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Abstract

This thesis presents language extensions to Simit, a language for linear algebra on
graphs. Currently, Simit doesn’t efficiently handle lattice graphs (regular grids). This
thesis defines a stencil assembly construct to capture linear algebra on these graphs.
A prototype compiler with a Halide backend demonstrates that these extensions cap-
ture the full structure of linear algebra applications operating on lattices, are easily
schedulable, and achieve comparable performance to existing methods.

Many physical simulations take the form of linear algebra on lattices. This the-
sis reviews Lattice QCD as a representative example of such a class of applications
and identifies the structure of the linear algebra involved. In this application, itera-
tive inversion of the Dirac matrix dominates the runtime, and time-intensive hand-
optimization of inverters for specific forms of the matrix limit further research. This
thesis implements this computation using the language extensions, while demonstrat-
ing competitive performance to existing methods.
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Chapter 1

Introduction

Theoretical physicists have investigated the strong nuclear force through Lattice

Quantum Chromodynamics (QCD) calculations since KenWilson’s initial formulation

in 1974 [54]. Today, there are several collaborations and research groups [10, 12, 2, 6]

working on generating data ensembles and performing calculations using these gen-

erated ensembles. These groups seek to improve our theoretical understanding of

nuclear structure and investigate discrepancies between experiment and theory. Both

generating ensembles and calculating predictions based on these data require large

scale computation, often measured in hundreds of TFlop-years [8], and this constrains

the range of physical investigations.

Current Lattice QCD research is based on linear algebra on a 4D lattice. In

particular, computations are dominated by iterative inversion of the Dirac matrix,

a sparse matrix with values between sites of the lattice and their nearby neighbors.

Existing methods use libraries that have been tuned to invert specific forms of the

Dirac matrix, corresponding to specific physical investigations. The narrow scope of

these operations hinders exploration of a wide variety of physical scenarios: gain-

ing a statistically significant understanding of new physics requires hand-optimizing

inversion of each new form to make efficient use of limited computational resources.

This is exactly the form of problem in which Domain-Specific Languages (DSLs)

provide an advantage through flexibility of expression. In scientific computing, we

believe there has so far existed a trade-off between the flexibility of expression offered
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by DSLs, and the targeted performance offered by optimized libraries. We believe

each approach has benefits, and in fact the two can often complement each other, as

in cases where DSLs delegate performance-critical evaluation to underlying libraries.

In our investigation of linear algebra on lattices, we find a wealth of library ap-

proaches [5, 4, 7, 8], but a lack of flexible, performant language approaches. Motivated

by this gap, and specifically by the growing need for a flexible language approach in

current theoretical physics investigations, we develop a set of language constructs for

linear algebra on lattices (regular grids) that provide an alternative to existing rigid

library approaches.

We describe an extension to the Simit language, which is originally designed for

linear algebra on arbitrary graph structures, to support lattice graphs efficiently. Lat-

tice graphs have additional structure over arbitrary graphs, and in our extensions we

allow the user to identify lattice graphs and use the structure in definitions of matri-

ces. The additional lattice structure also enables efficient compilation by removing

memory indices describing graph structure.

By leveraging Halide, an existing stencil pipeline DSL (described in Chapter 3),

we build a prototype to evaluate the expressiveness and efficiency of our language. We

find that, versus Simit, our language allows simpler description of matrices on lattice

graphs and allows compilation of much more efficient code in these graphs. Specifi-

cally, this thesis evaluates the performance of code generated from a prototype of this

system for two common stencils and in the context of Lattice QCD computations,

and shows that it performs better than Simit and comparably to existing optimized

USQCD library code. We also demonstrate the ability of our language to be sched-

uled independently of the algorithm, a key feature that allows quick development

of performant, correct code [40]. To this end, our use of Halide as a backend pro-

vides a solid stepping stone: its scheduling language allows convenient parallelization,

vectorization, and tiling, among other scheduling optimizations.

These strong results are due to the ability of our DSL to combine (1) information

on the structure of matrix and vector representations on the lattice, (2) the flexible

index expression approach to linear algebra, and (3) the concept of separation of

16



schedule and algorithm. These features together facilitate a system that generates

efficient stencil-based descriptions of linear algebra on lattices and allows an under-

standable scheduling of the generated code.

We hope that these promising early results will spur adoption of DSL methods

in the physics community, and in particular will open doors to new Lattice QCD

experiments. We also believe this language is well suited for other computationally

intensive physical applications performed on lattices, for example the grid-based hy-

drodynamics used in astrophysical simulations [53], stencil-based seismic simulations

[39, 34], and weather prediction [49, 41]. Finally, this language has applications be-

yond physics. One particular example of interest is low-level image processing using

Gaussian Markov Random Fields on grids. This application is well-described using

linear algebra and iterative matrix inversion of matrices with regular stencil structure

[52]. Our extensions can be applied to provide a natural, efficient description of these

computations.

The language described in this thesis fits well into the existing Simit programming

model, and we think a promising avenue forward would include an official extension

to Simit based on the concepts presented here, such that Simit may be efficiently

applied to all linear algebra on lattices.

Summarizing the main contributions of this thesis, we present:

∙ An overview of the field of Lattice QCD, with a focus on its computational

challenges (Chapter 2)

∙ A description of an extension to the Simit programming model to support linear

algebra on lattices (Chapter 5)

∙ A detailed design of a prototype compiler which compiles a subset of the existing

and new Simit language constructs (Chapter 6)

∙ An evaluation of the performance of this system on common stencils and in the

context of the Lattice QCD application (Chapter 7)
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Chapter 2

Lattice QCD Application

In the following, we describe the physical motivation behind Lattice QCD compu-

tations (Sections 2.1, 2.2, and 2.3). We then summarize the major computational

elements involved in Lattice QCD simulations, and condense this information into an

algorithmic listing (Section 2.4). Finally, we identify the set of linear algebraic con-

structs involved, and demonstrate that they can all be reduced to stencil descriptions

(Section 2.5).

2.1 Overview of the Standard Model of Physics

The Standard Model has been enormously successful at describing the majority of

small-scale observations about our universe. At the highest level, the Standard Model

places fields of various types on a spacetime backdrop and pairs this with quantum

mechanics to give us a quantum field theory description of particle physics. Using the

tools of quantum field theory, one can use the Standard Model to predict properties

of multi-particle objects and the outcomes of particle collider experiments. While

the Standard Model has matched many experiments to great accuracy, there are

observations which do not fit within our understanding of particle physics [35, 23].

A more detailed understanding of the Standard Model as well as physics beyond the

Standard Model are both active areas of research.

The Standard Model provides a quantum field theory description of gauge bosons,
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Higgs bosons, leptons, and quarks [38]. Quantum chromodynamics (QCD) in partic-

ular is the study of gluons, the gauge bosons of the strong force, and their coupling

to quarks, the constituent pieces of protons, neutrons, and other more exotic multi-

particle objects. Lattice QCD provides one tool to specifically investigate phenomena

dominated by the strong force.

The path integral formalism of quantum field theory is particularly useful in devel-

oping a description of Lattice QCD [17]. We describe the physical motivations behind

the path integral formalism in Appendix A, and simply state the results here: expec-

tation values of quantum operators, or “observables”, are computed using a functional

integral over all possible configurations of fields. Expectation values of operators can

be used in a variety of ways to extract physical information [18, Sec III]. The task of

making physical predictions therefore reduces to evaluation of this integral.

The path integral evaluation of the expectation value of a particular operator 𝒪

is written as a functional integral over all physical fields, 𝜑𝑖:

⟨0|𝑇 (𝒪)|0⟩ =

∫︀
𝒟𝜑𝑖𝒪𝑒𝑖𝑆[𝜑𝑖]∫︀
𝒟𝜑𝑖𝑒𝑖𝑆[𝜑𝑖]

=
1

𝑍

∫︁
𝒟𝜑𝒪𝑒𝑖𝑆[𝜑𝑖]

In this description, the action, 𝑆[𝜑𝑖], encodes the physics of the system. The

action is typically written as the integral of a “Lagrangian” over all of spacetime. The

Lagrangian specifies the localized description of the physics: 𝑆[𝜑𝑖] =
∫︀
𝑑4𝑥ℒ[𝜑𝑖]. In

exploring the strong force, one picks out the pieces of the Standard Model Lagrangian

that correspond to the gluon and quark interactions and evaluates the path integral

for physically interesting operators using those pieces.

2.2 The Strong Force: Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the theory of the quark and gluon strong inter-

actions in the Standard Model. QCD does not include how quarks behave as charged

particles or under the weak force. For any complete calculation involving quarks in

the Standard Model, we should include both charge and the weak force, but when we

focus on certain observables of bound states like nuclei, we find that the contributions
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from the electromagnetic and weak forces are small compared to the strong force con-

tribution. As a result we can choose to neglect these effects for broad calculations of

nuclear phenomena [18, Sec IV.D]. From here on out, we will proceed with a focus on

only the QCD sector of the Standard Model.

2.2.1 The QCD Lagrangian

To begin, we present a compact form for the QCD Lagrangian, for simplicity presented

with only one flavor of quark. We can use this in conjunction with the path integral

form above to write down expectation values of interest.

ℒQCD = − 1

4
Tr(𝐹𝜇𝜈𝐹 𝜇𝜈)⏟  ⏞  

pure gluon term

−𝜓(𝑖[𝛾𝜇(𝜕𝜇 − 𝑖𝑔𝐴𝜇)]−𝑚)𝜓⏟  ⏞  
quark term

There are a lot of pieces to this Lagrangian. Let’s tease them apart individually:

1. 𝐴𝜇(𝑥): The gluon field, taking vector values in the adjoint representation of

SU(3) at every spacetime point. Put more concretely, for every spacetime di-

mension, 𝜇 ∈ 𝑡, 𝑥, 𝑦, 𝑧, 𝐴𝜇(𝑥) is an 8-component object, representing the coeffi-

cients of the su(3) algebra generators. Combining the vector and su(3) dimen-

sions, 𝐴𝜇(𝑥) is concretely a 4*8 = 32 dimensional object. Appendix B discusses

the SU(3) group, and provides an example basis for the su(3) generators.

2. 𝜓(𝑥): The quark field for a single flavor, e.g. up quarks. This field takes values

in the fundamental representation of SU(3) at every spacetime point: at the

top-level it is a 3-vector of values, which are acted on by 3×3 matrices in SU(3)

by matrix multiplication. This field contains additional “spinor” substructure.

Each value in the SU(3) 3-vector is a complex 4-vector of anti-commuting values

[55, Sec 9.5]. This anti-commuting nature makes quarks difficult to treat in the

path integral, as we shall discuss shortly.

3. 𝜓(𝑥) = 𝜓†(𝑥)𝛾0: The quark conjugate field. This conjugation involves a trans-

pose and multiplication with a gamma matrix (described below), resulting in a

scalar value when paired with the quark field.
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4. 𝐹𝜇𝜈(𝑥): A composite object made up of 𝐴𝜇 values. 𝐹𝜇𝜈 also takes values in

the adjoint representation of SU(3), for all combinations of 𝜇, 𝜈 ∈ 𝑡, 𝑥, 𝑦, 𝑧.

Explicitly, 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖𝑔[𝐴𝜇, 𝐴𝜈 ], with the commutator taken over

the 3×3 matrix representations of 𝐴𝜇 and 𝐴𝜈 , and 𝑔 a constant.

5. Tr: The sum over the 8 adjoint representation coefficients of the 𝐹 2 term inside.

The 𝜇, 𝜈 indices inside have an implied summation, resulting in a scalar value

overall.

6. 𝜕𝜇 − 𝑖𝑔𝐴𝜇: The “covariant” derivative of SU(3) values. This can intuitively be

thought of as incorporating the SU(3) mixing in a spacetime direction, to allow

properly taking the difference between infinitesimally close 𝜓 values. Impor-

tantly, this results in an interaction between the gluon and quark field.

7. 𝛾𝜇: Spinor matrices, having 4×4 representations. These correspondingly in-

corporate spinor mixing in a spacetime direction. Together with the covariant

derivative above, the full term is often condensed using a “slashed” notation:

𝛾𝜇(𝜕𝜇 − 𝑖𝑔𝐴𝜇) = 𝛾𝜇𝐷𝜇 = /𝐷.

8. 𝑚: The mass of the quark flavor in question. Together with the /𝐷 term, the full

term between 𝜓 and 𝜓 can be written 𝑖 /𝐷 −𝑚 = 𝑀 . This is the Dirac matrix

and plays an important role in evaluation of Lattice QCD.

Altogether, we have a lot of pieces containing spacetime vector, spinor, and color

(SU(3)) structure, all of which is reduced over in specific ways to give us a scalar-

valued Lagrangian at the end of the day. It is beyond the scope of this thesis to discuss

why each piece looks the way it does, but we refer the reader to Weinberg’s sequence

of textbooks on quantum field theory, including discussion of QCD in Volume II [56,

Chap 15 & Sec 18.7]. From here on out, we will take this Lagrangian as given and

discuss calculations in the context of this particular description of physics.
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2.2.2 Difficulties in Evaluating the QCD Path Integral

Section A.4 discusses one method of evaluating the path integral using a perturbative

expansion of interaction terms of the action (those terms involving the product of

more than two fields). Importantly, this method relies on the coefficient of these

terms being much smaller than 1 to allow truncating the series after only a few

terms.

Returning to QCD, and ignoring quarks for a moment, we can isolate the gluon

piece of the QCD Lagrangian to demonstrate why QCD fundamentally presents dif-

ficulties with perturbative evaluations of the path integral. Our gluonic Lagrangian

is just:

ℒ𝑔 = −1

4
𝐹𝜇𝜈𝐹

𝜇𝜈

= −1

4
(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖𝑔[𝐴𝜇, 𝐴𝜈 ])(𝜕

𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 − 𝑖𝑔[𝐴𝜇, 𝐴𝜈 ])

= −1

2
(𝜕𝜇𝐴𝜈𝜕

𝜇𝐴𝜈) +
1

2
(𝜕𝜈𝐴𝜇𝜕

𝜇𝐴𝜈) +
𝑖𝑔

4
(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇)(𝐴𝜇𝐴𝜈 − 𝐴𝜈𝐴𝜇)

+
𝑖𝑔

4
(𝐴𝜇𝐴𝜈 − 𝐴𝜈𝐴𝜇)(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) +

𝑔2

4
(𝐴𝜇𝐴𝜈 − 𝐴𝜈𝐴𝜇)(𝐴𝜇𝐴𝜈 − 𝐴𝜈𝐴𝜇)

We find that there are indeed 3𝐴 and 4𝐴 interaction terms in the Lagrangian. If

the coupling constant 𝑔 ≪ 1, then we can proceed with a perturbative calculation

in gluon-only QCD. It turns out, however, that in order to avoid infinities in the

theory, 𝑔 must be a function of energy scale (see [56, Sec 18.7] for a detailed dicussion

of renormalization of QCD). In the case of QCD, we find that 𝑔 ≪ 1 only for high

energies, while at low energies 𝑔 becomes large. This reasoning carries over into the

full description of QCD. Thus for high-energy scenarios, such as quark plasma, we

can perform perturbative QCD calculations and find good results [51], but for bound

states at rest, our perturbation theory breaks down and we must find another way.
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2.3 Quantum Chromodynamics on a Lattice

In 1974, Wilson proposed a solution to this problem by introducing an alternative

to the above Lagrangian for QCD. Instead of defining fields as continuous functions

of spacetime, he defined them on a discrete lattice. He showed that this alternative

Lagrangian over lattice fields correctly gave the continuum model in the limit of

the lattice spacing approaching zero [58]. Discretization introduces a new method of

computing values, and the finite lattice size puts bounds on the set of computations we

have to do to find an answer. A calculation on a lattice is necessarily an approximation

of the continuum calculation, but by taking the small lattice spacing limit one can

reliably extrapolate calculations to physical values [29, Sec 2.3][3, 28].

In Wilson’s formulation, spacetime is discretized as a finite lattice of 𝑁4 lattice

points, or sites (we choose an 𝑁×𝑁×𝑁×𝑁 hypercube for simplicity, but in practice

the lattice can be, and often is, rectangular). Nearest neighbor lattice points are

connected by links, including links connecting the boundaries in a toroidal fashion.

In this structure, the quark field takes values on a discrete set of sites, 𝑥𝑖, rather

than all of spacetime: 𝜓(𝑥) → 𝜓(𝑥𝑖). The gauge fields require slightly carefully

handling, as each su(3) value is “infinitesimal” (lives in a Lie Algebra) and has a

vector form (the 𝜇 index). On the lattice, Wilson chose to place the gauge field on

the links. Because links have finite extent, the values should belong to the 𝑆𝑈(3)

Lie Group: 𝐴𝜇(𝑥) → 𝑈𝜇(𝑥𝑖) = 𝑒𝑖𝐴𝜇 . The result is a derived field, 𝑈 [𝐴], which lives

in the fundamental representation and thus takes on 3×3 matrix values for every

𝜇 ∈ (𝑡, 𝑥, 𝑦, 𝑧). We take the convention that 𝑈𝜇(𝑥𝑖) lives on the link between sites 𝑥𝑖

and 𝑥𝑖 + �̂�, where �̂� is a hop of one lattice spacing in the 𝜇 direction. The Hermitian

conjugate, 𝑈 †
𝜇(𝑥𝑖), lives on the link in the reverse direction, from 𝑥𝑖 + �̂� to 𝑥𝑖. In

general, we can compute 𝑈 †
𝜇(𝑥𝑖) from 𝑈𝜇(𝑥𝑖) as needed.

Figure 2-1 diagrams a 2D slice of the lattice, pictorially representing the forms of

the quark and gluon fields on the lattice.
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x x+�̂�

x+�̂�+ 𝜈x+𝜈

𝑈𝜈(x)

𝑈𝜇(x)

𝑈𝜈(x+�̂�)

𝑈𝜇(x+𝜈)

𝜓(x+�̂�)

Figure 2-1: 2D slice of the lattice demonstrating gauge and quark field representations.

2.3.1 Lattice QCD Action

The form of the action, previously an integral of a Lagrangian density at every space-

time point, becomes a discrete sum over the lattice:

𝑆𝑔 =
∑︁
𝑥

(︃
−𝐶1

[︃∑︁
𝜇,𝜈

Tr(𝑈𝜇(𝑥)𝑈𝜈(𝑥+ �̂�)𝑈 †
𝜇(𝑥+ 𝜈)𝑈 †

𝜈(𝑥))

]︃)︃

𝑆𝑓 =
∑︁
𝑥

(︃
−

[︃
𝐶2𝑚𝜓(𝑥)𝜓(𝑥) + 𝐶3

∑︁
𝜇

𝜓(𝑥)(1− 𝛾𝜇)𝑈𝜇(𝑥)𝜓(𝑥+ �̂�)

− 𝜓(𝑥− �̂�)(1 + 𝛾𝜇)𝑈 †
𝜇(𝑥− �̂�)𝜓(𝑥)

]︃)︃

𝑆latt[𝑈, 𝜓, 𝜓] = 𝑆𝑔[𝑈 ] + 𝑆𝑓 [𝑈, 𝜓, 𝜓]

In this version of the action, known as the Wilson action, derivatives are replaced

with discrete differences, and the Tr(𝐹𝜇𝜈𝐹 𝜇𝜈) term has been reformulated as a sum of

traces of 𝑈s circulating around 1×1 boxes, known as a “plaquettes”. Wilson showed

that in the limit of zero lattice spacing these terms reduce to exactly the continuum
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action described previously [58].

It is worth noting that there are other forms of lattice Lagrangians for QCD, which

equivalently reduce to the continuum action in the limit of zero lattice spacing. These

forms generally involve terms with traces around other forms of link loops and terms

between further separated fermion sites [47]. In practice, it is often useful to extend

the Wilson action with these higher-order terms, to achieve smaller statistical errors

or faster convergence [30, Sec 3]. For the sake of simplicity, we will not delve into

specific forms for these corrections, but will keep in mind that added terms generally

either follow the form of a generalized plaquette, i.e. taking the trace of a product of

𝑈s around a closed loop, or of the discrete derivative, i.e. accessing nearby values of

𝜓, transporting the values by multiplication through a series of links to the central

site, and finally multiplying with 𝜓 at the central site.

2.3.2 Evaluating the Path Integral on a Lattice

With this new form of the action in hand, we can return to the path integral and

find that this allows us to make progress on physical calculations even in a large-

coupling situation. Our path integral in continuum QCD is formulated in terms of the

functional integral of fields
∫︀
𝒟𝜓(𝑥)𝒟𝜓(𝑥)𝒟𝐴𝜇(𝑥), which is an uncountably infinite

number of integrals, one per spacetime point. On an 𝑁4 lattice, this is replaced with

𝑁4 integrals per field component:
∫︀
𝒟𝜓(𝑥𝑖)𝒟𝜓(𝑥𝑖)𝒟𝑈𝜇(𝑥𝑖). Combining this with our

lattice action, we have the following form for the lattice path integral:

⟨0|𝑇 (𝒪)|0⟩ =
1

𝑍

∫︁
𝒟𝜓(𝑥𝑖)𝒟𝜓(𝑥𝑖)𝒟𝑈𝜇(𝑥𝑖)𝒪𝑒𝑖𝑆latt

Since we have reduced ourselves to a finite number of integrals for a given lat-

tice spacing, we could in principle numerically integrate each component in sequence

via evenly distributed sampling and arrive at an answer for a given path integral.

However, the high-dimensional and sharply peaked nature of the integral due to con-

tributions around classical solutions suggests the use of Monte Carlo techniques for

evaluation [37]. But, in order for Monte Carlo techniques to apply, our problem must
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be reformulated to look like an integration over a probability distribution. As it

stands, we have two issues: first, our integral includes complex phases, and second,

we are integrating over anti-commuting Grassmann numbers.

To solve our first issue, we make use of a Wick rotation, defined as a rotation of

the integration contour from the real to the imaginary axis of the time component

of the action [57]: 𝑡 → 𝑖𝜏 . As a result, the integration measure of our continuum

action transforms as 𝑑4𝑥→ 𝑖𝑑4𝑥𝐸, and our action exponential becomes entirely real:

exp (𝑖
∫︀
𝑥
ℒ) → exp (−

∫︀
𝑥𝐸
ℒ𝐸). We write this transformed coordinate as 𝑥𝐸 because

the inner product of vectors in the transformed coordinate space, (𝜏, 𝑥, 𝑦, 𝑧), matches

the 4-D Euclidean inner product. As a result, this is often termed the Euclidean form

of the path integral.

This Wick rotation is equally valid for our discretized lattice action. Rewriting

our lattice path integral, we can interpret the integral as a probability distribution of

our operator 𝒪:

⟨0|𝑇 (𝒪)|0⟩ =
1

𝑍

∫︁
𝒟𝜓(𝑥𝑖)𝒟𝜓(𝑥𝑖)𝒟𝑈𝜇(𝑥𝑖)𝑒

−𝑆latt,𝐸⏟  ⏞  
probability distribution

𝒪⏟ ⏞ 
integrand

To address the issue of anti-commuting numbers, we can replace our 𝜓 quark field

with a “pseudo-fermionic” commuting field, 𝜒. To do so, we use the properties of

Gaussian integrals of commuting and anti-commuting numbers:

∫︁
𝒟𝜓𝒟𝜓𝑒

∑︀
𝑥

∑︀
𝑦 𝜓(𝑥)𝑀(𝑥,𝑦)𝜓(𝑦) ∝ det𝑀

∫︁
𝒟𝜒𝒟�̄�𝑒

∑︀
𝑥

∑︀
𝑦 �̄�(𝑥)𝐴(𝑥,𝑦)𝜒(𝑦) ∝ 1

det𝐴

Where 𝜓 and 𝜒 are anti-commuting- and commuting-valued fields respectively. These

identities, together with (det𝐴)−1 = det𝐴−1, allow us to rewrite [38, Sec 18]:

∫︁
𝒟𝜓𝒟𝜓𝑒

∑︀
𝑥

∑︀
𝑦 𝜓(𝑥)𝑀(𝑥,𝑦)𝜓(𝑥) ∝

∫︁
𝒟𝜒𝒟�̄�𝑒

∑︀
𝑥

∑︀
𝑦 �̄�(𝑥)𝑀

−1(𝑥,𝑦)𝜒(𝑦)

There is an important constraint here: in order for the Gaussian integral to con-
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verge, we must have positivity of the inverted matrix [14]. As a result, initial nu-

merical work on Lattice QCD was often restricted to the unphysical case of two

mass-degenerate quark flavors. This is described by a Lagrangian with two quark

fields of the same mass, and thus two copies of the matrix in the path integral:

ℒ2𝑞 = ℒ𝑔 + 𝜓1(𝑖 /𝐷 −𝑚)𝜓1 + 𝜓2(𝑖 /𝐷 −𝑚)𝜓2

⟨0|𝑇 (𝒪)|0⟩ =
1

𝑍

∫︁
𝒟𝑈𝒪(det𝑀)2𝑒−

∑︀
ℒ𝑔

=
1

𝑍

∫︁
𝒟𝑈𝒪(det𝑀 †)(det𝑀)𝑒−

∑︀
ℒ𝑔

=
1

𝑍 ′

∫︁
𝒟𝜒𝒟𝑈𝒪𝑒−

∑︀
(ℒ𝑔+�̄�(𝑀†𝑀)−1𝜒)

In the second step, we made use of the important property that the Dirac matrix

determinant is real [30]. This transformation guarantees positivity, and clears the

final obstacle to performing numerical calculations of physical values in Lattice QCD.

