
Fourier-Motzkin with Non-Linear Symbolic Constant
Coefficients

by

Patricia A. Suriana

S.B., Massachusetts Institute of Technology (2014)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

c○ Patricia A. Suriana, MMXVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

January 25, 2016
Certified by. .

Saman P. Amarasinghe
Professor

Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Master of Engineering Thesis Committee

2

Fourier-Motzkin with Non-Linear Symbolic Constant

Coefficients

by

Patricia A. Suriana

Submitted to the Department of Electrical Engineering and Computer Science
on January 25, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The polyhedral framework is an elegant and useful system for reasoning about loop
nests in programs, and is commonly used to perform complex loop transformations
such as tiling and parallelization. However, several critical transformations intro-
duce non-linear inequalities during code generation, which present difficulties for the
polyhedral model. Proposals for extending the framework to deal with non-linear
inequalities have generally been complex and are not used in current code generators.
We propose a simple extension to Fourier-Motzkin elimination that deals with the spe-
cific case of non-linearity arising from symbolic constant coefficients, and show that
this enables the polyhedral framework to deal with important cases that commonly
occur in code generation. We build a framework, called NFM, that implements the
extension and integrate the new system into Halide, an open-source domain-specific
language compiler for image processing [13], which provides a more robust framework
to perform computation on iteration domain such as merge, intersection, etc., and
provides Halide a unified framework to perform more complex optimization schemes,
such as diamond tiling.

Thesis Supervisor: Saman P. Amarasinghe
Title: Professor

3

4

Acknowledgments

At the end of my thesis, I would like to thank all those people who made this thesis

possible and an unforgettable experience for me.

I would first like to thank my thesis advisor Saman Amarasinghe for his excellent

guidance, caring, patience, and providing me with an excellent atmosphere for doing

research.

I would also like to acknowledge Riyadh Baghdadi as the second reader of this

thesis, and I am gratefully indebted to him for his very valuable comments on this

thesis. I am also thankful for his technical assistance to my project.

I am thankful to the other members of the COMMIT group, particularly Shoaib

Kamil for his feedback and assistance during the early development of NFM, and

Tyler Denniston for his help on distributed Halide.

Finally, I must express my very profound gratitude to my parents and to my

two brothers for providing me with unfailing support and continuous encouragement

throughout my years of study and through the process of researching and writing

this thesis. This accomplishment would not have been possible without them. Thank

you.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 13

1.1 Background and Related Work . 14

1.2 Contributions . 16

1.3 Organization . 17

2 Extended Fourier-Motzkin Elimination 19

2.1 Fourier-Motzkin Elimination Method 19

2.2 Non-Linear Symbolic Constant Coefficient Extension 20

3 Simplifying the Constraints 27

3.1 Gaussian Elimination . 27

3.2 Normalizing the Constraints . 28

3.3 Removing Redundant Constraints . 29

4 Examples 31

4.1 Multi-Level Rectangular Tiling . 31

4.2 Communication Code . 33

4.3 Diamond Tiling . 33

5 NFM Integration into Halide 37

5.1 Halide . 37

5.2 Integrating NFM into Halide . 38

5.2.1 Box Merging . 39

5.2.2 Boxes Intersection . 41

7

5.3 Experimental Results . 42

6 Conclusions 47

A Figures 49

8

List of Figures

1-1 Example loop nest Program 1 . 14

1-2 Rectangular tiling on loop 𝑗 of Program 1 15

2-1 System of inequalities describing the iteration space of Program 1 with

parallelization and blocking . 24

2-2 System of inequalities after projecting out dimension 𝑗 from the domain

set in Figure 2-1 . 24

2-3 Rectangular tiling on Program 1 . 25

3-1 Example loop nest Program 2 . 30

4-1 Two-level tiling on dimension 𝑖 of Program 1 32

4-2 System of inequalities describing the iteration space of Program 1 with

two-level tiling on dimension 𝑖 . 32

4-3 Two-Level Rectangular Tiling on Program 1 33

4-4 Communication Code for Program 3 33

4-5 Communication Code for Program 3 34

4-6 Example loop nest Program 4 . 35

4-7 Diamond tiling transformation applied to Program 3 35

4-8 Diamond Tiling on Program 4 . 36

5-1 Triangular iteration domain of loop dimension 𝑖 and 𝑗 38

5-2 Example of 1-D Halide boxes . 42

5-3 Intersection of two boxes specified in Figure 5-2 using NFM and Halide

respectively . 42

9

5-4 Example of Halide’s select expression 43

5-5 C++ equivalent of expression in Figure 5-4 43

5-6 C++ equivalent of expression in Figure 5-4 44

10

List of Tables

4.1 Inequalities defining the communication sets for receiver code in Pro-

gram 3 . 34

5.1 Expressions simplified by merge_boxes_halide vs. merge_boxes_nfm.

𝑎, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, and 𝑢 are symbolic constants. 41

5.2 Latency (Number of CPU cycles) of each instruction used to compare

the performance of NFM with that of Halide 45

5.3 Number of CPU cycles of interval expressions generated by merge_box

when using NFM vs. using Halide . 45

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

Optimizing compilers for high performance computing generally perform complex loop

transformations, such as tiling, a compiler optimization for improving cache utiliza-

tion, and parallelization. Thus, generating loop nests after complex loop transforma-

tions is an important component of these compilers. While there are many methods

for final code generation, one of the most powerful and promising techniques is using

a linear polyhedral framework.

In polyhedral framework, each loop iteration within nested loops corresponds to

a lattice point inside an integer polyhedron, or better known as Z-polyhedron. The

bound of this polyhedron is defined by a set of inequality/equality constraints. Loop

transformations, such as loop reordering, tiling, etc., are equivalent to affine transfor-

mations on the polyhedron.

Although the polyhedral framework handles many complex array indices and loop

bounds, one of the critical requirements is that all access functions must be affine.

However, several critical transformations, such as parametric tiling, where the tile size

is not known at compile time by remaining a symbolic parameter, and paralleliza-

tion for distributed memory machines, involve solving non-linear (hence non-affine)

inequalities during code generation.

Consider the two-nested loops shown in Figure 1-1 as an example. In the poly-

hedral framework, the iteration domain of the system is represented as 𝑆 = {(𝑖, 𝑗) :

0 ≤ 𝑖 ≤ 𝑈 ∧ 0 ≤ 𝑗 ≤ 𝑚𝑖𝑛(2𝑖, 𝑉)}. To speed up the execution time, we distribute

13

for i = 0 to U
for j = 0 to min(2i, V)

Figure 1-1: Example loop nest Program 1

iterations of the inner loop 𝑗 in equal-sized blocks across multiple processors to be

run in parallel (see Figure 1-2). To describe this new iteration space, we introduce

the following constraints: 𝑏𝑥 ≤ 𝑗 ≤ 𝑏𝑥+ 𝑏− 1, where 𝑏 is the block size and 𝑥 is the

processor ID. If 𝑏 is unknown at compile time, we end up with non-linear system.

This class of problems, better known as parameterized tiled code generation, is

important. The performance gain due to loop tiling is directly related to the tile size.

Often, choosing a tile size that results in good performance is difficult. In that case,

an autotuning system is used to find the optimum tile size. Autotuning automatically

and empirically searches a space of parameter values and selects the one that provides

the best execution time. With fixed tile sizes, we will need to regenerate and recompile

the code for each tile size, but if the tile size is left as a symbolic constant, we only

need to generate and compile the code once for any tile size. For parallelized code,

the number of processors is usually unknown until run-time; therefore, it is necessary

to leave the processor number/ID as a symbolic constant during code generation.

1.1 Background and Related Work

The polyhedral framework [7, 9, 10] refers to a general model for optimizing pro-

grams with loops and arrays, in which loop iterations are considered to be points

in a multidimensional geometric space and loop optimizations exploit properties of

the polyhedra to transform the loop while preserving correctness. Optimization tech-

niques using the polyhedral model are widely used in compilers and continue to be

an area of active research.

Several attempts to deal directly with non-linear constraints during code genera-

tion have been made in the past. Amarasinghe [2] extended Fourier-Motzkin elimina-

tion to handle a restricted form of symbolic constant coefficients in the inequalities,

14

Figure 1-2: Rectangular tiling on loop 𝑗 of Program 1

in which the symbolic constant coefficients have to be in linear polynomial form;

however, full details on the approach were not made available. Größlinger et al. [8]

proposed an extension to the polyhedral model, in which they allow arbitrary rational

polynomials as coefficients in the inequalities that define the iteration space of the

loop. However, their method uses quantifier elimination over real algebra to reduce

the number of branches that arise during loop generation, which is computationally

expensive.

