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Abstract

In many of today’s applications, achieving high-performance is critical. Numerous
architectures, such as shared memory systems, distributed memory systems, and het-
eregeneous systems, are all used in high-performance computing. However, all of these
have different optimizations and programming models. Additionally, performance is
not always portable across architectures–one optimization that provides significant
improvement in one system may have little to no effect in another system.

Writing high-performance code is a notoriously difficult task that requires signifi-
cant trial-and-error. Writing high-performance code for multiple architectures is even
harder, particularly when these architectural components are all together in a single
heterogeneous system and the programmer has to make them all cooperate in order to
achieve the highest performance. Hand-optimization only goes so far; it is infeasible
to try many compositions of optimizations by hand, so the resulting performance will
likely be sub-optimal. This thesis employs a scheduling language approach to ab-
stract optimizations and code generation for shared memory with NUMA multicore,
distributed memory, and GPU systems. To the best of our knowledge, we provide
the first scheduling language approach that lets a programmer schedule cooperative
execution on distributed, heterogeneous systems, all from a single algorithm. Our
work extends an existing mid-level compiler, Tiramisu, with several primitives and
functions that present the programmer with a unified interface for generating code
for several backends and execution configurations.

Our results show that we are able to generate efficient MPI code and CUDA code
for distributed memory and heterogeneous GPU systems from a single algorithm.
From our unified scheduling abstraction, we are able to generate distributed, hetero-
geneous cooperative code, giving us OpenMP+MPI+CUDA capability without the
extra complexities that come with using multiple programming models.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In recent years, the tech industry has seen a proliferation of different computing

architectures, each touting different benefits such as performance, memory availabil-

ity, programming simplicity, cost, etc. For example, in 2007, NVIDIA released their

CUDA [30] software package, which made programming GPUs feasible for applica-

tions other than graphics, thus bringing their GPU architecture into the high perfor-

mance computing world. GPUs offer the potential for high throughput of massively

parallel applications thanks to their high number of cores. Later on in 2012, Intel

released the Xeon Phi co-processor [8], followed by the Knights Landing processor

[50] in 2013. These CPU chips contain many more cores than previous Intel multi-

core chips, providing greater throughput for operations at the cost of reduced speeds

of individual cores (similar to the GPU). Combining different architectures, such as

these, results in large, interconnected heterogeneous systems with distributed multi-

socket CPUs, GPUs, and possibly even other compute devices like FPGAs. One of

the world’s fastest heterogeneous supercomputers, the TSUBAME 3.0 from Japan,

is equipped with over 2,160 interconnected Tesla P100 GPUs and 15,120 Intel Xeon

E5-2680 v4 cores [52]. Trying to write code that utilizes even a small subset of the

available compute devices on a machine such as this is a significant undertaking.

Individual instances of these architectures are hard enough to generate code for,

let alone optimize them. As we will see in section 1.0.1, combining the systems only

increases the difficulty of writing the code. There are numerous factors to consider
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when optimizing code, as everything from the application itself to the architecture to

the programming language can impact performance. It is not even guaranteed that

an optimization will help; sometimes, an optimization that improves performance on

its own may end up hurting performance when composed with other optimizations.

Optimization is largely a trial-and-error process, and it is infeasibile to manually try a

large number of different compositions of optimizations, particularly across different

architectures where code portability is very limited. This often leads to code that

does not reach its full performance potential.

In this thesis, we focus on abstracting multi-socket/distributed CPU and het-

erogeneous architectures and present programmers with a simpler interface for pro-

gramming and optimizing these systems. In particular, we look at the following

architectures and configurations:

Shared memory: A shared memory architecture consists of processors and

memories sharing an interconnect network. The processors all share a global

memory space and communicate and synchronize with each other via load and

store operations to the global memory [44]. The physical memory can be sep-

arate, giving a non-uniform memory access (NUMA) system, where the load

and store operations’ performance varies based on the processor’s location to

the memory.

Distributed memory: A distributed memory architecture is a collection of

local memories and processors connected with an interconnect network. Unlike

shared memory, there is no global memory, so explicit data movement is needed

between the individual local memories [44].

Heterogeneous: A heterogeneous architecture contains different types of pro-

cessors with different execution models, such as a combination of CPUs and

GPUs. This is opposed to a homogeneous system that contains only one type

of processor, such as just CPUs [60]. In a heterogeneous programming model,

computations run on one type of processor at a time. For example, in a CPU-

GPU heterogeneous model, a computation can run in parallel across multiple
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CPUs or multiple GPUs, but it would not execute on both the CPUs and GPUs

simultaneously.

Cooperative: Cooperative computing is a programming model for a hetero-

geneous system. In this model, a given part of an application is partitioned

to execute on the various processor types simultaneously, thus maximizing the

set of computing resources utilized [56]. This is opposed to the heterogeneous

model described above, where part of the application runs on either the CPU

or GPU, but not both.

Beyond actual code optimizations, these large interconnected systems present

other difficulties such as load balancing and communication, to name a few. Un-

balanced workloads lead to poor performance since not all the resources are being

utilized; communication is required for individual nodes to synchronize with each

other, but is very costly, so it needs to be carefully implemented. Achieving the full

compute potential of these large heterogeneous systems should be a priority, espe-

cially in cooperative configurations; as problem sizes increase, we will need as much

compute power as possible. We cannot rely much longer on Moore’s Law to provide

us with faster processors, so improving performance is going to rely heavily on the

power of cooperative execution on distributed and heterogeneous systems. We utilize

the idea of separating the algorithm from the actual implementation in our work, ab-

stracting the underlying hardware and looking at optimizations as transformations on

top of the algorithm. Taking advantage of prior work on Tiramisu, a mid-level com-

piler for shared memory optimizations, we implement primitives and functions that

expose distributed, heterogeneous, and cooperative code generation and optimization

to the programmer through a high-level scheduling language. These optimizations de-

scribe transformations on the loop nests, so the programmer does not have to change

the algorithm when trying a new optimization, they just have to select a different

scheduling function. Our system can generate code for shared memory, distributed

memory, and heterogeneous systems, as well as code for cooperative execution on

heterogeneous systems. The type of code generated is based on the schedule applied
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by the programmer.

Our work makes it simpler for a programmer to explore the tradeoff space between

each of these systems and optimize code appropriately. The trial-and-error process

is still there–it is inherent to optimization; however, our work keeps the programmer

from having to make significant changes to the structure of their code just to try out

an optimization.

How to design a completely unified representation for programing and optimizing

these systems is still very much an open research question. However, this thesis pro-

vides building blocks for achieving that representation. We look at similarities and

differences between architectures and programming models with the goal of under-

standing what set of features should be exposed to the programmer. In particular,

we focus on the tradeoff between computation and communication, where commu-

nication means explicitly transferring data between different memories. The cost of

communication may, for example, outweigh the benefits of GPU execution, so this

tradeoff space needs to be explored. This work exposes communication directly to the

programmer using a set of abstractions atop the underlying communication paradigm.

This allows programmers to optimize communication along side the computations and

maximize the overall performance of their application code.

1.0.1 A Motivating Example

To demonstrate how much an implementation can change based on the architecture

and optimizations, we provide a few handcoded examples. The application here is

a 2-dimensional box blur stencil. This is a simple stencil commonly used in image

processing applications. The stencil computation for the blur is shown in 1-1. It

computes an average of all the pixels within the stencil and then slides one column

over and does the same computation until the whole image has been processed.

The basic single-threaded code for a box blur looks like the code in figure 1-2. This

code is a direct translation of the blur algorithm in figure 1-1. For high-performance

code, we would not want to write the code this way, however. It would be too slow.

Figure 1-3 shows the resulting code if we apply parallelization and vectorization
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Figure 1-1: 2D blur example showing three consecutive applications of the stencil, as
well as the computation for the blur of the upper left pixel.

1 ...
2 void blur() {
3 for (unsigned long r = 0; r < rows +2; r++) {
4 for (unsigned long c = 0; c < cols; c++) {
5 temp[r*cols+c] = (input[r*cols+c] + input[r*cols+c+1] +

input[r*cols+c+2]) / 3.0f;
6 }
7 }
8 for (unsigned long r = 0; r < rows; r++) {
9 for (unsigned long c = 0; c < cols; c++) {

10 output[r*cols+c] = (temp[r*cols+c] + temp[(r+1)*cols+c] +
temp[(r+2)*cols+c]) / 3.0f;

11 }
12 }
13 }
14 ...

Figure 1-2: Simple single-threaded CPU-only version of a 2D blur.
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1 void blur_par_vec () {
2 omp_set_num_threads (20);
3 __m128 div_by = _mm_set_ps1 (3.0f);
4 #pragma omp parallel for schedule(static , std::max((int)(rows /20), 1))
5 for (ulong r = 0; r < rows +2; r++) {
6 for (ulong c = 0; c < cols; c+=4) {
7 __m128 input_load_0 = _mm_loadu_ps (& input[r*cols+c]);
8 __m128 input_load_1 = _mm_loadu_ps (& input[r*cols+c+1]);
9 __m128 input_load_2 = _mm_loadu_ps (& input[r*cols+c+2]);

10 __m128 sum = _mm_add_ps(_mm_add_ps(input_load_0 , input_load_1), input_load_2);
11 __m128 res = _mm_div_ps(sum , div_by);
12 _mm_storeu_ps (&temp[r*cols+c], res);
13 }
14 }
15 #pragma omp parallel for schedule(static , std::max((int)(rows /20), 1))
16 for (ulong r = 0; r < rows; r++) {
17 for (ulong c = 0; c < cols; c+=4) {
18 __m128 temp_load_0 = _mm_loadu_ps (&temp[r*cols+c]);
19 __m128 temp_load_1 = _mm_loadu_ps (&temp[(r+1)*cols+c]);
20 __m128 temp_load_2 = _mm_loadu_ps (&temp[(r+2)*cols+c]);
21 __m128 sum = _mm_add_ps(_mm_add_ps(temp_load_0 , temp_load_1), temp_load_2);
22 __m128 res = _mm_div_ps(sum , div_by);
23 _mm_storeu_ps (& output[r*cols+c], res);
24 }
25 }
26 }

Figure 1-3: Multi-threaded and vectorized 2D blur.

(discussed in section 2.1.2). These are two common shared memory optimizations. In

this code, the algorithm is still the same–we use two loop nests to compute the two

parts of the blur, but the implementation has changed. There are more levels in the

loop nests and the loop bodies now use vector instructions.

Next, we implement the blur to execute on the GPU. Figure 1-41 shows code for

running the blur on a single GPU. It is still the same algorithm, but the implementa-

tion has completely changed from the previous versions. The two loop nests become

the two GPU functions shown at the top, and then calling those functions adds ad-

ditional code. If we switch to a cooperative setting, the code becomes even more

complicated. Figure 1-5 shows code that runs cooperatively on the CPU and GPU

for the blur. We need multiple versions of the code depending on the architecture,

and if any change is made to the algorithm, such as adding a third dimension to the

blur, each version of the code would need to be changed independently, unnecessarily

adding additional burden the programmer.

Using our scheduling language approach described throughout this thesis, we can

generate the same code with much less effort. Figure 1-6 shows our syntax for creating

the initial blur algorithm. We then apply scheduling to that algorithm to describe

the optimizations and guide the code generation. Figure 1-7 shows the schedule

1Error checking and some linking functions for the CUDA code excluded for brevity.
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1 __global__
2 void blur_cuda_async_kernel_bx(float *input , float *bx, ulong *_cols , ulong *

_current_row) {
3 ulong cols = *_cols;
4 ulong current_row = *_current_row;
5 int block_size = 32;
6 bx[current_row*cols+blockIdx.x*block_size+threadIdx.x] = (input[current_row *(cols

+2)+blockIdx.x*block_size+threadIdx.x] + input[current_row *(cols +2)+blockIdx.x*
block_size+threadIdx.x+1] + input[current_row *(cols +2)+blockIdx.x*block_size+
threadIdx.x+2]) / 3.0f;

7 }
8 __global__
9 void blur_cuda_async_kernel_by(float *bx, float *by, ulong *_cols , ulong *

_current_row) {
10 ulong cols = *_cols;
11 ulong current_row = *_current_row;
12 int block_size = 32;
13 by[current_row*cols+blockIdx.x*block_size+threadIdx.x] = (bx[current_row*cols+

blockIdx.x*block_size+threadIdx.x] + bx[current_row*cols+blockIdx.x*block_size+
threadIdx.x+cols] + bx[current_row*cols+blockIdx.x*block_size+threadIdx.x+2*
cols]) / 3.0f;

14 }
15 void blur_gpu () {
16 ...
17 CUdeviceptr d_input , d_by , d_bx;
18 cuMemAlloc (&d_input , (this ->rows +2) * (this ->cols +2) * sizeof(float));
19 cuMemAlloc (&d_bx , this ->rows * this ->cols * sizeof(float));
20 cuMemAlloc (&d_by , this ->rows * this ->cols * sizeof(float));
21 CUdeviceptr d_kernel_vals_0 , d_kernel_vals_1;
22 cuMemAlloc (& d_kernel_vals_0 , this ->rows * sizeof(ulong));
23 cuMemAlloc (& d_kernel_vals_1 , this ->rows * sizeof(ulong));
24 CUstream h2d_stream , d2h_stream , kernel_stream;
25 cuStreamCreate (&h2d_stream , CU_STREAM_DEFAULT);
26 cuStreamCreate (&d2h_stream , CU_STREAM_DEFAULT);
27 cuStreamCreate (& kernel_stream , CU_STREAM_DEFAULT);
28 for (ulong r = 0; r < this ->rows; r++) {
29 cuMemcpyHtoDAsync(d_input + r * (this ->cols +2) * sizeof(float), &input[r * (this

->cols +2)], this ->cols * sizeof(float), h2d_stream);
30 cuMemcpyHtoDAsync(d_kernel_vals_0+r*sizeof(ulong), &cols , sizeof(ulong),

kernel_stream);
31 cuMemcpyHtoDAsync(d_kernel_vals_1+r*sizeof(ulong), &r, sizeof(ulong),

kernel_stream);
32 CUevent h2d_event;
33 cuEventCreate (&h2d_event , 0);
34 cuEventRecord(h2d_event , h2d_stream);
35 cuStreamWaitEvent(kernel_stream , h2d_event , 0);
36 CUdeviceptr k0 = d_kernel_vals_0+r*sizeof(ulong);
37 CUdeviceptr k1 = d_kernel_vals_1+r*sizeof(ulong);
38 void *kernel_args_bx [] = {&d_input , &d_bx , &k0, &k1};
39 cuLaunchKernel(bx_kernel , this ->cols / 5, 1, 1, 5, 1, 1, 0, kernel_stream ,

kernel_args_bx , 0);
40 }
41 for (ulong r = 0; r < this ->rows; r++) {
42 cuMemcpyHtoDAsync(d_kernel_vals_0+r*sizeof(ulong), &cols , sizeof(ulong),

kernel_stream);
43 cuMemcpyHtoDAsync(d_kernel_vals_1+r*sizeof(ulong), &r, sizeof(ulong),

kernel_stream);
44 CUdeviceptr k0 = d_kernel_vals_0+r*sizeof(ulong);
45 CUdeviceptr k1 = d_kernel_vals_1+r*sizeof(ulong);
46 void *kernel_args_by [] = {&d_bx , &d_by , &k0, &k1};
47 cuLaunchKernel(by_kernel , this ->cols / 5, 1, 1, 5, 1, 1, 0, kernel_stream ,

kernel_args_by , 0);
48 CUevent kernel_event;
49 cuEventCreate (& kernel_event , 0);
50 cuEventRecord(kernel_event , kernel_stream);
51 cuStreamWaitEvent(d2h_stream , kernel_event , 0);
52 CUdeviceptr kd_by = d_by + r * (this ->cols) * sizeof(float);
53 cuMemcpyDtoHAsync (&by[r * this ->cols], kd_by , this ->cols * sizeof(float),

d2h_stream);
54 }
55 cuCtxSynchronize ();
56 ...
57 }

Figure 1-4: Executing the blur on the GPU.
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1 __global__
2 void blur_cuda_async_kernel_bx(float *input , float *bx , ulong *_cols , ulong *_current_row) {
3 ulong cols = *_cols;
4 ulong current_row = *_current_row;
5 int block_size = 32;
6 bx[current_row*cols+blockIdx.x*block_size+threadIdx.x] = (input[current_row *(cols +2)+blockIdx.x*block_size+

threadIdx.x] + input[current_row *(cols +2)+blockIdx.x*block_size+threadIdx.x+1] + input[current_row *(cols
+2)+blockIdx.x*block_size+threadIdx.x+2]) / 3.0f;

7 }
8 __global__
9 void blur_cuda_async_kernel_by(float *bx, float *by, ulong *_cols , ulong *_current_row) {

10 ulong cols = *_cols;
11 ulong current_row = *_current_row;
12 int block_size = 32;
13 by[current_row*cols+blockIdx.x*block_size+threadIdx.x] = (bx[current_row*cols+blockIdx.x*block_size+threadIdx.x

] + bx[current_row*cols+blockIdx.x*block_size+threadIdx.x+cols] + bx[current_row*cols+blockIdx.x*
block_size+threadIdx.x+2* cols]) / 3.0f;