There are methods for extending the numerical technique to odd or non-degenerate

flavors of quarks, but the core of the problem lies in being able to solve this basic

case [38, Sec 18.2.1], and as such we will assume we are always working with the

positive definite 𝑀 †𝑀 . With a handle on the physics of Lattice QCD, we move on

to describing the computational aspects of Monte Carlo evaluation of our final form

of the path integral:

⟨0|𝑇 (𝒪)|0⟩ =
1

𝑍 ′

∫︁
𝒟𝜒𝒟𝑈𝒪𝑒−

∑︀
(ℒ𝑔+�̄�(𝑀†𝑀)−1𝜒)

2.4 Lattice QCD as a Computational Task

Under Monte Carlo evaluation, computing the expectation value of a particular QCD

observable, 𝒪, can be broken down into the following steps:

1. Randomly generate a finite ensemble of gauge configurations, 𝑈𝑖, with proba-

bility (det𝑀)2𝑒−𝑆[𝑈𝑖] = 𝑒−𝑆[𝑈𝑖]−
∑︀
�̄�(𝑀†𝑀)−1𝜒.
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2. Evaluate 𝒪[𝑈𝑖] on all states, averaging to approximate the expectation value

⟨𝒪⟩.

While on the surface this consists of several complex linear algebraic operations on

lattice vectors and matrices, we show in detail that these can all be broken down into

vector and matrix sums, scalings, and products. In addition, the locality of matrices

generated from Lattice QCD means their action on vectors can be computed using

stencils : a computation kernel over a grid which, for each site, accesses neighboring

cells in the same way [59, p. 221]. We diagram specific forms of stencils used in

various pieces of Lattice QCD computations.

Inverting the Dirac matrix plays an important role in both generating ensembles of

gauge configurations and evaluating operators. We begin with computational strate-

gies for inverting the Dirac matrix (Section 2.4.1), then discuss how one can use Dirac

matrix inversion to evaluate the action (Section 2.4.2) and generate gauge ensembles

(Section 2.4.3). Finally, we discuss how one particularly important operator can be

described in terms of Dirac matrix inversion (Section 2.4.4).

2.4.1 Inverting the Dirac matrix

Several common observables, as well as gauge-field generation, require solving the

Dirac equation for a known source, 𝜂:

𝑀𝜓 = 𝜂 → 𝜓 = 𝑀−1𝜂

Mathematically, the Dirac matrix is large: the value connecting two sites is one

gamma matrix (4×4) for each element of a gauge matrix (3×3). If stored in a dense

format, the whole matrix would have 4*4*3*3*(𝑁4)2 elements. For even moderately

sized lattices this quickly expands beyond what we can store in memory. However,

the Dirac interaction is highly local, meaning𝑀 is a banded matrix: only neighboring

pairs of lattice sites have non-zero values. Of 𝑂((𝑁4)2) possible elements, only 𝑂(𝑁4)

will be non-zeros. This is exactly the form of matrix that is well-represented by sparse

formats. We may choose to represent the matrix fully-assembled or factored into the
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gamma and gauge components, but in either case we asymptotically save space by

storing values per link (a sparse structure) rather than per pair of sites (a dense

structure).

The inverted matrix, 𝑀−1, has no similar locality in general. For large lattices,

storage of a dense matrix is extremely expensive, prohibiting generation of 𝑀−1 via

a direct solve. Even if we could store such a solution, in these types of sparse systems

iterative solvers perform better than direct solvers and avoid accumulating round-off

errors [9].

Iterative solvers generally convert the problem of inverting a matrix 𝑀 to an

iterative convergence of a solution estimate vector 𝜓0 → 𝜓1 → . . . → 𝜓𝑛. One com-

mon example of such a solver is the Conjugate Gradient method, in which each step

consists of matrix-vector multiplications, vector algebra, norm, and scalar multiply

operations [48].

Iterative solvers may require many iterations to converge, which can be mitigated

by preconditioning the matrix. Preconditioners generally seek to improve the con-

dition number 𝜅(𝑀) of the matrix by transforming the solution equation [42, Chap

10]. The condition number is directly correlated with the number of iterations for

convergence in an iterative solver, so finding ways to reduce it can result in significant

gains [48, Sec 10].

One demonstrative example is the even-odd preconditioner, which is commonly

used in Lattice QCD. It takes advantage of the direct locality of the Dirac matrix to

split the lattice in a chessboard fashion into two subsets (even and odd). Of the four

submatrices, the even-even and odd-odd matrices are proportional to the identity,

because the Wilson action contains only nearest-neighbor terms. These submatrices

are thus trivially invertible, allowing a factorization resulting in an improved condi-

tion number [22]. This method of preconditioning typically results in reducing the

condition number to less than half the original value, resulting in significantly fewer

iterations to convergence [31].

Naive Dirac matrix inversion via iterative methods only requires vector-vector

additions and inner products, and matrix-vector multiplications. Vector-vector oper-
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ations can be represented as stencils of a single lattice site: each site of one vector

is multiplied or added with the value of the other vector at exactly that site. Mul-

tiplication by the Dirac matrix can be represented by a generalized von-Neumann

stencil, shown in Figure 2-2 for the case of a 2D lattice. Each row of the Dirac matrix

corresponds to one row, i.e one site, of the output vector. The calculation of this row

involves accessing vector values one hop away in all lattice directions.

Dirac matrix inversion using even-odd preconditioning requires vector-vector op-

erations plus matrix-vector multiplications of the four Dirac submatrices. The even-

even and odd-odd submatrices can be represented as stencils of a single lattice site:

with only one-hop terms in the Wilson action, values between pairs of distinct even

or distinct odd sites are all zero. The even-odd and odd-even submatrices can be

represented as a von-Neumann stencil, minus the central site, applied to the even or

odd sublattices.

2.4.2 Action Computation

The Wilson action described in Section 2.3 has two components: the gauge kinetic

term and the pseudofermion term. The pseudofermion component in the action can

be written in terms of Dirac matrix inversions, 𝑆𝑝𝑓 = �̄�(𝑀 †𝑀)−1𝜒. We therefore

focus on computation of the gauge piece.

As a reminder, the gauge piece of the lattice action takes the form:

𝑆𝑔 =
∑︁
𝑥

(︃
−𝐶1

[︃∑︁
𝜇,𝜈

Tr(𝑈𝜇(𝑥)𝑈𝜈(𝑥+ �̂�)𝑈 †
𝜇(𝑥+ 𝜈)𝑈 †

𝜈(𝑥))

]︃)︃

The gauge kinetic term multiplies loops of links in each of the six planes of 4D

spacetime (𝑡-𝑥, 𝑡-𝑦, 𝑡-𝑧, 𝑥-𝑦, 𝑥-𝑧, 𝑦-𝑧). The computation in each plane can be repre-

sented using the plaquette stencil pattern, as depicted in Figure 2-3.

As mentioned previously, improvements to the action follow the form of loops of

links and beyond-nearest-neighbor hops between fermion sites. A stencil depiction

of one improved form of the action, the Clover action, is given in Figure 2-4. The

Clover stencil is very similar to the plaquette stencil, thus we focus on only the basic
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Figure 2-2: The 2D
von Neumann stencil ac-
cesses immediate Carte-
sian neighbor links and
sites.

Figure 2-3: The 2D
plaquette stencil accesses
links in loops around ev-
ery 1×1 box.

Figure 2-4: The 2D clover
stencil accesses links in
loops in all directions
from the central site.

Dirac and plaquette stencils of the Wilson action as representative forms of the lattice

operations involved in Lattice QCD.

Together, the von-Neumman and plaquette stencils allow us to evaluate the gauge

and pseudofermion pieces of the basic Wilson action. Improvements to the action

can be written in terms of more complex stencils, such as the clover stencil. We

conclude that a stencil representation of linear algebra on the lattice allows a complete

description of the action computation.

2.4.3 Gauge Field Ensembles

Generating gauge field ensembles stochastically is an example of a Monte Carlo algo-

rithm applied to integro-differential equations, as first suggested by Metropolis et al.

in 1949 [37]. In the case of gauge fields, it involves randomly sampling individual con-

figurations to numerically approximate a solution to the analytically hard functional

integral.

For the given Lattice QCD integral, 𝑈 should be sampled with probability 𝑝(𝑈) =

(det𝑀)2 exp(−𝑆[𝑈 ]) to match the path integral probability distribution associated

with computing an observable:

∑︁
𝑈𝑖

𝒪[𝑈𝑖] ≈
1

𝑍

∫︁
𝒟𝑈(det𝑀)2 exp(−𝑆[𝑈 ]) * 𝒪[𝑈 ]

The probability associated with each configuration is non-local, making it difficult

to factor the problem into simple sampling of values at each site of the lattice. Instead
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of attempting to directly sample 𝑈 , we can construct an algorithm which stochasti-

cally builds a chain of states, each one based solely on the previous, which approaches

a desired equilibrium distribution given a long enough chain. This method, known

as Markov Chain Monte Carlo, was first proposed by Metropolis et al. in 1953, and

later extended by Hastings in 1970 [33, 21], and has been applied with great success

to gauge field generation in Lattice QCD. For brevity, we assume many of the prop-

erties of Markov Chains hold, given sufficiently well-behaved transition probabilities.

For excellent discussions and proofs of the uniqueness of the normalized equilibrium

state, eventual convergence to equilibrium, and the statistics of Markov Chains in the

context of Lattice QCD, see [31, Sec 2.2].

We begin by discussing the Metropolis-Hastings method, a method to apply an

accept or reject step to a sufficiently nice stochastic transition step to achieve a desired

equilibrium state. Following this, we discuss one commonly used stochastic transition

step, Hybrid Monte Carlo.

Metropolis-Hastings Method

Suppose we are given a transition probability between states, 𝑇 (𝑈𝑖 → 𝑈𝑖+1) ∈ [0, 1],

and we have a desired equilibrium distribution 𝑃 (𝑈𝑖) ∈ [0, 1]. To achieve this dis-

tribution as an equilibrium state of a Markov Chain, we can apply an acceptance

probability on top of this stochastic transition, keeping the randomly selected 𝑈𝑖+1

with probability 𝑝(𝑈𝑖 → 𝑈𝑖+1) and otherwise reverting to 𝑈𝑖. The Metropolis-Hastings

method prescribes the following form for 𝑝:

𝑝(𝑈𝑖 → 𝑈𝑖+1) = min

(︂
1,
𝑃 (𝑈𝑖+1)

𝑃 (𝑈𝑖)

)︂

This form of the acceptance probability satisfies the condition of detailed balance,

one of a number of possible conditions that ensures our Markov Chain reaches the

desired equilibrium probability [32, Sec 4.4]:

𝑝(𝑈𝑖 → 𝑈𝑖+1) * 𝑃 (𝑈𝑖) = 𝑝(𝑈𝑖+1 → 𝑈𝑖) * 𝑃 (𝑈𝑖+1)
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For Lattice QCD specifically, we require 𝑃 (𝑈𝑖) = (det𝑀 [𝑈𝑖])
2 * 𝑒−𝑆[𝑈𝑖]. With a

given sufficiently nice transition function, we can thus use an acceptance probability

as below to generate a Markov Chain which will settle to the desired distribution for

a long enough chain:

𝑝 = min

(︂
1,

(det𝑀 [𝑈𝑖+1])
2

(det𝑀 [𝑈𝑖])2
* 𝑒

−𝑆[𝑈𝑖+1]

𝑒−𝑆[𝑈𝑖]

)︂

Computationally, this means for each new state we generate, we must evaluate

the pseudo-fermion action to incorporate the determinant of the Dirac matrix. As

discussed in Section 2.4.2, this is dominated by iterative inversions of the Dirax ma-

trix.

As expected from the stochastic nature of the process, the size of the ensemble af-

fects the variance of the measured observable. From experimental use of Markov

Chain Monte Carlo processes, it seems that chains on the order of 100 to 1000

states are sufficient to achieve relatively good results [31, Sec 2.1.2]. Though still

computationally intensive, this clearly demonstrates that the Monte Carlo approach

successfully takes an analytically impossible problem into the domain of tractable

computation.

Hybrid Monte Carlo

The Metropolis-Hastings method described above does not select a particular un-

derlying stochastic transition function. From the form of the acceptance probability

we can see that a transition function that often generates 𝑈𝑖+1 with low acceptance

probability, 𝑃 (𝑈𝑖+1)≪ 𝑃 (𝑈𝑖), will result in many stagnant iterations. This is unde-

sirable, since it leads to slow equilibration of the Markov Chain. Ideally, we would

like a transition function that generates 𝑈𝑖+1 with 𝑃 (𝑈𝑖+1) ≈ 𝑃 (𝑈𝑖).

Duane et al. proposed in 1987 a unification of the existing Metropolis method

with molecular dynamics techniques independently being used to construct appropri-

ate configuration distributions [14]. This method, known as “Hybrid Monte Carlo”

(HMC), or “Hamiltonian Monte Carlo”, provides a mechanism to advance our 𝑈𝑖 such
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that we are likely to accept the final state 𝑈𝑖+1.

The key idea in HMC is to define a kinetic model which describes how to advance

𝑈𝑖 based on a Hamiltonian description in some fictional “simulation” time (these are

not the physical dynamics). This allows us to advance the state 𝑈𝑖 forwards without

sudden large changes in action. The HMC Hamiltonian is defined with the action as

the potential energy, and a kinetic energy in terms of a new conjugate momentum

field 𝜋. The field 𝜋 is defined to be conjugate to the collective 𝑈𝜇(𝑥) and 𝜒 fields.

Treating the dot product below as ranging over all of these indices, we can define the

Hamiltonian as the following scalar:

𝐻(𝑈, 𝜋, 𝜒) =
1

2
(𝜋 · 𝜋) + 𝑆𝑔[𝑈 ] + 𝑆𝑝𝑓 [𝑈, 𝜒]

Where we define:

𝑆𝑝𝑓 [𝑈, 𝜒] ≡ �̄�(𝑀 †𝑀)−1𝜒

Using this Hamiltonian, we can advance 𝑈𝑖 using the Hamiltonian equations of

motion:

𝜕𝑡{𝑈, 𝜒} = 𝜋

𝜕𝑡𝜋 = −𝛿𝑆𝑔
𝛿𝑈
− 𝛿𝑆𝑝𝑓

𝛿𝑈
− 𝛿𝑆𝑝𝑓

𝛿𝜒

We can advance the fields discretely using a “leapfrog” integration scheme which

tends to work well in practice [36, Sec 2.3]. At the end of a sequence of 𝑛 steps of a

total advancement time, 𝜏 , we have a new state, 𝑈𝑖+1, and a new momentum, 𝜋.

By defining an acceptance probability based on 𝐻(𝑈, 𝜋, 𝜒), 𝑝(𝑈𝑖 → 𝑈𝑖+1) =

min(1, 𝑒𝐻𝑖/𝑒𝐻𝑖+1), we build an ensemble with the desired statistics [36]. If we could

perfectly integrate the equations of motion this probability would always be 1, but in

using a discrete process we introduce integration errors. The choice of 𝜏 and 𝑛 can

be tuned to achieve a desired acceptance rate.

From this procedure we can identify the computational elements required to per-

form a single HMC update:
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+

Figure 2-5: Staple stencil described in [31].

1. Random generation of the fields 𝜋, 𝑈 , and 𝜒 on the lattice.

2. Linear algebra on 𝜋, 𝑈 , and 𝜒.

3. Derivative
𝛿𝑆𝑔
𝛿𝑈

: a lattice vector proportional to the staple sum stencil as shown

in Figure 2-5 [31]. We omit the detailed derivation for brevity.

4. Derivatives
𝛿𝑆𝑝𝑓
𝛿𝑈

+
𝛿𝑆𝑝𝑓
𝛿𝜒

: a lattice vector derived from Dirac matrix inversions

and a von Neumann stencil. This is generally the largest fraction of the com-

putation, due to inclusion of Dirac matrix inversions [31, 18]. We again omit

the detailed derivation for brevity.

2.4.4 Correlation Functions

The choice of physical operator depends on the experiment in question. One par-

ticularly useful operator is the two-point correlator for a given source and sink:

𝐶(𝑥, 0) = ⟨0|𝑇 (𝒪sink(𝑥)𝒪†
source(0))|0⟩. Typically, the source is a collection of quark

fields, 𝜓0...𝜓𝑛𝜓0...𝜓𝑚, and the sink their conjugates, 𝜓0...𝜓𝑛𝜓0...𝜓𝑚. By summing

over all lattice points in a spatial slice and extrapolating to large time separation,

one can extract the energy levels of physical objects with quantum numbers matching

that of the operators [18, Sec III].

Correlation functions described by these forms of source and sink can be written

inside the path integral entirely in terms of Dirac matrix inversions. Specifically,

multiplying a source with its conjugate sink is equivalent to the sum over inverse

Dirac matrix terms between source and sink locations for each possible pairing of

identical quark and quark conjugate forms in the source and sink terms [38, Sec
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18.2]. As a result of this equivalence, typical operators can be computed in terms of

iterative Wilson inversions, as we have already discussed.

2.4.5 Pseudocode Description

We summarize the typical elements of a Lattice QCD program in the pseudocode

listing below, demonstrating Monte Carlo evaluation of the path integral for a given

correlation function, 𝐶(𝑥, 0):

input : 𝜏 ,𝑛𝑙 ,𝑁

procedure GenerateGaugeEnsemble (𝑛)

𝑈0 ← RandomU( ) ;

𝜒0 ← RandomPseudoFermion ( ) ;

𝜋0 ← RandomConjugateMomentum ( ) ;

𝐻0 ← 1
2𝜋

2
0 + ComputeAction (𝑈0 ,𝜒0 ) ;

for 𝑖 in [1, 𝑛− 1]

𝑈𝑖 ,𝜒𝑖 ,𝜋𝑖 ← LeapFrogIntegrate (𝑈𝑖−1 , 𝜒𝑖−1 , 𝜋𝑖−1 , 𝜏 , 𝑛𝑙 ) ;

𝐻𝑖 ← 1
2𝜋

2
𝑖 + ComputeAction (𝑈𝑖 ,𝜒𝑖 ) ;

𝑈𝑖 ← WithProbabi l i ty (min(1, exp(𝐻𝑖 −𝐻𝑖−1)) , 𝑈𝑖 , 𝑈𝑖−1 ) ;

end for

return 𝑈0 , . . . ,𝑈𝑛

end procedure

ensemble ← generateGaugeEnsemble (𝑁 ) ;

𝐶 ← 0 ;

for 𝑈𝑖 in ensemble

𝐶 ← 𝐶 + (1/𝑁)*ComputeCorrelator (𝑈𝑖 ) ;

end for

The runtime-limiting factors in this pseudocode are the ComputeAction, LeapFrog-

Integrate, and ComputeCorrelator steps, all of which require iterative solvers for the

Dirac equation. Typically, there are many HMC steps per gauge configuration added

to the ensemble, and the cost of computing the ensemble therefore dominates.
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2.5 Catalog of Lattice Linear Algebra

We conclude by summarizing all the pieces of lattice linear algebra we have identified

above.

There are two types of vectors over the lattice:

1. Gauge-type spacetime vectors taking a 3×3 complex matrix value per link, or

equivalently four 3×3 matrix values per site, one for each direction 𝜇. We can

write these as 𝑉 [𝑥𝑖]
𝑗𝑘
𝜇 , where 𝑥𝑖 is a lattice coordinate, 𝜇 ∈ (𝑡, 𝑥, 𝑦, 𝑧), and

𝑗, 𝑘 ∈ 0, 1, 2 are gauge indices.

2. Quark-type vectors, taking a 3-vector (gauge) form of complex 4-vector (spinor)

blocks, or equivalently a 4-vector (spinor) form of complex 3-vector (gauge)

blocks, per site. We can write these as 𝑉 [𝑥𝑖]
𝑗
𝛼, where 𝑥𝑖 is a lattice coordinate,

𝑗 ∈ 0, 1, 2 is a gauge index, and 𝛼 ∈ 0, 1, 2, 3 is a spinor index.

The Dirac matrix serves as the main matrix structure of the problem, and is

parametrized by a given gauge configuration, 𝑈𝑖. Importantly, because the Dirac

matrix has a regular sparse structure, we know that it has 𝑂(sites) elements, and

that it has the same number of elements per row. It is these properties that allow us

to write the matrix as a stencil over the lattice.

There are several operations we may choose to perform on the Dirac matrix and

these vectors:

1. Evaluate the inner product of quark-type vectors, 𝜉𝜓 =
∑︀

𝑥 𝜉(𝑥)𝜓(𝑥). Keeping

in mind that 𝜉 = 𝜉†𝛾0, this involves complex conjugation, a 4×4 gamma matrix

multiplication, and a reduction over the entire lattice. This operation also allows

us to evaluate the norm of quark-type vectors.

2. Multiplying the Dirac matrix into a quark-type vector, 𝜂 = 𝑀𝜓. For each row,

this involves accessing the one-hop nearest neighbors of each site, which can be

described as a von-Neumann stencil.

3. Iteratively solving the Dirac equation, 𝜂 = 𝑀−1𝜒, which reduces to a sequence

of Dirac matrix multiplications and inner product evaluations.
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4. Preconditioning. In the common even-odd method, this involves dividing the

lattice into two subsets, and breaking up the Dirac matrix accordingly. The re-

sult is two submatrices involving the nearest neighbor piece of the Dirac matrix,

and two submatrices proportional to the identity.

All of these operations can be reduced to one core function: a stencil function

mapped over a regular subset of sites of the lattice, and possibly reduced. Specifically,

scalings, sums, and inner products of vectors can all be described by a trivial single-site

stencil mapped over the entire lattice; Dirac matrix multiplications can be described

by more complex stencils because the sparsity structure guarantees a fixed and locally

identical operation per row; iterative matrix inversions can be written entirely in terms

of matrix multiplications and vector algebra; and finally the even-odd preconditioner

can be written in terms of simpler matrix multiplications on lattice subsets, and vector

algebra.
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Chapter 3

Simit and Halide Review

We will describe linear algebra on lattices as an extension to the Simit programming

model. The Simit programming model allows a description of linear algebra over

nodes and edges of graphs. We review this model and in particular highlight the dual

views offered by Simit: a local graph view, and a global linear algebra view (Section

3.1). In our extension to Simit, we will describe how the local graph view can be

enriched by a stencil description of lattice graphs while maintaining the powerful

global linear algebra view.

In our evaluation of these extensions, we build a prototype compiler with a Halide

backend (Chapter 6). We review the features of Halide and in particular highlight

the stencil descriptions of stages in an image pipeline, and the scheduling language

enabling optimization of these pipelines through manipulation of lattice indices (Sec-

tion 3.2). These features allow us to quickly explore stencil code generation and

optimization.

3.1 Simit

Simit is a language designed to allow global linear algebra operations on hypergraph

structures defined as sets of nodes and sets of edges connecting other sets (either

node or edge sets) [25]. By allowing the user to define global matrices via a local

assembly construct mapped over either a node or edge set, the Simit compiler can
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transform global linear algebra operations to local in-place operations over the graph.

In comparison to existing sparse linear algebra libraries, which require the user to

translate their custom graph structures to and from a common sparse matrix format,

Simit avoids translation costs and can make use of the structure of the graph for

efficiency.

In the following, we review the main Simit features relevant to our language design:

1. Simit syntax

2. The linear algebra type system

3. The assembly construct for matrix definitions

4. Storage of assembled sparse matrices

5. Translation of linear algebra to index expressions

This review cannot do justice to the entire Simit language, and for more detail we

refer the reader to [25].

3.1.1 Simit Syntax

A Simit program consists of element definitions, declarations of externally bound

sets, assembly functions, and general functions. Functions in Simit contain typical

elements of a general purpose language: variable declarations, assignments, algebraic

operations, conditionals, and loops.

A Simit element defines a list of fields of various primitive and higher-order types.

Element definitions are delimited by the element and end keywords, and consist of

a sequence of field and corresponding type declarations.

An externally bound set is declared using the extern keyword, and a set type.

Both node and edge set types declare the underlying element type, and edge set

types additionally declare a list of their endpoint sets. The element type of the set

determines the set of fields that are stored on each node or edge of the set.
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Simit functions define a sequential list of commands to be executed. Internal

functions are declared with the func keyword, while externally callable functions are

declared with extern func. Externally callable functions typically manipulate global

vector and matrix values via linear algebraic operations, allowing concise description

of global transformations of the graph. The global vectors available to a function are

each field of every extern set, and vectors that are assembled via map operations. The

global matrices available to a function are always assembled via map operations. We

discuss the semantics of assembling global matrices and vectors in 3.1.3.

We demonstrate the syntax of a full Simit program in Listing 3.1. This example

simulates one step of a spring force integration on a mesh of springs and points [24].

The notable features are:

∙ Definition of elements stored on nodes and edges of the hypergraph. (Lines 1-8)

∙ Externally bound graph data: sets of nodes (Line 10) and edges connecting

nodes (Line 11).

