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Abstract
Writing high-performance code on modern machines 
requires not just locally optimizing inner loops, but globally 
reorganizing computations to exploit parallelism and  
locality—doing things such as tiling and blocking whole 
pipelines to fit in cache. This is especially true for image pro-
cessing pipelines, where individual stages do much too little 
work to amortize the cost of loading and storing results to 
and from off-chip memory. As a result, the performance dif-
ference between a naïve implementation of a pipeline and 
one globally optimized for parallelism and locality is often 
an order of magnitude. However, using existing program-
ming tools, writing high-performance image processing 
code requires sacrificing simplicity, portability, and modu-
larity. We argue that this is because traditional program-
ming models conflate the computations defining the 
algorithm with decisions about intermediate storage and 
the order of computation, which we call the schedule.

We propose a new programming language for image 
processing pipelines, called Halide, that separates the 
algorithm from its schedule. Programmers can change 
the schedule to express many possible organizations of a 
single algorithm. The Halide compiler then synthesizes a 
globally combined loop nest for an entire algorithm, 
given a schedule. Halide models a space of schedules 
which is expressive enough to describe organizations that 
match or outperform state-of-the-art hand-written imple-
mentations of many computational photography and 
computer vision algorithms. Its model is simple enough 
to do so often in only a few lines of code, and small 
changes generate efficient implementations for x86, 
ARM, Graphics Processors (GPUs), and specialized image 
processors, all from a single algorithm.

Halide has been public and open source for over four 
years, during which it has been used by hundreds of pro-
grammers to deploy code to tens of thousands of servers and 
hundreds of millions of phones, processing billions of 
images every day.

1. INTRODUCTION
Computational photography and computer vision algo-
rithms require highly efficient implementations to be used 
in practice, from power-constrained mobile devices to data 
centers processing billions of images. This is not a simple 
matter of programming in a low-level language such as 
C:  even in C, the performance difference between naïve 
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entitled “Decoupling Algorithms from Schedules for Easy 
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and “Halide: A Language and Compiler for Optimizing 
Parallelism, Locality, and Recomputation in Image 
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and  highly optimized image processing code for the same 
algorithm is often an order of magnitude. Unfortunately, 
optimization usually comes at a large cost in programmer 
time and code complexity, as computation must be globally 
reorganized to efficiently exploit the memory system (local-
ity, e.g., in caches) and many execution units (parallelism, 
e.g., across threads and vector lanes).

Image processing pipelines are both wide and deep: they 
consist of many data-parallel stages that benefit hugely from 
parallel execution across pixels, but stages are often memory 
bandwidth limited—they do little work per load and store. 
Gains in performance and efficiency therefore come not just 
from optimizing the inner loops, but also from global pro-
gram transformations that exploit producer-consumer local-
ity down the pipeline. For example, computing a first stage on 
the entire image before processing the second stage causes 
cache misses when storing and loading the intermediate 
results; instead, an optimized pipeline might transform the 
organization of computation with tiling and fusion to com-
pute both stages at the granularity of smaller image tiles that 
fit in cache.

Image processing exhibits a rich space of possible organi-
zations of computation. The best choice of organization is 
architecture-specific. Implementations optimized for an 
x86 multicore and for a modern GPU often bear little resem-
blance to each other. There is also a tension between paral-
lelism, locality, and storing versus recomputing intermediate 
values, which can make the ideal organization subtle and 
unpredictable.

Halide enables simpler programming of high-performance 
code by separating the intrinsic algorithm of an image pro-
cessing pipeline from the decisions about how to run effi-
ciently on a particular machine. Programmers may still 
specify the strategy for execution, since automatic optimiza-
tion remains hard, but doing so is radically simplified by 
this split representation, which allows them to concisely 
express many optimization strategies without obfuscating 
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the code or accidentally modifying the algorithm itself.
This separation of concerns is important, and the ideal 

code organization nontrivial, even for a problem as simple as a 
3×3 box filter implemented as separate horizontal and vertical 
passes (see Figure 1). We might write this in C++ as a sequence 
of two loop nests (see Figure 1.a). An efficient implementation 
on a modern CPU requires Single Instruction Multiple Data 
(SIMD) vectorization and multithreading. Once we start to 
exploit parallelism, however, the algorithm becomes bottle-
necked on memory bandwidth. Computing the entire horizon-
tal pass before the vertical pass destroys producer-consumer 
locality: horizontally blurred intermediate values are computed 
long before they are consumed by the vertical pass, doubling 
the storage and memory bandwidth required. Exploiting 
locality requires interleaving the two stages, for example 
by tiling and fusing the loops. Tiles must be carefully sized 
for alignment, and efficient fusion requires subtleties such 
as redundantly computing values on the overlapping boundar-
ies of intermediate tiles. The resulting implementation is 22 
times faster on a quad-core CPU, but together these optimiza-
tions have fused two simple, independent steps into a single inter-
twined, architecture-specific mess (see Figure 1.b).

We believe the right answer is to separate the intrinsic 
algorithm—what is computed—from the concerns of effi-
ciently mapping to machine execution—decisions about 
storage and the ordering of computation. We call these choices 
of how to map an algorithm onto resources in space and 
time the schedule.

Functional programming provides a natural basis for 
separating the what from the when and where. Divorced from 
explicit storage, images are no longer arrays filled by proce-
dures, but are instead pure functions that define the value at 
each point in terms of arithmetic, reductions, and the appli-
cation of other functions (see Figure 1.c). This functional 
representation also omits boundaries, and the order and 
extent of iteration, making images functions over an infinite 
integer domain.

