
A Common Backend for Hardware Acceleration on
FPGA

Emanuele Del Sozzo∗†, Riyadh Baghdadi†, Saman Amarasinghe†, Marco D. Santambrogio∗
∗DEIB - Politecnico di Milano, Italy

{emanuele.delsozzo, marco.santambrogio}@polimi.it
†CSAIL - Massachusetts Institute of Technology, USA

{delsozzo, baghdadi, saman}@csail.mit.edu

Abstract—Field Programmable Gate Arrays (FPGAs) are con-
figurable integrated circuits able to provide a good trade-off in
terms of performance, power consumption, and flexibility with
respect to other architectures, like CPUs, GPUs and ASICs.
The main drawback in using FPGAs, however, is their steep
learning curve. An emerging solution to this problem is to write
algorithms in a Domain Specific Language (DSL) and to let the
DSL compiler generate efficient code targeting FPGAs. This work
proposes FROST, a unified backend that enables different DSL
compilers to target FPGA architectures. Differently from other
code generation frameworks targeting FPGA, FROST exploits
a scheduling co-language that enables users to have full control
over which optimizations to apply in order to generate efficient
code (e.g. loop pipelining, array partitioning, vectorization). At
first, FROST analyzes and manipulates the input Abstract Syntax
Tree (AST) in order to apply FPGA-oriented transformations and
optimizations, then generates a C/C++ implementation suitable
for High-Level Synthesis (HLS) tools. Finally, the output of
HLS phase is synthesized and implemented on the target FPGA
using Xilinx SDAccel toolchain. The experimental results show a
speedup up of 15× with respect to O3-optimized implementations
of the same algorithms on CPU.

I. INTRODUCTION

Due to the reaching of the end of Dennard scaling and
Moore’s law [1], we are experiencing a growing interest
towards Heterogeneous System Architectures (HSAs) as a
promising solution to boost performance and, at the same time,
reduce power consumption. The combination of different hard-
ware accelerators, like Graphic Processing Units (GPUs), Field
Programmable Gate Arrays (FPGAs), and Application Specific
Integrated Circuits (ASICs), along with Central Processing
Units (CPUs), allows to choose the most suitable architecture
for a specific task, and, for this reason, many high performance
systems (like HPC, image and signal processing) are currently
taking advantage of heterogeneity. Among the aforementioned
architectures, FPGAs are a good candidate for high perfor-
mance computations since they provide a good trade-off in
terms of performance (higher than CPUs and similar to GPUs)
and power consumption (lower than CPUs and GPUs), as well
as a high level of flexibility (with respect to ASICs). Moreover,
the possibility to configure FPGAs to implement a custom
architecture (for instance, in terms of data precision) permits to
tailor it to the target computation. However, the major flaw of
FPGAs is their hard programmability and steep learning curve.

Although High-Level Synthesis (HLS) tools [2] are easing the
implementation of algorithms on FPGAs (using C/C++ instead
of Verilog or VHDL), the design process is still complex. An
emerging solution to this problem is to write algorithms in a
Domain Specific Language (DSL) and to let the DSL compiler
generate efficient code targeting FPGAs [3]–[6].

This paper presents FROST, a unified backend that enables
DSL compilers to target FPGA architectures. A DSL compiler
can generate the FROST Intermediate Representation (IR) and
use FROST to generate efficient HLS code to target FPGA.
FROST leverages a scheduling co-language to specify FPGA
specific optimizations (loop pipelining, unrolling, vectoriza-
tion) as well as the type of communication with the off-chip
memory. After applying the transformations on the IR, FROST
generates a C/C++ code suitable for HLS tools. Finally, the
outcome of HLS phase is synthesized and implemented on
FPGA using a synthesis toolchain.

Given that many FROST optimizations require higher level
loop nest transformations (e.g., vectorization requires the loops
to be split), FROST is designed to integrate well with higher
level loop nest transformation framework (such as the Halide
mid-level compiler and the Tiramisu optimization framework).
These frameworks are a layer between DSL languages and the
FPGA code generation layer. This separation allows FROST
to fully focus on efficient FPGA code generation and to
leave loop transformations that are architecture-independent
to higher level frameworks.

