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Seq: A High-Performance Language for Bioinformatics

ARIYA SHAJII∗, IBRAHIM NUMANAGIĆ∗, RIYADH BAGHDADI, BONNIE BERGER2,
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The scope and scale of biological data are increasing at an exponential rate, as technologies like next-generation
sequencing are becoming radically cheaper and more prevalent. Over the last two decades, the cost of
sequencing a genome has dropped from $100 million to nearly $100Ða factor of over 106Ðand the amount
of data to be analyzed has increased proportionally. Yet, as Moore’s Law continues to slow, computational
biologists can no longer rely on computing hardware to compensate for the ever-increasing size of biological
datasets. In a field where many researchers are primarily focused on biological analysis over computational
optimization, the unfortunate solution to this problem is often to simply buy larger and faster machines.

Here, we introduce Seq, the first language tailored specifically to bioinformatics, which marries the ease
and productivity of Python with C-like performance. Seq starts with a subset of PythonÐand is in many cases
a drop-in replacementÐyet also incorporates novel bioinformatics- and computational genomics-oriented data
types, language constructs and optimizations. Seq enables users to write high-level, Pythonic code without
having to worry about low-level or domain-specific optimizations, and allows for the seamless expression of the
algorithms, idioms and patterns found in many genomics or bioinformatics applications. We evaluated Seq on
several standard computational genomics tasks like reverse complementation, k-mer manipulation, sequence
pattern matching and large genomic index queries. On equivalent CPython code, Seq attains a performance
improvement of up to two orders of magnitude, and a 160× improvement once domain-specific language
features and optimizations are used. With parallelism, we demonstrate up to a 650× improvement. Compared
to optimized C++ code, which is already difficult for most biologists to produce, Seq frequently attains up to a
2× improvement, and with shorter, cleaner code. Thus, Seq opens the door to an age of democratization of
highly-optimized bioinformatics software.
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1 INTRODUCTION

DNA sequencing technologies have revolutionized life sciences and clinical medicine [Mardis
2017]. Today, state-of-the-art cancer treatment involves sequencing a tumor genome for diagnosis
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and ensuing care [Kamps et al. 2017]. Improvements in sequencing hardware have drastically
reduced the laboratory cost of sequencing; thus, the biggest bottleneck and cost today in the
sequence analysis pipeline is computational data analysis [Muir et al. 2016]. Indeed, reductions in
sequencing costs over the past two decades have radically outpaced both Moore’s and Kryder’s
Laws. Sequencing a genome in 2008 cost more than $10 million, but over the past several years
the cost has fallen below the celebrated $1,000 mark, and is expected to soon surpass $100 per
genome [Hayden 2014]. Unfortunately, the computational data analysis cost inherent in sequencing
pipelines has not improved at the same rate, and in 2011 surpassed the cost of sequencing [Sboner
et al. 2011]. In fact, it is expected to soon be cheaper to simply re-sequence an individual than to
even store their raw sequencing data, let alone analyze it [Weymann et al. 2017]. By the same token,
the number and size of sequencing datasets continue to grow exponentially, which will require
better algorithms and software especially as the gap between Moore’s Law and sequencing data
growth continues to widen.

Recent advances in next-generation sequencing (NGS) technologies are continuing this revolution,
and providing a means to study various biological processes through a genomic lens. Because
of its novel capabilities and vast scale, NGS has even bigger computational needs, as terabytes
of data need to be processed and analyzed with the aid of various novel computational methods
and tools [Mardis 2017]. These tools (e.g. [Li et al. 2009a], [Li and Durbin 2009], [Zaharia et al.
2011], [McKenna et al. 2010], [Yorukoglu et al. 2016], [Shajii et al. 2018]) are used on a daily basis
in research laboratories and have fueled major discoveries such as establishing mutation-disease
links [Manolio et al. 2008] and detecting recent segmental duplications in the genome [Bailey et al.
2001].

Despite these advances, however, many contemporary genomic pipelines cannot scale with the
ever-increasing deluge of sequencing data, which has necessitated impractical and expensive ad
hoc solutions such as frequent hardware upgrades and constant (re-)implementation of underlying
software. Many promising methods are also too difficult to use and replicate because they are often
manually tuned for a single dataset, further fueling the recent replication crisis [Baker 2016; Peng
2011]. Finally, many tools are not maintained due to a lack of personnel, expertise and funds, which
has led to many abandoned code repositories that cannot easily be modified to suit researchers’
needs, although being vastly superior to the well-maintained alternatives in theory.

The root cause of these problems lies in the general-purpose languages that are used for bioinfor-
matics software development. The most popular programming languages, Python, R, and occasion-
ally C++, are not designed to efficiently handle and optimize for sequencing data workflows. Even
so, researchers often use high-level languages like Python or R to analyze NGS data since they
allow for the quick and easy expression of high-level ideas, despite a steep performance penalty.
Alternatively, a researcher may manually implement low-level optimizations in a language like C.
However, doing so requires a considerable time investment and often results in hard-to-maintain
codebases ridden with subtle bugs and tied to a particular architecture, especially in a field like
computational biology where many researchers are not software engineers by trade. These issues
are further exacerbated as the field shifts towards the use of third-generation portable sequencers
that are powered by resource-limited devices [Lu et al. 2016], which warrant entirely different
software designs and optimizations.
In this paper, we introduce Seq1, a domain-specific language (DSL) and compiler designed to

provide productivity and high performance for computational biology. Seq is a subset of Python,
and therefore provides Python-level productivity; yet, the compiler can generate efficient code
because the language is statically-typed with compile-time support for Python’s duck typing. Seq

1http://seq.csail.mit.edu
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provides data types tailored to computational genomics and uses domain-specific information to
optimize code. Our DSL allows computational biology experts to quickly prototype and experiment
with new algorithms as they would in Python, without imposing the burden of learning a new
language. Further, Seq is designed to hide all low-level, complex code optimizations from the end
user. Unlike libraries, the Seq compiler can perform optimizations such as operator fusion and
pipeline transformations, which we demonstrate to have a substantial benefit.
This paper makes the following contributions:

• We introduce Seq, the first domain-specific language and compiler for computational biology.
• We introduce novel genomics-specific data types (e.g. sequence and k-mer types) and opera-
tors (e.g. for reverse complementation, k-merization, etc.), further augmented with additional
language constructs such as compiler-optimized pipelines and genomic matching, to both
simplify the algorithmic descriptions of complex problems and to enable domain-specific
optimizations.

• We design a statically-typed subset of Python tailored for bioinformatics applications, which
operates entirely without expensive runtime type information and provides performance
comparable to (and in many cases better than) C’s.

• We demonstrate how to use parallelism, prefetching, pipelining and coroutines to drastically
improve the performance of Seq.

• We show that many important and widely-used NGS algorithms can be made up to 160×
faster than their Python counterparts as well as 2× faster than the existing hand-optimized
C++ implementations.

• We provide an implementation of the compiler and standard library.

The rest of the paper is organized as follows. Section 2 provides a primer on computational
genomics. Section 3 gives an example of the Seq language, followed by a description of the language
design and implementation in Section 4 and domain-specific optimizations in Section 5. Section 6
evaluates the language, Section 7 describes related work, and the paper concludes in Section 8.

2 A PRIMER ON COMPUTATIONAL GENOMICS

The fundamental data type in computational genomics is the sequence, which is conceptually a
string over Σ = {A,C,G,T}, representing the four nucleotides (also called bases) that comprise
DNA. Sequences come in several different forms, with varying properties such as length, error
profile and metadata. For example, genome sequencingÐa process that determines the DNA content
of a given biological sampleÐtypically produces reads: DNA sequences roughly 100 bases in length,
with a substitution error rate less than 1% and metadata consisting of a unique identifier and a
string of quality scores, indicating the sequencing machine’s confidence in each reported base of
the read. Reads are often analyzed in the context of a reference genome, a much longer (in the case
of human, 3 gigabase-length) sequence that represents the consensus sequence of an organism’s
genome in its entirety. A standard first step in nearly any sequence analysis pipeline is sequence
alignment, which is the process of identifying the position in the reference sequence to which a
particular read aligns with the smallest edit distance (although many different formulations of this
problem exist, such as finding all alignments under a given edit distance threshold). To this end,
reads are typically first split into fixed length-k contiguous subsequences called k-mers, which are
then queried in an index of k-mers from the reference to guide the alignment process, as shown
in Figure 1a. The index itself is an abstract data type that maps k-mers to positions (also called
loci) in the reference at which they appear, and is often implemented in practice as a hash table or
FM-index [Ferragina and Manzini 2004; Li and Homer 2010].
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(a) Overview of the alignment process for sequenc-
ing data. A sequencing machine produces a read :
a roughly 100 base pair DNA sequence randomly
sampled from the donor’s genome. Most alignment
algorithms then split this read into k-mersÐfixed
length-k subsequencesÐand query these k-mers in
an index of k-mers from the reference genome to de-
termine candidate alignment positions. Finally, full
dynamic programming alignment (typically via an
adapted Smith-Waterman algorithm) is carried out
to produce the final alignment.
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(b) Overview of de novo genome assembly from se-
quencing data. Sequenced reads are partitioned into
constituent k-mers, which are then taken to be nodes
in a de Bruijn graph whose edges represent (k − 1)-
length overlaps. Other formulations use (k − 1)-mers
(two for each original k-mer) as nodes with the origi-
nal k-mers represented by the edges. The assembled
sequence corresponds to an Eulerian path on this
graph.

Fig. 1. Visualizations of two standard computational genomics applications.