In this representation, the algorithm only defines the 
value of each function at each point, and the schedule 
specifies:

1.  the order in which points in a function are evaluated, 
including tiling, the exploitation of parallelism, and 
mapping onto SIMD execution units;

2.  the granularity with which the evaluation of points in 
one function are interleaved with evaluating points in 
the functions which call it;

3.  the memory locations into which the values of a func-
tion are stored, including registers, scratchpad memo-
ries, and regions of main memory;

4.  whether a value is recomputed, or from where it is 
loaded, at each place a function is used.

The key challenge in doing this is defining a representation 
of schedules which is both simple and expressive. Halide’s 
model (Section 3) decomposes the organization of a pipe-
line into four major choices for each function, correspond-
ing to the points above, each described as a composition of 
simple primitives.

Halide can most flexibly schedule operations which are 
data parallel with statically analyzable access patterns (such 
as stencils), but also supports the bounded iterative 

void blur(const Image<uint16_t> &in, Image<uint16_t> &bv) {
 Image<uint16_t> bh(in.width(), in.height();

  for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width(); x++)
    bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;

  for (int y = 0; y < in.height(); y++)
   for (int x = 0; x < in.width (); x++)
    bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;
}

void fast_blur(const Image<uint16_t> &in, Image<uint16_t> &bv) {
 __m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for
 for (int yTile = 0; yTile < in.height(); yTile += 32) {
  __m128i a, b, c, sum, avg;
  __m128i bh[(256/8)*(32+2)];
  for (int xTile = 0; xTile < in.width(); xTile += 256) {
   __m128i *bhPtr = bh;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
       a = _mm_loadu_si128((__m128i*)(inPtr - 1));
       b = _mm_loadu_si128((__m128i*)(inPtr + 1));
       c = _mm_load_si128 ((__m128i*)(inPtr));
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg   = _mm_mulhi_epi16(sum, one_third);
     _mm_store_si128(bhPtr++, avg);
     inPtr += 8;
   }}
   bhPtr = bh;
   for (int y = 0; y < 32; y++) {
    __m128i *outPtr = (__m128i *)(&(bv(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
       a = _mm_load_si128(bhPtr + (256 * 2) / 8);
       b = _mm_load_si128(bhPtr + 256 / 8);
       c = _mm_load_si128(bhPtr++);
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_si128(outPtr++, avg);
}}}}}

Func halide_blur(Func in) {
 Func bh, bv;
 Var x, y, xi, yi;
 
 // The algorithm
 bh(x, y) = (in(x-1, y) + in(x, y) + in(x+1, y))/3;
 bv(x, y) = (bh(x, y-1) + bh(x, y) + bh(x, y+1))/3;

 // The schedule
 bv.tile(x, y, xi, yi, 256, 32)
   .vectorize(xi, 8).parallel(y);
 bh.compute_at(bv, x).vectorize(x, 8);
 
 return bv;
}

(a) Clean C++: 6.5ms per megapixel

(b) Fast C++ (for x86) : 0.30ms per megapixel

(c) Halide : 0.29ms per megapixel

Figure 1. The C++ code at the top (a) computes a 3×3 box filter using 
the composition of a 1×3 and a 3×1 box filter. Using vectorization, 
multithreading, tiling, and fusion, we can make this algorithm more 
than 20 times faster on a quad-core x86 CPU (b) However, in doing 
so we have lost simplicity and portability. Halide (c) separates 
the algorithm description from its schedule, describing the same 
optimizations, generating very similar machine code, and achieving the 
same performance without making these sacrifices. (Benchmarked on 
an Intel Core i7–4790, from the blur app in the Halide repository.14)
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algorithms and irregular access patterns that occur in image 
processing and general array computation. It imposes a few 
restrictions on the range of expressible schedules, but is suf-
ficient to concisely express implementations of many image 
processing algorithms, with state-of-the-art performance on 
architectures ranging from mobile and server CPUs, to 
GPUs, to specialized image processors.

Once the programmer has specified an algorithm and a 
schedule, the Halide compiler combines them into an effi-
cient implementation. Optimizing the execution strategy for 
a given architecture requires modifying the schedule, but not 
the algorithm. The representation of the schedule is compact 
and does not affect the correctness of the algorithm (e.g. 
Figure 1.c), so exploring the performance of many options is 
fast and easy. It can be written separately from the algorithm, 
by an architecture expert if necessary, and we have also shown 
that good schedules can often be found automatically.17, 23

In the rest of this article we will briefly introduce Halide’s 
language for algorithms (Section 2), discuss its model of 
schedules and the organizational choices they represent 
(Section 3), touch on the design of the Halide compiler 
(Section 4), demonstrate results on several real computa-
tional photography algorithms, (Section 5), and conclude by 
discussing connections with the wealth of related work 
(Section 6), and our perspective after five years of develop-
ment and widespread use (Section 7).

2. THE HALIDE ALGORITHM LANGUAGE
Halide describes image processing pipelines in a simple func-
tional style. A straightforward C++ implementation of an algo-
rithm such as local Laplacian filters is described by dozens of 
loop nests and hundreds of lines of code.2 This is not practical 
to globally optimize with traditional loop optimization sys-
tems.10 The Halide version distills this into 62 lines describing 
just the essential dataflow and computation in the 99 stage 
pipeline, and all choices for how the program should be syn-
thesized are described in a separate schedule (Section 3).

Halide represents images as pure functions defined over 
an infinite integer domain, where the value of a function at a 
point represents the value of the image at the corresponding 
coordinate. Halide functions can have arbitrary dimensional-
ity (not just two), and may be tuple-valued (they can store a 
“struct” of values at each point, not just a single number). 
Pipelines are specified as a directed acyclic graph of func-
tions. The expressions that define functions are side-effect 
free, and are much like those in any simple functional lan-
guage, including arithmetic and logical operations, if-then-
else expressions, loads from memory buffers, and calls to 
other functions (including external C ABI functions).