14 }
15 void blur_cooperative {
16 ...
17 int provided = -1;
18 MPI_Init_thread(NULL , NULL , MPI_THREAD_FUNNELED , &provided);
19 int rank;
20 MPI_Comm_rank(MPI_COMM_WORLD , &rank);
21 int total_procs = NUM_CPU_PROCS + NUM_GPU_PROCS;
22 if (rank <= NUM_CPU_PROCS) {
23 omp_set_num_threads (20);
24 __m128 div_by = _mm_set_ps1 (3.0f);
25 #pragma omp parallel for schedule(static , std::max((int)((rows/total_procs)/20), 1))
26 for (ulong r = 0; r < (rows/total_procs)+2; r++) {
27 for (ulong c = 0; c < cols; c+=4) {
28 __m128 input_load_0 = _mm_loadu_ps (& input[r * cols + c]);
29 __m128 input_load_1 = _mm_loadu_ps (& input[r * cols + c + 1]);
30 __m128 input_load_2 = _mm_loadu_ps (& input[r * cols + c + 2]);
31 __m128 sum = _mm_add_ps(_mm_add_ps(input_load_0 , input_load_1), input_load_2);
32 __m128 res = _mm_div_ps(sum , div_by);
33 _mm_storeu_ps (&temp[r * cols + c], res);
34 }
35 }
36 #pragma omp parallel for schedule(static , std::max((int)((rows/total_procs)/20), 1))
37 for (ulong r = 0; r < (rows/total_procs); r++) {
38 for (ulong c = 0; c < cols; c+=4) {
39 __m128 temp_load_0 = _mm_loadu_ps (&temp[r * cols + c]);
40 __m128 temp_load_1 = _mm_loadu_ps (&temp[(r + 1) * cols + c]);
41 __m128 temp_load_2 = _mm_loadu_ps (&temp[(r + 2) * cols + c]);
42 __m128 sum = _mm_add_ps(_mm_add_ps(temp_load_0 , temp_load_1), temp_load_2);
43 __m128 res = _mm_div_ps(sum , div_by);
44 _mm_storeu_ps (& output[r * cols + c], res);
45 }
46 }
47 } else { // GPU
48 CUdeviceptr d_input , d_by , d_bx;
49 cuMemAlloc (&d_input , (rows/total_procs + 2) * (cols + 2) * sizeof(float));
50 cuMemAlloc (&d_bx , rows/total_procs * cols * sizeof(float));
51 cuMemAlloc (&d_by , rows/total_procs * cols * sizeof(float));
52 CUdeviceptr d_kernel_vals_0 , d_kernel_vals_1;
53 cuMemAlloc (& d_kernel_vals_0 , rows/total_procs * sizeof(ulong));
54 cuMemAlloc (& d_kernel_vals_1 , rows/total_procs * sizeof(ulong));
55 CUstream h2d_stream , d2h_stream , kernel_stream;
56 cuStreamCreate (&h2d_stream , CU_STREAM_DEFAULT);
57 cuStreamCreate (&d2h_stream , CU_STREAM_DEFAULT);
58 cuStreamCreate (& kernel_stream , CU_STREAM_DEFAULT);
59 for (ulong r = 0; r < this ->rows; r++) {
60 cuMemcpyHtoDAsync(d_input + r * (this ->cols +2) * sizeof(float), &input[r * (this ->cols +2)], this ->cols *

sizeof(float), h2d_stream);
61 cuMemcpyHtoDAsync(d_kernel_vals_0+r*sizeof(ulong), &cols , sizeof(ulong), kernel_stream);
62 cuMemcpyHtoDAsync(d_kernel_vals_1+r*sizeof(ulong), &r, sizeof(ulong), kernel_stream);
63 CUevent h2d_event;
64 cuEventCreate (&h2d_event , 0);
65 cuEventRecord(h2d_event , h2d_stream);
66 cuStreamWaitEvent(kernel_stream , h2d_event , 0);
67 CUdeviceptr k0 = d_kernel_vals_0+r*sizeof(ulong);
68 CUdeviceptr k1 = d_kernel_vals_1+r*sizeof(ulong);
69 void *kernel_args_bx [] = {&d_input , &d_bx , &k0, &k1};
70 cuLaunchKernel(bx_kernel , this ->cols / 5, 1, 1, 5, 1, 1, 0, kernel_stream , kernel_args_bx , 0);
71 }
72 for (ulong r = 0; r < this ->rows; r++) {
73 cuMemcpyHtoDAsync(d_kernel_vals_0+r*sizeof(ulong), &cols , sizeof(ulong), kernel_stream);
74 cuMemcpyHtoDAsync(d_kernel_vals_1+r*sizeof(ulong), &r, sizeof(ulong), kernel_stream);
75 CUdeviceptr k0 = d_kernel_vals_0+r*sizeof(ulong);
76 CUdeviceptr k1 = d_kernel_vals_1+r*sizeof(ulong);
77 void *kernel_args_by [] = {&d_bx , &d_by , &k0, &k1};
78 cuLaunchKernel(by_kernel , this ->cols / 5, 1, 1, 5, 1, 1, 0, kernel_stream , kernel_args_by , 0);
79 CUevent kernel_event;
80 cuEventCreate (& kernel_event , 0);
81 cuEventRecord(kernel_event , kernel_stream);
82 cuStreamWaitEvent(d2h_stream , kernel_event , 0);
83 CUdeviceptr kd_by = d_by + r * (this ->cols) * sizeof(float);
84 cuMemcpyDtoHAsync (&by[r * this ->cols], kd_by , this ->cols * sizeof(float), d2h_stream);
85 }
86 cuCtxSynchronize ();
87 cuMemFree(d_input);
88 cuMemFree(d_by);
89 cuMemFree(d_bx);
90 }
91 MPI_Barrier(MPI_COMM_WORLD);
92 MPI_Finalize ();
93 }

Figure 1-5: Executing the blur cooperatively on the CPUs and GPUs.
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for generating parallelized and vectorized code. In figure 1-8, we see the code for

generating GPU code. Finally, we have the cooperative code. These schedules largely

remain the same; we only need a few additional scheduling commands, shown in figure

1-9. With these minor modifications, we get OpenMP+CUDA+MPI code with much

less code than the hand-written counterpart.

1 void blur_tiramisu () {
2 function f;
3 var r("r"), c("c");
4 computation blur_input("{blur_input[r,c]: 0<=r<" + srows + " and 0<=c<" + scols + "}", expr(), false , p_float32

, &f);
5 expr bx_expr = (blur_input(r, c) + blur_input(r, c + 1) + blur_input(r, c + 2)) / 3.0f;
6 computation bx("{bx[r,c]: 0<=r<" + srows + " and 0<=c<" + scols + "}", bx_expr , true , p_float32 , &f);
7 expr by_expr = (bx(r, c) + bx(r + 1, c) + bx(r + 2, c)) / 3.0f;
8 computation by("{by[r,c]: 0<=r<" + srows + " and 0<=c<" + scols + "}", by_expr , true , p_float32 , &f);
9 }

Figure 1-6: Describing the blur algorithm with our approach.

1 var r0("r0"), r1("r1"), c0("c0"), c1("c1");
2 bx.split(r, rows/20, r0, r1); by.split(r, rows/20, r0, r1);
3 by.tag_parallel_level(r0); bx.tag_parallel_level(r0);
4 bx.split(c, 8, c0 , c1); by.split(c, 8, c0, c1);
5 by.tag_vector_level(c1 , 8); bx.tag_vector_level(c1 , 8);
6 bx.before(by, root);

Figure 1-7: Vectorizing and parallelizing code with our approach.

1 xfer_prop h2d_cuda_async(p_float32 , {ASYNC , CUDA , CPU2GPU}, 1);
2 xfer_prop d2h_cuda_async(p_float32 , {ASYNC , CUDA , GPU2CPU}, 2);
3 xfer_prop d2h_cuda_async_kernel_stream(p_float32 , {ASYNC , CUDA , GPU2CPU}, 0);
4 xfer_prop h2d_cuda_async_kernel_stream(p_float32 , {ASYNC , CUDA , CPU2GPU}, 0);
5 xfer h2d = computation :: create_xfer("{h2d[r,c]: 0<=r<" + srows + " and 0<=c<2+" + scols + "}", h2d_cuda_async ,

blur_input(r,c), &blur);
6 xfer d2h = computation :: create_xfer("{d2h[r,c]: 0<=r<" + srows + " and 0<=c<" + scols + "}", d2h_cuda_async , by(r

,0), &blur);
7 tiramisu ::wait h2d_wait("{h2d_wait[r,c]: 0<=r<" + srows + " and 0<=c<1}", h2d.os(r,0),

h2d_cuda_async_kernel_stream , true , &blur);
8 tiramisu ::wait d2h_wait_for_by("{d2h_wait_for_by[r,c]: 0<=r<" + srows + " and 0<=c<1}", by(r, 0), d2h_cuda_async ,

true , &blur);
9 tiramisu ::wait d2h_wait("{d2h_wait[r,c]: 0<=r<" + srows + " and 0<=c<1}", d2h.os(r,0), h2d_cuda_async , true , &

blur);
10 generator :: update_producer_expr_name(bx, "blur_input", "h2d", false);
11 h2d.os->collapse_many ({ collapser(1, 0, COLS +2)});
12 d2h.os->collapse_many ({ collapser(1, 0, COLS)});
13 bx.split(c, BLOCK_SIZE , c0, c1); by.split(c, BLOCK_SIZE , c0, c1);
14 d2h_wait.before (*h2d.os, r);
15 h2d.os->before(h2d_wait , r);
16 h2d_wait.before(bx, r);
17 bx.before(by, root);
18 by.before(d2h_wait_for_by , r);
19 d2h_wait_for_by.before (*d2h.os, r);
20 bx.tag_gpu_level2(c0, c1, 0); by.tag_gpu_level2(c0, c1, 0);

Figure 1-8: Generating GPU code with necessary communication with our approach.

1 // Apply to the CPU and GPU
2 bx.split(r, rows/PROCS , q1, q2); by.split(r, rows/PROCS , q1, q2);
3 bx.tag_distribute_level(q1); by.tag_distribute_level(q1);
4 // Apply to the GPU only
5 blur.rank_offset = -1*PROCS;

Figure 1-9: Additional scheduling commands needed to generate cooperative hetero-
geneous code.
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Chapter 2

System Architecture Background

2.1 Shared Memory Systems

A shared memory system is made up of multiple processors and memories that are

connected by an interconnect network. The individual processors in the network

communicate with each other implicitly via load and store operations between the

processor’s memories. These systems, while easier to prgram than their distributed

and heterogeneous counterparts, have a myriad of optimization opportunities avail-

able, and optimizing shared memory code is still an active area of research.

2.1.1 Architecture and Execution Overview

In a shared memory system, all the processors share the same address space, meaning

all the processors have access to the same memory. Any processor can access the main

memory, as well as the memory in the private caches of other processors, using load

and store operations. The underlying hardware handles all communication implicitly

between the different memories and the cores, which is in contrast to distributed mem-

ory systems discussed in section 2.2. However, programmer intervention is needed to

achieve high-performance, as the hardware can only optimize so much. An example

configuration of a shared memory multicore system is depicted in figure 2-1. This

figure is based off of the Intel Skylake architecture [49].
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Figure 2-1: Shared memory multicore system.

This architecture shows a dual-socket configuration with four cores per socket

(each socket takes one CPU, and each CPU contains four cores). Each socket has the

same configuration. Within a socket, each core has its own L1 cache (both instruction

and data), as well as its own L2 cache. The L3 cache, also known as the last-level

cache, is shared by each of the cores in a socket. The caches and cores on an individual

socket communicate across a bus. The two sockets are connected by some other high-

speed interconnect. For example, in the case of the Intel Skylake architecture, up to 8

different sockets can be connected with Intel Ultra Path Interconnect (UPI) [27]. UPI

is a low-latency, power-efficient interconnect for connecting Intel CPUs. Each socket

connects to the main memory and secondary memories through another interconnect.

Memory is configured as a hierarchy, and each level presents a tradeoff between

memory size and access latency. Latency is the time required to complete an event,

such as a memory access [19]. Table 2.1 shows a typical memory hierarchy for a

personal shared memory system, along with the average memory sizes and access

latencies. At the top of this hierarchy, there are the registers, which have the lowest

latency. As you move down the hierarchy, the latency increases, with secondary

memory having the highest latency. However, the size of the memory increases as
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Memory Avg. Size Avg. Access Latency
Registers 1000B 300ps

L1 64KB 1ns
L2 256KB 10ns
L3 4MB 20ns

RAM 16GB 100ns
Hard Drive 16TB 10ms

Table 2.1: Average sizes and access latencies for a typical shared memory system [48].

you move down the hierarchy. Ideally, all the necessary data for a process would be

located in caches, but that is not always possible, particularly for programs with large

working set sizes.

In figure 2-1, notice that the main memory is separated into two individual chunks.

Even though a shared memory system has a single address space, the underlying

physical memory may be separate across the CPUs. This is type of configuration

is referred to non-uniform memory access (NUMA), or distributed shared memory.

A simpler view of a NUMA system is in figure 2-2. In this setup, cores can access

addresses in their part of the distributed memory faster than the other parts, so they

have non-uniform access latency. This is in contrast to a uniform memory access

(UMA) configuration where the physical memory is in one centralized location. With

an UMA system, all cores have the same memory access latency for a given address,

hence the uniform access. UMA can be used with single socket systems that have a

small number of cores. As the number of cores increase, there is too much contention

on the centralized memory, severely impacting performance [19]. A simple UMA

configuration is depicted in figure 2-3.

Accessing Data in a Shared Memory System

When a load or a store is issued by a core in a shared memory system, the hardware

performs several steps to access the data and get it to the requesting core. Though

this is handled automatically by the hardware, a programmer can influence the per-

formance of these steps based on how they write their program. The first step the

hardware takes is locating the data, which begins by checking the core’s caches. If the
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Figure 2-2: NUMA (non-uniform memory access) configuration.

Figure 2-3: UMA (uniform memory access) configuration.
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data is not found in the cache, the hardware will check the caches of the other cores.

If the address is not found in any of the caches, then the main memory is checked.

If the address is not found in main memory, then secondary memory is checked, and

so on. Each access is progressively more expensive, so the further into the memory

hierarchy the hardware searches, the higher the access latency.

Once the data is located, it needs to be moved to the appropriate location for the

requesting core. For loads, this typically means moving the data to the requesting

core’s L1 cache. For stores, the data may be first moved to the L1 cache (if it is a

write-back cache), or it may be left in the current location (for a write-through cache)

[44]. If the data is already in the L1 cache, then there is nothing to be done (this is

the ideal case). If the data is located somewhere else, then it is moved into the L1

cache, and possibly also the L2 and L3 cache, depending on their configuration.

Data is not moved as a single byte. When data is moved from secondary memory,

the data is moved in whole pages, where a page is a chunk of data typically around 4KB

in size, though there are large pages as well. This means accessing a single address

in secondary memory will cause an entire page worth of data to be moved into main

memory. Accessing a page involves converting a virtual address to a physical address,

which is done with a page table lookup. This translation introduces extra overhead,

increasing the latency of accessing secondary memory.

A cache operates similarly, but data is moved from from main memory as a cache

line instead, which is usually either 32B or 64B. When the data is finally read from

cache, it is moved as a word, which is 4B or 8B.

In a shared memory system, it is possible for the same piece of data to be located

in multiple memory locations, such as the L1 caches of different cores. When a core

issues a store, any caches containing that address need to be signaled that their data

is now stale. If the data was kept in cache without being marked as stale, cores would

end up using old copies of the data, possibly resulting in incorrect computations.

More precisely, any reads done by another core to that same address need to return

the most recent value for that address. This is known as cache coherence [46]. The

hardware is responsible for maintaining coherency.
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The hardware is also responsible for maintaining cache consistency. Cache con-

sistency deals with the relative order that cores see stores completed to different

addresses (i.e. when does a read see written data) [47]. A programming language

should abstract the memory consistency model and provide primitives such as locks,

semaphores, and atomics to the programmer.

2.1.2 High Performance Shared Memory Code

The average programmer has more than likely written code for shared memory sys-

tems. While the hardware automatically handles much of the data transfer and

synchronization in a shared memory system, there are numerous optimizations that

can be made on a software level to improve on what the hardware does, so a high

performance programming language needs to support these optimizations. We will

look at some examples of loop transformations here, namely caching, vectorization,

and parallelization, as well as NUMA-awareness, and discuss their performance ben-

efits. These optimizations are integral parts of the Tiramisu framework that this

thesis utilizes.

Caching

Caching can have a tremendous impact on the performance of shared memory code.

Ineffective or naive use of the cache can cause unnecessary latency due to events such

as eviction, ping-ponging , and/or false sharing. Eviction is when a particular piece

of data is removed from cache. If data is evicted, but still needed, it will have to

be brought back into cache. If the cache constantly evicts a piece of data, and then

brings it back in over and over again, this is ping-ponging. False sharing occurs when

different cores access data that shares a cache line. If the cores keep writing to those

different addresses, even though they are separate, the whole cache line will keep

getting bounced back and forth between their two caches since the whole line keeps

getting evicted. This can pose a severe bottleneck.

Related to caching is data locality. There are two types of data locality, spatial
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and temporal. Spatial locality refers to multiple addresses. It means that if a memory

address is accessed, other memory addresses near it are likely to be accessed in the

near future. Since a cache brings in data as a whole cache line, we want our code to

access the data in that cache line before it gets evicted from the cache, if possible.