Despite previous work, the current state of the art in code generation does not seem

to incorporate these non-linear extensions. Some current approaches, such as [14]

and [15], deal with parameterized tile sizes by splitting the problem into subproblems

of generating loops that iterate over tiles and then loops that iterate over points within

tiles. These techniques are at best an ad-hoc extension to the elegant polyhedral

framework. In addition, they only deal specifically with rectangular tiling. Once the

tile shape changes, e.g. diamond or hexagonal tiling, the methods no longer work.

15

In this paper, we revisit a non-linear extension to Fourier-Motzkin elimination

(FME) with symbolic constant coefficients. Unlike in [2], the coefficients can be of

any integer polynomial degree. We limit our scope to integer polynomial symbolic

coefficients, unlike in [8], which allows more general rational polynomials. Since our

main use case of FME is for loop generation, the integer assumption makes sense; all

loop bounds and array accesses are integers and we can convert rational coefficients

into integers by multiplying by their denominators. This restriction simplifies the

implementation and allows us to perform additional steps to simplify the constraints

without sacrificing the system’s capability for loop generation.

In Chapter 4, we show that by adding this small extension to Fourier-Motzkin

elimination to deal with non-linear symbolic constant coefficients, we are able to

handle many examples that leave tile/block sizes unknown at compile time within

the same framework, described in the next chapter.

1.2 Contributions

Some of the widely used polyhedral model based compilers, such as Pluto [5] which

uses ClooG [4] as back-end for code generation, only handle code with affine trans-

formations. Pluto can generate tiled code, but only if the tile size is fixed at compile

time. In this paper, we revisit a non-linear extension to Fourier-Motzkin elimination

for the polyhedral model with symbolic constant coefficients. We will show that by

adding a small extension to Fourier-Motzkin elimination to deal with non-linear sym-

bolic constant coefficients, we are able to handle various cases, such as rectangular

tiling, multi-level tiling, communication code generation, and diamond tiling — all of

which leave tile/block sizes unknown at compile time — using the same framework.

We build a framework, called NFM, that implements the extension and build

a simple loop code generator on top of the framework. Further, we integrate the

NFM framework into Halide, an open-source domain-specific language compiler for

image processing [13], which provides Halide a more robust framework to perform

computation on iteration domain such as merge, intersection, etc., and a unified

16

framework to perform more complex scheduling schemes, such as diamond tiling.

1.3 Organization

The paper is structured as follows. Chapter 1.1 introduces the polyhedral model and

discusses related work. Chapter 2 describes the extended Fourier-Motzkin elimination

method with non-linear symbolic coefficients, which we will refer to as NFM. Chap-

ter 3 describes some processing steps to eliminate redundant inequalities generated

by NFM. In Chapter 4, we provide results of running NFM on various examples, in-

cluding multi-level rectangular tiling, communication code generation, and diamond

tiling. In Chapter 5, we discuss the integration of NFM into Halide and some per-

formance gain of using NFM over Halide’s simplify method to simplify loop bound.

Finally, we summarize and conclude with Chapter 6.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

Chapter 2

Extended Fourier-Motzkin

Elimination

During code generation, we compute the bounds of a loop nest by scanning the

polyhedron describing the iteration domain of the loop nest in reverse order from

innermost to outermost loop. The bound of a loop nest is such that it only depends

on the enclosing loop variables, symbolic constants, and integer constants. Inner loop

bound may depend on outer loop variables, however, outer loop bound should not

depend on inner loop variables. To determine loop bounds for outer loops, we project

out inner loop iteration variables via Fourier-Motzkin elimination method.

2.1 Fourier-Motzkin Elimination Method

We briefly review the Fourier-Motzkin elimination (FME) method [6]. Consider the

linear system 𝐴𝑥+ 𝑏 ≥ 0 where 𝐴 ∈ Z𝑚,𝑛 and 𝑏 ∈ Z𝑚:

𝑎11𝑥1 + 𝑎12𝑥2 + · · ·+ 𝑎1𝑛𝑥𝑛 + 𝑏1 ≥0

𝑎21𝑥1 + 𝑎22𝑥2 + · · ·+ 𝑎2𝑛𝑥𝑛 + 𝑏2 ≥0

· · · · · · · · · · · ·

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + · · ·+ 𝑎𝑚𝑛𝑥𝑛 + 𝑏𝑚 ≥0

(2.1)

19

where 𝑚 is the total number of inequalities and 𝑛 is the total number of integer

variables in the system. Suppose that we are eliminating 𝑥1 from the system. We can

generate an equivalent system by multiplying by 1/|𝑎𝑖1| for each inequality 𝑖 where

𝑎𝑖1 is non-zero and grouped them into three classes depending on the sign (positive,

negative or zero) of the coefficient for 𝑥1:

𝑥1+𝑎′𝑖2𝑥2+· · ·+𝑎′𝑖𝑛𝑥𝑛+𝑏′1 ≥0 (𝑖 ∈ 𝑆+)

𝑎𝑖2𝑥2+· · ·+𝑎𝑖𝑛𝑥𝑛+𝑏𝑖 ≥0 (𝑖 ∈ 𝑆0)

−𝑥1+𝑎′𝑖2𝑥2+· · ·+𝑎′𝑖𝑛𝑥𝑛+𝑏′𝑖 ≥0 (𝑖 ∈ 𝑆−)

(2.2)

where 𝑆+ = {𝑖 | 𝑎𝑖1 > 0}, 𝑆0 = {𝑖 | 𝑎𝑖1 = 0}, 𝑆− = {𝑖 | 𝑎𝑖1 < 0}, 𝑎′𝑖𝑗 = 𝑎𝑖𝑗/|𝑎𝑖1|, and

𝑏′𝑖 = 𝑏𝑖/|𝑎𝑖1|. 𝑥1, 𝑥2, 𝑥3, · · · , 𝑥𝑛 is a solution to the original system 2.1 if and only if

𝑥2, 𝑥3, · · · , 𝑥𝑛 satisfies:

𝑛∑︁
𝑗=2

𝑎′𝑘𝑗𝑥𝑗 + 𝑏′𝑘 +
𝑛∑︁

𝑗=2

𝑎′𝑖𝑗𝑥𝑗 + 𝑏′𝑖 ≥0 (𝑖 ∈ 𝑆+, 𝑘 ∈ 𝑆−)

𝑛∑︁
𝑗=2

𝑎′𝑖𝑗𝑥𝑗 + 𝑏′𝑘 ≥0 (𝑖 ∈ 𝑆0)

(2.3)

and 𝑥1 satisfies:

max
𝑖∈𝑆+

(︂ 𝑛∑︁
𝑗=2

−𝑎′𝑖𝑗𝑥𝑗 − 𝑏′𝑖

)︂
≤ 𝑥1 ≤ min

𝑘∈𝑆−

(︂ 𝑛∑︁
𝑗=2

𝑎′𝑘𝑗𝑥𝑗 + 𝑏′𝑘

)︂
(2.4)

The polyhedron defined by 2.3 is the projection of the original polyhedron 2.1

onto the space of 𝑥2, 𝑥3, · · · , 𝑥𝑛, whereas, 2.4 defines the lower and upper bound of

𝑥1 in terms of 𝑥2, 𝑥3, · · · , 𝑥𝑛. We proceed similarly to eliminate 𝑥2, 𝑥3, · · · , 𝑥𝑛.

2.2 Non-Linear Symbolic Constant Coefficient Ex-

tension

We extend the Fourier-Motzkin elimination (FME) method to handle non-linear sys-

tems with symbolic constant coefficients. We will refer to the extended system as

20

NFM throughout the rest of the paper. The coefficients of the variables of the linear

inequalities can be an integer polynomial in the symbolic constants. More formally,

the inequality is of the form:

𝑓(�⃗�, �⃗�) = 𝑝0(�⃗�) + 𝑝1(�⃗�)𝑣1 + 𝑝2(�⃗�)𝑣2 + · · ·+ 𝑝𝑛(�⃗�)𝑣𝑛 ≥ 0

where �⃗� = (𝑣1, 𝑣2, . . . , 𝑣𝑛) are integer variables and 𝑝0(�⃗�), 𝑝1(�⃗�), . . . , 𝑝𝑛(�⃗�) are arbi-

trary integer polynomials in the symbolic constants �⃗� = (𝑢1, 𝑢2, . . . , 𝑢𝑚). Specifically,

∀𝑥(0 ≤ 𝑥 ≤ 𝑛) 𝑝𝑥(�⃗�) =
∑︁
𝑖=0

𝑐𝑥,𝑖

𝑚∏︁
𝑗=1

𝑢
𝑧𝑥,𝑖𝑗
𝑥,𝑗 ,

where 𝑐𝑥,𝑖 is integer constant and 𝑧𝑥,𝑖𝑗 is the polynomial power of the symbolic constant

𝑢𝑥,𝑗.