For example, a separable 3 × 3 unnormalized box filter is 
expressed as a chain of two functions in x, y:

Func bh, bv; Var x, y;
ImageParam in(UInt(8), 2);

bh(x, y) = in(x−1, y) + in(x, y) + in(x+1, y);
bv(x, y) = bh(x, y−1) + bh(x, y) + bh(x, y+1);

This representation is simpler than most functional lan-
guages. It does not include higher-order functions, dynamic 

recursion, or additional data structures such as lists. Func
tions simply map from integer coordinates to a scalar or 
tuple-valued result.

Halide is embedded in C++. It uses simple type and opera-
tor overloading (not template metaprogramming) to lazily 
construct programs, rather than eagerly executing expressions 
as they are written. This “staged” nature makes the Halide 
front-end easily extensible. Many advanced constructs are 
expressible by using C++ as a meta-programming layer for 
Halide. For example, you can simulate higher-order functions 
by writing a C++ function that takes and returns Halide func-
tions. This provides a powerful tool for structuring code and it 
does not change the underlying representation of a pipeline.

This representation is sufficient to describe a wide range  
of image processing algorithms, and these constraints enable 
flexible analysis and transformation of algorithms during 
compilation. Critically, this representation is naturally data 
parallel within the domain of each function. Also, since func-
tions are defined over an infinite domain, boundary condi-
tions can be handled safely and efficiently in two ways. For 
intermediate pipeline stages, an implementation can com-
pute arbitrary guard bands of extra values. For input images, 
or stages for which specific boundary conditions matter to the 
meaning of an algorithm, the function may define its own. 
The compiler will partition the resulting loops so that the 
boundary conditions have minimal impact on performance.

Update definitions
Functions are typically defined by simple expressions in their 
arguments, but may additionally have a sequence of bounded 
updates to accommodate reductions (e.g., large-support con-
volution), scatters (e.g., histograms), and recursive scans 
(e.g., Infinite Impulse Response (IIR) filters). Sequential iter-
ation within an update can be introduced with an RDom 
(“reduction domain,” a multidimensional iteration domain). 
The value of the function at each point in the output domain 
is defined by the final value after all updates are applied. The 
key constraint relative to arbitrary loops is that the bound of 
an RDom cannot depend on the values computed inside its 
updates. This guarantees that all iteration bounds are decid-
able (and the language is therefore not Turing complete).

This pattern can describe a range of algorithms outside the 
scope of traditional stencil computation but essential to image 
processing pipelines, in a way that encapsulates side effects. To 
the rest of the pipeline, a function with updates still acts as 
stateless pure function that can be evaluated over an arbitrary 
domain. For example, histogram equalization combines mul-
tiple reductions and a data-dependent gather. A scattering 
reduction computes a histogram, a recursive scan integrates it 
into a Cumulative Distribution Function (CDF), and a simple 
point-wise operation remaps the input using the CDF:

Func histogram, cdf, out; Var x, y, i;
ImageParam in(UInt(8), 2);

RDom r(�0, in.width(), 
0, in.height() )’

histogram(i) = 0; // initial value
histogram(in(r.x, r.y) ) += 1; // update
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3.1 Scheduling within a function
The order of evaluation of the points within a function is 
defined by a family of common transformations applied to a 
default (sequential, row-major) loop nest over the grid of 
points in the function’s domain. Loop dimensions can be 
split, merged, and reordered. Because the regions computed 
are simple intervals (axis-aligned bounding boxes within the 
grid), the result is always a perfect loop nest. In addition, the 
resulting loops can be unrolled, or mapped to parallel 
threads, SIMD vector lanes, and GPU kernel dimensions.

The dimensions of the storage layout for a function’s 
results can similarly be reordered, allowing common trans-
formations such as column- versus row-major layouts. 
Storage can also be folded across a dimension into a circular 
buffer of a fixed size.

The dimensions of an RDom in an update step may also be 
reordered, parallelized, etc., but only if the compiler can prove 
that different update iterations across those dimensions do 
not interact. Recent work has added support for splitting asso-
ciative reductions to create parallel reduction trees.25

3.2 Scheduling across functions
The more unique part of Halide’s model of schedules is how 
it transforms computation and storage across functions.

Consider the simple two-stage blur algorithm. When 
scheduling across these two stages, we call the first stage, 
bh, the “producer,” and the second stage, bv, its “con-
sumer.” So far, the scheduled order of computation within 
each function (discussed above) defines a perfect loop 
nest for each function. For example, the default schedule 
for the output stage bv gives a simple row-major loop nest 
equivalent to:

for bv.y in bv.min.y to bv.max.y:
for bv.x in bv.min.x to bv.max.x:
compute and store bv(bv.x, bv.y)

The schedule across functions specifies at what level in this 

RDom ri(0, 255);
cdf(i) = 0; // initial value
cdf(ri) = cdf(ri−1) + histogram(ri); // update

out(x, y) = cdf(in(x, y) );

3. SCHEDULING IMAGE PROCESSING PIPELINES
A complete Halide algorithm is a DAG of functions over reg-
ular grids. Actually evaluating an algorithm requires iterat-
ing over and computing all of the required points in each 
function. But in what order should we compute these 
points? And where should we store and load the results of 
intermediate stages to communicate them between stages? 
Unlike a looping program in a traditional language, the 
Halide algorithm does not specify these choices. Instead, 
they’re specified by a separate schedule.

For each stage, we think  about these choices in four parts:

1.  In what order should we iterate over the points in that 
stage?

2.  In what order should we lay out those points in mem-
ory to store their results?

3.  At what granularity should we interleave the computa-
tion of that stage with the computation of the down-
stream stages which consume its results?

