
SuperTaco: Taco Tensor Algebra Kernels on
Distributed Systems Using Legion

by

Sachin Dilip Shinde

S.B., Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2019

© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 8, 2019

Certified by. .
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chairman, Master of Engineering Thesis Committee

2

SuperTaco: Taco Tensor Algebra Kernels on Distributed

Systems Using Legion

by

Sachin Dilip Shinde

Submitted to the Department of Electrical Engineering and Computer Science
on February 8, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Tensor algebra is a powerful language for expressing computation on multidimen-
sional data. While many tensor datasets are sparse, most tensor algebra libraries
have limited support for handling sparsity. The Tensor Algebra Compiler (Taco) has
introduced a taxonomy for sparse tensor formats that has allowed them to compile
sparse tensor algebra expressions to performant C code, but they have not taken
advantage of distributed systems.

This work provides a code generation technique for creating Legion programs
that distribute the computation of Taco tensor algebra kernels across distributed
systems, and a scheduling language for controlling how this distributed computation
is structured. This technique is implemented in the form of a command-line tool
called SuperTaco. We perform a strong scaling analysis for the SpMV and TTM
kernels under a row blocking distribution schedule, and find speedups of 9-10x when
using 20 cores on a single node. For multi-node systems using 20 cores per node,
SpMV achieves a 33.3x speedup at 160 cores and TTM achieves a 42.0x speedup at
140 cores.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I thank my thesis supervisor, Saman Amarasinghe, and my colleague, Fredrik Kjol-

stad, for their help throughout my time at MIT. Saman has guided me through the

world of performance engineering and given me countless opportunities, and Fred’s

insights and feedback have been indispensable to me as a researcher.

Finally and most importantly, I thank my family. My parents, Pratima and Dilip,

my sister, Ranjita, my brother-in-law, David, and my nephews, Bryce and Dylan.

Their unwavering support pushes me to greater heights.

5

6

Contents

1 Introduction 11

2 Background 15

2.1 Tensor Notation . 15

2.2 Taco Tensor Storage Formats . 16

2.3 Taco Code Generation . 19

2.4 Legion Programming System . 20

3 Related Work 25

3.1 SpMV Partitioning . 25

3.2 PETSc . 27

4 SuperTaco 29

4.1 Distributed Scheduling Primitives . 31

4.2 Taco Tensor Storage Format Augmentation 33

4.3 Sparse Tensor File Format . 34

4.4 Distributed Tensor Loading . 37

4.4.1 Load Balancing . 38

4.4.2 Tensor Block Header Assembly 40

4.4.3 Tensor Block Piece Assembly 43

4.4.4 Tensor Block Assembly . 44

4.5 Distributed Tensor Algebra Computation 45

4.5.1 Expression Transformation . 46

7

4.5.2 Code Generation . 51

4.5.3 Kernel Task . 58

4.5.4 Summation Task . 61

4.5.5 Task Mapping . 61

4.5.6 Tensor Block Eviction . 65

4.6 Distributed Tensor Storing . 68

4.6.1 Load Balancing . 69

4.6.2 Tournament Tree . 71

4.6.3 Tensor Header Assembly . 72

4.6.4 Tensor Piece Assembly . 73

4.6.5 Tensor Writeout . 73

5 Evaluation 75

5.1 Experimental Methodology . 75

5.2 SpMV Results . 76

5.3 TTM Results . 79

5.4 Discussion . 83

6 Conclusion and Future Work 87

8

List of Figures

2-1 Storage format trees . 16

2-2 Storage formats for index variable ordering (𝑑1, 𝑑2) 18

2-3 Storage formats for index variable ordering (𝑑2, 𝑑1) 18

2-4 Legion programming software stack 20

2-5 Region trees . 21

4-1 Overview of the SuperTaco command-line tool 30

5-1 SpMV strong scaling analysis . 77

5-2 SpMV overhead from increasing number of splits for reduction variable 79

5-3 TTM strong scaling analysis . 81

5-4 TTM overhead from increasing number of splits for reduction variable 83

9

10

Chapter 1

Introduction

Tensors are a generalization of vectors and matrices to multiple dimensions, and

permit algebraic operations that can be conveniently expressed using summation no-

tation, e.g. 𝐴𝑖𝑗 =
∑︀

𝑘 𝐵𝑖𝑗𝑘𝑐𝑘. This tensor algebra is a powerful language for expressing

computations involving multidimensional data, and is central in many practical appli-

cations and fields of study, such as chemometrics, signal processing, graph analysis,

computer vision, and machine learning [1]. While numerous software tools and li-

braries have emerged for computing with tensor algebra, their capabilities have been

limited when dealing with sparse tensors, which are tensors with many zeros that

can be compressed to reduce storage space and computation. This is problematic

considering many large real-world datasets are sparse tensors, such as Netflix ratings

[2], Facebook ratings [3], and Amazon reviews [4].

Recently Kjolstad et al. have developed the Tensor Algebra Compiler (Taco) [5] [6],

a library for compiling dense and sparse tensor algebra expressions into C code. Their

work provides a taxonomy for tensor storage formats, which is capable of describ-

ing many widely-used sparse matrix formats such as compressed sparse row (CSR),

compressed sparse column (CSC), doubly compressed sparse row (DCSR), Ellpack

(ELL), and Diagonal (DIA), and generalizes to sparse tensor formats such as com-

pressed sparse fiber (CSF). Given a tensor algebra expression and the tensor formats

of the expression operands, their library can generate C code loop nests that compute

the expression. While their generated code can take advantage of multicore systems

11

using OpenMP, they have not taken advantage of distributed systems.

One of the difficulties of distributing the computation of Taco-generated code

across nodes is that it requires the tensor data to be split into blocks and for those

blocks to be distributed only to the nodes that make use of those blocks in their

computations. The Legion programming system [7] is a runtime programming system

for developing parallel applications and libraries which has abstractions that allow the

expression of these block dependencies succinctly. Specifically, Legion tasks can be

used to describe per-node computation, and Legion logical regions can be used to

describe the tensor data blocks needed by those computations.

This work provides a method to generate Legion programs for distributing the

computation of Taco tensor algebra expressions across distributed systems. This

Legion program generator, which we call SuperTaco, is implemented using C/C++

for the generated Legion programs and Python with Mako templating for program

generation. Our method introduces a distribution schedule for computation, which

describes how the Taco computation is distributed among nodes, and is capable of

expressing several different paradigms for distribution such as owner’s compute [8].

We find that for large random tensors and row blocking distribution schedules, these

generated programs exhibit a strong scaling efficiency near 50% for SpMV and 58%

for TTM in the single-node case, achieving speedups around 10x on 20 cores. For

the multi-node case with 20 cores per node, performance peaks with SpMV at 160

cores with a speedup of 33.3x (21% strong scaling efficiency), while performance

peaks with TTM at 140 cores with a speedup of 42.0x (30% strong scaling efficiency).

Adding more nodes past this point degrades efficiency due to node-to-node overhead.

In these experiments, SpMV operated on a 50 000 000 × 50 000 000 sparse matrix

(density 1 × 10−7) and a length 50 000 000 dense vector, while TTM operated on a

500 000×50 000×5000 sparse tensor (density 1 × 10−6) and a 32×5000 dense matrix.

Using the methods described in this work, tensor libraries can distribute tensor

algebra computation across distributed systems through the Legion programming

system. This work contributes to the future development of tensor libraries by (1)

developing a technique for distributing tensor algebra computation across multiple

12

nodes, (2) introducing a taxonomy for describing how to distribute tensor algebra

computation via distribution schedules, and (3) providing a scaling analysis of the

Legion programs generated through these methods.

13

14

Chapter 2

Background

This chapter gives an overview of the relevant concepts and terminology needed to

talk about tensor algebra, Taco tensor storage formats, Taco code generation, and

the Legion programming system in the context of distributing Taco computation. For

more information regarding Taco code generation, please refer to Kjolstad et al. [5];

for more information regarding the Legion programming system, please refer to Bauer

et al. [7].

2.1 Tensor Notation

The notation and terminology used for tensors is similar to that used in the Taco

library. A tensor 𝐴 of rank (or order) 𝑅 is an association between 𝑅-tuples (or

coordinates) (𝑖0, 𝑖1, . . . , 𝑖𝑅−1) of non-negative integers and tensor entries (or compo-

nents). These components are written using tensor notation as 𝐴𝑖0𝑖1...𝑖𝑅−1
, where 𝑖𝑚

is an index variable (or index). The position of an index variable in the tensor’s

tuple is known as its mode, so that the 𝑚th mode refers to index variable 𝑖𝑚. The

non-negative integers that are possible for a given mode are limited by the size (or

dimension) of that mode, so that if mode 𝑚 has dimension 𝑁𝑚, then 𝑖𝑚 < 𝑁𝑚.