Due to the large memory footprints of these structures (roughly 5 gigabytes for optimized
FM-indices and tens of gigabytes for hash tables) given the size of the genome, coupled with their
poor cache performance, many alignment algorithms spend a significant fraction of their time
time stalled on memory accesses; the fraction of stalled cycles in these applications can be over
70% depending on the input dataset [Appuswamy et al. 2018]. Once a candidate locus is found
via the index (and possibly after several filtering steps), a full dynamic programming alignment is
performed, usually via a variant of the Smith-Waterman algorithm. Because dynamic programming
alignment is a key kernel in nearly all alignment algorithms, there has been substantial research into
designing hand-optimized implementations that exploit SIMD vectorization for better performance
[Farrar 2006; Suzuki and Kasahara 2018; Šošić and Šikić 2017]. One additional complication in
sequence alignment is that, while half of all reads will align in the so-called forward direction (i.e.
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without modification), the other half will only align in the reverse direction, meaning the read must
be reverse complemented before alignment. Reverse complementation of a sequence is an operation
where the sequence is reversed, and A-bases are swapped with T-bases while C-bases are swapped
with G-bases (and vice versa). The fact that half the reads are reverse complemented with respect
to the reference genome is a biproduct of the double-stranded nature of DNA, and ultimately leads
to reverse complementation being a very common operation that is done on sequences.

Alongside alignment, another common application in computational genomics is de novo assem-
bly, where the reads are used to łreconstructž the donor genome, in the absence of a predefined
reference sequence. While several approaches to this problem exist, perhaps the most common is
to again partition the reads into k-mers, build a de Bruijn graph whose vertices are these k-mers
with edges indicating that a given k-mer overlaps with another, and finally to find an Eulerian path
through this graph, which would encode the assembled sequence [Khan et al. 2018]. An overview
of this process can be seen in Figure 1b. As in alignment, there are several additional steps involved
in practice, such as counting and filtering k-mers, as well as error correction (as assembly is more
sensitive to errors than alignment) [Simpson and Durbin 2012].

Looking further downstream in the genomic analysis pipeline, computational biologists employ
a slew of techniques to handle the problems at hand. However, virtually any downstream model
or algorithm, regardless of its domain (machine learning, graph algorithms, etc.), is built on top
of the sequence manipulation building blocks described above. For example, structural variation
detection (the discovery of novel genomic rearrangements) starts by analyzing read alignment
irregularities to detect potential breakpoints of a rearrangement, and proceeds by correcting those
alignments via more advanced read alignment schemes that utilize k-mers and FM-indices. Many
other problems, such as mutation calling, gene copy number variation detection, genome-wide
association studies and cancer driver identification, proceed in a similar fashion. Thus, the common
threads between alignment, assembly and many other applications in the genomics domain are
the data types used (i.e. various types of sequences like reads, reference or fixed-length k-mers)
and the low-level operations performed on them (i.e. some form of matching, indexing, splitting
sequences into subsequences or k-mers, reverse complementation, etc.). However, these operations
are often embedded in vastly different higher-level algorithms; compare, for example, the dynamic
programming involved in alignment and the de Bruijn graph path finding involved in assembly. For
this reason, we chose to expose these genomics-specific types and operations in a comparatively
lower-level language than many other DSLs, as we discuss in detail below.

3 SEQUENCE k-MERIZATION AND SEEDING Ð AN EXAMPLE

Seq provides built-in language-level facilities for seamlessly expressing many of the types and
design patterns found in genomics applications. As an example, consider reading a set of sequencing
reads from a FASTQ file (a standard format for storing reads) and querying each read’s constituent
k-mers in a genomic index. This process is commonly referred to as seeding, and is the first step in
nearly any sequence alignment algorithm [Li and Homer 2010].

An implementation of 20-mer seeding in Seq is shown in Figure 2. Seq uses the familiar syntax
of Python, but incorporates several genomics-specific features and optimizations. k-mer types
like Kmer[20] (which represents a k-mer with 20 bases), for example, allow for easy k-merization
(the process of splitting a sequence into k-mers, done using kmers in Seq) and reverse comple-
mentation (using ~kmer). Similarly, pipeliningÐa natural model for thinking about processing
readsÐis easily expressible in Seq, where a user can define pipelines via the |> operator as shown
in the figure. Seq can also speed up expensive index queries via pipeline transformations that
allow for effective software prefetching (prefetch keyword). Compare this Seq implementation
to the C++ implementation also shown in Figure 2, which includes extensive boilerplate code for
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from sys import argv

from genomeindex import *

type K = Kmer[20]

# index and process 20-mers

def process(kmer: K,

index: GenomeIndex[K]):

prefetch index[kmer], index[~kmer]

hits_fwd = index[kmer]

hits_rev = index[~kmer]

...

# index over 20-mers

index = GenomeIndex[K](argv[1])

# stride for k-merization

stride = 10

# sequence-processing pipeline

(fastq(argv[2])

|> kmers[K](stride)

|> process(index))

#include <iostream>

#include <fstream>

#include <string>

#include <cstdlib>

#include "GenomeIndex.h"

char revcomp(char base) {

switch (base) {

case 'A': return 'T';

case 'C': return 'G';

case 'G': return 'C';

case 'T': return 'A';

default: return base;

}

}

void revcomp(char *kmer, int k) {

for (int i = 0; i < k/2; i++) {

char a = revcomp(kmer[i]);

char b = revcomp(kmer[k - i - 1]);

kmer[i] = b;

kmer[k - i - 1] = a;

}

}

void process(char *kmer, int k,

GenomeIndex &index) {

auto hits_fwd = index[kmer];

revcomp(kmer, k);

auto hits_rev = index[kmer];

revcomp(kmer, k); // undo

...

}

int main(int argc, char *argv[]) {

const int k = 20;

const int stride = 10;

auto *index = GenomeIndex(argv[1], k);

std::ifstream fin(argv[2]);

std::string read;

long line = -1;

while (std::getline(fin, read)) {

line++;

// skip over non-sequences in FASTQ

if (line % 4 != 1) continue;

auto *buf = (char *)read.c_str();

int len = read.size();

for (int i = 0; i + k <= len; i += stride)

process(kmer, k, index);

}

}

Fig. 2. Example k-merization and seeding application in Seq and C++.

reverse complementation and FASTQ iteration, and cannot perform the domain-specific pipeline or
encoding optimizations made by the Seq compiler, which in practice we find to attain upwards of
1.5ś2× speedups over optimized C++ implementations.

4 LANGUAGE DESIGN & IMPLEMENTATION

A critical barrier to any new language’s success in a particular field is its initial adoption, as most
potential users already have a set of languages, environments and packages with which they are
comfortable. This is particularly true in bioinformatics, where many researchers are biologists first
and programmers second. For this reason, the Seq language borrows the syntax and semantics of
PythonÐone of the most widely-used languages in bioinformaticsÐand adds several genomics-
oriented language features and constructs. Indeed, most of the preexisting Python code that is
used within the genomics community will compile and run without modification in Seq, ultimately
allowing the user to attain the performance of C/C++ with the programming ease of Python.
To achieve this, we designed a compiler with a static type system. It performs Python-style

duck typing and runtime type checking at compile time, completely eliminating the substantial
runtime overhead imposed by the reference Python implementation, CPython, and most other
Python implementations alike. Unlike these, we reimplemented all of Python’s language features
and built-in facilities from the ground up, completely independent of the CPython runtime. The Seq
compiler uses an LLVM [Lattner and Adve 2004] backend, and in general uses LLVM as a framework
for performing general-purpose optimizations. Seq programs additionally use a lightweight (<200
LOC) runtime library for I/O and memory allocation; for the latter, CPython’s reference counting is
replaced with the Boehm garbage collector [Boehm and Weiser 1988], a widely-used conservative
GC that is a drop-in replacement for malloc.
(łPythonž is henceforth used as a synonym for łCPythonž unless otherwise specified.)
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4.1 Building a Statically-Typed Python

Python is an interpreted language, and does not check for type consistency until necessary during
runtimeÐeven then, only the existence of methods required by a given program is checked, an
approach commonly referred to as duck typing. This simple and clean design, together with a
well-thought-out syntax, enables rapid prototyping and a great deal of flexibility without imposing
artificial language design constraints, which is partly what has made Python popular in many
different domains, bioinformatics notwithstanding.
However, this dynamism comes with a hefty price in terms of performance, as almost any

method invocation or variable reference requires expensive dictionary lookups during runtime.
Furthermore, the lack of type annotations and the dynamic nature of objects necessitates delaying
type checks until a given object is actually used, which can sometimes be days after the Python
script was initially run in the case of long-running programs (a common problem in bioinformatics,
where many scripts take a long time to complete due to ever-growing input datasets, whereby rapid
initial development is paid for by a slow debugging cycle). Moreover, this lazy approach to typing
requires the developer to include numerous manual type checks and large test suites to ensure type
soundness during execution. Python versions 3.6 and later attempt to mitigate this problem with
the optional mypy type checker, which adds support for type annotations with ahead-of-time type
checks to the core language (and whose syntax we adopted for consistency). However, mypy must
still interoperate with the Python runtime, and as such could leave some types ambiguous (e.g.
as Any), which does not map easily to LLVM IRÐthe backbone of Seq’s optimization framework.
PyPy, on the other hand, uses a restricted subset of Python called łRPythonž which can be statically
typed, but again does not fit our purposes as it performs type deduction at runtime and allows
arbitrary non-RPython code to be mixed in. By contrast, the Seq compiler has a complete view of
all types at compilation time, which it uses to avoid all runtime overhead.

