
106 COMMUNICATIONS OF THE ACM | JANUARY 2018 | VOL. 61 | NO. 1

research highlights

DOI:10.1145/3150211

Halide: Decoupling Algorithms from
Schedules for High-Performance
Image Processing
By Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes,
Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand

Abstract
Writing high-performance code on modern machines
requires not just locally optimizing inner loops, but globally
reorganizing computations to exploit parallelism and
locality—doing things such as tiling and blocking whole
pipelines to fit in cache. This is especially true for image pro-
cessing pipelines, where individual stages do much too little
work to amortize the cost of loading and storing results to
and from off-chip memory. As a result, the performance dif-
ference between a naïve implementation of a pipeline and
one globally optimized for parallelism and locality is often
an order of magnitude. However, using existing program-
ming tools, writing high-performance image processing
code requires sacrificing simplicity, portability, and modu-
larity. We argue that this is because traditional program-
ming models conflate the computations defining the
algorithm with decisions about intermediate storage and
the order of computation, which we call the schedule.

We propose a new programming language for image
processing pipelines, called Halide, that separates the
algorithm from its schedule. Programmers can change
the schedule to express many possible organizations of a
single algorithm. The Halide compiler then synthesizes a
globally combined loop nest for an entire algorithm,
given a schedule. Halide models a space of schedules
which is expressive enough to describe organizations that
match or outperform state-of-the-art hand-written imple-
mentations of many computational photography and
computer vision algorithms. Its model is simple enough
to do so often in only a few lines of code, and small
changes generate efficient implementations for x86,
ARM, Graphics Processors (GPUs), and specialized image
processors, all from a single algorithm.

Halide has been public and open source for over four
years, during which it has been used by hundreds of pro-
grammers to deploy code to tens of thousands of servers and
hundreds of millions of phones, processing billions of
images every day.

1. INTRODUCTION
Computational photography and computer vision algo-
rithms require highly efficient implementations to be used
in practice, from power-constrained mobile devices to data
centers processing billions of images. This is not a simple
matter of programming in a low-level language such as
C: even in C, the performance difference between naïve

The original version of this work appeared in two papers,
entitled “Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines” published
in ACM Transactions on Graphics 31 4, (July 2012), ACM,
and “Halide: A Language and Compiler for Optimizing
Parallelism, Locality, and Recomputation in Image
Processing Pipelines” published in the Proceedings of
PLDI, June 2013, ACM.

and highly optimized image processing code for the same
algorithm is often an order of magnitude. Unfortunately,
optimization usually comes at a large cost in programmer
time and code complexity, as computation must be globally
reorganized to efficiently exploit the memory system (local-
ity, e.g., in caches) and many execution units (parallelism,
e.g., across threads and vector lanes).

Image processing pipelines are both wide and deep: they
consist of many data-parallel stages that benefit hugely from
parallel execution across pixels, but stages are often memory
bandwidth limited—they do little work per load and store.
Gains in performance and efficiency therefore come not just
from optimizing the inner loops, but also from global pro-
gram transformations that exploit producer-consumer local-
ity down the pipeline. For example, computing a first stage on
the entire image before processing the second stage causes
cache misses when storing and loading the intermediate
results; instead, an optimized pipeline might transform the
organization of computation with tiling and fusion to com-
pute both stages at the granularity of smaller image tiles that
fit in cache.

Image processing exhibits a rich space of possible organi-
zations of computation. The best choice of organization is
architecture-specific. Implementations optimized for an
x86 multicore and for a modern GPU often bear little resem-
blance to each other. There is also a tension between paral-
lelism, locality, and storing versus recomputing intermediate
values, which can make the ideal organization subtle and
unpredictable.

Halide enables simpler programming of high-performance
code by separating the intrinsic algorithm of an image pro-
cessing pipeline from the decisions about how to run effi-
ciently on a particular machine. Programmers may still
specify the strategy for execution, since automatic optimiza-
tion remains hard, but doing so is radically simplified by
this split representation, which allows them to concisely
express many optimization strategies without obfuscating

http://dx.doi.org/10.1145/3150211

JANUARY 2018 | VOL. 61 | NO. 1 | COMMUNICATIONS OF THE ACM 107

the code or accidentally modifying the algorithm itself.
This separation of concerns is important, and the ideal

code organization nontrivial, even for a problem as simple as a
3×3 box filter implemented as separate horizontal and vertical
passes (see Figure 1). We might write this in C++ as a sequence
of two loop nests (see Figure 1.a). An efficient implementation
on a modern CPU requires Single Instruction Multiple Data
(SIMD) vectorization and multithreading. Once we start to
exploit parallelism, however, the algorithm becomes bottle-
necked on memory bandwidth. Computing the entire horizon-
tal pass before the vertical pass destroys producer-consumer
locality: horizontally blurred intermediate values are computed
long before they are consumed by the vertical pass, doubling
the storage and memory bandwidth required. Exploiting
locality requires interleaving the two stages, for example
by tiling and fusing the loops. Tiles must be carefully sized
for alignment, and efficient fusion requires subtleties such
as redundantly computing values on the overlapping boundar-
ies of intermediate tiles. The resulting implementation is 22
times faster on a quad-core CPU, but together these optimiza-
tions have fused two simple, independent steps into a single inter-
twined, architecture-specific mess (see Figure 1.b).

We believe the right answer is to separate the intrinsic
algorithm—what is computed—from the concerns of effi-
ciently mapping to machine execution—decisions about
storage and the ordering of computation. We call these choices
of how to map an algorithm onto resources in space and
time the schedule.

Functional programming provides a natural basis for
separating the what from the when and where. Divorced from
explicit storage, images are no longer arrays filled by proce-
dures, but are instead pure functions that define the value at
each point in terms of arithmetic, reductions, and the appli-
cation of other functions (see Figure 1.c). This functional
representation also omits boundaries, and the order and
extent of iteration, making images functions over an infinite
integer domain.

In this representation, the algorithm only defines the
value of each function at each point, and the schedule
specifies:

1.  the order in which points in a function are evaluated,
including tiling, the exploitation of parallelism, and
mapping onto SIMD execution units;

2.  the granularity with which the evaluation of points in
one function are interleaved with evaluating points in
the functions which call it;

3.  the memory locations into which the values of a func-
tion are stored, including registers, scratchpad memo-
ries, and regions of main memory;

4.  whether a value is recomputed, or from where it is
loaded, at each place a function is used.

The key challenge in doing this is defining a representation
of schedules which is both simple and expressive. Halide’s
model (Section 3) decomposes the organization of a pipe-
line into four major choices for each function, correspond-
ing to the points above, each described as a composition of
simple primitives.