Temporal locality refers to a single address. If an address is accessed, temporal locality

says that same address will be accessed again in the near future. This means we want

to keep the data in cache–if we evict it too soon, we will just have to bring the cache

line back in, which takes additional time.

One of the loop transformations used to improve locality is loop tiling. Loop tiling

splits and reorganizes a loop nest so that the outer loops iterate over blocks of tiles.

Within the tiles, the individual data points are iterated over. Note that tiles do not

have to be rectangular, they can theoretically be any shape, but some tile shapes

work better than others depending on the loop nest.

Vectorization

Vectorization is a hardware feature that provides data-level parallelism though vector

instructions in the ISA. It is a SIMD (single instruction, multiple data) operation

where the same instruction is applied to different pieces of data in parallel. Current

vector instructions sets in x86 ISA today include AVX-512 [42] and SSE4 [28].

Vector instructions execute on special vector hardware, which are similar to ALUs,

but operate on vector registers. These registers are larger than general purpose reg-

isters, with current vector registers being up to 512 bytes in size. Multiple pieces of

data of the same type can be placed into a single vector register. For example, with

a 256 byte vector register, you can fit 4 64-bit doubles, 8 32-bit floats, and so on.

The vector units execute a vector instruction on all the data in the vector register in

parallel. So, with 4 64-bit floats, you theoretically get 4x speedup for that instruction

as compared to a SISD (single instruction, single data) instruction.

The code in figure 2-4a shows some simple C code for doing an elementwise ad-

dition between two arrays with 8 elements each. Figure 2-4b shows the equivalent

vectorized code. The __mm256 values are vector float types, so they represent 8 float
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1 float a[8], b[8], c[8];
2 ...
3 for (int i=0; i<8; i++) {
4 c[i] = a[i] + b[i];
5 }

(a) An unvectorized elementwise add of two 8-element float arrays.

1 float a[8], b[8], c[8];
2 ...
3 __m256 vector_a = _m256_load_ps(a);
4 __m256 vector_b = _m256_load_ps(b);
5 __m256 vector_c = _m256_add_ps(vector_a , vector_b);
6 _m256_store_ps(c, vector_c);

(b) The vectorized version using AVX intrinsics.

Figure 2-4: Applying vectorization to an elementwise array addition.

values packed together. _mm256_load_ps, _mm_add_ps, and _mm_store_ps are called

vector intrinsics. While a compiler typically applies auto-vectorization to code, these

intrinsics allow programmers to manually vectorize code.

Parallelization

Shared memory parallelization, also known as symmetric multiprocessing (SMP) is

an optimization where operations in a program are partitioned and run concurrently

on the cores. There are two primary types of parallelism: data parallelism and task

parallelism

1. Data parallelism: The data is partitioned across the cores and each core executes

concurrently. Usually, each core is running the same set of operations, just on

a different chunk of data. Loop parallelism is an example of this.

2. Task parallelism: The operations of a program are grouped together into tasks,

which are run concurrently across the cores. This typically entails running

different operations on the same chunk of data.

These two types of parallelism can be combined together, which is useful as many

programs benefit from both types of parallelism [38].
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Parallelism applied naively to a program does not always lead to better results

though, as not all programs necessarily benefit from parallel execution. Amdahl’s

Law provides an upper limit to the speedup for a program if sequential parts are

parallelized (assuming the problem size is fixed). Amdahl’s Law is as follows:

𝑆 =
1

(1− 𝑝) + 𝑝
𝑛

where 𝑆 is the possible speedup, 𝑝 is the portion of the overall program that can

be parallelized, and 𝑛 is the number of processors to parallelize across. While Am-

dahl’s Law does not take into account factors such as processor type, memory issues,

etc, it is great starting point when trying to decide if a program will benefit from

parallelization.

Other factors such as granularity and load balancing can also impact performance.

Granularity measures the ratio of the amount of computation done in a parallel region

to how often a parallel operation is spawned. Fine-grained parallelization means there

is a small amount of computation done by each parallel thread, while coarse-grained

parallelization has a large amount of computation per thread. The correct type of

parallelism to apply depends on the application. For example, a loop nest with

dependencies between each iteration may not be able to be parallelized at the loop

level (coarse-grained), but it may be possible to parallelize operations within the loop

body itself (fine-grained).

Load balancing is an important factor in applications where threads are assigned

different amounts of work. If the work is unbalanced across threads, then some

might finish before others, leaving them idle while waiting for the others to complete.

This results in decreased performance as not all threads are being used to their full

potential.

While hardware can provide some degree of parallelism, the majority of it is defined

through software. Many programming languages have APIs and libraries that can be

used for parallelization. Some popular libraries for parallelizing code include OpenMP
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1 #pragma omp parallel for
2 for (i=0; i<I; i++) {
3 for (j=0; j<J; j++) {
4 A[i*J+j] = A[i*J+j] + 4;
5 }
6 }

Figure 2-5: Simple usage of OpenMP compiler directive for parallelizing a loop.

[9], Pthreads [29], Thread Building Blocks [43], Cilk Plus [6], to name a few. We look

at OpenMP and Pthreads in more detail as they provide a good look at the differences

in these libraries.

OpenMP OpenMP provides an API and set of compiler directives for parallelizing

a program. It is implemented in C, C++, and Fortran and can be used for both data

and task parallelism. With OpenMP, a programmer simply declares that some code,

such as a loop nest, should be executed in parallel. These parallel regions are specified

using compiler directives. In C/C++, these are preprocessor instructions specified by

the pragma keyword. A simple loop parallelization with OpenMP example is shown

in figure 2-5. By placing the directive at the top level of the loop nest (line 1), the

compiler knows that the outer loop should be parallelized [38]. The parallel for

directive is a simple parallel directive in OpenMP, but OpenMP offers numerous other

directives to fine tune parallelism.

In OpenMP, a programmer specifies what needs to be parallelized, but not how

the code is parallelized. The job of determining how to parallelize the code, such as

managing the threads, is left to the compiler and the runtime system.

Pthreads Pthreads, which stands for POSIX threads, is another standard for SMP

in C/C++ that provides an API for creating and managing threads in a program.

The standard, maintained by the IEEE, provides an API for creating and managing

threads in a program. Pthreads operates at a lower level than OpenMP, so program-

mers are responsible for picking out the regions to parallelize and how to parallelize

them. The API provides functions for thread management, mutexes, condition vari-

ables, and synchronization [29]. This offers more direct control to the programmer,
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1 void *loop_body(void *_t_idx) {
2 int t_idx = (int)_t_idx;
3 A[t_idx] = A[t_idx] + 4;
4 pthread_exit ((void*) _t_idx);
5 return NULL;
6 }
7 ...
8 pthread_t threads[I*J];
9 int *t_idxs[I*J];

10 for (t_idx =0; t_idx <I*J; t_idx ++) {
11 t_idxs[t_idx] = (int*) malloc(sizeof(int));
12 *t_idxs[t_idx] = t_idx;
13 pthread_create (& threads[t_idx], NULL , &loop_body , (void*)

t_idxs[t_idx]);
14 }
15 void *status;
16 for (t_idx =0; t_idx <I*J; t_idx ++) {
17 // wait for threads to complete
18 pthread_join(threads[t_idx], &status);
19 }
20 pthread_exit(NULL);
21 ...

Figure 2-6: Basic usage of the Pthreads API for parallelizing a loop.

but requires more coding than other frameworks like OpenMP.

Figure 2-6 shows the loop nest in figure 2-5 parallelized with Pthreads instead of

OpenMP. First, the loop nest body needs to be converted into a function. This is

the function on lines 1 through 6. Then, we need a fair amount of code to manage

the threads. Here, we create one thread for every element in A (lines 8 through 14).

When the actual threads are created on line 13 with the pthread_create function,

the thread begins execution (or waits until resources are available). A join operation

is needed to check when the thread has actually completed. This is done on lines 16

through 19 using the pthread_join function.

NUMA-Awareness

If a system is set up in NUMA configuration, ignoring the placement of data relative

to the processors can result in subpar performance. NUMA-awareness refers to code

that optimizes performance based on the NUMA setup. In particular, the code must
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deal with data placement and processor affinity. Data placement in NUMA refers to

where in physical memory data resides. For good NUMA performance, data should

be placed in the physical memory local to the core using it, as the access time to local

memory is faster compared to remote memory. Processor affinity is used to assign a

thread or process to a specific core. Usually, the task of assigning threads to cores

is left to a scheduler, but most systems have an API that can be used to direct the

scheduler [37].

Both data placement and processor affinity need to be dealt with to get good

NUMA performance. If a thread is assigned to a core on socket 0, but the data that

core needs is placed in socket 1, then it is likely that the core will experience additional

latency when accessing that data. Whenever possible, the data should be placed in

the memory that is local to the core using it. One tool used to direct processor

affinity and data placement is the numactl [31] command on Linux. On NUMA-

capable machines, a programmer can launch their application using this command

and say which cores to execute on, as well as how to bind data to memory.

2.1.3 Limitations of Shared Memory Systems

For many datasets and computations, shared memory systems provide enough re-

sources. However, as the size of datasets increase, shared memory systems begin to

perform poorly. Datasets may be too big to fit into the system’s main memory, or

even into secondary memory. When data cannot fit into main memory, swapping

in from secondary memory is expensive and negatively impacts the performance of

systems. Distributed memory becomes necessary in these situations. Additionally,

only so many cores can be put into a shared memory system. As the number of cores

increase, the amount of contention on the system bus and other interconnects from

events like data access, coherence, etc. increases to a point where the system becomes

unusable. Scaling up to more computing power requires distributing the computation,

and/or using other resources such as GPUs. Beyond performance issues, optimized

shared memory code is trickier to debug, particularly if it is parallelized, as bugs such

as race conditions are easy to introduce and can cause errors or give incorrect results.
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2.2 Distributed Memory Systems

A distributed memory system is a system made up of independent local memories

and processors connected with an interconnect network. Opposed to shared memory

systems, there is no single global memory, so explicit communication is required to

transfer data between the local memories [57, 22]. These systems are known multiple-

instruction, multiple data (MIMD) systems. The individual processors (which we

refer to as nodes) could be anything from single CPUs, to full shared memory systems

(called hybrid distributed memory systems [57]). Typically, it is up to the programmer

to implement a communication scheme for a program. Other compute devices, such

as GPUs can also be part of the system, giving a heterogeneous distributed system.

Distributed memory systems scale better than shared memory systems thanks to

more compute resources and more memory. However, factors such as communication,

data locality, available parallelism in a program, etc, all need to be considered when

writing a distributed memory program.

2.2.1 Architecture and Execution Overview

Figure 2-7 shows an example of distributed memory system made up of four shared

memory nodes, with each shared memory node having an associated GPU. One of

the most important components of distributed memory systems is the communication

interconnect between each of the systems. In the literature, this interconnect may

be referred to as network fabric. Many distributed systems will require some form of

communication or data transfer between the individual systems (for example, if all

the data starts on one of the nodes, that node will need to transfer the data to other

nodes). If the communication link has high latency or low bandwidth, communication

will quickly become the bottleneck, particularly in memory-bound programs.

There are two primary networks used to connect a distributed memory system:

bus-based and switch-based. In a bus-based network, all the nodes share the same

communication interconnect (bus). If there are a lot of nodes, the bus will get very

congested because every piece of data from every node travels on the same bus, re-
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Figure 2-7: Distributed system overview.

gardless of its destination. In a switch-based system, nodes communicate through

switches, which sends data to the destination node. This significantly reduces con-

gestion since data only goes through interconnects leading to the destination. It is

also much more scalable since new nodes just mean adding a new switch [22]. Fig-

ure 2-8 shows a bus-based network configuration and figure 2-9 shows a switch-based

network configuration.

There are several interconnects used in distributed memory systems, with some of

the main ones being Ethernet [25], InfiniBand [2], and Intel Omni-Path [20]. These

interconnects vary in design, latency, bandwidth, price, manufacturer, etc.

2.2.2 High Performance Distributed Memory Code

The main difference between programming shared memory systems and distributed

memory systems is the explicit communication required in distributed systems. Com-

munication is used for both synchronization and data transfer, so it is highly likely

that a distributed program will have some form of communication. We focus on the

data transfer component in this work.

Models for Managing Distributed Memory

Several models exist for programming on distributed memory systems. A big dif-

ference between many of the models is how they present the memory address space

to the programmer. Some models presented a unified view of the memory, making
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Figure 2-8: Bus-based distributed system.

Figure 2-9: Switch-based distributed system.
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it look like one big shared memory system. Often, these systems will transparently

handle data transfers by adding in the appropriate functions where data is needed.

Other models, such as PGAS, provide a unified view, but with special constraints

on the memory access. This gives more control to the programmer in managing the

memory. At the lowest level, there are models like message passing, which present the

address space as is and programmers are in charge of managing all the data transfers.

PGAS Model PGAS, which stands for partitioned global address space, is a model

that looks at distributed memory as a global address space and breaks it into private

and shared addresses [7]. It gives a similar representation as a shared memory system.

Programmers can assign threads to different operations, where the threads are associ-

ated with the different memories in the distributed system. The underlying software

handles all communication implicitly. Example languages for this model include UPC

[15], Titanium [59], and Co-Array Fortran [32].

Message Passing Model In this model, the programmer is responsible for dis-

tributing work among nodes and handling all of the data transfers. Nodes commu-

nicate by sending messages to each other. Example implementations for this model

include OpenMPI [14] and MVAPICH [39]. The work in this thesis utilizes the mes-

sage passing model.

The most common version of the message passing model is MPI, which stands for

message passing interface. It is a specification for parallel programming, with a focus

on distributed memories. Implementations of the specification provide a software

solution for dealing with explicit communication in distributed systems.

MPI can also be used for shared memory parallelization, but other tools, such as

OpenMP, remain favored for that area.

At a high-level, MPI launches multiple copies of a program, giving many different

processes that (likely) need to communicate with each other. The programmer speci-

fies how the processes cooperate and coordinate with each other. In the program, the

user can use a process id to condition certain parts of the code based on the current
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1 int main() {
2 MPI_Init ();
3 int rank;
4 MPI_get_rank (&rank);
5 if (rank == 0) {
6 printf("My rank is 0\n");
7 char *msg = "Hello from rank 0";
8 MPI_Send(msg , 18, MPI_CHAR , 1 /*dst rank*/, ...);
9 printf("Rank 0 sent message to rank 1\n");

10 } else { // rank == 1
11 printf("My rank is 1\n");
12 char msg [18];
13 MPI_Recv(msg , 18, MPI_CHAR , 0 /*src rank*/, ...);
14 printf("Rank 1 received message %s from rank 0\n", msg);
15 }
16 MPI_Finalize ();
17 }

Figure 2-10: Simple MPI program with two ranks.

id. This way, the user has complete control over which process executes which part

of the code. If the user does not supply any explicit synchronization, the individual

processes would run completely concurrently.

Figure 2-10 shows a simple example of writing a program that runs in parallel with

two processes. One process sends data (known as a message) to the other process

which receives the message. An MPI rank is a unique identifier of an MPI process.

By default, each MPI process will be assigned a unique, contiguous integer starting

from 0. The rank is one of the most useful components in MPI. First, it can be used

to condition parts of the code. In the figure, the if block shows an example of this.

Depending on the rank of the process, we want to do one of two things: either we

want to send data to the other rank (rank 0 sends to rank 1 using MPI_Send), or we

want to receive that data (rank 1 receives from rank 0 using MPI_Recv). The rank

is also used to specify which other processes to communicate with. This can be seen

in the MPI_Send and MPI_Recv on lines 8 and 13.

Going into more detail, we are concerned with MPI functions for two-sided com-

munication. In two-sided communication, two ranks communicating with each other

must explicitly coordinate: one process needs to initiate a send, and the other needs to
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initiate a receive. Based the category of the MPI function, communication may also

require explicit synchronization. There are four main categories of communication

functions in MPI: blocking, non-blocking, synchronous, and asynchronous. Block-

ing and non-blocking deal with how a thread’s execution proceeds after making an

MPI function call. Synchronous and asynchronous define what it means for an MPI

function to complete. Synchronous and asynchronous only apply to sends, whereas

blocking and non-blocking apply to both sends and receives.

1. Blocking: Control does not return to the calling thread until the MPI function

has completed.

2. Non-blocking: Control immediately returns to the calling thread; it does not

wait until it is complete. Explicit synchronization is needed to check when the

MPI function has actually completed.

3. Synchronous: The MPI send is complete when it has transferred all the data

froms its send buffer, and the receive has put all of the transferred data into its

own buffer.

4. Asynchronous: The MPI send is complete when it has transferred all the data

from its send buffer.

Sends in MPI can be the following combinations: blocking and synchronous (MPI_Ssend),

blocking and asynchronous (MPI_Send), nonblocking and synchronous (MPI_Issend),

and nonblocking and asynchronous (MPI_Isend). Receives can be blocking (MPI_Recv)

or non-blocking (MPI_Irecv). MPI provides additional functions to query the status

of nonblocking operations, such as MPI_Wait. MPI_Wait will block the calling thread

until the specified operation has completed.

All messages sent between a given pair of ranks using these functions arrive in

FIFO order. However, there is no guarantee on the ordering of messages across

ranks. For example, consider the following scenario with two ranks, r1 and r2, and

four messages, m1, m2, m3, and m4.

1. r1 sends m1 to r2.
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2. r1 sends m2 to r3.

