
Gloss: Seamless Live Reconfiguration and
Reoptimization of Stream Programs

Sumanaruban Rajadurai
School of Computing, National University of Singapore

sumanaruban@u.nus.edu

Jeffrey Bosboom
MIT CSAIL

jbosboom@csail.mit.edu

Weng-Fai Wong
School of Computing, National University of Singapore

wongwf@nus.edu.sg

Saman Amarasinghe
MIT CSAIL

saman@csail.mit.edu

Abstract
An important class of applications computes on long-running
or infinite streams of data, often with known fixed data
rates. The latter is referred to as synchronous data flow (SDF)
streams. These stream applications need to run on clusters
or the cloud due to the high performance requirement. Fur-
ther, they require live reconfiguration and reoptimization
for various reasons such as hardware maintenance, elastic
computation, or to respond to fluctuations in resources or
application workload. However, reconfiguration and reop-
timization without downtime while accurately preserving
program state in a distributed environment is difficult.

In this paper, we introduce Gloss, a suite of compiler and
runtime techniques for live reconfiguration of distributed
stream programs. Gloss, for the first time, avoids periods of
zero throughput during the reconfiguration of both state-
less and stateful SDF based stream programs. Furthermore,
unlike other systems, Gloss globally reoptimizes and com-
pletely recompiles the program during reconfiguration. This
permits it to reoptimize the application for entirely new
configurations that it may not have encountered before. All
these Gloss operations happen in-situ, requiring no extra
hardware resources. We show how Gloss allows stream pro-
grams to reconfigure and reoptimize with no downtime and
minimal overhead, and demonstrate the wider applicability
of it via a variety of experiments.

CCS Concepts • Software and its engineering → Just-
in-time compilers;Dynamic compilers;Runtime envi-
ronments; Distributed programming languages;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’18, March 24–28, 2018, Williamsburg, VA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
https://doi.org/10.1145/3173162.3173170

Keywords Downtime-Free Live Reconfiguration, Global
Optimization, Distributed Compiler, Distributed Dynamic
Recompilation, Cluster-wide Dynamic Recompilation, Pro-
gram Migration, State Transfer, Computation Handover

ACM Reference Format:
Sumanaruban Rajadurai, Jeffrey Bosboom,Weng-FaiWong, and Saman
Amarasinghe. 2018. Gloss: Seamless Live Reconfiguration and Reop-
timization of Stream Programs. In ASPLOS ’18: Architectural Support
for Programming Languages and Operating Systems, March 24–28,
2018, Williamsburg, VA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3173162.3173170

1 Introduction
Stream programs process large, even infinite, streams of
data items through a stable but occasionally changing set of
transformations. The synchronous data flow (SDF) [31] par-
adigm describes stream programs in which program units
consume and produce a fixed number of data items during
each activation. Important SDF-based streaming applications
include cellular base stations, software-defined radios, radio
astronomy applications, software defined mobile network
functions such as in-network transcoding and Filter Bank
Multi-Carrier (FBMC) [22], and virtualized network func-
tions such as encryption/decryption, virus scanners, and
deep packet inspection. The stable computation pattern of
SDF-based stream programs allows compilers to perform the
aggressive global optimizations necessary to keep up with
high-rate input streams [8, 10, 11, 26, 27, 33, 44].
Since streaming applications can run for days, possibly

indefinitely, there will inevitably be a need to reconfigure
the system while these applications are running. Scenarios
requiring this include hardware maintenance, or workload
or resource fluctuations. In addition to mere reconfiguration,
the ability to recompile a running application also enables
global life-long reoptimization or online autotuning.

Recently several large scale SDF-based streaming applica-
tions are being considered for permanent cloud residency.
Examples include the 5G standard proposals for software
defined radio access networks (SD-RAN) and software de-
fined core networks (SD-CN), which perform telecommuni-
cation signal processing entirely in the cloud or data cen-
ters [2, 3, 48]. Another example is the Square Kilometer

https://doi.org/10.1145/3173162.3173170
https://doi.org/10.1145/3173162.3173170

Array [19] project, which is exploring ways to move radio
astronomy applications such as wide-field scientific imaging
and beam forming [35] to the cloud [37, 45].
Such applications stand to reap various benefits (such as

infrastructure sharing, elasticity, on-demand, and pay-as-
you-go flexibility) if they are able to exploit highly dynamic
hardware environments such as the elastic cloud or multi-
tenant data centers. For this to happen, the compiler and
runtime system must support seamless live reconfiguration.
Several dynamic data flow (DDF) [28] streaming systems

support reconfiguration for elastic computing and fault tol-
erance [32, 36, 46, 51]. However, their techniques such as
fine-grained checkpointing or input persisting introduce
overhead during the program’s normal execution [1, 38, 49]
and downtime (time during which the program does not
produce output) during reconfiguration [23]. Just like how
garbage collection pause times were too disruptive for many
applications before the development of concurrent collec-
tors, the downtime of reconfiguration may prevent stream
applications from meeting quality-of-service requirements.
After reconfiguration, some systems perform local re-

compilation, either explicitly or using an underlying layer
such as a Java virtual machine (for example, Storm [46] or
JESSICA2 [30, 52]). However, these recompilations are lim-
ited to locally reoptimizing at the granularity of the partitions
used for load balancing. SDF stream programs, which are
composed of fine-grained actors with predictable communi-
cation, allows for more powerful global optimizations such
as actor fusion and automatic parallelization that are not
possible for general programs. Such optimizations can have
an order of magnitude performance impact [25], but their
global nature makes them very sensitive to the contents of
each partition. To have the option of full optimization across
repeated recompilations requires a reconfiguration system
flexible enough to globally repartition the program.

However, reconfiguration and recompilation of streaming
computations is nontrivial. First, the program state (position
and order of data streams and actor states) must be deter-
ministically persisted and transfered to the new program
instance. This is a challenging task in a distributed envi-
ronment. Second, when optimizing for throughput, high-
performance stream programs buffer data at intermediate
points. The compiler needs to know the final state of the pre-
vious program instance to properly recompile the program
for the new configuration, introducing a data dependency be-
tween the end of the old program instance and the start of the
new program instance. Third, reconfiguration and recompi-
lation itself takes time, which must be minimized and hidden,
similar to modern garbage collectors. Finally, because recon-
figurations are uncommon events, performance-impairing
book-keeping should not be required during normal exe-
cution. At the same time, quality-of-service requirements
dictate that the program should continue to produce output,

and the transition between program instances should appear
smooth to the client, with no downtime.
This paper describes the Gloss live reconfiguration sys-

tem for SDF-based distributed stream programs. As far as
we know, it is the first system that can seamlessly reconfig-
ure and globally reoptimize SDF stream programs without
downtime. Gloss is therefore not limited to a predefined
set of configurations, giving it additional flexibility. Gloss
introduces several techniques to hide the latency of recon-
figuration and recompilation for both stateless and stateful
stream programs. Moreover, these operations happen in-situ,
requiring no extra hardware resources. To evaluate our work,
we have implemented Gloss in StreamJIT [10], a just-in-time
compiler and runtime system for distributed SDF programs.
This paper makes the following contributions:

• We demonstrate the use of cluster-wide dynamic re-
compilation for stream programs that recompiles and
redistributes programs on-the-fly in a distributed en-
vironment. To the best of our knowledge, Gloss is the
first ever system that performs cluster-wide dynamic
recompilation, thereby global reoptimization.

• We present a novel strategy, which we call concurrent
recompilation, that recompiles a running program in
two phases, reducing the visible recompilation time to
sub-seconds and making cluster-wide dynamic recom-
pilation practical.

• We present three live reconfiguration strategies that
transfer the state of a stream program and resume the
computation in a newly-compiled program instance
in a distributed environment: stop-and-copy reconfig-
uration, fixed seamless reconfiguration, and adaptive
seamless reconfiguration.
– The last strategy completely eliminates the down-
time during live reconfiguration.

• We propose a novel strategy called asynchronous state
transfer (AST) that deterministically capture and trans-
fer the state of a stateful program without checkpoint-
ing, input labeling, state recomputation or distributed
consensus.

• We present two techniques for output smoothing that
smooth the transition between old and new program
instances that produce output at differing rates:
– Adaptive merging avoids output rate spikes when
transitioning to a faster new program instance by
abandoning the old program instance as soon as the
new program instance catches up.

– Resource throttling reduces the compute resources
available to a faster old program instance to allow
the new program instance to catch up.

In the next section, we present a brief overview of the
StreamJIT language and compiler.We then explain the details
of Gloss and evaluate its effectiveness.

x8

16

x8

x4

x2

x4

x2

x2

x4

x2

x4

4

4 (32)

8 (32) 8 (32)

24

16 16 16

12

8 (32)

2,2,2

8,8,8

6

4 4

8

24

2 2 2

Peeking

buffer

pop (peek)

push

64

Figure 1. A stream graph, annotated with each worker’s
data rates. The xN in each worker denotes the number of
executions of that worker in one possible schedule. In this
schedule, the graph has overall pop rate 64 and push rate 12,
i.e., it consumes 64 items and produces 12 items per execution
of the schedule.