Halide can most flexibly schedule operations which are
data parallel with statically analyzable access patterns (such
as stencils), but also supports the bounded iterative

void blur(const Image<uint16_t> &in, Image<uint16_t> &bv) {
 Image<uint16_t> bh(in.width(), in.height();

 for (int y = 0; y < in.height(); y++)
 for (int x = 0; x < in.width(); x++)
 bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

 for (int y = 0; y < in.height(); y++)
 for (int x = 0; x < in.width (); x++)
 bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;
}

void fast_blur(const Image<uint16_t> &in, Image<uint16_t> &bv) {
 __m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {
 __m128i a, b, c, sum, avg;
 __m128i bh[(256/8)*(32+2)];
 for (int xTile = 0; xTile < in.width(); xTile += 256) {
 __m128i *bhPtr = bh;
 for (int y = -1; y < 32+1; y++) {
 const uint16_t *inPtr = &(in(xTile, yTile+y));
 for (int x = 0; x < 256; x += 8) {
 a = _mm_loadu_si128((__m128i*)(inPtr - 1));
 b = _mm_loadu_si128((__m128i*)(inPtr + 1));
 c = _mm_load_si128 ((__m128i*)(inPtr));
 sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
 avg = _mm_mulhi_epi16(sum, one_third);
 _mm_store_si128(bhPtr++, avg);
 inPtr += 8;
 }}
 bhPtr = bh;
 for (int y = 0; y < 32; y++) {
 __m128i *outPtr = (__m128i *)(&(bv(xTile, yTile+y)));
 for (int x = 0; x < 256; x += 8) {
 a = _mm_load_si128(bhPtr + (256 * 2) / 8);
 b = _mm_load_si128(bhPtr + 256 / 8);
 c = _mm_load_si128(bhPtr++);
 sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
 avg = _mm_mulhi_epi16(sum, one_third);
 _mm_store_si128(outPtr++, avg);
}}}}}

Func halide_blur(Func in) {
 Func bh, bv;
 Var x, y, xi, yi;

 // The algorithm
 bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
 bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;

 // The schedule
 bv.tile(x, y, xi, yi, 256, 32)
 .vectorize(xi, 8).parallel(y);
 bh.compute_at(bv, x).vectorize(x, 8);

 return bv;
}

(a) Clean C++: 6.5ms per megapixel

(b) Fast C++ (for x86) : 0.30ms per megapixel

(c) Halide : 0.29ms per megapixel

Figure 1. The C++ code at the top (a) computes a 3×3 box filter using
the composition of a 1×3 and a 3×1 box filter. Using vectorization,
multithreading, tiling, and fusion, we can make this algorithm more
than 20 times faster on a quad-core x86 CPU (b) However, in doing
so we have lost simplicity and portability. Halide (c) separates
the algorithm description from its schedule, describing the same
optimizations, generating very similar machine code, and achieving the
same performance without making these sacrifices. (Benchmarked on
an Intel Core i7–4790, from the blur app in the Halide repository.14)

research highlights

108 COMMUNICATIONS OF THE ACM | JANUARY 2018 | VOL. 61 | NO. 1

algorithms and irregular access patterns that occur in image
processing and general array computation. It imposes a few
restrictions on the range of expressible schedules, but is suf-
ficient to concisely express implementations of many image
processing algorithms, with state-of-the-art performance on
architectures ranging from mobile and server CPUs, to
GPUs, to specialized image processors.

Once the programmer has specified an algorithm and a
schedule, the Halide compiler combines them into an effi-
cient implementation. Optimizing the execution strategy for
a given architecture requires modifying the schedule, but not
the algorithm. The representation of the schedule is compact
and does not affect the correctness of the algorithm (e.g.
Figure 1.c), so exploring the performance of many options is
fast and easy. It can be written separately from the algorithm,
by an architecture expert if necessary, and we have also shown
that good schedules can often be found automatically.17, 23

In the rest of this article we will briefly introduce Halide’s
language for algorithms (Section 2), discuss its model of
schedules and the organizational choices they represent
(Section 3), touch on the design of the Halide compiler
(Section 4), demonstrate results on several real computa-
tional photography algorithms, (Section 5), and conclude by
discussing connections with the wealth of related work
(Section 6), and our perspective after five years of develop-
ment and widespread use (Section 7).

2. THE HALIDE ALGORITHM LANGUAGE
Halide describes image processing pipelines in a simple func-
tional style. A straightforward C++ implementation of an algo-
rithm such as local Laplacian filters is described by dozens of
loop nests and hundreds of lines of code.2 This is not practical
to globally optimize with traditional loop optimization sys-
tems.10 The Halide version distills this into 62 lines describing
just the essential dataflow and computation in the 99 stage
pipeline, and all choices for how the program should be syn-
thesized are described in a separate schedule (Section 3).

Halide represents images as pure functions defined over
an infinite integer domain, where the value of a function at a
point represents the value of the image at the corresponding
coordinate. Halide functions can have arbitrary dimensional-
ity (not just two), and may be tuple-valued (they can store a
“struct” of values at each point, not just a single number).
Pipelines are specified as a directed acyclic graph of func-
tions. The expressions that define functions are side-effect
free, and are much like those in any simple functional lan-
guage, including arithmetic and logical operations, if-then-
else expressions, loads from memory buffers, and calls to
other functions (including external C ABI functions).

For example, a separable 3 × 3 unnormalized box filter is
expressed as a chain of two functions in x, y:

Func bh, bv; Var x, y;
ImageParam in(UInt(8), 2);

bh(x, y) = in(x−1, y) + in(x, y) + in(x+1, y);
bv(x, y) = bh(x, y−1) + bh(x, y) + bh(x, y+1);

This representation is simpler than most functional lan-
guages. It does not include higher-order functions, dynamic

recursion, or additional data structures such as lists. Func
tions simply map from integer coordinates to a scalar or
tuple-valued result.

Halide is embedded in C++. It uses simple type and opera-
tor overloading (not template metaprogramming) to lazily
construct programs, rather than eagerly executing expressions
as they are written. This “staged” nature makes the Halide
front-end easily extensible. Many advanced constructs are
expressible by using C++ as a meta-programming layer for
Halide. For example, you can simulate higher-order functions
by writing a C++ function that takes and returns Halide func-
tions. This provides a powerful tool for structuring code and it
does not change the underlying representation of a pipeline.

This representation is sufficient to describe a wide range
of image processing algorithms, and these constraints enable
flexible analysis and transformation of algorithms during
compilation. Critically, this representation is naturally data
parallel within the domain of each function. Also, since func-
tions are defined over an infinite domain, boundary condi-
tions can be handled safely and efficiently in two ways. For
intermediate pipeline stages, an implementation can com-
pute arbitrary guard bands of extra values. For input images,
or stages for which specific boundary conditions matter to the
meaning of an algorithm, the function may define its own.
The compiler will partition the resulting loops so that the
boundary conditions have minimal impact on performance.