4.  At what granularity should we store blocks of the func-
tion for reuse across iterations of its consumers?

These choices affect performance through locality (e.g., 
cache behavior), exposed parallelism, and the need for 
recomputation (at grain boundaries). Together, they spec-
ify a set of nested loops (invisible to the programmer) that 
our compiler uses to generate executable code. Scheduling 
instructions are concise and can be written indepen-
dently of the definition of the algorithms, as shown in 
Figure 1(c).

scheduling across functions (interleaving granularity)

coarsest (whole images) moderate (per-tile) finest (per-pixel)

dependence

loop extent

interleaving 
block extents

redundant 
compute

parallel tilesparallelvectorizedtiledcolumn-majorrow-major

scheduling 
within a 
function

in bh bv

compute_root()

in bh bv

compute_at(bv, tile_x)

in bh bv

inline

Figure 2. A Halide schedule specifies the order of computation within each stage in an image processing algorithm (top, discussed in 
Sec. 3.1), and the granularity of interleaving across producer and consumer stages (bottom, discussed in Sec. 3.2). In the two-stage blur 
algorithm, coarse-grained interleaving (bottom-left) computes whole stages at a time, sacrificing producer-consumer locality. Finer-grained 
interleaving improves locality but introduces redundant computation where the stencils for the grains overlap (denoted by hatched regions 
in the bottom-middle). In the extreme case of per-pixel interleaving (bottom-right), values are immediately consumed as soon as they are 
computed (maximizing locality), but all values of the producer stages are redundantly recomputed in each place they are reused (here, 
3 times in bh and 9 times transitively in in). Whereas this shows a single shared order and granularity choice made applied throughout a 
simple pipeline, all of these choices can be made separately for each function in a whole algorithm.
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bv.split(x, tx, xi, tile_size)
  .split(y, ty, yi, tile_size)
  .reorder(xi, yi, tx, ty)

which can be abbreviated simply as:
bv.tile(x, y, tx, ty, xi, yi, tile_size, tile_size)

This generates the loop nest:

// simplified to ignore non-evenly divisible tile sizes
for bv.ty in bv.min.y/tile_size to bv.max.y/tile_size:
for bv.tx in bv.min.x/tile_size to bv.max.x/tile_size:
for bv.yi in 0 to tile_size−1:
for bv.xi in 0 to tile_size−1:
compute bv(�bv.tx*tile_size + bv.xi,  

bv.ty*tile_size + bv.yi)

Now, by computing bh at the granularity of tiles of bv—at 
the bv.tx loop level—we get a less fine-grained interleaving 
than individual pixels, but one more fine-grained than the 
whole image. In Halide’s scheduling language, we specify 
this by saying bh.compute_at(bv, tx). This is the key 
scheduling choice in the optimized implementations as 
shown in Figure 1(b) and (c). This generates the loop nest:
for bv.ty in bv.min.y/tile_size to bv.max.y/tile_size:
for bv.tx in bv.min.x/tile_size to bv.max.x/tile_size:
// compute tile of bh
for bh.y in (bv.ty*tile_size−1)to ( (bv.ty+1)*tile_size):
for bh.x in (bv.tx*tile_size) to ( (bv.tx+1)*tile_
size−1):
bh(bh.x, bh.y)�= in(bh.x−1, bh.y)  

+ in(bh.x , bh.y)  
+ in(bh.x+1, bh.y)

// compute tile of bv
for bv.yi in 0 to tile_size−1:
for bv.xi in 0 to tile_size−1:

bv.y = bv.ty*tile_size + bv.y
bv.x = bv.tx*tile_size + bv.x
bv(bv.x, bv.y) �= bh(bv.x, bv.y−1)  

+ bh(bv.x, bv.y  )  
+ bh(bv.x, bv.y+1)

This organization recomputes only one row on the top and 
bottom of each tile, rather than every row, while improving 
locality to the level of tiles rather than whole images. By 
increasing or decreasing the size of these tiles, we can easily 
trade off between locality and computation. Common 
choices would be sized to fit tiles in a given level of cache. 
The ideal choice depends on the relative cost of recomput-
ing a pixel of the producer function versus storing and load-
ing it from each level of the memory hierarchy.

It is important to realize that this is not just a constant-
factor tweak in the resulting code: if the tile size is a con-
stant, we have asymptotically improved the locality relative 
to the naïve interleaving, by reducing the reuse distance for 
intermediate values from O(n) to O(1).

We can also choose to compute bh at any of the other loop 
levels in bv: the schedule of computation across stages in 
Halide is specified, for each producer function, as any single 
level in the scheduled loop nest of the downstream pipeline.

The fourth and final core part of the schedule similarly 
specifies the granularity of storage across functions. The 
granularity of storage determines at what loop level in the 
evaluation of the consuming pipeline the results of a pro-
ducer function should be stored for reuse. On architec-
tures such as GPUs, different levels are also mapped to 

loop nest around the consumer stage the program should 
evaluate the required part of the producer stage (here, bh). 
This determines the granularity with which the computa-
tion of the different functions is interleaved.

For example, Halide’s default schedule for producers is 
inline, which means that if we leave the default schedule for 
bh, it is evaluated directly everywhere it is called:

for bv.y in bv.min.y to bv.max.y:
for bv.x in bv.min.x to bv.max.x:
bv(bv.x, bv.y) = // bh(x,y−1)+bh(x,y)+bh(x,y+1) =

(in(bv.x−1,bv.y−1)+in(bv.x,bv.y−1)+in(bv.x+1,bv.y−1) )
 +(in(bv.x−1,bv.y  )+in(bv.x,bv.y  )+in(bv.x+1,bv.y  ))
 +(in(bv.x−1,bv.y+1)+in(bv.x,bv.y+1)+in(bv.x+1,bv.y+1) )

This maximizes locality between the producer and con-
sumer, since each value of bh is immediately used as soon as 
it is computed, so it does not need to be stored and loaded in 
far-away memory. However, because the stencils of neigh-
boring pixels overlap, every pixel in bh is computed three 
times instead of once: when the outer loop moves to the next 
row down, each pixel of bv recomputes two of the same pix-
els of bh that were just computed by the pixel right above it.