3. r1 sends m3 to r2.

4. r1 sends m4 to r3.

In this case, r2 is guaranteed to receive message m1 before m3 and r3 is guaranteed

to receive m2 before m4. However, r2 could receive both m1 and m3 before r3 receives

anything. Or r3 could receive both m2 and m4 before r2 receives any messages. Any

interleaving (that still preserves FIFO ordering between a pair of ranks) could happen.

MPI provides an optional function argument called a message tag that can be used

to differentiate between messages.

Optimizing MPI Communication

Done naively, communication can easily become the bottleneck in a distributed pro-

gram. A big part of getting good performance is overlapping communication with

computation. With blocking communication, the calling thread cannot proceed until

the communication is finished, so it cannot do any other useful work in the mean-

time. However, with non-blocking communication, the thread can do other useful

work (assuming there is some) instead of waiting for the communication to finish.

Consider the example code in figures 2-11 and 2-13. Both figures give code for

performing a distributed matrix-vector multiply. We assume that there are two ranks,

r0 and r1, and the data for the matrix and vector initially reside on the machine

running the process for r0. We will have each rank operate on half of the matrix.

This means that r0 must send the vector and half of the matrix to r1, and then r1

must send its results back to r0. We assume that data is row-major, and our matrix

dimension is M rows by N columns. The difference between the two sets of code is

that 2-11 uses blocking communication and 2-13 uses a combination of blocking and

non-blocking communication. The blocking version starts by sending the entire vector

from r0 to r1 on line 6. In line 7, r0 the entire first half of the matrix to r1. r0

must will block until the sends complete, so it cannot execute its multiply in the loop

nest at line 8 until those sends are done. r0 has no overlap of communication and
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1 ...
2 MPI_Init (); int rank; MPI_get_rank (&rank);
3 if (rank == 0) {
4 vector = <read from file >; matrix = <read from file >
5 output = (float*) malloc(sizeof(float)*M);
6 MPI_Send(vector , N, MPI_FLOAT , 1, ...);
7 MPI_Send(matrix , (M/2)*N, MPI_FLOAT , 1, ...);
8 for (int r = M/2; r < M; r++) {
9 float sum = 0.0f;

10 for (int c = 0; c < N; c++) {
11 sum += matrix[r*N + c] * vector[c];
12 }
13 output[r] = sum;
14 }
15 MPI_Recv(output , M/2, MPI_FLOAT , 0, ...);
16 } else { // rank == 1
17 vector = (float*) malloc(sizeof(float)*N);
18 matrix = (float*) malloc(sizeof(float)*(M/2)*N);
19 output = (float*) malloc(sizeof(float)*M/2);
20 MPI_Recv(vector , N, MPI_Float , 0, ...);
21 MPI_Recv(matrix , (M/2)*N, MPI_FLOAT , 0, ...);
22 for (int r = 0; r < M/2; r++) {
23 float sum = 0.0f;
24 for (int c = 0; c < N; c++) {
25 sum += matrix[r*N + c] * vector[c];
26 }
27 output[r] = sum;
28 }
29 MPI_Send(output , M/2, MPI_FLOAT , 0, ...);
30 }
31 MPI_Finalize ();
32 ...

Figure 2-11: Two process distributed matrix-vector multiply using blocking commu-
nication.
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Figure 2-12: Timeline showing sequential communication within a rank due to the
use of blocking functions.

computation here. r0’s last job is to get the results from r1 and put them in the final

output array. This occurs at line 15.

r1 operates similarly to r0, except it receives the messages from r0 (lines 20 and

21) and then sends its results to r0 (line 29). Like r0, r1 cannot begin computing

the multiply starting at line 22 until its receive is complete. So r1 also does not have

any overlap of communication and computation.

Figure 2-12 shows an approximate (not-to-scale) timeline of execution for r0 and

r1. Each rank runs concurrently, but the actual operations within a rank run sequen-

tially, so there is no overlap.

The combined blocking and non-blocking version takes advantage of the ability

to overlap communication and computation. r0 starts the same and transfers the

vector all in one message on line 6. For the matrix, it sends one row of data at a

time (line 10), so a total of M/2 messages are sent. Since the send is non-blocking, it

immediately returns and r0 executes the multiply with its current row. r0 ends with

getting the output from r1 as before, but it first needs to make sure all its non-blocking

sends finished before launching more operations (this is the MPI_Waitall function on

line 15). MPI_Request objects contain information on the status of functions, so MPI

wait functions query these to see if an operation is complete. r0 finishes by receiving

the output from r1 with a non-blocking function followed by another MPI_Waitall

on lines 18 and 20.

r1 also starts as before with a blocking receive of the vector on line 25. Since
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1 ...
2 MPI_Init (); int rank; MPI_get_rank (&rank);
3 if (rank == 0) {
4 vector = <read from file >; matrix = <read from file >
5 output = (float*) malloc(sizeof(float)*M);
6 MPI_Send(vector , N, MPI_FLOAT , 1, ...);
7 MPI_Request *reqs = (MPI_Request *) malloc(sizeof(MPI_Request

)*M/2);
8 for (int r = M/2; r < M; r++) {
9 MPI_Request req; reqs[r-M/2] = req;

10 MPI_Isend (& matrix [(r-M/2)*N],N,MPI_FLOAT ,1,...,&req);
11 float sum = 0.0f;
12 for (int c = 0; c < N; c++) { sum += matrix[r*N+c] *

vector[c]; }
13 output[r] = sum;
14 }
15 MPI_Waitall(M/2, reqs , ...);
16 for (int r = 0; r < M/2; r++) {
17 MPI_Request req; reqs[r] = req;
18 MPI_Irecv (& output[r], 1, MPI_FLOAT , 0, ..., &req);
19 }
20 MPI_Waitall(M/2, reqs , ...);
21 } else { // rank == 1
22 vector = (float*) malloc(sizeof(float)*N);
23 matrix = (float*) malloc(sizeof(float)*(M/2)*N);
24 output = (float*) malloc(sizeof(float)*M/2);
25 MPI_Recv(vector , N, MPI_FLOAT , 0, ...);
26 MPI_Request *reqs = (MPI_Request *) malloc(sizeof(MPI_Request

)*M/2);
27 for (int r = 0; r < M/2; r++) {
28 MPI_Request req; reqs[r] = req;
29 MPI_Irecv (& matrix[r*N], N, MPI_FLOAT , 0, ..., &req);
30 }
31 for (int r = 0; r < M/2; r++) {
32 MPI_Wait(reqs[r], ...);
33 float sum = 0.0f;
34 for (int c = 0; c < N; c++) { sum += matrix[r*N+c] *

vector[c]; }
35 output[r] = sum;
36 MPI_Request req; reqs[r] = req;
37 MPI_Isend (& outputs[r], 1, MPI_FLOAT , 0, ..., &req);
38 }
39 MPI_Waitall(M/2, reqs , ...);
40 }
41 MPI_Finalize ();
42 ...

Figure 2-13: Two process distributed matrix-vector multiply combining blocking and
non-blocking communication.
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Figure 2-14: Timeline showing overlapping communication and computation with
non-blocking functions.

the matrix was sent row-by-row, r1 needs to receive the matrix row-by-row also,

which it does on line 29. These function calls merely initialize the receives; control

immediately returns to the thread and it proceeds to the loop nest on line 31. Before

doing the multiply, we need to make sure the data for that row has been completely

received. This is accomplished with the MPI_Wait on line 32. At the end of the

loop nest, r1 sends each output as it is finished with a non-blocking send on line 37,

followed by the MPI_Waitall on line 39.

Figure 2-14 gives another timeline, this time showing what happens with the

non-blocking operations. As before, r0 and r1 run concurrently, but now there is

also concurrency within each rank as some of the sends and receives, as well as the

computation, can overlap.

2.2.3 Limitations of Distributed Memory Systems

While distributed memory systems offer more scalability than their shared memory

counterparts, these systems have other performance considerations such as commu-

nication. In some cases, the data may exist on only one of the nodes and need to

be transferred to other nodes. If the actual computation executed is not very time

consuming, the cost of transferring the data could outweigh any benefits. Data can

also start distributed across several nodes, especially if there is too much data to fit
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into the memory of a single machine. In this, data may have to be sent multiple times

to deal with the memory limitations, so care should be taken when implementing the

communication.

Additionally, distributed memory systems are harder to program than their shared

memory counterparts for several reasons. First off, the programming model is differ-

ent. Distributed memory code will look different than an equivalent shared memory

implementation due to the synchronization and other such code needed to manage

the different processes executing. Even small conceptual changes, like modifying the

loop that is distributed, can result in a complete rewrite of the code.

Like parallelized shared memory code, distributed code is hard to debug because

it introduces concurrency into a program. Also, programmers need to keep track of

where pieces of data exist at any given time and make sure individual processes are

operating on the correct version of the data.

2.3 Graphics Processing Units (GPUs)

Graphics processing units (GPUs) have become an integral part of high-performance

computing in recent years. Traditionally used for rendering graphics, GPUs have

expanded into many other fields such as linear algebra, deep learning, speech pro-

cessing, image processing, weather simulations, and bioinformatics, thus sparking

the term GPGPU (general purpose GPU computing). Compared to traditional CPU

based systems which optimize for latency, GPUs optimize the throughput of opera-

tions, potentially running thousands of operations in parallel. GPUs also have very

different architectures from CPUs, and they use a different programming model.

2.3.1 Architecture and Execution Overview

At the highest level, GPUs are collections of up to 1000s of individual compute cores,

offering massive amounts of parallelism in comparison to typical CPUs. The way

these individual cores are configured is different based on the GPU model. Figure 2-

15 shows the architecture of the NVIDIA Pascal GP100 GPU. The computing units
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Figure 2-15: Overall architecture of the NVIDIA Pascal GP100 GPU [34].

on the GPU are broken down into groups called streaming multiprocessors (SMs).

SMs are grouped into bigger units, which NVIDIA calls graphics processing clusters

(GPCs). In this particular configuration, there are six GPCs arranged in an array,

each containing 10 SMs. Each GPC shares the L2 cache shown in the middle. On

the left and right are the interfaces to the main memory of the GPU, called global

memory. Since this memory is separate from the CPU memory, this is similar to a

distributed system, though the more appropriate term is heterogeneous. The top of

the figure has a PCIe interface that connects to the CPU (also called the host), while

the bottom has a special high-speed interface called NVIDIA NVLink that connects

GPUs directly together. NVLink provides up to 5x more bidirectional bandwidth

than traditional PCIe [34]. Note that previous NVIDIA GPU architectures, such as

Fermi, Kepler, and Maxwell, do not have NVLink interfaces, so the GPUs would also

communicate via PCIe.

The next figure, figure 2-16, shows the configuration of an SM for the Pascal
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Figure 2-16: SM configuration of the NVIDIA Pascal GP100 GPU [34].

GP100. The individual cores, known as CUDA cores1, are grouped into two sym-

metric sets. In this case, there are 32 CUDA cores per set, giving 64 total cores per

SM. These cores are specialized for single precision arithmetic. The cores labeled DP

Unit are specialized for double precision arithmetic. There are less of them, so the

overall performance of double precision operations is less than single precision. The

LD/ST units are load/store units, and the SFU cores are for special arithmetic opera-

tions such as sqrt. Each SM also has a set of registers, an L1 cache, and a shared

memory cache. There are some additional memories, such as constant memory, but

we do not consider those here.

Theoretically, this setup, with six GPCs and 10 SMs/GPC, would give 60 SMs

and 3840 total cores. However, due to various constraints such as power consumption,

different GPU models do not enable all of the SMs. For example, the Tesla P100,

which is built from the Pascal GP100 architecture, uses 56 of the 60 SMs, giving 3584

total usable cores [34].

1In other GPUs, such as AMD ones, the cores are called streaming processors (SPs).
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NVIDIA GPU Architecture
Feature Kepler Maxwell Pascal
SMs 15 24 56

Total FP cores 2880 3072 3584
Total DP cores 960 96 1792

Main memory size 12GB 24GB 16 GB
Peak FP GFLOPs 5040 6840 10600
Peak DP GFLOPs 1680 210 5300

Max threads per warp 32 32 32
Max block size 1024 1024 1024

Max warps per SM 64 64 64
Max blocks per SM 16 32 32

Table 2.2: Architecture comparison between different generations of NVIDIA GPUs
[34].

GPU caches have a different purpose than CPU caches. First off, in the CPU,

caches are managed by hardware; in the GPU, they are partly managed by hardware,

and partly managed by the programmer. Secondly, a GPU cache is mainly used to

help reduce the memory bandwidth to global memory, rather than reducing latency

like CPU caches [12]. In a GPU, there are thousands of threads accessing memory,

and having them all accessing global memory causes a lot of contention. The GPU

caches have less threads accessing them, so there is not as much contention. Even

though the caches do not help much with latency in a GPU, the sheer number of

threads running in parallel can mask latency in memory access.

The GPU uses an execution model known as single instruction, multiple thread

(SIMT). In this model, all the threads that issue together in a group, called a warp,

execute the same instruction in parallel on different pieces of data. Each thread maps

to one of the CUDA cores in an SM. The overall code containing the instructions to

execute on the GPU is called a kernel.

From the programmer’s perspective, GPU threads are organized into blocks and

grids. A block is a group of threads and a grid is a group of blocks. All the threads

in a block can communicate with each other via shared memory. Configuring block

size and grid size is important to performance. Blocks execute in parallel and must

be independent from one another because they are unable to communicate and can
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Figure 2-17: Grid, block, thread hierarchy.

execute in any order. Figure 2-17 gives a look at the thread, block, and grid hierarchy.

Blocks and grids can be 1, 2, or 3-dimensional. The appropriate configuration depends

on the program. Blocks are executed on SMs; multiple blocks can be assigned to a

single SM, and the hardware will figure out how to schedule the underlying warps.

Table 2.2 gives various GPU characteristics, such as warp size, block size, GFLOPs,

etc, for the NVIDIA Kepler, Maxwell, and Pascal architectures.

2.3.2 High Performance GPU Code

There are several ways to program a GPU, from using low-level GPU assembly such

as NVIDIA’s PTX language [40], to slightly-higher level graphics programming lan-

guages such as OpenGL [58], or libraries like Microsoft’s DirectX [24]. However, these

languages are either too low-level to use for general purpose GPU computing, or are

focused on graphics programming. In recent years, high-level languages like NVIDIA

CUDA [30] and OpenCL [51] have emerged as the defacto way to program a GPU for

general purpose usage. In this thesis, we utilize CUDA, so we will look at the CUDA

language.
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1 float *a, *b, *c;
2 ...
3 for (int i = 0; i < I; i++) {
4 a[i] = b[i] + c[i];
5 }

(a) The sequential loop.

1 __global__
2 void vector_add_kernel(float *a, float *b, float *c, int I) {
3 int global_idx = blockIdx.x * blockDim.x + threadIdx.x;
4 if (global_idx < I) {
5 a[global_idx] = b[global_idx] + c[global_idx ];
6 }
7 }

(b) The equivalent CUDA kernel.

Figure 2-18: A sequential loop and the equivalent CUDA kernel for parallel execution
on the GPU.

CUDA Programming Model

CUDA (which stands for Compute Unified Device Architecture) was introduced in

2007 by NVIDIA as a parallel software model for GPU programming. It was devel-

oped as an extension to C/C++ and provides control over everything from memory

management to kernel execution.

With CUDA, programmers write C/C++ as usual, but are provided with library

functions and declaration specifiers that mark code for either host or device (i.e.

GPU) execution. GPU kernels are marked with the __global__ specifier. In CUDA,

the kernel is a function called from the host. Any other GPU functions called within

the kernel are gpu-only functions.

The main component of any CUDA program is the kernel itself. A kernel can be

thought of as the body of the sequential loop, where the loop iterations are executed

as CUDA threads running in parallel. Figure 2-18a shows a simple sequential loop

and figure 2-18b shows the equivalent CUDA kernel for parallel execution.

On line 3, blockIdx.x, blockDim.x, and threadIdx.x are built-in variables that

let us compute the global index from the local block and thread indices. This is the
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equivalent of the values for loop iterator i in the sequential loop example.

The next big component is data transfer and memory management. To get the

best performing code in CUDA, programmers need to manage memory manually. Like

using MPI for distributed memory, CUDA provides numerous functions for transfer-

ring data between CPU and GPU memory. Before a GPU kernel is executed, all the

necessary data for that kernel has to be transferred to the GPU. Similarly, any data

produced by the GPU that is needed by the CPU later on will have to be copied back

down to the CPU. Newer versions of CUDA have a feature called unified memory

that allows a single pointer to be used for both the CPU and GPU data. CUDA then

handles all the necessary memory transfers automatically. But, this does not give the

best performance, so we do not utilize unified memory in our work.

Asynchronous Execution Two important types of execution modes in CUDA are

synchronous and asynchronous. These are similar to the blocking and non-blocking

calls of MPI, respectively; synchronous CUDA calls block the caller until the operation

is complete and asynchronous calls return immediately. Explicit synchronization is

required for figuring out when an asynchronous call is actually complete. In CUDA,

there are not separate functions for sending and receiving like in MPI.