Update definitions
Functions are typically defined by simple expressions in their
arguments, but may additionally have a sequence of bounded
updates to accommodate reductions (e.g., large-support con-
volution), scatters (e.g., histograms), and recursive scans
(e.g., Infinite Impulse Response (IIR) filters). Sequential iter-
ation within an update can be introduced with an RDom
(“reduction domain,” a multidimensional iteration domain).
The value of the function at each point in the output domain
is defined by the final value after all updates are applied. The
key constraint relative to arbitrary loops is that the bound of
an RDom cannot depend on the values computed inside its
updates. This guarantees that all iteration bounds are decid-
able (and the language is therefore not Turing complete).

This pattern can describe a range of algorithms outside the
scope of traditional stencil computation but essential to image
processing pipelines, in a way that encapsulates side effects. To
the rest of the pipeline, a function with updates still acts as
stateless pure function that can be evaluated over an arbitrary
domain. For example, histogram equalization combines mul-
tiple reductions and a data-dependent gather. A scattering
reduction computes a histogram, a recursive scan integrates it
into a Cumulative Distribution Function (CDF), and a simple
point-wise operation remaps the input using the CDF:

Func histogram, cdf, out; Var x, y, i;
ImageParam in(UInt(8), 2);

RDom r(�0, in.width(),
0, in.height() )’

histogram(i) = 0; // initial value
histogram(in(r.x, r.y) ) += 1; // update

JANUARY 2018 | VOL. 61 | NO. 1 | COMMUNICATIONS OF THE ACM 109

3.1 Scheduling within a function
The order of evaluation of the points within a function is
defined by a family of common transformations applied to a
default (sequential, row-major) loop nest over the grid of
points in the function’s domain. Loop dimensions can be
split, merged, and reordered. Because the regions computed
are simple intervals (axis-aligned bounding boxes within the
grid), the result is always a perfect loop nest. In addition, the
resulting loops can be unrolled, or mapped to parallel
threads, SIMD vector lanes, and GPU kernel dimensions.

The dimensions of the storage layout for a function’s
results can similarly be reordered, allowing common trans-
formations such as column- versus row-major layouts.
Storage can also be folded across a dimension into a circular
buffer of a fixed size.

The dimensions of an RDom in an update step may also be
reordered, parallelized, etc., but only if the compiler can prove
that different update iterations across those dimensions do
not interact. Recent work has added support for splitting asso-
ciative reductions to create parallel reduction trees.25

3.2 Scheduling across functions
The more unique part of Halide’s model of schedules is how
it transforms computation and storage across functions.

Consider the simple two-stage blur algorithm. When
scheduling across these two stages, we call the first stage,
bh, the “producer,” and the second stage, bv, its “con-
sumer.” So far, the scheduled order of computation within
each function (discussed above) defines a perfect loop
nest for each function. For example, the default schedule
for the output stage bv gives a simple row-major loop nest
equivalent to:

for bv.y in bv.min.y to bv.max.y:
for bv.x in bv.min.x to bv.max.x:
compute and store bv(bv.x, bv.y)

The schedule across functions specifies at what level in this

RDom ri(0, 255);
cdf(i) = 0; // initial value
cdf(ri) = cdf(ri−1) + histogram(ri); // update

out(x, y) = cdf(in(x, y) );

3. SCHEDULING IMAGE PROCESSING PIPELINES
A complete Halide algorithm is a DAG of functions over reg-
ular grids. Actually evaluating an algorithm requires iterat-
ing over and computing all of the required points in each
function. But in what order should we compute these
points? And where should we store and load the results of
intermediate stages to communicate them between stages?
Unlike a looping program in a traditional language, the
Halide algorithm does not specify these choices. Instead,
they’re specified by a separate schedule.

For each stage, we think  about these choices in four parts:

1.  In what order should we iterate over the points in that
stage?

2.  In what order should we lay out those points in mem-
ory to store their results?

3.  At what granularity should we interleave the computa-
tion of that stage with the computation of the down-
stream stages which consume its results?

4.  At what granularity should we store blocks of the func-
tion for reuse across iterations of its consumers?

These choices affect performance through locality (e.g.,
cache behavior), exposed parallelism, and the need for
recomputation (at grain boundaries). Together, they spec-
ify a set of nested loops (invisible to the programmer) that
our compiler uses to generate executable code. Scheduling
instructions are concise and can be written indepen-
dently of the definition of the algorithms, as shown in
Figure 1(c).

scheduling across functions (interleaving granularity)

coarsest (whole images) moderate (per-tile) finest (per-pixel)

dependence

loop extent

interleaving
block extents

redundant
compute

parallel tilesparallelvectorizedtiledcolumn-majorrow-major

scheduling
within a
function

in bh bv

compute_root()

in bh bv

compute_at(bv, tile_x)

in bh bv

inline

Figure 2. A Halide schedule specifies the order of computation within each stage in an image processing algorithm (top, discussed in
Sec. 3.1), and the granularity of interleaving across producer and consumer stages (bottom, discussed in Sec. 3.2). In the two-stage blur
algorithm, coarse-grained interleaving (bottom-left) computes whole stages at a time, sacrificing producer-consumer locality. Finer-grained
interleaving improves locality but introduces redundant computation where the stencils for the grains overlap (denoted by hatched regions
in the bottom-middle). In the extreme case of per-pixel interleaving (bottom-right), values are immediately consumed as soon as they are
computed (maximizing locality), but all values of the producer stages are redundantly recomputed in each place they are reused (here,
3 times in bh and 9 times transitively in in). Whereas this shows a single shared order and granularity choice made applied throughout a
simple pipeline, all of these choices can be made separately for each function in a whole algorithm.

research highlights

110 COMMUNICATIONS OF THE ACM | JANUARY 2018 | VOL. 61 | NO. 1

bv.split(x, tx, xi, tile_size)
 .split(y, ty, yi, tile_size)
 .reorder(xi, yi, tx, ty)

which can be abbreviated simply as:
bv.tile(x, y, tx, ty, xi, yi, tile_size, tile_size)

This generates the loop nest:

// simplified to ignore non-evenly divisible tile sizes
for bv.ty in bv.min.y/tile_size to bv.max.y/tile_size:
for bv.tx in bv.min.x/tile_size to bv.max.x/tile_size:
for bv.yi in 0 to tile_size−1:
for bv.xi in 0 to tile_size−1:
compute bv(�bv.tx*tile_size + bv.xi,

bv.ty*tile_size + bv.yi)