The paper is organized as follows: Section II describes
the FROST IR, optimizations and code generator. Section III
presents an experimental evaluation of FROST, while Sec-
tion IV discusses related work.

II. FROST

This section explains the rationale behind FROST design,
and provides a detailed description of its workflow.

A. Common Backend

Recently, the use of DSLs and high level languages such
as Halide [7], Tensorflow [8], Julia [9] and Theano [10] has
been gaining in popularity for many reasons: (1) they provide
portability across multiple hardware architectures; (2) they
allow the application of certain optimizations such as fusion,



FROST

Halide
TIRAMISU

Julia Theano

Vivado HLS / SDAccel

fro
nt

en
ds

to
ol

ch
ai

n

Other
DSLs

Fig. 1. FROST stack

and data layout transformations that are difficult otherwise,
and (3) they provide high productivity. FROST is a unified
backend that allows DSL compilers to target FPGA. The input
of the FROST backend is the FROST IR which describes the
algorithm and a list of optimizations (scheduling) commands
to optimize the algorithm. Currently, the FROST IR is fully
compatible with Halide, a state-of-the-art DSL and compiler
for image processing pipelines, as well as TIRAMISU, a
unified optimization framework for DSL compilers, and which
presently is integrated in DSLs such as Julia [9] and Theano
[10]. We are working on a full integration of FROST within
Halide and Tiramisu; once such integration is done, FROST
will be demonstrated on Halide and on all the DSL languages
that use Tiramisu as an optimization framework (Theano and
Julia). In this paper, we will focus on presenting FROST
itself, and on evaluating FROST in isolation from higher level
frameworks. A full end-to-end evaluation of FROST with
many high level DSLs is left for a future paper.

The output of FROST is a C/C++ optimized implementation
of the original algorithm suitable for HLS tools. In particular,
FROST relies on two Xilinx toolchains, Vivado HLS [2] and
SDAccel [11], [12] to, respectively, evaluate the performance
of the current implementation (in terms of latency and resource
usage), and generate the FPGA implementation. Thanks to
SDAccel, the user does not have to design all the architecture
surrounding the IP Core, nor to write all the code necessary to
manage the runtime of the application as SDAccel completely
takes care of these steps. The user just needs to write an host
code and exploit SDAccel APIs to flash the bitstream, and
communicate with the FPGA via PCIe. Figure 1 shows the
complete FROST stack.

B. Scheduling Co-Language

The main motivation behind the choice of a scheduling co-
language relies on the fact that generating efficient code for
FPGA is definitely a hard task, especially if we want to support
a wide range of applications. A generic approach may be a vi-
able solution, but it would not allow to efficiently leverage the
FPGA potentialities. Moreover, also HLS tools provide a set
of pragma comments the designer may exploit to specify some
optimizations to enforce (e.g. loop pipelining), and define the
communication interfaces with the off-chip memory. However,
many other optimizations require significant code changes, and
are currently up to the designer’s skills and expertise with

FPGAs. Correspondingly, the designer has to implement an
efficient communication with the off-chip memory complaint
with the chosen interfaces. Therefore, evaluating different
hardware designs quickly turns into a time-consuming and
error-prone task. For these reasons, the purpose of FROST
scheduling co-language is to guide the optimizations to apply,
in order to easily evaluate different solutions and find the most
suitable one for the target algorithm. The designer just has to
insert a set of scheduling commands, and FROST will generate
the corresponding code.

FROST scheduling commands may refer to how the compu-
tation has to be carried out (e.g. loop pipelining, vectorization),
how the data has to be stored on the FPGA (e.g. array
partitioning), and the type of communication with the off-
chip DDR memory. Currently, FROST supports a master/slave
communication based on AMBA AXI4 interface protocol,
where the data are copied on the on-chip BRAM memory
before starting the computation, and copied back to the DDR
once the computation is over. This approach allows to exploit
data locality but, on the other hand, is constrained by the
limited number of BRAM on the FPGA. In general, FROST
scheduling commands may be split into two categories: the
former includes the commands that require FROST IR manip-
ulation, the latter the ones that can be expressed as pragmas
for the HLS tools. According to the category the scheduling
commands belong to, FROST handles them in different ways.

