
Efficient Memory and GPU Operations for

Tiramisu Compiler

by

Abdurrahman Akkas

S.B., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2019

c© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 28, 2019

Certified by. .
Saman P. Amarasinghe

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Efficient Memory and GPU Operations for Tiramisu

Compiler

by

Abdurrahman Akkas

Submitted to the Department of Electrical Engineering and Computer Science
on May 28, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The increasing complexity of computer architectures with different memory hierar-
chies and parallelism characteristics makes generating efficient code a difficult task.
Achieving high performance requires complex schedules and data layout transforma-
tions which might not be easy to express in a low level language.

Tiramisu [3] is an optimization framework for generating efficient code for differ-
ent platforms including CPU, GPU, and distributed systems. It combines the poly-
hedral intermediate representation with rich scheduling and data layout commands,
creating a high level interface to generate high performance code.

In this thesis, we present new memory interfaces and GPU operators implemented
to extend Tiramisu compiler. We demonstrate that these features enable users to
generate high performance GPU code with concise Tiramisu programs. We also
evaluate Tiramisu’s GPU backend with two benchmarks, matrix multiplication and
a recurrent neural network architecture, showing that Tiramisu outperforms other
polyhedral compilers and popular library implementations.

Thesis Supervisor: Saman P. Amarasinghe
Title: Professor

3

4

Acknowledgments

First, I would like to thank my supervisor, Saman Amarasinghe, for giving me the

opportunity to be a part of the COMMIT group. I would not be able to develop

academically and professionally without his guidance and supervision.

I also would like to thank Riyadh Baghdadi for his patience and support. His

knowledge, experience, and ever smiling face were the greatest motivators of my work

and thesis.

I would like to thank my parents, Aysel and Bekir Akkas, for always believing in

and supporting me, and my brother Behzat Akkas who kept inspiring me from the

very beginning and made me the person who I am today.

Last but not least, I would like thank my close friends Mustafa Camurcu, Enes

Kocabey, and Nusret Tas for making my Master’s journey fun and bearable, and

Bahrudin Trbalic for being a constant source of motivation and spiritual fellowship.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 11

2 Background 13

2.1 Tiramisu . 13

2.2 CUDA Programming Model . 15

2.2.1 Memory Spaces . 16

2.3 Tiramisu GPU Backend . 18

2.4 Related Work . 19

3 Tiramisu GPU Benchmarking 21

3.1 Matrix Multiplication (GEMM) . 21

3.1.1 Method . 22

3.1.2 Evaluation . 25

3.2 Recurrent Neural Networks (LSTM) 25

3.2.1 Method . 27

3.2.2 Evaluation . 28

4 High Level Interfaces for Tiramisu 31

4.1 Motivation . 31

4.2 Implicit Buffers . 31

4.3 Block API . 32

4.4 Shared Memory Interface . 34

4.4.1 Background . 34

7

4.4.2 Interface . 35

4.4.3 Implementation . 36

4.5 cuBLAS GEMM Interface . 37

4.6 CUDA Streams Interface . 38

4.7 Evaluation . 39

5 Conclusion 43

A GEMM Implementation in Tiramisu 45

B LSTM Implementation in Tiramisu 51

8

List of Figures

3-1 Data dependencies in a multilayer network 27

3-2 Traversal of LSTM cells before and after skew-interchange operation . 28

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

Chapter 1

Introduction

As we are approaching the end of the Moore’s law which predicted computational

power of integrated circuits will double every two years, the advancements in per-

formance are now coming from application specific architecture designs and better

utilization of these systems instead of mere increase in clock speeds and transistor den-

sities. The computational systems available for programmers in the last few decades

proliferated from a single general purpose CPU to multi-core CPUs, multi-CPU dis-

tributed systems, GPUs, FPGAs, and so on. All these systems have different use

cases with different performance characteristics. Therefore the user should consider

different optimization strategies for each system. Moreover, the optimization param-

eters depend on the system specifications such as the size of the memory space at

different levels, cache sizes, and available parallelism. Thus one should try different

approaches and tune several parameters to get the maximum performance for each

system even though the end goal of the program is the same for all. This makes it

difficult to write high performance programs especially with low level languages.

Tiramisu is a compiler that offers a unified optimization framework for different

target architectures and aims to achieve high performance on data parallel programs

operating on dense arrays. By separating the algorithm from scheduling and data

layout transformations Tiramisu provides a clean an easy way to express different

optimization techniques.

In this thesis, we focus on the design and performance of the GPU backend of

11

Tiramisu. Even though Tiramisu offers a comprehensive GPU and buffer inter-

faces, implementing GPU programs is a tedious task since certain memory operations

are needed to be done manually. In chapter 4 we present several features implemented

in Tiramisu that increase the ease of use of the framework and offer new ways of op-

timizing. This includes an implicit buffer API, a high level interface for GPU shared

memory, and integration of CUDA streams API to Tiramisu. In chapter 3 we show

that Tiramisu is able to generate efficient GPU code by implementing two bench-

marks. In GEMM benchmark Tiramisu implementation significantly outperforms

the other polyhedral language implementations while having comparable results to

cuBLAS library. In LSTM benchmark Tiramisu outperforms the cuDNN library on

deep recurrent neural networks.

12

Chapter 2

Background

In this chapter we give an overview of the existing work. Section 2.1 introduces

Tiramisu and gives an example Tiramisu program. Sections 2.2 and 2.3 explains

CUDA programming and Tiramisu GPU backend. Section 2.4 discusses the related

work.

2.1 Tiramisu

Tiramisu [3] is a code optimization framework embedded in C++. It divides its

intermediate representation into four layers. At the first layer the programmer con-

structs the abstract algorithm without specifying the loop nests or data layouts. The

second layer determines the order of computations as well as what kind of loop nest

transformations should be applied to each computation. In the third layer, program-

mer declares the input and output buffers of the function as well as where should the

intermediate results should be stored. The final layer specifies the communication in

the case of distributed computing. Listing 2.1 shows an example Tiramisu program.

After generating code, user can link the resulting binary to use the function.

Tiramisu internally uses the Integer Set Library [7] to represent the loop nests

and buffer mappings, and to generate the abstract syntax tree of the program. This

allows the expression of affine transformations and polyhedral iteration spaces within

the program.

13

Tiramisu can target GPU architectures by generating CUDA code. This is done

by mapping loop levels to block and thread dimensions in CUDA programming model

and adding instructions to move data between different memory levels of GPU.

Listing 2.1: An example Tiramisu function

// I n i t i a l i z e Tiramisu wi th the name o f the func t i on

t i r ami su : : i n i t (”my program”) ;

// Define loop v a r i a b l e s and bounds

var i (” i ” , 0 , 128) , j (” j ” , 0 , 128) ;

// Layer I

input A({ i , j } , p f l o a t 3 2) ;

computation B({ i , j } , expr (o sq r t , A(i , j))) ;

computation C({ i , j } , (B(i , j) + B(i , j + 1)) / 2) ;

C. add pred i ca t e (j < 127) ;

// Layer I I

// Schedu l ing opera t i ons

C. t i l e (i , j , 16 , 1 6) ;

// Order o f computat ions

B. then (C, computation : : root) ;

// Layer I I I

// We s t o r e B and C in the same b u f f e r to save space

B. s t o r e i n (C. g e t b u f f e r ()) ;

// Layer IV

// Nothing i s needed here s ince the r e i s no communication

// Code genera t ion

t i r ami su : : codegen ({A. g e t b u f f e r () , B. g e t b u f f e r ()} , ” out . o”) ;

14

2.2 CUDA Programming Model

For the computational tasks that can be expressed as data parallel programs GPUs

provide significant performance benefits over CPUs. In the past, GPUs were only

specialized in graphical processing tasks. However, users can now utilize GPUs for

more general tasks thanks to new interfaces like CUDA.

CUDA is an application programming interface for Nvidia GPUs [5]. It offers

an interface similar to C language where users can express programs to be executed

on GPU threads. GPU programs, which are also called kernels, are annotated C

functions. When launching the kernel on GPU, user specifies how many instances

of the kernel they want to execute. These instances run in parallel on GPU cores

in different threads. User splits the computational task to different threads by using

the unique index that each thread gets. User may specify one to three dimensional

indexing schemes depending on the use case. For example, using a 1D indexing is

convenient when working on a single dimensional data such as sound processing, while

image processing with 2D indexing would be more convenient where thread indices

correspond to pixel coordinates.