The other obvious choice we could make is to not inter-
leave these two stages at all. Instead, we compute all of bh 
before computing any of bv. We express this in Halide by 
saying that bh should be computed at the very outermost, or 
“root” level, outside all loops over its consumer. This is done 
by calling bh.compute_root(), generating the complete 
equivalent program:

// compute bh over slightly enlarged window,
// to fulfill all uses in bv
for bh.y in bv.min.y−1 to bv.max.y+1:
for bh.x in bv.min.x to bv.max.x:

bh(bh.x, bh.y) �= in(bh.x−1, bh.y) 
+ in(bh.x , bh.y)  
+ in(bh.x+1, bh.y)

// compute bv using bh
for bv.y in bv.min.y to bv.max.y:
for bv.x in bv.min.x to bv.max.x:

bv(bv.x, bv.y) �= bh(bv.x, bv.y−1)  
+ bh(bv.x, bv.y)  
+ bh(bv.x, bv.y+1)

This only computes each pixel in each stage exactly once, 
wasting no work, but it destroys any producer-consumer 
locality between the two stages: an entire image of interme-
diate results has to be computed between where values are 
produced in the first stage and where they are consumed in 
the second. This schedule is equivalent to the clean C++ as 
shown in Figure 1(a), which suffers from the same problem.

Looking at these two examples, we see a tension between 
locality and (excess, or redundant) computation. This ten-
sion is fundamental to computations with stencil depen-
dencies, since stencils overlap between iterations and 
prevent simple loop fusion without duplicating work. 
However, this tension can be balanced along a continuum 
between these extremes.

For example, we can change the schedule within bv to iter-
ate in a tiled order by splitting its two dimensions by a chosen 
tile size, and then reordering the four resulting dimensions. 
We can do this by saying:
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deriving runtime conditions under which the computation 
of stages can be skipped entirely.

For a full description of the compiler see our original 
PLDI paper,21 and the source code itself.14

5. RESULTS & EVALUATION
Halide has been open source since it was released by MIT in 
2012, Halide source repository.14 The largest user of and con-
tributor to Halide is Google. The largest Halide pipeline we 
are aware of is Google’s HDR+15 which produces every photo-
graph taken on their flagship Pixel phones. Halide pipelines 
are also run at scale within Google Photos, YouTube, and 
elsewhere. Outside of Google, Halide code is shipping in 
products from Instagram, Facebook, Adobe, and others.

In the original Halide publications,17, 22, 23 we evaluated the 
Halide representation and compiler by implementing a vari-
ety of modern image processing pipelines in Halide and com-
paring the result to the best previously-published expert 
implementations we could find. The pipelines exhibit a wide 
variety of data types, access patterns, and pipeline lengths. 
Here, we highlight four representative pipelines that approxi-
mately span this space (Figure 3). These pipelines also approx-
imately correspond to the major algorithms in Google’s 
HDR+ pipeline, albeit at a more modest scale. Our more 
recent work and open source code also includes competitive 
matrix-matrix multiply (GEMM) and convolutional neural 
network implementations in very little code.14, 17 We generally 
find that Halide code is many times faster than equivalently 
simple reference code, many times more concise than equiva-
lently fast code, or some tradeoff between those two extremes.

Benchmark applications
Bilateral grid is an efficient implementation of the bilateral 
filter, which smoothes an image while preserving its main 
edges.7 It first scatters the image data into a 3D grid, effec-
tively building a windowed histogram in each column of the 
grid, then blurs the grid along each of its axes with three 

different parts of the specialized memory hierarchy. Using 
this and other scheduling primitives, Halide can express 
additional locality-optimizing patterns of computation, such 
as line-buffering or software pipelining, but these are beyond 
the scope of this paper. More complete discussion can be 
found in prior publications.21, 23

In the DAG of functions that makes up a program, we 
have local ordering choices for each node, and producer- 
consumer granularity choices for each edge. In the real 
applications presented in Section 5, the optimized sched-
ules make different but inter-dependent choices for each of 
dozens of stages and producer-consumer dependencies.

4. THE COMPILER
The Halide compiler takes a graph of Halide functions and 
lowers it to imperative code for a variety of CPU, GPU, and 
Digital Signal Processor (DSP) architectures. This process is 
directed by the schedule. It then converts this imperative 
code to LLVM's intermediate representation, and generates 
machine code from there.

In contrast to a traditional compiler, lowering makes very 
few heuristic decisions. Instead, it is designed to be highly 
deterministic and controllable. Any time there is a choice to be 
made that might affect performance we defer to the schedule.

Lowering has two essential responsibilities. The first is 
synthesizing the loop nest specified by the schedule, includ-
ing any vectorization, unrolling, multi-core parallelism, 
prefetching, memoization of stages, and offloading work to 
GPU or DSP accelerators. The second responsibility of low-
ering is inferring the regions of each function that must be 
computed to satisfy all producer-consumer dependencies.

