s implementations of stereoBM
vs. disparity range

The performances of these two implementations for different disparity ranges are

plotted in Figure 4-5. For both implementations, their throughput increases with

larger disparity ranges, although OpenCV’s implementation performs better when

disparity ranges increase. This is because in OpenCV’s implementation, dimension d

is scheduled as the innermost dimension while it is the outermost in our implementa-

tion. Note that we have also proposed Schedule 4 in Section 3.2 which also schedules

the d dimension to the innermost. An advantage of Halide is that we can always

change schedules and tune parameters to find the optimal schedule according to the

problem parameters and machine properties. If we run this algorithm with large dis-

41

parity size and on a machine with big cache sizes, we can expect that Schedule 4 will

perform better and scale well with increasing disparity range.

Finally, we compare the length the Halide code and the OpenCV code for stere-

oBM. The Halide implementation for stereoBM is 83 lines long, literally translated

from the pseudocode line by line while the OpenCV’s one is 1278 lines long, involving

low-level optimization instructions.

4.2 Evaluation of stereoGF Implementations

We cannot find any optimized CPU implementation of the guided filter algorithm.

The original paper by Rhemann et al. [10] only released the MATLAB source code for

their implementation. Therefore, we have implemented a naive schedule in Halide for

the stereoGF algorithm that is equivalent to a naive C++ implementation without

any optimization such as vectorization or parallelization. Every function is either

computed at root or inline. We will use this naive implementation as a baseline to

measure of the performance of our optimized implementation.

Figure 4-6: The best runtimes of optimized Halide implementation for quarter-
resolution images

We run the optimized Halide implementation with different number of cores. Fig-

42

Figure 4-7: The speedup curves of stereoGF for quarter-resolution images vs. number
of cores

ure 4-6 plots the best runtime for the quarter-resolution images among all of our runs.

Figure 4-7 plots the speedup of the optimized Halide implementation compared to

the baseline with 1, 2, 4, 16, 32 and 48 cores.

From the result, we observe that with parallelization, our optimized implementa-

tion achieves more than 10× speedup than the naive implementation for all test cases

and 20× for most. The program scales up to 16 cores except for ArtL and Teddy, it

scales to 8 cores. In fact, they are the two smallest images.

To further study the program’s scalability for different size images, we test per-

formance of the algorithm on images with three resolution scales: quarter-resolution

(Q), half-resolution (H) and full-resolution (F). We set the number of disparities to

60 for all runs. The result is shown in Figure 4-8. As expected, the algorithm scales

better for high-resolution images. Another observation is that when using 1 core,

the algorithm maintains around the same throughput for all three resolution scales,

indicating that the performance of the algorithm does not decay with image size.

43

Figure 4-8: Performances of stereoGF for images with different resolutions vs. number
of cores

Finally, we study the effect of disparity levels on the algorithm performance. We

run our implementation for with disparity range equals to 20, 40, 60 and 80 on

quarter-resolution images and plot the result in Figure 4-9. We can see that the

algorithm throughput does not vary much with the disparity range, although high

disparity ranges do bring a little performance benefit.

Figure 4-9: Performances of stereoGF vs. disparity range

44

Chapter 5

Design for Supporting Dynamic

Programming in Halide

As we discussed in Section 3.2, we had problem scheduling the image integral defi-

nition of box filters in Halide because of its recursive nature. However, many stereo

algorithms involve dynamic programming techniques [4, 16], whose recursive nature

will also cause a problem in Halide. In this section, we will propose a design protocol

in Halide to support representing and scheduling dynamic programming or recursive

filters in Halide.

Currently, dynamic programming or recursive filters in halide can be expressed

in Halide in the form of update definitions using reduction domain. The problem

is to schedule them. Their recursive nature constrains the order of which pixels are

computed. They have to be computed sequentially because all previous pixels have

to evaluated before computing the next pixel. In this case, no matter which compute

level we schedule the function at, Halide always computes from the first pixel; to

avoid redundant recomputation, the only valid way is to schedule recursive functions

at root, which limits both parallelism and memory locality.