Listing 2.2: An example CUDA C kernel function and call

// A s imple ke rne l that c o p i e s va lue s from A to B

g l o b a l void mykernel (f l o a t ∗A, f l o a t ∗B) {

i n t index = blockIdx . x ∗ 16 + threadIdx . x ;

B[index] = A[index] ;

}

i n t main () {

f l o a t ∗A, ∗B;

// A l l o ca t e A and B o f s i z e 160

dim3 b locks (16 , 1 , 1) ;

dim3 threads (10 , 1 , 1) ;

mykernel<<<blocks , threads>>>(A, B) ;

}

15

CUDA threads are tiled into fixed size groups called thread blocks. While launch-

ing the kernel user specifies the size of the thread block and how many of these blocks

should be created. The number of threads per block is limited to 1024. Thread

blocks are executed by Streaming Multiprocessors (SM) on GPU, which manage the

registers, shared memory spaces, and other resources. Blocks are further divided into

warps of size 32. Warps run in the single-instruction-multiple-thread fashion, where

all threads of a warp execute the same instruction simultaneously. In the case of

branching, diverging thread groups wait for each other to execute until they get back

to the same instruction. Thus it is important to reduce branch divergence within a

warp to increase warp utilization and get good performance.

2.2.1 Memory Spaces

There are several different memory spaces on an Nvidia GPU with different size and

latency characteristics.

Global Memory

Global memory, which is also called the device memory, is the largest memory space

on the GPU usually with capacities of tens of gigabytes. It is an off-chip DRAM

where all threads of the GPU access with a common address space. Before executing

a program, user should copy the data from CPU memory to global memory to access

from the kernels. Since it is off-chip accesses to global memory are slow compared

to other GPU operations and it is often the case that programs are bounded by

global memory access. Accesses to global memory are cached on one or two layers

depending on the device. L1 cache has 128-byte lines whereas L2 cache has 32-byte

lines. Accesses to global memory from the same warp are coalesced if they are on

the same cache line. Thus accessing the same or consecutive addresses from the same

warp is the optimal way to use the global memory.

16

Shared Memory

Shared memory is an on-chip memory space that is local to each thread block. It

is not accessible from the CPU, and has much lower latency compared to global

memory. Shared memory can be used to communicate between different threads of

the same block, and enables coalescing the global memory accesses and eliminating

redundant copies in several cases. Shared memory space is divided into 32 banks,

where successive 32-bit words are served from a different bank in a circular way.

Accesses to the same memory bank are serialized and user should make sure to use

different banks from different threads to get good performance. However, if threads

of the same warp read the same address the access is broadcasted, meaning that there

is no serialization overhead. The size of the shared memory per block depends on the

device and configuration, and it is usually 48KB.

Local Memory/Registers

In addition to global and shared memory, user can define variables and arrays local

to the GPU thread. Variables are hosted on the register space of the chip. This is

also the case for local arrays if accesses can be inferred statically during compile time.

However, the per-thread register space is limited by usually 255 32-bit registers per

thread. If the number of variables used exceeds this limit the data will be placed in

global memory instead. This greatly reduces the performance of the kernel as global

memory access is much slower than register access.

Constant Memory

In the case that kernels do not need to modify the data, constant memory is the

optimal solution for storage. It is located off-chip but is cached, thus it can be as fast

as a register access if same address is accessed multiple times. However, accesses to

constant memory from the same warp are serialized, thus number of distinct address

accessed should be minimized.

17

2.3 Tiramisu GPU Backend

In Tiramisu, GPU programs are created by mapping loop iterators to GPU block and

thread dimensions. computation::tag gpu level method takes a list of consecutive

loop variables as argument where first half of the variables are mapped to block

dimensions and second half is mapped to thread dimensions. The function has three

overloads in case user wants to user 1, 2, or 3d indexing for threads:

comptutation : : t a g g p u l e v e l (i0 , i 1)

comptutation : : t a g g p u l e v e l (i0 , j0 , i1 , j 1)

comptutation : : t a g g p u l e v e l (i0 , j0 , k0 , i1 , j1 , k1)

Loop iterators mapped to thread indices need to have constant bounds. Thus it

is common practice to tile two loop levels and map resulting dimensions to GPU.

computation::gpu tile method offers a convenient way to do this in one step.

comptutation : : g p u t i l e (i , j , s izeX , sizeY , i0 , j0 , i1 , j 1)

Tiramisu generates CUDA C kernel code for the computations that are mapped

to GPU, and compiles and links the GPU program to the main binary. Loop nests

that are tagged as block and thread indices are replaced with kernel calls during

code generation. Tiramisu maps whole loop nests to kernels instead of individual

computations, thus computations that are fused within a GPU tagged loop nest will

appear in the same kernel.

CPU memory is not accessible from the GPU kernel, thus user needs to use GPU

buffers to store GPU computations. GPU buffers are created by tagging regular

buffers with global, shared, constant, local, or register tags. Allocation of global and

constant buffers are handled by Tiramisu. However, shared and local buffers, and

registers need to be allocated manually by user. This should be done by creating

a computations of allocate(buffer) expressions and scheduling them in the same

kernel as the computation that uses the buffer. Since Tiramisu functions take in

CPU buffers as input, user needs to handle the copies back and forth between CPU

and GPU buffers with memcpy function.

18

Listing 2.3: An example GPU program in Tiramisu

t i r ami su : : i n i t (” my gpu program ”) ;

var i (” i ” , 0 , 128) , i (” j ” , 0 , 128) ;

// Def ine inputs and computations

input A({ i , j }) ;

computation B({ i , j } , A(i , j) + A(i + 1 , j + 1)) ;

B. add pred i ca t e (i < 127 && j < 127) ;

// Tag computation b u f f e r s as g l o b a l GPU b u f f e r

A. g e t b u f f e r ()−> t ag gpu g l oba l () ;

B. g e t b u f f e r ()−> t ag gpu g l oba l () ;

// Dec lare CPU b u f f e r s

b u f f e r A cpu (” A cpu ” , {128 , 128} , p f l o a t32 , a temporary) ;

b u f f e r B cpu (” B cpu ” , {128 , 128} , p f l o a t32 , a temporary) ;

// Dec lare CPU−GPU c o p i e s

computation copy A ({} , memcpy(A cpu , ∗A. g e t b u f f e r ())) ;

computation copy B ({} , memcpy(∗B. g e t b u f f e r () , B cpu)) ;

// Map computation B to GPU

B. g p u t i l e (i , j , 16 , 1 6) ;

// Schedule c o p i e s and computation

copy A . then (B, computation : : root)

. then (copy B , computation : : root) ;

// Generate ob j e c t f i l e

t i r ami su : : codegen ({A. g e t b u f f e r () , C. g e t b u f f e r ()} , ” out . o ”) ;

2.4 Related Work

There are several existing domain specific languages and polyhedral compilers that

target GPUs. Tiramisu differs from most by allowing programmers to manually

specify transformations and hand tune the optimizations. PPCG [8] [2] is a polyhedral

compiler that accepts C programs as inputs and transforms them into CUDA code.

19

PPCG does not implement optimizations like prefetching and register blocking that

are available in Tiramisu and scheduling is fully automated.

Tensor Comprehensions (TC) [6] is a domain specific language developed by Face-

book that uses a polyhedral back end. It aims to generate optimized GPU code for

custom deep learning operators. Unlike Tiramisu, TC autotunes the optimization

parameters and relies on the scheduling that PPCG provides which is fully automatic.

Diesel [4] is another language developed by Nvidia that generates fully automated

schedules from high level algorithms. It has comparable results to hand tuned library

functions for linear algebra and neural networks for certain problem sizes.

20

Chapter 3

Tiramisu GPU Benchmarking

To show the capabilities of Tiramisu as a high performance compiler several bench-

marks have been implemented and compared against implementations of standard

libraries as well as other high level compilers in terms of performance.

3.1 Matrix Multiplication (GEMM)

Matrix multiplication is an essential component of the most computation heavy tasks.

In the context of deep learning, fully connected layers of a network is computed by

matrix multiplication of the batched input with the weight matrix. Other seemingly

unrelated operations such as convolution can also be expressed as a matrix multipli-

cation. Indeed, about 95% of the time spent in the popular ImageNet architecture

is on operations implemented with matrix multiplication [9]. Therefore, achieving

good performance in matrix multiplication will prove the effectiveness of Tiramisu

on variety of tasks.

Generalized Matrix Multiplication (GEMM) is the specification used in the BLAS

linear algebra libraries for matrix multiplication programs. Given input matrices A,

B, and C, and coefficients α and β, it is defined as an update operation on C:

C ← α A×B + β C

21

Listing 3.1: A naive implementation of the GEMM algorithm in C

for (int i = 0 ; i < M; i++) {}

for (int j = 0 ; j < N; j++) {

f loat sum = 0 ;

for (int k = 0 ; k < K; k++) {

sum += A[i] [k] ∗ B[k] [j] ;

}

C[i] [j] = alpha ∗ sum + beta ∗ C[i] [j] ;

}

}

3.1.1 Method

Matrix multiplication is a massively data parallel task as the same reduction operation

is applied to all different combinations of rows of matrix A and columns of matrix B.