∙ Assembly constructs defining global matrices based on edge and node data.

(Lines 13-22)

∙ An extern function which maps the assembly function, f, over the edge set to

build a matrix, and subsequently performs linear algebra using this matrix and

global vectors. (Lines 24-56)

Listing 3.1: Simit example program, demonstrating element definition, matrix assem-

bly, and global linear algebra. This program executes a Conjugate Gradient iterative

solver given a source vector of values on the nodes.

1 element Point

2 src : float; % source values

3 solution : float; % solution values

4 end

5

6 element Link
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7 a : float; % link coefficient

8 end

9

10 extern points : set{Point};

11 extern links : set{Link}(points,points);

12

13 func f(l : Link, p : (Point*2)) −> (A : matrix[points,points](float))

14 A(p(0),p(0)) = l.a;

15 A(p(0),p(1)) = −l.a;

16 A(p(1),p(0)) = −l.a;

17 A(p(1),p(1)) = l.a;

18 end

19

20 func eye(p : Point) −> (I : matrix[points,points](float))

21 I(p,p) = 1.0;

22 end

23

24 export func main()

25 % build matrix to be solved

26 I = map eye to points;

27 A = I − 0.01 * (map f to links reduce +);

28

29 var xguess : vector[points](float) = 0.0;

30 var x : vector[points](float);

31

32 % begin Conjugate Gradient solver

33 tol = 1e−12;

34 maxiters = 100;

35 var r = points.src − (A*xguess);

36 var p = r;
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37 var iter = 0;

38 x = xguess;

39

40 var rsq = dot(r, r);

41 while (rsq > tol) and (iter < maxiters)

42 Ap = A * p;

43 denom = dot(p, Ap);

44 alpha = dot(r, r) / denom;

45 x = x + alpha*p;

46 oldrsq = dot(r,r);

47 r = r − alpha * Ap;

48 rsq = dot(r,r);

49 beta = rsq/oldrsq;

50 p = r + beta*p;

51 iter = iter + 1;

52 end

53 % end Conjugate Gradient solver

54

55 points.solution = x;

56 end

In this example, the user would compile and instantiate the Simit main function

from a C++ framework using the Simit runtime library. At the moment, Simit

programs are compiled in memory, and as a result both compilation and evaluation

would be performed within the same frame code. Simit allows multiple executions

of a compiled function and in-place modification of the graph data. A typical use

for this form of program would be to execute the Simit main function on the same

data multiple times, perturbing either the source (via points.src) or matrix (via

links.a) as external inputs to the system.
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3.1.2 Linear Algebra Types

In its current iteration, Simit supports blocked vectors and matrices. Higher-order

tensors are allowed by the general syntax, but have not yet been incorporated due to

engineering constraints. A general Simit object is described by a blocked hierarchy

of vector or matrix dimensions, with a primitive underlying type. Each vector or

matrix dimension can be set-sized or constant-sized. As an example, one could write

matrix[points,points](matrix[3,3](float)). This type describes a points by

points matrix, with 3×3 blocks of floats as elements. This hierarchy can be arbi-

trarily nested.

In addition, it is possible to nest matrix-type blocks within vectors, and vice-versa:

vector[points](matrix[3,3](float)) and matrix[points,points](vector[3]

(float)) are both valid types. However, these types are restricted in their use in

linear algebra operations, as discussed below, and are often not useful to construct.

Combining types via linear algebra operations requires matching blocked dimen-

sions order-by-order. In the case of an element-wise operation, such as matrix and

vector addition or matrix and vector element-wise products, the types at all levels

must be identical. In the case of a matrix-vector multiplication, the rightmost dimen-

sion of the matrix must match the corresponding vector dimension at all blocking

levels, and the underlying types must also match. The following list demonstrates a

few potential matrix-vector multiplications and describes their validity:

∙ matrix[points,points](matrix[3,3](float))

× vector[points](vector[3](float)): Valid. Dimensions match at all block-

ing levels, and both underlying types are floats.

∙ matrix[points,points](matrix[3,3](float))

× vector[points](float): Invalid. The matrix has an additional blocking

level which is not matched in the vector. One could choose to interpret the

inner blocking as a scalar float multiplied into each 3×3 blocked matrix, but

this introduces ambiguity and as such is forbidden. Instead, in this situation,

the vector should be promoted to the appropriate type prior to multiplication.
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∙ matrix[points,points](matrix[3,3](int))

× vector[points](tensor[3](float)): Invalid. The underlying types do not

match. One could choose to interpret this as an implicit promotion from int

to float prior to multiplication, but Simit requires an explicit promotion.

3.1.3 Assembly Construct

The Simit assembly construct provides the user a method to relate graph information

to global linear algebra constructs. An assembly function accepts local graph infor-

mation, either a single node, or a single edge and its endpoints, and writes values to a

global vector or matrix. A map applies this assembly function to either a node set or

an edge set and returns a global vector of the type constructed by the assembly func-

tion. A map over a node set must be provided an assembly function which accepts

a single node element, while a map over an edge set must be provided an assembly

function which accepts a single edge element and its endpoint elements. Examples of

the first and second type of assembly map are demonstrated in Figures 3-1 and 3-2.

Importantly, the Simit assembly function is restricted to writing matrix or vector

values at locations indexed by the set elements it is passed. For example, if the

assembly function of Figure 3-2 is passed an edge connecting nodes a and b, it may

only output to locations A(a,a), A(a,b), A(b,a), and A(b,b). This restricts the

sparsity structure of the matrix to match that of the set it is passed. In the case of a

map over an edge set, this sparsity structure allows non-zeros only between pairs of

nodes connected by an edge, while in the case of a map over a node set, the matrix

may only contain diagonal elements.

3.1.4 Sparse Matrix Structures

A given row in an assembled nodes-by-nodes matrix represents elements between a

single node and all of its neighbors through the defining set of the matrix. In the case

of an edge set, this is exactly the nodes which share an edge with the given node.

In the case of a matrix assembled over a node set, nodes have no neighbors, and the
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1 % element Node defined elsewhere
2 extern nodes : set{Node};

3
4 func nodeMap(node : Node)

5 −> (A : matrix[nodes,nodes](float))
6 % . . .
7 end

8
9 % . . .
10 A = map nodeMap to nodes reduce +;

11 % . . .

Figure 3-1: Node map syntax. The assembly function accepts one
node.

1 % element Node, element Edge defined elsewhere
2 extern nodes : set{Node};

3 extern edges : set{Edge}(nodes,nodes);

4
5 func edgeMap(edge : Edge, ns : (Node*2))
6 −> (A : matrix[nodes,nodes](float))
7 % . . .
8 end

9
10 % . . .
11 A = map edgeMap to edges reduce +;

12 % . . .

Figure 3-2: Edge map syntax. The assembly function accepts an
edge and all endpoints.
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Figure 3-3: A small graph of 3 nodes and 2 edges is displayed on the left. We assume
a general assembly function mapped over the edges of the graph producing a block
matrix that is of type (points × points)×(1×2)(float). The resulting row index,
neighbors list, and block data array are displayed on the right.

matrix is necessarily diagonal.

Non-diagonal matrices are represented in memory in a form resembling Blocked

Compressed Sparse Row (BCSR) format [13]. Simit maintains edge set structural

information through a neighbors list for each endpoint node. These neighbors lists are

represented in memory in a condensed single list. In addition, Simit maintains a row

index, with one pointer per node, pointing to the beginning of that node’s neighbors

section within the overall list. Each elements of the neighbors list corresponds to

a non-zero block of the matrix. These block elements are laid out block-by-block

following the order of the neighbors list. The neighbors list, row index, and blocked

data array correspond exactly to the column list, row index, and blocked data arrays

of BCSR.

Figure 3-3 demonstrates the memory structures constructed for a points-by-points

matrix assembled from an edge set of a small graph. We omit the exact values of the

assembly, focusing on the blocked sparse matrix structure.

Multiple matrices may be constructed via an assembly map over the same edge set.

In this case, these matrices must necessarily share the same row index and neighbors

structure. Simit chooses to therefore store the row and neighbors structures associated

with a given edge set. The matrix-specific data are associated with a given matrix
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assembly, with each data array following the blocked format defined by the edge set.

Simit also allows matrices of common dimensionality assembled from different sets

to be combined via linear algebra operations. As an example, one can combine a diag-

onal points-by-points matrix and a non-diagonal points-by-points matrix, assembled

by a map over a points set and an edge set, respectively. Similarly one may combine

points-by-points matrices assembled by maps over two different edge sets which both

connect points. The sparsity structure of the resulting matrix does not match that

of the defining set of either original matrix. There are two distinct cases that Simit

handles in this case: matrix addition and matrix multiplication.

In the case of matrix addition, the overall sparsity structure is a superset of the

structures of the two matrices. Specifically, for each row Simit combines the neighbors

lists of both matrices. The overall row index and neighbors list are generated in the

usual manner from these updated local neighbors lists.

In the case of matrix multiplication, Simit generates the combined neighbors of a

matrix product by identifying the neighbor-of-neighbors of every point, where the first

neighbor is through the sparse structure of the first matrix and the second neighbor

is through the sparse structure of the second matrix. The overall sparsity structure

is then computed based on the neighbor-of-neighbors lists. For example, if matrix 𝐴

has non-zero values between points a and both b and c, and matrix 𝐵 has non-zero

values between points b and d and between points c and e, then the product 𝐵𝐴 will

have non-zero values between points a and both d and e.

These sparsity combination operations are arbitrarily composable, allowing Simit

to generate a row index and neighbors list for any possible combination of matrices.

3.1.5 Linear Algebra to Index Expressions

In the Simit compiler, all linear algebra constructs are reduced to index expressions,

in analog to Einstein notation from pure math [16]. We list below some common

linear algebra operators and their corresponding index notation:

1. Vector addition: �⃗� = �⃗�+ �⃗�→ a = (i b(i) + c(i))
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2. Vector inner product: 𝑎 = �⃗� · �⃗� → a = (b(+r) * c(+r)), where +r indicates

a reduced variable, one that is accumulated over its entire domain, in this case

using the addition operator.

3. Matrix addition: 𝐴 = 𝐵 + 𝐶 → A = (i,j B(i,j) + C(i,j))

4. Matrix-vector multiplication: �⃗� = 𝐵�⃗�→ a = (i B(i,+j) * c(+j))

5. Matrix-matrix multiplication: 𝐴 = 𝐵𝐶 → A = (i,j B(i,+k)*C(+k,j))

6. Blocked vector addition: �⃗� = �⃗� + �⃗� → a = (i,z1,..zn b(i,z1,...zn) +

c(i,z1,...zn)), where z1,...zn are indices running over the size of the block

in all of its 𝑛 dimensions.

In this notation, each index is either a “dense” index, which runs over a constant

range of values, or a “set” index, which runs over an edge or endpoint set. These

correspond to the constant-sized and set-sized dimensions, respectively, of Simit’s

type system. In the above, the block indices z1,...zn are dense indices, with known

ranges at compile-time. The vector indices may be either dense or set indices, in the

cases of element or global linear algebra respectively.

3.2 Halide

Halide is a Domain-Specific Language targeted at image processing pipelines [40]. To

date, it has seen large-scale use in many of Google’s photograph and video processing

codes. The core tenet of Halide’s philosophy is separation of the algorithm from the

schedule. Writing a Halide pipeline involves defining a series of data-parallel stencil

transformations on the input image, finally producing memory “realizations” of one or

more of the resulting images. After defining the stencil algorithm of the pipeline, the

user applies scheduling to each intermediate stage, defining where the stage should

be computed and stored, and how to structure the loops over the image domain.

We describe these two phases in detail in the following subsections. For a detailed

description of the Halide model, we refer the reader to [40].
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3.2.1 Defining a Stencil Algorithm

Halide algorithms are constructed in the context of a C++ program. The building

block of Halide algorithms are Func objects. A Halide Func is defined by an Expr

parameterized by a set of Vars. As an example, a simple x-directional gradient could

be defined as:

// Example 1

Halide::Var x,y;

Halide::Func grad_x("grad_x");

grad_x(x,y) = x;

Halide Funcs may call other Funcs as part of their definition, resulting in a tree

of related function definitions. These calls are parameterized by combinations of the

input parameters, and importantly allow stencil definitions by indexing relative to

input parameters. As an example, we could define an x-direction blur over an x-y

gradient as:

// Example 2

Halide::Var x,y;

Halide::Func grad_xy("grad_xy"), blur_x("blur_x");

grad_xy(x,y) = x + y;

blur_x(x,y) = (grad_xy(x−1,y) + grad_xy(x,y) + grad_xy(x+1,y))/3;

To make use of actual data, Halide provides the Image construct. An Image wraps

a Buffer, a multidimensional block of data, such that it can be accessed as a Func.

One can load Image object data from files, build them in memory manually, or be

given one as a result of realizing a Func over a given domain. We show an example of

realizing a Func to an Image, applying a blur, and receiving the resulting realization

as another Image:

// Example 3

Halide::Var x,y;

Halide::Func grad_xy("grad_xy");
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grad_xy(x,y) = x + y;

Halide::Image<int> input = grad_xy.realize(10,10);

Halide::Func blur_x("blur_x");

blur_x(x,y) = (input(x−1,y) + input(x,y) + input(x+1,y))/3;

// Allocate an image smaller in x by 2 to avoid overrunning

// the 10x10 grad_xy buffer .

Halide::Image<int> output = alloc_img({1,8},{0,9},sizeof(int));

blur_x.realize(output);

Halide also allows an “update” definition, in addition to the initial “pure” defini-

tion. These definitions update the function values, potentially over a different domain

than the initial definition. An update definition is allowed to recursively reference

the previous value of the function in the definition. For example, we could define an

x-y gradient, then update the definition to replace the 0th row by the 5th row:

// Example 4

Halide::Var x,y;

Halide::Func grad_xy("grad_xy");

grad_xy(x,y) = x + y; // Pure definition

grad_xy(0,y) = grad_xy(5,y); // Update definition

Any Func which references another Func puts demands on the domain over which

the referred-to Func is provided. We must realize blur_x over the restricted domain

[1, 8]×[0, 9] in Example 3, to avoid accessing the grad_xy realized buffer outside its

domain.

In many image processing application, as in physics applications, one may want

a particular set of boundary conditions to extend the domain of an Image beyond

the provided data. Halide provides shortcuts for defining anonymous Funcs over the

Image to achieve several common variations. We describe three useful shortcuts:

∙ BoundaryConditions::repeat_image extends the Image domain by wrapping
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accesses outside the domain. I.e. if one were to access values just to the left of

the left boundary of a repeated Image, one would receive values from the right

side of the Image.

∙ BoundaryConditions::mirror_image extends the Image domain by adding a

flipped copy of the original image beyond the boundary in each direction. I.e.

if one were to access values just to the left of the left boundary of a mirrored

Image, one would receive values from the left side of the Image.

∙ BoundaryConditions::constant_exterior extends the Image domain by adding

a constant value padding beyond the boundary of the Image in all directions.

3.2.2 Defining a Schedule

The strength of Halide lies in exposing the performance trade-offs of an algorithm to

the user. Halide achieves this through a scheduling language. Once a user has defined

the algorithm, they use the scheduling language to choose how the computation will

be organized. This scheduling language allows users to explore trade-offs between

redundant computation, locality, and parallelism. By quickly reorganizing the com-

putation without changing the meaning of the algorithm, the user can find schedules

that have good performance characteristics on their target machine, and retarget the

application to other platforms as needed.

By default, each realize() call triggers a Just-In Time compilation phase which

produces a fully-inlined schedule: the definitions of all referred-to Funcs are inlined

into the realized Func, and placed within a loop nest spanning the realization do-

main. Halide provides several scheduling primitives that allow the user to specify

modifications to this default evaluation schedule.

Defining a schedule is divided into:

∙ The Call Schedule: at what loop level to compute and store each intermediate

Func.
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∙ The Domain Order : iteration scheduling (loop splitting, fusing, and reordering),

and iteration parallelization (threaded parallelism and vectorization).

Call Schedule

Compute and store levels in Halide determine where in the loop nest a particular

intermediate will be computed and stored. At the two ends of the spectrum, an

intermediate may be computed inline (the default, or using the compute_inline()

method) or computed as an independent root (using the compute_root() method),

i.e. in an entirely distinct loop nest. These come with associated implied storage

levels: a Func scheduled inline is by default stored inline as well, and thus individual

values are computed temporarily and discarded; a Func scheduled as a root is by

default stored at the root level as well, i.e. in a global array holding the entire

demanded domain for this Func. Listings 3.2 and 3.3 demonstrate a two-stage box

blur kernel written in Halide with the intermediate Func scheduled inline. Listings

3.4 and 3.5 demonstrate the same example with root scheduling. These listings follow

the form of the scheduling demonstration presented in [40].

As demonstrated in the loop nest pseudo-code, inline scheduling generally results

in better locality of evaluation at the cost of extra redundant computation, while root

scheduling eliminates redundant computation at the cost of locality. Which factor is

more important is at the determination of the user.

Halide allows the user to specify storage of all intermediates at any loop level

outside the compute level, since the storage must be available when computing the

intermediate. This means we could, for example, compute blur_x inline as needed,

but store it at the root level, avoiding redundant computation where we have already

computed blur_x. In this case, we avoid redundant computation and retain some

measure of locality.

Halide also provides intermediate levels of compute scheduling, through the use

of the compute_at() method. This allows the user to choose a loop level within the

loop nest of each consumer at which to be computed. For multi-parameter functions,

this provides a more granular control over the redundant computation and locality
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Listing 3.2: Default inline schedule.

Halide::Var x,y;

Halide::Func blur_x, blur_y;

// Algorithm
blur_x(x,y) = (input(x−1,y)+input(x,y)+input(x+1,y))/3;
blur_y(x,y) = (blur_x(x,y−1)+blur_x(x,y)+blur_x(x,y+1))/3;
// Schedule
blur_x.compute_inline(); // Default
output = blur_y.realize(10,10);

Listing 3.3: Pseudo-code for produced inline loop nest.

for y:

for x:

uint8_t blur_x_down = (input(x−1,y−1)+input(x,y−1)+input(x+1,y−1))/3;
uint8_t blur_x_mid = (input(x−1,y)+input(x,y)+input(x+1,y))/3;
uint8_t blur_x_up = (input(x−1,y+1)+input(x,y+1)+input(x+1,y+1))/3;
output(x,y) = (blur_x_down + blur_x_mid + blur_x_up)/3;

Listing 3.4: Root schedule.

Halide::Var x,y;

Halide::Func blur_x, blur_y;

// Algorithm
blur_x(x,y) = (input(x−1,y)+input(x,y)+input(x+1,y))/3;
blur_y(x,y) = (blur_x(x,y−1)+blur_x(x,y)+blur_x(x,y+1))/3;
// Schedule
blur_x.compute_root(); // Root scheduling
output = blur_y.realize(10,10);

Listing 3.5: Pseudo-code for produced root loop nests.

for y:

for x:

blur_x(x,y) = (input(x−1,y) + input(x,y) + input(x+1,y))/3;
for y:

for x:

output(x,y) = (blur_x(x,y−1) + blur_x(x,y) + blur_x(x,y+1))/3;
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trade-off.

Domain Order

Domain order scheduling consists of several pieces:

∙ Splitting and fusing loops

∙ Reordering loop variables

∙ Unrolling, vectorizing or parallelizing loops

A loop domain may be divided into an outer loop over inner loops of constant

length. If we consider a loop variable t iterating over [0, 𝑁 − 1], the result of a loop

split is an outer variable, to, iterating over [0, 𝑁/𝑐 − 1] and an inner variable, ti,

iterating over [0, 𝑐 − 1]. In the case where 𝑐 evenly divides 𝑁 , all accesses using

the index t are simply replaced with to*𝑐+ti. Halide handles the case where 𝑐

does not evenly divide 𝑁 by shifting the last iteration of size 𝑐 to overlap with the

previous loop by however elements account for the difference. Loop splitting results

in additional Halide variables which may themselves be scheduled by further Domain

Order scheduling.

Loop fusing combines two adjacent iteration variable into a single variable that

traverses the product of the two domains. This can be particularly useful if the user

wants to parallelize multiple dimensions.

Reordering loop variables exchanges the order in which the variables of a Func

domain are looped over. This may be advantageous in cases where the user wishes to

transform from linear iteration in all dimensions to a tiled order. This can be achieved

by splitting two dimensions and reordering such that the outer variables of each split

are outermost. If the iteration order corresponds to memory order, this can improve

cache utilization for kernels which access nearby elements in both dimensions [27].

Vectorization and unrolling may be performed on constant loop dimensions. Typ-

ical vectorization involves splitting the innermost loop into vector-sized chunks then

vectorizing the inner loop of the split.
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Finally, loops in Halide may be parallelized. Halide Funcs are inherently data par-

allel, allowing parallelization to be applied to any loop. Typically it is advantageous

to parallelize the outermost loop of a given computation, such that each thread has

sufficient work to offset the threading overhead.
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Chapter 4

Related Work

We explore a variety of libraries which offer support for linear algebra on lattices (Sec-

tion 4.1). In the case of Lattice QCD, we discuss specifically the USQCD libraries

which provide domain-specific methods for applications (Section 4.1.3). While these

libraries offer optimized code for linear algebra on regular grids, these approaches re-

sult in application codes with a mix of memory management, scheduling, and platform

retargeting amongst the core algorithm. More importantly, these libraries either do

not provide a stencil view of linear algebra on lattices, or provide unrestricted global

indexing forms of lattice matrix construction which do not permit an optimized im-

plementation of the matrix.

This lack of separation of stencils, linear algebra, and technicalities motivates our

work in developing Simit language extensions: we seek to provide an alternative to

these library approaches that separates out the local stencil description, the global

linear algebra description, and the scheduling and retargeting of the generated code.

We also discuss existing linear algebra DSLs (Section 4.2). These existing lan-

guages focus on general sparse matrix definitions in their linear algebraic constructs.

This excludes an important part of the description of linear algebra on lattices: the

regularity of matrix assembly and multiplication due to the fixed shape of the defining

stencil.
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4.1 Linear Algebra Libraries

There are numerous libraries designed for linear algebra in the context of scientific

computing. We discuss three specific libraries which provide sparse matrix methods:

PETSc, LAPACK, and ScaLAPACK.

4.1.1 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) provides a host

of libraries designed to allow scalable, performant scientific computation in a variety

of mathematical domains [5]. In particular, PETSc includes sparse matrix modules

with iterative solvers such as the Conjugate Gradient method, and a wide variety

of related choices. Writing an application based on iterative inversion of a system

matrix involves assembly of the system matrix, initializing and running an iterative

solver object, and finally cleaning up the memory allocations.

Matrix Assembly

Matrix assembly supports compressed sparse row format (CSR) by default, among a

number of other formats. Assembly of compressed sparse row matrices is performed

by defining the set of values and column indices for each row.

Blocked matrix formats are also supported, but focus on a small top-level matrix

with system-level sparse matrices stored in nested compressed formats. This format

corresponds to the type of matrices generated in multi-physics systems.

Finally, PETSc also supports matrix-free methods by allowing the user to provide

a matrix-vector multiplication function.

Scheduling

PETSc provides Message Passing Interface (MPI) [19] support for multi-processor

computations, with matrices, vectors, and solvers internalizing many of the details of

interprocess communication. We demonstrate a representative example of a stencil-

type assembly and multi-processor scheduling drawn from [5, Sec 1.4]:
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/*

Create paral le l matrix , specifying only i t s global dimensions .

When using MatCreate() , the matrix format can be specified at

runtime. Also , the paral le l partitioning of the matrix is

determined by PETSc at runtime.

Performance tuning note : For problems of substantial size ,

preallocation of matrix memory is crucial for attaining good

performance. See the matrix chapter of the users manual for detai ls .

*/

ierr = MatCreate(PETSC_COMM_WORLD ,&A);CHKERRQ(ierr);

ierr = MatSetSizes(A,PETSC_DECIDE ,PETSC_DECIDE ,m*n,m*n);CHKERRQ(ierr);

ierr = MatSetFromOptions(A);CHKERRQ(ierr);

ierr = MatMPIAIJSetPreallocation(A,5,NULL,5,NULL);CHKERRQ(ierr);

ierr = MatSeqAIJSetPreallocation(A,5,NULL);CHKERRQ(ierr);

ierr = MatSeqSBAIJSetPreallocation(A,1,5,NULL);CHKERRQ(ierr);

/*

Currently , a l l PETSc paral le l matrix formats are partitioned by

contiguous chunks of rows across the processors . Determine which

rows of the matrix are local ly owned.

*/

ierr = MatGetOwnershipRange(A,&Istart ,&Iend);CHKERRQ(ierr);

/*

Set matrix elements for the 2−D, five−point stenci l in paral le l .

− Each processor needs to insert only elements that i t owns

local ly (but any non−local elements wi l l be sent to the

appropriate processor during matrix assembly ).

− Always specify global rows and columns of matrix entries .