Using this notation allows us to express tensor algebra operations with summa-

tions, e.g. 𝐴𝑖𝑗 =
∑︀

𝑘 𝐵𝑖𝑗𝑘𝑐𝑘 represents evaluating tensor component 𝐴𝑖𝑗 for a given 𝑖

and 𝑗 by summing 𝐵𝑖𝑗𝑘𝐶𝑘 for all values of index variable 𝑘. The index variables that

15

(a) Sparse matrix A (b) Storage format tree for in-
dex variable ordering (𝑑1, 𝑑2)

(c) Storage format tree for in-
dex variable ordering (𝑑2, 𝑑1)

Figure 2-1: A 2nd-rank tensor 𝐴𝑑1𝑑2 and its possible storage format trees [5].

appear in the output tensor (𝑖 and 𝑗 in this example) are known are free variables,

while any index variables that don’t appear in the output (𝑘 in this example) are

known as reduction variables.

2.2 Taco Tensor Storage Formats

An important consideration when computing with tensors is the format in which the

tensor data is stored, which can be specialized to accommodate underlying structure

in the tensor data. In particular for sparse tensors (which contain a large percentage

of zero components), the zeros can be compressed to reduce storage space and avoid

computations that involve zeros. As mentioned previously, there are many commonly-

used sparse storage formats, which compress the data in different ways. The Taco

library introduces a taxonomy for constructing these storage formats from a set of

base primitives.

For a tensor 𝐴𝑖0𝑖1...𝑖𝑅−1
, a Taco storage format consists of an ordering of the index

variables (i.e. a permutation of (𝑖0, 𝑖1, . . . , 𝑖𝑅−1)) and a declaration for each index

variable as being stored as either a sparse level or a dense level. The ordering of the

index variables allows us to express the non-zero components of the tensor using a tree,

where each tree level corresponds to an index variable and the nodes on a level are the

values of the corresponding index variable. Specifically, for an index variable ordering

(𝑖𝜎0 , 𝑖𝜎1 , . . . , 𝑖𝜎𝑅−1
), there is a node on level 𝑘 for each 𝑘-tuple (𝑗0, 𝑗1, . . . , 𝑗𝑘−1) for

which there is a non-zero entry (𝑖′0, 𝑖
′
1, . . . , 𝑖

′
𝑅−1) in 𝐴 satisfying 𝑗𝑞 = 𝑖′𝜎𝑞

for 0 ≤ 𝑞 < 𝑘,

16

and its parent is the node in level 𝑘−1 corresponding to tuple (𝑗0, 𝑗1, . . . , 𝑗𝑘−2). (Since

a node’s parent corresponds to its tuple’s prefix, the node on level 𝑘 need only show

the value of 𝑗𝑘−1, i.e. the value of level 𝑘’s index variable 𝑖𝜎𝑘
. The rest of the tuple

is implicit from the path to the root.) The 𝑅-tuples corresponding to the leaf nodes

of the tree then consist of all the non-zero entries of 𝐴. As an example, consider

the sparse matrix 𝐴𝑑1𝑑2 as shown in Figure 2-1a. If the index variable ordering is

(𝑑1, 𝑑2), the storage format tree is given in Figure 2-1b; if the index variable ordering

is (𝑑2, 𝑑1), the tree is instead given by Figure 2-1c.

The Taco storage format effectively stores the format tree given by the index vari-

able ordering, keeping a data structure for each level along with a data structure for

the tensor component values. The data structure for each level depends on whether

the corresponding index variable is declared dense or sparse. For dense levels, the

data structure only consists of metadata, namely the dimension of the index vari-

able. Conceptually, this is because dense levels assume that the corresponding index

variable can take on all values in the range [0, 𝐷) for index variable dimension 𝐷.

More concretely, for a dense level 𝑘, it assumes that each node in level 𝑘 − 1 has

𝐷 children, regardless of whether there’s actually a non-zero entry in 𝐴 satisfying

the aforementioned conditions for 𝑘-tuple (𝑗0, 𝑗1, . . . , 𝑗𝑘−1). This allows for efficient

storage of the dense level, but potentially inefficient storage of lower levels depending

on the validity of the assumption.

Sparse levels, in contrast to dense levels, only store the non-zero entries of the

level. Sparse levels specifically keep a pos array and an idx array, where the idx

array consists of several segments stored contiguously and the pos array keeps track

of the positional bounds of the segments in the idx array. That is, segment 𝑖 runs

from pos[i]:pos[i+1] in the idx array, where the last element of the pos array is

a sentinel equal to the length of idx. Each segment corresponds to a parent node

in the previous level, and the segment itself stores the index variable values of the

parent’s children, in sorted order.

The data structure containing the tensor component values consists of a val array,

with an entry for every leaf node in the tree. Note that there may be zero entries

17

(a) (dense𝑑1 , dense𝑑2) (b)
(sparse𝑑1 , dense𝑑2)

(c)
(dense𝑑1 , sparse𝑑2)

(d)
(sparse𝑑1 , sparse𝑑2)

Figure 2-2: Possible storage formats for index variable ordering (𝑑1, 𝑑2) [5].

(a) (dense𝑑2 , dense𝑑1) (b)
(sparse𝑑2 , dense𝑑1)

(c)
(dense𝑑2 , sparse𝑑1)

(d)
(sparse𝑑2 , sparse𝑑1)

Figure 2-3: Possible storage formats for index variable ordering (𝑑2, 𝑑1) [5].

in the val array, since dense levels assume that the number of children per parent

node is equal to the corresponding index variable’s dimension. Figure 2-2 shows the

storage formats for index variable ordering (𝑑1, 𝑑2), while Figure 2-3 shows the storage

formats for index variable ordering (𝑑2, 𝑑1).

Note that dense levels also implicitly consist of a pos and idx array, similar to

sparse levels. In the dense case, each segment contains all the integers in the range

[0, 𝐷) for a level with dimension 𝐷, which makes pos[i] = 𝐷 ·𝑖 for segment 𝑖. Storing

only the dimension 𝐷 is just a form of compression here. This view makes iterating

through tensors easier to conceptualize, since we can just think of each data structure

as having an effective position pointer which points into the data structure’s idx array

(for the component value data structure, the effective position pointer just points into

the val array). More concretely, for sparse level 𝑘, the effective position 𝑝𝑘 satisfies

pos[𝑝𝑘−1] ≤ 𝑝𝑘 < pos[𝑝𝑘−1 + 1] and indicates index value idx[𝑝𝑘]. For dense

level 𝑘, the effective position 𝑝𝑘 satisfies ⌊𝑝𝑘/𝐷⌋ = 𝑝𝑘−1 and indicates index value

𝑝𝑘−𝐷⌊𝑝𝑘/𝐷⌋. For the component value, the effective position satisfies 𝑝𝑘 = 𝑝𝑘−1 and

indicates component value val[𝑝𝑘]. Iterating through the tensor involves advancing

18

these effective positions while maintaining the invariants. Note that given the effective

position for the val array, we can uniquely determine the effective positions for the

other levels; this makes sense intuitively, since the val array’s effective position points

to a component of the tensor.

2.3 Taco Code Generation

Using the tensor format taxonomy from the previous section, the Taco library can

compile tensor algebra expressions involving tensors of given formats into C code.

While an understanding of tensor storage formats is critical to understanding how to

break tensor data into blocks and distribute those blocks across nodes, the specific

details of Taco code generation are less relevant. The techniques used in this work

largely treat Taco code generation as a black-box, and only modify the generated C

code slightly to account for storage format modifications. This is one of the benefits of

our methods, since it means changes to the internals of Taco code generation will not

require significant changes to our methods. It also means that these techniques can be

applicable to other tensor algebra libraries, provided they use similar tensor storage

format taxonomy to Taco. In this context, it is more important to understand the

nature and structure of the generated code than to understand how it is generated.

The Taco library takes a tensor algebra expression as input, written using the

Einstein summation convention, and transforms each summation into a loop nest in

C code. The storage formats of the tensors impose restrictions on the order of those

loop nests for iteration to be efficient, and the Taco library may accordingly rearrange

loop nests to satisfy those restrictions. We access the Taco library through the Taco

command-line tool, which generates two functions for computing the tensor algebra

kernel. The first is the assemble() function, which performs part of the computa-

tion to allocate space for the data structures in the output tensor and calculate the

output indices. The second is the compute() function, which performs the rest of

the computation to calculate the component values of the output tensor. Our Legion

program generation routine uses the Taco command-line tool to generate assemble()

19

Figure 2-4: The Legion programming system software stack [9].

and compute() functions for the appropriate tensor algebra kernels, modifies them

slightly to allow for computation using tensor blocks, and then emits the C code into

the Legion program. For an overview of how Taco compiles tensor algebra expressions

and the optimizations it uses, please refer to Kjolstad et al. [5].