2 StreamJIT Language and Compiler
In this section we present a brief overview of StreamJIT [10],
a Java-embedded programming language, compiler, and run-
time system for SDF [31] paradigm stream programming.

StreamJIT programs are stream graphs (see Figure 1) com-
posed from filters, splitters and joiners (collectively called
workers as they all have work methods specifying their be-
havior). Filters are single-input, single-output workers1. Split-
ters and joiners have multiple outputs and inputs respectively.
Both stateless and stateful workers are supported. A stream
graph is stateless if all its workers are stateless.
All workers declare static peek rates stating how many

items they examine on each input, pop rates stating how
many of those items they consume, and push rates stating
how many items they produce on each output for each firing.
A peek operation is a read operation that does not remove
data from the input. Peeking allows workers to perform
sliding-window operations without using state variables.
The StreamJIT runtime creates and maintains peeking buffers
to store the required data items for peeking. Peeking is useful
because stateless workers that use peeking remain stateless,
preserving parallelization opportunities.
Fixed data rates enable StreamJIT to optimize for steady-

state throughput. During compilation, StreamJIT applies
domain-specific optimizations – such as fusing the workers
together for locality, partitioning the graph for load balanc-
ing, removing built-in splitters and joiners to reduce memory

1Despite their name, filters need not remove items from the stream.

(a) a stream graph

Node

Node

Node

Controller

(b) one possible partitioning

Figure 2. A stream graph partitioned into three blobs exe-
cuting on different nodes. Besides the data channels between
nodes, the controller node has a control channel to each
other node (shown in green).

traffic, and others [10] – and generates an execution sched-
ule. As all communication between workers occurs via the
stream graph edges, the StreamJIT compiler is free to select
an execution schedule that exploits the appropriate mix of
data, task and pipeline parallelism for a particular program
and machine [25]. The fixed data rates allow the compiler to
convert the logical queues on the graph edges to indexing
on fixed-size circular buffers. By buffering sufficient data
for each group of fused workers to execute in parallel, syn-
chronization can be coarsened to a single barrier at which
threads synchronize after executing their allocated portion
of the execution schedule.
A StreamJIT program’s lifecycle contains three phases:

initialization, steady-state, and draining. The initialization
phase executes a partial schedule to fill the buffers between
workers. The program spends most of its execution time in
the steady-state phase, an optimized multithreaded phase
during which each thread alternates between executing its al-
located portion of the execution schedule and synchronizing
at a barrier. At the barrier, output is emitted and new input is
ingested. When the input is exhausted or reconfiguration is
requested, the draining phase attempts to flush the internal
buffers, then returns the program state (the states of stateful
workers and any remaining data items in the buffers) for use
by the next configuration.

Distributed StreamJIT Compiler StreamJIT’s distributed
runtime system partitions the stream graph into sets of con-
nected workers called blobs (Figure 2). Each blob is com-
piled and executed independently. One node is designated
as the controller that orchestrates the execution of blobs on
all nodes, including itself.

At runtime, the controller partitions the graph into blobs
and sends each blob to its host node, where it is compiled.

Each host node establishes network connections with the
nodes hosting its upstream and downstream blobs to transfer
data items, independent of the control connection to the
controller node. Each blob executes independently (without
global synchronization) as it receives input and produces
output. Note that the StreamJIT compiler presented early
in [10] does not recompile distributed stream programs.

3 Global Reoptimization
The complex execution environment (processor, memory
system and network) of modern distributed systems leads to
nonlinear interactions between compiler optimizations and
changes in resources and workload. Runtime systems that
perform load balancing by migrating predefined partitions
between nodes necessarily sacrifice performance because
there is no opportunity to do global optimization of all the
partitions within a single node. The composition of smaller
optimized partitions (‘local optimal’) is in general subop-
timal. Large performance gains in stream programs often
come from global whole program optimizations such as fil-
ter fusion, coarse grain parallalization with synchronization
elimination, and load-balanced static work distribution be-
tween nodes [24, 26, 39]. Gloss dynamically recompiles and
globally reoptimizes the stream programs using only the
currently available resources during reconfiguration.

3.1 Dynamic Recompilation
Dynamic recompilation allows Gloss to alter any of its op-
timization decisions, including the amount of parallelism,
internal data structures, distribution of computation over dif-
ferent cluster configurations and the execution schedule for a
running program. For example, two filters that transfer large
amounts of data between them can be assigned to the same
partition, fused together and data-parallelized, optimizing
for reduced network communication. However, if workload
happens to increase to a point that the processor becomes
the limiting factor for performance, the next recompilation
can rearrange those filters into separate partitions and place
those partitions onto separate nodes, possibly bringing new
nodes into the program. In this way, Gloss’s dynamic recom-
pilation enables global load balancing without sacrificing
optimization opportunities. These advanced optimizations
are necessary to maintain the programs’ quality-of-service
in highly dynamic execution environments. To achieve this,
the first challenge is state dependency, explained below.

State Dependency The initial JIT compilation in StreamJIT
is just like any other JIT compilation. However, recompi-
lation requires the complete program state of the current
program instance2 (i.e., current running version). This is be-
cause some compiler optimizations such as fusion, unrolling,
or built-in splitter and joiner removal [10] either alter the
2Because StreamJIT programs are stream graphs, we call program instance
as graph instance as well.

b1
b2 Filter Fusion

(b) Compiled version 1 (c) Compiled version 2(a) Simple program

Figure 3. (a) A simple program where two filters are con-
nected sequentially (b) The two filters were compiled sepa-
rately and are running on two different machines. b1 is the
output buffer of the first filter, and b2 is the input buffer
of the second filter. (c) The filters are moved to a single
machine and fused together.

internal buffers or depend on the remaining data items in
the internal buffers of the current program instance.

For example, let’s assume a simple stream program (shown
in Figure 3) with two filters, where the filters were compiled
separately and are running on two different machines. Sup-
pose we want to bring the filters to a single machine and
recompile the program. To decide whether to fuse the filters,
the compiler needs to know if there will be any data items in
between the filters in the current program state because the
filters cannot be fused if such data exist. This is one domain
specific optimization example where the initial data is re-
quired for the recompilation of a running program. Besides
domain specific optimizations, the compiler needs to know
the number of data items remaining in buffers after draining
to compute the initialization and steady-state schedules and
to specify how to adapt the old program instance’s state
so that computation can be resumed in the new program
instance.
To avoid state dependency, one can always turn off such

compiler optimizations during recompilation. However, this
severely compromises performance. Therefore, we decided to
keep all optimizations available during dynamic recompila-
tion, including the tradeoffs between task, data and pipeline
parallelism [25] within each blob. But state dependency cre-
ates a situation where the recompilation can take place
only after the current version is stopped and the program
state, which is distributed across nodes, is collected for the
compiler, thereby incurring significant downtime. Before dis-
cussing how Gloss mitigates this downtime, we need to ex-
plain the reconfiguration process in Gloss because dynamic
recompilation happens during reconfiguration.

4 Reconfiguration
Gloss can reconfigure a stream program for arbitrary new
configurations. The most obvious reconfigurations includes
changing how the graph is partitioned into blobs, moving a
blob from one node to another, or the addition or deletion
of computing nodes (see Figure 7). Gloss implements three

Graph Instance 1

Draining Compilation Initialization

Graph Instance 2

14s

Figure 4. Time breakdown of stop-and-copy reconfiguration
of Beamformer (a stateful stream program), increasing the
number of nodes from two to three.

reconfiguration strategies of increasing sophistication: stop-
and-copy reconfiguration, fixed seamless reconfiguration, and
adaptive seamless reconfiguration. Note that all these recon-
figurations use no extra hardware resources, and are per-
formed on the original resources where the stream program
is running. This section describes stop-and-copy reconfigu-
ration. Section 7 will further describe the fixed and adaptive
seamless reconfiguration strategies.

4.1 Stop-and-Copy Reconfiguration
To solve state dependency, the stop-and-copy reconfigurer
stops the world during reconfiguration. First, the controller
asks each blob to drain its portion of the stream graph. The
controller waits until all blobs have returned any data items
left in buffers after draining completes3 and the state of any
stateful workers in the blob (together called the program
state). The controller rearranges the state to match the new
configuration’s partitioning of workers to blobs, then sends
the new blobs and the corresponding state to their host nodes
for recompilation, which begins with complete program state.
The host nodes compile the blobs and install the buffered
items and worker state, generating blobs that have the pro-
gram state incorporated. We call these blobs state-absorbed
blobs. The state-absorbed blobs continue execution from the
old program instance’s state.
The stop-and-copy reconfigurer enables all powerful do-

main specific optimizations to be applied to a running pro-
gram, allowing the program to benefit across its entire life-
time. However, it results in long periods during which the
stream program produces little or no output. This downtime
has three major causes: draining, recompilation, and initial-
ization. When draining begins, execution switches from the
optimized, multithreaded compiled blob to the StreamJIT in-
terpreter, which runs a fine-grained execution of the stream
graph on a single thread to drain the buffered data, reducing
3Because workers execute atomically, draining cannot completely empty a
buffer whose size is not divisible by the downstream worker’s pop rate, or
if the downstream worker peeks.

throughput to near zero. Recompilation itself also takes time,
during which the program is completely stopped. Finally,
each blob’s initialization phase usually requires receiving
input from its upstream blobs, further delaying the down-
stream blobs’ entry into their steady state.
Figure 4 shows the decrease in throughput during stop-

and-copy reconfiguration. Draining, compiling, and initial-
ization take five, six, and three seconds respectively, giving a
total downtime of 14 seconds. While simple, stop-and-copy
reconfiguration is not ideal for real-world stream applica-
tions with quality-of-service constraints, such as virtualized
network functions or software defined radio access networks.