*/
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ierr = PetscLogStageRegister("Assembly", &stage);CHKERRQ(ierr);

ierr = PetscLogStagePush(stage);CHKERRQ(ierr);

for (Ii=Istart; Ii<Iend; Ii++) {

v = −1.0; i = Ii/n; j = Ii − i*n;

if (i>0) {J = Ii − n;

ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

CHKERRQ(ierr);}

if (i<m−1) {J = Ii + n;

ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

CHKERRQ(ierr);}

if (j>0) {J = Ii − 1;

ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

CHKERRQ(ierr);}

if (j<n−1) {J = Ii + 1;

ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);

CHKERRQ(ierr);}

v = 4.0; ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);

}

/*

Assemble matrix , using the 2−step process :

MatAssemblyBegin() , MatAssemblyEnd()

Computations can be done while messages are in transition

by placing code between these two statements .

*/

ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);

ierr = PetscLogStagePop();CHKERRQ(ierr);
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Structured Grids

PETSc also provides support for interaction between linear algebra and structured

grid data in the Distributed Arrays module. Specifically, users can define data distri-

bution in one, two, or three dimensions. In two or three dimensions, users additionally

choose between a box or star stencil to determine whether or not corners are available

in the ghost zones [26] of a local piece of the grid data.

Matrix assembly on structured grids proceeds similarly to CSR sparse matrices,

but allows defining column indices using absolute structured grid coordinates rather

than a single column index.

Discussion

The scheduling example given above highlights both the strengths and weaknesses of

PETSc. PETSc wraps raw MPI communications in a sensible set of matrix semantics

(row-by-row division), gives the user detailed control over scheduling using these

semantics, and produces efficient matrix assembly code. That said, the assembly

provided in PETSc forces the user to explicitly handle the bounds of the parallelized

schedule, interleaves scheduling technicalities with the core matrix assembly, and is

defined at a global level, preventing PETSc from exploiting the regular nature of the

assembly.

The structured grid support provided by PETSc is convenient for users when defin-

ing schedules, and provides users a simple structure-based distribution mechanism.

However, the structured grid methods of PETSc still require the users to define the

matrix at a global level, preventing PETSc from exploiting the stencil structure of the

matrix. In addition, users must take care to define their ghost zones manually, and

must consider the bounds of their local piece of the distributed grid when assembling

the matrix. Finally, structured grid methods are only supported for 1D, 2D, or 3D

cases. This makes PETSc unsuitable for the 4D grids of Lattice QCD applications,

our motivating example.
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4.1.2 LAPACK

The Linear Algebra Package (LAPACK) is a set of Fortran methods for common

linear algebra operations and high-level routines that have been optimized for a large

variety of machines [4]. These routines are based on optimized local linear algebra

procedures contained in the BLAS library. LAPACK does not offer support for general

sparse matrices, but does support banded diagonal matrices, such as those produced

by stencils. In particular, LAPACK provides direct solvers for inverting matrices

describing linear systems of equations.

The ScaLAPACK project continues the development of LAPACK to support scal-

able computation on distributed hardware [7]. These developments are based on a

parallel version of BLAS, termed PBLAS. ScaLAPACK provides parallel direct solvers

analogous to the LAPACK package.

Together these libraries provide efficient and scalable means to perform direct

solves for banded matrices, such as those produced by stencils. These libraries are

not applicable to iterative methods, however, and as such do not have applicability

to the types of sparse matrix methods that benefit from iterative solvers over direct

solvers, such as the Lattice QCD application.

4.1.3 USQCD Libraries

Beginning with Department of Energy funding in 2001, leading members of the Lattice

QCD community in the United States have developed a nationally-maintained set of

libraries for Lattice QCD computations [10]. These libraries are targeted at scientific

computing hardware consisting of distributed commodity clusters and supercomputer

clusters [8]. The USQCD libraries are effective for current users, but require time-

intensive hand-optimization for fast future operations and platforms. This indicates

programmer time could be saved by development of a platform-flexible system with

independent algorithm and scheduling.
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4.2 Linear Algebra Domain-Specific Languages

Existing linear algebra DSLs focus on general sparse matrix forms. These DSLs do not

take advantage of the regularity of linear algebra on lattices, and as a result require

additional indexing and indirection in matrix representation and multiplication. We

specifically discuss MATLAB and Simit.

4.2.1 MATLAB

MATLAB is designed to perform scientific computations involving general linear al-

gebra. It provides support for creation of sparse banded and diagonal matrices, such

as those created in stencil methods. MATLAB also provides support for sparse ma-

trix initialization from (row,col,value) triplets. In addition to sparse matrix assembly,

MATLAB supports iterative solvers, including the Conjugate Gradient method.

While MATLAB provides the basic support needed for sparse matrices and inver-

sions, the interface does not support any stencil description of matrices. In addition,

as with library methods, the solvers are provided as built-ins, with no methods to

modify the underlying behavior. Methods on sparse matrices derived from graph

structures result in poor performance and memory characteristics, and as a result

don’t support scalable applications very well [25].

4.2.2 Simit

The Simit programming model provides an efficient and expressive method for struc-

tural matrices of arbitrary graphs. We identify two issues with the existing Simit

model in the case of lattice graphs:

1. Simit does not take advantage of the regular nature of the graph to eliminate

unneeded indices. This results in extra memory usage and indirection.

2. Simit matrix assembly focuses on matrix forms that directly correlate to edge set

structures, and does not provide support for more complex stencils. This stems

from the fact that in arbitrary graphs complex stencil shapes are ambiguous: the
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local structure varies from node to node. Restricting to lattice graphs enables

a greater degree of expressiveness than is available in the Simit model.
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Chapter 5

Language Definition

We define a language which extends Simit’s syntax to support linear algebra on

lattices. The additions to the language are:

∙ Extension to the edge set type, to support lattice edge sets (Section 5.1)

∙ Stencil-based matrix and vector assembly (Section 5.2)

These changes (1) provide the compiler with the information that we are operating

on a regular graph, (2) provide the user with a more natural and expressive stencil

description of matrices, and (3) allow the compiler to manipulate matrices based on

the stencil definition. We discuss compiler changes enabled by this extra information

in Chapter 6.

5.1 Lattice Edge Sets

Existing Simit edge sets are defined by elements connecting a list of endpoints drawn

from one or more sets of nodes. These edge sets are bound externally, receiving

both data and structure during runtime. We categorize these forms of edge sets as

Unstructured edge sets, and define an additional type of edge set that may be defined

and bound: Lattice edge sets.

Lattice edge sets impose a regular grid structure, known at compile time, on their

endpoint sets. Specifically, they are defined to take the form of a grid of 𝑁1×...×𝑁𝑑
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points, with edges connecting nearest neighbors in all cardinal directions. We define

these edge sets to have a toroidal boundary condition, i.e. stepping off one edge of

the lattice in a given direction puts you at the beginning of the lattice on the other

side. We make this choice for simplicity of compilation, and expect a future iteration

of this work would offer other boundary conditions.

Lattice edge sets are constrained to have exactly two endpoints drawn from the

same node set, i.e. to be cardinality two, homogeneous edge sets. Declarations of

Lattice edge sets additionally specify the number of lattice dimensions, 𝑑, of the im-

posed lattice structure. We define syntax for such a declaration to be:

extern <name> : lattice[<d>](<endpointset>);

Lattice edge sets are handled differently at runtime than Unstructured edge sets.

Rather than building a list of edges, individually defined by their endpoints, the user

specifies 𝑑 size parameters, 𝑁1, ...𝑁𝑑, which fully specify the desired lattice structure.

In both cases, the user may then define data on a per-edge basis. In the case of

Lattice edge sets, the runtime library assembles this data into a canonically-ordered

list of data per field of the set. Beyond the 𝑑 dimensions defining the start of each

lattice edge, Lattice edge sets also have a directional dimension, 𝜇 ∈ [1, 𝑑]. We define

the canonical ordering to iterate over the dimensions 𝑁1 through 𝑁𝑑 innermost to

outer, with 𝜇 outermost. Figure 5-1 demonstrates a 2×2 lattice with the canonical

order for the edge data.

Endpoint sets with imposed lattice structure, i.e. those that have a Lattice edge

set declared over them, are also required to be assembled in a canonical order: iter-

ating 𝑁1 innermost to 𝑁𝑑 outermost. These sets are specified by users in the usual

manner, but are ordered before being bound by the runtime library. Figure 5-1 also

demonstrates the canonical order of the endpoint set with imposed lattice structure.

Canonical ordering in the runtime library ensures that the compiler need not build

memory indices to refer to elements of the lattice. Instead, the compiler can generate

code that infers the structure from this canonical ordering in memory of both Lattice
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Figure 5-1: Canonical order of a Lattice edge set and the endpoint set with imposed
structure on a 2×2 lattice. The Lattice edge set defines the links of the lattice, while
the endpoint set defines the site. Note that there 4 *𝑁𝑑 = 8 links due to the toroidal
boundary condition.

edge sets and their underlying endpoint sets.

5.2 Stencil Assembly

We define additional semantics for the assembly construct that allow matrix and

vector assembly from Lattice edge sets. Stencil assembly is defined by relative indexing

in the lattice dimensions.

Stencil assembly fits within the existing map syntax, and is instead distinguished

by the edge set passed to the map and a modified kernel function. Specifically, the

kernel function must accept both the Lattice edge set and the underlying node set as

arguments, optionally preceded by arguments to be bound by the partial arguments

passed to the stencil expression. In Simit, a map over an Unstructured edge set

corresponds to invoking the assembly function on each edge of the set. In maps over

Lattice edge sets, we require that the kernel accept the entire edge and node sets,

but constrain set accesses by using lattice indexing relative to a local lattice origin:

for each node of the underlying set, we invoke the assembly function with that node
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bound as the local lattice origin.

We specify the syntax of relative indexing of the endpoint set and Lattice edge

set in distinct ways:

∙ Relative indexing of the endpoint set is described by 𝑑 relative indices, (𝑖1, ...𝑖𝑑),

which select the site offset from the local origin by the relevant index in each di-

rection. The relative indices are constrained to be constant integers, limiting the

size and form of the stencil. In this indexing, there is an implied toroidal bound-

ary condition. The syntax of this relative indexing is: nodes[i1,i2,...].

∙ Relative indexing of the Lattice edge set is described by 𝑑 relative indices,

(𝑖1, ...𝑖𝑘, ...𝑖𝑑), followed by another 𝑑 relative indices, (𝑖1, ...𝑖𝑘 ± 1, ...𝑖𝑑), which

together select the edge between the two indexed sites. The syntax of Lattice

edge set indexing is:

links[i1,i2,...;j1,j2,...].

We demonstrate a stencil assembly defining a sparse matrix based on a von-

Neumann stencil on a 2D lattice:

element Point

a : float;

x : float;

end

element Edge

b : float;

end

extern points : set{Point};

extern edges : lattice[2]{Edge}(points);

func assemble(edges : lattice[2]{Edge}(points), points : set{Point})

−> (A : matrix[points,points](float))

A(points[0,0],points[0,0]) = points[0,0].a;

A(points[0,0],points[1,0]) = edges[0,0;1,0].b * points[1,0].a;
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A(points[0,0],points[−1,0]) = edges[0,0;−1,0].b * points[−1,0].a;

A(points[0,0],points[0,1]) = edges[0,0;0,1].b * points[0,1].a;

A(points[0,0],points[0,−1]) = edges[0,0;0,−1].b * points[0,−1].a;

end

extern func main()

A = map assemble to edges;

points.x = A*points.x;

end

5.3 Discussion of Decisions

Our language design was motivated by the additional structure introduced by lattice

graphs. A lattice graph provides a simple 𝑑-dimensional global coordinate scheme

which is not present in arbitrary graphs, and allows the compiler to:

1. Remove all edge indices

2. Express matrices as stencils

3. Easily schedule iteration over the graph domain

In principle, any sort of regular graph permits a global coordinate scheme. We

could imagine, for example, defining a higher-cardinality edge set which corresponds

to the planes of a grid, rather than the edges. While higher-cardinality structures such

as these may occasionally be useful for specific computations, the simplest possible

regular structure that captures a 𝑑-dimensional regular grid is a lattice of links. For

this reason we choose a cardinality-two, homogeneous link structure for Lattice edge

sets.

The choice to bind Lattice edge sets and underlying endpoint sets via a memory

ordering convention was guided by the desire to remove all edge indices (point 1). We

note that this choice prevents the runtime system from binding Lattice edge sets of
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differing sizes over the same point set. Applications using linear algebra over lattices

generally perform all computations on a single lattice structure for the entire problem,

and as such we chose to focus our design around this case. The removal of indices is

a significant advantage provided by allowing a restricted Lattice edge set form, and

we believe it is valuable to offer this trade-off to users.

The choice to define matrices via stencil constructs was guided by the desire

to remove matrix indices (point 2). A matrix generated from a lattice stencil has

additional structure over a general matrix, and it is this structure that allows us to

define a memory-less index for this type of matrix. Specifically, in a stencil definition

of a matrix, (1) the structure of the stencil is known at compile-time, and (2) the

structure of the stencil is the same across the entire lattice. In our language definition,

we guarantee these properties by demanding that relative lattice indexing in assembly

functions be constant offsets from an implicit local origin.

To make the index-free form concrete, consider the example of the 2D von-

Neumann stencil, as diagrammed in Figure 5-2, and written in code above. This

stencil corresponds to one row of the assembled matrix, and as such we know that

each row of this sparse matrix will contain exactly 5 non-zero entries. This allows us

to access the 𝑗th element of the 𝑖th row of the matrix at location 𝑖 * 5 + 𝑗 of the data

array, with no indirection through an in-memory row index. This can be considered

an analog to the DIA format [42, Sec 3.4], designed to store a multi-diagonal matrix.

In the DIA format, one only needs to store the values of the matrix and the offsets

of each diagonal. In a stencil-defined matrix, the stencil itself defines the offsets, and

we need only store the values of the matrix. Beyond eliminating a set-sized memory

index, this also eliminates indirection in data loads. This permits the compiler to

easily vectorize and tile data accesses and computations.

Finally, the choice to assume an ordering of dimensions from inner-most first to

outer-most last was motivated by a desire for engineering simplicity in implemented

scheduling (point 3). This ordering matches the one used by Halide Image buffers

by default, and allows a direct translation from lattice indices to Halide indices. As

discussed in Chapter 8, a future iteration of this compiler could expose dimension
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Figure 5-2: The 2D von Neumann stencil accesses immediate Cartesian neighbor links
and sites.

order as a user parameter for scheduling.
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Chapter 6

Prototype Compiler

We present a detailed design description of the prototype compiler built for evaluation

of our methods. We hope that these design elements may eventually be folded into

the Simit compiler itself, which, along with future work on lattice and unstructured

linear algebra interoperability, would provide a more complete linear algebra domain-

specific language.

Our objectives in designing this prototype are to:

∙ Demonstrate compiling a representative subset of the language defined in Chap-

ter 5

∙ Demonstrate performance relative to existing methods

To efficiently meet our objectives, we build the prototype compiler as an extension

to the existing Simit compiler. This allows us to take advantage of the existing parsing

and lowering machinery, while only having to update the handling of maps to support

stencil assembly, tailor the lowering machinery to emit index expressions, and replace

the code generation with our own.

We specifically choose to use Halide as a backend for code generation. Halide

provides the ability to easily schedule generated functions in terms of their defining

variables, and this flexibility enables us to quickly experiment with code schedules.

Halide’s indexing method also matches lattice indexing in stencils, and thus provides

a natural expression of stencil-based computations.
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6.1 Scope

We make several decisions, detailed below, which restrict the scope of our compiler

to efficiently meet the objectives of our prototype design. We believe this compiler

design and language description provide an effective starting point for future work to

develop a full compiler for linear algebra on lattices. Specifically, we choose to:

1. Compile only unblocked linear algebra

2. Forbid Unstructured edge set declaration

3. Represent our matrices entirely assembly-free

4. Forbid matrix multiplications

We choose to compile only unblocked linear algebra (point 1) to demonstrate

linear algebra of system-level vectors and matrices with a minimum of engineering

complexity. There are many applications, including our Lattice QCD case study,

which demand a linear algebra representation on a blocked vector space. We leave

as future work development of a fully featured compiler of the language which can

handle these applications.

We choose to compile only Lattice edge sets (point 2) since compilation of Un-

structured edge sets does not demonstrate any additional behavior unique to our

language. Our language does not include constructs for interaction between Unstruc-

tured and Lattice edge sets, and as a result any code generated for Unstructured edge

sets would decouple from that of Lattice edge sets.

We choose to represent our matrices entirely assembly-free (point 3) because we

can explore this space effectively using Halide scheduling and temporaries. For com-

plex forms of matrices seen in typical applications, matrix construction can be rewrit-

ten by the user into a sequence of smaller matrix pieces applied to intermediate vec-

tors. With Halide scheduling primitives, we can offer the choice of root or inlined

computation of these intermediates, which simulates the same trade-off in redundant

computation versus locality explored by assembled or assembly-free matrices.
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Finally, we restrict our compiler to forbid matrix multiplications (point 4) because

in our assembly-free form, sequential matrix-vector multiplication fully demonstrates

the semantics of our matrix representation. Without assembly, we cannot build extern

matrices, thus all matrices must eventually be multiplied into vectors. Any matrix-

matrix multiplications can therefore be written in terms of several matrix-vector mul-

tiplications composed using intermediate vectors. Matrix-vector multiplications also

capture the ability to schedule matrix-level linear algebra. We believe it would be

valuable to explore a future extension to our language which exposes a choice between

assembled and assembly-free matrices, but for engineering simplicity in the prototype

leave this to future work.

6.1.1 Miscellaneous Restrictions

Beyond the restrictions in scope, we mention a few engineering restrictions that could

be extended in future work:

1. We assume edge data are symmetric. The memory ordering form of edges

implies a directionality: two indices specify the base and one index a direction

of the edge. For simplicity of implementation, the prototype compiler assumes

all data stored in this way are independent of edge direction. Regardless of

whether the edge is accessed from its source or sink in a stencil, the same value

is retrieved.

2. Passes that manipulate the internal representation (IR) are designed around

a single externally visible entry function, and often do not take care to main-

tain state supporting multiple extern functions. This is a simple engineering

constraint that should be removed in future development.

6.2 Modifications to the Simit Compiler

We make the following major changes to Simit’s compilation model:

1. Extend the type system to support Lattice edge sets
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2. Extend index variables to allow derived variables in index expressions

3. Extend the IndexedTensor form to allow offsets

4. Add lattice indexing syntax for use in stencil assembly functions

5. Introduce new lowering steps, and remove some existing lowering steps, specif-

ically:

(a) Add normalizing row indices in stencil assembly functions

(b) Add inlining matrix assembly into matrix-vector multiplications

(c) Add rewriting system-level assignments to index expressions

(d) Replace lowering field accesses with a custom step

(e) Replace lowering maps with a custom step

(f) Remove lowering index expressions to tensor reads and writes

(g) Remove lowering tensor reads and writes to memory accesses

6. Add a Halide backend for code generation

(a) Lower variable assigns to Single Static Assignment with realization barriers

(b) Produce Halide definitions for each index expression assignment

(c) Generate a recursive assembly of C++ lambda functions

6.2.1 Extended Types

The Simit compiler uses the SetType construct to distinguish between edge sets and

endpoint sets. To support Lattice edge sets, we add an additional Kind parame-

ter to Simit’s SetType. We distinguish between existing edge sets, which we now

identify with Kind::Unstructured, and Lattice edge sets, which we identify with

Kind::LatticeLink. Rather than maintaining a list of endpoint sets, Lattice sets

are defined with an integer dimensions parameter, and a single IndexSet defining

the underlying endpoint set.
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6.2.2 Derived Index Variables

Derived index variables are variables which follow the iteration of a referenced index

variable but over a subset of a different domain. For example, one could imagine an

index variable 𝑖 over the domain (𝑥, 𝑦) ∈ [0, 2]×[0, 2], and a derived index variable 𝐷𝑖

over a subset of a larger domain (𝑥, 𝑦, 0) ⊂ (𝑥, 𝑦, 𝑧) ∈ [0, 2]×[0, 2]×[0, 2]. For every

(𝑥, 𝑦) accessed by 𝑖, 𝐷𝑖 accesses (𝑥, 𝑦, 0).

Derived index variables are motived by lowering stencil-based matrix assembly. As

we will describe, we eventually transform all stencil assembly into index expressions.

For stencil assembly, our index variables span the lattice space, corresponding to

iterating over all possible local origins for the assembly function. To write a relative-

lattice-indexed endpoint element in terms of this iteration domain, we simply access

the element indexed by all iteration variables offset by the respective lattice offsets. To

write a relative-lattice-indexed Lattice edge element in terms of this iteration domain,

we must access the element indexed by all iteration variables, plus one constant index

corresponding to the directional index, together offset by the respective lattice and

directional offsets. To define that these indices over two different Simit domains

correspond to a common underlying lattice iteration, we represent the Lattice edge

set index as an index derived from the endpoint index.

Derived index variables are implemented in the prototype compiler as IndexVar

objects which wrap the IndexVar which they derive from. In IR listings, a derived

index variable over the variable i is conventionally written Di. They are understood

to span the space of the variable they derive from, reshaped to provide constant zero

indices as needed in the full domain. In the prototype compiler, Lattice edge derived

index variables are handled as a special case. We imagine, however, that this form

of index variable will provide a useful tool for future work on assembled matrices, in

which the stencil index may be a dense iteration independent of the iteration over

the lattice domain.
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6.2.3 IndexedTensor Offsets

Stencil assembly involves translating relative-lattice-indexed tensor reads and writes

to index expressions. In our prototype compiler, we translate away all tensor write

offsets (Section 6.2.5). We thus only need to handle offsets in tensor reads, which are

represented as IndexedTensors.

We extend the IndexedTensor IR node to store offsets as a list of Simit Exprs,

each of which offsets the corresponding index of the tensor. Index variables with dense

domains expect to be paired with scalar integer offsets. Index variables over a lattice

expect to be paired with a vector of 𝑑 integer offsets. In our prototype compiler, we

disallow blocking, and as a result only find offsets of the latter form.

In IR listings, we represent IndexedTensors with offsets by appending +<offset>

to the relevant indices. For example, a 2D lattice vector, vec, accessed using the

lattice index l with 2D offset [-1,1] is written vec(l+[-1,1]).

6.2.4 Lattice Indexing Syntax

Lattice indexing syntax is represented as a SetRead IR construct in the prototype

compiler. A SetRead tracks the referenced set as a Simit Expr and stores the indices

as a list of Exprs. The SetRead IR node is defined as a high-level node, meaning

that it should never reach the backend. Instead, SetRead expressions within stencil

constructs are lowered to index expressions with the indices treated as relative lattice

offsets of the relevant index variable.

In stencil assembly functions, we see two different forms of SetReads: SetReads

of endpoint sets with imposed lattice structure, and Lattice edge sets. In the case of

endpoint sets, SetRead indices translate directly to one offset per dimension of the

imposed lattice structure. In the case of Lattice edge sets, SetReads have two sets

of indices, one for the edge source and one for the edge sink, but are translated to

one set of lattice offsets plus a single additional directional offset inferred from the

difference in source and sink indices.
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6.2.5 Lowering Passes

The Simit compiler executes a sequence of lowering passes on the internal representa-

tion of a program before passing it to a backend for code generation. The prototype

compiler modifies the full Simit lowering structure by modifying existing passes, re-

moving passes, and adding passes.

The goal of modifying the lowering sequence is to arrive at a final Index Expression

Assignment Form, which is then passed to the Halide backend for code generation.

We design this form around representing all linear algebra in terms of index expression

values because these indices naturally translate to Halide Func indices during code

generation. We first define the desired final form then discuss the modified lowering

passes which take us there.

Index Expression Assignment Form is defined by the one core linear algebra state-

ment understood by the Halide backend, an Index Expression Assignment. This

statement is defined as a linear algebra operation assigning into a potentially blocked

matrix or vector from an expression involving potentially blocked matrices and vectors

which are contracted, scaled, and added together. In full generality, we can express

all valid Index Expressions via a recursive definition [25]:

ElementWiseAdd: ([𝐼 = 𝑖1, ...𝑖𝑛 ∪𝑅 = 𝑟1, ...𝑟𝑛]

ElementWiseMult(𝐼 ∪𝑅) + ElementWiseAdd(𝐼 ∪𝑅))

ElementWiseMult: ([𝐼 ∪𝑅] Contraction(𝐼 ∪𝑅) * ElementWiseMult(𝐼 ∪𝑅))

Contraction: ([𝐼 ∪𝑅] Value(𝐸1 ⊂ 𝐼 ∪𝑅,𝐾 ⊂ 𝑅) * Value(𝐸2 ⊂ 𝐼 ∪𝑅,𝐾)),

where 𝐸1 ∩ 𝐸2 = 𝐸2 ∩𝐾 = 𝐾 ∩ 𝐸1 = ∅

and 𝐸1 ∪ 𝐸2 ∪𝐾 = 𝐼 ∪𝑅

Value: (Const(∅) | Vector(𝑖) | Matrix(𝑖, 𝑗) |

BlockedVector(𝑖, 𝑏1, ...𝑏𝑛) | BlockedMatrix(𝑖, 𝑗, 𝑏1, ...𝑏𝑛) |

ElementWiseAdd(𝐼 ∪𝑅))

In the above statement, 𝐼 represents the set of free indices and 𝑅 the set of
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reduced indices. When assigned to a variable, the set of free indices of the value

are required to match the type structure of the variable. The assignment specifies

a reduction over the domains of the reduction variables, composing using a given

reduction operator. In the case of the Simit and prototype compilers, addition is the

only available reduction operator.