Now, by computing bh at the granularity of tiles of bv—at
the bv.tx loop level—we get a less fine-grained interleaving
than individual pixels, but one more fine-grained than the
whole image. In Halide’s scheduling language, we specify
this by saying bh.compute_at(bv, tx). This is the key
scheduling choice in the optimized implementations as
shown in Figure 1(b) and (c). This generates the loop nest:
for bv.ty in bv.min.y/tile_size to bv.max.y/tile_size:
for bv.tx in bv.min.x/tile_size to bv.max.x/tile_size:
// compute tile of bh
for bh.y in (bv.ty*tile_size−1)to ( (bv.ty+1)*tile_size):
for bh.x in (bv.tx*tile_size) to ( (bv.tx+1)*tile_
size−1):
bh(bh.x, bh.y)�= in(bh.x−1, bh.y)

+ in(bh.x , bh.y)
+ in(bh.x+1, bh.y)

// compute tile of bv
for bv.yi in 0 to tile_size−1:
for bv.xi in 0 to tile_size−1:

bv.y = bv.ty*tile_size + bv.y
bv.x = bv.tx*tile_size + bv.x
bv(bv.x, bv.y) �= bh(bv.x, bv.y−1)

+ bh(bv.x, bv.y)
+ bh(bv.x, bv.y+1)

This organization recomputes only one row on the top and
bottom of each tile, rather than every row, while improving
locality to the level of tiles rather than whole images. By
increasing or decreasing the size of these tiles, we can easily
trade off between locality and computation. Common
choices would be sized to fit tiles in a given level of cache.
The ideal choice depends on the relative cost of recomput-
ing a pixel of the producer function versus storing and load-
ing it from each level of the memory hierarchy.

It is important to realize that this is not just a constant-
factor tweak in the resulting code: if the tile size is a con-
stant, we have asymptotically improved the locality relative
to the naïve interleaving, by reducing the reuse distance for
intermediate values from O(n) to O(1).

We can also choose to compute bh at any of the other loop
levels in bv: the schedule of computation across stages in
Halide is specified, for each producer function, as any single
level in the scheduled loop nest of the downstream pipeline.

The fourth and final core part of the schedule similarly
specifies the granularity of storage across functions. The
granularity of storage determines at what loop level in the
evaluation of the consuming pipeline the results of a pro-
ducer function should be stored for reuse. On architec-
tures such as GPUs, different levels are also mapped to

loop nest around the consumer stage the program should
evaluate the required part of the producer stage (here, bh).
This determines the granularity with which the computa-
tion of the different functions is interleaved.

For example, Halide’s default schedule for producers is
inline, which means that if we leave the default schedule for
bh, it is evaluated directly everywhere it is called:

for bv.y in bv.min.y to bv.max.y:
for bv.x in bv.min.x to bv.max.x:
bv(bv.x, bv.y) = // bh(x,y−1)+bh(x,y)+bh(x,y+1) =

(in(bv.x−1,bv.y−1)+in(bv.x,bv.y−1)+in(bv.x+1,bv.y−1) )
 +(in(bv.x−1,bv.y)+in(bv.x,bv.y)+in(bv.x+1,bv.y))
 +(in(bv.x−1,bv.y+1)+in(bv.x,bv.y+1)+in(bv.x+1,bv.y+1) )

This maximizes locality between the producer and con-
sumer, since each value of bh is immediately used as soon as
it is computed, so it does not need to be stored and loaded in
far-away memory. However, because the stencils of neigh-
boring pixels overlap, every pixel in bh is computed three
times instead of once: when the outer loop moves to the next
row down, each pixel of bv recomputes two of the same pix-
els of bh that were just computed by the pixel right above it.

The other obvious choice we could make is to not inter-
leave these two stages at all. Instead, we compute all of bh
before computing any of bv. We express this in Halide by
saying that bh should be computed at the very outermost, or
“root” level, outside all loops over its consumer. This is done
by calling bh.compute_root(), generating the complete
equivalent program:

// compute bh over slightly enlarged window,
// to fulfill all uses in bv
for bh.y in bv.min.y−1 to bv.max.y+1:
for bh.x in bv.min.x to bv.max.x:

bh(bh.x, bh.y) �= in(bh.x−1, bh.y)
+ in(bh.x , bh.y)
+ in(bh.x+1, bh.y)

// compute bv using bh
for bv.y in bv.min.y to bv.max.y:
for bv.x in bv.min.x to bv.max.x:

bv(bv.x, bv.y) �= bh(bv.x, bv.y−1)
+ bh(bv.x, bv.y)
+ bh(bv.x, bv.y+1)

This only computes each pixel in each stage exactly once,
wasting no work, but it destroys any producer-consumer
locality between the two stages: an entire image of interme-
diate results has to be computed between where values are
produced in the first stage and where they are consumed in
the second. This schedule is equivalent to the clean C++ as
shown in Figure 1(a), which suffers from the same problem.

Looking at these two examples, we see a tension between
locality and (excess, or redundant) computation. This ten-
sion is fundamental to computations with stencil depen-
dencies, since stencils overlap between iterations and
prevent simple loop fusion without duplicating work.
However, this tension can be balanced along a continuum
between these extremes.

For example, we can change the schedule within bv to iter-
ate in a tiled order by splitting its two dimensions by a chosen
tile size, and then reordering the four resulting dimensions.
We can do this by saying:

JANUARY 2018 | VOL. 61 | NO. 1 | COMMUNICATIONS OF THE ACM 111

deriving runtime conditions under which the computation
of stages can be skipped entirely.

For a full description of the compiler see our original
PLDI paper,21 and the source code itself.14

5. RESULTS & EVALUATION
Halide has been open source since it was released by MIT in
2012, Halide source repository.14 The largest user of and con-
tributor to Halide is Google. The largest Halide pipeline we
are aware of is Google’s HDR+15 which produces every photo-
graph taken on their flagship Pixel phones. Halide pipelines
are also run at scale within Google Photos, YouTube, and
elsewhere. Outside of Google, Halide code is shipping in
products from Instagram, Facebook, Adobe, and others.

In the original Halide publications,17, 22, 23 we evaluated the
Halide representation and compiler by implementing a vari-
ety of modern image processing pipelines in Halide and com-
paring the result to the best previously-published expert
implementations we could find. The pipelines exhibit a wide
variety of data types, access patterns, and pipeline lengths.
Here, we highlight four representative pipelines that approxi-
mately span this space (Figure 3). These pipelines also approx-
imately correspond to the major algorithms in Google’s
HDR+ pipeline, albeit at a more modest scale. Our more
recent work and open source code also includes competitive
matrix-matrix multiply (GEMM) and convolutional neural
network implementations in very little code.14, 17 We generally
find that Halide code is many times faster than equivalently
simple reference code, many times more concise than equiva-
lently fast code, or some tradeoff between those two extremes.