2.4 Legion Programming System

Legion is a parallel programming system that eases high-performance distributed

application development through the use of abstractions that allow the programmer

to explicitly express the locality and independence of program data [7]. Legion runs

on top of the Realm runtime, which uses GASNet for high-performance networking

on distributed systems; the full runtime stack is shown in Figure 2-4.

The main primitive in Legion is the logical region, an abstraction for storing pro-

gram data similar to a table in a relational database, which uses an index space

for rows and a field space for columns. The index space can be a single- or multi-

dimensional array of points, either structured (indicating the index space is a collec-

tion of one or more dense Cartesian grids) or unstructured (indicating the index space

is an arbitrary collection of keys or pointers). A field space consists of a collection

20

Figure 2-5: An example of a region tree, where the black bars represent partitions
and the asterisks indicate disjoint partitions [7].

of named fields, each of which may either store a plain old data (POD) type or a

compound type. Logical regions are effectively a cross product between a field space

and an index space, and are first-class objects in Legion, i.e. they can be created and

destroyed at runtime and stored in data structures.

Logical regions can be partitioned into logical sub-regions through colorings, which

are maps from colors (which lie in a color space) to sets of points in the logical region’s

index space. Each color in the coloring map thus defines an index sub-space, which in

turn defines a logical sub-region. If the index sub-spaces are disjoint, then the logical

partition is considered disjoint; otherwise, the partition is considered aliased. These

partitions create a region tree, which codifies the dependencies between logical sub-

regions in the same tree (see Figure 2-4 for an example). It is through this primitive

that Legion allows the programmer to indicate program data dependencies.

For performing computation, Legion uses tasks, which are functions that operate

on logical regions and pass-by-value arguments. Legion tasks declare the regions they

access through region requirements, which specify the fields of a region being accessed

along with the privilege being used to access it (read-only, read-write, write-discard,

or reduce). The privilege specifies the type of side effect the computation is allowed

to have on the region. Region requirements thus allow the programmer to express

the dependencies of computation on data.

Tasks can in turn launch sub-tasks asynchronously using a deferred execution

21

model, which forms a tree of tasks with the top-level root task being the first to

execute. The Legion runtime performs a dependency analysis on tasks to discover

implicit parallelism by checking whether tasks are non-interfering on their logical

regions; this allows the runtime to execute these tasks in parallel while maintaining

sequential program order semantics. Legion requires that for a sub-task to declare

privileges on a region, its parent task must possess the same privileges (or stronger) for

the same fields and for the same logical region (or an ancestor in its region tree); this

containment property allows the use of an efficient hierarchical scheduling algorithm

for tasks, and makes Legion functional at coarse granularity (between tasks) while

imperative at fine granularity (within a task). A sub-task that creates a logical region

is granted read-write privileges on that region, and will pass those privileges to its

parent task if it does not destroy the region by the end of its execution. Sub-tasks

may additionally return values to their parent tasks in the form of futures, which can

either be passed to other sub-tasks (causing those sub-tasks to delay execution until

the future’s result is available) or waited on in the parent task (causing the parent

task to block until the future’s result is available).

When a task requires access to data contained with a logical region, it has to

instantiate that logical region in memory with some data layout; this process is called

mapping the logical region, and the resulting data in memory is referred to as a

physical instance of that logical region. When a task runs on a processor, the Legion

runtime guarantees that the logical regions specified in the task’s region requirements

will be mapped to physical instances in that processor’s memory. Tasks may also

manually map logical regions during execution, but only if the task has the necessary

privileges on the logical region; this is called inline mapping, and inline mapping

launchers are similarly set up through region requirements. (This may block execution

if the task attempts to access the instance before the logical region is mapped.) One

consequence of these mapping semantics is that a task must manually unmap a logical

region if it launches a sub-task that would require interfering privileges on that same

logical region, since otherwise the sub-task would never execute.

Legion exposes scheduler decisions regarding how to map tasks to processors and

22

how to map logical regions to processor memories using the mapper interface. Mappers

are classes developed by the programmer that implement the mapper interface; the

Legion runtime instantiates a mapper object for every mapper type registered with

the runtime and for every processor in the system. Once a sub-task is launched, the

mapper that corresponds to the processor running the parent task is queried with

the sub-task using its select_task_options() call. During this call, the mapper

can decide to do one of three things. It can map the sub-task inline, which causes

it to be inlined into the parent task using the parent task’s regions. It can choose

to map the sub-task remotely, in which case the mapper selects a remote processor

to send the sub-task to (whose corresponding mapper then maps the task). Finally,

the sub-task can be sent to a remote processor but mapped locally, in which case the

current mapper maps the sub-task and sends the results to the remote node, which

then uses the results to immediately launch the task.

The act of mapping itself is carried out using the mapper’s map_task() call. The

mapper in this call decides the layout of the physical instances needed by the task,

and for each physical instance ranks the physical memories with regards to which

memory is the most desirable to instantiate the physical instance on. The mapper

also has the ability in this call to specify that the task may by executed by any

processor within a processor group, which provides a form of load-balancing to task

execution. To learn more about the Legion runtime’s software out-of-order processor

(SOOP) and the algorithms it uses for dependency analysis and task scheduling, refer

to Bauer’s dissertation [9].

23

24

Chapter 3

Related Work

In this chapter, we turn our focus to previous works that have parallelized the com-

putation of sparse tensor algebra. To the best of our knowledge, the Taco compiler

is the first compiler capable of generating kernel code for general sparse tensor al-

gebra expressions. Thus, distributing the computation of these expressions in the

general case presents a novel problem. This makes it difficult to compare to prior

work, which often has focused on parallelizing very specific tensor algebra expressions

and has accordingly developed solutions that may not generalize to other expressions.

Nevertheless, we have still gained insight from seeing approaches to distributing these

computations.

3.1 SpMV Partitioning

Much effort has been put into optimizing the sparse matrix-vector (SpMV) kernel

𝑎𝑖 =
∑︀

𝑗 𝐵𝑖𝑗𝑐𝑗 due to its heavy use in scientific computing, which has given rise to

several optimization techniques [10]. To exploit thread-level parallelism, the matrix

data has to be partitioned in some way. Earlier work has suggested partitioning by

row blocks, column blocks, or by sections of the sparse matrix data structure [10],

while recent work has led to more complex, specialized techniques.

For example, using row splitting, long rows of CSR matrices are split into regular-

ized sections and distributed to processors, with the partial sums aggregated later in

25

a subsequent pass [11]. This has the benefit of limiting the amount of data assigned to

any given thread and thus improves load balance compared to simply blocking along

rows, but still possesses some load imbalance due to rows which are shorter than the

regularized size. Another modern technique is nonzero splitting, which assigns equal

amounts of non-zero data in CSR matrices to each processor, but requires a search

in the pos array to find which rows the non-zero data sections begin and end on [11].

This improves load balancing by directly dividing up the non-zero data, but is still

susceptible to imbalance if some non-zero data sections cover many more rows than

other sections.

While these modern partitioning techniques improve load balancing for the SpMV

kernel, they don’t generalize past SpMV well since they require random access into

the vector to be able to compute the output efficiently. More generally, these tech-

niques are attempting to partition the set of tensor components into disjoint sets,

and assigning these sets to processors in such a way that the time a processor spends

iterating through its components is around the same per processor. However, iter-

ating through the tensor’s index variables in this complex fashion, while designed to

be efficient for the partitioned tensor, may not be efficient for other tensors in the

computation which depend on the same index variables. If any of these other ten-

sors is similar in size to the partitioned tensor, the inefficiencies of this iteration will

outweigh the benefits of the complex partitioning.

It is for this reason that we use tensor blocking based on index splitting, as de-

scribed in Section 4.1. This in effect allows us to partition all the tensors simulta-

neously in such a way that iteration for a given processor is not rendered inefficient

by the partitioning. At first glance, this suggests complex partitions may be salvage-

able through partitioning the other tensors to match in index variables, similar to

index splitting. However, this does not necessarily result in a partition. For example,

consider row splitting for SpMV but with a sparse vector; the parts of the sparse

vector that correspond to the regularized row sections overlap each other and thus do

not constitute a partition, meaning the approach would require extra work through

duplicating data.

26

3.2 PETSc

PETSc is a suite of data structures and routines for developing parallel solutions to

problems modelled by partial differential equations. The suite in particular is notable

since it manages to provide a clean object-oriented abstraction for computing with

sparse matrices and vectors in parallel without exposing the underlying MPI details

[12]. The suite specifically provides a parallel sparse matrix type called mpiaij that

uses row blocking to distribute the matrix data across processors, and further sep-

arates each row block into a diagonal block and an off-diagonal block (both stored

using CSR). While the suite does not support sparse tensors, the suite makes com-

puting parallel SpMV as simple as computing single-threaded SpMV since it doesn’t

expose the underlying parallel implementation; the user just calls MatMult() in both

cases. SuperTaco is somewhat similar, as the tensor algebra expression remains un-

changed by parallelizing the computation. However, SuperTaco uses a distribution

schedule to control how computation is split among nodes; for PETSc, changing how

computation is distributed would require changing the underlying matrix object to a

different parallel implementation. In this sense, PETSc associates this property with

the matrix, while SuperTaco associates it with the computation itself.