This structure essentially specifies that index expressions can be recursively con-

structed, with element-wise additions and multiplications pairing free or reduction

indices of all terms, contractions pairing a subset of the available reduction indices

and dividing up the remaining indices between terms, and specific values being in-

dexed by a fixed number and type of indices. In the above expression, each specific

index variable must index into the same dimension everywhere it is used.

To offer a concrete example of an Index Assignment Statement in the context of

Lattice QCD, we demonstrate lowering a quark vector assigned to a multiplication

between the Dirac matrix and another quark vector, plus another quark vector. For

clarity, we write the full index structure of all Lattice QCD objects and match these

index names in the lowered form.

𝜉[𝑥]𝑖𝛼 =
∑︁
𝑦,𝑗,𝛽

𝑀 [𝑥, 𝑦]𝑖,𝑗𝛼𝛽 * 𝜓[𝑦]𝑗𝛽 + 𝜒[𝑥]𝑖𝛼

𝜉 =(𝐼 = 𝑥, 𝑖, 𝛼 ∪𝑅 = 𝑦, 𝑗, 𝛽

Contraction𝑀,𝜓(𝐼 ∪𝑅) + BlockedVector𝜒(𝑥, 𝑖, 𝛼))

𝜉 =(𝐼 = 𝑥, 𝑖, 𝛼 ∪𝑅 = 𝑦, 𝑗, 𝛽

(BlockedMatrix𝑀(𝑥, 𝑦, 𝑖, 𝑗, 𝛼, 𝛽) * BlockedVector𝜓(𝑦, 𝑗, 𝛽))

+ BlockedVector𝜒(𝑥, 𝑖, 𝛼))

In terms of Simit IR, with blocking explicit, this would be written:

xi = (x,i,alpha M(x,+y)(i,+j)(alpha,+beta) * psi(+y)(+j)(+beta)

+ chi(x)(i)(alpha));

Our prototype compiler disallows blocked forms, and as such we only handle struc-

tures of a simplified Index Expression Assignment Form which omits BlockedMatrix
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and BlockedVector forms.

The broad strokes of rewriting the existing Simit lowering pipeline to achieve this

form were to: remove any lowering beyond index expressions, replace lowering of maps

to loops with lowering to index expression assignments, and some rewriting passes

for stencil forms such that all matrix-vector multiplications are structured as gather

stencils. Figure 6-1 diagrams the sequence of lowering passes used in the prototype

compiler. We discuss specific lowering passes below.

Row Index Normalization

The prototype compiler chooses to represent a left-multiplication into a column vec-

tor by a gather stencil, rather than a scatter stencil. This allows efficient parallel

scheduling and matches the form of Func definitions in Halide: one specifies which

elements of other functions contribute to a single abstract parameterization of the

defined Func. To produce this form, we specify the matrix in terms of the columns

that contribute to a single row of the output.

We define a lowering pass, Row Index Normalization, which achieves this form

by using translational invariance in the assembly function to shift all output tensor

row indices to zero offset. There is a subtle detail that must be considered in this

transformation: the user may have stored values derived from lattice indexing of either

the Lattice edge set or endpoint set into local variables prior to using them in a tensor

write. To handle these cases correctly, we choose to inline all temporary definitions

into the right-hand side of tensor writes prior to applying Row Index Normalization.

This ensures that all relative indexing is shifted simultaneously.

We demonstrate an example of Row Index Normalization below:

% Pre−transformation assembly statements

var tmp = nodes[0,0].a;

A(nodes[1,0],nodes[0,1]) = tmp + nodes[1,0].a + nodes[0,1].a;

A(nodes[0,1],nodes[1,0]) = tmp + links[0,0;1,0].b;

% Temporary−inlined statements
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Row Index Normalization

Matrix Assembly Inlining

Flatten Index Expressions

Lower Maps

Lower Field Accesses

Rewrite System Assigns

Single Static Assignment

Figure 6-1: The set of lowering passes performed in the prototype compiler prior to
Halide code generation.
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A(nodes[1,0],nodes[0,1]) = nodes[0,0].a + nodes[1,0].a + nodes[0,1].a;

A(nodes[0,1],nodes[1,0]) = nodes[0,0].a + links[0,0;1,0].b;

% Shifted statements

A(nodes[0,0],nodes[−1,1]) = nodes[−1,0].a + nodes[0,0].a + nodes[−1,1].a;

A(nodes[0,0],nodes[1,−1]) = nodes[0,−1].a + links[0,−1;1,−1].b;

Matrix Assembly Inlining

After performing Row Index Normalization, all matrix writes are of the form:

A(nodes[0,0,...], nodes[i1,i2,...]) = ...;

At this point, the compiler has the choice of assembling the matrix directly or inlining

the assembly into all uses. As discussed above, we choose to implement the latter in

the prototype compiler.

In the Matrix Assembly Inlining pass, the compiler identifies all stencil definitions

for matrices and simultaneously scans for and updates matrix uses, pattern-matching

on left-multiplication of vectors by these matrices, while throwing errors on all other

uses. This lowering pass operates after all linear-algebra has been translated to index

expressions, so these left-multiplications always take the form of an indexed multipli-

cation between a two-index object (the matrix) and a one-index object (the vector),

with a reduction between the column index (right index) of the two-index object

and the sole index of the one-index object. Written as Simit IR, a matrix multi-

plication between matrix A and vector x is (j A(j,+i)*x(+i)). Upon finding a

left-multiplication, the compiler emits a temporary variable, defines it by a gather

stencil, and replaces the multiplication with the temporary variable indexed by the

row index of the matrix.

Building the gather stencil follows naturally from putting the stencil assembly

function in Row Normalized form. In Row Normalized form, the column index of

each tensor write in the assembly function dictates the offset of the multiplied vector

to access, and the value of the tensor write dictates what value to multiply in. To
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produce a given location of the output vector, we must sum all tensor writes using the

multiplied-vector offsets and multiplied-in values dictated in this way. Conveniently,

this can be written as another stencil of a transformed assembly function, with the

multiplied-in vector passed as a partially-bound argument. We therefore choose to

make this transformation by defining a transformed stencil kernel that performs the

matrix-vector multiplication. This transformed kernel is rewritten to accept an addi-

tional vector argument and produce a vector output.

We make this more concrete by demonstrating a full example of inlining a stencil

assembly function into a matrix-vector multiplication:

% Sets ( links , nodes) and vectors (c ,x ,y) defined elsewhere

func assemble(links : lattice[2]{Link}(nodes),

nodes : set{Node})

−> (A : matrix[nodes,nodes](float))

var tmp = nodes[0,0].a;

A(nodes[1,0],nodes[0,1]) = tmp + nodes[1,0].a + nodes[0,1].a;

A(nodes[0,0],nodes[1,0]) = tmp + links[0,0;1,0].b;

end

extern func main(x : vector[nodes](float),

c : vector[nodes](float))

var A = map assemble to links;

y = (j A(j,+i)*x(+i) + c(j)); % Ax + c as an index expression

end

Transformed using Row Index Normalization:

func assemble(links : lattice[2]{Link}(nodes),

nodes : set{Node})

−> (A : matrix[nodes,nodes](float))

A(nodes[0,0],nodes[−1,1]) = nodes[−1,0].a + nodes[0,0].a

+ nodes[−1,1].a;
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A(nodes[0,0],nodes[1,−1]) = nodes[0,−1].a + links[0,−1;1,−1].b;

end

extern func main(x : vector[nodes](float),

c : vector[nodes](float))

var A = map assemble to links reduce +;

y = (j A(j,+i)*x(+i) + c(j));

end

Transformed using Matrix Assembly Inlining:

func assembleAx(x : vector[nodes](float),

links : lattice[2]{Link}(nodes),

nodes : set{Node})

−> (Ax : vector[nodes](float))

Ax(nodes[0,0]) = ((nodes[−1,0].a + nodes[0,0].a + nodes[−1,1].a)

* x(nodes[−1,1]))

+ ((nodes[0,−1].a + links[0,−1;1,−1].b)

* x(nodes[1,−1]));

end

extern func main(x : vector[nodes](float),

c : vector[nodes](float))

var tmp : vector[nodes](float);

tmp = map assembleAx(x) to links;

y = (j tmp(j) + c(j));

end

Map Lowering

Though the prototype compiler does not support Unstructured edge sets, maps over

endpoint sets are still valid. In the current Simit compiler, the map lowering pass
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builds a loop nest over the domain of the set being mapped over and places the

assembly function inside the loop nest with appropriate variable bindings. We modify

this pass to achieve our desired Index Expression Assignment Form. Rather than

generate a loop, the prototype compiler modifies this lowering stage to transform

the assembly function in terms of an index variable which spans the domain of the

endpoint set. To transform the assembly function, the prototype compiler:

1. Replaces all element accesses inside the kernel function with an IndexedTensor

read from the appropriate set field. As an example, the original map lowering

pass would replace a read of field a on element p in set points with a tensor load

at the looped-over index: [p.a] → [points.a[i]]. In the prototype compiler,

this instead becomes an indexed tensor: [p.a] → [(i points.a(i))], with no

enclosing loop.

2. Replaces all output tensor writes inside the kernel function with an assign state-

ment. This change relies on the the assigned value having previously been

rewritten to an IndexedTensor. As an example, the original map lowering pass

would replace a tensor write to the output variable with a tensor write at the

loop index: [out(p) = p.a] → [out[i] = points.a[i]]. In the prototype

compiler, this instead becomes a direct assign: [out(p) = p.a] → [out = (i

points.a(i))].

As a result, we find all system-level operations resulting from a map are replaced

with our desired Index Expression Assignment Form.

Stencil Lowering

In the case of maps over Lattice edge sets, we following a similar lowering form, but

must additionally deal with:

∙ Having both a target set and neighbors set, as Lattice edge sets always come

with an associated endpoint set

∙ Lattice indexing in the assembly function via SetReads

88



To handle accessing from two related sets, we need two related index variables

for our stencil lowering: an index variable running over the Lattice edge set, and an

index variable running over the endpoint set. In this case, we use our derived index

technology to define our usual index variable for the endpoint set, and an additional

derived index variable for indexing the Lattice edge set.

In a stencil assembly, lattice indexed fields are written as fields of SetReads. To

lower these forms, the prototype compiler creates an IndexedTensor indexed by either

the index or derived index, in the case of the endpoint or Lattice edge sets respectively.

The constant integer indices of the SetRead are transformed to a single vector Expr

and stored as an offset of the IndexedTensor. For the endpoint set, the compiler

expects a number of indices equal to the lattice dimension, and converts these directly

to a vector of that size as an offset. For the Lattice edge set, the compiler compares the

set of indices for the source and sink of the edge, and requires that they be separated

by exactly ±1 in exactly one dimension. In our Lattice edge indexing convention,

the numerically smaller index is designated as the base of the edge, with all edges

conventionally pointing in a positive direction. Thus, in the case of a +1 offset in the

𝑖th direction, we write the derived index offset as [source offset, 𝑖], for the lattice and

directional dimensions respectively. In the case of a −1 offset in the 𝑖th direction, we

write the derived index offset as [sink offset, 𝑖].

To lower accesses to the output matrix of the assembly function, we pattern-match

for all tensor writes to the output matrix variable indexed by a lattice indexed set

element, e.g. A(points[0,0],points[1,0]) = .... For simplicity of implementa-

tion, the prototype compiler demands that all writes to the output matrix take this

form, disallowing, for example, a variable aliasing of the output variable prior to per-

forming the write. By performing Row Normalization Indexing and Matrix Definition

Inlining, the compiler guarantees that all writes reaching this lowering stage are to a

vector-type output, and have zero offset. We thus directly replace this write by an

assign where the right side contains all of the offsetting and indexing.

Extending our example of Section 6.2.5, we demonstrate lowering the stencil def-

inition of the matrix multiplication to Index Expression Assignment form:
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extern func main(x : vector[nodes](float),

c : vector[nodes](float))

var tmp : vector[nodes](float);

tmp = (i ((nodes.a(i+[−1,0]) + nodes.a(i+[0,0]) + nodes.a(i+[−1,1]))

* x(i+[−1,1]))

+ ((nodes.a(i+[0,−1]) + links.b(Di+[0,−1,0]))

* x(i+[1,−1])));

y = (j tmp(j) + c(j));

end

In this example, we see lattice indexing lowered to index variables with offsets.

In particular, the [0,-1;1,-1] offset was transformed to [0,-1,0], because this

link was pointing in the 0th direction, and the 0,-1 index was the base of the link.

Had the offset been reversed, [1,-1;0,-1], the offset would have been [0,-1,0]

regardless. We also see the creation of the derived index variable, Di, for the Lattice

link set. This index is defined to have the same iteration domain as i for the lattice

coordinates (the first two), but remain constant in the dimensional index (the last

one).

Field Access Lowering

Halide does not have any struct-type constructs, and as a result fields of Simit sets

must be represented as independent Halide Funcs. To make this representation ex-

plicit, we replace set arguments to functions with individual field arguments. We

create field arguments for field reads using a single dollar-sign notation, and field

writes using a double dollar-sign notation. If, for example, a function reads fields a

and b and writes field c of set nodes, the function would be rewritten to be explic-

itly parametrized by arguments nodes$a, nodes$b, and nodes$$c. During function

argument binding, any set arguments are split up by fields and any read and written

fields are bound based on the dollar-sign convention of parameter naming.
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System-Level Assign Rewriting

To ensure all system-level assigns passed to the backend have index expressions as

values, any system-level assigns and field writes are rewritten such that the right-hand

values are index expressions indexed by variables covering their entire domain. These

sorts of assigns appear in cases of variable copies, reads from fields into temporaries,

and writes from temporaries back into fields. This lowering pass takes a fairly trivial

form, simply inferring the domain of the assigned or written variable and enclosing it

in an index expression.

6.2.6 Halide Code Generation

Once the Simit internal representation has been completely lowered to Index Ex-

pression Assignment Form, Halide code generation follows naturally from the index

structure of each statement.

We perform code generation for a given Index Expression Assignment by assign-

ing to the Halide Func associated with the left-hand-side variable, indexed by all the

free indices, the expression generated from the Index Expression tree on the right-

hand-side, indexed appropriately by all the free and reduced variables. Conveniently,

the right-hand-side value can be generated by simply building Halide Expr objects

corresponding to each Value, and combining them with C++ operators correspond-

ing to each combining node, with the expected translation: ElementWiseAdd → +,

ElementWiseMult → ×, Contraction → ×.

During code generation, all Simit expressions are recursively compiled to Halide-

Value objects. We also maintain a symbol table mapping variables to HalideValue

objects. HalideValue objects are a representation of an indexable Halide value: either

a Halide Func, which can be indexed by all of the Halide Vars in its definition, or a

Halide Expr, which has no indices. For bindable arguments, we choose to represent

scalars as Halide Params, and vectors and matrices as Halide ImageParams, all of

which are collected and passed to the runtime to be bound prior to execution. Halide

Params and ImageParams can be cast to Halide Exprs and Funcs respectively, and
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Simit IR

% a,b ,y , z : vector
% x : scalar
y = (i a(i) + b(i));

x = (y(+j) * z(+j));

Halide generated code

Halide::Var i0, i1;

Halide::RDom j(pair<0, N0>, pair<0, N1>);

Halide::Func x,y;

y(i0,i1) = a(i0,i1) + b(i0,i1);

x() = Halide::sum(y(j.x,j.y) * z(j.x,j.y));

Figure 6-2: Halide code generation of endpoint set operations on a 2D lattice.

so fit neatly in the HalideValue model.

In code generation of indexed expressions, we translate all free indices to one

or more Halide Vars, and all reduced indices to one or more Halide RVars. Each

dense index is translated to a single Halide Var or RVar for a free or reduced index

respectively. Each set index corresponding to a endpoint set with induced lattice

structure is translated to 𝑑 Halide Vars or RVars. In the case of a reduced lattice

index, the 𝑖th RVar ranges over the domain [0, 𝑁𝑖− 1], where 𝑁𝑖 is a bindable Halide

Param associated with the Lattice edge set inducing the structure. Each set index

corresponding to a Lattice edge set is translated to 𝑑 + 1 Halide Vars or RVars.

The first 𝑑 indices, representing the lattice domain, are translated identically to the

endpoint set, while the last index is a dense Halide Var or RVar, ranging over the

directional values of the links 𝜇 ∈ (0, ...𝑑).

To make this concrete, we consider code generation for an endpoint set vector

addition and inner product on a 2D lattice. The Simit IR and Halide generated code

are shown in Figure 6-2. In Figure 6-3, we show the analogous case of vector addition

and inner product for Lattice edge set vectors.

Single Static Assignment with Realization Barriers

Halide Func definitions permit only (a weakened form of) Single Static Assignment: a

Halide Func may be defined any number of times prior to being used in an expression

or being realized to memory, but may not be redefined once either of these events have

taken place. This is in contrast with Simit’s existing memory management, which is

explicitly designed to compute and recompute values in place. In Simit, this design

92



Simit IR

% a,b ,y , z : vector
% x : scalar
y = (i a(i) + b(i));

x = (y(+j) * z(+j));

Halide generated code

Halide::Var i0, i1, imu;

Halide::RDom j(pair<0, N0>, pair<0, N1>,

pair<0, d>);

Halide::Func x,y;

y(i0,i1,imu) = a(i0,i1,imu)

+ b(i0,i1,imu);

x() = Halide::sum(y(j.x,j.y,j.z)

* z(j.x,j.y,j.z));

Figure 6-3: Halide code generation of Lattice edge set operations on a 2D lattice.
Note the extra 𝜇 indices, associated with edge directionality.

choice was made based on efficiency considerations: computing values in place is far

more memory efficient than allocating a new variable per assignment, and as a result

is often faster due to cache utilization [25, Sec 6].

Halide, however, focuses on defining input, ouputs, and intermediates as separate

stages of a stencil pipeline, to allow manipulation of the schedule per stage. This

was an important feature in our implementation of the prototype compiler, and fol-

lowing with this desired Halide form, the prototype compiler transforms all variable

assignments to Single Static Assignment form, such that each variable corresponds

to a stage in a Halide pipeline. To incorporate top-level control flow, the prototype

compiler adds realization barriers, which specify points in the program where stages

are realized to memory and thereafter drawn from the memory buffer.

Transformation from Simit’s mutable variable semantics to our modified Single

Static Assignment form is implemented in an additional backend-specific lowering pass

applied to the internal representation. There are two regions in which the semantics

of the transformation must be considered: entering a scope and within a scope. We

discuss modified Single Static Assignment in terms of scopes rather than the more

standard basic blocks because this more closely follows Simit’s internal representation.

In detail, we handle the two regions as follows:

1. When entering a scope, we must consider variables from the external scope

that are both read and written. External variables that are read inside the
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scope require no extra machinery: they are already in the symbol table as a

HalideValue, and can be incorporated in inner computations as usual. External

variables that are written require more careful handling. Assuming our scope

represents a distinct basic block, we may or may not see the results of these

writes. To allow this branching, we choose to add a realization barrier for every

written variable immediately prior to entering the scope. At all points after

the realization barrier, we treat the memory buffer as the definition of variable,

leaving us free to update the memory if we branch into the scoped block, or

leave the memory as-is otherwise.

2. Within a scope, we transform all variables to single assignment. In the prototype

compiler, this follows standard generation-based single static assignment [11,

Sec 5.2], with each successive reassignment, along with all of its downstream

uses, transformed to a fresh variable. In addition, we take care to make each

final-generation write to external variables visible. We do this by injecting a

realization barrier immediately after every final-generation write of an external

variable.

Realize statements are represented as IR statements in the prototype compiler.

A Realize statement can take the form of single-variable realization, or a merge real-

ization. In IR listings, a single-variable realization is written realize x; whereas a

merge realization is written realize target src;.

Realize statements interact with realization futures. A realization future is defined

as an object promising a valid realize() method at runtime which evaluates a Halide

Func to a Halide Buffer. In the prototype compiler, these are implemented as objects

with a handle to a Func and a Buffer. The Func handle is defined during compilation,

while the Buffer handles are allocated and bound during function initialization.

Single-variable realizations cause the creation of a realization future with a handle

to the Func associated with the variable, and the runtime-allocated Buffer associated

with the same variable. Merge realizations cause the creation of a realization future

with a handle to the src Func but the Buffer associated with target. This imple-
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mentation makes use of the important fact that multiple realization futures may hold

the handle to a common buffer, allowing branched Func definitions of the same buffer.

Control Flow and Realize Code Generation

Evaluating control flow must ultimately be phrased as a runtime realization of a Halide

Func. To facilitate this, the prototype compiler restructures the IR in a backend-

specific pass to rewrite conditions into temporary variable.

The prototype compiler then generates code for both control flow and realization

barriers as top-level C++ std::function objects. These are emitted via lambdas

with closures over a combination of other lambdas and realization futures. To code-

generate a Realize statement, the prototype compiler simply emits a lambda function

closed over the relevant realization future that calls the realize() method during ex-

ecution. To code-generate control flow, the prototype compiler emits a lambda which

realizes the condition variable, applies the respective C++ control flow statement

over the condition value, and calls the relevant closed-over lambda for each branch.

Finally, at the top level, each block of statements is condensed into a single function

which iterates through, and executes, all generated lambdas in order.

We demonstrate single static assignment, control flow, and realization compilation

through a concrete example of a while loop compiled to a single C++ std::function

in Listings 6.1, 6.2, and 6.3.

6.2.7 Typedef Preprocessor

For convenience, we implement a Python preprocessor, which provides typedef reso-

lution prior to Simit program compilation. In this extension, Simit typedefs take a

form similar to C++: typedef <expr> <name>;

The Python preprocessor takes the simplest form possible, performing the follow-

ing steps for text replacement:

1. Read program text by line, splitting on whitespace to build a list of tokens.
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Listing 6.1: Simit code

proc main(x : vector[3](int))

x = [1,2,3];

iter = 0;

while (iter < 5)

x = x + [4,5,6];

iter = iter + 1;

end

x = 2 * x;
end

Listing 6.2: Lowered Simit

proc main(x : vector[3](int))

x = [1,2,3];

var iter : int = 0;

var cond : bool = iter < 5;

realize x; % Single−variable realize
realize iter; % Single−variable realize
realize cond; % Single−variable realize
while cond

var x2 : vector[3](int);

x2 = x + [4,5,6];

realize x x2; % Merge realize
var iter2 : int;

iter2 = iter + 1;

realize iter iter2; % Merge realize
var cond2 : bool;

cond2 = iter < 5;

realize cond cond2; % Merge realize
end

var x2 : int;

x2 = 2 * x;
realize x x2;

end

96



Listing 6.3: C++ code

std::function<void()> whileBody = [x2Future , iter2Future ,

cond2Future](){

x2Future.realize();

iter2Future.realize();

cond2Future.realize();

};

std::function<void()> whileLoop = [xFuture, iterFuture ,

condFuture , whileBody](){

xFuture.realize();

iterFuture.realize();

condFuture.realize();

while (condFuture.getBool()) {

whileBody();

}

};

std::function<void()> realizeX2 = [x2Future]() {

x2Future.realize();

};

std::vector<function<void()>> block = {whileLoop , realizeX2};

// Top−l eve l returned function which contains entire execution .
std::function<void()> top = [block]() {

for (function <void()> f : block) {

f();

}

}
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2. For lines consisting of exactly three tokens matching the typedef format given

above add to a global map an entry from <name> to <expr>.

3. For any other lines, strip away line-ending comments and perform a regular

expression replacement of the remaining text, choosing to delimit replaceable

tokens by non-word characters. See Appendix C for a listing of the preprocessor

code, including the full regular expression.

In future work, we imagine typedef resolution would be performed inside the

parser, allowing restriction of replacements to type declarations only, as opposed to

a broad text-matching replacement.

6.3 Exposing Scheduling Options

Simit provides a conveniently schedulable layer of internal representation in the form

of indices. We allow scheduling of lattice code through manipulation of lattice indices

specifically. Scheduling of lattice code expressed in index notation involves three

steps:

1. Replace all lattice set indices with a set of indices over all dimensions of the lat-

tice: i ∈ points→ i1,...id ∈ [1, 𝑁1], ...[1, 𝑁𝑑] and j ∈ links→ j1,...jd,mu

∈ [1, 𝑁1], ...[1, 𝑁𝑑], [1, 𝑑]. Note that Lattice edge sets on the lattice are indexed

by an extra directional index 𝜇.

2. Split and reorder indices. In index expressions we are free to do this so long as

we match the index structure on both sides of an element-wise operator such as

assignment, element-wise multiplication, or element-wise addition, and match

the index structure of reduced indices in a contraction.

3. Parallelize, vectorize, unroll or distribute indices.

In our prototype compiler, the first step is performed during code generation in

the Halide backend. The second and third steps are exposed as options to the users by

providing exposing an additional setSchedulingmethod of the Simit Function class.
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The setScheduling method accepts a map from compiled Halide Func names to

scheduling commands. In its current form, this is limited to the following commands:

∙ parallel <index> [<split>]: Parallelize the index with the given name, op-

tionally specifying a subproblem size into which to split the index before paral-

lelization. This follows the form of the Halide parallel() method.