5 Concurrent Recompilation
This section explains Gloss’s techniques to reduce the visible
recompilation time that is the most significant of the three
sources of downtime.

High recompilation time is one of the challenge that mod-
ern dynamically reoptimizing compilers face. For example,
the Java HotSpot JVM [29], has two different JIT compilers:
server and client JIT compilers. The client compiler performs
only quicker compilations, which is suitable for interactive
applications. The server compiler performs longer and ag-
gressive compilation to ensure the program’s performance,
which is suitable for computation heavy applications.

As compiler optimization and code generation are ex-
pensive operations that take significant time, minimizing
the compilation time to near zero is unlikely. Instead, the
compilation time must be hidden by keeping the JIT recom-
pilation process off the critical path. However, state depen-
dency blocks us from doing so. To solve this problem, Gloss
employs implicit state transferring for stateless programs
and two-phase compilation for stateful programs, as will be
explained below.

First, we categorize the stream programs into two classes:
stateful and stateless. The stateful class includes the programs
that contains one or more workers with state variables. The
stateless class includes the rest, including the programs that
perform peeking even though the peeking buffers are stateful
(explained in Section 2).

The pure stateless programs have no state dependency
issue. However, the state dependency issue exists in peek-
ing stateless programs, where the peeking buffers need to
be transferred from the old program instance to the new
program instance when reconfiguring. Given that, we can
avoid transferring peeking buffers between two program
instances via input duplication and concurrent execution.
That is, we can recompile stateless programs with no initial
program state while the old graph instance is running, then
run both graph instances concurrently, and fill the new peek-
ing buffers using input duplication, thereby achieving an
implicit state transfer. The runtime system can handle this,
and no compiler changes are needed. Section 6.1 explains

the input duplication and concurrent execution techniques,
and Section 7.1.1 explains the reconfiguration strategy for
stateless programs.

Stateful programs, however, require explicit state transfer.
Both the state of variables, and buffered data have to be
transferred before the start of recompilation. The concurrent
recompilation strategy solves this state dependency via a two
phase compilation strategy, explained in the next subsection.

5.1 Two Phase Compilation
For stateful programs, Gloss recompiles in two phases. The
first phase happens concurrently while the old graph in-
stance is running. To start the process, instead of draining
the old graph (as in stop-and-copy reconfiguration), the run-
time system collects the steady-state buffer capacities (called
the meta program state) from the old program instance, and
gives it to the compiler.

Gloss then performs optimizations that do not require the
program state as well as those that do, the latter using the
meta program state. Specifically, it recompiles the blobs as
in the serial recompilation. However, it will merely mark
out of operations that need actual program state, namely (1)
splitter and joiner removal, and (2) the generation of the read
instructions of initialization schedule. This phase completes
all compiler operations except these two, hence this is a
heavy compilation phase. Finally, it generates a blob, called
a pseudo-blob, that is compiled but not runnable as it needs
actual program state to be injected.
The second phase takes place after the old program in-

stance is stopped (drained) and the program state is collected.
Once the program state is collected from the old graph in-
stance, the runtime system passes the state to the compiler.
The compiler then performs the marked operations men-
tioned above and installs the program state, converting
pseudo blobs to state-absorbed blobs, which is ready for
execution.

In summary, the first phase, which is a heavy compilation,
does all the time-consuming compiler operations, generating
a pseudo-blob. The second phase, which is a light compilation,
converts the pseudo blob to a state-absorbed blob. Figure 5
depicts the time breakdown of the two-phase recompilation
strategy. The first phase happens in the backgroundwhile the
old program instance is running, and thus it is hidden. The
second phase happens just-in-time. Effectively, two phase
recompilation strategy brings the visible recompilation time
to sub-seconds.

6 Runtime Techniques Enabling Zero
Downtime Reconfiguration

As shown in Figure 5, we still have downtime, which comes
mainly from the draining and initialization phases. In this
section, we explain two runtime techniques that overcome
the remaining downtime.

Graph Instance 1

Draining Phase-2

Initialization
Graph Instance 2

Phase-1

Visible recompilation time

Downtime

Figure 5. Time breakdown of the two-phase recompilation
strategy.The phase-1 compilation happens while the graph
instance-1 is running. Only the phase-2 becomes visible and
contributes to the downtime.

6.1 Input Duplication and Concurrent Execution
The initialization phase of a blob’s lifecycle fills the internal
buffers for use by the steady-state phase (see Section 2). Inter-
nal buffering allows fine-grained synchronization between
workers to be replaced by a single global barrier at which
all of the blob’s threads synchronize after each execution of
the steady-state schedule. Coarsening synchronization and
amortizing it across a full schedule is crucial to achieving
high throughput. The draining phase performs the opposite,
flushing the internal buffers and sending any remaining data
to the controller.
Initialization is inherently sequential, as upstream work-

ers must execute to fill buffers before downstream workers
can begin execution. Similarly, draining is also inherently
sequential, as upstream workers must drain their buffers
before downstream workers can begin draining. While the
steady-state phase is optimized and multithreaded, the ini-
tialization and draining phases are single-threaded, hence
have lower throughput.
Because SDF stream programs are deterministic, Gloss

hides this downtime by duplicating the input and running
both the old and new graph instances concurrently, ensuring
the stream program continues to produce output at the cost
of some redundant work.

6.2 Zero-Overhead Program State Capture via
Asynchronous State Transfer

In order to perform concurrent execution, reconfiguration
requires the ability to deterministically persist the state of a
program running across multiple nodes, and pass it to the
new program instance. This is challenging because the pro-
gram state is continuously changing and distributed across
multiple nodes.
Besides stop-and-copy, another simple reconfiguration

strategy is to record periodic checkpoints of the program
state at well-defined points in its execution and persist the
inputs [1, 15, 32, 36, 46]. Reconfiguration can then revert
to the state captured at the previous checkpoint and pro-
cess the persisted input, albeit losing the work performed
after the checkpoint. Unfortunately, this introduces not only
downtime but also overhead during normal execution.
Gloss’s solution is asynchronous state transfer (AST), in

which the controller requests each of the old graph instance’s

Graph Instance 1

Draining

Phase-2
Initialization Graph Instance 2Phase-1

AST

Concurrent Execution

Figure 6. Time breakdown of Gloss’s techniques.

blobs to send a copy of its state after processing the nth data
item in the stream, where the nth data item is predicted to be
consumed by the graph t seconds in the future. Because this
request happens via the control channel while the input data
is being consumed by the graph via the data channel, n must
be far enough into the future to ensure the blobs receive
the request before processing item n. n is calculated by the
controller based on the overall graph’s input consumption
rate and a constant t (we use 3 seconds), allowing for network
delay in receiving the request. For each blob, the number
of data items consumed in each execution can be computed
from the schedules and the statically-known data rates of
the workers, so counting the number of items processed by
the blob requires only one addition instruction per schedule
and does not require labeling the data items.
Once the designated number of items have been pro-

cessed, when the blob’s threads next reach its barrier (see
Section 2), one thread copies worker state and buffered data
items (blob’s program state) and sends them to the controller.
After copying, the blob continues execution as normal with-
out the blob entering the draining phase. The controller then
builds the program state of the whole graph instance by
merging the buffered items it receives.

AST captures a valid state of a program while the program
is running in a distributed environment, without incurring
overhead during normal execution, i.e., no checkpointing,
input labeling, state recomputation or distributed consensus.
Although the distributed state is collected in the controller
for state rebuilding, it is done outside the critical path. The
program can continue to produce output even after state
transfer, effectively avoiding downtime.

Figure 6 depicts the breakdown of the Gloss. Reconfigura-
tion begins with the phase-1 of the concurrent recompilation
strategy, and AST takes place just after phase-1. Phase-2
happens immediately after AST. Following that concurrent
execution and input duplication occurs.

7 Seamless Reconfiguration
This section presents our fixed and adaptive seamless recon-
figuration strategies. Both seamless reconfiguration schemes
use concurrent recompilation and the techniques from Sec-
tion 6, namely asynchronous state transfer, concurrent exe-
cution, and input duplication. The two schemes differ in the
way they switch between the old and new graph instances. In
the fixed seamless reconfiguration scheme, a transition point
is computed in advance using the schedules and data rates.

Output Merger

Input Duplicator

Inject to

old graph

Inject to

new graph

Duplicate to

both graphs

Program input

Skip

Old graph’s
output

New graph’s
output

(c)

(b)

(a)

Time

Figure 7. Input duplication during fixed seamless recon-
figuration, moving from 2 blobs to 3 blobs. (a) Around the
switching point, some of the input is duplicated and fed to
both the old and new graph instances. (b) Both graph in-
stances execute concurrently. (c) The old graph instance’s
output, including the output based on the duplicated input,
is used. The beginning of the new graph instance’s output
(based on the duplicated input) is skipped and the remain-
der is used. The colors in (a) and (c) depict input and its
corresponding output.