Consider the following system of inequalities:

𝑓 1(�⃗�, �⃗�) = 𝑝10(�⃗�) + 𝑝11(�⃗�)𝑣1 + 𝑝12(�⃗�)𝑣2 + · · ·+ 𝑝1𝑛(�⃗�)𝑣𝑛 ≥ 0

𝑓 2(�⃗�, �⃗�) = 𝑝20(�⃗�) + 𝑝21(�⃗�)𝑣1 + 𝑝22(�⃗�)𝑣2 + · · ·+ 𝑝2𝑛(�⃗�)𝑣𝑛 ≥ 0

· · · · · ·

𝑓 𝑟(�⃗�, �⃗�) = 𝑝𝑟0(�⃗�) + 𝑝𝑟1(�⃗�)𝑣1 + 𝑝𝑟2(�⃗�)𝑣2 + · · ·+ 𝑝𝑟𝑛(�⃗�)𝑣𝑛 ≥ 0

where 𝑟 is the total number of inequalities in the system. Without loss of generality,

suppose that we are eliminating the variable 𝑣𝑥. First, we separate the inequality

constraints into four sets: 𝑆0
𝑥, 𝑆+

𝑥 , 𝑆−
𝑥 , and 𝑆?

𝑥. 𝑆0
𝑥 contains any inequalities not

involving 𝑣𝑥, i.e.

𝑆0
𝑥 = {𝑓 𝑦(�⃗�, �⃗�) | 0 ≤ 𝑦 ≤ 𝑟, 𝑝𝑦𝑥 = 0} .

𝑆+
𝑥 contains any inequalities which coefficient values of 𝑣𝑥 are positive, i.e.

𝑆+
𝑥 = {𝑓 𝑦(�⃗�, �⃗�) | 0 ≤ 𝑦 ≤ 𝑟, 𝑝𝑦𝑥 > 0} .

21

𝑆−
𝑥 contains any inequalities which coefficient values of 𝑣𝑥 are negative, i.e.

𝑆−
𝑥 = {𝑓 𝑦(�⃗�, �⃗�) | 0 ≤ 𝑦 ≤ 𝑟, 𝑝𝑦𝑥 < 0} .

Finally, 𝑆?
𝑥 contains any inequalities in which coefficient values of 𝑣𝑥 are undetermined.

In addition to the four sets of inequality constraints, we also have a context,

𝐷, which contains partial domain knowledge of the symbolic constant values, e.g.

−10+𝑢1 ≥ 0 or 𝑢1 *𝑢2+10𝑢1 ≥ 0. More formally, the context consists of inequalities

(either linear or non-linear) of the form

𝑔(�⃗�) =
∑︁
𝑖=0

𝑐𝑖

𝑚∏︁
𝑗=1

𝑢
𝑧𝑖𝑗
𝑗 ,

where �⃗� = (𝑢1, 𝑢2, . . . , 𝑢𝑚) are symbolic constants, 𝑐𝑖 is integer constant and 𝑧𝑗 is the

polynomial power of the symbolic constant 𝑢𝑗.

Given 𝑆0
𝑥, 𝑆+

𝑥 , 𝑆−
𝑥 , 𝑆?

𝑥, and 𝐷, we proceed as follows. In linear FM, to eliminate

𝑣𝑥 from the inequality constraints, we take pair of constraints with opposite coeffi-

cient values of 𝑣𝑥 and compute their positive combination (with appropriate positive

constant multipliers) to create a new inequality constraint not involving 𝑣𝑥. Since the

value of 𝑝𝑦𝑥 (0 ≤ 𝑦 ≤ 𝑟 ∧ 𝑓 𝑦(�⃗�, �⃗�) ∈ 𝑆?
𝑥) is undetermined, for every inequality in 𝑆?

𝑥,

we recursively branch on the current system into the following cases: (1) 𝑝𝑦𝑥 = 0, (2)

𝑝𝑦𝑥 > 0, and (3) 𝑝𝑦𝑥 < 0. If 𝑝𝑦𝑥 = 0, we move the inequality from 𝑆?
𝑥 to 𝑆0

𝑥. Similarly if

𝑝𝑦𝑥 > 0 or 𝑝𝑦𝑥 < 0, we move the inequality from 𝑆?
𝑥 to 𝑆+

𝑥 or 𝑆−
𝑥 respectively.

Each branch introduces a new set of linear constraints on the symbolic parameters

to the context. For example, let’s suppose 𝑝1𝑥 = 8 − 4𝑁 , where 𝑁 is a symbolic

parameter. For the case when 𝑝1𝑥 > 0, constraint 𝑁 < 2 is added to the context 𝐷.

Similarly, for the case when 𝑝1𝑥 < 0, constraint 𝑁 > 2 is added to the context. If

adding new constraints results in an empty context domain, the system is not feasible

and we can drop the corresponding branch. Since fully checking the feasibility of

𝐷 involves more non-linear inequalities, we approximate the checking by employing

regular Fourier-Motzkin elimination method on only the linear inequalities in 𝐷. If

22

the sub-domain defined by the linear inequalities is empty, we can conclude that 𝐷

is empty as well.

After every element in 𝑆?
𝑥 is classified into either 𝑆0

𝑥, 𝑆+
𝑥 , or 𝑆−

𝑥 , we take one element

𝑓+(�⃗�, �⃗�) from 𝑆+
𝑥 and one element 𝑓−(�⃗�, �⃗�) from 𝑆−

𝑥 and compute their greatest

common divisor, 𝑔𝑐𝑑 = 𝐺𝐶𝐷(𝑝+𝑥 ,−𝑝−𝑥). Note that in linear system, 𝑔𝑐𝑑 is a constant.

Multiplying 𝑓+(�⃗�, �⃗�) by −𝑝−𝑥 /𝑔𝑐𝑑 and 𝑓−(�⃗�, �⃗�) by 𝑝+𝑥 /𝑔𝑐𝑑, and adding those together

produces a new inequality not involving 𝑣𝑥. We repeat the same steps for every

combination of each element in 𝑆+
𝑥 and 𝑆−

𝑥 to eliminate 𝑣𝑥 from all the inequality

constraints.

To illustrate the steps described above, let’s eliminate 𝑗 from the system of inequal-

ities describing the iteration domain of Program 1. The system of inequalities describ-

ing the iteration space is listed in Figure 2-1. Let’s also assume we have an additional

context 𝐷 on the symbolic constants, 𝐷 = {(𝑈, 𝑉) | 𝑈 ≥ 0, 𝑉 ≥ 0, 𝑏 ≥ 1}, which

is a reasonable assumption since 𝑖 and 𝑗 start from 0 and it doesn’t make sense to

have a non-positive block size. First, we separate the inequalities into 𝑆0
𝑗 = {(1), (2)},

𝑆+
𝑗 = {(3), (6)}, 𝑆−

𝑗 = {(4), (5), (7)}, and 𝑆?
𝑗 = ∅. 𝑆?

𝑗 is empty since all coefficients of

𝑗 have signs that are fully determined. Next, we compute the positive combinations

of elements in 𝑆+
𝑗 and 𝑆−

𝑗 which create new inequalities that do not involve 𝑗. Take

as an example inequalities (3) and (4). We multiply both (3) and (4) by 1 and sum

them together, creating a new inequality 2 * 𝑖 ≥ 0.

The new set of inequalities after projecting out 𝑗 (i.e. eliminating 𝑗 from all the

constraints) is listed in Figure 2-2. Inequalities 𝑉 ≥ 0 and 𝑏 − 1 ≥ 0 only involve

the symbolic constants, 𝑏 and 𝑉 . Since we know from the context 𝐷 that 𝑉 ≥ 0 and

𝑏 ≥ 1, we can safely drop those inequalities from the system; otherwise, we need to

add the constraints 𝑉 ≥ 0 and 𝑏 − 1 ≥ 0 to 𝐷. Had the context specified 𝑏 < 1 or

𝑉 < 0, the system would be infeasible and we could return immediately. Inequality

(10) is redundant in the presence of (8) and we can thus remove it from the system.