∙ vectorize <var> <split>: Vectorize the index with the given name, splitting

the index into subproblems of the given size before vectorizing those subprob-

lems. This follows the form of the Halide vectorize() method.

∙ compute_root: Compute and store at the root level.

∙ compute_inline: Compute inline at all uses.

The intended user workflow is to write the algorithm, perform an initial compila-

tion and retrieve the listing of all generated Halide Func objects, and then experiment

with scheduling of the intermediates and outputs to achieve performance on the tar-

get machine. We demonstrate an abbreviated example of a C++ frame code with

scheduling:

simit::Function func = loadFunction("program.sim");

Set points;

// . . . build set

Set springs(points,points);

// . . . build set

// Schedule a matrix−vector multiplication

func.setScheduling({

{"Ap", "compute_root"},

{"Ap", "parallel d1"},

{"Ap", "vectorize d0"}
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});

func.bind("points", &points);

func.bind("springs", &springs);

func.runSafe();

While not implemented in this prototype, scheduling of linear algebra could simi-

larly be expressed in terms of algebraic indices. We imagine a general set of scheduling

options over an expanded form of Simit index expressions that incorporates both lat-

tice and algebraic dimensions.
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Chapter 7

Evaluation

We begin our evaluation by comparing outputs from our prototype compiler and

the Simit compiler in two cases (Section 7.1). In the first case, we examine matrix

assembly based on a 2D von-Neumann stencil. The Simit language can express this

type of stencil in terms of an edge set assembly. We demonstrate that our language

makes explicit the stencil form of the matrix assembly, and allows the prototype

compiler to generate correct, index-free code because of this. In the second case,

we examine matrix assembly based on a 3D star stencil. This stencil is motivated

by the computationally intensive step of the Reverse Time Migration algorithm used

in seismic simulation [39, 34]. We demonstrate that our language provides a simple,

explicit description of the stencil form, which avoids building extra edge sets to express

the matrix assembly.

We then analyze potential future impact of our designed language to the Lattice

QCD domain (Section 7.2). We compare both the expressiveness of the language in

describing Lattice QCD linear alegbra, and the performance of a manually written

Halide program, representative of code that could be generated from our language in

a future iteration of our compiler.
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7.1 Common Stencils

We compare both von-Neumman stencil and 3D star stencil assembly in Simit and

our language. We find that in the simple von-Neumann case, the Simit language can

express the assembly but does not make explicit the form of the matrix to the user or

compiler. The Simit compiler thus builds unnecessary memory indices which exhaust

memory resources. Our language allows explicit representation of the stencil form of

the assembly, and allows the prototype compiler to generate efficient code. In the 3D

star stencil case, we find that the Simit language requires the user to jump through

hoops to describe the assembly in terms of an edge set. This results in the Simit

compiler constructing large extra memory structures. Our language provides the user

a much more natural description of the stencil, and allows the prototype compiler to

generate far more efficient code.

We evaluate these matrix assembly forms using a common matrix-multiplication

frame. The syntax of the frame is common to both Simit and our language, and is the

same in both the von-Neumman and 3D star stencil cases. This frame is demonstrated

in Listing 7.1.

Listing 7.1: Test frame used for evaluation of matrix assembly.

extern func main()

< assemble M >

var iter = 0;

while (iter < 100)

points.a = M*points.a;

iter = iter + 1;

end

end

In performance comparisons, we excluded compile times and profiled specifically

execution across the 100 iterations of matrix-vector multiplication described in the

test frame. All performance comparisons were performed on one node of a 24-node

Intel Xeon E5-2695 v2 @ 2.40GHz Infiniband cluster. Each node of the machine has
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two sockets, with 12 cores each, and 128GB of memory.

7.1.1 2D von-Neumann Stencil

The 2D von-Neumann stencil involves memory accesses of all sites one hop away from

the central point. In our language, this structure can be described entirely within the

assembly function. We show the assembly function and map call used in Listing 7.2.

In Simit, the user must build the lattice graph structure using the runtime library

and specify matrix assembly in terms of the edge set representing the lattice links.

We show the Simit assembly function and map call in Listing 7.3.

Listing 7.2: Assembly function and map used in 2D von-Neumann stencil assembly

in our language.

func vonNeumann(l : lattice[2]{Link}(points), g : set{Point})

−> (M : matrix[points,points](float))

M(g[0,0],g[0,1]) = l[0,0;0,1].b;

M(g[0,0],g[1,0]) = l[0,0;1,0].b;

M(g[0,0],g[0,−1]) = l[0,0;0,−1].b;

M(g[0,0],g[−1,0]) = l[0,0;−1,0].b;

end

< assemble M >: M = map vonNeumann to links;

Listing 7.3: Assembly function and map used in 2D von-Neumann stencil assembly

in Simit.

func vonNeumann(l : Link, g : (Point*2))

−> (M : matrix[points,points](float))

M(g(0),g(1)) = l.b;

M(g(1),g(0)) = l.b;

end

< assemble M >: M = map vonNeumann to links;
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Size Lattice Extensions Simit Comparison
1002 10 11 1.1×
10002 1000 1041 1.0×
50002 30504 29500 1.0×

Table 7.1: Runtime comparison of von-Neumann stencil assembly on a variety of
lattice sizes for our language compared to Simit. All runtimes are in milliseconds.
The comparison column indicates how many times slower Simit was.

Size Lattice Extensions Simit Comparison
1002 0.10G 0.18G 1.7×
10002 0.19G 0.68G 3.5×
50002 2.45G 16.34G 6.7×

Table 7.2: Memory comparison of von-Neumann stencil assembly on a variety of
lattice sizes for our language compared to Simit. All memory values are in gigabytes.
The comparison column indicates how many times more memory Simit used.

The Simit assembly function does not describe the structure of the stencil, and

as a result the Simit compiler produces memory indices to describe the assembled

matrix structure. We compare runtimes and memory usage for both Simit and our

language. Our results are shown in Tables 7.1 and 7.2.

We find that Simit consumes relatively more memory as the problem size scales.

This matches our expectation, given the use of memory indices in the Simit compiler.

We also find that our runtimes are comparable to Simit runtimes: in this small stencil,

extra memory does not significantly affect performance.

7.1.2 3D Star Stencil

We also compare implementations of a 3D star stencil in our language and Simit. This

stencil is described by accesses to points up to four hops away in each of the cardinal

directions and therefore is described by 25 points. In our language, we describe this

form entirely within the assembly function. We show the assembly function and map

call used in Listing 7.4. In Simit, the user must build an additional edge set using

the runtime library and specify matrix assembly in terms of the edge set representing
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the lattice links. We show the Simit assembly function and map call in Listing 7.5.

Listing 7.4: Assembly function and map used in 3D star stencil assembly in our

language.

func star(l : lattice[3]{Link}(points), g : set{Point})

−> (M : matrix[points,points](float))

% A future iteration of the prototype compiler should

% support dense loops over la t t ice of fsets .

M(g[0,0,0],g[0,0,0]) = −1.0;

M(g[0,0,0],g[1,0,0]) = 1.0;

M(g[0,0,0],g[2,0,0]) = 1.0;

M(g[0,0,0],g[3,0,0]) = 1.0;

M(g[0,0,0],g[4,0,0]) = 1.0;

M(g[0,0,0],g[−1,0,0]) = 1.0;

M(g[0,0,0],g[−2,0,0]) = 1.0;

M(g[0,0,0],g[−3,0,0]) = 1.0;

M(g[0,0,0],g[−4,0,0]) = 1.0;

M(g[0,0,0],g[0,1,0]) = 1.0;

M(g[0,0,0],g[0,2,0]) = 1.0;

M(g[0,0,0],g[0,3,0]) = 1.0;

M(g[0,0,0],g[0,4,0]) = 1.0;

M(g[0,0,0],g[0,−1,0]) = 1.0;

M(g[0,0,0],g[0,−2,0]) = 1.0;

M(g[0,0,0],g[0,−3,0]) = 1.0;

M(g[0,0,0],g[0,−4,0]) = 1.0;

M(g[0,0,0],g[0,0,1]) = 1.0;

M(g[0,0,0],g[0,0,2]) = 1.0;

M(g[0,0,0],g[0,0,3]) = 1.0;

M(g[0,0,0],g[0,0,4]) = 1.0;

M(g[0,0,0],g[0,0,−1]) = 1.0;

M(g[0,0,0],g[0,0,−2]) = 1.0;
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M(g[0,0,0],g[0,0,−3]) = 1.0;

M(g[0,0,0],g[0,0,−4]) = 1.0;

end

< assemble M >: M = map star to links;

Listing 7.5: Assembly function and map used in 3D star stencil assembly in Simit.

func star(s : Star, g : (Point*25))

−> (M : matrix[points,points](float))

% Defined in terms of an extra "star" edge set which connects

% to a l l 25 points

M(g(0),g(0)) = −1.0;

for i in 1:25

M(g(0),g(i)) = 1.0;

end

end

< assemble M >: M = map star to links;

Again, the Simit assembly function does not describe the structure of the stencil.

In this case, the Simit compiler must produce memory indices for a highly connected

set, where each point has many neighbors due to the large stencil. We compare

runtimes and memory usage for both Simit and our language in Tables 7.3 and 7.4.

In this case, we find that the significantly larger nature of the stencil favors the

index-less approach. In particular, in Simit, the user is forced to construct a high-

cardinality edge set to correctly describe the star stencil. In the Simit programming

model, describing a matrix using this edge set involves a large neighbors list and

results in a much higher memory usage and runtime cost due to indirection. This

is most powerfully demonstrated in the 1003 lattice case, in which the prototype

compiler emits code which executes 40× faster and uses 80× less memory than the
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Size Lattice Extensions Simit Comparison
103 8 80 10×
503 236 8854 37.5×
1003 1823 72588 39.8×

Table 7.3: Runtime comparison of star stencil assembly on a variety of lattice sizes for
our language compared to Simit. All runtimes are in milliseconds. The comparison
column indicates how many times slower Simit was.

Size Lattice Extensions Simit Comparison
103 0.10G 0.05G 0.5×
503 0.12G 2.05G 17.8×
1003 0.20G 16.19G 79.7×

Table 7.4: Memory comparison of star stencil assembly on a variety of lattice sizes for
our language compared to Simit. All memory values are in gigabytes. The comparison
column indicates how many times more memory Simit used.

Simit code.

7.1.3 Discussion

These results on common stencils powerfully demonstrate that a stencil description of

matrix assembly on lattice-type graphs is more expressive and more efficient. Using

a stencil description, one can describe more complex forms of assembly due to the

additional coordinate structure of the lattice. Matrix assembly described as stencils

can then be emitted as efficient index-less code by a compiler.

The difference in expressiveness and performance is exacerbated in large stencil

cases. These cases are well-motivated by high-order discrete derivatives, such as the

3D discrete derivative used in the Reverse Time Migration algorithm. Our approach

allows an efficient, high-level linear algebra description of these methods.

7.2 Lattice QCD Domain

We continue by evaluating the applicability of our methods to complex blocked sten-

cils, such as those found in our motivating domain, Lattice QCD. As described in
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Chapter 2, the linear algebra involved in Lattice QCD reduces to a few simple sten-

cils over blocked values. Since our prototype compiler does not support blocking,

we evaluate a manual Halide implementation representative of code generated from

a future version of our compiler. We compare this implementation against existing

USQCD library methods and a Simit implementation.

We find that our approach is on par with existing optimized libraries in small-block

comparisons, but performs poorly in situations with large blocks. This is fundamen-

tally related to our usage of Halide as a prototyping backend: Halide buffers are

currently restricted to four dimensions, forcing us to implement blocking as unrolled

computations outside Halide buffers. We believe our promising results in the small-

block cases validate our methods and suggest future work built on top of a version of

Halide extended to higher dimensionality, or a custom backend.

7.2.1 Description of the Application

Inversion of the Wilson action Dirac matrix is a representative example of the forms of

linear algebra involved in Lattice QCD and is the performance bottleneck restricting

larger-scale computation. Motivated by this, we use this application to compare both

expressiveness and performance of our approach versus the general Simit language

and the existing QOPQDP module of the USQCD libraries targeted at Lattice QCD

simulation.

We specifically implemented an iterative Conjugate Gradient inversion of the Wil-

son action Dirac matrix applied to a point source term. In all cases, we performed a

fixed 100 iterations of the Conjugate Gradient algorithm. The QOPQDP library does

not provide a simple Wilson action inverter, instead including an LU factorization

prior to the inversion, preconditioning the problem using even-odd subsets. The over-

all program follows the same form as our implementations, but introduces additional

code complexity and initial runtime for the LU decomposition. In our evaluation, we

factor our the preconditioning runtime for a fair comparison of the two methods.
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Platform Lines of Code
Simit 176
Lattice Extensions 160
QOPQDP (LU included) 380

Table 7.5: Lines of code required to implement the Conjugate Gradient solver for the
Wilson action Dirac matrix in Simit, our language, and QOPQDP.

7.2.2 Simplicity of Expression

In our implementation of the Dirac matrix inversion, we find that both the Simit

implementation and a description in our language result in programs of compara-

ble size. Despite isolating specifically the non-preconditioning components of the

QOPQDP implementation, we estimate the lines of code in the QOPQDP imple-

mentation as significantly higher than either implementation. We consider this a

conservative estimate, as we exclude the lines of code required to implement libraries

beneath QOPQDP that describe the element-wise linear algebra operations. We

demonstrate this comparison in Table 7.5. Full listings of the code in our language

and Simit are presented in Appendix D.

While lines of code are often a good approximation of simplicity of code, we think

a more indicative statement is that QOPQDP is a very rigid implementation. It pro-

vides several inverters for specific kernels, but does not easily generalize to variations

on these kernels. For example, in attempting to reconstruct a non-preconditioned

Wilson inverter, we encountered several instances of dead code and unmaintained

preprocessor branches, and were not able to produce a working non-preconditioned

program.

We also note that while Simit and our language are on similar footing in terms

of lines of code, Simit does not match the flexibility of the stencil assembly of our

language in that it can only easily implement kernels which are of a von-Neumann

stencil form. More complex structures require definition of higher-order edge sets

on top of the lattice links. Not only does this require additional indexing, this also

removes key pieces of the application to a runtime definition.

This comparison demonstrates the “sweet spot” of combing the powerful ideas of
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the stencil assembly construct with system-level linear algebra to concisely express

linear algebra on lattices.

7.2.3 Performance

We benchmarked the compared implementations by timing specifically the iterations

of the Conjugate Gradient solver. We ignore overhead from memory setup and tear-

down, as for a real situation these overhead costs would be amortized over many

uses of the Conjugate Gradient method in a single execution. As the performance

critical section of current Lattice QCD programs, this operation is representative of

performance on a whole Lattice QCD program.

We compare the Dirac matrix inversion on several lattice sizes, ranging from small

24 lattices to larger 644 lattices. We also make the comparison between different

numbers of gauge colors, ranging from 𝑁𝑐 = 1 to 𝑁𝑐 = 4, which corresponds to

small through large inner blocks. We additionally focused on the 𝑁𝑐 = 1 case and

demonstrated finding an optimal parallel schedule for the manual Halide code.

Again, all comparisons were evaluated on one node of a 24-node Intel Xeon E5-

2695 v2 @ 2.40GHz Infiniband cluster. Each node of the machine has two sockets,

with 12 cores each, and 128GB of memory.

A full table of the raw data collected in this comparison can be found in Appendix

E. We specifically highlight several performance characteristics of the compared im-

plementations:

∙ Non-viability of naive Simit for large lattices

∙ Scalability with size of the lattice

∙ Scalability with number of colors, 𝑁𝑐

∙ Gains from parallelization
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Size Simit QOPQDP Comp.
8 414 236 1.8×
16 8230 4006 2.1×
32 151838 69120 2.2×

(a) 𝑁𝑐 = 1

Size Simit QOPQDP Comp.
8 1625 366 4.4×
16 29207 7001 4.2×
32 470323 117928 4.0×

(b) 𝑁𝑐 = 2

Size Simit QOPQDP Comp.
8 3472 575 6.0×
16 57114 9806 5.8×
32 OOM 172010 -

(c) 𝑁𝑐 = 3

Size Simit QOPQDP Comp.
8 5560 876 6.3×
16 91426 17065 5.4×
32 OOM 272340 -

(d) 𝑁𝑐 = 4

Figure 7-1: Comparison of the naive Simit and QOPQDP implementations. All times
are in milliseconds, and the two entries marked with “OOM” indicate Simit ran out
of memory on execution of these cases. The comparison column indicates how many
times slower Simit was.

Non-Viability of Simit

We compare the implementations in QOPQDP and Simit without our lattice exten-

sions and demonstrate that the additional memory costs make naive Simit non-viable

for Lattice QCD applications, both because of poor runtimes and exhausting available

memory resources. As shown in Figure 7-1, Simit performed more than 2× worse than

the QOPQDP implementation in all cases larger than 84, and, in the 324 lattice for

𝑁𝑐 = 3 and 𝑁𝑐 = 4, ran out of memory and crashed. For the remaining comparisons,

we focus on the manual Halide and QOPQDP implementations.

Scalability with Lattice Size

We demonstrate scaling of both the Halide and QOPQDP unscheduled implementa-

tions for a variety of lattice sizes in Figure 7-2. The data demonstrate a clear linear

scaling in the size of the problem. This matches our expectation for an application

dominated by a series of sparse matrix-vector multiplications.
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Figure 7-2: Scaling of the unscheduled Halide and QOPQDP implementations for
𝑁𝑐 = [1, 4]. Lattice sizes evaluated were 24, 44, 64, 84, 164, and 324. This comparison
demonstrates linear scaling in the size of the problem, as expected given the sparse
nature of the Dirac matrix.
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Figure 7-3: Scaling of the unscheduled Halide and QOPQDP implementations with
respect to the number of colors on lattices of sizes 8, 16, and 32. This comparison
demonstrates the weakness of the Halide backend to large inner blocks. We see
competitive performance in the unblocked case corresponding to 𝑁𝑐 = 1, but poor
scaling due to a lack of memory locality.

Scalability with Number of Colors

For a given number of colors, 𝑁𝑐, the gluon field values on lattice links take the form

of 𝑁𝑐×𝑁𝑐 matrices, while the quark field values on lattice sites take the form of 4×𝑁𝑐

vectors. The number of algebraic operations required to compute the Wilson action

scales as the square of the number of colors, due to the gluon-matrix into quark-vector

multiplications required for assembly at each site.

We demonstrate the comparisons of scaling in number of colors for unscheduled

Halide and QOPQDP implementations in Figure 7-3. This comparison identifies a

weakness of the Halide backend for regular grid computations: we are unable to
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schedule dense linear algebra blocks inside lattice indices. This forced index ordering

loses all locality in color index operations. In this case, we see a clear quadratic scaling

in the Halide performance, corresponding to being limited by the non-locality of the

color index, whereas QOPQDP scales linearly in colors, corresponding to scaling in

the size of the quark vectors.

Gains From Parallelization

We isolate the 𝑁𝑐 = 1, lattice size 324 case and demonstrate the gains offered by

a flexible scheduling language. For this experiment, we isolated the matrix-vector

multiplication of the Dirac matrix inversion and analyzed a large set of parallelization

options averaged over 300 repetitions in each case. Specifically, we divided the 𝑧

coordinate of the lattice into a variety of subtask sizes, ranging from 1 to 16, and

evaluated the runtime for a spectrum of thread-pool sizes, ranging from 4 to 24.

Figure 7-4 shows the threadpool size plotted against runtime for each subtask size.

We find that the complete task division (subtask size 1) computed using 12 threads

performs the best, giving gains of about 4× over the single-threaded version. Note

that we expect these properties to change based on lattice size, number of colors, and

the machine specifications.

7.2.4 Implementation Details

We discuss details of the implementations in Simit, QOPQDP, and Halide below.

Simit implementation

The Simit implementation of Dirac matrix inversion is by far the easiest to under-

stand, and as such we present it first. An abbreviated listing of the Simit code is

shown in Figure 7-5. In particular, note that the Simit implementation represents

lattice matrices and vectors as global objects in the main procedure, while isolating

their definition to local assembly functions. In this comparison, the graph is exter-

nally initialized to a regular lattice structure, with toroidal boundary link connections
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Figure 7-4: We evaluate 300 iterations of Dirac matrix-vector multiplications with
𝑁𝑐 = 1 and lattice size 324 for a variety of thread-pool and subtask sizes and find
that 12 threads with subtask size 1 performs the best.

in all four dimensions. We include the full Simit listing in Appendix D.

The Simit assembly of the Dirac matrix proceeds in two steps:

1. Assembly of the mass term, which is proportional to the identity and is thus a

diagonal assembly map over the set of lattice points.

2. Assembly of the derivative and conjugated derivative term, which involve nearest-

neighbor hops in all directions. In Simit, we describe these operations as maps

over all links, writing down each link’s contribution to the matrix elements

between the two neighboring lattice points.

Following the assembly of the Dirac matrix (and conjugate), the Simit code follows

a typical Conjugate Gradient solver process, running for a fixed 100 iterations and

updating a solution vector in place.

While expressive, this Simit implementation suffers from memory overhead as-

sociated with actually assembling the Dirac matrix prior to running the Conjugate

Gradient solver. In addition, Simit’s materialization of an in-memory index for the

gauge field and Dirac matrix is a further memory overhead. For the case of a 324

lattice, for example, the Simit implementation for 𝑁𝑐 = 3 and 𝑁𝑐 = 4 exhausted the
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1 proc main

2 var src = map set_origin_src to fermions;

3
4 % Build Dirac matrix for our gauge config
5 var M_mass : matrix[fermions,fermions](matrix[Nct,Nct](gamma));

6 M_mass = map compute_mass_term to fermions reduce +;

7 var M_deriv_pos : matrix[fermions,fermions](matrix[Nct,Nct](gamma));

8 M_deriv_pos = map compute_deriv_term(<1.0,0.0>) to gauges reduce +;

9 var M_deriv_neg : matrix[fermions,fermions](matrix[Nct,Nct](gamma));

10 M_deriv_neg = map compute_deriv_term(<−1.0,0.0>) to gauges reduce +;
11
12 % Wilson action
13 M_pos = M_mass − M_deriv_pos;
14 M_neg = M_mass − M_deriv_neg;
15
16 % BEGIN CG SOLVE
17 const maxiters = 100;

18 var x = <1.0,0.0> * src;
19 var r = src − M_neg*(M_pos*x);
20 var p = r;

21 var iter = 0;

22
23 var tmpNRS = complexDot(r,r);

24 var rsq = complexNorm(tmpNRS);

25 var oldrsq = rsq;

26 while (iter < maxiters)

27 var beta = rsq/oldrsq;

28 oldrsq = rsq;

29 p = r + createComplex(beta,0.0)*p;
30
31 var Mp = M_neg*(M_pos*p);
32 var denom = complexDot(p,Mp); % p^{dag} M p
33 var denomReal = complexNorm(denom);

34 var alpha = rsq / denomReal;

35
36 x = x + createComplex(alpha ,0.0)*p;
37 r = r − createComplex(alpha ,0.0)*Mp;
38 var tmpNRS = complexDot(r,r);

39 rsq = complexNorm(tmpNRS);

40 iter = iter + 1;

41 end

42 %ENDCG SOLVE
43 end

Figure 7-5: The main procedure in the Simit implementation of Wilson action Dirac
matrix Conjugate Gradient inversion.
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128GB of memory available on our test machines and crashed. Simit’s large memory

structures, which do not fit into even the last-level cache of the test machine, cause

memory overhead to translate into a runtime penalty beyond the expected penalty

incurred from simple indirection.

QOPQDP implementation

The QOPQDP library provides an optimized implementation for the Wilson action

Dirac matrix inversion. This implementation builds upon specifically tuned code for

𝑁𝑐 = 2 and 𝑁𝑐 = 3 linear algebra operations over the lattice provided in the QDP

library module.

Notably, the QOPQDP implementation does not provide a method to perform a

simple Conjugate Gradient inversion of the Dirac matrix, nor does it provide a method

to run the Conjugate Gradient inverter for a fixed number of iterations. Instead, in

this comparison, we used an existing Wilson inverter benchmark in the QOPQDP

benchmark suite. This benchmark runs the Conjugate Gradient method to conver-

gence repeatedly until a fixed number of iterations have been run. This incurs a small

overhead from restarting the Conjugate Gradient solver multiple times, but this is ig-

nored in the benchmark measurements, which profile the code by summing execution

time within Conjugate Gradient iterations only. Additionally, the QOPQDP imple-

mentation differed from the other benchmarks in that it implemented an even-odd

preconditioner before performing the Conjugate Gradient inversion. This implemen-

tation thus converged at a faster rate than the other comparison, but as we only

compared runtimes per iteration of CG, and the QOPQDP benchmark matches the

number of iterations performed in the other implementations, this does not affect our

performance comparison.

Manual Halide implementation

In our manual Halide implementation of the Dirac matrix inversion we isolated each

lattice linear algebra operation as a distinct Halide pipeline. These pieces were

ahead-of-time compiled to C++ header and object files, which were compiled with a
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frame code that allocated input and output buffers and called the appropriate Halide

pipelines within the context of a Conjugate Gradient frame. The framework code

included an overall timer to profile the Conjugate Gradient solve.