Therefore, GPU stands out as the right tool to optimize GEMM.

Listing 3.1 gives a naive implementation of GEMM on CPU. A natural way of

mapping the computation to GPU is to make each GPU thread compute a single

C[i][j] point in the output matrix. To achieve this in Tiramisu, i, j loop nest is

gpu tiled with blocks of size 16x16.

After tiling, each thread block computes a 16x16 region in the C matrix, reading a

row band of height 16 from A and a column band of width 16 from B. However, each

thread fetches values from the global memory separately, even though threads of the

same row and column are using the same A and B values. This gives an opportunity

to utilize the shared memory space on GPU. After splitting k loop by 16, the 16x16

submatrices of A and B used in the inner loop nest are copied to shared memory

at each iteration of the outer loop, and then accesses to global memory are replaced

with shared memory.

22

Listing 3.2: Inner product after splitting

for (int k0 = 0 ; k0 < K / 16 ; k0++) {

// Shared memory cop i e s shou ld be made here

for (int k1 = 0 ; k1 < 16 ; k1++) {

sum += A[i] [k0 ∗ 16 + k1] ∗ B[k0 ∗ 16 + k1] [j] ;

}

}

Performance of GPU programs are usually bounded by global memory access

latencies. This is the case as well in the serial copy-compute algorithm described

above. For each iteration kernel needs to wait for the data to be copied from the global

memory before proceeding to multiplication. However, GPU supports instruction

level parallelism (ILP), where memory copies can be executed simultaneously with

floating point instructions if operations are at different addresses. ILP is utilized in

the GEMM algorithm by prefetching the data blocks. At each iteration of k0, global

memory copy for the next block as well as the multiplication on the current block is

executed simultaneously, and threads are synchronized at the end of iteration. Shared

memory buffer is duplicated such that copy and multiplication operations alternate

between two buffers at each iteration. An additional copy computation is added to

the beginning of the kernel fetch the first block.

In addition to global and shared memory spaces, GPUs also offer big register space

per kernel. A single thread can use up to 255 registers, and algorithm explained above

only uses a small portion of this since each kernel is computing a single location in

the output matrix. As a final step to the algorithm, utilization of the register space is

increased by tiling the i, j loop nest one more time. The inner block of the tile stays

inside the GPU kernel so that each GPU thread computes a small rectangular region

of the output matrix instead of a single point. This greatly reduces the number of

share memory accesses since threads reuse the values copied from shared memory to

registers to compute different outputs. To maximize the number of registers used

while keeping the shared memory allocation within the limit, a rectangular 16x6 tile

23

size is used. Listing 3.3 shows the final pseudocode in an imperative style. The

complete implementation in Tiramisu is given in Appendix A.

Listing 3.3: Pseudocode of the final kernel

// Pre f e t ch :

// A l l o ca t e accumulators in r e g i s t e r space

a l l o c a t e C reg [1 6] [1 6]

A sh <− A glb

B sh <− B glb

synchron i ze k e r n e l s

f o r k0 = 0 :K/16

// Fetch b locks o f next i t e r a t i o n

A sh <− A glb

B sh <− B glb

f o r k1 = 0:16

// Copy va lue s to r e g i s t e r s

A reg <− A sh

B reg <− B sh

f o r i = 0 :16

f o r j = 0 :6

// Mult ip ly

C reg [i] [j] += A reg [i] ∗ B reg [j]

synchron i ze k e r n e l s

// Copy va lue s to g l o b a l memory

f o r i = 0 :16

f o r j = 0 :6

C glb [i] [j] = alpha ∗ C reg [i] [j] + beta ∗ C glb [i] [j]

24

3.1.2 Evaluation

The performance of the algorithm is tested on multiplication of square matrices of size

3072x3072. Run time is compared against cuBLAS, which is a linear algebra library

developed by Nvidia. cuBLAS is highly optimized with assembly level hand tuning

and it uses several operations like vector copies which are not available in Tiramisu.

Table 3.1 shows the run time of the algorithm on two different GPU models.

Through only high level scheduling and data layout commands, Tiramisu is able

to achieve 1.4-2x runtime compared to cuBLAS. This is significantly better than other

polyhedral compilers such as PENCIL [2] and Tensor Comprehensions [6], which are

about 10x slower [3].

GPU Model Tiramisu cuBLAS
K80 42ms 17ms

P4 15ms 11ms

Table 3.1: Execution time of the GEMM implementation

Even though Tiramisu interface is high level compared to CUDA C, using shared

memory and other GPU operation are still tedious and error prone since declarations,

copies, and access updates should be done manually. This inspired the implementa-

tion of a higher level API for shared memory, which is discussed in section 4.4.

3.2 Recurrent Neural Networks (LSTM)

In recent years, Recurrent Neural Networks (RNN) became an essential tool for solv-

ing important Deep Learning problems. RNNs are used in the tasks where input data

comes in a streaming fashion, such as speech recognition, robot control, or time series

prediction. The network holds an internal state, and updates it at each step while

computing the output. This allows network to infer and store high level informa-

tion about the input, which is not possible to do with fixed size feed forward neural

networks.

One of the most prominent RNN architectures is the Long Short-Term Memory

(LSTM). In recent years, LSTM is used with great success for variety of tasks includ-

25

ing speech recognition, machine translation, and training video game agents that can

exceed human performance.

The common LSTM architecture used in benchmarking Tiramisu is made up of

cells. Each cell keeps track of two internal state vectors h and c, and takes in a single

input vector x. Using these three vectors, the cell computes new internal states h′

and c′ through several matrix multiplication and non-linear operations, and outputs

h′ to the next layer of the network. Equation 3.1 shows the operations in the LSMT

cell.

i = σ(Wix+Rih+ bi)

f = σ(Wfx+Rfh+ bf)

o = σ(Wox+Roh+ bo)

c′ = f ∗ c+ i ∗ tanh(Wcx+Rch+ bc)

h′ = o ∗ tanh(c′)

(3.1)

LSTM cells can be stacked on top of each other, where output of one cell becomes

the input of the next. Parallelizing LSTM is a difficult task. Due to sequential data

flow in LSTM, a single layer network’s cells cannot run in parallel. Similarly, in a

single iteration of multilayer LSTM, data flows sequentially from one layer to next,

thus different layers cannot be executed in parallel. However, sequential iteration of

multilayer LSTM has diagonal bands of cells which do not have data dependencies

among themselves. Therefore one can implement wavefront parallelism when execut-

ing a multilayer LSTM. The polyhedral model is a good fit for this implementation

since it requires affine transformations to the loop nest before parallelization can be

done. Figure 3-1 represents the data dependencies between different cells which shows

that diagonal cells are indeed independent and can be parallelized.

26

Figure 3-1: Data dependencies in a multilayer network

3.2.1 Method

The LSTM algorithm implemented in Tiramisu is based on the ideas from Apple-

yard’s cuDNN paper [1]. Two outer loop nests span the layers and iterations of LSTM

cells in the network, where each LSTM cell does two GEMM operations inputs coming

from two channels and then non-linear operations to compute the output.

GEMM operations are executed using cuBLAS library in order to reduce the

program complexity and utilize the performance of the external library. Tiramisu

offers a convenient interface for multiplying Tiramisu buffers using cuBLAS. Section

4.5 discusses the implementation of this interface.

The layer-iteration loop nest needs to be traversed diagonally to achieve wavefront

parallelism. In an imperative language this would require calculating nontrivial loop

bounds. However, thanks to polyhedral nature of Tiramisu, this can be easily

achieved using high level commands. First, the rectangular iteration space is skewed

into a parallelogram. Then iterators are interchanged, which makes the inner loop

traverse a diagonal path in the original rectangular iteration space.

Listing 3.4: Wavefront Parallelism in Tiramisu

l s tm b lock . skew (l , s , 1 , l s , s s) ;

l s tm b lock . in te r change (l s , s s) ;

l s tm b lock . p a r a l l e l i z e (l s) ;

27

Listing 3.4 lists the operations needed to implement wavefront parallelism in

Tiramisu. skew method takes in two original consecutive loop nests l and s, a

skewing factor that is 1 in this case, and two new loop iterators for the new iteration

domain, l s and s s. interchange method takes two consecutive loop iterators and

flips their order in the iteration domain. Static and dynamic loop bounds of the new

iterators are computed automatically by the compiler.