Chapter 3 describes several steps to simplify the system of inequalities. Next, we

proceed to project out 𝑖 and 𝑥 in that order to determine the loop bounds of 𝑖 and

𝑥 in terms of the outer loop integer variables and symbolic constants. The generated

23

𝑖 ≥ 0 (2.5)
−𝑖+ 𝑈 ≥ 0 (2.6)

𝑗 ≥ 0 (2.7)
2 * 𝑖− 𝑗 ≥ 0 (2.8)
−𝑗 + 𝑉 ≥ 0 (2.9)

−𝑏 * 𝑥+ 𝑗 >= 0 (2.10)
𝑏 * 𝑥− 𝑗 + 𝑏− 1 ≥ 0 (2.11)

Figure 2-1: System of inequalities describing the iteration space of Program 1 with
parallelization and blocking

𝑖 ≥ 0 (2.12)
−𝑖+ 𝑈 ≥ 0 (2.13)

2 * 𝑖 ≥ 0 (2.14)
𝑉 ≥ 0 (2.15)

𝑏 * 𝑥+ 𝑏− 1 ≥ 0 (2.16)
−𝑏 * 𝑥+ 2 * 𝑖 ≥ 0 (2.17)
−𝑏 * 𝑥+ 𝑉 ≥ 0 (2.18)

𝑏− 1 ≥ 0 (2.19)

Figure 2-2: System of inequalities after projecting out dimension 𝑗 from the domain
set in Figure 2-1

loop code is shown in Figure 2-3.

For now, our code generator only covers cases where everything divides and is a

single statement. We believe that it will be possible to handle other cases as well

(e.g. multiple statements, non-divisible block size, etc.), however, we have not yet

implemented those functionalities into our code generator.

24

IF ((U >= 0) AND (V >= 0) AND (b-1 >= 0)) THEN
FOR x := max(0, ((-b+1)/b)) TO

min(2*U/b, V/b) DO
FOR i := max(b*x/2, 0) TO U DO

FOR j := max(0, b*x) TO min(2*i, V, b*x+b-1) DO

Figure 2-3: Rectangular tiling on Program 1

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

Chapter 3

Simplifying the Constraints

On each step, Fourier-Motzkin elimination produces a large number of redundant

constraints. To prevent explosion in the number of constraints and to make the

system more manageable to solve, we iterate over all the inequalities created during

each elimination step, removing as many redundant constraints as possible.

3.1 Gaussian Elimination

We scan over the inequalities; if we find pair of inequalities with opposite signs (e.g.

𝐵𝑥 + 1 ≥ 0 and −𝐵𝑥 − 1 ≥ 0), we convert them into an explicit equality. We then

perform gaussian elimination on the equalities and back substitution of the solution

to remove some of the integer variables (𝑣1, 𝑣2, . . . , 𝑣𝑛) from the inequalities. For

example, consider the following system of inequalities:

𝑥−𝐵 ≥ 0

−𝑥+𝐵 ≥ 0

𝑥+ 𝑦 − 2 ≥ 0

where 𝐵 is a symbolic constant. 𝑥−𝐵 ≥ 0 and −𝑥+𝐵 ≥ 0 are pairs of implicit

equality; they are converted into 𝑥 − 𝐵 = 0. Back substituting 𝑥 − 𝐵 = 0 into

𝑥+ 𝑦 − 2 ≥ 0 gives 𝑦 + (𝐵 − 2) ≥ 0 as the new inequality. The simplified domain is

then,

27

𝑥−𝐵 = 0

𝑦 +𝐵 − 2 ≥ 0

3.2 Normalizing the Constraints

Next, we simplify the equalities/inequalities by dividing all the symbolic coefficients

(including the constant terms) by their greatest common integer divisor, 𝐺𝐶𝐷𝑎𝑙𝑙.

Next, since we are only interested in an integer solution for code generation, we can

simplify the inequalities further by dividing all the integer variables’ coefficients by

their greatest common integer divisor, 𝐺𝐶𝐷𝑖𝑡𝑒𝑟, and rounding off the constant term

offset to the nearest value if the constant term offset is an integer (not a symbolic

constant). If the constant term offset is a symbolic constant, it may or may not be

divisible by 𝐺𝐶𝐷𝑖𝑡𝑒𝑟. Had it been divisible by 𝐺𝐶𝐷𝑖𝑡𝑒𝑟, rounding off the constant

term offset will produce incorrect result.

The simplification of an inequality 2𝑁𝑥 + 4𝑁𝑦 + 9 ≥ 0, where 𝑁 is a symbolic

constant, involves the following steps:

1. Compute the integer GCD of all coefficients: 𝐺𝐶𝐷𝑎𝑙𝑙 = 𝑔𝑐𝑑(2𝑁, 4𝑁, 9) = 1.

2. Divide each coefficient by 𝐺𝐶𝐷𝑎𝑙𝑙, which is equal to one in this case.

3. Since it is an inequality, we could further divide the constraint by the integer

GCD of the non-constant terms’s coefficients: 𝐺𝐶𝐷𝑖𝑡𝑒𝑟 = 𝑔𝑐𝑑(2𝑁, 4𝑁) = 2.

Note that even though 𝑁 is also a common factor for both 2𝑁𝑥 and 4𝑁𝑦, we

do not divide the constraint by 2𝑁 as 𝑁 may be positive or negative or zero. If

𝑁 is negative, dividing by 𝑁 will reverse the inequality. Likewise, if 𝑁 is zero,

the division is undefined.

4. The final result is 𝑁𝑥+ 2𝑁𝑦 + ⌈9/2⌉ ≥ 0 or 𝑁𝑥+ 2𝑁𝑦 + 5 ≥ 0.

For equality constraint where all of its coefficients are integer, if the constant term

is not divisible by 𝐺𝐶𝐷𝑖𝑡𝑒𝑟, we can conclude that the system is infeasible since we

operate in the integer domain.

28

3.3 Removing Redundant Constraints

We use a simple algorithm described in [2] with some modifications to remove some

of the redundant inequalities. Given a system of inequalities 𝑆, for all pairs of in-

equalities

{𝑝10(�⃗�) + 𝑝11(�⃗�)𝑣1 + · · ·+ 𝑝1𝑛(�⃗�)𝑣𝑛 ≥ 0} ∈ 𝑆

and

{𝑝20(�⃗�) + 𝑝21(�⃗�)𝑣1 + · · ·+ 𝑝2𝑛(�⃗�)𝑣𝑛 ≥ 0} ∈ 𝑆

where ∀𝑖(1 ≤ 𝑖 ≤ 𝑛) 𝑝1𝑖 (�⃗�) == 𝑝2𝑖 (�⃗�), we remove 𝑝10(�⃗�)+𝑝11(�⃗�)𝑣1+ · · ·+𝑝1𝑛(�⃗�) from 𝑆 if

𝑝10(�⃗�) can be determined to be equal to or greater than 𝑝20(�⃗�). Otherwise, if 𝑝20(�⃗�) can

be determined to be greater than 𝑝10(�⃗�), we remove 𝑝20(�⃗�)+𝑝21(�⃗�)𝑣1+ · · ·+𝑝2𝑛(�⃗�)𝑣𝑛 ≥ 0

from 𝑆.

In addition to the method outlined above, we perform an additional redundancy

check by replacing the constraint in question with its negation. If the new system

does not have an integer solution, then the constraint is redundant and thus can be

eliminated. Since this check involves solving a new system of inequalities using NFM,

we only perform the check at the very last step of simplification.

The three steps listed above help eliminate a number of equalities/inequalities in

the system on each FME step, which in turn reduces the memory and time complexity

of the solver. In addition, for programs with complicated loop bounds, the order of

elimination may have impact on performance; some elimination orders may produce

much simpler final loop bounds — bounds with fewer floor/ceiling operations and

fewer inequalities involved in the lower/upper bounds of a loop iteration. Given the

constraints on the symbolic constants and the loop bounds of the outer loop iterations,

it is also possible to further simplify the loop bounds of one loop iteration. Consider

Program 2 in Figure 3-1. The value of 𝑝𝑟 is between 1 and 𝑁/32 inclusive, and its

step size is one, thus, the value of 32 * 𝑝𝑟 is bounded below by 1 and above by 𝑁 .

Since we know that 𝑁 ≥ 32, we could simplify the lower bound of 𝑖𝑟 into 32 * 𝑝𝑟. We

29

IF (N-32 >= 0) THEN
FOR pr := 1 TO (N/32) DO

FOR ir := max (32*pr, 6) TO min (32*pr+2, N) DO

Figure 3-1: Example loop nest Program 2

plan on incorporating these additional simplification steps into our code generator.