C. Workflow

FROST receives as input one or more functions, described
in FROST IR, as well as a set of scheduling commands
to apply. According to FROST IR, each function is a data
structure mainly containing the name of the function itself, its
arguments (defined as either buffers or scalars), an Abstract
Syntax Tree (AST) representing the body of the function,
along with other parameters. At first, FROST builds a top
function, i.e. the main function to be synthesized on FPGA.
This function is in change of invoking all the input functions,
instantiating the local buffers, declaring the memory interfaces,
and handling the data transfer from/to the off-chip DDR
memory. In particular, FROST analyzes each input function
argument to identify and separate global arguments, i.e. the
ones referring to data to be read/written from/to the off-chip
memory, and temporary arguments, the ones existing only in
the context of the top function. Therefore, the global arguments
are the arguments of the top function. For example, let us
consider a blur filter, designed as a chain of BlurX and
BlurY filter. The arguments/buffers of BlurX are InX and
OutX, while the arguments/buffers of BlurY are InY and
OutY. Actually, since these two filters work as a pipeline,
the output of BlurX is the input of BlurY, hence InY is
OutX. As a result, InX and OutY are the global buffers,
while OutX/InY is a temporary buffer.

After creating the top function, FROST starts manipulating
the functions ASTs to apply some of the scheduling com-
mands, i.e. the ones that require FROST IR transformation.
One example is the vectorization scheduling command, where



the buffer data are packed in bunches of N bits. For instance,
a 512-bit vectorization of a 32-bit integer buffer will pack
16 data into a single variable. The vectorization allows to
significantly reduce latency of both data transfer and com-
putation itself, but, on the other hand, it implies a significant
code restyling. First of all, the buffer data type needs to be
updated to the proper one. Then, the access to the data bunches
has to be changed as well. Finally, and most important, in
order to fully take advantage of vectorization, it may be
necessary to use support data structures like line buffers or
shift-registers to properly store a portion of the data. Indeed,
this is necessary when the computation operates on a window
of data, like the blur filter, which applies a fixed nearest-
neighbor pattern to produce the output pixels. In such a case,
FROST analyzes the access pattern to the buffer in order to
instantiate a support data structure of the proper dimension.
Then, FROST introduces additional IR statements in charge
of populating the data structure, accessing to its values, and
shifting them. The main drawback of an N-bit vectorization
is the fact that the number of elements in the buffer (in case
of a multi-dimensional buffer, the last dimension) has to be
multiple of N/K, where K is the bitwidth of the buffer data.
As a consequence, the input may need to be padded, while
the output may contain some garbage data. For instance, the
output of a 3x3 blur filter should be (N−2)·(M−2), where N
and M are, respectively, the height and the width of the input
image. In case of vectorization, assuming the M -dimension
does not need to be padded, the corresponding output is a
(N − 2)xM image, where two columns contain garbage data.

Once the IR manipulation is over, FROST analyzes the
new ASTs in order to start the code generation. The analysis
extracts information related to the libraries to include, and the
type of the variables (FROST builds a lookup table). Then,
FROST visits the ASTs, generates the C++ code, and enforces
the remaining scheduling commands as HLS pragmas. At that
point, the user can evaluate the implementation with Vivado
HLS, and synthesize it to FPGA with SDAccel.

It is important to notice that FROST is not designed to
perform transformation like loop splitting, loop tiling, and so
on. Such transformations are surely useful and necessary in
some cases (e.g. vectorization), but, since tools like Halide and
TIRAMISU already support them, it was useless to implement
them again. Therefore, to achieve better performance in terms
of FPGA implementation, FROST and its frontends has to
work in synergy.