The new graph instance’s output stream takes over after
the old graph instance stops. Fixed seamless reconfiguration
is simple, and bounds the amount of redundant work per-
formed. But it may exhibit downtime or output rate spikes
if the old and new graph instances run at different speeds.
Adaptive seamless reconfiguration dynamically transitions
between the old and new graph instances when the new
graph instance catches up, smoothing the output rate during
the transition.

7.1 Fixed Seamless Reconfiguration
As shown in Figure 7, fixed seamless reconfiguration runs the
old and new graph instances concurrently on a fixed amount
of duplicated input. The old graph instance is stopped after
processing the duplicated input, but the new graph instance
continues to execute. All output produced by the old graph
instance before it stops is forwarded to the graph’s output.
The portion of the new graph instance’s output correspond-
ing to the duplicated input is discarded, after which the new
graph instance’s output becomes the blob’s output.
The amount of duplicated input is computed based on

the data rates of the workers in the stream graph and the
execution schedule of the blob. The computation is different
for stateless and stateful graphs, as described in the next
subsections.

7.1.1 Stateless Graph
Stateless graphs do not contain any workers with state vari-
ables, but they still require internal buffering for both correct-
ness (to implement peeking/sliding window operations) and

performance (amortizing the cost of synchronization over
many data items). Buffered data items must be transferred
from the old to new graph instance during reconfiguration.
Because stateless graphs have no worker state, we can im-
plicitly transfer the buffered data items by duplicating input,
leaving the new graph instance with the same buffered items
as the old graph instance without stopping the old graph
instance to copy the items.

LetG init
in denote the number of input data items needed to

fill the internal buffers of a graph G during its initialization
phase. Similarly, let Gsteady

in denote the number of data items
required during one execution of G’s steady-state schedule.
G init

in and G
steady
in are computed by multiplying the topmost

worker’s pop rate by the number of executions of that worker
specified in the initialization or steady-state schedule respec-
tively. Fixed seamless reconfiguration runs the old and new
graph instances concurrently by duplicating X × OLDsteady

in
data items, where

X =

⌈
max(OLDinit

in ,NEW
init
in)

OLDsteady
in

⌉
The use of max(OLDinit

in ,NEW
init
in) ensures that after X ex-

ecutions of the old graph instance’s steady-state schedule,
any data items buffered in the old graph instance have been
fully processed, and that the new graph instance has received
enough (duplicate) input to complete its initialization sched-
ule. The number of redundant output data items produced is
X ×OLDsteady

out , one copy of which must be discarded. Because
the new graph instance’s initialization phase usually has a
lower output rate than the old graph instance’s steady-state
phase, we forward all of the old graph instance’s output and
discard the first X × OLDsteady

out items produced by the new
graph instance. At this point, reconfiguration is complete
and the new graph instance executes normally.

7.1.2 Stateful Graph
Stateful stream graphs contain workers with state variables
whose values must be transferred from the old to new graph
instance, preventing implicit state transfer. Instead, Gloss
uses AST (Section 6.2) to capture the state (both worker state
variables and buffered data items) of the old graph instance.
Gloss also uses two phase compilation strategy (Section 5.1)
to recompile the new graph instance. Figure 6 depicts the
reconfiguration and recompilation process of stateful graph.
The intended buffer sizes of the old and new graph in-

stances may be different, so the new graph instance’s initial-
ization schedule shrinks or enlarges the buffers as required.
To allow the initialization schedule to complete,X×OLDsteady

in
data items are duplicated, where

X =

⌈
NEWinit

in

OLDsteady
in

⌉

As in the stateless case, X × OLDsteady
out redundant output

items are skipped from the next graph instance’s output
buffer.

7.1.3 Issues in Fixed Seamless Reconfiguration
When the new graph instance has a slightly higher through-
put than the old, fixed seamless reconfiguration will result in
zero downtime. A slightly higher throughput is required for
the new graph instance to catch up with the old one because
the new graph instance need to amortize its initialization
phase, which is slower. In other cases, however, fixed seam-
less reconfiguration either causes downtime or spikes in the
output rate during the transition.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 200 250 300 350 400
Th

ro
ug

hp
ut

(it
em

s/
s)

Time(s)

Do
w

n
Cf

g-
3

(a) Downtime when transition-
ing from high to low throughput.

 0

 5000

 10000

 15000

 20000

 25000

 50 100 150 200

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Cf
g-

2

(b) Output spikes when tran-
sitioning from low to high
throughput.

Figure 8.Downtime and output spikes during fixed seamless
reconfiguration when throughput differs.

When the old graph instance has a higher throughput than
the new graph instance, the old graph instance processes
all of its input and stops before the new graph instance
completes its initialization schedule, resulting in downtime.
The downtime is shorter than that caused by stop-and-copy
reconfiguration, but still long enough to be disruptive. Fig-
ure 8a shows the downtime caused by fixed seamless recon-
figuration from high to low throughput.

When the old graph instance has a lower throughput than
the new graph instance, the new graph instance can buffer up
lots of output while waiting for the old graph instance to fin-
ish processing its input. When the old graph instance finally
stops, this buffered output results in a spike in the output rate,
which can disrupt clients of the stream application. Figure 8b
shows output spikes caused by fixed seamless reconfigura-
tion from low to high throughput. In theory, downtime and
output spikes can be avoided by predicting the throughput
of the new configuration, and adjusting the fixed transition
point between the old and new graph instances. In practice,
building a robust throughput predictor is difficult because
performance depends on (possibly rapidly) changing runtime
factors as well as static features of the configuration. In the
next section, we explain how our adaptive seamless recon-
figuration scheme addresses the remaining downtime and
output spikes by deciding the transition point dynamically.

7.2 Adaptive Seamless Reconfiguration
Like the fixed scheme, adaptive seamless reconfiguration
also runs the old and new graph instances concurrently,
but instead of duplicating a fixed amount of input, adaptive
seamless reconfiguration dynamically chooses how much
input to duplicate and thus when to switch from the old to
the new graph instance. Adaptive seamless reconfiguration
applies two output smoothing techniques, adaptive merging
and resource throttling, to avoid the downtime and output
rate spikes of fixed seamless reconfiguration.

Adaptive merging Output spikes are avoided by switch-
ing to the new graph instance as soon as it catches up with
the old graph instance, avoiding the buildup of buffered
output that causes spikes. How much input to duplicate is
computed in the same way as in the fixed seamless recon-
figuration scheme, but if the new graph instance catches
up before the old graph instance has finished processing all
the duplicated input, the old graph instance is immediately
abandoned. Input duplication results in redundant outputs.
In the fixed seamless reconfiguration always discards the
first outputs of the new graph instance. However, in adaptive
merging output from the old, new or both instances may
be discarded, depending on when the new graph instance
catches up.

Resource throttling The adaptive seamless reconfigura-
tion scheme avoids the downtime incurred when the new
graph instance has lower throughput than the old graph
instance by resource throttling, effectively slowing down
the old graph instance so the new graph instance can catch
up. Based on the time elapsed since the reconfiguration pro-
cess started, the number of cores allocated to the old graph
instance is repeatedly halved, resulting in the old graph in-
stance having more threads than cores available. Timeslicing
reduces the old graph instance’s throughput, while simulta-
neously freeing more resources for the new graph instance,
increasing its throughput. If this does not slow the old graph
instance sufficiently, the old graph instance’s input rate is
further restricted.

7.3 Summary
The flowchart in Figure 9 summarizes adaptive seamless re-
configuration, which consists of the following steps:
Compilation.When reconfiguration begins, Gloss compiles
the new graph instance while the old graph instance contin-
ues to execute.
State transfer. If the program is stateful, the state of the old
graph instance is collected via asynchronous state transfer.
Input duplication. After injecting the collected state (if
any), the new graph instance begins executing. Input data
items are sent to both the old and new graph instances. The
old graph instance’s output continues to be forwarded to the
overall blob output.

Step 0: Compile G2. Perform

only phase-1 if the program is

stateful

Step 2: Start G2 and duplicate

input to both graphs

Step 4: Stop G1 when G2’s
output catches up G1’s output

G1 is running

Step 3a: Merge output from

G1 until G2’s output catches
up with it

Step 1a: Asynchronous state

transferring from G1 to G2

Step 1b: Perform Phase-2

G2 is running

If the program is stateful

Step 3b: Reduce the input

and the resources of G1

gradually

Figure 9. Flowchart of adaptive seamless reconfiguration
from old graph instance G1 to new graph instance G2.

Resource throttling. Even as the old graph continues to
execute, its execution resources and input rate are gradually
reduced, thereby reducing its throughput so that the new
graph instance can catch up.
Adaptivemerging.Once the new graph instance has caught
up with the old graph instance, the old graph instance is
stopped, and redundant output are discarded.

8 StreamJIT Applications
Before discussing the evaluation of Gloss, we shall briefly
explain two applications that were implemented in StreamJIT.
The applications are stateless, and were used to evaluate
how Gloss can be useful to migrate a single-node program
entirely from its host node to a new node (Section 9.8). In the
real world, we can expect many parallel instances of these
applications running in the system.