In most domains, a lack of performance is a fair price to pay for Python’s ease and expressibility
as compared to the alternatives. However, this is significantly problematic in the context of compu-
tational biology, where an average dataset is on the order of hundreds of gigabytes in size, and
where even a simple loop construct incurs enough overhead to render Python code hundreds of
times slower than its C counterpart. Highly optimized Python implementations, such as PyPy or
Numba, do not sufficiently address these problems as they are either bound to the same constraints
as the original (CPython) implementation (i.e. dynamic runtime and lazy duck typing), or limited
in scope solely to numerical types.
Despite its array of dynamic and runtime-oriented features, the full flexibility provided by

Python is not commonly used in many domains. While type flexibility and dynamic object/type
modifications are, for example, crucial for rapid web development, they are almost completely
absent in high-performance scientific applications, and arguably even slow down the development
cycle of such applications. For these reasons, we designed a strongly-typed alternative to Python’s
runtime, which captures the subset of its dynamic features that is commonly used in the field of
computational biology, and that can be resolved at compile time. In doing so, we trade some largely
unneeded dynamism for greatly improved performance, which by contrast is gravely needed in the
field.

Basic Types. Python has a relatively simple type system in which all types derive from the object
base type. Some primitive types (such as integers and floats) are, for performance reasons, imple-
mented directly in C within CPython’s runtime. However, even the C implementations of these
types carry a significant overhead, as they still have to interoperate with the rest of the Python
ecosystem. As can be seen in Figure 3, a simple float objectÐarguably the most lightweight type
Python hasÐconsists of three pointers, an integer and finally the float value itself. This łmetadataž
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x = 3.14

LOAD_CONST 3.14

STORE_FAST x

x: float = 3.14

%x = alloca double, align 8

...

store double 3.140000e+00, double* %x

typedef struct {

struct _object *_ob_next;

struct _object *_ob_prev;

Py_ssize_t ob_refcnt;

struct _typeobject *ob_type;

} PyObject;

...

typedef struct {

PyObject ob_base;

double ob_fval;

} PyFloatObject;

...

x = (PyFloatObject){.ob_fval = 3.14, ...};

.LCPI0_0:

.quad 4614253070214989087

main:

...

movsd %xmm0, -8(%rbp)

...

CPython Seq

Fig. 3. Seq versus CPython during compilation and execution of a simple float assignment. CPython compiles
to bytecode that omits all type information, and instead relies on runtime type information by virtue of
metadata stored alongside the actual float value within the PyFloatObject structure. By contrast, Seq
infers the type of x at compile time and compiles the assignment to LLVM IR, which encodes type information.
LLVM in turn compiles this to assembly or machine code.

is necessary for Python’s runtime type resolution and reference counting (we do note, however,
that the _ob_next and _ob_prev pointers are compiled into the structure definition conditionally,
and can be omitted). For these reasons, all high-performance Python libraries (such as NumPy)
achieve their speed by dealing primarily with arrays or matrices that can be abstracted away from
the Python runtime to the C level.

Seq follows a different design philosophy in terms of types. Primitive types such as int, bool and
floatmap directly to the equivalent LLVM IR types i64, i8 and double, respectively. As such, they
incur no overhead whatsoever. Nevertheless, each of these primitives is still logically a fully-fledged
type with a set of associated methods that can be extended by the user (e.g. type int has a method
__add__ for addition that can be statically patched); there is no overhead as all method dispatches
are resolved by the compiler. Furthermore, Seq inlines all magic method invocations on primitive
types (e.g. an int.__add__ call is compiled to a single LLVM add instruction).

More complex types typically compile to an LLVM aggregate type or a pointer to one. Aggregate
types are used in place of Python’s tuples and named tuples (represented in Seq by a new type

construct), and are fully isomorphic to C structs. Pointers to aggregate typesÐor, more precisely,
reference typesÐare used to implement classes (represented in Seq by a class construct). As usual,
aggregates are passed by value while reference types are passed, unsurprisingly, by reference. For
example, the following Seq expressions have types mapping to the indicated LLVM types:

Seq expression LLVM IR type Description

"hello world" {i64, i8*} struct of length and character pointer
(1, 0.5, False) {i64, double, i8} struct of tuple element types
MyClass() i8* pointer to heap-allocated MyClass struct
MyClass().foo {i8*, void (i8*)*} struct of self and method function pointer

where the last example assumes foo is defined to be a method of MyClass that takes no extra
arguments and does not return a value (i.e. def foo(self: MyClass) -> void).

In order to maintain compatibility with Python, class members can be deduced automatically by
lexically analyzing a given class’s methods. Python’s built-in collection typesÐlist, set and dictÐ
are all modeled as reference types in Seq and bootstrapped as standard library classes implemented
in Seq itself.
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class Node[T]:

next: Node[T]

data: T

def item[T,U](n: Node[T], f: function[T,U]) -> list[U]:

return [f(n.data)]

n = Node(None, 5)

def foo(x: int) -> str:

return str(x)

i = item(n, foo) # type parameters deduced as int and str

i = item[int,str](n, foo) # explicit specification also OK

Fig. 4. Seq’s explicit generic type parameters.

Generic Functions, Methods and Types. Python’s lack of static typing allows any function to take
objects of any type as an argument. This design philosophy does not translate well to strongly-typed
compiled languages that lack runtime type information, as they typically require each function to
explicitly specify input and output types.
Code compatibility with Python is of paramount importance for Seq, as it is unreasonable to

expect users to manually annotate (or rewrite) their large codebases. Thus, Seq handles this problem
by treating each Python function that does not provide type annotations as a generic function, where
one or more input or output types cannot be deduced from annotations or a lexical analysis of the
function body. In this case, each argument without a type annotation (referred to as an implicit

generic) is replaced by a concrete type on demand at compile time. For example, on encountering
f(42) as in Figure 5, the compiler checks whether there is an instantiation of f that accepts an
int argument, and if so routes the call there. If not, the compiler clones f’s AST and creates a
new instantiation of the function that specifically accepts an int argument (a similar approach
is taken by Julia [Bezanson et al. 2012]). This newly created function would produce an error if,
for example, int did not contain an appropriate __mul__ method as required in the function body.
Instantiations are created lazily on demand.
Unlike Python, Seq allows users to explicitly mark functions as generic and to specify explicit

generic type parameters, allowing more complex type relationships to be expressed. For example,
Figure 4 shows a higher-order function that only operates on generic nodes and functions (as T is
an explicit generic type parameter). The argument types of item ensure that the argument function
can take the argument node’s data as a parameter. Note that it is impossible for Python-style
unnamed generics to cover this use-case without explicit isinstance checks. As shown in Figure 4,
explicit type parameterization is optional even when explicit generics are present, as Seq performs
type parameter inference whenever possible.

Analogous reasoning applies to classes, where class members can be generic. Examples of such
classes include list[T] and dict[Key,Value]. Unlike functions, implicit generics are disallowed in
classes as they would impair readability and could lead to ambiguous instantiations during the class
member deduction stage. Note that, as far as Seq is concerned, different instantiations of functions
and classes are treated as different types. Thus, f(x: list[int]) and f(x: list[float]) are
represented internally as two separate functions, which allows Seq to optimize each instantiation
according to its concrete argument types (albeit by sacrificing any kind of polymorphism, at least
in the current implementation).

Duck Typing. Seq’s type system is designed to behave like Python’s if one uses Seq as a drop-in
Python replacement without specifying explicit types. As long as the methods of every type are
known at compile time (an invariant strictly enforced by Seq as it does not allow type modifications
at runtime), the compiler will deduce the argument/return types of all methods and instantiate any
generic method as appropriate. Indeed, we find that this static instantiation-on-demand simulates
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def f(x):

return 3*x + 1

def f[T](x: T):

return 3*x + 1

def f(x: int) -> int:

return 3*x + 1

def f(x: float) -> float:

return 3*x + 1

def f(x: int) -> int:

return \

int.__add__(

int.__mul__(3, x), 1)

def f(x: float) -> float:

return \

float.__add__(

float.__mul__(3, x), 1)

f(42) f(3.14)

Fig. 5. Seq’s implicit generic type parameters. The function f is declared to take a parameter x of unspecified
type; the Seq compiler treats the type of x as generic and clones f on demand for each new input type, and
subsequently deduces return types.

duck typing reasonably well. Explicit type annotations enforce an extra layer of typing discipline
on top of duck typing (à la mypy), and as such coexist peacefully with it.

Type Inference. Any strongly typed language needs a way to infer the type of each variable present in
a given program. Languages such as C or Pascal require end users tomanually annotate each variable
with a type. Other languages, such as C++11 or newer versions of Java, support uni-directional
type inference by automatically deducing types of left-hand side terms based on right-hand side
types. Initial versions of Seq also used uni-directional type inference, allowing users to say, for
instance, x = 5 instead of x: int = 5.
However, uni-directional type inference is unable to handle a few common constructs in the

Python language, including empty lists (e.g. a = []), nullables (e.g. a = None) and lambda functions
(e.g. lambda x: x+1). With uni-directional inference, each of these constructs requires the user to
provide manual type annotations (e.g. a: list[int] = []) even if the type can be inferred later.
Because of this, Seq uses bi-directional type inference, implemented on top of the Hindley-Milner
inference algorithm, to automatically annotate such types2. We slightly modified the standard
Hindley-Milner algorithm to support generic classes, functions and instantiations on demand. We
also enforce an invariant where all types within a scope (be it a function scope, class scope or the
top-level scope) must be fully deduced by the end of that scope. This implies that a function cannot
return a non-instantiated generic type: def f(): return [], for example, will cause a compilation
error, but def f[T]() -> list[T]: return [] will compile successfully. Any weakly typed
variable or lambda is instantiated as soon as possible (note that Seq treats lambdas as weakly typed
constructs and does not generalize themÐgeneralizations are only applied to generic functions
defined with def and generic classes).