Finally, the inner loop nest of the diagonal traversal is parallelized to execute

cuBLAS GEMM operations and kernel calls of different LSTM cells in parallel.

Tiramisu uses CUDA streams API to achieve concurrency on parallelized GPU op-

erations, as discussed in section 4.6.

Figure 3-2: Traversal of LSTM cells before and after skew-interchange operation

As a final optimization step, GEMM operations on the inputs from previous layers

are batched as they use the same weight matrices for same layers. This reduces the

overhead of GEMM calls and it is easily combined with the wavefront parallelism

optimization. Appendix B gives the complete implementation of the program in

Tiramisu.

3.2.2 Evaluation

The LSTM algorithm is evaluated on an Nvidia K80 GPU and compared against

cuDNN 7 library. For deep LSTM networks Tiramisu matches or outperforms the

performance of cuDNN. The algorithm also tested on double precision input, which

gives similar results. The performance difference is especially significant on deeper

28

networks, which suggests that Tiramisu utilizes better multi kernel parallelism than

cuDNN.

Tiramisu cuDNN7
4 layers float 57.9ms 57.1ms
8 layers float 112.1ms 127.0ms

4 layers double 106.7ms 111.8ms
8 layers double 215.4ms 234.9ms

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

Chapter 4

High Level Interfaces for Tiramisu

4.1 Motivation

Implementation of two different benchmarks are shown in Chapter 3. As discussed

earlier, insights gained from these implementations show that Tiramisu requires too

many low level operations to get good performance, especially for GPU backend,

and some existing interfaces are tedious and require too much boilerplate code (see

Appendix A). This chapter discusses the new high level API and features added to

Tiramisu to address these problems.

4.2 Implicit Buffers

In Tiramisu all typed computations need to be assigned to buffers, as their results

need to be stored somewhere on the memory. Users need to create buffer objects and

specify the mapping for each computation. However, in the general case the sizes and

types of buffers can be inferred from the context of the program.

Implicit buffer API reduces the boilerplate code needed for the memory layout

mapping of Tiramisu programs by automatically allocating buffers during compu-

tation declarations. By default, the implicit buffer has the same dimensionality and

size of the loop nest of the computation and a one-to-one mapping between the com-

putation and buffer is created. If the size of the loop nest cannot be inferred from the

31

computation iterators or computation does not have a scalar data type buffer dec-

laration is skipped and user needs to handle memory layout manually. The implicit

buffer can be accessed using computation::get buffer method.

If user wants to declare a custom memory mapping, computation::store in(

mapping, size) method can be used, which updates the size of the implicit buffer

and memory mapping. The type information of the implicit buffers (whether they

are a input, a output, or a temporary) are inferred from whether the computation is

scheduled or not and whether the buffer appears on the argument list of the Tiramisu

function. Listing 4.1 shows an example use case where two successive stencils are

applied on an input image. Tiramisu allocates two buffers of size 128x128 for A

and C, and computation B writes to the same buffer as C. See listings 4.3-4.4 for a

comparison between the new and old APIs.

Listing 4.1: Implicit Buffer API

var i (” i ” , 0 , 128) , i (” j ” , 0 , 128) ;

input A({ i , j }) ;

computation B({ i , j } , A(i , j) + A(i + 1 , j + 1)) ;

computation C({ i , j } , B(i + 1 , j) + B(i , j + 1)) ;

B. s t o r e i n (C. g e t b u f f e r ()) ;

t i r ami su : : codegen ({A. g e t b u f f e r () , C. g e t b u f f e r () }) ;

4.3 Block API

It is often the case that Tiramisu users want to apply the same transformations to

a set of different computations, especially for the computations in GPU kernels. For

example, lets say user wants to apply a chain of stencils to an input image:

A(i , j) = (I (i + 1 , j) + I (i , j + 1)) / 2

B(i , j) = (A(i , j) + A(i + 1 , j + 1)) / 2

C(i , j) = tanh (A(i , j) + B(i , j))

32

To get good performance user will apply several scheduling operations to these

computations. Since these are successive computations, user would want to apply

similar schedules:

A. t i l e (i , j , 16 , 12 , i0 , j0 , i1 , j 1)

B. t i l e (i , j , 16 , 12 , i0 , j0 , i1 , j 1)

C. t i l e (i , j , 16 , 12 , i0 , j0 , i1 , j 1)

A. p a r a l l e l i z e (i 0)

B. p a r a l l e l i z e (i 0)

C. p a r a l l e l i z e (i 0)

A. v e c t o r i z e (j 1)

B. v e c t o r i z e (j 1)

C. v e c t o r i z e (j 1)

. . .

This becomes a tedious process as user will need to apply each transformation to

every computation. It is also difficult to maintain since whenever a parameter such

as tile size is changed, it needs to be replaced for all instances of the computations

to maintain correctness of the program.

The Tiramisu block interface is implemented to solve this problem. In the new

interfce user groups computations into blocks, and apply the scheduling operations

on blocks instead. The block class is implemented as a child class of computation,

which allows the creation of nested blocks if need be. Other than distributing the

scheduling commands, blocks do not impose any ordering or loop nest constraints:

b lock s t e n c i l s ({&A, &B, &C}) ;

s t e n c i l s . t i l e (i , j , 16 , 12 , i0 , j0 , i1 , j 1)

s t e n c i l s . p a r a l l e l i z e (i 0)

s t e n c i l s . v e c t o r i z e (j 1)

. . .

33

4.4 Shared Memory Interface

The performance bottleneck of an unoptimized GPU program is usually the global

memory access latencies, since a global memory fetch can be several orders of magni-

tude slower compared to operations on the register space. To get good performance,

it is important to reduce the global memory access as much as possible and utilize

instruction level parallelism by pipelining the data copies.

The on-chip shared memory serves as an intermediate layer for global memory

accesses by providing a common memory space for thread blocks. It is common

practice to copy values needed by the thread block to shared memory first and then

use the values from shared memory in order to reduce the number of redundant copies

and increase the coalescing. Section 3.1 is an example for this in the context of matrix

multiplication.

4.4.1 Background

In Tiramisu, shared memory space is accessed by tagging Tiramisu buffers with

tag gpu shared method. This tag causes the buffer to be removed from auto al-

location list used for Halide buffers, as the buffer needs to be declared within the

GPU kernel. However, user needs to declare the buffer manually as there is no auto

allocation feature in Tiramisu for shared memory buffers. To do that, user creates

an allocation computation and schedule it to the beginning of the kernel.

To copy values from global memory to shared memory, user needs to declare

another computation. To get good performance for this computation, user needs to

make sure that consecutive values in the global memory are accessed from the same

warp to coalesce the copies and different shared memory banks are used for concurrent

copies to reduce bank conflict. This often requires complicated indexing schemes in

global and shared memory buffers as well as array transposition. User also needs to

manually schedule the copy computation and extra loop nests and predicates might

be needed if the thread block size is not the same as the size of the data that is

copied. After the copy computation, user also needs to replace the original access to

34

the global memory with shared memory.

As explained above, the low level Tiramisu API for using shared memory is

tedious and error prone, and it requires advanced knowledge on hardware. Listing

4.3 gives an example use case for the shared memory, where the program computes

the transpose of an input matrix. Users need to create several computations and

get complicated indexings right before they can use the shared memory. Another

problem is that Tiramisu does not support operations like module or division in

the access expressions of computations. Therefore, a workaround input computation

needs to be created whenever user needs an access pattern with modulo. However,

all these information can be generated by the compiler correctly and efficiently. The

cache shared method solves this problem by presenting a simple interface to the

user.

4.4.2 Interface

The cache shared method has the signature:

computation ∗ computation : : cache shared (

computation &inp ,

const var &l e v e l ,

const std : : vector<int> bu f f e r shape ,

const std : : vector<expr> c o p y o f f s e t s ,

bool pad bu f f e r=fa l se)

It is implemented as a method for the tiramisu::computation class. For example

if computation C uses computation A as input, user should call C.cache shared with

A as the first argument of the method. The second argument is the loop level where

copy operation should be performed. cache shared creates necessary computations

and access updates to declare and allocate a shared memory buffer, copy subarray

of A used under the given loop level to the new buffer, and replace accesses in C to

use the shared memory instead of global memory when accessing A. The function is

not fully automated since user needs to pass the size of the buffer needed and the

35

offset of the buffer into A at each iteration as arguments. The optional pad buffer

argument can be set to true, which pads the shared memory buffer by 1 in the

innermost dimension. This slightly increases the shared memory usage, however it

can give significant performance benefits by reducing shared memory bank conflicts

if access pattern is poorly aligned with the buffer shape. The method returns an

access computation to the shared memory buffer with the same signature as the

input computation, in case user wants to access to shared memory buffer later on.