27

28

Chapter 4

SuperTaco

Chapter 2 gave an introduction to tensor storage formats, Taco code generation, and

the Legion programming system. In this chapter, we describe our implementation

of SuperTaco, a compiler that takes sparse tensor algebra expressions and generates

Legion programs that distribute the computation of those expressions across homo-

geneous distributed systems. The SuperTaco command-line tool effectively wraps the

Taco command-line tool, using it as a black-box to generate kernel code to run on

each processor.

The SuperTaco command-line tool accepts similar arguments to the Taco command-

line tool. At its core, it accepts a tensor algebra expression written using Einstein

summation convention, such as a(i) = B(i,j) * c(j) to express 𝑎𝑖 =
∑︀

𝑗 𝐵𝑖𝑗𝑐𝑗. It

requires that the storage formats of the tensor operands in the expression be speci-

fied. E.g. to specify that 𝐵𝑖𝑗 is a CSR matrix (dense𝑑1, sparse𝑑2), we would use the

format flag -f:B:ds. SuperTaco additionally accepts arguments that can control how

it distributes computation, which we refer to as the distribution schedule.

The SuperTaco command-line tool itself is a Python script. During execution,

it processes the arguments and distribution schedule, and generates a C++ Legion

program from a template using the Mako templating library. SuperTaco does not

dynamically generate all the code in the program; some routines, such as iterating

through a tensor or binary-searching a tensor, are static, and are accordingly packaged

in a static library that the generated Legion program uses. SuperTaco also at times

29

Figure 4-1: Overview of the SuperTaco command-line tool.

needs to compile tensor algebra kernels to single-processor C code; to do this, it calls

the Taco command-line tool to generate the code, packs it into a C source file after

slight modifications, and then has the Legion program call the functions in the file.

Compiling the generated Legion program into an executable is performed using the

standard Legion Makefile distributed to Legion application developers. An overview

of the SuperTaco tool components are shown in Figure 4-1.

SuperTaco extracts parallelism from tensor algebra expressions by breaking ten-

sors into blocks, and computing the requested kernel on those blocks instead of on

the entire operand tensors at once. Since the requested kernel must be computed on

many different combinations of these blocks, the kernel must be executed many times,

and many of these executions can be run in parallel. However, dependencies can arise

between the kernel executions depending on how the distribution takes place, e.g. if

two of these kernel operations sum into the same output block.

A Legion program generated by SuperTaco consists of three phases: distributed

tensor loading, distributed tensor algebra computation, and distributed tensor storing.

In the first phase, a tensor (potentially larger than any single node’s memory) is

streamed through the nodes and loaded into blocks, which are evenly distributed

over the nodes. In the second phase, the kernel is computed in parallel for various

combinations of these blocks. In Legion, this amounts to a nest of for loops in the

30

top-level task, with a kernel task launch in the innermost loop body. Through region

requirements, the task launch receives references to the logical regions containing the

blocks that the kernel task must operate on. When the kernel task finishes computing

an output block, the block is packed in a logical region and passed back to the parent

through a future. The parent task adds this future to the next kernel task that

operates on that output block, which codifies the dependencies between kernel tasks.

At the end of this phase, the Legion program adds together output blocks that were

treated separately during kernel computation, but in reality refer to the same block

(the extent to which this happens is one of components controlled by the distribution

schedule). In the third phase, the tensor blocks are merged together via a distributed

multi-way merge, and are then written back to disk.

Section 4.1 describes the theoretical notation and primitives needed to discuss

tensor blocking and index splitting, while Section 4.2 describes how we augment Taco

tensor storage formats to allow more efficient tensor block storage. In Section 4.3, we

discuss a file format for storing the data structures of Taco tensor storage formats,

and how to convert to this file type from the .tns file type. Section 4.4 discusses how

our Legion programs load a tensor and partition it into tensor blocks in a distributed

fashion. Section 4.5 presents the theory behind how a tensor algebra expression is

transformed by tensor blocking, and describes the code generation techniques that

SuperTaco uses to compute these transformed expressions along with the options

that arise for structuring that computation, which is exposed through distribution

schedules. Finally section 4.6 describes how our Legion programs merge the output

tensor blocks into an output tensor in a distributed fashion and store it to disk.

4.1 Distributed Scheduling Primitives

For distributed systems, we require a notation that allows us to express tensor block-

ing and index splitting. Index splitting describes the process in which the range

representing the possible values for an index variable, i.e. [0, 𝐷) for an index variable

of dimension 𝐷, is split into 𝑃 contiguous split ranges [0, 𝑠0), [𝑠0, 𝑠1), . . . , [𝑠𝑃−2, 𝐷)

31

for a given non-decreasing tuple of 𝑃 − 1 split points (𝑠0, 𝑠1, . . . , 𝑠𝑃−2). Note that we

allow here for the possibility that 𝑃 = 1, so that the split points tuple is empty. For

a given split range, let its index within its parent list of split ranges be known as its

split index.

As part of its distribution schedule, SuperTaco accepts a list of index variables

to be split, and for each variable its corresponding list of split points. Instead of

supplying the split points for an index variable, a user can also supply a single number

representing the number of split ranges to make, and SuperTaco will uniformly split

the index variable into the requested number of ranges. If an index variable is not

asked to be split, SuperTaco will split it with a single range of [0, 𝐷).

Now suppose we have a tensor 𝐴𝑖0𝑖1...𝑖𝑅−1
of dimensions (𝑁0, 𝑁1, . . . , 𝑁𝑅−1), where

each index variable 𝑖𝑚 has been split into 𝑃𝑚 split ranges using the split points

(𝑠
(𝑚)
0 , 𝑠

(𝑚)
1 , . . . , 𝑠

(𝑚)
𝑃𝑚−2). The splitting of these index variables define a tensor blocking

of 𝐴; that is, we can split the components of 𝐴 into 𝑃0 · 𝑃1 · . . . · 𝑃𝑅−1 tensor blocks

𝐴𝐼0𝐼1...𝐼𝑅−1 for non-negative integers 𝐼𝑚 satisfying 𝐼𝑚 < 𝑃𝑚, where the components

of the tensor 𝐴𝐼0𝐼1...𝐼𝑅−1 consist of the components of 𝐴 that have 𝑖𝑚 in 𝐼𝑚-th split

range of mode 𝑚 for all 𝑚. In this notation, 𝐼0, 𝐼1, . . . , 𝐼𝑅−1 represent the block index

variables of tensor block 𝐴𝐼0𝐼1...𝐼𝑅−1 . We use bars to distinguish the index variables

of 𝐴𝐼0𝐼1...𝐼𝑅−1 from the index variables of 𝐴, so that the components of 𝐴𝐼0𝐼1...𝐼𝑅−1 are

written as 𝐴
𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
.

In this sense, the index variable 𝑖𝑚 has been split into two index variables 𝐼𝑚

and 𝑖̄𝑚, in which 𝑖𝑚 = 𝑝𝑚 + 𝑖̄𝑚 where [𝑝𝑚, 𝑝𝑚+1) is the 𝐼𝑚-th split range of index

variable 𝑖𝑚. Note that it appears at first glance that 𝐴
𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
could be considered

a tensor with rank 2𝑅 and index variables (𝐼0, 𝐼1, . . . , 𝐼𝑅−1, 𝑖̄0, 𝑖̄1, . . . , 𝑖̄𝑅−1), but this

loses important information about the relationship between 𝐼𝑚 and 𝑖̄𝑚. Specifically,

the possible values of 𝑖̄𝑚 are determined by 𝐼𝑚 via the 𝐼𝑚-th split range. If we discard

this relationship, then the range of 𝑖̄𝑚 becomes the full range of 𝑖𝑚 (i.e. [0, 𝑁𝑚)),

which would defeat the purpose of blocking. It is for this reason we must consider

the block index variables separately when splitting index variables.

32

4.2 Taco Tensor Storage Format Augmentation

To efficiently store tensor blocks, there is one minor modification we need to make

to Taco’s sparse tensor storage formats. The dense level type currently assumes that

the corresponding index variable can take values in the range [0, 𝐷) for dimension

size 𝐷. However, when splitting the range [0, 𝐷), many ranges are created that don’t

begin at 0. For example, consider splitting into 𝐷 ranges, so that the last range is

[𝐷− 1, 𝐷). The tensor block corresponding to this range can only take one value for

this index variable, namely 𝐷 − 1. However, if the dimension is stored dense, then

the tensor block is forced to use dimension size 𝐷, which assumes the index variable

can take on 𝐷 values. This illustrates that the dense level type is inefficient for index

variables with high minimum values.