8.1 LTE-A Uplink Transceiver
4G LTE-A (Long Term Evolution-Advanced) is a standard for
wireless communication of high-speed data (up to 1 Gbps)
for mobile phones and data terminals. It incorporates several
techniques such as carrier aggregation, high-order MIMOs,
high-order QAM, and Turbo decoding.

The LTE-A Uplink Transceiver implemented in StreamJIT
includes an uplink transmitter, a MIMO channel, and an
uplink receiver. The program implements a 2 × 2 MIMO
channel with spatial multiplexing. The transmitter comprises
the turbo encoder, outer interleaver, 64 QAMmodulator, FFT,
mapper, and IFFT filters. The receiver is made up of the
subcarrier demapper, MIMO equalizer, demodulator, outer
deinterleaver and turbo decoder filters. This application is
the core of any LTE-A base station implemented in the cloud.

Application State Stop and Copy Fixed Adaptive
Throughput dis-
rupted time (s)

Down
time (s)

Throughput dis-
rupted time (s)

Down
time (s)

Throughput dis-
rupted time (s)

Down
time (s)

Beam Former Stateful 10.7 9.3 5.5 1.5 7.0 0
Vocoder Stateful 15.2 11.8 2.5 0.75 6.0 0
TDE_PP Stateless 9.0 8.4 6.4 4.8 3.83 0
FMRadio Stateless 10.5 9.2 9.5 1.0 7.0 0
SAR Stateless 9.8 6.2 5.2 1.3 2.1 0
Filter Bank Stateless 7.8 6.16 3.85 2.28 2.8 0
Average 10.50 8.51 5.49 1.92 4.78 0

Table 1. Average throughput disrupted time and average downtime of Gloss’s reconfiguration schemes.

8.2 DVB-T2 Receiver
DVB-T2 (Digital Video Broadcasting-Terrestrial 2) is the lat-
est digital terrestrial television standard, targeting not only
fixed antennas, but also PCs, laptops, portable radios, smart
phones, dongles, and a whole range of other portable de-
vices. Compared to the previous technology (DVB-T), it im-
proves spectral efficiency, increases throughput, simplifies
transmitter and receiver, and supports HD, SD, and UHD
transmissions.
The DVB-T2 receiver implemented in StreamJIT com-

prises the FFT, Channel Estimator, Frequency Deinterleaver,
Cell Deinterleaver, Constellation Derotation, Forward Error
Correction, Frame Multiplexer, Bit Deinterleaver, and LDPC
(low density parity check) decoder filters.

9 Evaluation
In this section, we first study the reconfiguration schemes
by comparing their relative contribution to reducing down-
time, followed by an evaluation of the overhead of the bet-
ter scheme, i.e., adaptive seamless reconfiguration. We then
show how Gloss’s seamless reconfiguration can be useful in
various scenarios. Following that, we investigate the effect
of program state size on reconfiguration time. Finally, we
show how Gloss performs with the two real-world appli-
cations described in Section 8. We use scaled up versions
of the original benchmark applications from StreamJIT, a
comprehensive summary of which can be found in [24]. Ex-
cept for the experiments reported in Sections 9.3 and 9.4, the
experiments were performed using identical nodes equipped
with dual-socket 2.4GHz Intel Xeon E5-2695v2 processors
(12 cores per socket, 2 threads per core) with 128GB RAM
and Mellanox ConnectX-3 EN 10GbE NICs running Ubuntu
14.10, with StreamJIT running on OpenJDK 1.8u31.

As part of StreamJIT’s throughput optimizations (described
in Section 2), all StreamJIT programs ingest input and emit
output at the end of each execution of the steady-state sched-
ule. In other words, a program will ingest I at the beginning
of the cycle, then output O at the end, leaving a very short
period (in milliseconds) where no output can be seen. To

account for this, in this section and throughout the paper,
we measure throughput at the granularity of one second.

9.1 Comparison
Table 1 compares the average length of time inwhich through-
put was disrupted, as well as the average downtime of Gloss’s
reconfiguration schemes for six different applications. Each
application was reconfigured 100 times using the respective
scheme on eight nodes, and the average was computed. We
use the same 100 different configurations to test the recon-
figuration schemes. The last row summarizes the overall
average of the schemes. By downtime, we mean a significant
period of time in which the stream program is not producing
any output. Throughput-disrupted time is period of time dur-
ing which the stream program is producing less than what it
averages in the previous 100 seconds. We refer to the latter
as full throughput.
Stop-and-copy reconfiguration suffers from significant

downtime and throughput-disrupted time as explained in
Section 4.1. Fixed seamless reconfiguration reduces the av-
erage downtime, but it fails to totally eliminate it due to
the reasons described in Section 7.1.3. Adaptive seamless
reconfiguration completely eliminated downtime with sig-
nificantly lower throughput-disrupted times.

9.2 Reconfiguration Overhead
To measure the overhead of adaptive seamless reconfigu-
ration, we repeatedly reconfigured FMRadio into the same
configuration. Using the same configuration ensures that the
measured reduction in throughput is due to reconfiguration,
not the properties of the new configuration. Figure 10 shows
the throughput of FMRadio running on 8 nodes through 3
reconfigurations. The shaded region shows when the old and
new graph instances are running concurrently. On average,
the two graph instances overlapped for 7.2 seconds. The pro-
gram does not experience any downtime though throughput
is reduced by 27% during the reconfiguration process.
Recompilation and reconfiguration do not use extra re-

sources. They run on the same resources where the original

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 150 200 250 300 350 400 450

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Concurrent
Execution

Ne
w
Cf
g2

St
ar
t-2

En
d-
1

Ne
w
Cf
g3

St
ar
t-3

En
d-
2

Ne
w
Cf
g4

St
ar
t-4

En
d-
3

Figure 10. Throughput of FMRadio (a stateless stream pro-
gram) running on 8 nodes during three adaptive seamless re-
configurations into the same configuration. The lines marked
NewCfg denote the beginning of reconfiguration; the shaded
area indicates when the old and new graph instances are
running concurrently.

program is already using (via normal OS scheduling). This
is also a contributor for the dip in throughput.

9.3 Gloss vs. VM Migration
An application-independent (and agnostic) approach to re-
configuration is virtual machine live migration. This is the
de facto standard in cloud computing, even for large scale
SDF applications [16].

We compared vMotion [34] migration with adaptive seam-
less reconfiguration by running stream programs inside vir-
tual machines, and measuring the throughput during migra-
tion and reconfiguration. The experiment used vSphere 5.0.0,
64-bit CentOS 7.7, and Oracle JDK 1.8u31. The virtual ma-
chines were configured with 6 virtual cores and 32GB RAM.
The physical hosts were equipped with 2.3GHz Intel Xeon
E5-2630 processors and 32GB RAM. Each stream program
initially runs on two nodes, then the second node is moved to
a new physical host by either migration or reconfiguration.

As shown in Figure 11, vMotionmigration hadmore down-
time than adaptive seamless reconfiguration. vMotion first
speculatively copies the contents of the virtual machine’s
memory, on the assumption that most memory pages will
not change before the VM is migrated. This assumption does
not hold for stream applications as they continuously ingest
new data, modifying memory significantly. When vMotion
detects that the amount of memory to be copied is not de-
creasing (because memory is being modified faster than it
can be copied), it artificially slows down the virtual machine,
a strategy named stun during page send [40]. Eventually,
vMotion stops the VM and copies the remaining modified
memory, but not before a lengthy throughput-disrupted time.

In many application scenarios, especially those involving
live streams, this is not acceptable. For example, using tech-
niques like forward error correction, a cellular or Internet

 0

 1000

 2000

 3000

 4000

 100 150 200 250 300

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Do
w

n

St
ar

t

En
d

21s

(a) FMRadio-vMotion

 0

 1000

 2000

 3000

 4000

 150 200 250 300 350 400

Min=399.01 (items/s)

T
h

ro
u

g
h

p
u

t(
it

em
s/

s)

Time(s)

S
ta

rt
E

n
d

(b) FMRadio-Gloss

 0

 1000

 2000

 3000

 4000

 5000

 200 250 300 350 400 450 500

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Do
w

n

St
ar

t

En
d

27s

(c) Beamformer-vMotion

 0

 1000

 2000

 3000

 4000

 5000

 100 150 200 250 300 350 400

Min=795.95 (items/s)

T
h

ro
u

g
h

p
u

t(
it

em
s/

s)

Time(s)

S
ta

rt
E

n
d

(d) Beamformer-Gloss
Figure 11. Downtime comparison of vMotion migration
and Gloss adaptive seamless reconfiguration for FMRadio (a
stateless program) and Beamformer (a stateful program).

call can tolerate brief (subsecond level, say) throughput dips
or downtime with little impact on the user. These applica-
tions can cope with some reduced throughput by reducing
audio or video quality, the user impact of which is propor-
tional to the reduced-throughput time. But the multi-second
pause times introduced by vMotion migration would result
in dropped calls, which are very disruptive to the user. Gloss
minimizes the impact of reconfiguration by making just one
copy of the state using asynchronous state transfer, allowing
the stream program to run at full speed before and after the
copy, only throttling the old graph instance’s resources when
necessary for the new graph instance to catch up.