Benchmark applications
Bilateral grid is an efficient implementation of the bilateral
filter, which smoothes an image while preserving its main
edges.7 It first scatters the image data into a 3D grid, effec-
tively building a windowed histogram in each column of the
grid, then blurs the grid along each of its axes with three

different parts of the specialized memory hierarchy. Using
this and other scheduling primitives, Halide can express
additional locality-optimizing patterns of computation, such
as line-buffering or software pipelining, but these are beyond
the scope of this paper. More complete discussion can be
found in prior publications.21, 23

In the DAG of functions that makes up a program, we
have local ordering choices for each node, and producer-
consumer granularity choices for each edge. In the real
applications presented in Section 5, the optimized sched-
ules make different but inter-dependent choices for each of
dozens of stages and producer-consumer dependencies.

4. THE COMPILER
The Halide compiler takes a graph of Halide functions and
lowers it to imperative code for a variety of CPU, GPU, and
Digital Signal Processor (DSP) architectures. This process is
directed by the schedule. It then converts this imperative
code to LLVM's intermediate representation, and generates
machine code from there.

In contrast to a traditional compiler, lowering makes very
few heuristic decisions. Instead, it is designed to be highly
deterministic and controllable. Any time there is a choice to be
made that might affect performance we defer to the schedule.

Lowering has two essential responsibilities. The first is
synthesizing the loop nest specified by the schedule, includ-
ing any vectorization, unrolling, multi-core parallelism,
prefetching, memoization of stages, and offloading work to
GPU or DSP accelerators. The second responsibility of low-
ering is inferring the regions of each function that must be
computed to satisfy all producer-consumer dependencies.

Lowering additionally implements optional passes for
tracing, profiling, and similar instrumentation, and passes
that apply opportunistic optimizations. These include parti-
tioning loops in order to ameliorate the effect of boundary
conditions, tightening loop bounds when it can be proved
that the loop body does nothing for some of its domain, and

Local Laplacian filters Fast Fourier transform Camera pipeline
Optimized assembly: 463 lines
 ARM core: 39ms

 FFTW: thousands
 Quad core x86: 384ns
Quad core ARM: 5960ns

C++, OpenMP+iIPP: 262 lines
 Quad core x86: 210ms

Halide algorithm: 170 lines
 schedule: 50 lines
 ARM core: 41ms

DSP schedule: 70 lines
 Hexagon 680: 15ms

Halide algorithm: 350 lines
 schedule: 30 lines
 Quad core x86: 250ns
 Quad core ARM: 1250ns

Halide algorithm: 62 lines
 schedule: 11 lines
 Quad core x86: 92ms

 GPU schedule: 9 lines
 GTX 980: 23ms

Halide algorithm: 34 lines
 schedule: 6 lines
 Quad core x86 : 14ms

 GPU schedule: 6 lines
 GTX 980 : 2.3ms

Bilateral grid
Reference C++: 122 lines
 Quad core x86: 150ms

 CUDA C++: 370 lines
 GTX 980: 2.7ms

Figure 3. Summary of the code size and running time Halide implementations compared to handwritten reference implementations of four
representative computational photography algorithms. The time measurements are reported in milliseconds to process the representative
image (4–6 megapixels), except for the fast Fourier transform. The FFT experiment is for the tiled real-to-complex transform, and reports
time in nanoseconds per 16 × 16 tile.

research highlights

112 COMMUNICATIONS OF THE ACM | JANUARY 2018 | VOL. 61 | NO. 1

Fast Fourier transform implements small 2D FFTs, based
on an algorithm adapted for GPUs.13 Small 2D tiled FFTs are
used in many image processing workloads. The strategy in this
implementation is to perform Cooley-Tukey FFTs on columns,
which is convenient for vectorizing along the rows. The data is
transposed repeatedly such that all of the FFTs are performed
on columns; after the FFT is complete, the data is transposed
back to the original orientation. Real FFTs are implemented
by computing pairs of columns of FFTs simultaneously.

We compare the performance of our FFT implementation
to FFTW.11 For 16×16, 32×32, and 48×48 complex-to-complex
FFTs, the Halide FFT is about 1.3 times faster than FFTW. For
similarly sized real FFTs, Halide is between 1.5 times and 2.1
times faster than FFTW on x86, and up to 4.6 times faster than
FFTW on ARM. For larger FFTs, the Halide FFT performance
begins to drop relative to FFTW, becoming comparable to
FFTW at 64×64 and dropping further from there, as we have
not implemented a vectorization strategy more suitable for
these larger FFTs.

In addition to the raw performance, the Halide FFT has a
number of other advantages over FFT libraries. Because the
FFT is expressed in pure Halide, the operations being per-
formed in the Fourier domain can be fused into the FFT itself,
improving locality. The implementation is also more easily
modified, for example to compute fixed point or zero-padded
FFTs. Because the FFT is expressed at a high level, with the
optimizations expressed in the schedule, it can deliver state-
of-the-art performance across a variety of platforms.

Camera pipeline transforms the raw data recorded by a cam-
era sensor into a photograph. It performs four tasks: hot pixel
suppression, demosaicking, color correction, and global tone
mapping (i.e., gamma correction and contrast enhancement).
These steps contain a variety of operations including stencils,
color space transformations, and table lookups. The demo-
saicking alone is a combination of 21 inter-dependent stencils.

The reference comparison is a single carefully tiled and
fused loop nest from the Frankencamera, expressed in 463
lines of C++ with ARM NEON intrinsics and inline assembly.1
All producer-consumer communication is staged through
scratch buffers. The Halide implementation is 170 lines des
cribing 32 functions and 22 different stencils, literally trans-
lated from the pseudocode in the comments explaining the
original source. With 70 lines of combined schedule code, the
Halide algorithm can be compiled to target 32- and 64-bit x86
and ARM, is trivially parallelized across CPU cores, and can
also be compiled to run on a Qualcomm Hexagon DSP.

We benchmarked this workload on a Google Pixel smart-
phone, which contains a Hexagon 680 DSP with HVX
(Hexagon Vector Extensions), a standard feature of the pop-
ular Snapdragon 820 SoC. The Halide CPU code performs
almost identically to the ARM reference implementations on
a single core. Using all four CPU cores, the Halide implemen-
tation is 2.7 times faster than the single-core reference imple-
mentation. (The CPU cores on this processor are asymmetric,
with a theoretical linear speedup of 3.5 times across all four.)
The Halide Hexagon implementation performs similar to
the four core CPU implementation, which is in line with the
theoretical throughput of two HVX processing clusters.
However, while we expect that to be the case, it delivers that

5-point stencils. Finally, the output image is constructed by
trilinear interpolation within the grid at locations deter-
mined by the input image.