III. EXPERIMENTAL RESULTS

We evaluated FROST against three applications designed in
TIRAMISU: brightening filter, blur filter, and matrix multi-
plication. The blur filter is implemented as a pipeline of two
filters: one over the input image width, and one over the height.
The input for the two filters is a 3-channel 512x384 image,
while the size of the input matrices for the third application
is 400x400. We compared an FPGA implementation of each
application against an O3-optimized CPU implementation.
We relied on Xilinx Vivado HLS and SDAccel 2016.4 to,

Brightening Filter
Data Transfer

6491162

1474610 1181273

20045

N
o O

ptim
izations

Loop Pipelining

Array Partitioning

Vectorization

La
te

nc
y 

(c
lo

ck
 c

yc
le

s)

104

105

106

107

Optimizations

Fig. 2. A summary of the sequence of optimizations applied on the
brightening filter. The input is a 3-channel 512x384 image

CPU
FPGA

1X
1X

1X

13.7X
4.8X

15X

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

1

10

100

Applications
Brightening Filter Blur Filter Matrix Multiplication

Fig. 3. Performance comparison between FPGA and CPU implementations

respectively, evaluate the different implementations generated
by FROST and generate the bitstreams for FPGA. We targeted
a ADM-PCIE-7V3 board by Alpha Data, powered by a Xilinx
Virtex 7 FPGA. The board was connected to an host CPU, an
Intel Core i7-870 at 2.93GHz, via PCIe. The host was in charge
of executing the application, managing the FPGA runtime by
means of SDAccel APIs, and measuring the execution time of
both CPU and FPGA implementations.

For each application, we generated a non-optimized im-
plementation with FROST, and we evaluated it in terms of
performance (i.e. circuit latency), resource usage by look-
ing at Vivado HLS log. Then, we started applying different
types of optimizations by means of FROST and TIRAMISU
scheduling co-languages, like loop pipelining, loop splitting,
array partitioning, and vectorization. The optimizations were
guided by the information (e.g. circuit latency, resource usage,
warnings) produced by Vivado HLS for each implementation.
For instance, in order to reduce the circuit latency, we applied
loop pipelining/unrolling. In case of warnings about limited
memory ports with respect to a certain array access, we
enforced array partitioning. In order to reduce the latency
of both data transfer and computation, we leveraged vec-
torization. Finally, once the optimization process was over,
we synthesized the circuit using SDAccel. Figure 2 shows a
summary of the optimizations applied to the brightening filter.

The final FPGA implementations allowed to achieve a
13.7× speedup for the brightening filter, 4.8× speedup for the



TABLE I
RESOURCE USAGE OF THE EVALUATED APPLICATIONS

Application BRAM 18K DSP48E FF LUT
(2940) (3600) (866400) (4332009)

Brightening Filter 24.2% 32% 29.5% 78.8%
Blur Filter 47.5% 0.1% 0.4% 2%
Matrix Multiplication 44.7% 44.5% 4.6% 3.9%

blur filter, and a 15× speedup for the matrix multiplication
(Figure 3). Table I reports the resource usage of the final
implementation of each application. Finally, the blur filter
implementation outperformed the one available in the Vivado
HLS OpenCV library by a 6× factor.

IV. RELATED WORK

Many frameworks and compilers in literature focus on a
specific contexts to generate an efficient hardware implemen-
tation. Darkroom [3] is a language and compiler for image
processing. Darkroom compiles a high level description of the
application into line-buffered pipelines, described in Verilog,
which are then synthesized for ASIC, FPGA, or CPU. The
experimental results showed gigapixel/sec performance when
targeting ASIC, while realtime 1080p/60 video processing
using FPGAs. RIPL [4] is a memory-efficient, declarative
FPGA image processing DSL. RIPL programs are first com-
piled to dataflow graphs, and then to HDL by means of an
open source dataflow compiler [13]. The authors evaluated
RIPL against five benchmarks and reported a memory use
comparable to Vivado HLS OpenCV library, without the need
of pragmas to guide the synthesis. In [5], the authors developed
an FPGA backend for the PolyMage DSL [14]. The backend
first applies optimizations to exploit data parallelism and
memory bandwidth, then relies on Vivado HLS to generate
the FPGA implementation. The authors compared their results
against Vivado HLS OpenCV library, as well as Darkroom,
and achieved, on average, a 1.5× speedup. The work in [6]
presents ExaSlang 4, a DSL to accelerate numerical solvers
based on the multigrid method on FPGA. The authors lever-
aged Vivado HLS as backend to produce the FPGA design.