By default, kernels are launched asynchronously. However, without additional

modifications, asynchronous CUDA transfers and kernels will not overlap. As soon

as another operation is launched, whether asynchronous or not, it will block until

the previous asynchronous operation finishes. Overlap requires an additional feature

called streams. A stream contains a series of operations that execute sequentially,

where an operation is something like a kernel or a data transfer. For example, say

you have two kernels, k1 and k2. If you execute k1 followed by k2 in the same

stream, then k2 will not execute until k1 has completed, even though kernel launches

in CUDA are asynchronous. However, the individual threads of the kernels will still

run in parallel. Individual streams can run concurrently, so it is possible to run

multiple kernels concurrently, as well as overlap kernel execution with data transfers.

More recent NVIDIA GPUs support executing kernels, CPU-to-GPU, and GPU-to-
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1 ...
2 int M = ...;
3 float *matrix_A = <read data from file >
4 float *matrix_B = <read data from file >;
5 float *matrix_C = (float*) malloc(sizeof(float*)*M*M);
6 float *d_A , *d_B , *d_C;
7 cudaMalloc (&d_A , sizeof(float)*M*M);
8 cudaMalloc (&d_B , sizeof(float)*M*M);
9 cudaMalloc (&d_C , sizeof(float)*M*M);

10 cudaMemcpy(d_A , matrix_A , sizeof(float)*M*M,
11 cudaMemcpyHostToDevice);
12 cudaMemcpy(d_B , matrix_B , sizeof(float)*M*M,
13 cudaMemcpyHostToDevice);
14 KERNEL <<<BLOCKS_PER_GRID , THREADS_PER_BLOCK >>>
15 (d_A , d_B , d_C , M);
16 cudaMemcpy(C, d_C , sizeof(float)*M*M,
17 cudaMemcpyDeviceToHost);
18 ...

Figure 2-19: CUDA code for synchronous communication and kernel execution.

CPU transfers concurrently, assuming each is placed in a separate stream.

Without explicit synchronization, streams will run concurrently, regardless of any

dependences that exist between streams. Programmers can explicitly synchronize

across streams using CUDA events. Events are operations that can be placed between

other operations in streams and are used to determine when the previous operation

in a stream has completed.

Figures 2-19 and 2-21 give some CUDA code for launching a kernel in between

memory copies from CPU-to-GPU and GPU-to-CPU. We assume that the kernel is

something that can execute on a row-by-row basis (such as some type of elementwise

operation). Figure 2-19 uses synchronous (blocking) communication, while figure 2-21

uses a combination of synchronous and asynchronous (non-blocking) communication.

In the synchronous code, we first need to allocate memory on the GPU for the two

input matrices (d_A and d_B), as well as the result matrix (d_C). The cudaMalloc

function on lines 7, 8, and 9 allocate memory in GPU global memory. Throughout

this example, we assume that the various parameters (such as data size) fit within the

GPUs limits. Next, the matrices are copied up to the GPU on lines 10 through 13.
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Figure 2-20: Timeline for kernel execution and communication using only synchronous
CUDA operations.

cudaMemcpy is used for synchronous copies and can be used in any transfer direction.

Lines 14 and 15 use the CUDA launch the kernel. The parameters between the

triple chevrons (〈〈〈...〉〉〉) are the grid size and block size, respectively. Our al-

gorithm uses 1 thread per element, so the programmer needs to make sure that the

BLOCKS_PER_GRID and THREADS_PER_BLOCK parameters cover the full dimensions of

the matrices. Once the kernel is complete, the result is copied back to the CPU

starting on line 16. The timeline for this code is shown in figure 2-20.

The combined synchronous/asynchronous code in figure 2-21 begins the same way

as the synchronous code–it allocates GPU memory. On lines 10 to 13, we create three

cuda streams. Unlike the synchronous code, here, we will copy the matrices up row-

by-row and launch a kernel for each row. The row copies happen in lines 18 through

21 using cudaMemcpyAsync. This call is the same as cudaMemcpy, except it takes an

additional parameter: the stream. On lines 25 and 26, the kernel is launched for one

row. It also takes a stream identifier. The copy and the kernel execute in separate

streams, thus copies and kernels can run concurrently. We also copy back one row at

a time starting on line 29 using a different stream so that copy can run concurrently.

Note that we have a dependence between copies and kernel launches. Before

launching the kernel for a row, we need to verify that the row has fully copied to the

GPU. Similarly, before copying the result back to the CPU, we need to make sure that

the kernel has completed. On lines 15 through 17 we create CUDA events to place

in the streams. Line 22 places the copy_event event into the cpu_to_gpu_stream.

Line 23 then tells the kernel’s stream, kernel_stream, to wait for that event before

launching. Likewise, line 27 places the kernel_event in the kernel_stream and then

line 28 tells the copy back to wait for kernel_event to complete. This synchroniza-
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1 ...
2 int M = ...;
3 float *matrix_A = <read data from file >
4 float *matrix_B = <read data from file >;
5 float *matrix_C = (float*) malloc(sizeof(float*)*M*M);
6 float *d_A , *d_B , *d_C;
7 cudaMalloc (&d_A , sizeof(float)*M*M);
8 cudaMalloc (&d_B , sizeof(float)*M*M);
9 cudaMalloc (&d_C , sizeof(float)*M*M);

10 cudaStream_t cpu_to_gpu_stream , gpu_to_cpu_stream ,
kernel_stream;

11 cudaStreamCreate (& cpu_to_gpu_stream);
12 cudaStreamCreate (& gpu_to_cpu_stream);
13 cudaStreamCreate (& kernel_stream);
14 for (int r = 0; r < M; r++) {
15 cudaEvent_t copy_event , kernel_event;
16 cudaEventCreate (& copy_event);
17 cudaEventCreate (& kernel_event);
18 cudaMemcpyAsync (&d_A[r*M], &matrix_A[r*M], sizeof(float)*M,
19 cudaMemcpyHostToDevice , cpu_to_gpu_stream);
20 cudaMemcpyAsync (&d_B[r*M], &matrix_B[r*M], sizeof(float)*M,
21 cudaMemcpyHostToDevice , cpu_to_gpu_stream);
22 cudaEventRecord(copy_event , cpu_to_gpu_stream);
23 cudaStreamWaitEvent(kernel_stream , copy_event , ...);
24 KERNEL <<<BLOCKS_PER_GRID , M/BLOCKS_PER_GRID ,
25 kernel_stream >>>
26 (&d_A[r*M], &d_B[r*M], &d_C[r*M], M);
27 cudaEventRecord(kernel_event , kernel_stream);
28 cudaStreamWaitEvent(gpu_to_cpu_stream , kernel_event);
29 cudaMemcpyAsync (&C[r*M], &d_C[r*M], sizeof(float)*M,
30 cudaMemcpyDeviceToHost , gpu_to_cpu_stream);
31 }
32 cudaDeviceSynchronize ();
33 ...

Figure 2-21: CUDA code for a combination of asynchronous and synchronous com-
munication and kernel execution.
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Figure 2-22: Timeline for kernel execution and communication using a combination
of synchronous and asynchronous CUDA operations.

tion scheme forces the copies and kernel to execute sequentially within a single loop

iteration, but run overlap across iterations. A timeline for this version is shown in

figure 2-22.

Four additional performance points worth mentioning are GPU occupancy, pinned

memory, branch divergence, and memory coalescing.

GPU Occupancy GPU occupancy is a measure that roughly translates to resource

utilization. It is the ratio of the number of active warps executing on an SM to the

maximum number of active warps allowed on an SM (i.e. running concurrently). A

warp is active from the moment at least one of the threads in it begins until the

moment the last thread finishes [1]. Block size and grid size are very important to

GPU occupancy, so they should be tuned accordingly. Too low of an occupancy and

the GPU threads are not being effectively used; too high and the amount of resources

available to each thread (such as memory) is limited.

Pinned Memory Pinned memory is special page-locked memory allocated on the

CPU. The GPU cannot directly access memory that is pageable when doing a transfer,

so without pinned memory, data to transfer has to first be copied to a separate

staging area in CPU memory, and then transferred to the GPU. The same goes for

transferring data from the GPU back down to the CPU–the copy back would be

staged in CPU memory and then moved to its final destination. The staging area

itself is page-locked pinned memory, so by allocating page-locked memory before
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(a) Copying to GPU DRAM with a staging
copy required first.

(b) Copying to GPU DRAM without having
to copy to the staging area first.

Figure 2-23: Copying to GPU DRAM without pinning memory beforehand (left),
and copying with pinning beforehand.

hand, the additional copy to the staging area is eliminated, potentially saving a

signficant amount of time, particularly for large transfers. Figure 2-23a shows the two

copies required when staging and figure 2-23b shows the single copy to GPU DRAM

without staging. Eliminating this staging copy gives what is known as a zero-copy

transfer. CUDA asynchronous transfers require pinned memory, otherwise they will

just execute synchronously [18].

Branch Divergence Branch divergence happens within a warp when a control

flow operation is encountered. Threads in a warp can only issue the same instruction

together, so if some of the threads resolve to one direction, and other threads go in

another direction, the warp will execute those different branch directions sequentially.

The warp will disable the threads that are not supposed to execute that direction,

and then re-enable them when it is time to execute their branch. This means that a

warp is most effective when all of its threads agree. As a general rule of thumb, it is

a good idea to avoid branching in a kernel if possible, or at least minimize its impact

on warp execution [36].

Memory Coalescing When accessing global memory within a kernel, a warp tries

to group all of its memory accesses together into as few transfers as possible. This
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is called memory coalescing. It is able to do this when memory accesses are either

sequential (relative to the innermost thread dimension), or strided such that each

access goes to a different memory bank. Grouping together transfers minimizes the

contention in accessing the memory. If memory accesses are non-sequential, indirect,

or strided such that they access the same memory bank, then the access will be un-

coalesced and require additional transfers, increasing contention on the memory, and

decreasing overall performance [17].

2.3.3 Limitations of GPUs

Even though GPUs offer the potential for massive speed up, they are not always

better than CPUs. First off, programs need to have a high degree of parallelism to

take advantage of the GPU, as the latency of an individual GPU core is higher than

a CPU core. Thus, latency critical applications may not perform well, particularly if

there is not enough parallelism.

Communicating with the GPU is also expensive, as it is similar to sending data in

a distributed system. If an operation is memory-bound, the cost of transferring data

may overtake any improved compute performance. Special care needs to be taken

when implementing the communication, just like with distributed systems. Addition-

ally, the memory on GPUs is much smaller than on shared memory systems (GPU

DRAM is about 12GB-16GB). Pinning memory can also have negative performance

impacts, so it needs to be handled carefully. Pinned memory reduces the amount of

pageable memory (i.e. memory that can be swapped in and out of RAM), so too

much of it and performance will suffer, but too little and it will be harder to see

benefits from asynchronous data transfers.

As previously mentioned, branch divergence and un-coalesced memory accesses

can also a significant performance impact, so if an application can not eliminate (or

limit) the amount these occur, a GPU program may not execute well compared to an

equivalent CPU implementation.

Programming GPUs requires a different programming model than CPUs, making

them harder to program. Languages like CUDA certainly make it easier, but it
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requires a different way of thinking. For example, loops turn into kernels, memory

requires more careful handling, etc. Even calling a kernel requires a significant amount

of coding.

Similar to parallelization on shared memory and distributed memory systems,

debugging CUDA code is difficult. Bugs could be introduced not only from the

parallelism, but also the asynchronous communication. NVIDIA provides tools like

nvprof, cuda-gdb, and cuda-memcheck to help with debugging, but it remains a

tedious process.
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Chapter 3

The Tiramisu Compiler

The work presented in this thesis makes use of an existing compiler called Tiramisu,

which was developed in the COMMIT group at MIT [53]. Tiramisu is a middle-end

polyhedral compiler for DSLs that abstracts the underlying architecture using a three-

layer design. Tiramisu’s design makes it easier for programmers to modify parts of

their program, such as data layout, without having to modify other components, such

as the high-level algorithm. Utilizing the polyhedral model, loop transformations and

optimizations become much easier as the programmer just has to specify what they

want done to the loop, and the polyhedral model generates the correct loop repre-

sentation.The programmer uses a scheduling language to specify the transformations,

and as we will see, the scheduling language is a major component of Tiramisu.

We begin this chapter with an introduction to the polyhedral model, which Tiramisu

uses to represent programs.

3.1 The Polyhedral Model

3.1.1 Overview

The polyhedral model is a mathematical model for representing sequential programs

built around loop nests. The loop nests and transformations on those loop nests are

described using algebraic operations. The polyhedral model composes transformation
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operations together with the loop nest representation into a single algebraic operation

that can be used to generate backend code. These loop transformations are typically

done with performance optimization in mind. Consider the simple two-level loop nest

in figure 3-1a, and the subsequent transformations, loop distribution1, loop tiling, and

loop interchange in figures 3-1b, 3-1c, and 3-1d, respectively. There are several parts

to the polyhedral description of these loops.

The first is the iteration domain. The iteration domain is the set of all possible

values for the loop iterators of the loop nest. The iteration domain for the previous

loop nest would contain all tuples of iterators 𝑖 and 𝑗, written as:

{(𝑖, 𝑗) ∈ Z2 : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

More specifically, the iteration domain is an integer set with values ∈ Z𝑑, where 𝑑

represents the depth of the loop nest. The inequalities in the iteration domain define

a set of constraints that represent a polyhedron. In the polyhedral model, these

constraints are quasi-affine inequalities and are expressed in terms of loop iterators,

loop invariants, and integer literals. Affine means that the inequalities are linear, so

they are of the form {𝑥 ∈ Z𝑑 : 𝐴𝑥 + 𝑎 ≥ 0}. 𝑥 represents the tuple of loop iterator

values, and 𝐴 and 𝑎 represent a matrix and vector of loop invariants, respectively.

Quasi means that the constraint can also contain existentially quantified variables,

meaning that these variables have some integer value that exists and satisfies the

constraint [5, 54].

The binary operators allowed in the definition of a quasi-affine constraint are the

following: +, −, ×, /, mod, ∧, ∨, <, ≤, >, ≥, ==, ̸=. The ternary operator ? is

also allowed. The right hand side argument of / and mod has to be a positive integer

literal, and one of the arguments to × has to be an integer literal [3].

At the basic level, the polyhedrons represented in the polyhedral model are convex

polyedrons. Figure 3-2 gives a graphical representation of the difference between a

convex and a non-convex polyhedron. All interior points in the convex polyhedron

1Loop distribution here is different than distribution used in the next chapter, which corresponds
to distributed execution
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1 for (i=0; i<100; i++) {
2 for (j=0; j<10; j++) {
3 A[i,j] = A[i,j] + 4;
4 B[i,j] = A[i,j] + 5;
5 }
6 }

(a) Original, untransformed loop nest

1 for (i=0; i<100; i++) {
2 for (j=0; j<10; j++) {
3 A[i,j] = A[i,j] + 4;
4 }
5 }
6 for (i=0; i<100; i++) {
7 for (j=0; j<10; j++) {
8 B[i,j] = B[i,j] + 5;
9 }

10 }

(b) Distribute loops 𝑖 and 𝑗 and create two separate loop nests.

1 for (ti=0; ti <50; ti++) {
2 for (tj=0; tj <5; tj++) {
3 for (ii=0; ii <2; ii++) {
4 for (jj=0; jj <2; jj++) {
5 A[ti*2+ii,tj*2+jj] = A[ti*2+ii,tj*2+jj] + 4;
6 B[ti*2+ii,tj*2+jj] = A[ti*2+ii,tj*2+jj] + 5;
7 }
8 }
9 }

10 }

(c) Tile loops 𝑖 and 𝑗 using a tile size of 2

1 for (j=0; j<10; j++) {
2 for (i=0; i<100; i++) {
3 A[i,j] = A[i,j] + 4;
4 B[i,j] = A[i,j] + 5;
5 }
6 }

(d) Interchange loops 𝑖 and 𝑗

Figure 3-1: Original two-level loop nest (3-1a) and three example loop nest transfor-
mations under the polyhedral model.
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Figure 3-2: A convex (left) vs non-convex polyhedron.

can be connected by a line that stays in the interior, while the non-convex one cannot

[26]. It is possible to apply the polyhedral model to non-convex sets since non-convex

sets are just unions of convex sets, but that is beyond the scope of this paper.

Once the iteration domain of a loop nest is described, loop transformations are

applied. These transformations are defined using maps, which are relations between

integer sets. Take the code in figure 3-1a for example. 𝐴 and 𝐵 each share the same

iteration domain, but we would write them separately as

{𝐴[𝑖, 𝑗] : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

and

{𝐵[𝑖, 𝑗] : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

(we borrow the notation for iteration domains and maps from [53, 55]). The loop

distribution map in figure 3-1b is just the identity transformation: distributing loops

is achieved by ordering computations, discussed later. The identity transformation is

the following:

{𝐴[𝑖, 𝑗] → 𝐴[𝑖, 𝑗] : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

{𝐵[𝑖, 𝑗] → 𝐵[𝑖, 𝑗] : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

For the loop tiling in figure 3-1c, we would give:

{𝐴[𝑖, 𝑗] → 𝐴[𝑡𝑖, 𝑡𝑗, 𝑖𝑖, 𝑗𝑗] : 𝑡𝑖 = 𝑓𝑙𝑜𝑜𝑟(𝑖/2) ∧ 𝑡𝑗 = 𝑓𝑙𝑜𝑜𝑟(𝑗/2) ∧ 𝑖𝑖 =

𝑖mod 2 ∧ 𝑗𝑗 = 𝑗mod 2 ∧ 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

{𝐵[𝑖, 𝑗] → 𝐵[𝑡𝑖, 𝑡𝑗, 𝑖𝑖, 𝑗𝑗] : 𝑡𝑖 = 𝑓𝑙𝑜𝑜𝑟(𝑖/2) ∧ 𝑡𝑗 = 𝑓𝑙𝑜𝑜𝑟(𝑗/2) ∧ 𝑖𝑖 =

𝑖mod 2 ∧ 𝑗𝑗 = 𝑗mod 2 ∧ 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}
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And finally, the loop interchange in 3-1d gives:

{𝐴[𝑖, 𝑗] → 𝐴[𝑗, 𝑖] : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

{𝐵[𝑖, 𝑗] → 𝐵[𝑗, 𝑖] : 0 ≤ 𝑖 < 100 ∧ 0 ≤ 𝑗 < 10}

This mapping is part of a larger concept known as the schedule. The schedule also

contains information on how the computations are ordered in relation to one another.