30

Chapter 4

Examples

Extending Fourier-Motzkin elimination (FME) to handle symbolic constant coeffi-

cients allows us to solve many other problems not limited to simple blocking. To

demonstrate the applicability of our system, we apply the extended FME system

on more complex examples, including multi-level rectangular tiling, communication

code generation, and diamond tiling. We believe that these examples demonstrate

that the extension to non-linear systems with symbolic constant coefficients can han-

dle modern complexities of code generation without compromising the ability to have

symbolic bounds and numbers of processors.

4.1 Multi-Level Rectangular Tiling

Using the previous Program 1 in Chapter 1 as an example, we would like to perform

two-level tiling on dimension 𝑖 (see Figure 4-1 for the iteration space diagram). The

iteration space set is listed in Figure 4-2. 𝐵1 and 𝐵2 are the tile sizes for level 1

and level 2 tiling respectively, while 𝑡1 and 𝑡2 are the intra-tile iterators for level 1

and level 2 tiling. The generated loop code after projecting out the loop iterators in

reverse order from inner to outer loop nests (𝑗, 𝑖, 𝑡2, and 𝑡1 in that order) is shown

in Figure 4-3.

31

Figure 4-1: Two-level tiling on dimension 𝑖 of Program 1

𝑖 ≥ 0 (4.1)
−𝑖+ 𝑈 ≥ 0 (4.2)

𝑗 ≥ 0 (4.3)
2 * 𝑖− 𝑗 ≥ 0 (4.4)
−𝑗 + 𝑉 ≥ 0 (4.5)

−𝐵1 * 𝑡1 + 𝑡2 ≥ 0 (4.6)
𝐵1 * 𝑡1 − 𝑡2 +𝐵1 − 1 ≥ 0 (4.7)

−𝐵2 * 𝑡2 + 𝑖 ≥ 0 (4.8)
𝐵2 * 𝑡2 − 𝑖+𝐵2 − 1 ≥ 0 (4.9)

Figure 4-2: System of inequalities describing the iteration space of Program 1 with
two-level tiling on dimension 𝑖

32

IF ((U >= 0) AND (V >= 0) AND (B1 -1 >= 0) AND (B2 -1 >= 0) AND
(B1*B2-B2+U >= 0)) THEN

FOR t1 := max(0, (-B1+1)/B1, (-B1*B2+1)/(B1*B2)) TO
(U/(B1*B2)) DO

FOR t2 := max(0, (-B2+1)/B2, B1*t1) TO min(U/B2,
B1*t1+B1 -1)) DO

FOR i := max(0, B2*t2) TO min(U, B2*t2+B2 -1) DO
FOR j := 0 TO min(2*i, V) DO

Figure 4-3: Two-Level Rectangular Tiling on Program 1

for t = 0 to T
for i = 3 to N

X[i] = X[i-3]

Figure 4-4: Communication Code for Program 3

4.2 Communication Code

We use a program from [1] as our next example (see Figure 4-4). As in [1], we would

like to distribute the second loop in the program as blocks of 𝐵 iterations across a

linear array of processors and generate the necessary communication code between

processors. However, instead of specifying a fixed block size at compile time, we

keep 𝐵 as a symbolic constant. Because of the data dependence relation, a processor

𝑝𝑠 writing to 𝑋[𝑖𝑠] at time 𝑡𝑠 needs to send the data to a processor 𝑝𝑟 writing to

𝑋[𝑖𝑟] at time 𝑡𝑟 given that 𝑡𝑟 = 𝑡𝑠 and 𝑖𝑟 = 𝑖𝑠 + 3. Table 4.1 shows the set of

equality/inequality constraints for the communication sets of the receiver and sender.

The constraint 𝑝𝑠 ̸= 𝑝𝑟 in the communication set involves a disjunction. To handle

this, we perform the computation twice: one with inequality 𝑝𝑠 > 𝑝𝑟 and one with

inequality 𝑝𝑠 < 𝑝𝑟. We project the system in reverse order from inner to outer loop

nests (𝑎, 𝑖𝑠, 𝑡𝑠, 𝑝𝑠, 𝑖𝑟, 𝑡𝑟, 𝑝𝑟) to generate the receiver loop (shown in Figure 4-5).

4.3 Diamond Tiling

We also tested our system on diamond tiling. We use the example appearing in Section

IV.B of [3]. We set the block size as a symbolic constant 𝐵. The original program and

33

𝑡𝑟 ≥ 0 𝑇 − 𝑡𝑟 >= 0

𝑖𝑟 − 3 ≥ 0 𝑁 − 𝑖𝑟 >= 0

Context 𝑖𝑟 − 6 ≥ 0

𝑡𝑠 − 𝑡𝑟 ≥ 0 𝑡𝑟 − 𝑡𝑠 >= 0

𝑖𝑠 − 𝑖𝑟 + 3 ≥ 0 𝑖𝑟 − 𝑖𝑠 − 3 >= 0

Access Function 𝑖𝑟 − 3− 𝑎 ≥ 0 𝑎− 𝑖𝑟 + 3 >= 0

Computation decomposi-
tion for read iterations

𝑖𝑟 −𝐵𝑝𝑟 ≥ 0 𝐵𝑝𝑟 +𝐵− 1− 𝑖𝑟 >= 0

Computation decomposi-
tion for write iterations

𝑖𝑠 −𝐵𝑝𝑠 ≥ 0 𝐵𝑝𝑠+𝐵− 1− 𝑖𝑠 >= 0

Constraint 𝑝𝑠 ̸= 𝑝𝑟 𝑝𝑠 > 0 or 𝑝𝑠 < 𝑝𝑟

Table 4.1: Inequalities defining the communication sets for receiver code in Program
3

IF ((N-6 >= 0) AND (B-1 >= 0) AND (T-1 >= 0) AND (B+N-7 >= 0))
THEN

FOR pr:= max(4/B, ((-B+7)/B)) TO N/B DO
FOR tr := 0 TO T DO

FOR ir := max(6, B*pr) TO min(B*pr+2, N, B*pr+B-1) DO
FOR ps := ((ir-B-2)/B) TO min(pr -1, (ir -3)/B) DO

ts := tr
FOR is := max(ir -3, B*ps) TO min(ir -3, B*ps+B-1) DO

a := ir -3

Figure 4-5: Communication Code for Program 3

34

for t = 0 to T
for i = 1 to N

for j = 1 to N

Figure 4-6: Example loop nest Program 4

𝑇 ′′((𝑡, 𝑖, 𝑗)) = (𝑡1 + 𝑡2, 𝑡2, 𝑡3, 𝑡, 𝑡+ 𝑖, 𝑡+ 𝑗 |
𝐵 * 𝑡1 ≤ 𝑡+ 𝑖 ≤ 𝐵 * 𝑡2 +𝐵 − 1,

𝐵 * 𝑡1 ≤ 𝑡− 𝑖 ≤ 𝐵 * 𝑡2 +𝐵 − 1,

𝐵 * 𝑡3 ≤ 𝑡+ 𝑗 ≤ 𝐵 * 𝑡3 +𝐵 − 1)

Figure 4-7: Diamond tiling transformation applied to Program 3

its diamond tiling transformation are shown in Figure 4-6 and Figure 4-7 respectively.

To generate the appropriate loop code, we embed the equalities/inequalities describing

the scheduling constraints into the system of constraints describing the iteration space

of the system (see Section 3.1 of [4] for more detail). The generated code is shown in

Figure 4-8.

35

IF ((T-1 >= 0) AND (N-2 >= 0) AND (B-2 >= 0)) THEN
FOR tk := ((-2*B+2)/B) TO (2*T/B) DO

FOR t2 := max(tk -(N+T)/B, tk/2-(B+2*N-1) /(2*B),
(-B-N+1)/B) TO min(tk/2+(B-3) /(2*B), (T-1)/B) DO

FOR t3 := max(tk-t2+(2-B-N)/B, tk/2+(2-B)/B, (2-B)/B,
t2+(3-B)/B) TO min(tk-t2+(2-B+N)/B, tk/2+(B+N-1)/B,
t2+(B+2*N-1)/B, (N+T)/B) DO

FOR tp := max(0, B*t2+1, B*t3-N, B*tk-B*t2-N, B*tk/2)
TO min(T, B*tk/2+B-1, B*tk-B*t2+B-2, B*t3+B-2,
B*t2+B+N-1) DO

FOR ip := max(B*tk-B*t2, -B*t2+2*tp-B+1, tp+1) TO
min(B*tk-B*t2+B-1, -B*t2+2*t_p , tp+N) DO

FOR jp := max(B*t3 , tp+1) TO min(B*t3+B-1, tp+N) DO

Figure 4-8: Diamond Tiling on Program 4

36

Chapter 5

NFM Integration into Halide

We integrated our NFM framework into Halide, an open-source domain-specific lan-

guage for image processing and computational photography [13]. In the integrated

system, we use NFM to simplify interval expression after box merging or to com-

pute box intersection, a critical path during loop bound computation, which we will

describe in detail in the following sections.