The CPU reference code is a tuned but clean implementa-
tion from the original authors in 122 lines of C++. It is par-
tially autovectorized by GCC, but is nontrivial to multithread
(a naïve OpenMP parallelization of major stages results in a
slowdown on our benchmark CPU), so the reference is sin-
gle-threaded. The Halide algorithm is 34 lines, and compiles
to an implementation 11 times faster than the original. The
speedup comes from a combination of parallelism, tilelevel
fusion of some stages, and careful reordering of dimensions
to control parallel grain size in the grid.

We also compared the Halide version to a hand-tuned GPU
implementation from the original authors, written in 370 lines
of CUDA code. The same Halide algorithm, paired with a differ-
ent schedule, was 17% faster than the hand-written CUDA, but
about the total code size. The Halide compiler generates
similar GPU code to the reference, but with Halide we quickly
found a new point in the schedule space. It sacrifices some par-
allelism in the grid construction step to reduce synchroniza-
tion overhead, and uses a tiled fusion strategy which passes
intermediate results through GPU scratchpad memory to
improve locality through the blur steps at the expense of redun-
dant computation. These tradeoffs were counter-intuitive to
the original author, and much harder to express in CUDA, but
are easily described by our schedule representation.

Local Laplacian filters uses a multi-scale approach to tone
map images and enhance local contrast in an edge-respecting
fashion.2 It is used in the clarity, tone mapping, and other fil-
ters in Adobe Photoshop and Lightroom. The algorithm
builds and manipulates several image pyramids. The filter
output is produced by a data-dependent resampling from the
processed pyramids. With the parameters we used, the pipe-
line contains 99 different stages, operating at many scales,
and with several different computational patterns.

The reference implementation is 262 lines of C++, devel-
oped at Adobe. It is carefully parallelized with OpenMP, and
offloads most intensive kernels to tuned assembly routines
from Intel Performance Primitives (IPP). It has very similar
performance to a version deployed in their products, which
took several months to develop, including 2–3 weeks dedi-
cated to optimization. It is 10 times faster than an algorith-
mically identical reference version written by the authors in
pure C++, without IPP or OpenMP.

The Halide version was written in one day, in 52 lines of code.
It compiles to an implementation which is 2.3 times faster than
the highly optimized expert implementation (at least 20 times
faster than the clean C++ without IPP and OpenMP). The result-
ing schedule is complex, mixing different fusion, tiling, vector-
ization, and multithreading strategies throughout the 99 stage
graph. In C, it would correspond to hundreds of loops over thou-
sands of lines of code, but in Halide it is just 11 lines.

The same program compiles with a different schedule to
a hybrid CPU/GPU program with 23 unique GPU kernels,
each representing a different subset of the overall graph. It
runs 9.1 times faster than the hand-tuned Adobe implemen-
tation, and is four times faster than the best parallel and vec-
torized implementation on the CPU.

JANUARY 2018 | VOL. 61 | NO. 1 | COMMUNICATIONS OF THE ACM 113

for several applications, including some presented above.
To converge in reasonable time on real programs, we

found that higher-level heuristics are critical to guide the
search, because of the high cost of compiling and running
each new test. Drawing on this experience, we have since
found that using a simple cost model in place of recompiling
and benchmarking each configuration, and restricting the
search to greedily consider variants of common interleaving
patterns, gave a much faster and more scalable automatic
scheduling method.17 The cost model is based directly on the
tradeoff we observe between parallelism, locality, and redun-
dant work. The tool is also easier to use since it directly ana-
lyzes the algorithm, rather than requiring a runnable
benchmark program and data set.

6. RELATED WORK
Graphics & image processing languages
Domain-specific languages for image processing go back at least
as far as Bell Labs’ Pico and POPI.16 Most prior image processing
languages have focused on efficient expression of individual ker-
nels. Pan introduced a functional model for image processing
much like our own, in which images are functions from coordi-
nates to values.8 Recently, others have demonstrated automatic
optimization of image processing code in a subset of the Halide’s
algorithm model using the polyhedral model.18

Elsewhere in graphics, the real-time graphics pipeline has
been a hugely successful abstraction precisely because the sched-
ule is separated from the specification of the shaders.4 This
allows GPUs and drivers to efficiently execute a wide range of
programs with little programmer control over parallelism and
memory management. This separation of concerns is extremely
effective, but it is specific to the design of a single pipeline.

throughput using up to 10 times less power.
Porting the camera pipeline to Hexagon required modify-

ing the schedule to use a sliding window on the rows of the
image, instead of tiling. Hexagon has extremely large vec-
tors, and also benefits heavily from loop pipelining, which
means that efficient 2D tile sizes are too large to fit in cache.
Halide allowed us to easily rewrite the camera pipeline from
a tiled schedule to a sliding window schedule, without
changing the algorithm description. In contrast, rewriting
the handwritten ARM implementation to use a sliding win-
dow would be a serious undertaking, as the tiling logic is
inextricably linked to the algorithm description, all the way
into the indexing arithmetic in the assembly inner loops.

Scheduling new algorithms
To better understand how long it takes an expert Halide devel-
oper to schedule an algorithm when starting from scratch, we
recruited two professional Halide developers (authors on this
paper) into a scheduling “race.” They selected three new, non-
trivial applications they had never scheduled before (lens-
blur, nlmeans, and maxfilter) and implemented the
original Halide algorithm for these programs. For each bench-
mark, each programmer independently developed a schedule
in a single programming session. The programmer stopped
optimizing after converging on a solution they considered their
reasonable best. While developing the schedules the develop-
ers documented their progress by measuring the performance
of their current schedule at various points in the session.

In each case, the developers started out with relatively sim-
ple baseline schedules, but which generally still included at
least SIMD vectorization and multicore parallelism.
Nonetheless, the speedup from this baseline to their best
optimized performance was always many times.

Results of the race are as shown in Figure 4. The X-axis in each
of the graphs indicates development time (in minutes) for the
schedules. The Y-axis shows the performance of the benchmark
(measured as pixel throughput, so higher is better). The yellow
and gray lines each correspond to one of the programmers.

Arriving at a good schedule requires significant optimiza-
tion effort, even for experts. For these applications, it took
on the order of an hour of iteration and experimentation for
the developers to feel their optimization had reasonably
converged. The resulting schedules, however, are only a few
lines of code, and dramatically simpler than equivalent code
in explicit C++ loops.