Limitations. The strongly-typed nature of Seq does come with some limitations compared to
conventional Python. Since all types must be fixed at compile time, a Seq program cannot (for
example) create a collection of elements (e.g. list) with varying types. Seq’s tuples are also less
versatile than Python’s: they cannot be iterated over if they contain different types, and a list
cannot be cast to a tuple easily, as tuple sizes must be known at compile time. Seq also does not
support method or class monkey-patching at runtime (but it does support this at compile timeÐsee

2This is a recent addition to Seq, and is currently still in the testing stage. At the time of writing, Seq’s master branch
uses uni-directional type deduction with added support for generics and type-less nullables. Note that this uni-directional
version does not support lambdas.
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C++ Seq

for (i = 0; i < 3; i++)

print(i);

for i in range(3):

print i

entry:

%g = call i8* @range(i64 3)

br label %for

for:

call void @llvm.coro.resume(i8* %g)

%done = call i1 @llvm.coro.done(i8* %g)

br i1 %done, label %exit, label %body

body:

%p0 = call i8* @llvm.coro.promise(i8* %g, i32 8, i1 false)

%p1 = bitcast i8* %p0 to i64*

%i = load i64, i64* %p1

call void @print(i32 %i)

br label %for

exit:

call void @llvm.coro.destroy(i8* %g)

call void @print(i64 0)

call void @print(i64 1)

call void @print(i64 2)

-O3

LLVM coro. passes + -O3

Fig. 6. Compilation of Seq generators. Two semantically identical loops in C++ and Seq are shown in the
uppermost boxes. Seq generators are implemented as LLVM coroutines, iteration over which in LLVM IR
is shown in the middle box. The LLVM coroutine passes subsequently deduce that the łrangež coroutine is
created and destroyed in the same function without escaping, and inline/unroll the coroutine to produce
code identical to the C++ example’s.

Type Extensions for details), nor indexing into a heterogeneous tuple with a non-constant index
(as the type of the resulting expression would be ambiguous). Our type checker and instantiation
algorithm also require each function to have a single return type. Finally, while Seq supports class
extensions, it does not support subtyping (nor, therefore, fully-fledged polymorphism), meaning
that class A; class B(A)will copy A’s methods to Bwithout making B a subtype of A per se. With
these trade-offs, Seq can perform all type-checking at compile time without sacrificing any runtime
cycles for type enforcement, and without significantly hindering the expressibility of Python’s
syntax. We have found that, especially in bioinformatics software, these language capabilities are
seldom required (or at least can almost always be replaced by Seq-conforming alternatives with
minimal effort); indeed, we are not aware of any genomics application that directly relies on such
features. Consequently, these features are omitted in Seq at the time of writing. A brief list of
differences between Seq and Python can be found in Appendix A.

4.2 Coroutines and Generators

GeneratorsÐPython’s answer to streams and lazy data structuresÐare an integral part of most
Python/Seq programs: even simple for-loops are realized as an iteration over a generator. While
it would certainly be possible to implement generators as they are in CPython (heap-allocated
generator objects that expose a __next__ method for obtaining the next generated value), this
would incur a substantial overhead, given how frequently generators are used.

Instead, Seq employs LLVM coroutines (also used by Clang versions 6 and later to implement
the C++ Coroutine TS [Nishanov 2017]). The advantage of this approach is that, when a generator
is created and destroyed in the same function without escaping (by far the most common case in
Python, similar to the for-loop example), LLVM’s coroutine passes are able to optimize out all the
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associated coroutine overhead, like coroutine frame allocation etc. Thereby, a typical Seq for-loop
ultimately compiles to identical LLVM IR as the same loop expressed in C or C++, as shown in
Figure 6.

4.3 Additional and Genomics-Specific Language Features

dna = s'ACGTACGTACGT' # sequence literal

# (a) split into subsequences of length 3

# with a stride of 2

for sub in dna.split(3, 2):

print sub

# (b) split into 5-mers with stride 1

for kmer in dna.kmers[Kmer[5]](1):

print kmer

print ~kmer # reverse complement

# (c) convert entire sequence to 12-mer

kmer = Kmer[12](dna)

Fig. 7. Example of seq and k-mer type usage.

Sequence and k-mer Types. Seq’s namesake type is
indeed the sequence type: seq. A seq object repre-
sents a DNA sequence of any length andÐon top
of general-purpose string functionalityÐprovides
methods for performing common sequence opera-
tions such as splitting into subsequences, reverse
complementation and k-mer extraction. Alongside
the seq type are k-mer types, which are dependent
on the k-mer length. For example, Kmer[1] repre-
sents a 1-mer, Kmer[2] a 2-mer and so on, up to
Kmer[1024] (a reasonable upper bound on k-mer
length in nearly any genomics application).
Sequences can be seamlessly converted between

these various types, as shown in Figure 7. In fact, this
pattern is prevalent in many genomics applications, where longer sequences (be it a read, reference
or anything else) are split into their constituent k-mers, and each is subsequently processed.

dna = s'ACGTACGTACGT' # sequence literal

# (a) split into subsequences of length 3

# with a stride of 2

dna |> split(..., 3, 2) |> echo

# (b) split into 5-mers with stride 1

def f(kmer):

print kmer

print ~kmer

dna |> kmers[Kmer[5]](1) |> f

Fig. 8. Example of pipeline usage in Seq, where
the two loops from Figure 7 are represented as
pipelines.

Pipelines and Partial Calls. Pipelining is a natural
model for thinking about processing genomic data,
as sequences are typically processed in stages (e.g.
read from input file → split into k-mers → query
k-mers in index→ perform full dynamic program-
ming alignment → output results to file), and are
almost always independent of one another as far as
this processing is concerned. Because of this, Seq
supports a pipe operator: |>, similar to F#’s pipe
and R’s magrittr (%>%) [Bache and Wickham 2014].
Pipeline stages in Seq can be regular functions or
generators. In the case of standard functions, the
function is simply applied to the input data and the
result is carried to the remainder of the pipeline,
akin to F#’s functional piping. If, on the other hand, a stage is a generator, the values yielded by
the generator are passed lazily to the remainder of the pipeline, which in many ways mirrors how
piping is implemented in Bash. Note that Seq ensures that generator pipelines do not collect any
data unless explicitly requested, thus allowing the processing of terabytes of data in a streaming
fashion with no memory and minimal CPU overhead.
An example of pipeline usage is shown in Figure 8, which shows the same two loops from

Figure 7, but as pipelines. First, note that split is a Seq standard library function that takes three
arguments: the sequence to split, the subsequence length and the stride; split(..., 3, 2) is a
partial call of split that produces a new single-argument function f where f (x) = split(x, 3,

2). The undefined argument(s) in a partial call can be implicit, as in the second example: kmers
(also a standard library function) is a generic function parameterized by the target k-mer type and
takes as arguments the sequence to k-merize and the stride; since just one of the two arguments
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# (a)

def has_spaced_acgt(s: seq) -> bool:

match s:

case s'A_C_G_T...':

return True

case t if len(t) >= 8:

return has_spaced_acgt(s[1:])

default:

return False

# (b)

def is_own_revcomp(s: seq) -> bool:

match s:

case s'A...T' or s'T...A' or s'C...G' or s'G...C':

return is_own_revcomp(s[1:-1])

case s'':

return True

default:

return False

# (c)

type BaseCount(A: int, C: int, G: int, T: int):

def __add__(self: BaseCount, other: BaseCount):

a1, c1, g1, t1 = self

a2, c2, g2, t2 = other

return (a1 + a2, c1 + c2, g1 + g2, t1 + t2)

def count_bases(s: seq) -> BaseCount:

match s:

case s'A...': return count_bases(s[1:]) + (1,0,0,0)

case s'C...': return count_bases(s[1:]) + (0,1,0,0)

case s'G...': return count_bases(s[1:]) + (0,0,1,0)

case s'T...': return count_bases(s[1:]) + (0,0,0,1)

default: return BaseCount(0,0,0,0)

Fig. 10. Example usages of match on sequences in Seq. Example (a) checks if a given sequence contains the
subsequence A_C_G_T, where _ is a wildcard base; such an operation may be present in an application that
uses spaced seedsÐnon-contiguous k-mers that are shown to improve accuracy in some settings [Kucherov
et al. 2015]. Example (b) checks if the given sequence is its own reverse complement, which is useful in certain
sequence hashing schemes [Ondov et al. 2016]. Finally, example (c) counts how many times each base appears
in the given sequence, which can e.g. be used to determine GC content (the fraction of bases that are G or C)
[Šmarda et al. 2014].

is provided, the first is implicitly replaced by ... to produce a partial call (i.e. the expression is
equivalent to kmers[Kmer[5]](..., 1)). Both split and kmers are themselves generators that
yield subsequences and k-mers respectively, which are passed sequentially to the last stage of the
enclosing pipeline in the two examples.

def describe(n: int):

match n:

case m if m < 0:

print 'negative'

case 0:

print 'zero'

case m if 0 < m < 10:

print 'small'

default:

print 'large'

Fig. 9. Example usage of match.