5.1 Halide

Halide is a domain specific language designed specifically for image processing and

computational photography. It is a functional programming language that allows

programmer to specify image processing algorithm, without having to worry about

how the algorithm is actually implemented. Halide decouples the algorithm from its

schedule, which allows programmers to explore different scheduling strategies without

having to modify the algorithmic code [12].

In Halide, a region is represented as a multidimensional interval (axis-aligned

bounding box). The iteration domain of a loop nest is represented as simple axis-

aligned bounding boxes of the dimensionality of the loop depth; for each loop level, its

lower and upper bound are modeled as intervals [11]. Loop bound computation during

loop synthesis is based on interval analysis. Interval analysis is more straightforward

to implement compared to polyhedral model. It can analyze a relatively broad class

37

of expressions and can handle more generalized constructs such as parametric tiling,

which are beyond the scope of linear polyhedral model.

5.2 Integrating NFM into Halide

Despite its capability to handle more general constructs with symbolic constants,

such as seen in parametric tiling, the resulting lower/upper bounds for each loop

dimension generated by interval analysis are generally less expressive compared to

those generated by polyhedral model. Halide’s iteration domain is constrained to

axis-aligned bounding boxes, rather than arbitrary polytopes as in the polyhedral

model.

Figure 5-1: Triangular iteration domain of loop dimension 𝑖 and 𝑗

To illustrate this limitation, consider the following simple example in Figure 5-1.

In the polyhedral model, this triangular iteration domain is represented exactly by

the following set of inequalities:

38

𝑖 ≥ 0

−𝑖+ 5 ≥ 0

𝑖+ 𝑗 ≥ 0

𝑗 ≥ 0

−𝑗 + 5 ≥ 0

In Halide, however, this triangular iteration domain is approximated with a more

conservative axis-aligned bounding box: 0 ≤ 𝑖 ≤ 5 and 0 ≤ 𝑗 ≤ 5.

This limitation is particularly critical in distributed system, where a sender has

to identify the region required to be sent to a receiver. If the maximum values of 𝑖

and 𝑗 had been 100 instead of 5, the sender would have needed to send significantly

more data to the receiver which will never be used by the receiver.

NFM provides Halide the capability to represent iteration domain more precisely

without sacrificing the capability to handle parametric tiling. In fact, NFM is able

to handle more general cases of parametric tiling, not limited to rectangular tiling.

As shown in Chapter 4, NFM can handle various tiling schemes, such as multi-level

tiling and diamond tiling.

In addition, NFM provides a more general, unified, robust framework to perform

computations on iteration domains (e.g merge, intersection, etc.) and to simplify

expressions in a very simple way. In Halide, we need to write hundreds of rules

to perform the simplifications. The simplify method in Halide is essentially a gi-

ant if/else statement handling those different simplification rules (see Figure A.1 in

Appendix A).

5.2.1 Box Merging

We integrate NFM to simplify the box domain generated during merge_boxes method

in Halide. We will refer to the NFM integrated method as merge_boxes_nfm and to

the original Halide method as merge_boxes_halide. Some of the examples of sim-

plified interval bound expressions by merge_boxes_nfm and merge_boxes_halide

are shown in Table 5.1. The expression listed on the table is either the upper or

39

lower bound of an interval dimension of the merged box. During simplification,

merge_boxes_nfm first converts the input interval expression into a union of polyhe-

dral domains. A domain in the polyhedral model represents a conjunction (AND) of

constraints, while a union domain represents a disjunction (OR) of domains. After

simplification is performed via NFM in the polyhedral domain, merge_boxes_nfm

converts the union domain back into Halide’s interval bound expressions. Within a

polyhedral domain, the upper bound of an interval is simply the minimum of all the

upper bound constraints, e.g. 𝑥 ≤ 𝑚𝑖𝑛(𝑎, 𝑏). Likewise, the lower bound of an interval

is simply the maximum of all the upper bound constraints, e.g. 𝑥 ≥ 𝑚𝑎𝑥(𝑎, 𝑏). Since

Halide’s iteration set is constrained to axis-aligned bounding boxes, a union domain in

the polyhedral model is converted into either a 𝑚𝑎𝑥 of the composing domains’ lower

bound expressions or a 𝑚𝑖𝑛 of the composing domains’ upper bound expressions.

To illustrate the concept, consider the following simple example of upper bound

on 𝑤:

𝑤 ≤ 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑁,𝑁 + 1), 𝑁 + 2) (5.1)

where 𝑤 is the loop dimension and 𝑁 is a symbolic constant. We convert 5.1 into

set of inequality constraints to be processed by NFM (Equation 5.2-5.4). The union

domain representation of this expression is the following:

𝑤 ≤ 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑁, 𝑁 + 1), 𝑁 + 2) (5.2)

=⇒ (𝑤 ≤ 𝑚𝑖𝑛(𝑁, 𝑁 + 1)) ∨ (𝑤 ≤ 𝑁 + 2) (5.3)

=⇒ (𝑤 ≤ 𝑁 ∧ 𝑤 ≤ 𝑁 + 1) ∨ (𝑤 ≤ 𝑁 + 2) (5.4)

(𝑤 ≤ 𝑁 ∧ 𝑤 ≤ 𝑁 +1) (Equation 5.4) is the first domain, while the (𝑤 ≤ 𝑁 +2)

(Equation 5.4) is the second domain in the union domain. NFM will detect that the

constraint 𝑤 ≤ 𝑁 +1 is redundant in the presence of 𝑤 ≤ 𝑁 in the first domain, and

40

hence will remove it from the domain. The final union domain is then the following:

(𝑤 ≤ 𝑁) ∨ (𝑤 ≤ 𝑁 + 2) (5.5)

The conversion of equation 5.5 to Halide’s interval bound is equal to the following:

𝑤 ≤ 𝑚𝑎𝑥(𝑁, 𝑁 + 2) (5.6)

We further use one of the functionalities provided by NFM to simplify 𝑤 ≤ 𝑚𝑎𝑥(𝑁, 𝑁+

2) into 𝑤 ≤ 𝑁 + 2. Thus, the final interval’s upper bound on 𝑤 is 𝑁 + 2. Note that

running Halide’s simplify on equation 5.1 will also give the same answer as NFM.

However, Halide’s simplify is limited; it cannot simplify a more complex example

like 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑝,𝑚𝑖𝑛(𝑞,𝑚𝑖𝑛(𝑝− 2, 0))), 𝑝− 1), where 𝑝 and 𝑞 are symbolic constants,

as shown in Table 5.1. For Halide to handle this case, we need to add more rules into

its simplify method.

halide 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑝+ 𝑞 * 16 + 𝑟 + 𝑠+ 𝑡 * 16− 15, 𝑝+ 𝑟 + 𝑢− 14),𝑚𝑖𝑛((𝑞 + 𝑡) *
16 + 𝑠− 16, 𝑢− 15) + 𝑝+ 𝑟 + 1)

nfm 𝑚𝑖𝑛(𝑝+ 𝑞 * 16 + 𝑟 + 𝑠+ 𝑡 * 16− 15, 𝑝+ 𝑟 + 𝑢− 14))

halide 𝑚𝑎𝑥(𝑚𝑖𝑛(((𝑚𝑎𝑥((𝑚𝑎𝑥(𝑎, 1)− 1), 0) * 16) + 𝑞 + 15), 𝑝), 𝑟)

nfm 𝑚𝑎𝑥(𝑟,𝑚𝑖𝑛(𝑚𝑎𝑥(𝑞 + 15, 𝑞 + 𝑎 * 16− 1), 𝑝))

halide 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑝,𝑚𝑖𝑛(𝑞,𝑚𝑖𝑛(𝑝− 2, 0))), 𝑝− 1)

nfm 𝑚𝑖𝑛(𝑞,𝑚𝑖𝑛(𝑝− 2, 0))

halide 𝑚𝑖𝑛(𝑚𝑖𝑛(𝑝,𝑚𝑖𝑛(𝑞,𝑚𝑖𝑛(𝑟,𝑚𝑖𝑛(𝑝−1,𝑚𝑖𝑛(𝑝−2, 0))))),𝑚𝑖𝑛(𝑞,𝑚𝑖𝑛(𝑟, 𝑠)))

nfm 𝑚𝑖𝑛(𝑟,𝑚𝑖𝑛(𝑞,𝑚𝑖𝑛((𝑝− 2),𝑚𝑖𝑛(𝑠, 0))))

Table 5.1: Expressions simplified by merge_boxes_halide vs. merge_boxes_nfm. 𝑎,
𝑝, 𝑞, 𝑟, 𝑠, 𝑡, and 𝑢 are symbolic constants.