9.4 Elastic Computing
We evaluated Gloss’s elastic computing capability by run-
ning stream programs on Amazon EC2, and then dynam-
ically adding and removing nodes. The virtual machines
used in these experiments all had 16vCPU and 32GB RAM,
running 64-bit Ubuntu 15.04 and 64-bit Oracle JDK 1.8u31.
Figure 12 shows the throughput of two programs as nodes
are added and removed using adaptive seamless reconfigura-
tion. Gloss reconfigures the programs without introducing
any downtime, allowing seamless scaling out or in. Gloss
also potentially allows cloud-based streaming program to
exploit spot instances [4] to minimize execution cost.

9.5 Online Autotuning
Program autotuning optimizes programs by running them
many times in different configurations, using techniques
from mathematical optimization and machine learning to
guide the search for the best configuration. Gloss can dy-
namically recompile and seamlessly reconfigure programs
from any point in the optimization space to any other point,

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 100 200 300 400 500 600 700

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Cf
g1

Cf
g2

Cf
g3

Cf
g4

Cf
g5

Cf
g6

(a) Beamformer

 0

 2000

 4000

 6000

 8000

 10000

 100 200 300 400 500 600

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Cf
g1

Cf
g2

Cf
g3

Cf
g4

Cf
g5

Cf
g6

(b) FMRadio
Figure 12. Throughput of Beamformer (a stateful stream
program) and FMRadio (a stateless stream program) on Ama-
zon EC2 as nodes are added and removed. Programs initially
run on two nodes, then two nodes are added, twomore nodes
are added, one node is removed, another node is removed,
and one node is added. Gloss reconfigures the programs with
zero downtime.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 300 400 500 600 700

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Cf
g3

Cf
g4

Cf
g5

Cf
g6

(a) Beamformer

 0

 2000

 4000

 6000

 8000

 10000

 250 300 350 400 450 500 550 600

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

Cf
g3

Cf
g4

Cf
g5

(b) FMRadio

Figure 13. An excerpt of online autotuning of Beamformer
(a stateful stream program) and FMRadio (a stateless stream
program) on 8 nodes. Gloss reconfigures the programs with
zero downtime. Throughput varies as the autotuner tries
different program variants.

allowing global reoptimization unconstrained by earlier com-
pilation decisions. This enables online autotuning on produc-
tion data by eliminating pauses when transitioning between
configurations, allowing the program to perform useful work
during the tuning process.
Figure 13 shows a small excerpt of online autotuning

of two stream programs, each on eight nodes. Throughput
varies as the autotuner tries different program variants, but
Gloss seamlessly reconfigures the program from one variant
to another while maintaining quality-of-service.

9.6 Workload Fluctuation
Gloss achieves performance resiliency by continuously re-
compiling and reoptimizing the program in response to envi-
ronment changes. To demonstrate this, we created a bench-
mark that increases the work required to process each data
item every 30 seconds, starting after 100 seconds. The pro-
gram initially runs on a single node, with a new node added
whenever the throughput falls below 8,000 items processed
per second. Figure 14a compares the throughput on this
benchmark with and without adding additional nodes. With-
out adding nodes, the program can only achieve slightly
more than half of the desired performance level. However,

when using reconfiguration to add nodes, the program suc-
cessfully maintains throughput with only a small amount of
throughput-disrupted time.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

 50 100 150 200 250 300 350

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

2n
d

No
de

3r
d

No
de

Resource Added
No Resource Added

(a)

 0

 2

 4

 6

 8

 10

0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8

Re
co

nf
ig

ur
at

io
n

Ti
m

e(
s)

State Size (MB)

(b)

Figure 14. (a) Throughput as workload increases every
30 seconds beginning at 100 seconds. The blue line shows
throughput when a node is added when throughput drops
below 8000 items per second; the red line shows throughput
of the same workload when nodes are not added. (b) Average
reconfiguration time for different program state sizes.

9.7 Reconfiguration Time vs State Size
To evaluate the effect of program state size on adaptive seam-
less reconfiguration, we created a benchmark of different
state sizes on the 8 nodes. Figure 14b shows the average
reconfiguration time of 100 reconfigurations for each state
size. Although Gloss collects the state in the controller to
rebuild the complete state, it is done off the critical path
through asynchronous state transfer that requires no global
synchronization. The results validated this and showed that
the size of the program state does not significantly affect
reconfiguration time.

9.8 Single Node Experiment (Full Program
Migration)

We ran LTE-A receiver and DVB-T2 receiver on a single node,
and from time to time, the programs were migrated to a new
machine. Figure 15a shows the throughput of LTE-A receiver,
where the program is migrated from its current node to a
new node repetitively for four times with the help of Gloss.
Figure 15b shows the throughput of DVB-T2 receiver for
the similar experiment. DVB-T2 receiver produces output in
burst for every 2 seconds because of its high peek and pop
rates, which is inherent to the application.

As shown in the figures, Gloss migrates full program from
its host node to a new node with no downtime. Gloss em-
pirically demonstrates the important benefits of software
defined radio (SDR), which are hardware independency and
flexibility, with these real world applications.

10 Related Work
VM livemigration Virtual machine live migration [14, 34]
is an application-independent way to move workloads from
one physical host to another for load balancing or to facilitate

 0
 20000
 40000
 60000
 80000

 100000

 300 400 500 600

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

LTE-Advanced Receiver

Cf
g1

Cf
g2

Cf
g3

Cf
g4

(a) LTE-A Receiver

 0

 50000

 100000

 150000

 200000

 250000

 500 1000 1500 2000

Th
ro

ug
hp

ut
(it

em
s/

s)

Time(s)

DVB-T2 Receiver

Cf
g1

Cf
g2

Cf
g3

Cf
g4

Cf
g5

Cf
g6

Cf
g7

(b) DVB-T2 Receiver

Figure 15. Throughputs of two programs (LTE-A Receiver
and DVB-T2 Receiver), initially running on a single node.
Time-to time, the programs were completely moved from
there host node to a new node.The lines marked Cfgn denote
the beginning of reconfiguration n.

maintenance. As shown in Section 9.3, VM live migration is
not suitable for stream programs.

Distributed database migration Recent work [17, 20, 21,
42, 47] focuses on live OLTP workload migration in dis-
tributed databases for load balancing and elastic scaling.
Albatross [17] migrates active OLTP workloads of a shared-
storage DBMS by iteratively copying the database cache be-
tween nodes. Squall [20] migrates data tuples between nodes
of a distributed in-memory database while maintaining ACID
semantics. Squall maintains responsiveness by first migrat-
ing tuples being accessed by transactions. DrTM+B [47] ex-
ploits existing fault-tolerant mechanisms, which maintain
data replicas, to achieve efficient live workload migration.

Distributed stream processing Distributed stream pro-
cessing systems [1, 5, 9, 15, 36, 38, 46, 49–51] support re-
configuration for fault tolerance, dynamic scaling, and load
balancing, but their strategies all incur overhead during nor-
mal execution. Spark Streaming [51] tracks the lineage of
each dataset (the operations performed to produce them) and
recomputes from occasional checkpoints. Matteis et al. [18]
present a replica based strategy for low-latency reconfig-
uration. Apache Storm [6, 46] and MillWheel [1] use fine-
grained checkpointing, input persisting, and acknowledg-
ment; the receiver acknowledges every data item received
from the sender. Using the fixed data rates of stream pro-
grams, Gloss does not require checkpointing, input persist-
ing, or acknowledgment, avoiding any overhead during nor-
mal execution. Furthermore, Gloss’s global recompilation
enables load-balancing and scaling without sacrificing opti-
mization opportunities.
DDF stream processing systems such as Flink [5], Spark

Streaming [51], and Storm [46] lacks some essential SDF
constructs. This also prevents the use of SDF specific op-
timizations, making them at least an order of magnitude
slower in executing SDF code compared to Gloss/StreamJIT.

Erlang [7] is a domain-specific language for soft real-time
telecommunications programming. To allow software up-
grades without service disruption, Erlang supports hot swap-
ping of program code via load balancing. New sessions run

the new code, then after all old sessions have expired, the
old code is unloaded. Flux [41] profiles communication rates
between operators and performs fine-grained load balanc-
ing by moving individual operators; this fine-grained ap-
proach sacrifices opportunities for operator fusion. Gedik
et al. [23] presents elastic scaling techniques for stream pro-
grams. However, the vertical and horizontal barriers across
multiple nodes and the paused data stream at the splitter
during the migration phase incur significant downtime. Siy-
oum et al. [43] analyze if an SDF program runs on a MPSoC
can meet QoS requirements during graph level dynamism.
We do not address graph level dynamism at the moment.

Cloud computing frameworks such as EventWave [13]
and Orleans [12] support state migration for load balancing,
but they use fixed partitions, and do not reoptimization.

11 Conclusion
Runtime reconfiguration is a practical necessity for long-
running stream programs. We describe, for the first time,
compiler and runtime techniques that enable downtime-free
reconfiguration of SDF-based stream programs. Unlike other
systems based on load balancing of fixed partitions, Gloss’s
seamless reconfiguration enables load balancing and contin-
uous global reoptimization. Compared to the tens of seconds
of no output during migration using a state-of-the-art com-
mercial virtualization tool, Gloss can reconfigure stream
programs with no downtime, additional resources, or over-
head during normal execution. It is also able to respond to
demand changes, allow for elastic scaling in the cloud, as
well as make online autotuning feasible.