Pattern Matching. Seq provides the conventional match
construct, which works on integers, lists, strings and
tuples. An example usage of match is shown in Figure 9.
A novel aspect of Seq’s match statement is that it also
works on sequences, and allows for concise recursive
representations of several sequence operations such as
subsequence search, reverse complementation tests and
base counting, which are shown in Figure 10. Sequence
patterns consist of literal ACGT characters, single-base
wildcards (_) or łzero or morež wildcards (...) that match
zero or more of any base.
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cdef sqrt(float) -> float

cdef puts(ptr[byte])

print sqrt(100.0)

puts("hello world".c_str())

Fig. 11. Example of cdef function usage in
Seq with C standard library functions sqrt
and puts.

External Functions. Seq enables seamless interoperability
with C and C++ via cdef functions, as shown in Figure 11.
Primitive types like int, float, bool etc. are directly
interoperable with the corresponding types in C/C++,
while compound types like tuples are interoperable with
the corresponding struct types. Other built-in types like
str provide methods to convert to C analogs, such as
c_str() as shown in Figure 11.

extend int:

def to(self: int, other: int):

for i in range(self, other + 1):

yield i

def __mul__(self: int, other: int):

print 'caught int mul!'

return 42

for i in (5).to(10):

print i # 5, 6, ..., 10

# prints 'caught int mul!' then '42'

print 2 * 3

Fig. 12. Example of type extension in Seq.

Type Extensions. Seq provides an extend keyword
that allows programmers to add and modify meth-
ods of various types within the current module at
compile time, including built-in types like int or
str. This allows much of the functionality of built-
in types to be implemented in Seq as type extensions
in the standard library. Figure 12 shows an exam-
ple where the int type is extended to include a to
method that generates integers in a specified range,
as well as to override the __mul__ magic method to
łinterceptž integer multiplications. Note that all type
extensions are performed strictly at compile time
and incur no runtime overhead.

5 OPTIMIZATIONS

5.1 Sequence Encoding

The first and most straightforward optimization made by Seq is to 2-bit encode k-mer objects, as is
commonly done in practice in performance-critical applications. In particular, we map k-mer types
to the LLVM IR type iN where N = 2k . This has the advantage of allowing k-mers up to k = 32 to
fit into a single machine word on 64-bit architectures.
In order to support fast k-mer operations, we also conditionally compile various lookup tables

into any Seq program that requires them:

• For reverse complementation, we create a complete 4-mer reverse complement lookup table,
implemented as a global length-44 array indexed by encoded 4-mers, storing the encoded
reverse complement of the given 4-mer at each index (hence, this array requires 256 bytes).

Then, using the property s1 ∥ s2 = s2 ∥ s1 (where s denotes the reverse complement of a
sequence s and ∥ denotes concatenation), we can construct the reverse complement of an
arbitrary k-mer by partitioning it into 4-mers and concatenating (i.e. shifting and bitwise-
ORing) their reverse complements in reverse, each of which is given by the lookup table.
For k < 4, or the remainder of a longer k-mer whose length is not divisible by 4, we can
simply pad with A-bases to obtain a 4-mer then remove the corresponding T-bases in the
reverse complemented 4-mer (recall the reverse complement of A is T). Another noteworthy
aspect of this scheme is that, if we choose our encoding wisely, we get reversal for free
as well. Specifically, if we 2-bit encode base b ∈ {A,C,G,T} as f (b) so that f (A) = ∼f (T)
and f (C) = ∼f (G) (where ∼ is bitwise-NOT), then we can undo the łcomplementationž
component of the reverse complement to obtain the original sequence in reverse by applying
a simple bit inversion.

• For converting general sequences into k-mers, we compile a second lookup table that maps
the ASCII characters A, C, G and T to their 2-bit encoded values, implemented also as a
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length-256 array. The encoding process then iteratively looks up each base in this array to
construct the encoded k-mer.

• For converting k-mers back to sequences, we use a simple length-4 array that maps the 2-bit
encodings back to ASCII. We note, however, that this is a far less common conversion than
the previous one.

5.2 Parallelism

dna = s'ACGTACGTACGT' # sequence literal

# (a) split into subsequences of length 3

# with a stride of 2

dna |> split(..., 3, 2) ||> echo

# (b) split into 5-mers with stride 1

def f(kmer):

print kmer

print ~kmer

dna |> kmers[Kmer[5]](1) ||> f

Fig. 13. Example of parallel pipeline usage in Seq,
where the two pipelines from Figure 8 are parallelized.

CPython and many other implementations
alike cannot take advantage of parallelism due
to the infamous global interpreter lock, a mu-
tex that protects accesses to Python objects,
preventing multiple threads from executing
Python bytecode at once. Unlike CPython, Seq
has no such restriction and supports full mul-
tithreading. To this end, Seq supports a parallel
pipe operator ||>, which is semantically sim-
ilar to the standard pipe operator except that
it allows the elements sent through it to be
processed in parallel by the remainder of the
pipeline. Hence, turning a serial program into a
parallel one often requires the addition of just a
single character in Seq, as shown by Figure 13.
Further, a single pipeline can contain multiple parallel pipes, resulting in nested parallelism.
Internally, the Seq compiler uses Tapir [Schardl et al. 2017] with an OpenMP task backend to

generate code for parallel pipelines. Logically, parallel pipe operators are similar to parallel-for
loops: the portion of the pipeline after the parallel pipe is extracted into a new function that is
called by the OpenMP runtime task spawning routines (as in #pragma omp task in C++), and a
synchronization point (#pragma omp taskwait) is added after the outlined segment. Lastly, the
entire program is implicitly placed in an OpenMP parallel region (#pragma omp parallel) that is
guarded by a łsinglež directive (#pragma omp single) so that the serial portions are still executed
by one thread (this is required by OpenMP as tasks must be bound to an enclosing parallel region).

5.3 Software Prefetching for Faster Genomic Index Lookups

Large genomic indicesÐranging from several to tens or even hundreds of gigabytesÐused inmany
applications in the field result in extremely poor cache performance and, ultimately, a substantial
fraction of stalled memory-bound cycles [Appuswamy et al. 2018; Wang et al. 2012; Zhang et al.
2007]. For this reason, Seq performs pipeline optimizations to enable data prefetching and to hide
memory latencies, an idea that has also been explored in previous work [Chen et al. 2007; Kiriansky
et al. 2018]. The programmer must provide just:

• a __prefetch__ magic method definition in the index class, which is logically similar to
__getitem__ (indexing construct) but performs a prefetch instead of actually loading the
requested value (and can simply delegate to __prefetch__ methods of built-in types);

• a one-line prefetch hint indicating where a software prefetch should be performed, which
can typically be just before the actual load.

For instance, an index that consists of a single array v may implement __getitem__(self,x) by
returning self.v[x], in which case it would implement __prefetch__(self,x) by returning
self.v.__prefetch__(x); i.e. the prefetch is delegated to the underlying array (which may in
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class MyIndex: # abstract k-mer index

...

def __getitem__(self: MyIndex, kmer: Kmer[20]):

# standard __getitem__

def __prefetch__(self: MyIndex, kmer: Kmer[20]):

# similar to __getitem__, but performs prefetch

type k20 = Kmer[20]

def process(read: seq, index: MyIndex):

...

for kmer in read.kmers[k20](step):

prefetch index[kmer], index[~kmer]

hits = index[kmer]

hits_rev = index[~kmer]

...

return x

type k20 = Kmer[20]

def process(read: seq, index: MyIndex):

...

for kmer in read.kmers[k20](step):

index.__prefetch__(kmer)

index.__prefetch__(~kmer)

yield

hits = index[kmer]

hits_rev = index[~kmer]

...

yield x

FASTQ("reads.fq") # input reads

|> process(index) # index lookup

|> postprocess # output results

M = ... # num. concurrent tasks

N = 0 # next coroutine slot to fill

k = 0 # next coroutine to execute

states = array[generator[T]](M)

for read in FASTQ("reads.fq"):

if N < M:

states[N] = process(read, index)

N += 1

else:

while True:

g = states[k]; g.next()

if g.done():

postprocess(g.promise())

g.destroy()

states[k] = process(read, index)

break

k = (k + 1) % M

for i in range(N):

g = states[i]

if not g.done():

while not g.done(): g.next()

postprocess(g.promise())

g.destroy()

__prefetch__magic method

Function transformations

Pipeline transformations

Fig. 14. Transformations performed by Seq to enable effective index prefetching. Colored segments under
pipeline transformations indicate where the specific stages show up in the resulting code. FASTQ is the
standard file format for storing sequencing reads.
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turn be delegated to a raw pointer, which has intrinsic methods for actually performing the prefetch
via an LLVM prefetch instruction).

A full example is shown in Figure 14. First, prefetch statements themselves compile to explicit
invocations of the __prefetch__ method, and functions containing prefetch statements (such as
process in the figure) are converted by the compiler into coroutines that yield after each prefetch.
Then, pipelines containing such functions as stages are transformed into loops that dynamically
schedule multiple invocations of the newly created coroutine, where once one invocation yields or
terminates, another is resumed or created by the scheduler, respectively. The transformed pipeline
in Figure 14, for example, has several noteworthy components:

• M is the number of concurrent coroutines to be processed, which ideally should be large
enough to saturate the memory bandwidth of the processor as prefetches are performed. In
practice, we choose M conservatively to be 16, which also allows for software prefetching
performed by other parts of the system, such as the garbage collector.

• N is a variable indicating how many of the M coroutine slots have been filled, and is only used
at the start of the loop to actually fill the slots.

• k is the next coroutine slot to be resumed by the loop.
• states is the array holding the M coroutine handles/frames (which have type generator in
Seq). In reality this array is stack-allocated in the entry block of the function containing the
pipeline. (T is simply the original return type of process.)