To remedy this, we augment the dense level type to include an offset 𝑇 , so that the

corresponding index variable can take values in the range [𝑇, 𝑇+𝐷). This formulation

allows us to use the dense level type to store tensor blocks efficiently. Similar to how

dimension sizes must match when computing with tensors that have the same index

variable, dimension offsets must also match. The changes that this imposes on Taco

code generation is fairly minimal. In particular, if there’s an index variable in the

generated loop nests that is stored sparse in some tensor and dense in some other

tensor, then any value read from an idx array corresponding to that index variable

must be decremented by the dense dimension’s offset. Similarly, any value written to

an idx array corresponding to that index variable must be incremented by the dense

dimension’s offset prior to being written. These changes effectively add support for

dense offsets to Taco-generated assemble() and compute() code by taking advantage

of the fact that sparse dimension idx values only matter relative to the other index

variable values. (This isn’t true of dense dimension index values, since at times the

dense index value is used as a stand-in for the distance between the dense index value

and the dense initial index value due to the initial index value being assumed as zero

in the generated code.)

33

4.3 Sparse Tensor File Format

While the Taco library defines a taxonomy for sparse tensor storage formats as de-

scribed in Section 2.2, it does not define a file format for storing the associated data

structures. A common existing file format for storing sparse tensors is the .tns

file format, which stores a tensor entry and its indices on each line. That is, if a

tensor maps 𝑅-tuple (𝑖0, 𝑖1, . . . , 𝑖𝑅−1) to component 𝑐, then the .tns file has a corre-

sponding line reading “𝑖0 𝑖1 . . . 𝑖𝑅−1 𝑐”. This file format is sparse in the sense that

zero-component entries are omitted. While .tns files do not necessarily have to have

their lines be sorted by indices, in this work we assume that .tns files are sorted.

One of the downsides of this format is that it uses plaintext to store numbers,

which takes up more space for larger numbers compared to a binary format (a 64-

bit integer takes up the same space as 8 plaintext characters). This is particularly

bad for large tensors, since storage bandwidth can be limiting for tensor loading.

Furthermore, if we have a desired sparse tensor storage format, then the tensor must

be converted into this format from the .tns file. For these reasons, we have created a

binary file format for storing sparse tensors that mirrors the data structures defined

by Taco’s sparse tensor storage formats, which we call .tcs.

A .tcs file consists of a header section and a data section. The header stores

metadata about the tensor and its dimensions, while the data section stores the pos

and idx arrays (as 64-bit integers) for sparse dimensions along with storing the val

array (as double-precision floats). More specifically, the header stores the rank, the

file size, the type of each dimension (dense or sparse), the byte offsets of the arrays in

the data section, and the dimension offset and size for dense dimensions. For tensor

blocks, the header additionally stores for each dimension its split range endpoints,

that range’s corresponding index in the list of split ranges for that index variable,

and the number of split ranges for that index variable. The file format being binary

means that accessing any pos, idx, and val arrays only requires copying the relevant

file sections to buffer space; this is an improvement over the .tns file format, where

the relevant data would have to be parsed from plaintext. Moreover, the byte layout

34

defined by the .tcs file format can alternatively be used as a memory layout, in which

the header section is a struct with a variable-length array at the end that stores per-

dimension metadata, and the data section is a series of arrays. In this sense, the .tcs

format is as much a memory format as it is a file format.

We generally expect users to convert .tns files to .tcs files only when they first

receive their dataset, so we do not attempt to distribute this conversion across proces-

sors. However, this conversion must be capable of dealing with tensors that cannot fit

into a single node’s memory. We thus perform this conversion with a two-pass stream-

ing algorithm that computes header information in the first pass and populates the

arrays in the data section in the second pass.

The streaming conversion algorithm takes as input the .tns file and a type for

each dimension (dense or sparse). Note that we assume the index variable order for

the storage format is the same as the order of variables in the .tns file; if not, the

appropriate columns in the .tns file must be swapped and the .tns file resorted.

During the first pass, we stream through the lines of the .tns file, keeping track of

of the maximum and minimum value for each dimension (for dense dimensions whose

offset and size are unspecified by input arguments, these are used to determine the

offset and size). As we stream, we also keep a level size counter for each dimension,

which represents how many storage format tree nodes are in a particular level. The

counters all start at 0, and for every line, we determine the first level for which there

is a difference between this line and the previous line; suppose it is level 𝑘 (if there is

no previous line, then we say it is level 0, i.e. the root node level). We then increment

the level size counter for all levels ≥ 𝑘, as the storage format tree splits into a branch

at level 𝑘. After going through all pairs of consecutive lines, we can use these level

size counters and the dense dimension sizes to determine the sizes of the pos, idx,

and val arrays, which in turn lets us compute their byte offsets along with the file

size.

The length of any sparse level’s idx array is equal to its level size counter. The

length of any sparse level’s pos array can be found by finding the closest sparse

level that’s higher than the original sparse level (i.e. closer to the tree root), taking

35

the length of its idx array, multiplying that by the dimension sizes of any dense

dimensions between the original sparse level and its closest higher sparse level, and

then adding one (due to the sentinel placed at the end of pos arrays). If there is

no sparse level higher than the original sparse level, then we use the root node and

assume an idx array length of 1. We can also use this method to determine the length

of the val array if we just consider it as an extra level 𝑅 + 1 past the leaf nodes, but

for the val array we don’t add a 1 since there is no sentinel.

For the second-pass of the conversion, we similarly stream through the lines of the

.tns file, this time filling the data section of the .tcs file. Note that we write to the

pos, idx, and val arrays sequentially, so we can stream output as well with buffers.

Once again we iterate through every line and compare to its previous one, finding

the first level 𝑘 for which there is a difference between this line and the previous

one, and keeping track of level size through level size counters. However, when we’re

processing a given line, we do not update the level size counters immediately; instead,

we use these level size counters to write the appropriate values to the arrays in the

data section, and then update the level counters afterwards.

Writing the appropriate values to the arrays once again involves comparing the

current line to the previous line. As we iterate through the levels of a line, we keep

track of an integer displacement (initialized to 0 at the start of the line) which tells us

how many copies of a value need to be pushed onto the pos array. Starting at level 𝑘,

we iterate through the remaining levels and do the following for each level. If the level

is dense, we update the displacement by multiplying it by the dimension size, adding

the current line’s index value for the level, and subtracting the previous line’s index

value for the level. If the level is sparse, we push the value of the level size counter

onto the pos array a total number of times equal to the displacement, push the current

line’s index value for the level onto the idx array, and then reset the displacement to

1. When we reach the component value at the end of the line, we push displacement

minus one instances of 0 onto the val array and then push the actual component value

onto the val array. The displacement here effectively accounts for the fact that dense

levels assume that nodes in the tree have a number of children equal to the dimension

36

size, which causes a subsequent sparse level to accordingly have zero children for those

extra nodes that appeared in the dense levels. This process is slightly different for

the first line in the .tns file, where we actually initialize the displacement to 1 and

use a sentinel for the previous line in which sparse levels have an index value of 0 and

dense levels have an index value of 𝐷− 1 for dimension size 𝐷. Similarly, at the end

of the streaming algorithm we have to process an additional sentinel line where the

displacement is once again initialized to 1 and all of the sentinel line’s index values

are 0 (for the val array here we only push the zeros since there is no component

value).

More generally, this streaming algorithm effectively allows any iterator that iter-

ates through the entries of a tensor in sorted order to convert those entries to the

.tcs format. This will become useful in the next section in which we discuss the

distributed loading of a tensor into tensor blocks.

4.4 Distributed Tensor Loading

The first phase of a Legion program generated by SuperTaco is loading each tensor

into memory and partitioning them into tensor blocks. Since the tensor may not be

able to fit into a single node’s memory, this needs to be done in a distributed fashion.

Note that most of the code for this phase does not need to be generated dynamically;

such routines are packaged into a static library that the dynamically-generated Legion

code calls.

During the first step (Section 4.4.1), the tensor on disk is conceptually split into

pieces via load balancing, in such a way that each of the pieces are around the same

size and can be easily iterated over. If we were to list in-order all the entries in a

tensor, a tensor piece would be a contiguous section of this list; in this sense, we could

also define it by a contiguous section of the val array. Each processor uses binary

search to look for a point in the tensor such that the size of the tensor piece spanning

the start of the tensor to that point is a desired size offset, where the desired offset for

each processor is determined by the parent task. Once the location in the tensor is

37

found, it is passed back to the parent Legion task, which then uses that information

to define the tensor pieces by their endpoints. Each processor is assigned a piece.