Lowering additionally implements optional passes for 
tracing, profiling, and similar instrumentation, and passes 
that apply opportunistic optimizations. These include parti-
tioning loops in order to ameliorate the effect of boundary 
conditions, tightening loop bounds when it can be proved 
that the loop body does nothing for some of its domain, and 

Local Laplacian filters Fast Fourier transform Camera pipeline
Optimized assembly: 463 lines
     ARM core:    39ms

               FFTW: thousands
   Quad core x86:   384ns
Quad core ARM: 5960ns

C++, OpenMP+iIPP: 262 lines
             Quad core x86: 210ms

Halide algorithm: 170 lines
               schedule:   50 lines
              ARM core:    41ms

DSP schedule:   70 lines
   Hexagon 680:    15ms

Halide algorithm:   350 lines
               schedule:     30 lines
       Quad core x86:   250ns
    Quad core ARM: 1250ns

Halide algorithm:   62 lines
               schedule:   11 lines
       Quad core x86:   92ms

     GPU schedule:     9 lines
                GTX 980:   23ms

Halide algorithm:   34 lines
                schedule:     6 lines
       Quad core x86 :   14ms

     GPU schedule:     6 lines
               GTX 980 :  2.3ms

Bilateral grid
Reference C++: 122 lines
  Quad core x86: 150ms   

       CUDA C++: 370 lines
             GTX 980:  2.7ms

Figure 3. Summary of the code size and running time Halide implementations compared to handwritten reference implementations of four 
representative computational photography algorithms. The time measurements are reported in milliseconds to process the representative 
image (4–6 megapixels), except for the fast Fourier transform. The FFT experiment is for the tiled real-to-complex transform, and reports 
time in nanoseconds per 16 × 16 tile.
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Fast Fourier transform implements small 2D FFTs, based 
on an algorithm adapted for GPUs.13 Small 2D tiled FFTs are 
used in many image processing workloads. The strategy in this 
implementation is to perform Cooley-Tukey FFTs on columns, 
which is convenient for vectorizing along the rows. The data is 
transposed repeatedly such that all of the FFTs are performed 
on columns; after the FFT is complete, the data is transposed 
back to the original orientation. Real FFTs are implemented 
by computing pairs of columns of FFTs simultaneously.

We compare the performance of our FFT implementation 
to FFTW.11 For 16×16, 32×32, and 48×48 complex-to-complex 
FFTs, the Halide FFT is about 1.3 times faster than FFTW. For 
similarly sized real FFTs, Halide is between 1.5 times and 2.1 
times faster than FFTW on x86, and up to 4.6 times faster than 
FFTW on ARM. For larger FFTs, the Halide FFT performance 
begins to drop relative to FFTW, becoming comparable to 
FFTW at 64×64 and dropping further from there, as we have 
not implemented a vectorization strategy more suitable for 
these larger FFTs.

In addition to the raw performance, the Halide FFT has a 
number of other advantages over FFT libraries. Because the 
FFT is expressed in pure Halide, the operations being per-
formed in the Fourier domain can be fused into the FFT itself, 
improving locality. The implementation is also more easily 
modified, for example to compute fixed point or zero-padded 
FFTs. Because the FFT is expressed at a high level, with the 
optimizations expressed in the schedule, it can deliver state-
of-the-art performance across a variety of platforms.

Camera pipeline transforms the raw data recorded by a cam-
era sensor into a photograph. It performs four tasks: hot pixel 
suppression, demosaicking, color correction, and global tone 
mapping (i.e., gamma correction and contrast enhancement). 
These steps contain a variety of operations including stencils, 
color space transformations, and table lookups. The demo-
saicking alone is a combination of 21 inter-dependent stencils.

The reference comparison is a single carefully tiled and 
fused loop nest from the Frankencamera, expressed in 463 
lines of C++ with ARM NEON intrinsics and inline assembly.1 
All producer-consumer communication is staged through 
scratch buffers. The Halide implementation is 170 lines des
cribing 32 functions and 22 different stencils, literally trans-
lated from the pseudocode in the comments explaining the 
original source. With 70 lines of combined schedule code, the 
Halide algorithm can be compiled to target 32- and 64-bit x86 
and ARM, is trivially parallelized across CPU cores, and can 
also be compiled to run on a Qualcomm Hexagon DSP.

We benchmarked this workload on a Google Pixel smart-
phone, which contains a Hexagon 680 DSP with HVX 
(Hexagon Vector Extensions), a standard feature of the pop-
ular Snapdragon 820 SoC. The Halide CPU code performs 
almost identically to the ARM reference implementations on 
a single core. Using all four CPU cores, the Halide implemen-
tation is 2.7 times faster than the single-core reference imple-
mentation. (The CPU cores on this processor are asymmetric, 
with a theoretical linear speedup of 3.5 times across all four.) 
The Halide Hexagon implementation performs similar to 
the four core CPU implementation, which is in line with the 
theoretical throughput of two HVX processing clusters. 
However, while we expect that to be the case, it delivers that 

5-point stencils. Finally, the output image is constructed by 
trilinear interpolation within the grid at locations deter-
mined by the input image.

The CPU reference code is a tuned but clean implementa-
tion from the original authors in 122 lines of C++. It is par-
tially autovectorized by GCC, but is nontrivial to multithread 
(a naïve OpenMP parallelization of major stages results in a 
slowdown on our benchmark CPU), so the reference is sin-
gle-threaded. The Halide algorithm is 34 lines, and compiles 
to an implementation 11 times faster than the original. The 
speedup comes from a combination of parallelism, tilelevel 
fusion of some stages, and careful reordering of dimensions 
to control parallel grain size in the grid.