The code generated in the loop body is that of a simple dynamic scheduler where:

• The if N < M component initially populates the array of pending coroutines states.
• Inside the else clause is a loop that iterates cyclically through states and resumes each
coroutine. If a coroutine terminates (i.e. if g.done()), then the value returned by the
coroutine (given by g.promise()) is sent through the remainder of the pipeline, as it would
be in the original untransformed pipeline; then, the coroutine is destroyed and a new one is
created to take its place.

• The final loop simply completes any remaining coroutines that have not yet terminated.
Since the number of such coroutines is at most M, this loop just executes them sequentially.

By employing this scheme, the latency of one coroutine’s cache miss can be overlapped with
useful work from another, increasing memory-level parallelism and overall throughput. Note that
these optimizations depend only on the existence of a prefetch instruction, which is the case for
nearly any modern architecture.

6 EVALUATION

We evaluated the performance of Seq on the following three benchmark suites, designed to mimic
both hypothetical and real-world genomics applications:

(1) The Computer Language Benchmarks Game suite [Gouy [n. d.]] restricted to DNA benchmarks
(3 benchmarks)

(2) Sequence manipulation suite, developed in-house (3 benchmarks)
(3) Genomic index queries (2 benchmarks)

We compared Seq with C++ (compiled with both GCC v7.4.0 and Clang v6.0.1), Julia v1.0.3, Python
v2.7.15, PyPy v2.7.13 [Bolz et al. 2009], Shed Skin v0.9.4 [Dufour 2006] and Nuitka v0.6.2 [Hayen
2012]. Other łcompiled Pythonž implementations such as Numba are geared towards numerical
rather string or DNA processing, and had issues efficiently compiling our benchmarks, or were
abandoned. All experiments were run on a dual-socket system with Intel Xeon X5690 CPUs (3.46
GHz) with 6 cores each (totalling 12 cores and 24 hyper-threads) and 138GB DDR3-1333 RAM with
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Fig. 15. Seq evaluation results on several genomics benchmarks, showing speedups over Clang. The Seq
implementations used in these charts use Seq-specific types and constructs that are not available in Python.
Note that only Seq, Clang and GCC were tested on the SNAP and SGA benchmarks. Seq performs at least as
good as (and in many cases much better than) the C++ implementations in nearly every benchmark, excluding
FASTA which, as we note in the text, is not as common a real-world application as the others.

12MB LLC per socket. C++ implementations were compiled with -O3 -march=native. Julia was
run with --check-bounds=no -O3 parameters. Shed Skin was run with -l -o optimizations, and
Nuitka was run with the noasserts,no_warnings options enabled. Note that Seq binaries (unlike
C++ or Julia) do include bounds checks.
For the Benchmarks Game suite, we used the FASTA, RevComp and k-nucleotide microbench-

marks. Other benchmarks in this suite are not directly relevant to genomics or bioinformatics in
general, but we expect Seq’s performance on them to be on par with that of other LLVM-backed
languages. Briefly, the FASTA benchmark entails generating random sequences in the FASTA format;
RevComp entails reverse complementing a set of longer sequences, which is done through Seq’s
domain-specific sequence type; k-nucleotide entails counting k-mers of various lengths, which we
implemented using Seq’s k-mer types.
For the in-house suite, we designed three microbenchmarks that capture common genomics

operations on a large set of reads:

(1) RC: Output the reverse complement of each read, also implemented using sequence types.
Unlike RevComp, this benchmark runs on millions of shorter reads rather than a few long
reads.

(2) 16-mer: Count the number of symmetric 16-mers in all reads (where a 16-mer is symmetric if
its first half is identical to the reverse complement of its second half). The Seq implementation
for this benchmark uses match on sequences, and is based on example (b) in Figure 10.

(3) CpG: Count the number of CpG regions (i.e. regions that consist of C and G characters, such
as CGC but not CCC or GGG as they lack a G and C, respectively) in all reads, and report the
lengths of the shortest and longest CpG regions in the sample.

The final benchmark suite demonstrates the utility of Seq’s domain-specific genomic index query
optimizations. Here, we use the genomic indices implemented in the widely-used tools SNAP v1.0
(beta 23) [Zaharia et al. 2011] (a sequence alignment tool) and SGA v0.10.15 [Simpson and Durbin
2012] (a de novo assembly tool). SNAP uses a hash table of 20-mers, which we re-implemented
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Table 1. Seq runtime compared to Python, PyPy, Shed Skin, Nuitka and Julia (seconds). łSeq (Py.)ž (Pythonic
Seq) uses the same code as Python, whereas łSeq (Id.)ž (idiomatic Seq) uses Seq-specific language features
and constructs.

Seq (Py.) Python PyPy Shed Skin Nuitka Julia Seq (Id.) Speedup

FASTA 111.3 68.6 15.6 99.4 7.1 10.7 0.7ś10×
RevComp 97.5 15.5 16.0 54.3 9.1 1.3 7ś75×
k-nucleotide 255.8 59.2 211.8 174.1 196.0 19.7 10ś13×

RC 195.1 2,160.0 231.2 912.1.6 913.7 764.7 48.3 5ś45×
CpG 60.6 3,591.0 203.7 1,336.9 1,596.4 947.7 60.6 16ś60×
16-mer 159.8 15,440.2 463.4 2,139.9 6,042.3 1,030.9 95.6 5ś161×

from scratch in Seq (see Appendix B). SGA, on the other hand, uses an FM-index, whose C++
implementation we wrapped in Seq. Both indices are used to query k-mers from our test dataset.
For both SNAP and SGA, we compared the performance of our base Seq implementation, a Seq
version that performs pipeline optimizations for index prefetching (code difference of one line) and
a C++ implementation (results shown at the bottom of Table 2). Both of these benchmarks consume
roughly 30GB of RAM.
Each benchmark was executed five times for each language/compiler, and the averages are

reported (with the exception of Julia, Python, Shed Skin, PyPy and Nuitka, which were run three
times as they took orders of magnitude longer in some cases). The input dataset consisted of
100 million 75bp DNA reads randomly chosen from the HG00123 sample [1000 Genomes Project
Consortium et al. 2010] (because SGA’s index is an order of magnitude slower than SNAP’s, we
downsampled our input dataset to 25 million reads for SGA). Results are shown in Figure 15, where
speedups over Clang-compiled C++ are given.

6.1 Improvements over Python

Seq programs can be written in one of two ways: in plain Python or using idiomatic Seq (as in the
implementations described above). The Pythonic implementations embody the conventions set by
the Python community, and code written in this way can be easily run by both Python and Seq
without modifications. The alternative style involves the use of idiomatic Seq constructs and data
types to manipulate genomic data, which are not available in plain Python.

We compare the performance of Pythonic and idiomatic Seq implementations to that of Python,
PyPy, Shed Skin, Nuitka and Julia in Table 1. All of the implementations in the second benchmark
suite (with the exception of idiomatic Seq) are line-by-line identical in terms of the algorithm. In
particular, the Python implementations use the exact same code as the Pythonic Seq implementations
for RC, CpG and 16-mer. Even by just directly running Python code, Seq is able to outperform
Python by a factor of 11 to 100.

A similar pattern can be seen in the first benchmark suite, where Seq significantly outperforms
both the Python and Julia implementations. The only exception is the FASTA benchmark, where
Seq is slightly slower than Julia. While this could be further optimized, we chose to keep the version
that is most similar to Python. Additionally, we note that the FASTA benchmark as specified by the
Computer Language Benchmarks Game is not a realistic application in genomics, as one would
rarely be generating sequences rather than reading them from a preexisting dataset.
Idiomatic versions further boost the improvement up to 160×, and showcase the impact of

individual domain-specific optimizations: RC and RevComp utilize Seq’s highly optimized re-
verse complementation constructs; 16-mer showcases the gainsÐboth in terms of readability and
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Table 2. Seq runtime compared to C++ as compiled with Clang and GCC (seconds). łPythonic Seqž uses
the same code as Python, whereas łIdiomatic Seqž uses Seq-specific language features and constructs. For
SNAP and SGA the difference between the without-prefetch and with-prefetch Seq programs is just a single
prefetch statement.

Seq C++ C++ Seq Speedup

Pythonic Clang GCC Idiomatic

FASTA 5.6 5.7 10.7 0.5×
RevComp 9.5 9.5 1.3 7.3×
k-nucleotide 54.6 54.3 19.7 2.8×

RC 195.1 178.6 170.7 48.3 3.5×
CpG 60.6 55.7 44.8 60.6 0.7ś0.9×
16-mer 159.8 214.1 201.7 95.6 2.1×

Seq C++ C++ Seq Speedup

w/o prefetch Clang GCC with prefetch

SNAP 328.1 450.5 327.5 211.9 1.5ś2.1×
SGA 453.0 569.3 610.1 409.6 1.4ś1.5×

performanceÐof sequence-based match statements; k-nucleotide shows the performance improve-
ment gained by using Seq’s native k-mer types. A few of the idiomatic versions also rely on
pipelining to perform further optimizations, which is described in more detail below.

Note that runtime becomes prohibitive as the number of reads to be processed increases; while
the performance of compiled Python (i.e. PyPy, Shed Skin and Nuitka) and Julia is acceptable if
the number of reads is low (as in the first benchmark suite), it rapidly deteriorates once the read
count becomes an order of magnitude larger. Even 100 million reads as used here is quite minuscule
compared to real datasets.
Given the results above, the comparisons below focus only on the C++ implementations.