At the moment, Halide offers only 4 dimensional functions and buffers, and as

a result the Halide implementation also manually unrolled the spinor and color di-

mensions. Halide does not offer blocking, and as such it was only possible to unroll

these dimensions outermost. A quark field of dimensions 𝑁𝑡×𝑁𝑥×𝑁𝑦×𝑁𝑧×𝑁𝑠×𝑁𝑐,

for example, corresponded to 𝑁𝑠 *𝑁𝑐 * 2 Halide Funcs parameterized by variables t,

x, y, and z. Here 𝑁𝑠 and 𝑁𝑐 represent the sizes of the spinor and color dimensions

respectively, and the factor of 2 appears because each field is a complex number. In

our case, 𝑁𝑠 = 4, while 𝑁𝑐 ranged from 1 to 4. Color and spinor linear algebra was

unrolled through loops over products of the Halide Exprs representing vectors and

matrices of these dimensions.

We also manually implemented the “spin projection” algebraic optimization used

by the QOPQDP for the Wilson derivative term. Recall that the nearest-neighbor

hop terms of the Wilson action contain a multiplication by a the gamma matrix

associated with the direction of the hop:

𝜓(𝑥)(1± 𝛾𝜇)𝑈𝜇(𝑥)𝜓(𝑥+ 𝜇)

In the chiral basis, the convention adopted by the USQCD libraries, these gamma

matrices take the form [15]:

𝛾0 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 𝑖

0 0 𝑖 0

0 −𝑖 0 0

−𝑖 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ 𝛾1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
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𝛾2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 𝑖 0

0 0 0 −𝑖

−𝑖 0 0 0

0 𝑖 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ 𝛾3 =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠
Taking 𝛾0 as an example, we can see that the 1±𝛾0 terms that appear in the Wilson

action produce redundant information when multiplied into an arbitrary spinor vector:

(1± 𝛾0)

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎

𝑏

𝑐

𝑑

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 ±𝑖

0 1 ±𝑖 0

0 ∓𝑖 1 0

∓𝑖 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎

𝑏

𝑐

𝑑

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑎± 𝑖𝑑

𝑏± 𝑖𝑐

∓𝑖𝑏+ 𝑐

∓𝑖𝑎+ 𝑑

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝑣1

𝑣2

∓𝑖𝑣2
∓𝑖𝑣1

⎞⎟⎟⎟⎟⎟⎟⎠
In fact, we need only compute two complex values rather than the full four for

every gamma term of this form. It is useful to apply this technique before multiplying

by 𝑈𝜇, as this reduces the number of 𝑁𝑐×𝑁𝑐 matrix multiplications which are per-

formed by half. After multiplying by 𝑈𝜇, we must reconstruct the full 4-component

spinor vector before performing the sum in all directions. In our example of 1 ± 𝛾0,

we can choose to store only 𝑣1 and 𝑣2, multiply by 𝑈0, then reconstruct the bottom

two elements by multiplying the relevant 𝑣 by ∓𝑖.

The comparisons demonstrate that Halide allows generation of code that is com-

petitive with existing library implementations where the blocking effects do not dom-

inate. In addition, we demonstrated that in the case of 𝑁𝑐 = 1, usage of a few Halide

scheduling primitives allows identification of the optimal scheduling for a given ma-

chine. In our example, we gained a 4× runtime improvement from parallelization

by identifying the best subtask and thread-pool sizes for our machine. From these

comparisons, we conclude that Halide is a viable prototyping backend for lattice lin-

ear algebra within Simit, and the system as a whole can produce code that is easily

schedulable to match machine characteristics. We note that the lack of inner blocks

restricted the performance in large block cases, and suggest that this feature be a

focus of future work.
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Chapter 8

Conclusion and Future Work

Our results show that the DSL approach to linear algebra on lattices is valuable.

While maintaining clarity and flexibility of expression, we demonstrated a perfor-

mant comparison to existing library approaches for our Lattice QCD case study. We

also demonstrated a significant improvement over the naive Simit implementation for

common stencils.

We identify four key elements of our design which allow us to demonstrate these

strong results:

1. A stencil assembly construct for lattice graphs.

2. Use of Halide for quick prototyping of generated index-less stencil algorithms.

3. Exposing scheduling options based on lattice indices.

4. A focus on stencil-type matrices with small inner blocks.

The stencil assembly construct is the core of this work: it provides the user a

means to define a regular stencil form of matrices which can be operated on efficiently.

Specifically, the stencil structure allows the compiler to generate index-less represen-

tations of linear algebra which eliminate memory indirection. The result is code that

accesses memory coherently and is amenable to vectorization and parallelization. We

find this stencil-based matrix form used in a variety of physical simulation and image

processing algorithms, and as such believe this work has broad applicability.
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In our development of the prototype compiler, we focused on quick evaluation of

our stencil description and index-less methods. Using Halide as a backend for our

compiler allowed us to generate promising results in cases where the inner blocking was

small. We however encountered inefficiencies in cases with large inner blocks, as the

lack of high-dimensional Halide buffers forced us to unroll these block dimensions. We

believe focusing on a future iteration of the compiler which supports inner-scheduled

blocks will generate significantly better results in these cases, and recommend this as

a future direction for this work.

Using the Halide backend, we were able to expose scheduling options to the user

that allowed tuning of the generated code for performance on a specific machine. Key

to providing scheduling options for linear algebra on lattices was an index expression

representation. In our work, we focused on scheduling indices defined over lattice

domains, and did not consider scheduling options over the full indexing structure.

We feel this is another natural extension of this work, and expect to see additional

improvements to the results from exposing this choice fully and making use of it in

an optimized schedule.

There are several additional developments which we believe would broaden the

applicability of this work:

∙ Adding a lattice subset feature. The even-odd preconditioner on lattice-type

matrices requires operating on chessboard subsets of the lattice. We believe the

correct approach to incorporating this feature would be develop it alongside a

graph subsetting feature within Simit.

∙ Allowing non-toroidal boundary conditions as a structural choice for lattices.

For applications outside of the demonstrated stencils and the Lattice QCD

example, it may be helpful to apply a constant exterior or mirrored boundary

condition instead of the default toroidal condition.

∙ Developing semantics for interaction between Lattice edge sets and Unstruc-

tured edge sets. As a motivating example, physical applications involving grid-

based fluid interacting with irregular mesh boundaries would be benefited by
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a unified representation of the physics and avoiding copy costs at the interface

of the two systems. Our lattice extension to Simit sits in an ideal position to

address this type of future challenge.

We see this work as having impact on both the scientific computing community

and the compiler community.

Linear algebra on lattices manifests itself in several physics applications. We were

motivated by a case study of Lattice QCD codes, in which the calculations are very

costly while the algorithms are grounded fundamentally in blocked linear algebra.

We hope that this initial work will be adopted by the Lattice QCD community to

more quickly develop efficient code for future physical exploration. However, we also

see this having applications to further areas of physics grounded in linear algebra

on regular grids. In astrophysics, one approach to hydrodynamics simulations is to

use a grid-based method which fits neatly into our model [53]. In Section 7.1.2, we

demonstrated a particular discrete differencing kernel with applications to seismic

simulations [39, 34]. Finally, weather simulations can also be described as stencils

over lattices, and are often constrained by efficiency on supercomputers [49, 41]. By

describing these problems using global linear algebra combined with local stencil

patterns, we hope to enable efficient, flexible future development.

Beyond physical applications, this work is well-suited to describe the types of

challenges faced in Markov Random Fields on grids. A significant application of this

method is in low-level image inference [52]. This application centers around defining

sparse matrices using stencil patterns and applying iterative solvers to generate infer-

ences. Our language provides a natural description of this process in terms of linear

algebra without sacrificing efficiency. In these applications, it is also often useful

to schedule computation in tiled and parallelized ways, and we have demonstrated

that our language is well-suited for descriptions of schedules separate from the core

algorithm.

In our evaluations of linear algebra on lattices, we have thus far focused on the

Conjugate Gradient method as a particular iterative solver. This method is described

entirely in terms of linear algebra on the lattice in question, and thus fits into our
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language naturally. In certain applications, the Conjugate Gradient method may be

less well-suited for the problem, and other iterative solvers may be used. Multigrid

methods are one particular class of alternative iterative solvers that involve smoothing

of the data translated to coarser grids. We believe an interesting extension of this

work would be focus on developing support for multiple lattice sizes, with application

to the multigrid method in cases where data-parallel smoothers are used, such as in

polynomial-smoothed multigrid [1].

In the compiler community, Simit has been successful at demonstrating a linear

algebra DSL on arbitrary graphs. Our work extends this impact by exploiting specific

structure of lattice graphs to make performance gains over Simit. Beyond this, we

believe our work demonstrates a general method by which linear algebra scheduling

can be discussed: in terms of the index expression representation produced by Simit,

using the techniques of index-based scheduling similar to those employed in Halide.

Altogether, this work provides a launching point for future investigations into

efficient computation on the specific class of linear algebra on lattices. This class of

applications includes many forms of physical simulation as well as certain machine

learning and solver techniques. We see continued development of efficient methods

for these applications as a way to open doors in these various fields and enable both

faster computation and development of new algorithms.
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Appendix A

Quantum Field Theories

A.1 (Lagrangian) Theories

Lagrangian mechanics provides a convenient language with which to describe a phys-

ical system while treating time and space dimensions on an equal footing. The Stan-

dard Model describes physics on a relativistic spacetime, in which physics does not

change under specific rotations between space and time coordinates. This relativistic

invariance is a cornerstone of our current understanding of particle physics.

We begin with a description of a free particle, moving under Newton’s laws. Recall

that in this case, we expect the particle to move at a constant velocity forever. The

Lagrangian specification for this problem requires us to write down an action func-

tional, a description of the integrated kinetic energy of any path minus the integrated

potential energy of the same path. Calling this action 𝑆, a functional of path and

velocity functions, we have:

𝑆(𝑥(𝑡), 𝑣(𝑡)) =

∫︁
𝑑𝑡ℒ(𝑥, 𝑣) =

∫︁
𝑑𝑡(𝐾𝐸 − 𝑃𝐸)

free particle
=

∫︁
𝑑𝑡

1

2
𝑚𝑣2

Now how does this action give rise to physics? In a classical Lagrangian theory,

we additionally demand the Principle of Stationary Action. This is simply the re-

quirement that any physical path must sit at a local minimum (or maximum) of the

action functional, 𝑆. This demand gives rise to constraints that must be met for a
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path to be considered physical. We term these constraints the equations of motion. A

general expression for these equations of motions was derived by Euler and Lagrange

[43, Sec 2.3]. For brevity, we skip the derivation, to arrive at the following constraint

for any physical path of an arbitrary Lagrangian ℒ:

𝛿ℒ
𝛿𝑥
− 𝜕𝑡

𝛿ℒ
𝛿𝜕𝑡𝑥

= 0

For our free particle case, applying the functional derivatives (note that we treat

𝑣 as independent of 𝑥 in the functional) gives us:

−𝜕𝑡(𝑚𝑣) = 0→ 𝑚𝑣 = const

In other words, writing down the free particle Lagrangian, combined with the

Principle of Stationary Action, tells us that the free particle moves with constant

momentum (equivalently constant velocity), as expected.

A few important notes:

1. This solution is clearly incorrect in the relativistic limit, because there is no

mention of a maximum velocity.

2. We explicitly integrated our Lagrangian over time specifically to give us the

action. We wanted to specify physics without picking out time, but in this case

the form of our path was a function of time only, forcing our hand. When we

extend to fields which take values over all of time and space, we can formuate

physics in a way that allows us to avoid singling out time.

A.2 (Lagrangian) Field Theories

The extension to physics of fields over relativistic spacetime requires an understanding

first of the nature of that spacetime and second of the extension of Lagrangian physics

to fields.
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Minkowski spacetime, the spacetime of special relativity, is a variation on Eu-

clidean 4-dimensional space. In 4D Euclidean space, vectors in the space may be

specified by 4 cartesian coordinates, say (𝑡, 𝑥, 𝑦, 𝑧). To take an inner product between

two vectors, we multiply the corresponding coordinates and add them: 𝐴 ·𝐸 𝐵 =

𝐴𝑡𝐵𝑡 + 𝐴𝑥𝐵𝑥 + 𝐴𝑦𝐵𝑦 + 𝐴𝑧𝐵𝑧. In Minkowski spacetime, we specify that the inner

product instead incorporates the time dimension with the opposite sign: 𝐴 ·𝑀 𝐵 =

−𝐴𝑡𝐵𝑡 +𝐴𝑥𝐵𝑥 +𝐴𝑦𝐵𝑦 +𝐴𝑧𝐵𝑧. The overall sign is unimportant, but for consistency

we choose (−+ ++) throughout. Writing Minkowski vectors with greek indices that

run over 𝑡, 𝑥, 𝑦, 𝑧, and using Einstein notation with summation implied, we have the

following notation for the inner product of two Minkowski vectors 𝐴 ·𝑀 𝐵 = 𝐴𝜇𝐵
𝜇.

Using this compact notation, we are able to write down a Minkowski-space, field-

based Lagrangian. Taking as an example a real scalar field, 𝜑(𝑥), where 𝑥 is a point

in Minkowski space, we can write down an analogy to the free particle above:

𝑆 =

∫︁
𝑑4𝑥ℒ(𝜑(𝑥), 𝜕𝜇𝜑(𝑥)) =

∫︁
𝑑4𝑥

[︂
−1

2
(𝜕𝜇𝜑)(𝜕𝜇𝜑)

]︂

Here we chose a minus sign on the kinetic term to have an overall positive sign

on the time derivative component, in analogy to our free particle (this sign is a

consequence of our overall sign choice in the Minkowski inner product). An important

consequence of bundling all of our derivatives together into a Minkowski vector is that

any transformations which leave the Minkowski inner product and integral measure

invariant will not affect our physics. This is exactly the desired bundling of time and

space into one relativistic object that we hoped for.

Taking a look at the equations of motion for this scalar field, we again find a

constraint for every point on our “path”, in this case the values of 𝜑(𝑥) for all 𝑥:

0− 𝜕𝜇(−𝜕𝜇𝜑(𝑥)) = 0→ 𝜕𝜇𝜕
𝜇𝜑(𝑥) = 0

This is the Klein-Gordon equation of motion for the case of a massless field (a mass

term could be further introduced in the Lagrangian as a potential energy, which would

modify this equation) [55, Sec 1.1]. In this case, we find the real scalar solutions to
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be 𝐶 sin(𝑥𝜇𝑝
𝜇), with 𝑝𝜇𝑝𝜇 = 0. Writing, without loss of generality, 𝑝𝜇 = (𝑝𝑡, 0, 0, 𝑝𝑧),

we find that the wave velocity 𝑝𝑧
𝑝𝑡

is given by −𝑝2𝑡 + 𝑝2𝑧 = 0 → |𝑝𝑧 |
𝑝𝑡

= 1 in natural

units. Reintroducing the speed of light, 𝑐, this is |𝑝𝑧 |
𝑝𝑡

= 𝑐, telling us that the physical

configurations of this field are waves travelling at the speed of light. This matches

our expectation of a massless object!

A.3 (Lagrangian) Quantum Field Theories

Finally, we introduce the last piece of framework needed to access the Standard Model:

applying quantum mechanics to our Lagrangian field theory. One complete descrip-

tion of quantum mechanics follows from defining a Hilbert space over complex vectors,

a Hamiltonian operator, the Schrödinger Equation, and sorting through the fallout

[46, Chap 4]. While this description suits certain problems very well, Feynman’s

later path integral formalism corresponds much more closely to the computational

methods of Lattice QCD. So far, we have been arriving at classical solutions to our

physical systems, by means of the Euler-Lagrange equations of motion, all of which

derived from demanding the Principle of Stationary Action. Feynman’s path integral

formalism states that this is only an approximation of the true quantum solutions

[17]. These are instead given by integrating all configurations of our fields (not just

the physical ones) weighted by the complex phase 𝑒𝑖𝑆.

In other words, rather than picking out the stationary points of our action as

physical, we apply our action as a complex phase to all field configurations. For con-

figurations where the action 𝑆 changes rapidly, small variations of the configuration

mostly cancel with each other, whereas for configurations where 𝑆 is relatively stable,

small variations of the configuration sum mostly coherently. The result of this is

sharp peaks around classical solutions with amplitudes smeared out to nearby solu-

tions. We can write this all down in a simple equation for computing the “vacuum

expectation value” for any “time ordered” quantum operator (a combination of fields

and derivatives at various spacetime points):
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⟨0|𝑇 (𝒪)|0⟩ =

∫︀
𝒟𝜑𝒪𝑒𝑖𝑆[𝜑]∫︀
𝒟𝜑𝑒𝑖𝑆[𝜑]

=
1

𝑍

∫︁
𝒟𝜑𝒪𝑒𝑖𝑆[𝜑]

Above, 𝑍 =
∫︀
𝒟𝜑𝑒𝑖𝑆[𝜑] is the normalization of the vacuum in the absence of

any operators. 𝒟𝜑 is a functional integral measure over configurations 𝜑(𝑥). The

time ordering specifies that all products of fields and derivatives within 𝒪 apply in

order with the latest time leftmost to earliest time rightmost. This is relevant for an

understanding of the physical meaning of the expectation value, as written on the

left, but does not affect a calculation of this expectation value using the path integral

form on the right.

For simple Lagrangians, we can in fact explicitly compute the path integral and

find a closed form for our answer. It is illuminating to perform a simple calculation

to get a feel for the path integral itself, and the type of results we are looking for. Let

us compute the two-point correlator for the massless scalar free field that we wrote

classically above:

𝐶(𝑥, 𝑦) = ⟨0|𝑇 (𝜑(𝑥)𝜑(𝑦))|0⟩ =
1

𝑍

∫︁
𝒟𝜑𝜑(𝑥)𝜑(𝑦)𝑒𝑖𝑆[𝜑]

=
1

𝑍

∫︁
𝒟𝜑𝜑(𝑥)𝜑(𝑦) exp

(︂
𝑖 *
∫︁
𝑑4𝑥

[︂
−1

2
(𝜕𝜇𝜑)(𝜕𝜇𝜑)

]︂)︂

To perform this calculation, it is convenient to introduce a “source” term, 𝐽(𝑥),

which has the same form as 𝜑(𝑥) (i.e. is a real scalar field) and is coupled to 𝜑(𝑥) in

the Lagrangian. Using this source term, we can manipulate our integral, and finally

set 𝐽(𝑥) = 0 at the end. For conciseness, we define
∫︀
𝑥
≡
∫︀
𝑑4𝑥 and

∫︀
𝑘
≡
∫︀ 𝑑4𝑘

(2𝜋)4
,

where 𝑘 is the Fourier transform dual of 𝑥 and our Fourier transform convention is to

shove all of the 2𝜋s into the 𝑘 integral. Including our source manipulation, we have:

𝐶(𝑥, 𝑦) =
1

𝑍

∫︁
𝒟𝜑𝜑(𝑥)𝜑(𝑦) exp

(︂
𝑖 *
∫︁
𝑥

[︂
−1

2
(𝜕𝜇𝜑)(𝜕𝜇𝜑) + 𝐽(𝑥)𝜑(𝑥)

]︂)︂⃒⃒⃒⃒
𝐽=0
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Adding the source term allows us to rewrite the operator as derivatives in 𝐽 :

=
1

𝑍

∫︁
𝒟𝜑 −𝑖𝛿

𝛿𝐽(𝑥)

−𝑖𝛿
𝛿𝐽(𝑦)

exp

(︂
𝑖 *
∫︁
𝑥

[︂
−1

2
(𝜕𝜇𝜑)(𝜕𝜇𝜑) + 𝐽(𝑥)𝜑(𝑥)

]︂)︂⃒⃒⃒⃒
𝐽=0

We can then complete the square in the exponent to remove cross-terms between 𝜑

and 𝐽 , finally using invariance of the integral under shifts to find a neat form:

= (...) exp

(︂
𝑖 *
∫︁
𝑥

[︂
1

2
𝜑(𝜕𝜇𝜕

𝜇𝜑) + 𝐽(𝑥)𝜑(𝑥)

]︂)︂⃒⃒⃒⃒
𝐽=0

= (...) exp

(︂
𝑖 *
∫︁
𝑘

[︂
−1

2
(𝜑𝑘2𝜑) + 𝐽(𝑘)𝜑(𝑘)

]︂)︂⃒⃒⃒⃒
𝐽=0

= (...) exp

(︂
𝑖 *
∫︁
𝑘

[︂
−1

2
(𝜑− 1

𝑘2
𝐽)(𝑘2)(𝜑− 1

𝑘2
𝐽) +

1

2
𝐽

1

𝑘2
𝐽

]︂)︂⃒⃒⃒⃒
𝐽=0

=
1

𝑍

∫︁
𝒟𝜑 −𝑖𝛿

𝛿𝐽(𝑥)

−𝑖𝛿
𝛿𝐽(𝑦)

exp

(︂
𝑖 *
∫︁
𝑘

[︂
−1

2
𝜑′(𝑘2)𝜑′ +

1

2
𝐽

1

𝑘2
𝐽

]︂)︂⃒⃒⃒⃒
𝐽=0

Performing the derivatives in 𝐽 now gives us a value indepedent of 𝜑, which we can

remove from the integral and simplify completely:

=
1

𝑍

∫︁
𝒟𝜑
(︂∫︁

𝑘

−𝑖𝑒𝑖𝑘(𝑥−𝑦)

𝑘2

)︂
exp

(︂
𝑖 *
∫︁
𝑘

[︂
−1

2
𝜑′(𝑘2)𝜑′ +

1

2
𝐽

1

𝑘2
𝐽

]︂)︂⃒⃒⃒⃒
𝐽=0

=

(︂∫︁
𝑘

−𝑖𝑒𝑖𝑘(𝑥−𝑦)

𝑘2

)︂
𝑍

𝑍
=

(︂∫︁
𝑘

−𝑖𝑒𝑖𝑘(𝑥−𝑦)

𝑘2

)︂

This correlator tells us something similar to what we found classically. In the

classical situation our plane wave solutions propagated with momenta constrained by

𝑘2 = 0. Here we find a pole at 𝑘2 = 0, but also non-zero correlations away from this

classical solution. These are the quantum effects of incorporating the path integral

playing a role. In more complex theories, it is of utmost importance to include the

full quantum effects to calculate physical values. Yet, in more complex theories it

becomes intractable to calculate the path integral explicitly.
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A.4 Perturbation Theory

We have so far shown an example of a direct evaluation of a path integral. Reflecting

back on this computation, it is clear that additional complexity in the Lagrangian can

result in cases where we cannot perform the complete-the-square and integral shift

steps to arrive at a Lagrangian form that isolates the source and field terms. As an

example, we could imagine adding a 𝜑(𝑥)4 term to our scalar Lagrangian from earlier:

ℒ𝜑 =

[︂
−1

2
(𝜕𝜇𝜑)(𝜕𝜇𝜑)

]︂
−
[︀
𝜆𝜑4
]︀

After performing the shift, we would be left with:

1

𝑍

∫︁
𝒟𝜑 −𝑖𝛿

𝛿𝐽(𝑥)

−𝑖𝛿
𝛿𝐽(𝑦)

exp

(︂
𝑖 *
∫︁
𝑘

[︂
−1

2
𝜑′(𝑘2)𝜑′ +

1

2
𝐽

1

𝑘2
𝐽 − 𝜆(𝜑′ +

1

𝑘2
𝐽)4
]︂)︂⃒⃒⃒⃒

𝐽=0

The 𝜑4 term results in remaining cross-terms between 𝐽 and 𝜑, and we cannot

simply evaluate the 𝐽 derivatives to produce a 𝜑-independent value for the operator.

In this case, we can instead take a different route, resulting in a perturbative expansion

of our answer. If we pull the 𝜑4 bit out as an exponential of 𝐽 derivatives prior to

shifting, we have some breathing room:

1

𝑍

∫︁
𝒟𝜑 −𝑖𝛿

𝛿𝐽(𝑥)

−𝑖𝛿
𝛿𝐽(𝑦)

exp

(︃∫︁
𝑥

−𝜆
[︂
−𝑖𝛿
𝛿𝐽(𝑥)

]︂4)︃
exp

(︂
𝑖 *
∫︁
𝑘

[︂
−1

2
𝜑′(𝑘2)𝜑′ +

1

2
𝐽

1

𝑘2
𝐽

]︂)︂⃒⃒⃒⃒
⃒
𝐽=0

Taylor expanding the exponential of 𝐽 derivatives gives us something that looks

like a complicated sum of operators evaluated in the free theory. We know how to

evaluate any operator in the free theory, so this is tractable, as long as our perturbative

series converges. This type of analysis can be extended to multiple fields, and many

types of terms that may be added to the Lagrangian [45]. The end result is a set of

rules allowing us to compute an operator in the full theory by an infinite sequence

of terms in the free theory. The key point here is that we can achieve reasonable

approximations of a physical value by computing only a few terms, if the perturbative

series converges. Noting that at each subsequent order of the perturbative sequence
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we pick up one more copy of 𝜆, it is sufficient to have 𝜆≪ 1.
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Appendix B

Details of SU(3) Group and Algebra

The SU(3) group is at the heart of 3-color QCD physics. We briefly outline the con-

cept of a representation of the SU(3) group, and specifically give concrete examples

of bases of the adjoint and fundamental representations. In the case of QCD, these

representations correspond to the gluon and quark fields respectively, however keep

in mind that in Wilson’s Lattice QCD formulation, the gluon field is exponentiated

to give fundamental representation values on the links. Thus for the purposes of com-

putation, we generally focus on entirely fundamental representation objects, though

we can arrive at link values through exponentiation of a particular continuum gluon

field if this is convenient.