4.4.3 Implementation

cache shared method is implemented in several steps. First, a shared buffer is cre-

ated with the size given in the arguments. Then a new access computation is gen-

erated that wraps the input buffer and accesses to the old input are replaced with

this new computation. This means whenever the computation accesses the input, it

uses shared memory instead of global memory. After, the computation that declares

the buffer inside kernel is created. This computation should appear in the beginning

of the kernel, thus the iteration domain of the declaration is generated by projecting

out dimensions inside the kernel body.

The next step of the method is to copy the data from global memory to shared

memory before it is used by the computation. This copy is done collectively by the

thread block and each memory address is assigned to a different thread. If there are

more values to be copied than there are threads, assignment is done in a round robin

way. Assignment also ensures the maximum coalescing in global memory accesses.

The iteration domain for the copy computation is generated similar to the buffer

declaration. However, additional loop nests are added if threads copy more than one

value.

Finally, the declaration and copy computation are scheduled by traversing the

schedule graph to find the appropriate locations. Synchronization calls are added

before and after the copies to make sure there are no data races between threads.

36

4.5 cuBLAS GEMM Interface

As a program developer, it is important to be able incorporate the existing libraries

to your program in order to reduce the program complexity and to utilize the per-

formance of the optimized binaries. Section 3.2 is an example where matrix multipli-

cation functions from cuBLAS library is used to implement LSTM cells. Tiramisu

implements a convenient interface to allow Tiramisu buffers to be multiplied with

cuBLAS sgemm or dgemm functions. The interface also allows more complicated

operations through optional arguments:

expr cublas gemm (const b u f f e r &A, const b u f f e r &B, b u f f e r &C,

expr M, expr N, expr K,

expr alpha = 1 , expr beta = 0 ,

expr ldA = 0 , expr ldB = 0 , expr ldC = 0 ,

expr o f f s e tA = 0 , expr o f f s e t B = 0 , expr o f f s e t C = 0 ,

expr transposeA = f a l s e , expr transposeB = f a l s e) ;

The cublas gemm function takes in three input buffers of types float or double and

three variables M , N , and K which determine the sizes of the buffers. alpha and beta

are provided as optional arguments in case user wants to use the generalized matrix

multiplication interface. User is also able to multiply submatrices which might be

transposed as well by setting the stride, offset, and transpose parameters accordingly.

One important caveat about the implementation of cublas sgemm is that cuBLAS—

and CUDA libraries in general—work in column-major format, as they follow the

Fortran convention. However, Tiramisu is C-based and buffers are stored in row-

major format instead. One can pretranspose the input matrices and transpose the

output matrix back in order to get two row-major matrices multiplied with cuBLAS.

However, transposition is costly and can be avoided with a small observation. From a

row-major perspective, the column-major cublasSgemm function basically works on

37

transposed versions of matrices.

(cublasSgemm(A,B))T = AT ×BT

cublasSgemm(A,B) = (AT ∗BT)T

cublasSgemm(A,B) = B ∗ A

cublasSgemm(B,A) = A ∗B

(4.1)

As derivation 4.1 shows, simply swapping the input matrices give the same out-

come as a row major multiplication. The additional arguments that cublasSgemm

take are configured accordingly to accomodate this change.

4.6 CUDA Streams Interface

An Nvidia GPU has several streaming multiprocessor (SM) units executing thread

blocks. If number of blocks launched is less than the number of SMs available, the

GPU is not fully utilized. To increase the blocks available to run, CUDA allows

multiple kernels to be launched simultaneously through streams API, where user

specifies which stream each kernel should be launched with. Kernels running in

the same stream are executed serially, while different streams might be executed in

parallel. User should use the synchronization and events APIs of CUDA to enforce

orderings for executions of kernels and pipeline the streams.

Tiramisu avoids incorporating the low level CUDA streams/events API since

it would unnecessarily increase the complexity of the GPU interface. Instead, a

more intuitive streaming API is provided using per-thread CUDA streams. CUDA 7

introduces a new compiler flag ”--default-stream per-thread”, which initializes

a new CUDA stream for each CPU thread that launches a kernel. Thus, kernels

launched from different threads can run on the GPU in parallel.

To achieve concurrency with streams API in Tiramisu, user can simply parallelize

a loop nest that wraps a GPU kernel, which launches the kernels from different thread

streams. However, kernel calls are non-blocking and user should make sure that they

38

are terminated before parallel threads join back to the main thread, in order to

prevent data races. cuda stream synchronize expression is provided in Tiramisu

for this purpose, which blocks until all kernels of the current thread are executed.

cublas gemm interface discussed in section 4.5 is also configured to use per-thread

stream instead of the default global stream.

Listing 4.2: An example use of stream API

computation C({ i , j , k} , 0) ;

computation sync ({ i } , cuda st ream synchron ize ()) ;

C. g p u t i l e (j , k , 16 , 1 6) ;

C. p a r a l l e l i z e (i) ;

C. then (sync , i) ;

4.7 Evaluation

Listings 4.3 and 4.4 show an example program written in the old and new APIs. The

program does a matrix transposition on GPU. In the old API user defines all buffers

and mappings manually. Shared memory is used to ensure memory coalescing in

global memory accesses and this involves using complex indexing schemes for memory

layout commands in the old API.

The new API offers a much cleaner and understandable interface for the memory

operations without sacrificing performance. The underlying buffers for A and B are

created automatically. Shared memory operation is handled by cache shared method

which creates necessary buffers and copy computations automatically.

Listing 4.3: An example transposition program with low level shared memory API

// Sk ipp ing the CPU−GPU cop i e s

var i (” i ” , 0 , 128) , j (” j ” , 0 , 256) ;

var i 0 (” i 0 ”) , i 1 (” i 1 ”) ;

var j 0 (” j0 ”) , j 1 (” j 1 ”) ;

39

// Bu f f e r s

b u f f e r A buf (”A buf” , {128 , 256} , p f l o a t32 , a input) ;

b u f f e r B buf (”B buf” , {256 , 128} , p f l o a t32 , a input) ;

b u f f e r A shr (” A shr ” , {16 , 16} , p f l o a t32 , a temporary) ;

A buf . t ag gpu g l oba l () ;

B buf . t ag gpu g l oba l () ;

A shr . tag gpu shared () ;

// Input matrix

input A({ i , j } , p f l o a t 3 2) ;

// Shared memory opera t i ons

computation A s h r a l l o c ({ j , i } , a l l o c a t e (A shr)) ;

input A shr copy acce s s ({ j , i } , p f l o a t 3 2) ;

computation A shr copy ({ j , i } , A shr copy acce s s (j , i)) ;

input A shr acc e s s ({ j , i } , p f l o a t 3 2) ;

computation sync ({ j , i } , t i r ami su : : sync ()) ;

// Output matrix

computation B({ j , i } , A sh r ac c e s s (j , i)) ;

// Schedu l ing commands

int block = 16 ;

B. g p u t i l e (j , i , block , block , j0 , i0 , j1 , i 1) ;

A s h r a l l o c . g p u t i l e (j , i , block , block , j0 , i0 , j1 , i 1) ;

A shr copy . g p u t i l e (j , i , block , block , j0 , i0 , j1 , i 1) ;

sync . g p u t i l e (j , i , block , block , j0 , i0 , j1 , i 1) ;

// Memory l ayou t commands

A shr copy acce s s . s t o r e i n (&A buf ,

40

{ i − i % 16 + j % 16 , j − j % 16 + i % 16}) ;

A shr copy . s t o r e i n (&A shr , { j % 16 , i % 16}) ;

A sh r ac c e s s . s t o r e i n (&A shr , { i % 16 , j % 16}) ;

A. s t o r e i n (&A buf , { i , j }) ;

B. s t o r e i n (&B buf , { j , i }) ;

copy A to dev i ce . then (A sh r a l l o c , computation : : root)

. then (A shr copy , i 1)

. then (sync , i 1)

. then (B, i 1)

. then (copy B to host , computation : : root) ;

Listing 4.4: The same transposition program with the new API

// Sk ipp ing the CPU−GPU cop i e s

var i (” i ” , 0 , 128) , j (” j ” , 0 , 256) ;

var i 0 (” i 0 ”) , i 1 (” i 1 ”) ;

var j 0 (” j0 ”) , j 1 (” j 1 ”) ;

input A({ i , j } , p f l o a t 3 2) ;

A. g e t b u f f e r ()−> t ag gpu g l oba l () ;

computation B({ j , i } , A(i , j)) ;

B. g e t b u f f e r ()−> t ag gpu g l oba l () ;

int block = 16 ;

B. g p u t i l e (j , i , block , block , j0 , i0 , j1 , i 1) ;

B. cache shared (A, i1 , {16 , 16} , { i 0 ∗ block , j 0 ∗ block }) ;

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

Chapter 5

Conclusion

In this work we showed that Tiramisu is able to generate high efficiency code for

GPU backend. Achieving state of the art performance especially in LSTM task,

Tiramisu stands out as a strong candidate as a platform for implementing high

performance applications for deep learning and other similar fields. We also presented

several features implemented which create novel ways of optimization and improve

the usability of Tiramisu.