6.2 Improvements over C++

Table 2 compares the Seq and C++ implementations of each benchmark. Again, all of these imple-
mentations (with the exception of idiomatic Seq) are line-by-line identical in terms of the algorithm.
The performance of Pythonic Seq code is on par with that of C++ codeÐin most cases, it is the
same as or slightly better than Clang’s (we use Clang as a baseline since both Clang and Seq rely
on LLVM for general-purpose optimizations). Note that g++ is sometimes able to outperform the
LLVM-based backends of Seq and Clang. However, once Seq applies domain-specific optimizations,
it outperforms even g++ by up to 4×. For example, in the third set of real-world benchmarks (SNAP
and SGA), Seq achieves a 50% speedup after adding a one-line domain-specific prefetch statement
to the original code, resulting in up to a 2× speedup over C++.

Prefetch Variability. Index prefetching is useful during genomic index lookups, and is able to speed
up both k-mer hash tables and FM-indices by 50%. However, we observed the performance of
prefetching to be application- and data-dependent: while in almost all evaluated datasets (spanning
various technologies such as recent third-generation 10x Genomics linked-reads [Zheng et al.
2016] and łclassicž second-generation Illumina short-reads; detailed results omitted for brevity)
it produces a steady improvement in the range 20ś50%, in one dataset it led to a 35% slowdown.
However, the fact that it is a one-line change means that any user can easily experiment and judge
whether it works well for their use-case.

Compilation Time. Seq can be used in two modes: as a JIT interpreter or as a compiler. In our
experiments, Seq’s compilation times are faster than, or similar to, those of the C++ compilers. Note
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that Seq relies on LLVM’s optimization pipeline, and therefore employs the same optimization
passes (and linker) as Clang. We also observed that Seq is an order of magnitude faster than Nuitka
or Shed Skin with respect to compilation.

Table 3. Seq runtime compared to that of several highly-
optimized bioinformatics libraries (in seconds) on in-house
benchmarks. C++ times are also included for reference.

Seq C++ SeqAn BioPython BioJulia

GCC C++/GCC PyPy Julia

RC 48.3 170.7 137.6 68.4 348.9
CpG 60.6 44.8 46.7 332.7 244.1
16-mer 95.6 201.7 70.8 1,276.1 247.2

Manual Optimizations. In general, it is not
straightforward to compare benchmark re-
sults across different languages in a mean-
ingful way, given that each language has
its own set of idioms and conventions, of-
ten resulting in algorithmic differences.
For example, if one invests enough time,
it is always possible to write C++ imple-
mentations that match Seq’s performance,
since both ultimately compile to machine
code. For this reason, the in-house benchmarks above all follow the same high-level algorithm,
even if there may be room for further manual optimizations. The other two sets of benchmarks
do include hand-optimized C++ implementations, however: FASTA, RevComp and k-nucleotide
implementations are taken from The Computer Language Benchmarks Game (excluding multi-
threaded implementations), and SNAP and SGA are real-world implementations that are widely
used in practice.

We additionally compared to the highly-optimized bioinformatics libraries SeqAn v2.3.2 [Döring
et al. 2008] (C++), BioPython v1.74 [Cock et al. 2009] and BioJulia (BioSequences v1.1.0) (https:
//biojulia.net), results for which are shown in Table 3. Seq outperforms both BioPython and Bio-
Julia by a large margin. Seq also substantially outperforms SeqAn on RC; on CpG, the plain
C++ implementation actually outperforms both; lastly, SeqAn outperforms Seq on 16-mer. Note
that Seq matches SeqAn’s performance if the same low-level implementation is used (the SeqAn
implementation differs and is less flexible because Seq’s sequence pattern matching cannot be
expressed in SeqAn/C++). However, we purposefully compared against the (somewhat slower)
pattern matching Seq implementation to show that even the łsimplestž implementations in Seq
are close performance-wise to the highly-optimized implementations provided by other libraries.
Finally, these libraries are unable to easily express the benchmarks from the two other suites (and
also lack a prefetching mechanism similar to what Seq uses in SNAP and SGA), which is why we
limited this comparison to the in-house benchmarks.

6.3 Effects of Parallelization

Table 4. Seq runtimes on multiple threads (seconds).

Threads 1 2 3 4 Speedup

CpG 58.1 29.6 19.9 15.3 3.8×
16-mer 86.7 43.6 29.9 22.8 3.8×

SGA 355.1 184.0 125.4 95.1 3.7×
SGA (pref.) 217.7 128.0 90.3 71.8 3.0×

To evaluate the performance of Seq’s parallel
pipelines, we implemented parallel versions of
two of our in-house benchmarks, CpG and 16-
mer (the third, RC, performs substantially more
I/O and hence does benefit much from paral-
lelism), as well as SGA’s FM-index querying
(both with and without prefetch optimizations).
To this end, we łblockž input reads into batches
of 100,000, which are processed as a whole by each task; tasks themselves are then executed in
parallel via Seq’s parallel pipe operator.
Results are shown in Table 4, where Seq scales almost linearly up to 4 threads on our in-house

benchmarks. For these small applications, we find I/O to be a bottleneck beyond 4 threads. In a real-
world setting where reads would take substantially longer to process, we would expect I/O to play a
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less significant role, allowing a greater degree of parallelism. Taking these parallel implementations
into account, Seq’s largest speedup over Python (which cannot be easily parallelized due to the global
interpreter lock) is over 650×. Finally, Table 4 also shows that even Seq’s prefetching optimizations
benefit from parallelization.

7 RELATED WORK

A fewmethods have been proposed to aid in the development of bioinformatics tools and workflows.
One approach focuses on building specialized libraries for genomic data manipulation. Examples
include C++ libraries such as SeqAn [Döring et al. 2008] and htslib [Li et al. 2009b], and high-level
libraries such as BioPerl and BioPython [Cock et al. 2009]. However, none of these libraries solve
the aforementioned problems, as none can both scale with the size of NGS data and allow for
sufficiently high-level representations of bioinformatics or genomics algorithms. Additionally, the
use of libraries prevents optimizations like operator fusion, or the pipeline transformations made
by Seq. Another line of work focuses on integrating various high-level code blocks into a pipeline
framework that can be efficiently run on large clusters and cloud-based systemsÐexamples include
the Broad Institute’s HAIL project and Workflow Description Language [Voss et al. 2017]. While
these methods indeed allow large-scale parallelism and a relatively high-level description of a given
problem, they are cumbersome to use as they require rather expensive infrastructural setup and
administration costs, and do not tackle the problem of single-machine optimizations, which is still
a significant bottleneck in many pipelines.

The DSL proposed in this paper is inspired by many successful DSLs that already exist in other
fields of computer science [Abadi et al. 2016; Baghdadi et al. 2019; Chafi et al. 2011; Chiw et al. 2012;
Kjolstad et al. 2017, 2016; Ragan-Kelley et al. 2013; Zhang et al. 2018]. Despite their substantial suc-
cess in these other areas, computational biology has yet to adopt a comparable DSL. SARVAVID [Ma-
hadik et al. 2016] is a DSL designed for computational genomics applications, which provides a set
of high-level genomics kernels and exposes them as language constructs. For example, common op-
erations such as k-merization, index-generation, index-lookup, similarity-computation
and clustering are provided. While such an approach provides efficient implementations of these
kernels and combinations thereof, it lacks generality, which is gravely needed in the field as new
sequencing technologies produce new types of data that in turn necessitate novel algorithms. Seq
aims to provide a more general, lower-level language, with general-purpose constructs that can be
used to build a variety of kernels efficiently. While there also exist a few general-purpose languages
optimized for scientific computing such as Julia [Bezanson et al. 2012] and MATLAB, neither of
these languages is designed for computational biology workflows.
On the Python side, recent Python standards introduced type hints, which allow static type

checking [van Rossum 2015]. Projects such as Cython [Behnel et al. 2011], PyPy [Bolz et al. 2009],
Numba [Lam et al. 2015], Shed Skin [Dufour 2006] and Nuitka [Hayen 2012] all aim to generate
efficient code by relying on ideas such as static type checking and (JIT-) compiling rather than
interpreting Python. While Seq is similar to these language in that it is indeed compiled and uses
static type checking, Seq also uses domain-specific information to apply further code optimizations,
and introduces data types that are tailored to the field of computational biology. Furthermore, many
of these other implementations still rely on the Python runtime, and are thus bound to its inherent
performance overhead. For the sake of completeness, a comprehensive comparison between Seq and
other Python implementations is given in Table 5. In this work, we chose to compare to PyPy, Shed
Skin and Nuitka primarily because other similar implementations (e.g. Numba, Pythran, Pyston,
Grumpy) are either geared more towards scientific/numerical computing or no longer under active
development.
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Table 5. Comparison between Seq and other Python implementations. For łDomainž, łBio.ž means compu-
tational biology, łSci.ž means scientific computing and łAstro.ž means astrophysical computing. łUnknown
typesž refer to types that cannot be statically determined. Also note that Pyston has several JIT tiers in
addition to its LLVM JIT.

Domain Target
Compi-

lation

Unknown

types

allowed?

Full

Python?

CPython

runtime?

Multi-

threading?

CPython General Bytecode Interpreted ✓ ✓ ✓ ✗

Seq Bio. LLVM IR AOT ✗ ✗ ✗ ✓

Cython General C AOT ✗ ✓ ✓ ✓

PyPy General Bytecode Interpreted ✓ ✓ ✓ ✗

Numba Sci. LLVM IR JIT ✓ ✗ ✓ ✗

Nuitka General C++ AOT ✓ ✓ ✓ ✗

Pythran Sci. C++ AOT ✓ ✓ ✗ ✓

Pyston General LLVM IR JIT ✓ ✓ ✓ ✗

HOPE Astro. C++ JIT ✗ ✗ ✗ ✗

Shed Skin General C++ AOT ✗ ✗ ✗ ✓

Grumpy General Go AOT ✗ ✗ ✗ ✓

8 CONCLUSION

We have introduced Seq, a new language for computational biology that offers the productivity
of Python and the performance of C. Thereby, Seq bridges the gap between computationalists
who seek to write performance-critical code for a particular application, and biologists whose
day-to-day workflow involves rapid development and prototyping of new ideas and algorithms.
Through Seq, we introduce several novel genomics-specific language constructs and optimizations,
which collectively attain a 160× performance improvement over standard Python, and up to
7× improvement over C++. Future work includes exploring a wider range of domain-specific
optimizations that exploit the unique structure of biological data.