B.1 SU(3) Group Definition

Mathematical groups are a set of elements, 𝐺 = {𝑔}, related by the following prop-

erties [50]:

1. An associative product operator, · : 𝐺×𝐺→ 𝐺.

2. An identity element, 𝑒, which maps each element to itself for both left and right

multiplication: 𝑒 · 𝑔 = 𝑔 and 𝑔 · 𝑒 = 𝑔.

3. An inverse for every element, such that 𝑔 · 𝑔−1 = 𝑒.
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Importantly, the structure of the group elements under the product map defines

the group, rather than any particular values for the elements. In practice, it is

convenient to pin the structure of a group to a particular form of the elements, and

in the case of SU(3) this is exactly how we proceed.

We define the SU(3) group by all complex 3×3 matrices that satisfy unitarity,

𝑔𝑔† = 𝑔†𝑔 = 13, and unit determinant det 𝑔 = 1. In this definition, the group product

is simply matrix products, det 𝑔 = 1 guarantees that an inverse exists, and the identity

element is the identity matrix, 13.

One significant property of the SU(3) group is the fact that the action of an

element of SU(3) on a complex 3-vector preserves the Hermitian inner product. For

⟨𝑢, 𝑣⟩ = 𝑢*1𝑣1 + 𝑢*2𝑣2 + 𝑢*3𝑣3, we have:

⟨𝑔 · 𝑢, 𝑔 · 𝑣⟩ = ⟨𝑢, 𝑔†𝑔 · 𝑣⟩ = ⟨𝑢, 𝑣⟩

B.2 Representations of SU(3) and Particles

A representation of a group is defined as a vector space 𝑉 , with associated linear

operators for each group element 𝑔 → 𝑈(𝑔), such that 𝑈(𝑒) = 1 and 𝑈(𝑔 · 𝑔′) =

𝑈(𝑔)𝑈(𝑔′). One may hear this mapping to linear operators called the representation,

or the vector space itself called the representation. Fundamentally, the mapping of

group elements defines the representation, however in physics we are often interested

in the vectors living in 𝑉 as well, thus the confusing terminology.

We have already seen a representation of SU(3). The 3×3 matrix definition given

above is the fundamental representation of SU(3). With this definition in mind, we

can tackle what we mean when we say quarks live in the fundamental representation.

In this case, we mean that quarks take 3-vector values, and should be acted on via

matrix multiplication by group objects. Recalling that our quark term in the QCD

Lagrangian looks like the following, we see that those group objects must be the

gluons:

ℒquark = 𝜓(𝑖𝛾𝜇(𝜕𝜇 − 𝑖𝑔𝐴𝜇) +𝑚)𝜓
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In fact, we mentioned that gluons live in the adjoint representation, not the fun-

damental representation, so in reality the Lagrangian written above is shorthand for

some sort of translation between the adjoint and fundamental representations. Let’s

first discuss what the adjoint representation means, and then return to how an adjoint

representation object can act on the vector space of the fundamental representation.

The adjoint representation of SU(3) can be thought of intuitively as a tangent

space to the group around the identity. A full description of the adjoint representation

requires delving into Lie Algebras, but for the sake of brevity, we refer the reader to

a more detailed introduction to groups and algebras [20], and move on to a more

concrete description of the properties of the adjoint representation of SU(3). We will

simply state that the adjoint representation operates on a vector space of dimension

8. With a little investigation, one can see that this is in fact the number of free

parameters permitted by the matrix definition of the SU(3) group. Our gluons live

in this 8-dimensional vector space, and can be written in index notation with a latin

index 𝑎 ∈ [0, 7]: 𝐴𝜇 → 𝐴𝑎adj,𝜇, where previously the group structure was implied.

We are now in a position to discuss how an 8-dimensional vector value in this

adjoint representation translates to a matrix action on the 3-vector quarks. Specifi-

cally, we write down 8 basis matrices which define the map. Harking back to the idea

that the structure of a group is more important than particular values, in fact the

structure of the Lie Algebra of SU(3) is intrinsically related to how these matrices

commute, and this property is more important than the particular matrices. For our

uses, however, we simply write down one example basis, the Gell-Mann basis [44,

Chap 12]:

𝜆1 =

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎠ 𝜆2 =

⎛⎜⎜⎜⎝
0 −𝑖 0

𝑖 0 0

0 0 0

⎞⎟⎟⎟⎠ 𝜆3 =

⎛⎜⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎟⎠

𝜆4 =

⎛⎜⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎟⎠ 𝜆5 =

⎛⎜⎜⎜⎝
0 0 −𝑖

0 0 0

𝑖 0 0

⎞⎟⎟⎟⎠ 𝜆6 =

⎛⎜⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎟⎠
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𝜆7 =

⎛⎜⎜⎜⎝
0 0 0

0 0 −𝑖

0 𝑖 0

⎞⎟⎟⎟⎠ 𝜆8 =
1√
3

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎟⎠
Our quark portion of the Lagrangian can now be written in a more explicit form:

ℒquark = 𝜓(𝑖𝛾𝜇(𝜕𝜇13 − 𝑖𝑔𝐴𝑎adj,𝜇𝜆𝑎)−𝑚13)𝜓

In this notation, each component 𝐴𝑎 acts as a coefficient to a 3×3 matrix 𝜆𝑎 (keep

in mind the implied summation), and the result in parentheses is a matrix that acts

between the row 3-vector 𝜓 and the column 3-vector 𝜓, resulting in a scalar value.

In the Wilson formulation of Lattice QCD, 𝜓 continues to be a color 3-vector in

the fundamental representation, however we choose 𝑈𝜇, instead of 𝐴𝜇, and define it

to be a fundamental representation 3×3 matrix. Thus in Lattice QCD computations,

the values we are interested in are generally the matrices and vectors of the SU(3)

fundamental representation.
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Appendix C

Typedef Preprocessor Listing

The full code listing of the Typedef Preprocessor is given below. The preprocessor is

designed to accept a .sim file as the first argument, and print the rewritten code to

stdout. This is intended only as a prototype, to allow full handling of the example

Simit programs, as listed in Appendix D.

### Simit preprocessor

### Substitute in typedefs as macros, in a text−for−text pattern matched

### manner. This is a standin for an actual typedef system.

import fileinput

import re

import string

import sys

typedefs = {}

def replace_tds(s):

for td in typedefs:

s = re.sub(r’(\W|^)%s(?=\W|$)’ % (td),

r’\g<1>%s’ % (typedefs[td]), s)
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return s

for line in fileinput.input():

tokens = line.strip().split(" ")

if len(tokens) == 3 and tokens[0] == "typedef":

# Clean the semicolon

ts = tokens[2].split(";")

assert len(ts) == 2

tokens[2] = ts[0]

typedefs[tokens[2]] = replace_tds(tokens[1])

sys.stderr.write("Found typedef %s <− %s\n"

% (tokens[2], tokens[1]))

else:

bits = line.split("%")

if len(bits) > 1:

# Sub typedefs in actual code

bits[0] = replace_tds(bits[0])

out = "%".join(bits)

else:

out = replace_tds(line)

sys.stderr.write("Replaced:\n%s%s\n" % (line, out))

print out,

}
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Appendix D

Simit Lattice QCD Listing

We show the description of the Wilson action inversion application implemented in our

language in Listing D.1. Because our prototype compiler does not support blocking,

for evaluation we manually implemented a Halide program representing the form of

code that would be emitted from a future iteration of our compiler for this application.

We also demonstrate the application implemented in Simit in Listing D.2.

Listing D.1: Description of the representative Lattice QCD application in our lan-

guage.

1 typedef vector[4](complex) spinor;

2 typedef matrix[4,4](complex) gamma;

3 % Abusing the typedef preprocessor

4 typedef <0.0,0.0> z;

5 % Nct externally defined based on the experiment in question

6

7 element Site

8 idx : vector[4](int); % Index label ( t ,x ,y , z)

9 end

10

11 element Link

12 U : matrix[Nct,Nct](complex);
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13 mu : int; % Directional index

14 end

15

16 extern fermions : set{Site};

17 extern gauges : lattice[4]{Link}(fermions);

18

19 % hopping param

20 const kappa : float = 0.1;

21 const gamma_ident : gamma = [<1.0,0.0>, z, z, z;

22 z, <1.0,0.0>, z, z;

23 z, z, <1.0,0.0>, z;

24 z, z, z, <1.0,0.0>];

25 %QDP convenction gamma matrices :

26 % http ://usqcd . j lab . org/usqcd−docs/qdp++/manual/node83.html

27 const gamma_0 : gamma = [z, z, z, <0.0,1.0>;

28 z, z, <0.0,1.0>, z;

29 z, <0.0,−1.0>, z, z;

30 <0.0,−1.0>, z, z, z];

31 const gamma_1 : gamma = [z, z, z, <−1.0,0.0>;

32 z, z, <1.0,0.0>, z;

33 z, <1.0,0.0>, z, z;

34 <−1.0,0.0>, z, z, z];

35 const gamma_2 : gamma = [z, z, <0.0,1.0>, z;

36 z, z, z, <0.0,−1.0>;

37 <0.0,−1.0>, z, z, z;

38 z, <0.0,1.0>, z, z];

39 const gamma_3 : gamma = [z, z, <1.0,0.0>, z;

40 z, z, z, <1.0,0.0>;

41 <1.0,0.0>, z, z, z;

42 z, <1.0,0.0>, z, z];
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43

44 func build_mass_ident(m : complex) −> (MI : tensor[Nct,Nct](gamma))

45 MI = <0.0,0.0>;

46 for ii in 0:Nct

47 MI(ii,ii) = gamma_ident * m;

48 end

49 end

50

51 % Include hopping param at the promotion stage

52 func promote_gauge_spinor(sp : matrix[Nct,Nct](complex), gm : gamma)

53 −> (sp_gauge : matrix[Nct,Nct](gamma))

54 for ii in 0:Nct

55 for jj in 0:Nct

56 sp_gauge(ii,jj) = gm*sp(ii,jj)*createComplex(kappa ,0.0);

57 end

58 end

59 end

60

61 func computeDirac(sign : complex,

62 links : lattice[4]{Link}(sites),

63 sites : set{Site}(sites))

64 −> (M : matrix[fermions,fermions](matrix[Nct,Nct](gamma)))

65 % In a future iteration of our language , this should be written

66 % a loop over direction mu.

67

68 % Get gamma projectors

69 var projForward0 : gamma = gamma_ident − sign*gamma_0;

70 var projBackward0 : gamma = gamma_ident + sign*gamma_0;

71 var projForward1 : gamma = gamma_ident − sign*gamma_1;

72 var projBackward1 : gamma = gamma_ident + sign*gamma_1;
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73 var projForward2 : gamma = gamma_ident − sign*gamma_2;

74 var projBackward2 : gamma = gamma_ident + sign*gamma_2;

75 var projForward3 : gamma = gamma_ident − sign*gamma_3;

76 var projBackward3 : gamma = gamma_ident + sign*gamma_3;

77

78 % Mass term

79 M(sites[0,0,0,0],sites[0,0,0,0]) = build_mass_ident(<1.0,0.0>);

80

81 % Wilson derivative

82 % (1−gamma_mu) * U_mu

83 M(sites[0,0,0,0],sites[1,0,0,0])

84 = promote_gauge_spinor(link[0,0,0,0;1,0,0,0].U, projForward0);

85 M(sites[0,0,0,0],sites[0,1,0,0])

86 = promote_gauge_spinor(link[0,0,0,0;0,1,0,0].U, projForward1);

87 M(sites[0,0,0,0],sites[0,0,1,0])

88 = promote_gauge_spinor(link[0,0,0,0;0,0,1,0].U, projForward2);

89 M(sites[0,0,0,0],sites[0,0,0,1])

90 = promote_gauge_spinor(link[0,0,0,0;0,0,0,1].U, projForward3);

91 % (1+gamma_mu) * U_mû dagger

92 M(sites[0,0,0,0],sites[−1,0,0,0])

93 = promote_gauge_spinor(

94 gauge_dagger(link[0,0,0,0;−1,0,0,0].U), projBackward0);

95 M(sites[0,0,0,0],sites[0,−1,0,0])

96 = promote_gauge_spinor(

97 gauge_dagger(link[0,0,0,0;0,−1,0,0].U), projBackward1);

98 M(sites[0,0,0,0],sites[0,0,−1,0])

99 = promote_gauge_spinor(

100 gauge_dagger(link[0,0,0,0;0,0,−1,0].U), projBackward2);

101 M(sites[0,0,0,0],sites[0,0,0,−1])

102 = promote_gauge_spinor(
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103 gauge_dagger(link[0,0,0,0;0,0,0,−1].U), projBackward3);

104 end

105

106 % Build a point source at the origin

107 func set_origin_src(p : Site)

108 −> (src : vector[fermions](vector[Nct](spinor)))

109 if (p.idx(0) == 0 and p.idx(1) == 0 and

110 p.idx(2) == 0 and p.idx(3) == 0)

111 for ii in 0:Nct

112 for jj in 0:4

113 src(p)(ii)(jj) = <1.0,0.0>;

114 end

115 end

116 else

117 for ii in 0:Nct

118 for jj in 0:4

119 src(p)(ii)(jj) = <0.0,0.0>;

120 end

121 end

122 end

123 end

124

125 proc main

126 var src : vector[fermions](vector[Nct](spinor));

127 src = map set_origin_src to fermions;

128

129 % Wilson action Dirac matrix

130 M_pos = map computeDirac(<1.0,0.0>) to gauges;

131 M_neg = map computeDirac(<−1.0,0.0>) to gauges;

132
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133 % BEGIN CG SOLVE

134 const maxiters = 100;

135 var x = <1.0,0.0> * src;

136 var r = src − M_neg*(M_pos*x);

137 var p = r;

138 var iter = 0;

139

140 var tmpNRS = complexDot(r,r);

141 var rsq = complexNorm(tmpNRS);

142 var oldrsq = rsq;

143 while (iter < maxiters)

144 var beta = rsq/oldrsq;

145 oldrsq = rsq;

146 p = r + createComplex(beta,0.0)*p;

147

148 var Mp = M_neg*(M_pos*p);

149 var denom = complexDot(p,Mp); % p^{dag} M p

150 var denomReal = complexNorm(denom);

151 var alpha = rsq / denomReal;

152

153 x = x + createComplex(alpha ,0.0)*p;

154 r = r − createComplex(alpha ,0.0)*Mp;

155 tmpNRS = complexDot(r,r);

156 rsq = complexNorm(tmpNRS);

157 iter = iter + 1;

158 end

159 %ENDCG SOLVE

160 end

Listing D.2: Implementation of the representative Lattice QCD application in Simit.

144



1 typedef vector[4](complex) spinor;

2 typedef matrix[4,4](complex) gamma;

3 % Abusing the typedef preprocessor

4 typedef <0.0,0.0> z;

5 % Nct externally defined based on the experiment in question

6

7 element Site

8 idx : vector[4](int); % Index label ( t ,x ,y , z)

9 end

10

11 element Link

12 U : matrix[Nct,Nct](complex);

13 mu : int; % Directional index

14 end

15

16 extern fermions : set{Site};

17 extern gauges : set{Link}(fermions, fermions);

18

19 % hopping param

20 const kappa : float = 0.1;

21 const gamma_ident : gamma = [<1.0,0.0>, z, z, z;

22 z, <1.0,0.0>, z, z;

23 z, z, <1.0,0.0>, z;

24 z, z, z, <1.0,0.0>];

25 %QDP convenction gamma matrices :

26 % http ://usqcd . j lab . org/usqcd−docs/qdp++/manual/node83.html

27 const gamma_0 : gamma = [z, z, z, <0.0,1.0>;

28 z, z, <0.0,1.0>, z;

29 z, <0.0,−1.0>, z, z;

30 <0.0,−1.0>, z, z, z];

145



31 const gamma_1 : gamma = [z, z, z, <−1.0,0.0>;

32 z, z, <1.0,0.0>, z;

33 z, <1.0,0.0>, z, z;

34 <−1.0,0.0>, z, z, z];

35 const gamma_2 : gamma = [z, z, <0.0,1.0>, z;

36 z, z, z, <0.0,−1.0>;

37 <0.0,−1.0>, z, z, z;

38 z, <0.0,1.0>, z, z];

39 const gamma_3 : gamma = [z, z, <1.0,0.0>, z;

40 z, z, z, <1.0,0.0>;

41 <1.0,0.0>, z, z, z;

42 z, <1.0,0.0>, z, z];

43

44 func build_mass_ident(m : complex) −> (MI : matrix[Nct,Nct](gamma))

45 MI = <0.0,0.0>;

46 for ii in 0:Nct

47 MI(ii,ii) = gamma_ident * m;

48 end

49 end

50

51 func compute_mass_term(site : Site)

52 −> (M_mass : matrix[fermions,fermions](matrix[Nct,Nct](gamma)))

53 % Unit mass, using hopping form

54 M_mass(site, site) = build_mass_ident(<1.0,0.0>);

55 end

56

57 func gamma_dagger(g : gamma) −> (g_dag : gamma)

58 for ii in 0:4

59 for jj in 0:4

60 % Transpose conjugate
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61 g_dag(jj,ii) = complexConj(g(ii,jj));

62 end

63 end

64 end

65

66 func gauge_dagger(U : matrix[Nct,Nct](complex))

67 −> (U_dag : matrix[Nct,Nct](complex))

68 for ii in 0:Nct

69 for jj in 0:Nct

70 U_dag(jj,ii) = complexConj(U(ii,jj));

71 end

72 end

73 end

74

75 % Include hopping param at the promotion stage

76 func promote_gauge_spinor(sp : matrix[Nct,Nct](complex), gm : gamma)

77 −> (sp_gauge : matrix[Nct,Nct](gamma))

78 for ii in 0:Nct

79 for jj in 0:Nct

80 sp_gauge(ii,jj) = gm*sp(ii,jj)*createComplex(kappa ,0.0);

81 end

82 end

83 end

84

85 func compute_deriv_term(sign : complex, link : Link, sites : (Site*2))

86 −> (M_deriv : matrix[fermions,fermions](matrix[Nct,Nct](gamma)))

87 % Get gamma projectors

88 % No good switch structure , so fold gammas into a single vector

89 var gamma_mu : gamma;

90 if (link.mu == 0)
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91 gamma_mu = gamma_0;

92 else if (link.mu == 1)

93 gamma_mu = gamma_1;

94 else if (link.mu == 2)

95 gamma_mu = gamma_2;

96 else if (link.mu == 3)

97 gamma_mu = gamma_3;

98 end

99 end

100 end

101 end

102 var projForward : gamma = gamma_ident − sign*gamma_mu; % 1 − gamma_mu

103 var projBackward : gamma = gamma_ident + sign*gamma_mu; % 1 + gamma_mu

104

105 % Wilson derivative

106 % (1−gamma_mu) * U_mu

107 M_deriv(sites(0), sites(1))

108 = promote_gauge_spinor(link.U, projForward);

109 % (1+gamma_mu) * U_mû dagger

110 M_deriv(sites(1), sites(0))

111 = promote_gauge_spinor(gauge_dagger(link.U), projBackward);

112 end

113

114 % Build a point source at the origin

115 func set_origin_src(p : Site)

116 −> (src : vector[fermions](vector[Nct](spinor)))

117 if (p.idx(0) == 0 and p.idx(1) == 0 and

118 p.idx(2) == 0 and p.idx(3) == 0)

119 for ii in 0:Nct

120 for jj in 0:4
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121 src(p)(ii)(jj) = <1.0,0.0>;

122 end

123 end

124 else

125 for ii in 0:Nct

126 for jj in 0:4

127 src(p)(ii)(jj) = <0.0,0.0>;

128 end

129 end

130 end

131 end

132

133 proc main

134 var src : vector[fermions](vector[Nct](spinor));

135 src = map set_origin_src to fermions;

136

137 % Build Dirac matrix for our gauge config

138 var M_mass : matrix[fermions,fermions](matrix[Nct,Nct](gamma));

139 M_mass = map compute_mass_term to fermions reduce +;

140 var M_deriv_pos : matrix[fermions,fermions](matrix[Nct,Nct](gamma));

141 M_deriv_pos = map compute_deriv_term(<1.0,0.0>) to gauges reduce +;

142 var M_deriv_neg : matrix[fermions,fermions](matrix[Nct,Nct](gamma));

143 M_deriv_neg = map compute_deriv_term(<−1.0,0.0>) to gauges reduce +;

144

145 % Wilson action

146 M_pos = M_mass − M_deriv_pos;

147 M_neg = M_mass − M_deriv_neg;

148

149 % BEGIN CG SOLVE

150 const maxiters = 100;
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151 var x = <1.0,0.0> * src;

152 var r = src − M_neg*(M_pos*x);

153 var p = r;

154 var iter = 0;

155

156 var tmpNRS = complexDot(r,r);

157 var rsq = complexNorm(tmpNRS);

158 var oldrsq = rsq;

159 while (iter < maxiters)

160 var beta = rsq/oldrsq;

161 oldrsq = rsq;

162 p = r + createComplex(beta,0.0)*p;

163

164 var Mp = M_neg*(M_pos*p);

165 var denom = complexDot(p,Mp); % p^{dag} M p

166 var denomReal = complexNorm(denom);

167 var alpha = rsq / denomReal;

168

169 x = x + createComplex(alpha ,0.0)*p;

170 r = r − createComplex(alpha ,0.0)*Mp;

171 tmpNRS = complexDot(r,r);

172 rsq = complexNorm(tmpNRS);

173 iter = iter + 1;

174 end

175 %ENDCG SOLVE

176 end
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Appendix E

Lattice QCD Raw Data

Tables E.1 and E.2 demonstrate the raw data collected to show a comparison of an

optimized USQCD implementation, provided in the QOPQDP module, a naive Simit

implementation with no handling of the regular grid structure, and a manual Halide

implementation. The comparison is split up by the number of colors, ranging from

𝑁𝑐 = 1 to 𝑁𝑐 = 4. All runtimes as in milliseconds. All performance comparisons

were executed on one node of a 24-node Intel Xeon E5-2695 v2 @ 2.40GHz Infiniband

cluster, with two sockets, 12 cores each, and 128GB of memory.
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Implementation Size Runtime

Simit
84 414
164 8230
324 151838

Halide (no sched.)

24 3
44 10
64 35
84 151
164 3126
324 65373

Halide (vectorized t)

24 4
44 10
64 38
84 172
164 2992
324 67307

QOPQDP (no sched.)

24 2
44 19
64 95
84 236
164 4006
324 69120

QOPQDP (SSE,
blocked 4)

84 158
164 2720

QOPQDP (SSE, best
blocking)

24 1
44 10
64 37
84 127
164 2314

(a) 𝑁𝑐 = 1

Implementation Size Runtime

Simit
84 1625
164 29207
324 470323

Halide (no sched.)

24 3
44 19
64 102
84 392
164 9243
324 177981

Halide (vectorized t)

24 6
44 20
64 118
84 405
164 9339
324 181889

QOPQDP (no sched.)

24 2
44 29
64 133
84 366
164 7001
324 117928

QOPQDP (SSE,
blocked 4)

84 298
164 5298

QOPQDP (SSE, best
blocked)

24 2
44 15
64 77
84 267
164 5021

(b) 𝑁𝑐 = 2

Table E.1: 𝑁𝑐 = 1, 2 demonstrations of performance of naive Simit, a manual Halide
code, and the QOPQDP library module.

152



Implementation Size Runtime

Simit
84 3472
164 57114
324 OOM

Halide (no sched.)

24 6
44 46
64 194
84 761
164 18856
324 404605

Halide (vectorized t)

24 8
44 52
64 248
84 756
164 19282
324 344788

QOPQDP (no sched.)

24 3
44 43
64 176
84 575
164 9806
324 172010

QOPQDP (SSE,
blocked 4)

84 492
164 10009

QOPQDP (SSE, best
blccked)

24 2
44 25
64 141
84 454
164 8269

(a) 𝑁𝑐 = 3

Implementation Size Runtime

Simit
84 5560
164 91426
324 OOM

Halide (no sched.)

24 11
44 112
64 479
84 1742
164 47254
324 814823

Halide (vectorized t)

24 11
44 133
64 574
84 1272
164 32760
324 556471

QOPQDP (no sched.)

24 4
44 66
64 265
84 876
164 17065
324 272340

QOPQDP (SSE,
blocked 4)

84 832

QOPQDP (SSE, best
blocked)

24 4
44 42
64 231
84 772
164 15378

(b) 𝑁𝑐 = 4

Table E.2: 𝑁𝑐 = 3, 4 demonstrations of performance of naive Simit, a manual Halide
code, and the QOPQDP library module.
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