Next, each processor will stream through its tensor piece, and place each entry

it sees in the corresponding tensor block it belongs to. Since each processor is only

iterating through a piece of the tensor, each processor will only be assembling tensor

block pieces. This process requires two passes, and is correspondingly divided into

two parts. The first part (Section 4.4.2) is for each processor to iterate through its

piece in a streaming fashion, and gather partial header information for each tensor

block. This partial header information is sent back to the parent task, which allows

it to assemble the full .tcs header for each tensor block.

For the second part (Section 4.4.3), the parent task computes certain state infor-

mation that the processors need to make the second pass, in which it assembles the

tensor block pieces. It sends that state information to each processor, and then the

processors make their second pass through their tensor piece to assemble the tensor

block pieces. For the final step (Section 4.4.4), each tensor block is assembled on its

designated node by gathering its tensor block pieces from the other processors.

4.4.1 Load Balancing

Before we can discuss load balancing, we need a clear way of defining the endpoints

of a tensor piece, along with its size. Recall from Section 2.2 that we can uniquely

identify a particular point in the process of tensor iteration via effective position

pointers for each of the levels, essentially creating a vector of positions. Thus, by

specifying a starting position vector and ending position vector, we can specify a

piece of the tensor that can easily be iterated over. To load balance, we want to find

a set of position vectors that divides the tensor into pieces of roughly equal size.

We would like to define the tensor piece size as the number of bytes in the data

structures that would be traversed while iterating from the starting position to the

ending position, which is a good approximation of the bandwidth consumed from

iterating through such a piece. To calculate the size of a tensor piece, it is simpler

to think of it in terms of the difference between the size offsets of the starting and

38

ending position vectors, where the size offset of a position vector is the size of the

tensor piece between the start of the tensor and that position.

Calculating the size offset given a position vector is straightforward. Note that

the effective positions in the position vector give locations in the idx arrays and the

val array, but they also give the locations in the pos arrays, since the location in a

pos array is just the effective position of the previous level. Thus, given a position

vector, we can easily determine the distance between the locations in these arrays and

the starts of the arrays. We then define the size offset as the sum of these distances,

when converted to bytes, for each of the sparse levels and the val array. (We leave

out the distances from the pos and idx arrays for dense levels since these are only

conceptual; dense levels only really store a small amount of metadata in the header.)

With these definitions made clear, we can now discuss how generated Legion

programs load balance tensor loading. Since the program knows the file size of the

tensor, it can determine the ideal size offsets that would evenly divide the tensor

into pieces. The next step then for each size offset is to find a position vector that

approximately achieves that size offset, which can be done through binary search. Our

Legion program parallelizes this by launching a binary search task for each size offset,

with the number of size offsets equal to the number of processors in the distributed

system.

For the binary search task executed on each processor, the first step is to take a

guess as to the effective position in the val array that achieves the desired size offset

(recall from Section 2.1 that the effective position in the val array uniquely defines

the other effective positions). To compute the size offset for the guess, we then need

to determine the effective positions for all the levels, which we can do by going up the

levels of the tree to the root. Recall that the location in an idx array is the same as

the location in the pos or val array in the level below it, so determining the location in

an idx array from lower levels is straightforward. The tricky part is determining the

location in the pos array from the location in the same level’s idx array. If the level

is dense, this computation is just a straightforward floor division by the dimension

size. However, if it is sparse, this requires a binary search to find the appropriate

39

location in the pos array. Using this method, we can determine the entire position

vector for our guessed effective position into the val array, and determine the actual

size offset. We can then binary search the space of size offsets by querying more val

array effective positions to eventually find the position vector near the desired size

offset.

This process of finding the position vector that approximates the desired size

offset can be sped up by using heuristic versions of binary search. In our case, we

implemented binary search with a guess, in which the search accepts an initial guess

and expands the search window exponentially around the guess until the desired point

is in the bounds of the window, at which the point the window shrinks around the

desired point exponentially as it would in traditional binary search. We specifically

use a proportional guess based on size information, which has been sufficient for the

tensor datasets we’ve used thus far.

Once a binary search task completes, it writes its resulting position vector into

a logical region to share its output with its parent task, and then the parent task

accordingly waits on all binary search tasks to finish before assembling the position

start points and end points for each tensor piece. (The logical regions here are “flat”,

i.e. they have a 1D, contiguous index space and a field space with a single byte-wide

column, which makes them suitable for raw data transfer. This is to optimize access

performance, and all logical regions in this work should be assumed flat unless stated

otherwise.)

4.4.2 Tensor Block Header Assembly

Now that we’ve created tensor pieces that are approximately equal in size, each pro-

cessor in the system can iterate through its piece to find partial header information

about the tensor blocks. Note that since each processor is only iterating through a

piece of the tensor, it’s also only iterating through a piece of each tensor block, and

can accordingly only find partial information about the tensor. The information must

be combined in the parent task to get a complete header for the tensor block.

Iterating through a particular piece of a tensor is relatively straightforward, and

40

can be thought of as a traversal of the sparse format tree. Because we still move

sequentially through the pos, idx, and val arrays, we can again stream through

these arrays using buffers. We use a position vector to keep track of our locations

in the tensor level data structures, and initialize to the starting position. We also

use an index vector to keep track of the current index value for each level, and for

sparse levels, we keep track of the right position endpoint from pos. For the dense

dimensions, we initialize the index value to the sum of the effective position modulo

the dimension size and the dimension offset. Iteration is performed using a while loop

that keeps track of tree level and whether traversal is moving down or up; initially the

tree level is 1 and traversal is moving down. The while loop only exits if the tree level

reaches 0, or if the current position vector’s last element (i.e. the effective position into

the val array) becomes at least as large as the ending position vector’s last element.

For tree levels between 1 and 𝑅, the behavior of the loop differs depending on whether

the level is dense or sparse. If the level is sparse and traversal is moving down, then

we fetch the next right position endpoint from the pos array and determine whether

the level’s effective position is less than it (we also update the right position endpoint

vector accordingly). If it is, then there are still children left in the corresponding

segment, so we fetch the index value from idx corresponding to the effective position,

increment the tree level, and keep moving down. If it’s not, then there are no children

left in the segment, in which case we decrement the tree level and move up. If instead

we enter a sparse level while moving up, we increment the effective position and once

again check whether our effective position is less than the right position endpoint,

doing the same as before. If the level is dense and traversal is moving down, we need

only increment the tree level and keep moving down. If instead we enter a dense level

while moving up, we increment both the effective position and the index value, and

check whether the index value is less than the sum of the dimension offset and the

dimension size. If so, the segment still has children, so we increment the tree level

and move down. If not, then the segment is finished, so we reset the index value

to the dimension offset, decrement the tree level, and keep moving up. If our tree

level becomes 𝑅 + 1, then we’ve reached the val array in the tree, so we read the

41

appropriate component from val using the effective position of the previous level. At

this point, we have a full tensor entry from our index value vector and component,

and can use a callback to decide how to handle the entry. After this, we begin moving

back up and decrement the tree level.

We can augment this iteration process to further supply our callback with the

split index for each dimension. That is, we can keep track of which split range each

index value falls within. To do so, when an index value is increased from a position

bounds check succeeding, we keep incrementing the split index until the new index

value is within the bounds of the split index’s range. If at any point we move down

into a sparse or dense level (and a bounds check succeeds, if it exists), we reset the

split index to 0 and again increment the split index until the new index value is within

the bounds of the split index’s range.

Using this procedure, we can iterate through the entries of a tensor piece and

assign each one to its corresponding tensor block in the callback, as determined by

the split index for each dimension of the entry. As for what information is gathered

by the callback, it is similar to the first-pass of .tns to .tcs conversion; for each

block, we keep vectors that store the level size, the minimum and maximum values,

and additionally we keep copies of the first and last lines encountered for that block

so we can account for edge effects when we merge this information together with that

of other processors.

In the Legion program, we parallelize this procedure similar to how the binary

search was parallelized. The parent task launches a block header child task for every

tensor piece (as defined by its start and end position vectors), and the parent task

receives from each processor the information they gathered while streaming via logical

regions. For each tensor block, the parent task then reconstructs the tensor block’s

.tcs header based on the information it received from each processor about that

block. (This primarily consists of pooling minima/maxima, adding together the level

size vectors, and accounting for edge effects.) This essentially parallelizes the first-

pass of .tcs conversion.

42

4.4.3 Tensor Block Piece Assembly

Now that the tensor block headers have been computed, the next step is for each

processor to make a second-pass through its assigned tensor piece, and assemble the

tensor block pieces for each of its tensor blocks. Similar to the previous section, this

effectively uses the augmented iteration code to iterate through the entries of a tensor

piece while determining which block each entry belongs to, and the callback resembles

the second-pass of .tcs conversion to form the tensor block pieces. However, while the

first-pass of conversion was easily parallelized, the second-pass requires more work.