In all of the examples in figure 3-1, computation 𝐴 needs to come before 𝐵. More

information on the ordering is given in section 3.2.

Additionally, an access relation needs to be provided for each computation. An

access relation is another map used to specify where the data produced at each iter-

ation should be stored relative to a buffer (i.e. an array or storage location). For our

previous examples, all of them store data in a contiguous buffer, so they all have the

same access relation for 𝐴 and 𝐵. The relation is:

{𝐴[𝑖, 𝑗] → 𝐴𝑏𝑢𝑓𝑓 [𝑖, 𝑗]}

{𝐵[𝑖, 𝑗] → 𝐵𝑏𝑢𝑓𝑓 [𝑖, 𝑗]}

3.1.2 Code Generation from the Polyhedral Model

After all the necessary components for a polyhedral program are specified, the iter-

ation domain needs to be transformed with the schedule. This is done by applying

the map for the schedule to the iteration domain. This resulting representation is

then converted into an intermediate representation, such as an abstract syntax tree

(AST). This requires finding an efficient set of nested loops that visits all points in

the iteration domain exactly once. Heuristics that attempt to minimize code size and

reduce control flow can be applied, but often, minimizing one can negatively impact

the other [53]. This process is known as scanning polyhedra [5]. An understanding of

the algorithms for a scan are not important here, but as we will see in section 3.2,

the resulting AST from the scan is used to generate the final backend code.
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3.2 Tiramisu

Tiramisu is a middle-end compiler based on the polyhedral model that abstracts

away the underlying architecture so the programmer does not need to worry about

backend code generation. Rather, Tiramisu takes the programmer’s architecture-

independent representation and generates architecture-dependent backend code. The

programmer simply provides a set of scheduling commands directing the code genera-

tor. Tiramisu was initially developed with shared memory architectures in mind, but

with the work done in this thesis, it has been extended to distributed CPU and GPU

backends. Additional work done in [10] created an FPGA backend for Tiramisu.

At the core of Tiramisu is a unique three-layer design that breaks down the com-

ponents of the polyhedral model to give a program representation that is much easier

to transform. The top layer (Layer I) is known as the abstract computation layer.

This layer describes the computations of an algorithm using iteration domains and

producer-consumer relations between the computations. The middle layer (Layer II)

is the computation placement layer, which applies loop transformations to the itera-

tion domain, specifies the ordering among computations, and says where to compute

a computation (such as on a CPU, on the GPU, etc). The bottom layer (Layer III) is

the concrete computation layer, and this layer provides the access relations describing

the data layout of produced values [53]. Figure 3-3 shows how the different parts of

Tiramisu connect together.

With the abstractions provided by the layered design of Tiramisu, programmers

can modify independent parts of their program without having to worry about chang-

ing all the code. For example, programmers can choose different loop transformations

to apply in Layer II without having to worry about modifying the computations in

Layer I, or modifying the data layout in Layer III. The commands available in Layer

II and Layer III are referred to as a scheduling language as their purpose is to define

the scheduling of the algorithm rather than the algorithm itself.
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Figure 3-3: Tiramisu overview [53].

3.2.1 Layer I: Abstract Computation Layer

In this layer, we specify the computations without considering the ordering, loop op-

timizations, or data layout. Going back to the blur example from section 1.0.1, we

would have two computations: 𝑐𝑥, representing the horizontal blur, and 𝑐𝑦 represent-

ing the vertical blur. We specify these two computations in Layer I as follows:

{𝑐𝑥(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝐼 ∧ 0 ≤ 𝑗 < 𝐽} : (𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗) + 𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗 + 1) + 𝑖𝑛𝑝𝑢𝑡(𝑖, 𝑗 + 2))/3

{𝑐𝑦(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝐼 ∧ 0 ≤ 𝑗 < 𝐽} : (𝑐𝑥(𝑖, 𝑗) + 𝑐𝑥(𝑖+ 1, 𝑗) + 𝑐𝑥(𝑖+ 2, 𝑗))/3

We can easily see the producer-consumer relationship here, where 𝑐𝑥 consumes from

𝑖𝑛𝑝𝑢𝑡 and produces values consumed by 𝑐𝑦.

3.2.2 Layer II: Computation Placement Layer

Layer II provides the schedule, which comprises loop transformations, computation

ordering, and computation placement. In Tiramisu, all of this information is stored
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in a compact representation known as the time-processor vector. The time dimension

is used for ordering, and the processor dimension gives placement. Say we wanted to

tile 𝑐𝑥 and 𝑐𝑦 by 5, order 𝑐𝑥 before 𝑐𝑦, and parallelize the outer resulting loops of

both. The Layer II time-processor representation would be as follows:

{𝑐𝑥(𝑖, 𝑗) → 𝑐𝑥[0, 𝑡𝑖(𝑐𝑝𝑢), 0, 𝑡𝑗, 0, 𝑖𝑖, 0, 𝑗𝑗, 0] : 𝑡𝑖 = 𝑓𝑙𝑜𝑜𝑟(𝑖/5) ∧ 𝑡𝑗 =

𝑓𝑙𝑜𝑜𝑟(𝑗/5) ∧ 𝑖𝑖 = 𝑖mod 5 ∧ 𝑗𝑗 = 𝑗mod 5 ∧ 0 ≤ 𝑖 < 𝐼 ∧ 0 ≤ 𝑗 < 𝐽}

{𝑐𝑦(𝑖, 𝑗) → 𝑐𝑦[1, 𝑡𝑖(𝑐𝑝𝑢), 0, 𝑡𝑗, 0, 𝑖𝑖, 0, 𝑗𝑗, 0] : 𝑡𝑖 = 𝑓𝑙𝑜𝑜𝑟(𝑖/5) ∧ 𝑡𝑗 =

𝑓𝑙𝑜𝑜𝑟(𝑗/5) ∧ 𝑖𝑖 = 𝑖mod 5 ∧ 𝑗𝑗 = 𝑗mod 5 ∧ 0 ≤ 𝑖 < 𝐼 ∧ 0 ≤ 𝑗 < 𝐽}

Let us break down this representation. First off, we see the tiling constraints for 𝑡𝑖,

𝑡𝑗, 𝑖𝑖, and 𝑗𝑗 as we did in the previous section on the polyhedral model. Now, there is

also a processor tag on 𝑡𝑖 represented by (𝑐𝑝𝑢). This says that the loop for 𝑡𝑖 should

be parallelized on the CPU. In this form, 𝑡𝑖 = 0 would go on CPU 0, 𝑡𝑖 = 1 would

go on CPU 1, and so on. Finally, there are constants (0 and 1) between each of the

loop levels. These values are static dimensions, meaning their values are constants.

In contrast, 𝑡𝑖, 𝑡𝑗, 𝑖𝑖, and 𝑗𝑗 are dynamic dimensions. The static dimensions are used

for ordering the computations. Ordering is done via a lexicographic comparison. If

we remove the dynamic dimensions, we would have 𝑐𝑥[0, 0, 0, 0, 0] and 𝑐𝑦[1, 0, 0, 0, 0].

Comparing each dimension lexicographically, we see that 𝑐𝑦 > 𝑐𝑥, so 𝑐𝑦 should come

after 𝑐𝑥. Furthermore, 𝑐𝑦 is after 𝑐𝑥 in the 0th dimension, which means the entire

loop nest for 𝑐𝑦 should come after the loop nest for 𝑐𝑥.

3.2.3 Layer III: Concrete Computation Layer

In the final layer, the data layout for each of the values is specified. This data layout

says how the values produced at each iteration should be stored in a buffer. For

the blur again, we want to store the values produced by 𝑐𝑥 into an intermediate

buffer 𝑐𝑥𝑏𝑢𝑓𝑓 , and the output values produced by 𝑐𝑦 in another buffer, 𝑐𝑦𝑏𝑢𝑓𝑓 . Ad-

ditionally, we want to store values contiguously in the buffers. Each buffer will be
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Tiramisu Layer II Scheduling Commands
C is a Tiramisu computation; i and j are iterators

Command Description
C.interchange(i,j) Interchange levels i and j
C.shift(i, s) Shift level i by s iterations
C.split(i, s, i0, i1) Split level i by s into i0 and i1.
C.vectorize(i, v) Vectorize level i by v.
C.parallelize(i) Parallelize level i.
C.unroll(i, v) Unroll level i by v.
C.after(P, i) Order C after computation P at level i.
C.inline() Inline C where used.

Table 3.1: Example Tiramisu scheduling commands that transform the iteration
domain in Layer I [53].

two-dimensional. The necessary access relations are shown below:

{𝑐𝑥(𝑖, 𝑗) → 𝑐𝑥𝑏𝑢𝑓𝑓 [𝑖, 𝑗]}

{𝑐𝑦(𝑖, 𝑗) → 𝑐𝑦𝑏𝑢𝑓𝑓 [𝑖, 𝑗]}

Three different buffer types are available: a_input, a_output, and a_temporary.

a_input and a_output indicate buffers allocated and freed explicitly by the pro-

grammer for the purposes of passing in input to the Tiramisu pipeline (a_input)

and getting results from the pipeline (a_output). a_temporary delegates allocation

and freeing to Tiramisu.

3.2.4 Scheduling Language

Tiramisu’s scheduling language is built from affine maps that are applied to the

iteration domain in Layer I. These maps provide the programmer a simple API for

describing complex loop transformations. Tiramisu comes with a set of predefined

scheduling commands for commonly used loop nest transformations. These scheduling

commands are composable, so many other transformations can be built from this

initial set, but programmers can add in their own scheduling commands as needed.

Table 3.1 gives some example scheduling commands currently in Tiramisu [53].
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3.2.5 Code Generation in Tiramisu

The first step in generating architecture-dependent backend code from Tiramisu is

generating the AST from the polyhedral representation. All of the polyhedral com-

ponents in Tiramisu are represented using the Integer Set Library (ISL) [55]. This

library provides representations for sets and maps and all the operations needed to

define the quasi-affine constraints. It also generates the AST used for code generation

in Tiramisu.

Once we have the AST, it is transformed into another intermediate representation

(IR) that includes explicit loop structures, architecture-dependent details, etc. We

currently use the IR from Halide [41]. From this IR, the final target code is generated

and compiled.

The result of running a Tiramisu program is an object file that contains the

compiled pipeline wrapped in a function. This function can be linked into new or

existing code and just needs to be called with appropriate input and output buffers

as specified in the Tiramisu definition.
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Chapter 4

Distributed, Heterogeneous, and

Cooperative Code Generation

The work for this thesis implements several primitives and scheduling functions for

generating distributed and heterogeneous backend code. These backends can also be

combined together to achieve cooperative heterogeneous execution, giving the ability

to utilize as many compute resources as possible.

In this chapter, we look at the modifications made to the existing Tiramisu

code base. New computation types and scheduling commands were added into Layer

II and Layer III. Layer I code remains unchanged. A new GPU backend was imple-

mented as well to replace the existing single-GPU backend. With our implementation,

programmers can easily switch between distributed and heterogeneous backends (or

combinations of the two) with limited changes to existing code.

4.1 Scheduling for Distributed, GPU, and Coopera-

tive Execution

This section describes the scheduling primitives and functions made available to the

programmer for scheduling distributed, GPU, and cooperative code.
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1 ...
2 var r, x, y;
3 computation c1("{[r,x,y]: 0<=r<5 and 0<=x<100 and 0<=y<100}",
4 c0(x,y)*7, true , p_float32 , &fct);
5 c1.tag_distribute_level(r, true);
6 ...

(a) Using tag_distribute_level in Tiramisu

1 distributed for (int r=0; r<5; r++) {
2 for (int x=0; x<100; x++) {
3 for (int y=0; y<100; y++) {
4 c1(x,y) = c0(x,y)*7;
5 }
6 }
7 }

(b) Pseudocode for the resulting loop nest.

Figure 4-1: Tiramisu code for creating a distributed loop nest with
tag_distribute_level and the resulting pseudocode for the loop nest.

4.1.1 Distributed

For distributed execution, we generate MPI code based on the schedule provided by

the programmer. There are two main components to a programmer’s distributed

schedule: breaking up the computations into individual processes and transferring

data. Data transfers are discussed in section 4.1.3. Breaking up the computa-

tion involves assigning parts of the loop nests to individual processes. The main

scheduling command for this is tag_distribute_level. A loop level tagged with

tag_distribute_level indicates that every iteration of that loop level corresponds

to a distributed process. We borrow the term rank from MPI to refer to processes, so

each iteration is a different rank, which we refer to with the pre-declared rank vari-

able. This allows the programmer to condition on the rank so that they can schedule

ranks independently. Figure 4-1a shows an example of using tag_distribute_level

in the Tiramisu syntax and figure 4-1b shows the pseudocode of the resulting loop.

This code distributes the outer loop over 5 different ranks.

The full signature of tag_distribute_level is as follows:

void tag_distribute_level(var L, bool drop_rank_iter)
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where L is the loop level to distribute, and drop_rank_iter says whether or not

to use the value of the process’ rank when computing the index into the buffers.

Typically, when we distribute a computation, we want the generated code to index

into the buffers starting from 0, which means we do not want the outer loop iterator

(i.e. the rank iterator) used in the calculation of the index. If drop_rank_iter, then

we remove the iterator from the indexing computation.

For the case where we want to schedule ranks independently, we introduce a

scheduling command called separate_at, which separates a loop nest into multiple

loop nests, effectively giving us separate computations. These computations can then

be scheduled independently. This is important because different ranks may need to

execute different operations. For example, if all the data starts on one node, we

would need to schedule that one node to send the data out to all the other nodes,

which would require a different schedule than the other nodes. Figure 4-2a shows the

previous example, but with the addition of separate_at on the outer loop level r.

The call to separate_at on line 5, gives two computations, which are accessed with

get_update, as shown on lines 6 and 7. The resulting loop nest pseudocode is shown

in figure 4-2b. Note that we ignore the ordering commands that would be included

in the tiramisu IR. The signature of separate_at is as follows:

void separate_at(var L, vector<expr> separate_points, expr extent)

where L is the loop level to distribute, separate_points defines each point in the

iteration vector of the loop level to separate the loop, and extent is the extent of

loop level L. The other scheduling commands in Tiramisu, are composable with

tag_distribute_level and separate_at.

4.1.2 GPU

The commands in the previous section also apply to computations that we want to

run on the GPU. However, running on the GPU requires the programmer to tag

loop levels for GPU execution. The scheduling command tag_gpu_level21 is used
1tag_gpu_level uses the original GPU backend, whereas tag_gpu_level2 uses the new backend
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1 ...
2 var r, x, y;
3 computation c1("{[r,x,y]: 0<=r<5 and 0<=x<100 and 0<=y<100}",
4 c0(x,y)*7, true , p_float32 , &fct);
5 c1.separate_at(r, {1}, 5);
6 c1.get_update (0).tag_distribute_level(r, true);
7 c1.get_update (1).tag_distribute_level(r, true);
8 ...

(a) Using separate_at and tag_distribute_level in Tiramisu.

1 distributed for (int r=0; r<1; r++) {
2 for (int x=0; x<100; x++) {
3 for (int y=0; y<100; y++) {
4 c1(x,y) = c0(x,y)*7;
5 }
6 }
7 }
8 distributed for (int r=1; r<5; r++) {
9 for (int x=0; x<100; x++) {

10 for (int y=0; y<100; y++) {
11 c1(x,y) = c0(x,y)*7;
12 }
13 }
14 }

(b) Pseudocode for the resulting loop nests.

Figure 4-2: Tiramisu code for using separate_at and tag_distribute_level in
the resulting pseudocode for the loop nests.
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to tag loop levels as either GPU threads or blocks. The signature to use for tagging

a two-level loop nest is the following:

void

tag_gpu_level2(var L_block , var L_thread , int op_sequence);

where L_block is the loop level to map to GPU blocks and L_thread is the loop

level to map to GPU threads. op_sequence is the operation sequence to use when

launching the GPU function. More detail on the GPU backend is given in section

4.3.3.

4.1.3 Data Transfers

For data transfers, we implement five data types and a function for creating the

transfer. The data types are xfer_prop, send, recv, send_recv, and wait and the

function is create_xfer. We also introduce a special scheduling command for data

transfers called collapse_many.

xfer_prop is a class that takes a vector of xfer_attrs defining the type of

data transfer to generate code for (for example, a non-blocking, asynchronous send).