As a next step, simplifying and automating the certain interfaces of Tiramisu

would increase the portability of Tiramisu programs and ease of use of the frame-

work. This includes cache shared method, where user passes the buffer size and copy

offsets manually. However, these arguments can be determined automatically by an-

alyzing the iteration domain of the computation. The performance of cache shared

could also be improved by adding automated pipelining for copies and computations.

Currently Tiramisu functions can only take Halide CPU buffers as arguments.

Which means to use a Tiramisu GPU GEMM function in another Tiramisu GPU

program buffers should be copied to CPU before they can be passed between function.

This creates a huge performance bottleneck and it is one of the reasons LSTM program

is implemented using cuBLAS library calls.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

Appendix A

GEMM Implementation in

Tiramisu

t i r ami su : : i n i t (”matmul ”) ;

// −−−

// Layer I

// −−−

// Dec lare loop i t e r a t o r s

var i (” i ” , 0 , M) , j (” j ” , 0 , N) , k (” k ” , 0 , K) ;

var i 0 (” i 0 ” , 0 , M / R BLOCK I) , i 1 (” i 1 ” , 0 , R BLOCK I) ;

var j 0 (” j0 ” , 0 , N / R BLOCK J) , j 1 (” j1 ” , 0 , R BLOCK J) ;

var k0 (” k0 ” , 0 , K / BLOCK) , k1 (” k1 ” , 0 , BLOCK) ;

var k 0 s k i p l a s t (” k0 ” , 0 , K / BLOCK − 1) ;

var i 00 (” i00 ”) , i 01 (” i 01 ”) , j00 (” j00 ”) , j01 (” j01 ”) ;

// Dec lare cpu b u f f e r s .

b u f f e r b A(”b A” , {M, K} , p f l o a t32 , a input) ;

b u f f e r b B (” b B ” , {K, N} , p f l o a t32 , a input) ;

45

b u f f e r b C (” b C ” , {M, N} , p f l o a t32 , a output) ;

b u f f e r b Consts (” b Consts ” , {2} , p f l o a t32 , a input) ;

// Dec lare gpu b u f f e r s .

b u f f e r b A glb (” b A glb ” , {M, K} , p f l o a t32 , a temporary) ;

b u f f e r b B glb (” b B glb ” , {K, N} , p f l o a t32 , a temporary) ;

b u f f e r b C glb (” b C glb ” , {M, N} , p f l o a t32 , a temporary) ;

// ”+ 1” to reduce shared memory bank c o n f l i c t s

b u f f e r b A shr (” b A shr ” , {2 , BLOCK, BLOCK ∗ R BLOCK I + 1} ,

p f l o a t32 , a temporary) ;

b u f f e r b B shr (” b B shr ” , {2 , BLOCK, BLOCK ∗ R BLOCK J} ,

p f l o a t32 , a temporary) ;

b u f f e r b A reg (” b A reg ” , {1} , p f l o a t32 , a temporary) ;

b u f f e r b B reg (” b B reg ” , {R BLOCK J} , p f l o a t32 ,

a temporary) ;

b u f f e r b acc (” b acc ” , {R BLOCK I , R BLOCK J} , p f l o a t32 ,

a temporary) ;

b A glb . t ag gpu g l oba l () ;

b B glb . t ag gpu g l oba l () ;

b C glb . t ag gpu g l oba l () ;

b A shr . tag gpu shared () ;

b B shr . tag gpu shared () ;

b A reg . t a g g p u r e g i s t e r () ;

b B reg . t a g g p u l o c a l () ;

b acc . t a g g p u l o c a l () ;

// Dec lare input wrappers

input c A glb ({ i0 , j0 , k0 , i 1 } , p f l o a t 3 2) ;

input c A shr ({ i0 , j0 , k0 , k1 , i 1 } , p f l o a t 3 2) ;

input c A ({ i , k} , p f l o a t 3 2) ;

input c B g lb ({ i0 , j0 , k0 , j 1 } , p f l o a t 3 2) ;

46

input c B shr ({ i0 , j0 , k0 , k1 , j 1 } , p f l o a t 3 2) ;

input c B ({k , j } , p f l o a t 3 2) ;

input c Consts ({ i } , p f l o a t 3 2) ;

constant c a lpha (” alpha ” , c Consts (0)) ;

constant c be ta (” beta ” , c Consts (1)) ;

// Dec lare computations

computation c A g l b t o s h r p r e ({ i0 , j0 , i 1 } ,

c A glb (i0 , j0 , 0 , i 1)) ;

computation c A g l b t o s h r ({ i0 , j0 , k 0 s k i p l a s t , i 1 } ,

c A glb (i0 , j0 , k 0 s k i p l a s t + 1 , i 1)) ;

computation c A s h r t o r e g ({ i0 , j0 , k0 , k1 , i 1 } ,

c A shr (i0 , j0 , k0 , k1 , i 1)) ;

computation c B g l b t o s h r p r e ({ i0 , j0 , j 1 } ,

c B g lb (i0 , j0 , 0 , j 1)) ;

computation c B g l b t o s h r ({ i0 , j0 , k 0 s k i p l a s t , j 1 } ,

c B g lb (i0 , j0 , k 0 s k i p l a s t + 1 , j 1)) ;

computation c B s h r t o r e g ({ i0 , j0 , k0 , k1 , j 1 } ,

c B shr (i0 , j0 , k0 , k1 , j 1)) ;

computation c a c c i n i t ({ i , j } , (f l o a t) 0) ;

computation c acc ({ i , j , k} , p f l o a t 3 2) ;

c a c c . s e t e x p r e s s i o n (c acc (i , j , 0) + c A (i , k) ∗ c B (k , j)) ;

computation c C ({ i , j } , p f l o a t 3 2) ;

c C . s e t e x p r e s s i o n (

c acc (i , j , 0) ∗ c a lpha + c C (i , j) ∗ c be ta) ;

// Dec lare d e c l a r a t i o n s

computation c A shr dec ({ i0 , j 0 } , a l l o c a t e (b A shr)) ;

computation c A reg dec ({ i0 , j 0 } , a l l o c a t e (b A reg)) ;

computation c B shr dec ({ i0 , j 0 } , a l l o c a t e (b B shr)) ;

computation c B reg dec ({ i0 , j 0 } , a l l o c a t e (b B reg)) ;

computation c a c c d e c ({ i0 , j 0 } , a l l o c a t e (b acc)) ;

47

// Dec lare synchron i z e r computations

computation c sync1 ({ i0 , j 0 } , t i r ami su : : sync ()) ;

computation c sync2 ({ i0 , j0 , k0 } , t i r ami su : : sync ()) ;

// Dec lare host−gpu t r a n s f e r computations .

computation copy A to dev i ce ({} , memcpy(b A , b A glb)) ;

computation copy B to dev i c e ({} , memcpy(b B , b B glb)) ;

computation copy C to dev i ce ({} , memcpy(b C , b C glb)) ;

computation copy C to host ({} , memcpy(b C glb , b C)) ;

// −−−

// Layer I I

// −−−

// Schedul ing commands

c a c c i n i t . t i l e (i , j , R BLOCK I , R BLOCK J, i0 , j0 , i1 , j 1) ;

c a c c . t i l e (i , j , R BLOCK I , R BLOCK J, i0 , j0 , i1 , j 1) ;

c a c c . in t e r change (j1 , k) ;

c a c c . in t e r change (i1 , k) ;

c a c c . s p l i t (k , BLOCK, k0 , k1) ;

c C . t i l e (i , j , R BLOCK I , R BLOCK J, i0 , j0 , i1 , j 1) ;

b lock k e r n e l b l o c k ({& c acc dec , &c a c c i n i t , &c acc , &c C ,

&c A shr dec , &c A reg dec , &c B shr dec , &c B reg dec ,

&c A g l b t o s h r p r e , &c A g lb to sh r , &c A shr to r eg ,

&c B g l b t o s h r p r e , &c B g l b t o s h r , &c B s h r t o r e g ,

&c sync1 , &c sync2 }) ;

k e r n e l b l o c k . g p u t i l e (i0 , j0 , BLOCK, BLOCK,

i00 , j00 , i01 , j01) ;

copy A to dev i ce . then (copy B to dev ice , computation : : root)