5.2.2 Boxes Intersection

NFM provides a natural way to perform domain intersection. In the polyhedral model,

intersection of two domains is equivalent to combining the two domains. For example,

41

the intersection of domain 1, 𝑤 ≤ 𝑎, and domain 2, 𝑤 ≤ 𝑏, is simply 𝑤 ≤ 𝑎 ∧ 𝑤 ≤ 𝑏.

NFM is also able to give comparable results, if not sometimes better than Halide.

Consider the two 1-D Halide boxes in Figure 5-2, where 𝑎, 𝑏, and 𝑀 are symbolic

constants; and 𝑥 is the box dimension:

Box A:
x: [10, 19]

Box B:
x: [min(max(((M*a) + b), 0), 19), max(min ((((M + 1)*a)

+ b), 19), 0))]

Figure 5-2: Example of 1-D Halide boxes

The intersections of those two boxes using NFM and Halide are shown in Figure

5-3. As we can see from the result, NFM result is simpler than Halide’s.

Box Halide:
x: [max(min(max (((M*a) + b), 0), 19), 10),

min(max(min ((((M + 1)*a) + b), 19), 0), 19)]
Box NFM:

x: [min(max((b + (M*a)), 10), 19), max(min(((b + a) +
(M*a)), 19), 0)]

Figure 5-3: Intersection of two boxes specified in Figure 5-2 using NFM and Halide
respectively

5.3 Experimental Results

We ran both merge_boxes_nfm and merge_boxes_halide on several application ex-

amples provided in the Halide distribution. As performance measure, we count the

total number of CPU cycles required to execute the generated expression. In this

case, the expression is the min/max value of each box interval dimension. We choose

number of CPU cycles instead of running time to measure the performance since the

difference in running time is not easily observable. Comparing the expression length

does not make any sense either, as shorter expression does not necessarily equal to

42

better performance; for example, 𝑥+ 𝑦 + 𝑧 is longer than 𝑥/𝑦, however, 𝑥/𝑦 is more

expensive since division takes longer CPU cycles to compute than addition.

We estimate the number of CPU cycles by summing the CPU latency of all instruc-

tions within an expression. The number of CPU cycles per instruction we used to mea-

sure the performance is listed in Table 5.2. The results of running merge_boxes_nfm

and merge_boxes_halide on the applications are listed in Table 5.3. On average,

the total number CPU cycles for executing merge_boxes_nfm is 79.04% of that of

merge_boxes_halide.

As we can see from Table 5.3, merge_boxes_nfm performs better compared to

merge_boxes_halide (merge_boxes_nfm has lower total number of CPU cycles), ex-

cept for linear_algebra. In linear_algebra, merge_boxes_nfm does not perform

as well as merge_boxes_halide because of a limitation in the NFM to Halide con-

verter, particularly when converting NFM back into Halide’s select expression. To

make this point clearer, let’s consider the example in Figure 5-4.

select(M >= 0, select(N >= 0, a, b), c)

Figure 5-4: Example of Halide’s select expression

In Halide, select(true, true_condition, false_condition) is equivalent to

if/else statement in C++. From this point onward, we shall refer to select as if/else.

The expression in Figure 5-4 is equivalent to the expression in Figure 5-5 in C++.

if (M >= 0) {
if (N >= 0) {

a
} else {

b
}

} else {
c

}

Figure 5-5: C++ equivalent of expression in Figure 5-4

Converting the expression in Figure 5-5 into NFM’s union domain, we get the

43

following:

{(𝑀 ≥ 0) ∧ (𝑁 ≥ 0) ∧ 𝑎} ∨ {(𝑀 ≥ 0) ∧ (𝑁 < 0) ∧ 𝑏} ∨ {(𝑀 < 0) ∨ 𝑐} (5.7)

Assuming that Union Domain 5.7 is already in the simplest form, there are several

equivalent if/else forms of Union Domain 5.7. One of them is listed in Figure 5-6.

if (M >= 0 && N >= 0) {
a

} else if (M >= 0 && N < 0) {
b

} else {
c

}

Figure 5-6: C++ equivalent of expression in Figure 5-4

Comparing to the original expression in Figure 5-5, we now count the CPU cycles

latencies of both 𝑀 and 𝑁 twice. With a better converter, we could have combined the

first and the second statements in Figure 5-6 into a nested if/else statement instead,

as in the original expression, which will cut down the total CPU cycles latencies.

44

Instruction # of CPU cycles

CAST 1

ADD 1

SUB 1

MUL 3

DIV 24

MOD 1

RETURN 1

COMPARE 2

AND 1

OR 1

NOT 1

CALL 3

Table 5.2: Latency (Number of CPU cycles) of each instruction used to compare the
performance of NFM with that of Halide

Application Halide (# of
CPU cycles)

NFM (# of
CPU Cycles)

NFM/Halide

blur 432 370 85.65%

linear_algebra 34122 35276 103.38%

resize 7835 722 9.22%

fft 398693 340932 85.51%

local_laplacian 64922 50702 78.10%

camera_pipe 99833 92274 92.43%

wavelet 542 375 69.19%

interpolate 561664 399942 71.21%

bilateral_grid 1980 1697 85.71%

Table 5.3: Number of CPU cycles of interval expressions generated by merge_box
when using NFM vs. using Halide

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

Chapter 6

Conclusions

We have extended the Fourier-Motzkin elimination method to handle symbolic con-

stant coefficients and built a framework, called NFM, that implements the extension.

We have shown through a number of examples that extending the Fourier-Motzkin

elimination allows us to solve for more complex code generation problems, such as

parametric tiling, parallelization, and communication. We have also introduced some

simplification steps to make the system more manageable to solve. We believe that

this simple extension enables us to deal with common non-linear systems robustly, as

demonstrated by the examples.

We have further integrated our NFM framework into Halide, an open-source

domain-specific language compiler for image processing [13], which provides Halide a

more robust framework to perform computation on iteration domain such as merge,

intersection, etc., and provides a significant performance gain during loop bound com-

putation. NFM is able to generate a more simplified expression than Halide, which

translates to a lower CPU latency. NFM also provides Halide a unified framework to

perform more complex optimization schemes, such as diamond tiling.

Given the promising results, the next steps will involve building a better NFM

to Halide converter. As we see in Chapter 5.3, conversion of NFM’s union domain

back to Halide’s select remains a problem. Simplifying an if/else statement into a

nested one might require some type of heuristics to guide the simplification process.

Another major step would be to modify Halide to use polyhedral representation for

47

its domain. Currently to use the NFM framework inside Halide, we need to convert

Halide’s expression into NFM’s union domain and back into Halide’s expression, which

may potentially include a significant overhead to the compilation process. Converting

NFM’s union domain back into Halide’s expression also means sacrificing the more

precise domain representation of NFM since Halide can only represent an axis-aligned

box domain.

In terms of the NFM framework, it may be beneficial to integrate ISL (Integer Set

Library), a C library for manipulating integer sets bounded by affine constraints [16],

into NFM. ISL has a relatively stable code base and has many functions which may

be useful for further development of NFM. NFM could potentially use some of the

functions already available ISL without having to reinvent the wheel.