The cluster-wide dynamic recompilation makes all ahead-
of-time domain specific optimizations available to a running
program. The downtime-free live reconfiguration globally re-
optimizes and redistributes program instances across cluster
nodes on-the-fly.

Gloss solves a critical problem before large scale SDF pro-
grams can take advantage of the elastic cloud. For example,
Gloss can help in the implementation of the Cloud Radio
Access Network (Cloud-RAN or RANaaS) concept in 5G mo-
bile network where RANs are to be migrated from expensive
and rigid custom hardware to software platforms running on
the elastic cloud. In summary, Gloss enables cost-effective,
flexible and responsive commoditization and virtualization
of large and complex SDF-based stream programs.

Acknowledgments
The work reported here was supported by Singapore Min-
istry of Education under Academic Research Fund Tier 1,
DARPA under grant No. FA8750-17-2- 0126, and DOE under
awards No. DE-SC008923 and No. DE-SC014204.

References
[1] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh

Haberman, Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom,
and Sam Whittle. 2013. MillWheel: Fault-tolerant Stream Processing
at Internet Scale. Proc. VLDB Endow. 6, 11 (Aug. 2013), 1033–1044.
https://doi.org/10.14778/2536222.2536229

[2] Ian F. Akyildiz, Shuai Nie, Shih-Chun Lin, and Manoj Chandrasekaran.
2016. 5G roadmap: 10 key enabling technologies. Computer Networks
106 (2016), 17 – 48. https://doi.org/10.1016/j.comnet.2016.06.010

[3] Ian F. Akyildiz, PuWang, and Shih-Chun Lin. 2015. SoftAir: A software
defined networking architecture for 5G wireless systems. Computer
Networks 85 (2015), 1 – 18. https://doi.org/10.1016/j.comnet.2015.05.
007

[4] Amazon.com Inc. 2018. Amazon EC2 Spot Instances. (2018). https:
//aws.amazon.com/ec2/spot/

[5] Apache Flink Community. 2014. Apache Flink. https://flink.apache.
org/. (2014).

[6] Apache Storm Community. 2015. Apache Storm. https://storm.apache.
org/. (2015).

[7] Joe Armstrong. 2003. Making reliable distributed systems in the presence
of errors. Ph.D. Dissertation. Royal Institute of Technology, Stockholm.

[8] Joshua Auerbach, David F. Bacon, Perry Cheng, and Rodric Rab-
bah. 2010. Lime: A Java-compatible and Synthesizable Language
for Heterogeneous Architectures. In Proceedings of the ACM Interna-
tional Conference on Object Oriented Programming Systems Languages
and Applications (OOPSLA ’10). ACM, New York, NY, USA, 89–108.
https://doi.org/10.1145/1869459.1869469

[9] Magdalena Balazinska, Hari Balakrishnan, and Michael Stonebraker.
2004. Load Management and High Availability in the Medusa Dis-
tributed Stream Processing System. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data (SIGMOD
’04). ACM, New York, NY, USA, 929–930. https://doi.org/10.1145/
1007568.1007701

[10] Jeffrey Bosboom, Sumanaruban Rajadurai,Weng-FaiWong, and Saman
Amarasinghe. 2014. StreamJIT: A Commensal Compiler for High-
Performance Stream Programming. In ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications (OOP-
SLA). Portland, OR. http://groups.csail.mit.edu/commit/papers/2014/
bosboom-oopsla14-commensal.pdf

[11] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fata-
halian, Mike Houston, and Pat Hanrahan. 2004. Brook for GPUs:
stream computing on graphics hardware. In ACM SIGGRAPH 2004
Papers (SIGGRAPH ’04). ACM, New York, NY, USA, 777–786. https:
//doi.org/10.1145/1186562.1015800

[12] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya,
and Jorgen Thelin. 2011. Orleans: Cloud Computing for Everyone. In
Proceedings of the 2Nd ACM Symposium on Cloud Computing (SOCC
’11). ACM, New York, NY, USA, Article 16, 14 pages. https://doi.org/
10.1145/2038916.2038932

[13] Wei-Chiu Chuang, Bo Sang, Sunghwan Yoo, Rui Gu, Milind Kulka-
rni, and Charles Killian. 2013. Eventwave: Programming model and
runtime support for tightly-coupled elastic cloud applications. In Pro-
ceedings of the 4th annual Symposium on Cloud Computing. ACM, 21.

[14] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric
Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live
migration of virtual machines. In Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2.
USENIX Association, 273–286.

[15] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. 2010. MapReduce Online. In
Proceedings of the 7th USENIX Conference on Networked Systems De-
sign and Implementation (NSDI’10). USENIX Association, Berkeley, CA,
USA, 21–21. http://dl.acm.org/citation.cfm?id=1855711.1855732

[16] Chenzhou Cui, Boliang He, Ce Yu, Jian Xiao, and Changhua Li. 2017.
AstroCloud: A Distributed Cloud Computing and Application Platform

for Astronomy. arxiv.org (2017).
[17] Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi.

2011. Albatross: Lightweight Elasticity in Shared Storage Databases
for the Cloud Using Live Data Migration. Proc. VLDB Endow. 4, 8 (May
2011), 494–505. https://doi.org/10.14778/2002974.2002977

[18] Tiziano De Matteis and Gabriele Mencagli. 2016. Keep Calm and React
with Foresight: Strategies for Low-latency and Energy-efficient Elastic
Data Stream Processing. In Proceedings of the 21st ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP
’16). ACM, New York, NY, USA, Article 13, 12 pages. https://doi.org/
10.1145/2851141.2851148

[19] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio. 2009.
The Square Kilometre Array. Proc. IEEE 97, 8 (Aug 2009), 1482–1496.
https://doi.org/10.1109/JPROC.2009.2021005

[20] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Di-
vyakant Agrawal, and Amr El Abbadi. 2015. Squall: Fine-Grained
Live Reconfiguration for Partitioned Main Memory Databases. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’15). ACM, New York, NY, USA, 299–313.
https://doi.org/10.1145/2723372.2723726

[21] Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi.
2011. Zephyr: Live Migration in Shared Nothing Databases for Elastic
Cloud Platforms. In Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’11). ACM, New York,
NY, USA, 301–312. https://doi.org/10.1145/1989323.1989356

[22] B. Farhang-Boroujeny. 2011. OFDM Versus Filter Bank Multicarrier.
IEEE Signal Processing Magazine 28, 3 (May 2011), 92–112. https:
//doi.org/10.1109/MSP.2011.940267

[23] Bugra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2014.
Elastic Scaling for Data Stream Processing. IEEE Trans. Parallel Distrib.
Syst. 25, 6 (June 2014), 1447–1463. https://doi.org/10.1109/TPDS.2013.
295

[24] M.I. Gordon. 2010. Compiler Techniques for Scalable Performance of
Stream Programs on Multicore Architectures. Ph.D. Dissertation. Mas-
sachusetts Institute of Technology.

[25] Michael I. Gordon, William Thies, and Saman Amarasinghe. 2006.
Exploiting Coarse-grained Task, Data, and Pipeline Parallelism in
Stream Programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII). ACM, New York, NY, USA, 151–162. https:
//doi.org/10.1145/1168857.1168877

[26] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S.
Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann,
David Maze, and Saman Amarasinghe. 2002. A stream compiler for
communication-exposed architectures. SIGOPS Oper. Syst. Rev. 36, 5
(Oct. 2002), 291–303. https://doi.org/10.1145/635508.605428

[27] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and
Scott Mahlke. 2011. Sponge: Portable Stream Programming on Graph-
ics Engines. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XVI). ACM, New York, NY, USA, 381–392. https:
//doi.org/10.1145/1950365.1950409

[28] G. Kahn. 1974. The Semantics of a Simple Language for Parallel
Programming. In Information Processing ’74: Proceedings of the IFIP
Congress, J. L. Rosenfeld (Ed.). North-Holland, New York, NY, 471–475.