Automatically determining good schedules
To further accelerate development of high-performance
code, and to make Halide accessible to programmers with-
out optimization experience, we have also worked on ways to
automatically optimize Halide programs.

In the original version of this paper we demonstrated a
prototype autotuner which automatically searched the
(exponentially large) space of schedules for a program using
stochastic search with a genetic algorithm.23 For each gener-
ated schedule, the autotuner benchmarked its actual run-
time by compiling and running a complete test program
given by the user. In a few hours to days of tuning, it was able
to generate schedules competitive with hand-tuned results

NLMEANS

LENSBLUR

MAXFILTER

Optimization of manually authored schedules

Schedule development time (minutes)
0 5010 20 30 40

0

15 30 450
0

40 80 1200
0

T
hr

ou
gh

pu
t

(1
/m

s)
T

hr
ou

gh
pu

t
(1

/m
s)

T
hr

ou
gh

pu
t

(1
/m

s)

= Programmer 2= Programmer 1

Figure 4. Two professional Halide developers were tasked with
developing schedules for three new programs. The graphs plot
the runtime of their schedules, over time as they developed them.
The developers converged to what they considered “reasonable”
performance in on the order of an hour per program.

research highlights

114 COMMUNICATIONS OF THE ACM | JANUARY 2018 | VOL. 61 | NO. 1

Loop transformation
Most compiler optimizations for numerical programs are
based on loop analysis and transformation, including auto-
vectorization, loop interchange, fusion, and tiling.3 The poly-
hedral model is a powerful tool for modeling and
transforming looping imperative programs.10 Halide’s model
considers only axis-aligned bounding regions, not general
polytopes—a practical simplification for image processing
and many other applications. Interval analysis is simpler
than modern polyhedral analysis, but it can effectively ana-
lyze through a wide range of expressions, and it is trivial to
generate high quality loop nests from intervals. This simple
generality is essential for Halide’s design in which all bounds
are inferred from context. Most traditional loop optimiza-
tions also do not consider recomputation of values, but in
image processing this can be a large performance win and is
central to the choices we consider during optimization.

Parallel languages
Many data-parallel languages have been proposed. Chapel
and its predecessors focus on computations over regions of
regular grids, much like Halide, with explicit primitives to
control distribution of grid regions across memory and proces-
sors.6 Popular today, CUDA and OpenCL expose an impera-
tive, single program-multiple data programming model which can
target both GPUs and multicore CPUs with SIMD units.5, 19 Like C,
these languages allow the specification of very high performance
implementations for many algorithms, but because their seman-
tics closely model the underlying machine, they also deeply
conflate algorithms with optimization.

Streaming languages encode data and task parallelism in
graphs of kernels, which compilers automatically schedule
using tiling, fusion, fission, and 1D stencil optimization.12
Halide’s model of scheduling addresses the problem of mul-
tidimensional stencils with parallelism, where recomputa-
tion versus storage becomes a critical but complex choice.

A separate line of research creates explicit languages for
choices of how problems are mapped into physical execution,
much like Halide’s decoupling of schedules from algorithms.
SPIRAL uses a domain-specific language to specify linear sig-
nal processing operations at the level of mathematical opera-
tors,20 and a separate algebra of rewrite rules describes ways
these operations can be turned into efficient code for a partic-
ular architecture. Sequoia defines a model where a user-
defined “mapping file” describes how to execute tasks on a
tree-like memory hierarchy.9 The CHiLL framework exposes
polyhedral program transformations and code generation
choices via a dedicated scripting language.24

7. CONCLUSION AND PERSPECTIVE
Our initial hope in designing Halide was to allow expert-level
manual control over the organization of computation in
image processing code, which was at once far more control-
lable and powerful than traditional compiler flags and auto-
vectorization, and far more productive than hand coding in
low-level languages. After more than 4 years in production,
we found this works even better than we first hoped. Across a
range of applications and target architectures, we find that
Halide’s scheduling representation is able to model, and its

compiler is able to generate, implementations which deliver
state-of-the-art performance from surprisingly little code.

This performance comes from careful navigation of the high
dimensional space of tradeoffs between locality, parallelism,
and redundant recomputation in image processing pipelines.
Expressing these tradeoffs in traditional languages is challeng-
ing enough, as shown by the much greater complexity of hand-
written implementations, but finding the ideal balance is
daunting when each change a programmer might want to try can
require completely rewriting a complex loop nest hundreds of
lines long. The performance advantage of the Halide implemen-
tations is a direct result of simply making it easy to test many
more points in the space than a human programmer could manu-
ally describe using explicit loops. We have found this design to
generalize well from its initial CPU and GPU targets to new, more
specialized (and notoriously hard-to-program) image processing
accelerators and DSPs. We think it helps point the way towards
the “OpenGL” of future specialized image processing hardware.

Still, while Halide’s model of schedules is powerful and
productive in the hands of experts, we have found it challeng-
ing for novices and those unfamiliar with high performance
programming to master. Even for experts, optimized sched-
ules grow difficult to maintain for algorithms beyond moder-
ately sized blocks, and there’s no complete answer for what
should be done if those blocks are meant to be reused in dif-
ferent places or get moved around a larger pipeline (as with a
library of reusable components). Fundamentally, schedules
describe how to interleave computation across composition
boundaries. Decoupling them from the fundamental algo-
rithm gives simpler, more modular algorithm code, but
modularizing scheduling choices without sacrificing perfor-
mance remains an open problem. This led to our attempts to
automate the process of scheduling in Halide,17, 23 which have
shown promise but remain ongoing work. An automatic
scheduling system could both remove the burden from nov-
ice programmers, and schedule globally across composition
boundaries even in large applications.

Finally, we have also found that, while the constraints and
style of the Halide language were motivated by examples in
modern image processing, the programming model is signifi-
cantly more general: it expresses arbitrary bounded computa-
tions over multidimensional regular grids, and it has been
applied to algorithms in linear algebra, scientific simulation,
and machine learning. Really, Halide should be thought of as
specific to the “data structure” of regular grids or multidi-
mensional arrays, not to the “domain” of image processing.

Acknowledgments
As an open source project, Halide has received contribu-
tions from many people. Most notably, Zalman Stern, Steven
Johnson, and Patricia Suriana are full-time developers on
the project at Google and are responsible for a large amount
of the current code. The Hexagon backend was developed
with Pranav Bhandarkar, Ron Lieberman, Dan Palermo, and
Anshuman Dasgupta at the Qualcomm Innovation Center.
Eric Chan provided feedback and inspiration throughout
the original design of Halide. This work was supported by
DOE Award DE-SC0005288, NSF grant 0964004, grants from
Intel and Quanta, and gifts from Cognex and Adobe.�

JANUARY 2018 | VOL. 61 | NO. 1 | COMMUNICATIONS OF THE ACM 115

Automatically scheduling halide
image processing pipelines. ACM
Trans. Graph. 35, 4 (2016).