48

Appendix A

Figures

Program A.1: Code snippet of Halide’s simplify min method

void visit(const Min *op) {

...

if (no_overflow(op->type) &&

add_a &&

const_int(add_a ->b, &ia) &&

add_b &&

const_int(add_b ->b, &ib) &&

equal(add_a ->a, add_b ->a)) {

// min(x + 3, x - 2) -> x - 2

if (ia > ib) {

expr = b;

} else {

expr = a;

}

} else if (no_overflow(op->type) &&

add_a &&

const_int(add_a ->b, &ia) &&

equal(add_a ->a, b)) {

// min(x + 5, x) -> x

49

if (ia > 0) {

expr = b;

} else {

expr = a;

}

} else if (no_overflow(op->type) &&

add_b &&

const_int(add_b ->b, &ib) &&

equal(add_b ->a, a)) {

// min(x, x + 5) -> x

if (ib > 0) {

expr = a;

} else {

expr = b;

}

} else if (no_overflow(op->type) &&

sub_a &&

sub_b &&

equal(sub_a ->b, sub_b ->b) &&

const_int(sub_a ->a, &ia) &&

const_int(sub_b ->a, &ib)) {

// min (100-x, 101-x) -> 100-x

if (ia < ib) {

expr = a;

} else {

expr = b;

}

} else if (a_round_up.defined () &&

equal(a_round_up , b)) {

// min(((a + 3)/4)*4, a) -> a

expr = b;

} else if (a_round_up.defined () &&

50

max_b &&

equal(a_round_up , max_b ->a) &&

is_const(max_b ->b, a_round_up_factor)) {

// min(((a + 3)/4)*4, max(a, 4)) -> max(a, 4)

expr = b;

} else if (b_round_up.defined () &&

equal(b_round_up , a)) {

// min(a, ((a + 3)/4)*4) -> a

expr = a;

} else if (b_round_up.defined () &&

max_a &&

equal(b_round_up , max_a ->a) &&

is_const(max_a ->b, b_round_up_factor)) {

// min(max(a, 4), ((a + 3)/4)*4) -> max(a, 4)

expr = a;

} else if (max_a &&

equal(max_a ->b, b)) {

// min(max(x, y), y) -> y

expr = b;

} else if (min_a &&

(equal(min_a ->b, b) || equal(min_a ->a, b))) {

// min(min(x, y), y) -> min(x, y)

expr = a;

} else if (min_b &&

(equal(min_b ->b, a) || equal(min_b ->a, a))) {

// min(y, min(x, y)) -> min(x, y)

expr = b;

} else if (min_a &&

min_a_a &&

equal(min_a_a ->b, b)) {

// min(min(min(x, y), z), y) -> min(min(x, y), z)

expr = a;

51

} else if (min_a &&

min_a_a_a &&

equal(min_a_a_a ->b, b)) {

// min(min(min(min(x, y), z), w), y) -> min(min(min(x,

y), z), w)

expr = a;

} else if (min_a &&

min_a_a_a_a &&

equal(min_a_a_a_a ->b, b)) {

// min(min(min(min(min(x, y), z), w), l), y) ->

min(min(min(min(x, y), z), w), l)

expr = a;

} else if (max_a &&

max_b &&

equal(max_a ->a, max_b ->a)) {

// Distributive law for min/max

// min(max(x, y), max(x, z)) -> max(min(y, z), x)

expr = mutate(Max::make(Min::make(max_a ->b, max_b ->b),

max_a ->a));

} else if (max_a &&

max_b &&

equal(max_a ->a, max_b ->b)) {

// min(max(x, y), max(z, x)) -> max(min(y, z), x)

expr = mutate(Max::make(Min::make(max_a ->b, max_b ->a),

max_a ->a));

} else if (max_a &&

max_b &&

equal(max_a ->b, max_b ->a)) {

// min(max(y, x), max(x, z)) -> max(min(y, z), x)

expr = mutate(Max::make(Min::make(max_a ->a, max_b ->b),

max_a ->b));

} else if (max_a &&

52

max_b &&

equal(max_a ->b, max_b ->b)) {

// min(max(y, x), max(z, x)) -> max(min(y, z), x)

expr = mutate(Max::make(Min::make(max_a ->a, max_b ->a),

max_a ->b));

} else if (min_a &&

min_b &&

equal(min_a ->a, min_b ->a)) {

// min(min(x, y), min(x, z)) -> min(min(y, z), x)

expr = mutate(Min::make(Min::make(min_a ->b, min_b ->b),

min_a ->a));

} else if (min_a &&

min_b &&

equal(min_a ->a, min_b ->b)) {

// min(min(x, y), min(z, x)) -> min(min(y, z), x)

expr = mutate(Min::make(Min::make(min_a ->b, min_b ->a),

min_a ->a));

} else if (min_a &&

min_b &&

equal(min_a ->b, min_b ->a)) {

// min(min(y, x), min(x, z)) -> min(min(y, z), x)

expr = mutate(Min::make(Min::make(min_a ->a, min_b ->b),

min_a ->b));

} else if (min_a &&

min_b &&

equal(min_a ->b, min_b ->b)) {

// min(min(y, x), min(z, x)) -> min(min(y, z), x)

expr = mutate(Min::make(Min::make(min_a ->a, min_b ->a),

min_a ->b));

} else if (no_overflow(op->type) &&

add_a &&

add_b &&

53

equal(add_a ->b, add_b ->b)) {

// Distributive law for addition

// min(a + b, c + b) -> min(a, c) + b

expr = mutate(min(add_a ->a, add_b ->a)) + add_a ->b;

} else if (no_overflow(op->type) &&

add_a &&

add_b &&

equal(add_a ->a, add_b ->a)) {

// min(b + a, b + c) -> min(a, c) + b

expr = mutate(min(add_a ->b, add_b ->b)) + add_a ->a;

} else if (no_overflow(op->type) &&

add_a &&

add_b &&

equal(add_a ->a, add_b ->b)) {

// min(b + a, c + b) -> min(a, c) + b

expr = mutate(min(add_a ->b, add_b ->a)) + add_a ->a;

} else if (no_overflow(op->type) &&

add_a &&

add_b &&

equal(add_a ->b, add_b ->a)) {

// min(a + b, b + c) -> min(a, c) + b

expr = mutate(min(add_a ->a, add_b ->b)) + add_a ->b;

} else if (min_a &&

is_simple_const(min_a ->b)) {

if (is_simple_const(b)) {

// min(min(x, 4), 5) -> min(x, 4)

expr = Min::make(min_a ->a, mutate(Min::make(b,

min_a ->b)));

} else {

// min(min(x, 4), y) -> min(min(x, y), 4)

expr = mutate(Min::make(Min::make(min_a ->a, b),

min_a ->b));

54

}

}

...

}

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

Bibliography

[1] Saman P. Amarasinghe and Monica S. Lam. Communication optimization and
code generation for distributed memory machines. SIGPLAN Not., 28(6):126–
138, June 1993.

[2] Saman Prabhath Amarasinghe. Parallelizing Compiler Techniques Based on Lin-
ear Inequalities. PhD thesis, Stanford University, 1997.

[3] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. Tiling stencil
computations to maximize parallelism. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC
’12, pages 40:1–40:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society
Press.

[4] Cedric Bastoul. Code generation in the polyhedral model is easier than you think.
In In IEEE Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT 04), pages 7–16, 2004.

[5] Uday Bondhugula, J. Ramanujam, and et al. Pluto: A practical and fully au-
tomatic polyhedral program optimization system. In Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementa-
tion (PLDI 08), 2008.

[6] Geir Dahl. Combinatorial properties of fourier-motzkin elimination. Electronic
Journal of Linear Algebra, 16, 2007.

[7] Paul Feautrier. Dataflow analysis of array and scalar references. International
Journal of Parallel Programming, 20, 1991.

[8] Armin Größlinger. Extending the polyhedron model to inequality systems with
non-linear parameters using quantifier elimination. Master’s thesis, University
of Passau, 2003.

[9] Francois Irigoin and Remi Triolet. Supernode partitioning. In Symposium on
Principles of Programming Languages (POPL’88), pages 319–328, San Diego,
CA, January 1988.

[10] Richard M Karp, Raymond E Miller, and Shmuel Winograd. The organization of
computations for uniform recurrence equations. Journal of the ACM, 14(3):563–
590, 1967.

57

[11] Jonathan Ragan-Kelley. Decoupling Algorithms from the Organization of Com-
putation for High Performance Image Processing. PhD thesis, Massachusetts
Institute of Technology, June 2014.

[12] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman
Amarasinghe, and Frédo Durand. Decoupling algorithms from schedules for easy
optimization of image processing pipelines. ACM Trans. Graph., 31(4):32:1–
32:12, July 2012.

[13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA,
2013. ACM.

[14] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and
Michelle Mills Strout. Parameterized tiled loops for free. SIGPLAN Not.,
42(6):405–414, June 2007.

[15] Sanket Tavarageri, Albert Hartono, Muthu Baskaran, Louis-Noël Pouchet, J. Ra-
manujam, and P. Sadayappan. Parametric tiling of affine loop nests. In 15th
Workshop on Compilers for Parallel Computing (CPC’10), Vienna, Austria, July
2010.

[16] Sven Verdoolaege. Isl: An integer set library for the polyhedral model. In
Proceedings of the Third International Congress Conference on Mathematical
Software, ICMS’10, pages 299–302, Berlin, Heidelberg, 2010. Springer-Verlag.

58