Possible xfer_attrs include: SYNC, ASYNC, BLOCK, NONBLOCK, MPI, CUDA, CPU2CPU,

CPU2GPU, and GPU2CPU. An integer id can optionally be specified to represent an

operation sequence. An operation sequence is an array of operations that run sequen-

tially. It is similar to a CUDA stream, but abstracted so that it can generate code

for other backends that support that type of execution model.

send, recv, and send_recv define different transfer types. send and recv are

used for backends that generate separate send and receive functions for the source

and destination ranks (i.e. MPI). send_recv is used for backends that combine the

two operations into a single function (i.e. CUDA). Programmers create these trans-

fers with the create_xfer function. Transfers are specified like computations; they

require an iteration domain and an expression to consume. There are two versions of

create_xfer: one creates individual send and recv operations, and the other creates

just a send_recv function. The two signatures are as follows:
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xfer

create_xfer(string send_iter_domain , string recv_iter_domain ,

expr send_dest , expr recv_src ,

xfer_prop send_prop , xfer_prop recv_prop ,

expr xfer_expr , function *fct);

and

xfer

create_xfer(string iter_domain , xfer_prop prop , expr xfer_expr ,

function *fct);

The first function creates individual send and recv operations, and requires an itera-

tion domain for both. The source and destination nodes (send_dest and recv_dest)

can have different properties (e.g. one could be blocking, the other could be non-

blocking, etc), so they each take a separate set of xfer_props. An example of using

the first one is in figure 4-3 and the second in figure 4-4. For the combined send

and receive in the second figure, the destination node is determined with an outside

function. We use this type of send and receive for GPU transfers, so the destination

is set at runtime when the programmer selects which GPU they want to use.

With certain transfer properties (such as non-blocking MPI transfers and asyn-

chronous CUDA transfers), there needs to be a mechanism to determine when the

transfer has completed. In MPI, this mechanism is an MPI_Request and in CUDA, it

is a CUevent. We abstract this with a wait object. When a wait is encountered dur-

ing execution, the current thread blocks until the computation waited on is complete.

The wait signature is the following:

wait wait(expr rhs , xfer_prop prop , function *fct);

where rhs is an access into the wait array and prop gives the type of wait.

The collapse_many scheduling function is used to merge together data to transfer.

Usually, it is better to send messages bigger than just one element, but with the way

transfers are defined, they default to sending one element at a time. This function

collapses a loop down into a single iteration and packs all of the elements accessed in
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1 var r, x, y;
2 computation c1("{[r,x,y]: 0<=r<5 and 0<=x<100 and 0<=y<100}",
3 c0(x,y)*7, true , p_float32 , &fct);
4 c1.separate_at(r, {1}, 5);
5 c1.get_update (0).tag_distribute_level(r, true);
6 c1.get_update (1).tag_distribute_level(r, true);
7 xfer_prop prop(p_float32 , {SYNC , BLOCK , MPI , CPU2CPU });
8 xfer send_and_recv = c1.get_update (0).create_xfer("{[r,q,y,x]:

0<=r<1 and 1<=q<5 and 0<=x<100 and 0<=y<100}", "{[r,y,x]:
1<=r<5 and 0<=x<100 and 0<=y<100}", q, 0, prop , prop ,

9 c0(x,y), &fct);

(a) Creating a transfer with separate send and recv functions.

1 distributed for (int r=0; r<1; r++) {
2 for (int q=1; q<5; q++) {
3 for (int x=0; x<100; x++) {
4 for (int y=0; y<100; y++) {
5 node r sends c0(x,y) to node q;
6 }
7 }
8 }
9 }

10 distributed for (int r=1; r<5; r++) {
11 for (int x=0; x<100; x++) {
12 for (int y=0; y<100; y++) {
13 node r recvs c0(x,y) from node 0;
14 }
15 }
16 }
17 distributed for (int r=0; r<1; r++) {
18 for (int x=0; x<100; x++) {
19 for (int y=0; y<100; y++) {
20 c1(x,y) = c0(x,y)*7;
21 }
22 }
23 }
24 distributed for (int r=1; r<5; r++) {
25 for (int x=0; x<100; x++) {
26 for (int y=0; y<100; y++) {
27 c1(x,y) = c0(x,y)*7;
28 }
29 }
30 }

(b) Pseudocode for the resulting loop nests.

Figure 4-3: Creating data transfers that have independent send and recv functions
with create_xfer.
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1 var r, x, y;
2 computation c1("{[r,x,y]: 0<=r<5 and 0<=x<100 and 0<=y<100}",

c0(x,y)*7, true , p_float32 , &fct);
3 c1.separate_at(r, {1}, 5);
4 c1.get_update (0).tag_distribute_level(r, true);
5 c1.get_update (1).tag_distribute_level(r, true);
6 xfer_prop prop(float , {SYNC , BLOCK , CUDA , CPU2GPU });
7 xfer send_recv = c1.get_update (0).create_xfer("{[q,y,x]: 1<=q<5

and 0<=x<100 and 0<=y<100}", prop , c0(x,y), &fct);

(a) Creating a transfer with combined send and recv functions.

1 distributed for (int r=0; r<1; r++) {
2 for (int q=1; q<5; q++) {
3 for (int x=0; x<100; x++) {
4 for (int y=0; y<100; y++) {
5 node r sends c0(x,y) to GPU q, which receives it;
6 }
7 }
8 }
9 }

10
11 distributed for (int r=0; r<1; r++) {
12 GPU for (int x=0; x<100; x++) {
13 GPU for (int y=0; y<100; y++) {
14 c1(x,y) = c0(x,y)*7;
15 }
16 }
17 }
18 distributed for (int r=1; r<5; r++) {
19 GPU for (int x=0; x<100; x++) {
20 GPU for (int y=0; y<100; y++) {
21 c1(x,y) = c0(x,y)*7;
22 }
23 }
24 }

(b) Pseudocode for the resulting loop nests

Figure 4-4: Creating a single send and receive with create_xfer.
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that loop level into a single message. Currently, this is only supported for contiguous

data. If non-contiguous data needs to be sent, the programmer will have to create a

separate computation that first packs the data together into a contiguous buffer, and

then use that with the collapse_many function.

send, recv, send_recv, and wait can be ordered using the predefined scheduling

commands such before, after, etc.

4.2 Data Layout

In a transfer, the sender acts as the producer and the receiver is the consumer. This

requires access functions for recv and send_recv computations. Additionally, any

operation that executes in a non-blocking manner (i.e. control immediately returns),

require a second access function for storing their associated waits. For example,

each time a non-blocking transfer is launched, it generates a wait, which needs to be

stored in a buffer. This special access is set with the set_wait_access function.

Like set_access, this just takes an access relation to a buffer.

A new buffer type, a_temporary_gpu, is also provided. This is similar to the

existing a_temporary type, but it allocates memory on the GPU instead.

Distributed and communicated data does not require any special handling on

the programmer’s part–they write and read from the same Tiramisu buffers. The

backend functions, whether they be CUDA or MPI, may move data between different

(non-Tiramisu) buffers, but that is all dependent on the actual implementation and

does not concern our work.

All of these different primitives, functions, and scheduling commands can be com-

bined together for cooperative computing. By using various combinations of non-

blocking and asynchronous commands, as well as assigning separate processes/ranks

to chunks of code, the programmer can configure some amount of work to run on

the GPU and some on the CPUs. There are numerous different configurations to run

in–the correct combination depends on the application at hand. Trying these dif-

ferent configurations becomes much easier thanks to the abstractions and scheduling
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commands implemented here, as evidenced at the end of section 1.0.1.

4.3 Code Generation

4.3.1 ISL AST Generation

For the most part, generating the AST from ISL remains the same as in Tiramisu.

The main difference comes during index expression generation. This step generates

isl_ast_exprs representing the index expressions into buffers. For distributed oper-

ations, programmers can choose to drop the distributed loop level iteration from the

index expressions. If that is the case, this step removes the specified level by forcing

the dimension in the time-processor vector to be 0.

4.3.2 Distributed Backend

For the MPI functions that we support, we implemented wrappers that both call the

MPI function, as well as perform error checking. Before code generation, we run a

lowering pass to check for any send, recv, and wait computations. This pass replaces

those with call objects for the appropriate wrapper function, and also generates the

necessary function arguments. During code generation, these calls get converted to

Halide calls, which then generate LLVM.

We also process send and recv separately from other computations since inde-

pendently they do not fit the expected producer-consumer model of computations.

A send by itself does not explicitly have a left-hand side (it does not write to any

buffer), and a recv by itself has no right-hand side (it only writes to a buffer). To-

gether, they fit the producer-consumer model, but we need extra bookkeeping to keep

track of the other side of the communication operation.

When a non-distributed loop level is encountered while traversing the ISL AST,

the loop level is converted into a for loop, which in our case is a Halide::For object.

However, if a distributed loop level is encountered, we generate a conditional state-

ment instead that checks the value of rank. If rank is within the original bounds of
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1 for (int i=0; i<5; i++) {
2 for (int j=0; j<10; j++) {
3 ...
4 }
5 }

(a) The original non-distributed loop nest

1 int rank = tiramisu_MPI_Comm_rank ();
2 if (rank >=0 || rank <5) {
3 for (int j=0; j<10; j++) {
4 ...
5 }
6 }

(b) The distributed loop nest

Figure 4-5: Converting a for loop to a conditional.

that loop, then the conditional evaluates to true. An example of a for loop being

represented as a distributed loop is shown in figure 4-5. This code shows a two-level

loop nest (figure 4-5a) and the resulting loop nest (figure 4-5b) if we distributed the

outermost level. With this, only MPI processes with a rank between 0 and 5 will

execute the code in that loop nest. An additional change had to be made in the actual

ISL code base to handle a certain corner case where we split a loop such that the outer

loop only has one iteration. Usually, ISL would either mark this loop as eliminated

or degenerate. An eliminated loop is completely removed as if it did not exist and a

degenerate loop is removed, but a reference to its loop iterator is replaced with an

affine expression. In any case, if we want to mark that outer loop as distributed, we

want to make sure ISL does not remove it, otherwise the incorrect loop level would

be tagged. To fix this, we tag the loop iterator with a special marker. In ISL, we

change to the code to look for that marker. If it is found, we force ISL to keep the

loop.
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4.3.3 GPU Backend

While Halide provides a GPU backend that generates PTX code for NVIDIA GPUs,

we chose to implement our own CUDA backend so that we could support additional

features, such as asynchronous operations and multi-gpu execution. We utilize the

CUDA Driver API for this [33]. Like MPI, we implement wrappers to the neces-

sary CUDA functions and run a lowering pass that converts send_recv and wait

computations into the appropriate function calls. Additionally, any buffer allocations

with a a_temporary_gpu tag are converted into function calls to the wrapper for

cuMemAlloc. These buffer allocations are automatically freed with another call to

the wrapper function for cuMemFree.

Currently, we do not utilize shared memory, so the computations to run on the

GPU are mapped directly into kernels. Kernel code generation is a multi-step pro-

cess. First, when a loop nest marked for the GPU is encountered during the normal

Tiramisu code generation stage, we intercept the process so that we can generate

a kernel instead of a for loop. Since the programmer marks which loop iterators to

map to CUDA threads and blocks, we substitute in the appropriate CUDA block and

thread parameters for the original loop iterators. Combined with index expression

generation, this gives us the access into the GPU buffers. Figure 4-6 shows an exam-

ple of what a loop nest looks like as a kernel. In the first part, figure 4-6a, we just

have a simple two level loop nest and on line 4, the linearized array index is computed.

Figure 4-6b shows one way that the loop nest can be tagged for GPU execution. Line

1 specifies a 1D CUDA grid with 1024 blocks, and line 2 says that each block is also

1D and contains 64 threads. This representation looks at each matrix as a 1D array,

where the array is 1024×64 elements wide. Figure 4-7 shows how this array version

maps to the threads and the blocks. It would map as a 1D grid. Of course, we could

also represent each matrix as a 2D grid of blocks rather than 1D if we wanted to.

Figure 4-6c shows the resulting kernel. On lines 3 and 4, iterators i and j are

replaced with the built in CUDA variables, blockIdx.x and threadIdx.x, respec-

tively. These variables are substituted into the linearized index expression on line
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5. Finally, the kernel is launched on line 10 with the appropriate grid and block

parameters (1024 and 64, respectively).

When a kernel is generated, a wrapper function to the kernel is also generated. The

wrapper handles copying up any necessary constants to GPU memory and performs

appropriate synchronization. It also packs the kernel arguments together and launches

the kernel. Two different versions of the wrapper are created: the first one creates a

CUDA event after the kernel launch so that later computations can synchronize on

this kernel. The second one does not create an event. The programmer implicitly

dictates which one is used based on how they implement any wait computations in

their code.

Both the kernel and the wrapper are written out and compiled into object files,

which get linked into the generated code at runtime. This lets the programmer see

what kind of CUDA is generated for their kernel; programmers can even modify the

generated code if they want. We generate CUDA instead of PTX and leave the task

of generating optimized PTX from the CUDA code to the NVIDIA compiler, nvcc

[35].
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1 float *A, *B, *C...;
2 for (int i=0; i <1024; i++) {
3 for (int j=0; j<64; j++) {
4 int idx = i*64+j;
5 C[idx] = A[idx] + B[idx];
6 }
7 }

(a) The original loop nest

1 gpu block for (int i=0; i <1024; i++) {
2 gpu thread for (int j=0; j<64; j++) {
3 int idx = i*64+j;
4 C[idx] = A[idx] + B[idx];
5 }
6 }

(b) Tagging the loop nest for GPU execution

1 __global__
2 void kernel(float *gpu_A , float *gpu_B , float *gpu_C) {
3 int gpu_i = blockIdx.x;
4 int gpu_j = threadIdx.x;
5 int idx = gpu_i *64+ gpu_j;
6 gpu_C[idx] = gpu_A[idx] + gpu_B[idx];
7 }
8 ...
9 float *gpu_A , *gpu_B , *gpu_C ...;

10 kernel <<<1024,64>>>(gpu_A , gpu_B , gpu_C);

(c) The loop nest as a GPU kernel

Figure 4-6: Converting a loop nest to a GPU kernel.
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Figure 4-7: Mapping matrix A as a 1D grid of 1024 1D blocks, each containing 64
threads. Matrices B and C would be similarly mapped.
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Chapter 5

Experiments

This chapter gives results for various experiments showing the different aspects of the

work presented throughout this thesis, namely distributed, heterogeneous, coopera-

tive, and NUMA-aware execution.

2D 3x3 Box Blur The main application we use to demonstrate our work is the 2D

3x3 box blur referenced throughout. As we will see, despite its simple algorithm, the

box blur benefits from the different features we discussed throughout this thesis, such

as asynchronous operation, heterogeneous excution, and cooperative execution. All

experiments here use a 3x3 blur on a float32 matrix with dimensions 16000 by 2000000.

The CPU experiments ran on dual-socket 12-core Intel Xeon E5-2695 v2 CPUs, and

the GPU experiments used NVIDIA K40 and K80 GPUs. MPI communication uses

OpenMPI version 1.6.5.

In this first set of experiments, we assume that the data can be algorithmically

generated, so no explicit communication is needed between nodes. Table 5.1 shows

the results from optimizing the blur using tiling, parallelization, and vectorization.

The optimization schedules we derived for these experiments match the blur sched-

ules presented in the introduction, just with different splitting factors. The blur

computation has a lot of parallelism, so we expect parallelization and vectorization

to help considerably. Blur also benefits from temporal and spatial locality, so tiling

improves cache performance. The next set of experiments shows the blur executed on
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3x3 Box Blur–Single CPU Node
1 Node 18.023s
2 Nodes 7.905s
4 Nodes 7.650s

Table 5.1: Times for tiled, parallelized, and vectorized blur on a single shared memory
CPU node.

3x3 Box Blur–GPU Synchronous Asynchronous
1 Node, 1 GPU/Node 30.232s 14.756s
1 Node, 2 GPUs/Node 15.156s 6.951s
2 Nodes, 1 GPU/Node 14.965s 7.500s
2 Nodes, 2 GPUs/Node 7.618s 4.008s
4 Nodes, 1 GPU/Node 8.447s 3.824s

Table 5.2: Times for blur on GPUs using synchronous and asynchronous configura-
tions.

the GPU. Table 5.2 shows results using a fully synchronous and fully asynchronous

configuration. The asynchronous configuration overlaps communication in both the

host-to-device and device-to-host direction. We do one transfer per row, and imme-

diately launch the kernel once the row is transferred to the device. For copying back

results, we also copy back one row at a time as soon as the computation for the row is

complete. First, notice the performance improvement of the asynchronous version as

compared to the synchronous version. In the synchronous version, all the operations

happen sequentially (threads within a kernel still run concurrently), so there is no

way to benefit from overlapping communication and computation. Figure 5-1 shows

a portion of the execution timeline as collected from NVIDIA’s nvprof GPU profiling

tool. The bottom line (labeled Stream 13) shows that the communication and kernels

execute sequentially.

Compared to the CPU performance, we are about 2.0× faster with the asyn-

chronous verison. Our initial intuition was that the GPU would be significantly

faster, however, the communication between the host and device is a bottleneck. Fig-

ure 5-2 shows a portion of the execution timeline for the asynchronous version. The

line labeled Stream 13 shows the kernel execution, Stream 14 shows the host-to-device

transfers, and Stream 15 shows device-to-host. We can see the overlap clearly, but we
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Figure 5-1: Timeline for synchronous execution of the blur.