	18.	 Mullapudi, R.T., Vasista, V., Bondhugula,
U. PolyMage: Automatic optimization
for image processing pipelines. In ACM
SIGPLAN Notices (ACM, New York, NY,
2015), volume 50, 429–443.

	19.	 The OpenCL specification, version 1.2.
http://www.khronos.org/registry/cl/
specs/opencl-1.2.pdf, 2011.

	20.	 Püschel, M., Moura, J.M.F., Johnson, J.,
Padua, D., Veloso, M., Singer, B., Xiong,
J., Franchetti, F., Gacic, A.,
Voronenko, Y., Chen, K., Johnson,
R.W., Rizzolo, N. SPIRAL: Code
generation for DSP transforms.
Proceedings of the IEEE, special
issue on “Program Generation,
Optimization, and Adaptation” 93, 2
(2005), 232–275.

	21.	 Ragan-Kelley, J. Decoupling
algorithms from the organization of
computation for high performance
image processing. PhD thesis,
Massachusetts Institute of
Technology (2014).

	22.	 Ragan-Kelley, J., Adams, A., Paris, S.,
Levoy, M., Amarasinghe, S., Durand, F.

Decoupling algorithms from
schedules for easy optimization of
image processing pipelines. ACM
Trans. Graph. 31, 4 (2012).

	23.	 Ragan-Kelley, J., Barnes, C., Adams, A.,
Paris, S., Durand, F., Amarasinghe, S.
Halide: A language and compiler for
optimizing parallelism, locality, and
recomputation in image processing
pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on
Programming Language Design and
Implementation (ACM, New York,
NY, 2013).

	24.	 Rudy, G., Khan, M.M., Hall, M., Chen, C.,
Chame, J. A programming
language interface to describe
transformations and code generation.
In Proceedings of the 23rd International
Conference on Languages and
Compilers for Parallel Computing
LCPC’10, (Springer-Verlag, Berlin,
Heidelberg, 2011), 136–150.

	25.	 Suriana, P., Adams, A., Kamil, S. Parallel
associative reductions in halide. In
Proceedings of the 2017 International
Symposium on Code Generation and
Optimization (ACM, New York, NY, 2017).

	 1.	 Adams, A., Talvala, E., Park, S.H.,
Jacobs, D.E., Ajdin, B., Gelfand, N.,
Dolson, J., Vaquero, D., Baek, J., Tico,
M., Lensch, H.P.A., Matusik, W., Pulli,
K., Horowitz, M., Levoy, M. The
Frankencamera: An experimental
platform for computational
photography. ACM Trans. Graph. 29, 4
(2010), 29:1–29:12.

	 2.	 Aubry, M., Paris, S., Hasinoff, S.W.,
Kautz, J., Durand, F. Fast local
Laplacian filters: Theory and applications.
ACM Trans. Graph. 33, 5 (2014), 167.

	 3.	 Bacon, D.F., Graham, S.L., Sharp, O.J.
Compiler transformations for
high-performance computing. ACM
Comput Surv. 26, 4 (Dec. 1994).

	 4.	 Blythe, D. The Direct3D 10 system. ACM
Trans. Graph. 25, (2006), 724–734.

	 5.	 Buck, I. GPU computing: Programming
a massively parallel processor. In
Proceedings of the International
Symposium on Code Generation and
Optimization (Tessellations Publishing,
Phoenix, Arizona, 2007).

	 6.	 Chamberlain, B., Callahan, D., Zima, H.
Parallel programmability and the
Chapel language. Int J High Perform
Comput Appl. 21, (2007), 291–312.

	 7.	 Chen, J., Paris, S., Durand, F. Real-time
edge-aware image processing with the
bilateral grid. ACM Trans. Graph. 26, 3
(2007), 103:1–103:9.

	 8.	 Elliott, C. Functional image synthesis.
In Proceedings of Bridges 2001,
Mathematical Connections in Art,
Music, and Science (IEEE Computer
Society, Washington, DC, USA, 2001).

	 9.	 Fatahalian, K., Horn, D.R., Knight, T.J.,
Leem, L., Houston, M., Park, J.Y.,

Erez, M., Ren, M., Aiken, A., Dally, W.J.,
Hanrahan, P. Sequoia: Programming
the memory hierarchy. In ACM/IEEE
conference on Supercomputing
(ACM, New York, NY, 2006).

	10.	 Feautrier, P. Dataflow analysis of
array and scalar references. Int J
Parallel Program. 20, 1 (1991), 23–53.

	11.	 Frigo, M., Johnson, S.G. The design
and implementation of FFTW3. Proc
IEEE 93, 2 (2005).

	12.	 Gordon, M.I., Thies, W., Karczmarek, M.,
Lin, J., Meli, A.S., Leger, C., Lamb, A.A.,
Wong, J., Hoffman, H., Maze, D.Z.,
Amarasinghe, S. A stream compiler for
communication-exposed architectures.
In International Conference on
Architectural Support for Programming
Languages and Operating Systems
(ACM, New York, NY, 2002).

	13.	 Govindaraju, N., Lloyd, B., Dotsenko, Y.,
Smith, B., Manferdelli, J. High
performance discrete Fourier
transforms on graphics processors. In
Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. IEEE
(Washington, DC, January 2008).

	14.	 Halide source repository. http://
github.com/halide/Halide.

	15.	 Hasinoff, S.W., Sharlet, D., Geiss, R.,
Adams, A., Barron, J.T., Kainz, F.,
Chen, J., Levoy, M. Burst photography
for high dynamic range and low-light
imaging on mobile cameras. ACM
Trans. Graph. 35, 6 (2016).

	16.	 Holzmann, G. Beyond Photography:
The Digital Darkroom. Prentice Hall,
Englewood Cliffs, NJ, 1988.

	17.	 Mullapudi, R.T., Adams, A., Sharlet, D.,
Ragan-Kelley, J., Fatahalian, K. © 2018 ACM 0001-0782/18/1 $15.00

References

Andrew Adams, and Dillon Sharlet
({abadams, dsharlet}@google.com), Google.
Saman Amarasinghe, and Frédo Durand
({saman, fredo}@csail.mit.edu), MIT
CSAIL.
Connelly Barnes (connelly@cs.virginia.
edu), University of Virginia.

Marc Levoy (levoy@google.com),
Stanford University & Google.
Sylvain Paris (sparis@adobe.com),
Adobe.
Jonathan Ragan-Kelley (jrk@eecs.
berkeley.edu), UC Berkeley.