A SEQ VS. PYTHON ś A CHEAT SHEET

A.1 Additional Types

• seq: Represents a genomic sequence.
• Kmer[N] (1 ≤ N ≤ 1024): Represents a k-mer of length N . N must be constant.
• Int[N] (1 ≤ N ≤ 2048): Represents a signed N -bit integer (standard int is an Int[64]). N
must be constant. The common type definitions i8, i16, i32 and i64 are provided in the
standard library for convenience.

• UInt[N] (1 ≤ N ≤ 2048): Represents an unsigned N -bit integer. N must be constant. The
common type definitions u8, u16, u32 and u64 are provided in the standard library for
convenience.

• ptr[T]: Represents a pointer to type T; primarily useful for C interoperability.
• array[T]: Represents an array of type T (essentially a pointer with a length).

A.2 Additional Keywords

• type: Declares a named tuple or a type alias.
• match/case/default: Match statement
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• extend: Adds the given methods to an existing type.
• cdef: Declares an externally-defined C function.
• prefetch: Prefetches the given items in the given index objects.

Seq also provides __ptr__ for obtaining a pointer to a variable, and __array__ for declaring
stack-allocated fixed-size arrays.

A.3 Static Types

Because Seq is statically-typed, lists (for example) cannot contain elements of different types as
they can in Python. Similarly, a variable cannot be assigned to objects of different types, nor can a
function return objects of different types. Seq currently also does not support polymorphism.

A.4 Tuples

Tuples in Seq are implemented as structures. Consequently, heterogeneous tuples can only be
indexed by a constant value, since otherwise the type of the index expression would be ambiguous.
Similarly, iteration over a tuple is only possible if it is homogeneous.

A.5 Scopes

Seq enforces slightly stricter variable scoping rules than standard Python. In short, a variable
cannot be first assigned in a block then used afterwards for the first time in the enclosing block.
This restriction avoids the problem of unitialized variables.

B CODE FROM SNAP BENCHMARK

SNAP uses a hierarchical hash table as its genomic index. To index k-mers (k ≥ 16), an array of
4k−16 quadratic probing hash tables is created, indexed by every possible length-(k − 16) prefix.
Each constituent hash table is then a mapping of 16-mer to genomic loci at which that 16-mer
appears. To handle multiple loci for a single k-mer, an auxiliary array is used, and hash table values
can be pointers into this array (determined by whether the value is greater than the largest locus).
This hierarchical structure exploits the fact that not every length-(k − 16) prefix appears in the
genome with equal frequency, so the size of each internal hash table can be chosen based on the
corresponding prefix’s frequency.
SNAP’s index is implemented in C++, and can be found at https://github.com/amplab/snap.

Below, we give the Seq implementation used in the SNAP benchmark. The code that queries this
table largely resembles what is shown in Figure 2 (both for Seq and C++). Note that loading the
precomputed table from disk is still done in C++, and wrapped in Seq.
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# File: hashtable.seq

# Implementation of SNAP aligner's hash table

# https://github.com/amplab/snap/blob/master/SNAPLib/HashTable.{cpp,h}

# Need the following hooks linked to convert C++ SNAPHashTable to Seq object:

# snap_hashtable_ptr(ptr[byte]) -> ptr[tuple[K,V]] -- extract table pointer

# snap_hashtable_len(ptr[byte]) -> int -- extract table length

# snap_hashtable_invalid_val(ptr[byte]) -> V -- extract "invalid" value

QUADRATIC_CHAINING_DEPTH = 5

class SNAPHashTable[K,V]:

table: array[tuple[V,K]]

invalid_val: V

def _hash(k):

key = hash(k)

key ^= int(u64(key) >> u64(33))

key *= 0xff51afd7ed558ccd

key ^= int(u64(key) >> u64(33))

key *= 0xc4ceb9fe1a85ec53

key ^= int(u64(key) >> u64(33))

return key

def __init__(self: SNAPHashTable[K,V], size: int, invalid_val: V):

self.table = array[tuple[V,K]](size)

self.invalid_val = invalid_val

for i in range(size):

self.table[i] = (invalid_val, K())

def __init__(self: SNAPHashTable[K,V], p: ptr[byte]):

cdef snap_hashtable_ptr(ptr[byte]) -> ptr[tuple[V,K]]

cdef snap_hashtable_len(ptr[byte]) -> int

cdef snap_hashtable_invalid_val(ptr[byte]) -> V

self.table = array[tuple[V,K]](snap_hashtable_ptr(p), snap_hashtable_len(p))

self.invalid_val = snap_hashtable_invalid_val(p)

def _get_index(self: SNAPHashTable[K,V], where: int):

return int(u64(where) % u64(len(self.table)))

def get_value_ptr_for_key(self: SNAPHashTable[K,V], k: K):

table = self.table

table_size = table.len

table_index = self._get_index(SNAPHashTable[K,V]._hash(k))

invalid_val = self.invalid_val

entry = table[table_index]

if entry[1] == k and entry[0] != invalid_val:

return ptr[V](table.ptr + table_index)

else:

n_probes = 0

while True:

n_probes += 1

if n_probes > table_size + QUADRATIC_CHAINING_DEPTH:

return ptr[V]()

diff = (n_probes**2) if n_probes < QUADRATIC_CHAINING_DEPTH else 1

table_index = (table_index + diff) % table_size

entry = table[table_index]

if not (entry[1] != k and entry[0] != invalid_val):

break

return ptr[V](table.ptr + table_index)

def __prefetch__(self: SNAPHashTable[K,V], k: K):

table = self.table

table_index = self._get_index(SNAPHashTable[K,V]._hash(k))

(self.table.ptr + table_index).__prefetch_r3__()

def __getitem__(self: SNAPHashTable[K,V], k: K):

p = self.get_value_ptr_for_key(k)

return p[0] if p else self.invalid_val

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 125. Publication date: October 2019.



125:26 Ariya Shajii, Ibrahim Numanagić, Riyadh Baghdadi, Bonnie Berger, and Saman Amarasinghe

# File: genomeindex.seq

# Implementation of SNAP aligner's genome index

# https://github.com/amplab/snap/blob/master/SNAPLib/GenomeIndex.{cpp,h}

# Need the following hooks linked to convert C++ GenomeIndex to Seq object:

# snap_index_from_dir(ptr[byte]) -> ptr[byte] -- read object from specified directory

# snap_index_ht_count(ptr[byte]) -> int -- extract hash table count

# snap_index_ht_get(ptr[byte], int) -> ptr[byte] -- extract specified (0-indexed) hash table

# snap_index_overflow_ptr(ptr[byte]) -> ptr[u32] -- extract overflow table pointer

# snap_index_overflow_len(ptr[byte]) -> int -- extract overflow table length

# snap_index_count_of_bases(ptr[byte]) -> int -- extract count of genome bases

from hashtable import SNAPHashTable

type k16 = Kmer[16]

class GenomeIndex[K]:

hash_tables: array[SNAPHashTable[k16,u32]]

overflow_table: array[u32]

count_of_bases: int

def _partition(k: K):

n = int(k.as_int())

return (k16(n & ((1 << 32) - 1)), n >> 32)

def __init__(self: GenomeIndex[K], dir: str):

assert 16 <= K.len() <= 32

cdef snap_index_from_dir(ptr[byte]) -> ptr[byte]

cdef snap_index_ht_count(ptr[byte]) -> int

cdef snap_index_ht_get(ptr[byte], int) -> ptr[byte]

cdef snap_index_overflow_ptr(ptr[byte]) -> ptr[u32]

cdef snap_index_overflow_len(ptr[byte]) -> int

cdef snap_index_count_of_bases(ptr[byte]) -> int

p = snap_index_from_dir(dir.c_str())

assert p

hash_tables = array[SNAPHashTable[k16,u32]](snap_index_ht_count(p))

for i in range(len(hash_tables)):

hash_tables[i] = SNAPHashTable[k16,u32](snap_index_ht_get(p, i))

self.hash_tables = hash_tables

self.overflow_table = array[u32](snap_index_overflow_ptr(p), snap_index_overflow_len(p))

self.count_of_bases = snap_index_count_of_bases(p)

def __getitem__(self: GenomeIndex[K], seed: K):

kmer, which = GenomeIndex[K]._partition(seed)

table = self.hash_tables[which]

value_ptr = table.get_value_ptr_for_key(kmer)

if not value_ptr or value_ptr[0] == table.invalid_val:

return array[u32](value_ptr, 0)

value = value_ptr[0]

if int(value) < self.count_of_bases:

return array[u32](value_ptr, 1)

else:

overflow_table_offset = int(value) - self.count_of_bases

hit_count = int(self.overflow_table[overflow_table_offset])

return array[u32](self.overflow_table.ptr + overflow_table_offset + 1, hit_count)

def __prefetch__(self: GenomeIndex[K], seed: K):

kmer, which = GenomeIndex[K]._partition(seed)

table = self.hash_tables[which]

table.__prefetch__(kmer)
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