Differently from the aforementioned work, we designed
FROST to deal with generic computations, as well as support
high level languages, instead of constraining the user to a
specific context and language. On the other hand, FROST
provides a high level scheduling co-language to specify the
optimizations to enforce. This feature is necessary in order to
support generic computations, and, at the same time, generate
efficient FPGA implementations.

V. CONCLUSIONS AND FUTURE WORK

We presented FROST, a common backend for the hardware
acceleration on FPGA. FROST is designed to work with
any frontend that produces an IR compatible with FROST
IR, like Halide and TIRAMISU. On the other hand, FROST
scheduling co-language allows the user to enforce high level
optimizations as well as specify the communication with

the memory. The experimental evaluation showed that the
final FPGA implementations significantly outperformed O3-
optimized CPU implementations.

As future work, we plan to fully integrate FROST within
Halide and TIRAMISU, and evaluate FROST end-to-end on
Halide, Theano and Julia. Then, we intend to introduce support
for a streaming/dataflow communication, which will definitely
benefit computations like filters. Finally, we aim at directly
connecting the output of FROST to Xilinx toolchain. In this
way, the user can analyze the performance of the current
implementation, as well as the warnings generated by Vivado
HLS, tune the implementation according to that, and, once
satisfied, start the FPGA synthesis process via SDAccel.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ACM
SIGARCH Computer Architecture News, vol. 39, no. 3. ACM, 2011,
pp. 365–376.

[2] Xilinx Inc., “Vivado HLS.” [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html

[3] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: compiling
high-level image processing code into hardware pipelines.” ACM Trans.
Graph., vol. 33, no. 4, pp. 144–1, 2014.

[4] R. Stewart, G. Michaelson, D. Bhowmik, P. Garcia, and A. Wallace,
“A dataflow IR for memory efficient RIPL compilation to FPGAs,” in
International Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2016, pp. 174–188.

[5] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, “A DSL compiler
for accelerating image processing pipelines on FPGAs,” in Parallel
Architecture and Compilation Techniques (PACT), 2016 International
Conference on. IEEE, 2016, pp. 327–338.

[6] C. Schmitt, M. Schmid, F. Hannig, J. Teich, S. Kuckuk, and H. Köstler,
“Generation of multigrid-based numerical solvers for FPGA acceler-
ators,” in Proceedings of the 2nd International Workshop on High-
Performance Stencil Computations (HiStencils), 2015, pp. 9–15.

[7] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
ACM SIGPLAN Notices, vol. 48, no. 6, pp. 519–530, 2013.

[8] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 265–283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[9] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia:
A fast dynamic language for technical computing,” arXiv preprint
arXiv:1209.5145, 2012.

[10] J. Bergstra, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Des-
jardins, I. Goodfellow, A. Bergeron, Y. Bengio, and P. Kaelbling,
“Theano: Deep learning on gpus with python,” 2011.

[11] Xilinx Inc., “SDAccel Development Environment.” [On-
line]. Available: https://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html

[12] G. Guidi, E. Reggiani, L. Di Tucci, G. Durelli, M. Blott, and M. D.
Santambrogio, “On how to improve FPGA-based systems design produc-
tivity via SDAccel,” in Parallel and Distributed Processing Symposium
Workshops, 2016 IEEE International. IEEE, 2016, pp. 247–252.

[13] E. Bezati, “High-level synthesis of dataflow programs for heterogeneous
platforms,” Ph.D. dissertation, EPFL, 2015.

[14] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” SIGARCH Comput.
Archit. News, vol. 43, no. 1, pp. 429–443, Mar. 2015. [Online].
Available: http://doi.acm.org/10.1145/2786763.2694364