We also compared the Halide version to a hand-tuned GPU 
implementation from the original authors, written in 370 lines 
of CUDA code. The same Halide algorithm, paired with a differ-
ent schedule, was 17% faster than the hand-written CUDA, but 
about  the total code size. The Halide compiler generates 
similar GPU code to the reference, but with Halide we quickly 
found a new point in the schedule space. It sacrifices some par-
allelism in the grid construction step to reduce synchroniza-
tion overhead, and uses a tiled fusion strategy which passes 
intermediate results through GPU scratchpad memory to 
improve locality through the blur steps at the expense of redun-
dant computation. These tradeoffs were counter-intuitive to 
the original author, and much harder to express in CUDA, but 
are easily described by our schedule representation.

Local Laplacian filters uses a multi-scale approach to tone 
map images and enhance local contrast in an edge-respecting 
fashion.2 It is used in the clarity, tone mapping, and other fil-
ters in Adobe Photoshop and Lightroom. The algorithm 
builds and manipulates several image pyramids. The filter 
output is produced by a data-dependent resampling from the 
processed pyramids. With the parameters we used, the pipe-
line contains 99 different stages, operating at many scales, 
and with several different computational patterns.

The reference implementation is 262 lines of C++, devel-
oped at Adobe. It is carefully parallelized with OpenMP, and 
offloads most intensive kernels to tuned assembly routines 
from Intel Performance Primitives (IPP). It has very similar 
performance to a version deployed in their products, which 
took several months to develop, including 2–3 weeks dedi-
cated to optimization. It is 10 times faster than an algorith-
mically identical reference version written by the authors in 
pure C++, without IPP or OpenMP.

The Halide version was written in one day, in 52 lines of code. 
It compiles to an implementation which is 2.3 times faster than 
the highly optimized expert implementation (at least 20 times 
faster than the clean C++ without IPP and OpenMP). The result-
ing schedule is complex, mixing different fusion, tiling, vector-
ization, and multithreading strategies throughout the 99 stage 
graph. In C, it would correspond to hundreds of loops over thou-
sands of lines of code, but in Halide it is just 11 lines.

The same program compiles with a different schedule to 
a hybrid CPU/GPU program with 23 unique GPU kernels, 
each representing a different subset of the overall graph. It 
runs 9.1 times faster than the hand-tuned Adobe implemen-
tation, and is four times faster than the best parallel and vec-
torized implementation on the CPU.
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for several applications, including some presented above.
To converge in reasonable time on real programs, we 

found that higher-level heuristics are critical to guide the 
search, because of the high cost of compiling and running 
each new test. Drawing on this experience, we have since 
found that using a simple cost model in place of recompiling 
and benchmarking each configuration, and restricting the 
search to greedily consider variants of common interleaving 
patterns, gave a much faster and more scalable automatic 
scheduling method.17 The cost model is based directly on the 
tradeoff we observe between parallelism, locality, and redun-
dant work. The tool is also easier to use since it directly ana-
lyzes the algorithm, rather than requiring a runnable 
benchmark program and data set.

6. RELATED WORK
Graphics & image processing languages
Domain-specific languages for image processing go back at least 
as far as Bell Labs’ Pico and POPI.16 Most prior image processing 
languages have focused on efficient expression of individual ker-
nels. Pan introduced a functional model for image processing 
much like our own, in which images are functions from coordi-
nates to values.8 Recently, others have demonstrated automatic 
optimization of image processing code in a subset of the Halide’s 
algorithm model using the polyhedral model.18

Elsewhere in graphics, the real-time graphics pipeline has 
been a hugely successful abstraction precisely because the sched-
ule is separated from the specification of the shaders.4 This 
allows GPUs and drivers to efficiently execute a wide range of 
programs with little programmer control over parallelism and 
memory management. This separation of concerns is extremely 
effective, but it is specific to the design of a single pipeline.

throughput using up to 10 times less power.
Porting the camera pipeline to Hexagon required modify-

ing the schedule to use a sliding window on the rows of the 
image, instead of tiling. Hexagon has extremely large vec-
tors, and also benefits heavily from loop pipelining, which 
means that efficient 2D tile sizes are too large to fit in cache. 
Halide allowed us to easily rewrite the camera pipeline from 
a tiled schedule to a sliding window schedule, without 
changing the algorithm description. In contrast, rewriting 
the handwritten ARM implementation to use a sliding win-
dow would be a serious undertaking, as the tiling logic is 
inextricably linked to the algorithm description, all the way 
into the indexing arithmetic in the assembly inner loops.

Scheduling new algorithms
To better understand how long it takes an expert Halide devel-
oper to schedule an algorithm when starting from scratch, we 
recruited two professional Halide developers (authors on this 
paper) into a scheduling “race.” They selected three new, non-
trivial applications they had never scheduled before (lens-
blur, nlmeans, and maxfilter) and implemented the 
original Halide algorithm for these programs. For each bench-
mark, each programmer independently developed a schedule 
in a single programming session. The programmer stopped 
optimizing after converging on a solution they considered their 
reasonable best. While developing the schedules the develop-
ers documented their progress by measuring the performance 
of their current schedule at various points in the session.

In each case, the developers started out with relatively sim-
ple baseline schedules, but which generally still included at 
least SIMD vectorization and multicore parallelism. 
Nonetheless, the speedup from this baseline to their best 
optimized performance was always many times.

Results of the race are as shown in Figure 4. The X-axis in each 
of the graphs indicates development time (in minutes) for the 
schedules. The Y-axis shows the performance of the benchmark 
(measured as pixel throughput, so higher is better). The yellow 
and gray lines each correspond to one of the programmers.

Arriving at a good schedule requires significant optimiza-
tion effort, even for experts. For these applications, it took 
on the order of an hour of iteration and experimentation for 
the developers to feel their optimization had reasonably 
converged. The resulting schedules, however, are only a few 
lines of code, and dramatically simpler than equivalent code 
in explicit C++ loops.