For example, the classical dynamic programming problem of calculating the Fi-

bonacci Series can be represented in Halide as follows.

f(x) = undef<int>();

f(0) = 0;

45

f(1) = 1;

f(rx) = f(rx-1) + f(rx-2);

g() = f(N);

The recursive definition of f is expressed in the third update stage of f with the

use of reduction domain rx.

The problem is to schedule dynamic programming functions in Halide. An im-

portant technique in dynamic programming is memoization, which stores the value

of solved subproblems for future use. For the Fibonacci example, by using memoiza-

tion, we can store all values that have been computed to avoid recomputation. This

corresponds to

f.compute_root();

where all values are computed only once. This algorithm takes 𝑂(𝑁) runtime and

𝑂(𝑁) storage space.

This algorithm can be further optimized by only storing two values f(rx-1) and

f(rx-2) which improves memory locality by reusing the storage space. Ideally, this

would correspond to Halide’s schedule

f.store_root().compute_inline();

where Halide should detect and assign only the minimal storage space for f. However,

in reality, the above schedule is identical to the first one.

The problem is with Halide’s bounds inference procedure, during which Halide

determines the allocation sizes and loop bounds for each function recursively back

from the output. For non-recursive functions, Halide will apply an analysis called

sliding window optimization which intelligently allocates minimal memory that is

necessarily needed for the consumer, making no wastes. For example, for the simple

box filter pipeline as we saw in Section 3.

RDom rk(-r, 2*r+1, "rk");

Func vertical_sum("vertical_sum"), box_sum("box_sum");

vertical_sum(x, y, d) = sum(in(x + rk, y, d));

box_sum(x, y, d) = sum(vertical_sum(x, y + rk, d));

46

If we schedule this pipeline as follows, then instead of allocating memories for the

entire image to vsum, Halide will notice that each pixel of vsum can be computed

only once, and the maximum distance between a value being produced in vsum and

consumed in box_vsum is only 2𝑟+1 and assign vsum memories for 2𝑟+1 scanlines.

This process is called storage folding in Halide. However, if a function has a recursive

update definition, Halide always determines the both the allocation sizes and loop

bounds for this function as root without doing any further inference. Our goal is

to modify the storage folding procedure to extend the above analysis to recursive

functions as well.

box_sum.compute_root();

vsum.store_root().compute_at(box_sum, y);

In order to make storage folding work for recursive functions, we propose the

following changes in the Halide compiler.

∙ Provide an interface in Halide that allows users to combine stages of a function.

Currently, Halide generates a loop for each stage instead of each function during

loop synthesis. However, if we want to compute a recursive function only once,

all of its stages must be computed in a single loop in order to generate the final

output at once. Note that to ensure that such change in the schedules does

not affect the algorithm’s outputs, Halide should check that i) each dimension

occurs as reduction domain in at most one update stage; ii) in each update

stage, the pixel being updated only depends on pixels that are computed before

it. For the following example, it is illegal for both f and g to combine all of their

stages into one as f(x,y) depends on f(x+1, y) in the update definition of

f and dimension x appears as reduction domain rx in two update stages of g.

f(x, y) = x;

f(rx, y) = (f(rx+1, y) + f(rx-1, y))/2;

g(x, y) = x;

g(rx, y) = g(rx-1,y);

g(rx, y) = (g(rx-1,y) + g(rx-2, y))/2;

47

∙ Modify the storage folding process to apply sliding window optimization to re-

cursive functions whose stages have been combined. For non-recursive functions,

the loop bound in one dimension of a function is the maximum distance in that

dimension between a value being produced in this function and consumed in

that consumer function. For recursive functions, since a value of this function

may be consumed by the update stage of this function if the variable appears as

a reduction domain, we also need to account for the distance between a value

being produced and consumed in the update stage. For the following example,

we need to allocate max(s,t) × 1 memory to function f.