48

. then (copy C to dev ice , computation : : root)

. then (c A shr dec , computation : : root)

. then (c B shr dec , j01)

. then (c A reg dec , j01)

. then (c B reg dec , j01)

. then (c acc dec , j01)

. then (c a c c i n i t , j 01)

. then (c A g l b t o s h r p r e , j01)

. then (c B g l b t o s h r p r e , j01)

. then (c sync1 , j01)

. then (c A g lb to sh r , j01)

. then (c B g l b t o s h r , k0)

. then (c B s h r t o r e g , k0)

. then (c A sh r to r eg , k1)

. then (c acc , i 1)

. then (c sync2 , k0)

. then (c C , j01)

. then (copy C to host , computation : : root) ;

// −−−

// Layer I I I

// −−−

c A glb . s t o r e i n (&b A glb ,

{ i 0 ∗ R BLOCK I + i1 , k0 ∗ BLOCK + j0 % BLOCK}) ;

c A g l b t o s h r p r e . s t o r e i n (&b A shr ,

{0 , j 0 % BLOCK, i 0 % BLOCK ∗ R BLOCK I + i 1 }) ;

c A g l b t o s h r . s t o r e i n (&b A shr ,

{(k 0 s k i p l a s t + 1) % 2 , j 0 % BLOCK,

i 0 % BLOCK ∗ R BLOCK I + i 1 }) ;

49

c A shr . s t o r e i n (&b A shr ,

{k0 % 2 , k1 , i 0 % BLOCK ∗ R BLOCK I + i 1 }) ;

c A s h r t o r e g . s t o r e i n (&b A reg , {0}) ;

c B g lb . s t o r e i n (&b B glb , {k0 ∗ BLOCK + i 0 % BLOCK,

(j0 − j 0 % BLOCK) ∗ R BLOCK J

+ j1 ∗ BLOCK + j0 % BLOCK}) ;

c B g l b t o s h r p r e . s t o r e i n (&b B shr ,

{0 , i 0 % BLOCK, j1 ∗ BLOCK + j0 % BLOCK}) ;

c B g l b t o s h r . s t o r e i n (&b B shr ,

{(k 0 s k i p l a s t + 1) % 2 ,

i 0 % BLOCK, j1 ∗ BLOCK + j0 % BLOCK}) ;

c B shr . s t o r e i n (&b B shr ,

{k0 % 2 , k1 , j 0 % BLOCK ∗ R BLOCK J + j1 }) ;

c B s h r t o r e g . s t o r e i n (&b B reg , { j 1 }) ;

c A . s t o r e i n (&b A reg , { i % R BLOCK I}) ;

c B . s t o r e i n (&b B reg , { j % R BLOCK J}) ;

c a c c i n i t . s t o r e i n (&b acc , { i % R BLOCK I , j % R BLOCK J}) ;

c a c c . s t o r e i n (&b acc , { i % R BLOCK I , j % R BLOCK J}) ;

c C . s t o r e i n (&b C glb) ;

c Consts . s t o r e i n (&b Consts , { i }) ;

// −−−

// Code Generation

// −−−

// Generate ob j e c t f i l e s .

t i r ami su : : codegen({&b Consts , &b A , &b B , &b C} ,

” f c t . o ” , t rue) ;

50

Appendix B

LSTM Implementation in Tiramisu

t i r ami su : : i n i t (” lstm ”) ;

// −−−

// Layer I

// −−−

// Inner dimensions

var i (” i ” , 0 , FEATURE SIZE) , j (” j ” , 0 , FEATURE SIZE) ;

var k (” k ” , 0 , BATCH SIZE) ;

var i merged (” i merged ” , 0 , 4 ∗ FEATURE SIZE) ;

var i 0 (” i 0 ”) , i 1 (” i 1 ”) , k0 (” k0 ”) , k1 (” k1 ”) ;

// Outer dimensions

var l (” l ” , 0 , NUM LAYERS) , s (” s ” , 0 , SEQ LENGTH) ;

var s0 (” s0 ” , 0 , SEQ LENGTH / GEMMBATCH) ;

var s1 (” s1 ” , 0 , GEMMBATCH) ;

// After skewing

var l s (” l s ”) , s s (” s s ”) ;

// Input−output CPU b u f f e r s

b u f f e r buf Weights cpu (” buf Weights cpu ” ,

51

{NUM LAYERS, 2 , 4 ∗ FEATURE SIZE, FEATURE SIZE} ,

p f l o a t32 , a input) ;

b u f f e r b u f b i a s e s c p u (” b u f b i a s e s c p u ” ,

{NUM LAYERS, 4 ∗ FEATURE SIZE} ,

p f l o a t32 , a input) ;

b u f f e r buf x cpu (” buf x cpu ” ,

{SEQ LENGTH, BATCH SIZE, FEATURE SIZE} ,

p f l o a t32 , a input) ;

b u f f e r buf y cpu (” buf y cpu ” ,

{SEQ LENGTH, BATCH SIZE, FEATURE SIZE} ,

p f l o a t32 , a output) ;

// GPU b u f f e r s

input x (” x ” , {s , k , i } , p f l o a t 3 2) ;

input weights (” weights ” , { l , var (” w i ” , 0 , 2) , i merged , j } ,

p f l o a t 3 2) ;

input b i a s e s (” b i a s e s ” , { l , i merged } , p f l o a t 3 2) ;

input tmp(”tmp” , {s , k , i merged } , p f l o a t 3 2) ;

x . g e t b u f f e r ()−> t ag gpu g l oba l () ;

weights . g e t b u f f e r ()−> t ag gpu g l oba l () ;

b i a s e s . g e t b u f f e r ()−> t ag gpu g l oba l () ;

tmp . g e t b u f f e r ()−> t ag gpu g l oba l () ;

// Transpose Weights

var w t i (” w i ” , 0 , 2) ; // Dummy v a r i a b l e

computation weights T ({ l , w t i , j , i merged } ,

we ights (l , w t i , i merged , j)) ;

weights T . g e t b u f f e r ()−> t ag gpu g l oba l () ;

// h(l , s) i s the output o f the block (l , s)

52

// which takes h(l , s − 1) and h(l − 1 , s) as inputs

// I n i t i a l hidden s t a t e s are h(l , −1) and c (l , −1)

// Input x i s copied to h(−1 , s)

computation h({ l , s , k , i } , p f l o a t 3 2) ;

computation c ({ l , s , k , i } , p f l o a t 3 2) ;

// Pad b u f f e r s to make room f o r edges

h . s t o r e i n ({ l + 1 , s + 1 , k , i } ,

{NUM LAYERS + 1 , SEQ LENGTH + 1 , BATCH SIZE,

FEATURE SIZE}) ;

c . s t o r e i n ({ l , s + 1 , k , i } ,

{NUM LAYERS, SEQ LENGTH + 1 , BATCH SIZE, FEATURE SIZE}) ;

h . g e t b u f f e r ()−> t ag gpu g l oba l () ;

c . g e t b u f f e r ()−> t ag gpu g l oba l () ;

// I n i t i a l s e t s and s t o r e s

computation h i n i t ({ l , k , i } , expr (DATA TYPE(0))) ;

computation c i n i t ({ l , k , i } , expr (DATA TYPE(0))) ;

computation h copy x ({ s , k , i } , x (s , k , i)) ;

// M u l t i p l i c a t i o n from input i s batched

computation sum1({ l , s0 } ,

cublas gemm (∗h . g e t b u f f e r () ,

∗weights T . g e t b u f f e r () ,

∗tmp . g e t b u f f e r () ,

GEMMBATCH ∗ BATCH SIZE,

4 ∗ FEATURE SIZE,

FEATURE SIZE,

1 , 0 , // alpha , beta

0 , 0 , 0 , // ldABC

(l ∗ (SEQ LENGTH + 1) + s0 ∗ GEMMBATCH + 1)

∗ BATCH SIZE ∗ FEATURE SIZE,

(l ∗ 2) ∗ 4 ∗ FEATURE SIZE ∗ FEATURE SIZE,

53

s0 ∗ GEMMBATCH ∗ BATCH SIZE ∗ 4 ∗ FEATURE SIZE,

f a l s e , f a l s e)) ;

computation sum2({ l , s } ,

cublas gemm (∗h . g e t b u f f e r () ,

∗weights T . g e t b u f f e r () ,

∗tmp . g e t b u f f e r () ,

BATCH SIZE, 4 ∗ FEATURE SIZE, FEATURE SIZE,

1 , 1 , // alpha , beta

0 , 0 , 0 , // ldABC

((l + 1) ∗ (SEQ LENGTH + 1) + s) ∗ BATCH SIZE

∗ FEATURE SIZE,

(l ∗ 2 + 1) ∗ 4 ∗ FEATURE SIZE ∗ FEATURE SIZE,

s ∗ BATCH SIZE ∗ 4 ∗ FEATURE SIZE,

f a l s e , f a l s e)) ;