Figure 5-2: Timeline for asynchronous execution of the blur.

also see that the kernel execution time is about 3 times shorter than a given memory

transfer. Each kernel has to wait until its row is fully transferred, so the GPU ends

up idling while waiting for the data.

The next experiment uses a cooperative configuration. In our cooperative design,

we partition part of the rows to execute on the CPU, and the rest on the GPU. We

tried four different configurations for partitioning the rows, as shown in table 5.3.

The only modification we had to make for the schedule was changing the number

of rows each node/device was assigned. For each node, we use 20 CPU cores and 1

GPU. For example, the 2 node configuration would use 40 total CPU cores and 2

GPUs. Graph 5-3 gives an alternative view of the performance. Compared to our

best time with GPU execution only, the cooperative configuration gives a speedup up

of roughly 3.2×.

Our previous experiments assumed all the data existed on each node already, even

the overlapping regions. This next experiment uses a distributed CPU configuration
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3x3 Box Blur–Cooperative
GPU Rows/CPU Rows

# Nodes 14000/2000 12000/4000 8000/8000 4000/12000
1 12.905s 11.184s 18.130s 27.363s
2 2.505s 4.211s 8.553s 14.452s
4 1.195s 2.968s 5.267s 6.851s

Table 5.3: Times for blur with cooperative execution using asynchronous execution
and communication. We use 20 CPU cores and 1 GPU per node.

Figure 5-3: 3D chart for blur with cooperative execution using asynchronous execution
and communication.
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3x3 Box Blur–Transfer Ghost Zones
Single msgs Packed msgs

2 Node 22.729s 15.152s
4 Nodes 19.336s 7.615s

Table 5.4: Times for blur on distributed CPUs where the ghost zones must be trans-
ferred.

as before, however, we assume that individual nodes need to transfer the ghost zones

(the ghost zones are regions of overlap in the data split across nodes). We utilize asyn-

chronous MPI communication. Table 5.4 shows the results. The first column, single

msgs shows the results if each element of the ghost zone is sent as an individual mes-

sage, and the second column, packed msgs, shows results if we pack all the messages

together into one single message using the collapse_many function. Sending single

messages is much slower–there is a non-trivial overhead associated with initiating a

send and receive, particularly when you send thousands of messages back-to-back, as

happens here. When we pack all the messages together into one transfer, our results

are similar to the results in table 5.1. By using asynchronous communication, we

are able to mask the extra time incurred from the transfer, so we do not take any

peformance hit.

Our final experiment using the blur shows the advantage of using NUMA-aware

execution. The blur is an excellent application for this because of the data reuse

patterns it exhibits. We show three results for this in table 5.5. In each result, we

execute the blur on a 100000x100000 element float32 matrix with the same tiled and

vectorized schedule as before. However, we parallelize across 10 cores instead of 20.

For the matching and mismatch xperiments, we execute only on the cores in socket

0. For the Non-NUMA experiment, we let the scheduler decide which cores to run

on. For the left column labeled matching we bind the memory to socket 0, and in

the right column mismatch, we bind the memory to socket 1. For Non-NUMA, we

also let the scheduler decide where to assign the data. As expected, the configuration

where the execution and memory are bound to the same socket performs better than

the configuration where they are bound to separate sockets. The first configuration
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3x3 Box Blur–NUMA
Matching Mismatch Non-NUMA

5.217s 9.734s 5.977s

Table 5.5: Times for blur where execution and memory are bound to the same sockets
(matching), separate sockets (mismatch), and not bound (non-NUMA)

runs approximately 1.8× faster, which is a a significant improvement for such a simple

configuration change. The performance when leaving the decision up to the scheduler

is close to our manual scheduling, which means the scheduler is able to effectively

utilize the NUMA configuration as well.

Comparing with Distributed Halide We ran several experiments comparing the

performance of our distributed CPU implementation to Distributed Halide [11]. The

5 benchmarks we use are the following:

Convolution: Performs a simple 2D convolution. We use a 55000x25000x3

dimensional input. Communication is required between nodes.

cvtColor: Converts an RGB image to greyscale. We use a 55000x25000x3

dimensional input. Communication is not needed between nodes.

Gaussian: Performs a Gaussian blur. We use a 55000x25000x3 dimensional

input. Communication is required between nodes.

Pipeline: A pipeline fusing together two operations on an image: 1) bright-

ening and 2) creating a negative. We use a 55000x25000x3 dimensional input.

Communication is not needed between nodes.

Sobel: A convolution used in edge detection algorithms for images. We use a

100000x42500 dimensional input. Communication is required between nodes.

All benchmarks were run on dual-socket 12-core Intel Xeon E5-2695 CPUs using

MVAPICH2 2.0 as the MPI implementation.

Graph 5-4 shows the execution time of the 5 benchmarks distributed across 16

CPU nodes for our system against Distributed Halide. Our system outperforms the
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Figure 5-4: Results comparing the performance of our distributed system versus
Distributed Halide on 16 CPU nodes.

Distributed Halide implementation on all the benchmarks. For the benchmarks re-

quiring communication, we are faster than Distributed Halide for two reasons: 1) Dis-

tributed Halide overestimates the amount of data to transfer; 2) Distributed Halide

unnecessarily packs together 0contiguous data. For cvtColor and pipeline, which do

not require any communication, we outperform Distributed Halide thanks to reduced

overhead in distribution (cvtColor) as well as loop fusion in Tiramisu (pipeline).

The graph in 5-5 shows our performance on the same pipelines, but across 2, 4,

8, and 16 CPU nodes. As expected, the execution time decreases as we scale up the

number of nodes for each benchmark.
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Figure 5-5: The performance of our distributed system across 2, 4, 8, and 16 CPU
nodes.
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Chapter 6

Discussion

Aside from the actual experimental results, there are several critical pieces related to

heterogeneous and cooperative systems that should be noted. One of the main goals

we had for this work was getting a sense of what types of abstractions are appropriate

for heterogeneous systems. There are many questions we had, including:

1. Exposing functionality: What underlying functionality should be exposed to

the programmer?

2. Comparing programming models: What are the similarities and differences in

the programming model for the various resources?

3. Exposing architecture-specific optimizations: What optimizations are useful for

the various resources and architectures available, and how can programmers

access them?

From this work, we begin to put together answers for each of these.

Exposing functionality The libraries used for parallelization, distributing, and

GPU execution contain numerous functions and options for generating code. For

example, in MPI, there are almost 400 different functions available for communication.

However, many of those functions are for different types of transfers. Some are for

two-sided communication, while others are for one-sided communiation, collective
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communication, RMA (remote memory access), etc. Exposing each of these to a

programmer in a model such as Tiramisu would not be very helpful, so we need an

abtraction on top of those, which is what our work provides. If we look at the MPI

functions, we can see that they all boil down to transferring some piece of data from

point A to point B. Even if there is not an explicit receive anywhere, we can abstract

all these different transfers as sends and receives if we think of point A as executing

a send and point B as the receive. The programmer should be able to write one set

of general communication operations, and then select what the actual backend will

be later on. In Tiramisu, we have the core send and recv types, as well as the

send_recv type, which is really just represented underneath as a send and recv.

There is also the wait object that represents synchronization for non-blocking type

functions. Regardless of whether we use MPI or CUDA, the programmer just has to

deal with a single wait, rather than one per different backend.

Comparing programming models As we have seen throughout this thesis, each

of the different backends, whether it be shared, distributed, or gpu, requires a different

way of programming and thinking. With a shared memory system, the programmer

sees all of the data in one space. With distributed, the programmer now has to think

about where data is and how to get it from point A to point B. And with the GPU,

the programmer has to think in terms of kernels instead of the usual for loops. The

libraries for the different models are also very different: shared memory has OpenMP

and Pthreads, distributed has MPI, and GPU has CUDA (there are numerous other

libraries as well). These libraries are full of backend specific functions, which at first

glance may not seem related whatsoever. However, we can see similarities if we look

at the underlying operations. For example, transfers representing moving data from

point A to point B. Another similarity is the notion of “launching” an operation:

with shared memory that could be launching a thread; in distributed, it could be

launching a process; with the GPU, there is launching a kernel. At a lower level,

these operations fit into the producer-consumer type paradigm, so when you look

under all the functions (which are really just wrappers to the underlying producers
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and consumers), these seemingly different paradigms have many similar constructs.

Exposing architecture-specific optimizations A big difference between the

programming models is the underlying hardware they support. For example, a GPU

has cache-like storage that can be managed by the programmer, as opposed to caches

in a typical shared memory system which are largely hardware managed. So, this

memory hierarchy should be exposed to the programmer. Another example is loop

tiling. It’s not typically helpful on GPUs, but can be very helpful for shared memory

systems, so it also needs to be implemented. Looking at MPI and CUDA, we have the

different synchronous/asynchronous, blocking/non-blocking operations, which have a

big impact on performance. An underlying framework needs to support these different

types of communication. We expose these operations through scheduling commands,

allowing programmers to specify what type of transfer they want, for example, with-

out having to worry about what the underlying function actually is. The Tiramisu

code generator handles picking out the appropriate function based on the program-

mers specification.

The scheduling language is also useful for incremental optimization. Scheduling

functions provide the advantage of not having to manually change the loop nests,

which makes it easier to apply transformations, especially when it comes to composing

transformations and generating different backends. However, it can be harder to

visualize what a loop nest looks like after a bunch of scheduling commands have been

applied, so it can be less straightforward how to decide which optimization to apply

next, or even just figure out what the code is actually doing. Several transformation

passes are additionally applied through ISL and Halide to the code, so the resulting

code may look very different from what the programmer expected. How to visualize

the schedules created for a program is still an open question.

Creating a Unified Programming Model

The work done in this thesis gives a step towards understanding how to unify the

different programming models for heterogeneous and cooperative execution. There
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is still much more research to be done, especially at a higher level. Our code is

not intended to be handwritten, rather it should be generated from a higher-level

language. The question remains about what that high-level language should look like

though. It could be a DSL, which only utilizes certain parts of our work, or it could

be a full-fledged programming language focused on creating a unified programming

model for distributed, heterogeneous, and cooperative computing.

A full-fledged heterogeneous programming language is an interesting approach,

as most current approaches to heterogeneous computing are either library-based, or

built on top of an existing programming model, such as the GPU programming model.

While this certainly makes heterogeneous programming possible, it is not necessarily

a great fix, particularly as new architectures are developed. These approaches try to

convert one programming model into another, which can result in missing features,

sub-optimal performance, and messier code. As heterogeneous and cooperative com-

puting becomes more important and necessary, it makes sense to take a step back

and design a language that provides first class support for these systems.

Getting High Performance through Trial-and-Error

While a lot of current high-performance computing work currently focuses on au-

tomating optimizations, our approach moves away from automation. Our scheduling

language approach makes it easier to try out different optimizations, but our system

is not an automatic optimizer. Automated approaches leave a lot of performance on

the table since they rely on heuristics to optimize code. For the high-performance

programmer, this automatic approach is not useful because they want to get the

best performance. These programmers will revert to hand-optimizing all their code.

However, even hand-optimization can lead to suboptimal performance because the

programmers can only try out so many optimizations. Getting the best performance

is an iterative trial-and-error process. Some optimizations help, some do not. Some

work well on their own, and then perform poorly when composed with optimizations.

Many optimizations also have parameters to tune as well, such as the tile size in loop

tiling transformations. Automated approaches cannot deal with all of this variability,
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while manual approaches take too much time.

With our work, we maintain the freedom that comes from hand-optimization, but

make it simpler to apply these optimizations. The programmer does not have to

sacrific performance for ease of use. The Halide language [41] is an excellent example

of the utility of the scheduling language approach. Prior to Halide, programmers

would write high-performance image processing code by hand. Switching to Halide,

programmers could perform the same optimizations, but were able to try many more

compositions of optimizations in a shorter amount of time, leading to improved per-

formance over the expertly hand-optimized code.
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Chapter 7

Related Work

The major goal of this work is enabling heterogeneous, cooperative execution through

abstractions on the underlying architecture, without sacrificing control over the low-

level performance-critical features, such as communication. Prior work is limited in

the support of heterogeneous and cooperative execution, and either abstracts the

underlying architecture too much, or does not abstract it enough.

Distributed Halide [11] is an extension to the Halide framework supporting dis-

tributed execution on CPU nodes. This framework use interval analysis to automat-

ically determine the set of data to transfer between nodes, so the programmer does

not have control over the number of messages sent, how much overall data to transfer,

or when to initiate a transfer. As seen in the prior results section, we can outperform

Distributed Halide by specifying exactly how and what to transfer.

OpenACC [13] is similar to OpenMP and provides pragmas and compiler directives

for parallelizing a loop nest on the GPU. However, OpenACC only focuses on a single

heterogeneous node; any distributed computation needs to be manually implemented

by the programmer. Additionally, the programmer has limited control over data

transfers between the CPU and GPU.

Several compiler frameworks for heterogeneous computing exist, but to the best

of our knowledge, our work is the first that provides the ability to generate heteroge-

neous and cooperative code from a single algorithm, while still giving the programmer

control over low-level features such as communication.
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The Legion parallel programming model [4] provides abstractions that allow the

programmer to control features such as communication in heterogeneous, distributed

systems, however, programmers must write their own backend-specific code, such as

CUDA kernels. From the same group comes the Realm framework, which, like our

work, represents the mechanisms necessary to generate distributed, heterogeneous,

and cooperative code. However, it lacks the abstractions we provide for loop opti-

mizations thanks to our integration with Tiramisu.

Dandelion [45] is a compiler and runtime system for cooperative, heterogeneous

computing. Programmers provide sequential code and Dandelion attempts to par-

allelize the code and decide how to map computations to compute devices. The

programmer has limited control over the resulting code generation, and must rely on

the Dandelion compiler to make such decisions.

Qilin [23] is another framework that automatically maps computations to heteroge-

neous processing elements. The Qilin API provides a stream-API and threading-API

for writing heterogeneous code. In the stream-API approach, programmers write a

single Qilin function and the Qilin compiler generates code for heterogeneous architec-

tures. However, the API only provides a limited number of data parallel operations,

and defers most of the execution to libraries like MKL and CUBLAS. If a programmer

requires more control over the code generation, they must write their own separate

code for the different architectures using the threading-API, and then use Qilin to

hook the code together. Qilin uses an adaptive learning method to determine the best

way to map computations to processing elements. We see Qilin as a complementary

approach to Tiramisu and this work.

dOpenCL [21] provides a unified programming model based on OpenCL which

allows distributed, heterogeneous, and cooperative execution. However, programmers

are required to write kernels manually for different architectures, and set up all of the

necessary code for launching kernels. libWater [16] is a library-extension to OpenCL

that provides similar functionality to dOpenCL. But, like dOpenCL, programmers

must write their own kernels for different architectures.
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Chapter 8

Conclusion

Heterogeneous and cooperative computing is here to stay. With Moore’s law nearing

its end, programs will need to take as much advantage as possible of available re-

sources if performance gains are to be seen. Currently, GPUs are at the forefront of

heterogeneous computing, but even with all the effort currently going into computing

with GPUs, there is still much to be done. Programming for a GPU is fundamentally

different than programming for CPUs. Even optimizing code for a CPU can still be

difficult, despite decades of advances made in optimizing compilers, DSLs, and other

high-performance tools. With different configurations, such as distributed memory,

handwriting highly-optimized code is a nearly insurmountable task. Thus, tools are

needed to abstract optimizations and the low-level differences among architectures,

without sacrificing the ability to achieve high-performance.

This thesis aimed to achieve two major goals: 1) Understand the types of features

that should be exposed to the programmer for generating high-performance shared

memory code, distributed memory code, and heterogeneous code; 2) Implement an

initial set of abstractions for generating high-performance distributed and hetero-

geneous code, as well as enabling cooperative execution in these sytems. Getting

the best performance out of a heterogeneous system requires the programmer to ex-

periment with different computation mappings, data layouts, etc, all while utilizing

as many of the resources as possible with cooperative execution. Without our ap-

proach, small changes, such as changing how computations are mapped to processing
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elements, can result in a complete rewrite of code, possibly requiring multiple pro-

gramming languages. Our work provides a practical and efficient way to harness the

full computing power of these systems and reach the ultimate performance.

Our work provides the mechanisms for generating shared memory, distributed

memory, heterogeneous, and cooperative code, with the ability to optimize architecture-

specific features like communication. Our results show that we are able to generate

efficient code for each of these architectures, without any modification to the original

algorithm.

The abstractions introduced in our work mask the low-level details required to

implement distributed and heterogeneous code. We provide a unified interface that

generates MPI code for distributed execution and communication and/or CUDA code

for GPU execution and communication. The programmer writes the same high-

level primitives regardless of their backend, and then applies a set of scheduling

commands to optimize and transform the resulting loop nests. These primitives and

associated functions provide the ability to generate code specific to each backend, such

as asynchronous execution and communication in MPI and CUDA. The schedules

for generating CUDA and MPI can also be composed with the existing schedules in

Tiramisu, giving additional shared memory optimizations such as parallelization and

vectorization. At code-generation time, the programmer selects their backend and

our compiler handles applying the transformations and generating the appropriate

backend code.

Overall, this thesis provides insight into the mechanisms required for heteroge-

neous, cooperative code execution and the challenges faced in optimizing code for

these configurations. Future research can build off of this work and further explore

how to create either new programming languages or models that provide intrinsic

support for shared memory systems, distributed memory systems, heterogeneous sys-

tems, cooperative execution, and any other architectures or configurations that may

come about.
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