Automatically determining good schedules
To further accelerate development of high-performance 
code, and to make Halide accessible to programmers with-
out optimization experience, we have also worked on ways to 
automatically optimize Halide programs.

In the original version of this paper we demonstrated a 
prototype autotuner which automatically searched the 
(exponentially large) space of schedules for a program using 
stochastic search with a genetic algorithm.23 For each gener-
ated schedule, the autotuner benchmarked its actual run-
time by compiling and running a complete test program 
given by the user. In a few hours to days of tuning, it was able 
to generate schedules competitive with hand-tuned results 
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Figure 4. Two professional Halide developers were tasked with 
developing schedules for three new programs. The graphs plot 
the runtime of their schedules, over time as they developed them. 
The developers converged to what they considered “reasonable” 
performance in on the order of an hour per program.
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Loop transformation
Most compiler optimizations for numerical programs are 
based on loop analysis and transformation, including auto-
vectorization, loop interchange, fusion, and tiling.3 The poly-
hedral model is a powerful tool for modeling and 
transforming looping imperative programs.10 Halide’s model 
considers only axis-aligned bounding regions, not general 
polytopes—a practical simplification for image processing 
and many other applications. Interval analysis is simpler 
than modern polyhedral analysis, but it can effectively ana-
lyze through a wide range of expressions, and it is trivial to 
generate high quality loop nests from intervals. This simple 
generality is essential for Halide’s design in which all bounds 
are inferred from context. Most traditional loop optimiza-
tions also do not consider recomputation of values, but in 
image processing this can be a large performance win and is 
central to the choices we consider during optimization.

Parallel languages
Many data-parallel languages have been proposed. Chapel 
and its predecessors focus on computations over regions of 
regular grids, much like Halide, with explicit primitives to 
control distribution of grid regions across memory and proces-
sors.6 Popular today, CUDA and OpenCL expose an impera-
tive, single program-multiple data programming model which can 
target both GPUs and multicore CPUs with SIMD units.5, 19 Like C, 
these languages allow the specification of very high performance 
implementations for many algorithms, but because their seman-
tics closely model the underlying machine, they also deeply 
conflate algorithms with optimization.

Streaming languages encode data and task parallelism in 
graphs of kernels, which compilers automatically schedule 
using tiling, fusion, fission, and 1D stencil optimization.12 
Halide’s model of scheduling addresses the problem of mul-
tidimensional stencils with parallelism, where recomputa-
tion versus storage becomes a critical but complex choice.

A separate line of research creates explicit languages for 
choices of how problems are mapped into physical execution, 
much like Halide’s decoupling of schedules from algorithms. 
SPIRAL uses a domain-specific language to specify linear sig-
nal processing operations at the level of mathematical opera-
tors,20 and a separate algebra of rewrite rules describes ways 
these operations can be turned into efficient code for a partic-
ular architecture. Sequoia defines a model where a user-
defined “mapping file” describes how to execute tasks on a 
tree-like memory hierarchy.9 The CHiLL framework exposes 
polyhedral program transformations and code generation 
choices via a dedicated scripting language.24

7. CONCLUSION AND PERSPECTIVE
Our initial hope in designing Halide was to allow expert-level 
manual control over the organization of computation in 
image processing code, which was at once far more control-
lable and powerful than traditional compiler flags and auto-
vectorization, and far more productive than hand coding in 
low-level languages. After more than 4 years in production, 
we found this works even better than we first hoped. Across a 
range of applications and target architectures, we find that 
Halide’s scheduling representation is able to model, and its 

compiler is able to generate, implementations which deliver 
state-of-the-art performance from surprisingly little code.

This performance comes from careful navigation of the high 
dimensional space of tradeoffs between locality, parallelism, 
and redundant recomputation in image processing pipelines. 
Expressing these tradeoffs in traditional languages is challeng-
ing enough, as shown by the much greater complexity of hand-
written implementations, but finding the ideal balance is 
daunting when each change a programmer might want to try can 
require completely rewriting a complex loop nest hundreds of 
lines long. The performance advantage of the Halide implemen-
tations is a direct result of simply making it easy to test many  
more points in the space than a human programmer could manu-
ally describe using explicit loops. We have found this design to 
generalize well from its initial CPU and GPU targets to new, more 
specialized (and notoriously hard-to-program) image processing 
accelerators and DSPs. We think it helps point the way towards 
the “OpenGL” of future specialized image processing hardware.

Still, while Halide’s model of schedules is powerful and 
productive in the hands of experts, we have found it challeng-
ing for novices and those unfamiliar with high performance 
programming to master. Even for experts, optimized sched-
ules grow difficult to maintain for algorithms beyond moder-
ately sized blocks, and there’s no complete answer for what 
should be done if those blocks are meant to be reused in dif-
ferent places or get moved around a larger pipeline (as with a 
library of reusable components). Fundamentally, schedules 
describe how to interleave computation across composition 
boundaries. Decoupling them from the fundamental algo-
rithm gives simpler, more modular algorithm code, but 
modularizing scheduling choices without sacrificing perfor-
mance remains an open problem. This led to our attempts to 
automate the process of scheduling in Halide,17, 23 which have 
shown promise but remain ongoing work. An automatic 
scheduling system could both remove the burden from nov-
ice programmers, and schedule globally across composition 
boundaries even in large applications.

Finally, we have also found that, while the constraints and 
style of the Halide language were motivated by examples in 
modern image processing, the programming model is signifi-
cantly more general: it expresses arbitrary bounded computa-
tions over multidimensional regular grids, and it has been 
applied to algorithms in linear algebra, scientific simulation, 
and machine learning. Really, Halide should be thought of as 
specific to the “data structure” of regular grids or multidi-
mensional arrays, not to the “domain” of image processing.
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