[29] Thomas Kotzmann, Christian Wimmer, Hanspeter Mössenböck,
Thomas Rodriguez, Kenneth Russell, and David Cox. 2008. Design of
the Java HotSpot&Trade; Client Compiler for Java 6. ACM Trans.
Archit. Code Optim. 5, 1, Article 7 (May 2008), 32 pages. https:
//doi.org/10.1145/1369396.1370017

[30] K. T. Lam, Y. Luo, and C. L. Wang. 2010. Adaptive sampling-based
profiling techniques for optimizing the distributed JVM runtime. In
Parallel Distributed Processing (IPDPS), 2010 IEEE International Sympo-
sium on. 1–11. https://doi.org/10.1109/IPDPS.2010.5470461

https://doi.org/10.14778/2536222.2536229
https://doi.org/10.1016/j.comnet.2016.06.010
https://doi.org/10.1016/j.comnet.2015.05.007
https://doi.org/10.1016/j.comnet.2015.05.007
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://flink.apache.org/
https://flink.apache.org/
https://storm.apache.org/
https://storm.apache.org/
https://doi.org/10.1145/1869459.1869469
https://doi.org/10.1145/1007568.1007701
https://doi.org/10.1145/1007568.1007701
http://groups.csail.mit.edu/commit/papers/2014/bosboom-oopsla14-commensal.pdf
http://groups.csail.mit.edu/commit/papers/2014/bosboom-oopsla14-commensal.pdf
https://doi.org/10.1145/1186562.1015800
https://doi.org/10.1145/1186562.1015800
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2038916.2038932
http://dl.acm.org/citation.cfm?id=1855711.1855732
https://doi.org/10.14778/2002974.2002977
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1145/2851141.2851148
https://doi.org/10.1109/JPROC.2009.2021005
https://doi.org/10.1145/2723372.2723726
https://doi.org/10.1145/1989323.1989356
https://doi.org/10.1109/MSP.2011.940267
https://doi.org/10.1109/MSP.2011.940267
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1109/TPDS.2013.295
https://doi.org/10.1145/1168857.1168877
https://doi.org/10.1145/1168857.1168877
https://doi.org/10.1145/635508.605428
https://doi.org/10.1145/1950365.1950409
https://doi.org/10.1145/1950365.1950409
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1145/1369396.1370017
https://doi.org/10.1109/IPDPS.2010.5470461

[31] E.A. Lee and D.G. Messerschmitt. 1987. Static scheduling of synchro-
nous data flow programs for digital signal processing. Computers, IEEE
Transactions on 100, 1 (1987), 24–35.

[32] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jingren
Zhou, and Lidong Zhou. 2016. STREAMSCOPE: Continuous Reliable
Distributed Processing of Big Data Streams. In Proceedings of the 13th
Usenix Conference on Networked Systems Design and Implementation
(NSDI’16). USENIX Association, Berkeley, CA, USA, 439–453. http:
//dl.acm.org/citation.cfm?id=2930611.2930640

[33] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard.
2003. Cg: a system for programming graphics hardware in a C-like
language. ACM Trans. Graph. 22, 3 (July 2003), 896–907. https://doi.
org/10.1145/882262.882362

[34] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. 2005. Fast Trans-
parent Migration for Virtual Machines. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference (ATC ’05). USENIX
Association, Berkeley, CA, USA, 25–25. http://dl.acm.org/citation.
cfm?id=1247360.1247385

[35] P. J. Hall. Ed. 2005. The Square Kilometre Array: An Engineering Per-
spective. Springer.

[36] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu,
Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013.
Timestream: Reliable stream computation in the cloud. In Proceed-
ings of the 8th ACM European Conference on Computer Systems. ACM,
1–14.

[37] J Tseng R. Newman. 2011. Cloud Computing and the Square Kilometer
Array (Memo 134). The Square Kilometer Array, 1–21. http://www.
skatelescope.org/uploaded/8762_134_Memo_Newman.pdf

[38] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew
Warfield. 2013. Split/Merge: System Support for Elastic Execution
in Virtual Middleboxes.. In NSDI. 227–240.

[39] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amaras-
inghe. 2005. Cache Aware Optimization of Stream Programs. SIG-
PLAN Not. 40, 7 (June 2005), 115–126. https://doi.org/10.1145/1070891.
1065927

[40] Sreekanth Setty. 2012. VMware vSphereÂő 5.1 vMotion Architecture, Per-
formance and Best Practices. Technical Report EN-000986-00. VMware.
21 pages. http://www.vmware.com/resources/techresources/10305

[41] M. A. Shah, J. M. Hellerstein, Sirish Chandrasekaran, andM. J. Franklin.
2003. Flux: an adaptive partitioning operator for continuous query
systems. In Data Engineering, 2003. Proceedings. 19th International
Conference on. 25–36. https://doi.org/10.1109/ICDE.2003.1260779

[42] Yosub Shin, Mainak Ghosh, and Indranil Gupta. 2015. Parqua: Online
reconfigurations in virtual ring-based nosql systems. In Cloud and
Autonomic Computing (ICCAC), 2015 International Conference on. IEEE,

220–223.
[43] F. Siyoum, M. Geilen, O. Moreira, R. Nas, and H. Corporaal. 2011. Ana-

lyzing synchronous dataflow scenarios for dynamic software-defined
radio applications. In 2011 International Symposium on System on Chip
(SoC). 14–21. https://doi.org/10.1109/ISSOC.2011.6089222

[44] Jesper H. Spring, Jean Privat, Rachid Guerraoui, and Jan Vitek. 2007.
StreamFlex: High-throughput Stream Programming in Java. In Proceed-
ings of the 22Nd Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications (OOPSLA ’07). ACM, New York,
NY, USA, 211–228. https://doi.org/10.1145/1297027.1297043

[45] The Square Kilometre Array. 2015. Seeing stars
through the Cloud. http://skatelescope.org/news/
ska-aws-astrocompute-cloud-computing-grant/. (2015).

[46] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy,
Jignesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,
Maosong Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy
Ryaboy. 2014. Storm@Twitter. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’14). ACM,
New York, NY, USA, 147–156. https://doi.org/10.1145/2588555.2595641

[47] XingdaWei, Sijie Shen, Rong Chen, and Haibo Chen. 2017. Replication-
driven Live Reconfiguration for Fast Distributed Transaction Process-
ing. In 2017 USENIX Annual Technical Conference (USENIX ATC 17).
USENIX Association, Santa Clara, CA, 335–347. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/wei

[48] J. Wu, Z. Zhang, Y. Hong, and Y. Wen. 2015. Cloud radio access
network (C-RAN): a primer. IEEE Network 29, 1 (Jan 2015), 35–41.
https://doi.org/10.1109/MNET.2015.7018201

[49] Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful
stream computation in the cloud. In Data Engineering (ICDE), 2015
IEEE 31st International Conference on. 723–734. https://doi.org/10.1109/
ICDE.2015.7113328

[50] Ying Xing, Stan Zdonik, and Jeong-Hyon Hwang. 2005. Dynamic
Load Distribution in the Borealis Stream Processor. In Proceedings of
the 21st International Conference on Data Engineering (ICDE ’05). IEEE
Computer Society, Washington, DC, USA, 791–802. https://doi.org/
10.1109/ICDE.2005.53

[51] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New
York, NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

[52] W. Zhu, C. L. Wang, and F. Lau. 2002. JESSICA2: a distributed Java
Virtual Machine with transparent thread migration support. In Cluster
Computing, 2002. Proceedings. 2002 IEEE International Conference on.
381–388. https://doi.org/10.1109/CLUSTR.2002.1137770

http://dl.acm.org/citation.cfm?id=2930611.2930640
http://dl.acm.org/citation.cfm?id=2930611.2930640
https://doi.org/10.1145/882262.882362
https://doi.org/10.1145/882262.882362
http://dl.acm.org/citation.cfm?id=1247360.1247385
http://dl.acm.org/citation.cfm?id=1247360.1247385
http://www.skatelescope.org/uploaded/8762_134_Memo_Newman.pdf
http://www.skatelescope.org/uploaded/8762_134_Memo_Newman.pdf
https://doi.org/10.1145/1070891.1065927
https://doi.org/10.1145/1070891.1065927
http://www.vmware.com/resources/techresources/10305
https://doi.org/10.1109/ICDE.2003.1260779
https://doi.org/10.1109/ISSOC.2011.6089222
https://doi.org/10.1145/1297027.1297043
http://skatelescope.org/news/ska-aws-astrocompute-cloud-computing-grant/
http://skatelescope.org/news/ska-aws-astrocompute-cloud-computing-grant/
https://doi.org/10.1145/2588555.2595641
https://www.usenix.org/conference/atc17/technical-sessions/presentation/wei
https://www.usenix.org/conference/atc17/technical-sessions/presentation/wei
https://doi.org/10.1109/MNET.2015.7018201
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1109/ICDE.2015.7113328
https://doi.org/10.1109/ICDE.2005.53
https://doi.org/10.1109/ICDE.2005.53
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1109/CLUSTR.2002.1137770

	Abstract
	1 Introduction
	2 StreamJIT Language and Compiler
	3 Global Reoptimization
	3.1 Dynamic Recompilation

	4 Reconfiguration
	4.1 Stop-and-Copy Reconfiguration

	5 Concurrent Recompilation
	5.1 Two Phase Compilation

	6 Runtime Techniques Enabling Zero Downtime Reconfiguration
	6.1 Input Duplication and Concurrent Execution
	6.2 Zero-Overhead Program State Capture via Asynchronous State Transfer

	7 Seamless Reconfiguration
	7.1 Fixed Seamless Reconfiguration
	7.2 Adaptive Seamless Reconfiguration
	7.3 Summary

	8 StreamJIT Applications
	8.1 LTE-A Uplink Transceiver
	8.2 DVB-T2 Receiver

	9 Evaluation
	9.1 Comparison
	9.2 Reconfiguration Overhead
	9.3 Gloss vs. VM Migration
	9.4 Elastic Computing
	9.5 Online Autotuning
	9.6 Workload Fluctuation
	9.7 Reconfiguration Time vs State Size
	9.8 Single Node Experiment (Full Program Migration)

	10 Related Work
	11 Conclusion
	Acknowledgments
	References