f(x, y) = sin(x);

f(rx, y) = f(rx, y) - f(rx-t, y);

g(x, y) = f(x, y) + f(x+s, y);

g.compute_root();

f.store_root().compute_at(y);

The above proposal solves the issue of maximizing memory locality for recursive

filters or dynamic programming functions. A more difficult task is to parallelize

pipelines involving functions with recursive definitions. Because of their recursive

nature, such functions can only be calculated sequentially. Therefore, it is not only a

scheduling problem but also requires changes in the algorithm definition to parallelize

such pipelines. A possible approach is to set division points and calculate the values

on these points using non-recursive definitions. For example, when we tile the box

filter, we compute the pixels at the tile boundary as the sum of pixels instead of using

the recursive image integral definition.

48

Chapter 6

Conclusion

This paper implements two stereo matching algorithms, stereoBM and stereoGF, in

Halide and evaluates their performances in terms of processing speed under differ-

ent settings. The objective is to find out whether Halide can be applied to help

researchers write simple but high performance stereo algorithms. We compare our

implementations with highly optimized hand-written C implementations and naive

C implementations. Our results show that Halide can achieve the same performance

as the hand-tuned code and an order of magnitude performance improvement than

the naive implementations. On the other hand, our code is much simpler and more

understandable than the hand-optimized code, and can easily be customized to suit

particular tasks or machines.

Nevertheless, we also find constraints of Halide in expressing recursive functions or

dynamic programming algorithms. We claim that the issue can be solved by extending

Halide’s bound reference and storage folding processes to recursive functions and have

proposed an execution plan for it.

49

50

Bibliography

[1] Halide tutorials. http://halide-lang.org/docs/examples.html. Accessed: 2016-
06-04.

[2] Franklin C. Crow. Summed-area tables for texture mapping. In Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’84, pages 207–212, New York, NY, USA, 1984. ACM.

[3] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 35(6):1397–1409, 2013.

[4] H. Hirschmuller. Accurate and efficient stereo processing by semi-global match-
ing and mutual information. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 807–814
vol. 2, June 2005.

[5] Charles Loop and Zhengyou Zhang. Computing rectifying homographies for
stereo vision. Number MSR-TR-99-21, page 12. Institute of Electrical and Elec-
tronics Engineers, Inc., April 1999.

[6] Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3061–3070, 2015.

[7] Sudeep Pillai, Srikumar Ramalingam, and John Leonard. High-performance and
tunable stereo reconstruction. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 2016.

[8] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Frédo Durand. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. ACM Trans. Graph., 31(4):32:1–
32:12, July 2012.

[9] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA,
2013. ACM.

51

[10] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume
filtering for visual correspondence and beyond. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 3017–3024, June 2011.

[11] Christian Richardt, Douglas Orr, Ian Davies, Antonio Criminisi, and Neil A.
Dodgson. Computer Vision – ECCV 2010: 11th European Conference on Com-
puter Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part
III, chapter Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-
Bilateral Grid, pages 510–523. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[12] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg Krathwohl, Nera
Nešić, Xi Wang, and Porter Westling. Pattern Recognition: 36th German Con-
ference, GCPR 2014, Münster, Germany, September 2-5, 2014, Proceedings,
chapter High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth,
pages 31–42. Springer International Publishing, Cham, 2014.

[13] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal of Computer
Vision, 47(1):7–42, 2002.

[14] Irwin Sobel. An isotropic 3 3 image gradient operator, 2015.

[15] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief
propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(7):787–800, July 2003.

[16] O. Veksler. Stereo correspondence by dynamic programming on a tree. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion (CVPR’05), volume 2, pages 384–390 vol. 2, June 2005.

[17] Kuk-Jin Yoon and In-So Kweon. Locally adaptive support-weight approach for
visual correspondence search. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages 924–931
vol. 2, June 2005.

52