In particular, during the second-pass of conversion the level size counters are built

up over the course of iterating through the entire tensor, and during the processing

of each line those counters are used when writing to the pos array. Since each pro-

cessor only iterates through a piece of the tensor for loading, the level size counters

aren’t built up appropriately, which would make the values written to the pos arrays

incorrect. Each processor instead needs to start with the level size counters that

would have resulted from iterating from the start of the tensor to the start of that

processor’s assigned tensor piece. The parent task can thankfully provide this by

computing partial sums over the level size counters it collected from each processor

(and accounting for edge effects). The parent task additionally provides information

to each processor about the size of the arrays for each of its tensor block pieces.

Hence, using this approach we are able to parallelize the second-pass of conversion,

and generate the tensor block pieces on each processor. In the Legion program, we

again parallelize this procedure similar to the binary search task and tensor header

block computation, except this time the parent task doesn’t access the output of the

task, i.e. the tensor block pieces. The parent task does, however, have references to

the logical regions holding that data, so that it may pass those logical regions to other

child tasks.

43

4.4.4 Tensor Block Assembly

The final step of tensor loading is assembling the tensor blocks from their tensor block

pieces. For each tensor block, this requires loading the tensor block header from the

parent task, and loading the tensor block pieces from the other processors. The pos,

idx, and val arrays within the tensor block pieces are simply concatenated to form

the data section of the tensor block.

In the Legion program, parallelization is different than the previous steps. Instead

of creating a child task for every processor, we create a child task for every block.

The parent passes the appropriate tensor block header through a logical region when

creating the child task. The parent task also passes logical regions containing the

tensor block pieces to the child task assembling that tensor block. This means that

the child task will not run until the tasks that generate the tensor block pieces have

finished. Furthermore, Legion will take care of copying those tensor block pieces to

the processor that will assemble that tensor block, so that when the child task runs,

the pieces will be in its memory. After the child task has finished assembling the

tensor block, it will destroy the logical regions containing the tensor block pieces,

allowing them to be garbage collected.

Through these steps, we are able to assemble the tensor blocks in a distributed

fashion. The original tensor is divided into pieces of equal size, which means the sum

of the sizes of the tensor block pieces on any given node should be roughly the same in

size, provided the tensor and index variable split ranges are not significantly skewed.

To this extent, this tensor loading scheme is load-balanced, and should be able to

handle tensors that can’t fit into a node’s memory. One aspect that has not yet been

discussed is which nodes end up receiving which tensor blocks. This is affected by

the block’s mapping key, and will be explained in the next section on distributing the

computation of tensor algebra.

44

4.5 Distributed Tensor Algebra Computation

In the previous section, we discussed how our generated Legion programs load tensors

from disk into tensor blocks. The next phase of our Legion program is to compute the

desired tensor algebra expression in a distributed fashion using these tensor blocks.

This consists of two major steps.

The first step is the execution of the kernel itself. This is done in the top-level

parent task through a nest of for loops, each of which iterates through a block index

variable, and a child task launch in the innermost for loop body that executes the

kernel. In this innermost loop body, the parent task adds region requirements to

the kernel task launch for logical regions containing the tensor blocks that the kernel

task must operate on, which is determined by the value of the block index variables

in the for loop nest. The kernel task returns its output block logical region to the

parent through a future, which the parent may then add to the next kernel task that

sums into the same output block. A second step, which may or may not be necessary

depending on the distribution schedule, is to sum together any output blocks that

were treated as different during the first step, but in reality referred to the same

output block. This is done in a distributed fashion by launching pair-wise summation

tasks to form a tree-like dependency graph between tasks, with the final output block

being returned from the summation task at the root of the tree.

To understand how this code is generated requires an understanding of how the

computation of the tensor algebra expression is changed theoretically when blocking

tensors, which is explained in Section 4.5.1. With this insight in hand, Section 4.5.2

talks about how those transformed expressions are implemented in Legion code, and

accordingly how that code is generated from distribution schedules. Section 4.5.3

describes the code generation method for creating the kernel task, while section 4.5.4

describes the code generation method for creating the summation task. Section 4.5.5

talks about how tasks and data are mapped to particular nodes in Legion, and how

this is controlled in code generation through the distribution schedule. Finally section

4.5.6 describes an issue posed by Legion’s garbage collection to keeping memory use

45

bounded, and how this is solved in code generation by emitting tensor block eviction

code in the for loop nest.

4.5.1 Expression Transformation

As mentioned previously, we divide the computation of sparse tensor algebra expres-

sions via tensor blocking and index splitting. In order to know what Legion code

to generate for this distributed computation, we need to understand how blocking

affects the computation of this expression.

Consider a simple example kernel such as SpMV, which is typically written as

𝑎𝑖 =
∑︀

𝑗 𝐵𝑖𝑗𝑐𝑗. To more explicitly represent the dependence on index variable 𝑖, we

use concrete index notation [13] to write this as ∀𝑖

(︁
𝑎𝑖 =

∑︀
𝑗 𝐵𝑖𝑗𝑐𝑗

)︁
. This says that we

evaluate the expression surrounded by the ∀ for each 𝑖. Now consider row blocking,

in which we split the index variable 𝑖 into 𝐼 and 𝑖̄. This is effectively splitting the for

loop ∀𝑖 into two for loops ∀𝑃𝑖−1
𝐼=0 ∀𝑝𝐼+1−1

𝑖̄=𝑝𝐼
, where 𝑃𝑖 is the number of split ranges and

the 𝐼-th split range is given by [𝑝𝐼 , 𝑝𝐼+1).

Note here that since we’re not blocking columns, we’re effectively splitting in-

dex variable 𝑗 into one split range [0, 𝑁𝑗). The
∑︀

𝑗 term above similarly becomes∑︀𝑃𝑗−1
𝐽=0

∑︀𝑝𝐽+1−1

𝑗̄=𝑝𝐽
, but in this case the

∑︀𝑃𝑗−1
𝐽=0 term becomes a no-op (since 𝑃𝑗 = 1), and

the
∑︀𝑝𝐽+1−1

𝑗̄=𝑝𝐽
term becomes

∑︀𝑁𝑗−1

𝑗̄=0
=

∑︀
𝑗 (since the only split range is [0, 𝑁𝑗)). This

means that for a non-split index variable like 𝑗, we can just treat it as a split index

variable but with 𝐽 = 0 and 𝑗̄ = 𝑗.

Splitting the for loops and writing our tensors using tensor block notation gives

us our new expression after index splitting as

∀𝐼∀𝑖̄

(︁
𝑎𝐼𝑖̄ =

∑︀
𝑗𝐵

𝐼0
𝑖̄𝑗 𝑐

0
𝑗

)︁
If we then parenthesize our expression as

∀𝐼

[︁
∀𝑖̄

(︁
𝑎𝐼𝑖̄ =

∑︀
𝑗𝐵

𝐼0
𝑖̄𝑗 𝑐

0
𝑗

)︁]︁
46

we can interpret the outer for loop ∀𝐼 as a loop over processors, and the inner ex-

pression as what each processor needs to compute, i.e. the SpMV kernel computed

on tensor blocks.

Now consider the case of column splitting. Our expression similarly becomes

∀𝑖

(︁
𝑎0𝑖 =

∑︀
𝐽

∑︀
𝑗̄𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
We would like to hoist the

∑︀
𝐽 term out of the expression into a ∀𝐽 loop so that we

can interpret it as a for loop over processors, similar to how we did for ∀𝐼 . However,

doing so naively would create multiple copies of each 𝑎0𝑖̄ , one on each processor, and

each would only be a partial sum. To arrive at the actual value for 𝑎0𝑖̄ , we need to

sum together the partial values. We can express this transformed computation as

∀𝐽

[︁
∀𝑖

(︁
𝑎̄0𝐽𝑖 =

∑︀
𝑗̄𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁]︁
; ∀𝑖

(︀
𝑎0𝑖 =

∑︀
𝐽 𝑎̄

0𝐽
𝑖

)︀
where we have created intermediate vectors, namely 𝑎̄0𝐽 , to hold the partial sums.