// Nonl inear ope ra t i on s as we l l as b i a s e s

#d e f i n e s igmoid (x) expr (f l o a t (1)) / (1 + expr (o expo , −(x)))

computation s i g i ({ l , s , k , i } ,

s igmoid (tmp(s , k , i + 0 ∗ FEATURE SIZE)

+ b i a s e s (l , i + 0 ∗ FEATURE SIZE))) ;

computation s i g f ({ l , s , k , i } ,

s igmoid (tmp(s , k , i + 1 ∗ FEATURE SIZE)

+ b i a s e s (l , i + 1 ∗ FEATURE SIZE))) ;

computation tnh z ({ l , s , k , i } ,

expr (o tanh , tmp(s , k , i + 2 ∗ FEATURE SIZE)

+ b i a s e s (l , i + 2 ∗ FEATURE SIZE))) ;

computation s i g o ({ l , s , k , i } ,

s igmoid (tmp(s , k , i + 3 ∗ FEATURE SIZE)

+ b i a s e s (l , i + 3 ∗ FEATURE SIZE))) ;

// Update c e l l s

c . s e t e x p r e s s i o n (s i g i (l , s , k , i) ∗ tnh z (l , s , k , i)

54

+ s i g f (l , s , k , i) ∗ c (l , s − 1 , k , i)) ;

h . s e t e x p r e s s i o n (

expr (o tanh , c (l , s , k , i)) ∗ s i g o (l , s , k , i)) ;

// Synchronize GEMMS and k e r n e l s be f o r e thread i s dest royed

computation stream sync ({ l , s0 } , cuda st ream synchron ize ()) ;

// Output i s the l a s t l a y e r

computation y ({ s , k , i } , h (NUM LAYERS − 1 , s , k , i)) ;

y . g e t b u f f e r ()−> t ag gpu g l oba l () ;

// Copies

computation copy Weights to dev i ce ({} ,

memcpy(buf Weights cpu , ∗weights . g e t b u f f e r ())) ;

computation c o p y b i a s e s t o d e v i c e ({} ,

memcpy(bu f b i a s e s cpu , ∗ b i a s e s . g e t b u f f e r ())) ;

computation c o p y x t o d e v i c e ({} ,

memcpy(buf x cpu , ∗x . g e t b u f f e r ())) ;

computation copy y to ho s t ({} ,

memcpy(∗y . g e t b u f f e r () , buf y cpu)) ;

// −−−

// Layer I I

// −−−

// Fuse k e r n e l s by moving gpu i t e r a t o r s out

weights T . in te r change (w t i , j) ;

weights T . in te r change (w t i , i merged) ;

weights T . in te r change (l , j) ;

weights T . in te r change (l , i merged) ;

h i n i t . in t e r change (l , k) ;

h i n i t . in t e r change (l , i) ;

c i n i t . i n t e r change (l , k) ;

55

c i n i t . in t e r change (l , i) ;

h copy x . in te r change (s , k) ;

h copy x . in te r change (s , i) ;

y . in t e r change (s , k) ;

y . in t e r change (s , i) ;

weights T . g p u t i l e (j , i merged , 16 , 1 6) ;

b lock n o n l i n e a r b l o c k (

{& s i g i , &tnh z , &s i g o , &s i g f , &c , &h }) ;

// Batch Input GEMMs

block ({&sum2 , &n o n l i n e a r b l o c k })

. s p l i t (s , GEMM BATCH, s0 , s1) ;

b lock ({& h i n i t , &c i n i t , &h copy x , &non l inea r b l o ck , &y})

. g p u t i l e (k , i , 16 , 16 , k0 , i0 , k1 , i 1) ;

b lock l s tm b lock (

{&sum1 , &sum2 , &non l inea r b l o ck , &stream sync }) ;

// Skew and inte rchange to get d iagona l t r a v e r s a l

l s tm b lock . skew (l , s0 , 1 , l s , s s) ;

l s tm b lock . in te r change (l s , s s) ;

// P a r a l l e l i z e d iagona l t r a v e r s a l

// Due to a bug in tagg ing system we only need to p a r a l l e l i z e

// a s i n g l e computation

sum1 . p a r a l l e l i z e (l s) ;

// Schedul ing commands

copy Weights to dev i ce

. then (c o p y b i a s e s t o d e v i c e , computation : : root)

. then (copy x to dev i c e , computation : : root)

. then (weights T , computation : : root)

. then (h i n i t , computation : : root)

56

. then (c i n i t , computation : : root)

. then (h copy x , computation : : root)

. then (sum1 , computation : : root)

. then (sum2 , l s)

. then (s i g i , s1)

. then (s i g f , i 1)

. then (tnh z , i 1)

. then (s i g o , i 1)

. then (c , i 1)

. then (h , i 1)

. then (stream sync , l s)

. then (y , computation : : root)

. then (copy y to hos t , computation : : root) ;

// −−−

// Layer I I I

// −−−

s i g i . s t o r e i n (tmp . g e t b u f f e r () ,

{s , k , i + 0 ∗ FEATURE SIZE}) ;

s i g f . s t o r e i n (tmp . g e t b u f f e r () ,

{s , k , i + 1 ∗ FEATURE SIZE}) ;

tnh z . s t o r e i n (tmp . g e t b u f f e r () ,

{s , k , i + 2 ∗ FEATURE SIZE}) ;

s i g o . s t o r e i n (tmp . g e t b u f f e r () ,

{s , k , i + 3 ∗ FEATURE SIZE}) ;

h i n i t . s t o r e i n (h . g e t b u f f e r () , { l + 1 , 0 , k , i }) ;

c i n i t . s t o r e i n (c . g e t b u f f e r () , { l , 0 , k , i }) ;

h copy x . s t o r e i n (h . g e t b u f f e r () , {0 , s + 1 , k , i }) ;

57

// −−−

// Code Generation

// −−−

// Generate ob j e c t f i l e s .

t i r ami su : : codegen ({

&buf Weights cpu ,

&bu f b i a s e s cpu ,

&buf x cpu ,

&buf y cpu ,

} , ” lstm . o ” , t rue) ;

58

Bibliography

[1] Jeremy Appleyard, Tomas Kocisky, and Phil Blunsom. Optimizing Performance
of Recurrent Neural Networks on GPUs. arXiv e-prints, page arXiv:1604.01946,
Apr 2016.

[2] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy, S. Ver-
doolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar, S. v. Haastregt,
A. Kravets, A. Lokhmotov, R. David, and E. Hajiyev. Pencil: A platform-neutral
compute intermediate language for accelerator programming. In 2015 Interna-
tional Conference on Parallel Architecture and Compilation (PACT), pages 138–
149, Oct 2015.

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and portable
code. In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2019, pages 193–205, Piscataway, NJ, USA,
2019. IEEE Press.

[4] Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagobal-
ane, and Vinod Grover. Diesel: DSL for linear algebra and neural net computa-
tions on gpus. In Proceedings of the 2Nd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL 2018, pages 42–51,
New York, NY, USA, 2018. ACM.

[5] Nvidia. CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html. Accessed: 2019-05-20.

[6] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions. arXiv e-prints, page arXiv:1802.04730, February 2018.

[7] Sven Verdoolaege. Isl: An integer set library for the polyhedral model. In Proceed-
ings of the Third International Congress Conference on Mathematical Software,
ICMS’10, pages 299–302, Berlin, Heidelberg, 2010. Springer-Verlag.

59

[8] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. Polyhedral parallel code generation for
CUDA. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013.

[9] Pete Warden. Why gemm is at the heart of deep learning.
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-
learning/. Accessed: 2019-05-20.

60

	Introduction
	Background
	Tiramisu
	CUDA Programming Model
	Memory Spaces

	Tiramisu GPU Backend
	Related Work

	Tiramisu GPU Benchmarking
	Matrix Multiplication (GEMM)
	Method
	Evaluation

	Recurrent Neural Networks (LSTM)
	Method
	Evaluation

	High Level Interfaces for Tiramisu
	Motivation
	Implicit Buffers
	Block API
	Shared Memory Interface
	Background
	Interface
	Implementation

	cuBLAS GEMM Interface
	CUDA Streams Interface
	Evaluation

	Conclusion
	GEMM Implementation in Tiramisu
	LSTM Implementation in Tiramisu