More generally, if we have an expression of the form

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

(𝑒𝑥𝑝𝑟)
)︁]︁

for free variables 𝑖𝑞 and reduction variables 𝑗𝑞, we can hoist the block index variables

𝐽𝑞 for those reduction variables out of the expression by creating intermediary tensors

𝐴𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1 according to

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 𝑒𝑥𝑝𝑟

)︁]︁
;

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁
Going back to our SpMV example, if we split along both rows and columns, we would

arrive at

∀𝐼∀𝐽

[︁
∀𝑖̄

(︁
𝑎̄𝐼𝐽𝑖̄ =

∑︀
𝑗̄𝐵

𝐼𝐽
𝑖̄𝑗̄ 𝑐

𝐽
𝑗̄

)︁]︁
;∀𝐼

[︀
∀𝑖̄

(︀
𝑎𝐼𝑖̄ =

∑︀
𝐽 𝑎̄

𝐼𝐽
𝑖̄

)︀]︀
Splitting along 𝑗 in this way allows us to further parallelize the computation of

47

the expression at the price of having to combine the partial sums later. But there

is another hidden cost; namely, the distributed system needs enough space to store

the intermediary tensors. The tensor blocks 𝐴𝐼0𝐼1...𝐼𝑅−1 are just a partition of 𝐴, so

the amount of space they take up should be only some small factor larger than 𝐴 on

average. However, the intermediary tensors 𝐴𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1 are not a partition,

and may accordingly exceed the total space of tensor blocks 𝐴𝐼0𝐼1...𝐼𝑅−1 by a factor of

𝑃𝐽0 ·𝑃𝐽1 · . . . ·𝑃𝐽𝑅′−1
. Depending on how the indices 𝐽𝑞 are split, the amount of space

needed by the intermediary tensors may be too large.

Luckily, there is another way to restructure the computation that allows us to

hoist the
∑︀

𝐽 terms without increasingly many intermediaries. Returning to our

SpMV example, we can instead transform

∀𝑖

(︁
𝑎0𝑖 =

∑︀
𝐽

∑︀
𝑗̄𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
by summing directly into the output, i.e.

∀𝑖

(︀
𝑎0𝑖 = 0

)︀
;∀𝐽

[︁
∀𝑖

(︁
𝑎̄0𝑖 =

∑︀
𝑗̄𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
; ∀𝑖

(︀
𝑎0𝑖 += 𝑎̄0𝑖

)︀]︁
where 𝑎̄0𝑖 is a temporary tensor (this tensor is the same size as 𝑎0𝑖 , and can be deleted

once it is summed into 𝑎0𝑖). Note that while this transformation does split the compu-

tation into 𝑃𝐽 steps consisting of ∀𝑖

(︁
𝑎0𝑖 +=

∑︀
𝑗̄𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
, these steps cannot be com-

puted in parallel across 𝐽 since each step writes to 𝑎0𝑖 . However, the act of splitting

along 𝑗 still decreases the size of tensor blocks depending on 𝑗, and thus this transfor-

mation is still useful in that it decreases the amount of memory needed by a processor

to compute a step. Going back to our SpMV example, if we split along both rows

and columns with this new hoisting method, we would arrive at

∀𝐼

[︀
∀𝑖̄

(︀
𝑎𝐼𝑖̄ = 0

)︀]︀
;∀𝐼∀𝐽

[︁
∀𝑖̄

(︁
𝑎̄𝐼𝑖̄ =

∑︀
𝑗̄𝐵

𝐼𝐽
𝑖̄𝑗̄ 𝑐

𝐽
𝑗̄

)︁
;∀𝑖̄

(︀
𝑎𝐼𝑖̄ += 𝑎̄𝐼𝑖̄

)︀]︁

Hence, we have two methods to hoist a block reduction variable out of a tensor

algebra expression. The first way affords parallelism at the cost of increased space

48

from intermediary tensors and some increased time due to summing the intermediary

tensors, while the second way doesn’t afford parallelism but still decreases the size of

the tensor blocks that use the index variable and thus decreases the memory needed

by the processor to compute a step. These methods can be mixed and matched on

reduction variables as well; consider an expression of the form

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

∑︀
𝐽 ′
0

∑︀
𝐽 ′
1
. . .

∑︀
𝐽 ′
𝑅′′−1

(𝑒𝑥𝑝𝑟)
)︁]︁

for free variables 𝑖𝑞 and reduction variables 𝑗𝑞 and 𝑗′𝑞. If we use parallel hoisting on

𝐽𝑞 and non-parallel hoisting on 𝐽 ′
𝑞, we arrive at

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 0

)︁]︁
;

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

∀𝐽 ′
0
∀𝐽 ′

1
. . . ∀𝐽 ′

𝑅′′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
¯̄𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 𝑒𝑥𝑝𝑟

)︁
;

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
+= ¯̄𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁
;

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁

Looking back at the SpMV example, regardless of how we hoist variables or

what variables are split, the underlying kernel computed by each processor is still

another SpMV, just using the tensor blocks instead of the full tensors. A similar

observation holds true for the more general case shown above. However, we have

been making an assumption about our tensor algebra expressions so far, specifically

that the reduction variable summation can always be hoisted to the outside of the

expression on the right-hand side. In some expressions, there are reduction vari-

ables that cannot be trivially hoisted; for example, consider ∀𝑖

(︁
𝑎𝑖 = 𝑑𝑖 +

∑︀
𝑗 𝐵𝑖𝑗𝑐𝑗

)︁
.

Suppose we split along 𝑗 to get ∀𝑖

(︁
𝑎0𝑖 = 𝑑0𝑖 +

∑︀
𝐽

∑︀
𝑗̄ 𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
; the right-hand side

is not equivalent to
∑︀

𝐽

(︁
𝑑0𝑖 +

∑︀
𝑗̄ 𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
. Hoisting

∑︀
𝐽 doesn’t work here because

addition doesn’t distribute over addition. One potential solution to this is to use

a ternary conditional operator ?: to ensure the addition only occurs once, i.e.

49

∀𝑖

(︁
𝑎0𝑖 =

∑︀
𝐽

(︁
((𝐽 == 0) ? 𝑑0𝑖 : 0) +

∑︀
𝑗̄ 𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁)︁
. However, Taco doesn’t currently

support ternary conditional operators, and trying to modify the outputted C code

to support it would be non-trivial. A simpler solution is to have one processor (e.g.

the one corresponding to 𝐽 = 0) compute ∀𝑖

(︁
𝑎̄0𝐽𝑖 = 𝑑0𝑖 +

∑︀
𝑗̄ 𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
while the other

processors compute ∀𝑖

(︁
𝑎̄0𝐽𝑖 =

∑︀
𝑗̄ 𝐵

0𝐽
𝑖𝑗̄ 𝑐

𝐽
𝑗̄

)︁
. However, this requires multiple calls to the

Taco command-line tool, one for each kernel. Moreover, for each index variable that

encounters this problem while being hoisted, the number of kernels needed doubles,

so the compile time varies exponentially with the number of such index variables. We

leave implementing support for this kind of reduction variable hoisting to future work,

and assume that if a block index variable is hoisted over addition, that the variable

has only one split range (in this case, no changes are needed since the summation

is a no-op). Hence, we move forward under the assumption that the main kernel

computed by each processor is the same as the original expression to be distributed;

the only difference is that the per-processor kernel operates on tensor blocks.

This theory thus allows us to distribute our tensor algebra expression computation

into executions of the same kernel but on tensor blocks, and is done by hoisting any

split index variables out of the expression in the ways we have described. Note that

even for index variables 𝑗 that aren’t split, we can treat them as split variables that

only having one split range. This allows us to use the same transformations as before

to hoist them out (some of the summations may be no-ops, but this doesn’t affect

correctness). This means we can consider all index variables to be hoisted. That is,

we can use the convention that the ∀ loops surrounding the kernel iterate through

every block index variable.

Using this convention, we have exposed two choices in the general-case expression.

The first is how to order these ∀ loops, since they can be rearranged in any order; in

SuperTaco’s distribution schedule, this is referred to as the index variable ordering and

must be a permutation of all index variables in the expression. The second choice is,

for each reduction index variable, whether it is parallel hoisted or non-parallel hoisted.

SuperTaco will by default assume reduction variables are non-parallel hoisted since

it doesn’t impose an extra space requirement for intermediate tensors like parallel

50

hoisting does. For SuperTaco to parallel hoist a variable instead, the user must declare

it as an output-extension variable of the distribution schedule. This is named as such

since the intermediate tensors 𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
in parallel hoisting are similar to

the output tensor 𝐴
𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
, but extended along the dimensions 𝐽0, 𝐽1, . . . , 𝐽𝑅′−1.

With this, we have enough information to discuss SuperTaco’s code generation for

tensor algebra computation.

4.5.2 Code Generation

Recall from the previous section that after allowing for index variables to be split,

the general-case transformed expression for describing the distributed computation

of tensor algebra is

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 0

)︁]︁
;

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

∀𝐽 ′
0
∀𝐽 ′

1
. . . ∀𝐽 ′

𝑅′′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
¯̄𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 𝑒𝑥𝑝𝑟

)︁
;

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
+= ¯̄𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁
;

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁
In this section, we discuss how SuperTaco generates code to compute this trans-

formed expression. From section 4.5.1, the expression above is not fully-defined; it

requires the user to make a choice regarding how to order the ∀ loops (through the

distribution schedule’s index variable ordering) and a choice regarding which reduc-

tion variables get parallel-hoisted (through the distribution schedule’s list of output-

extension variables). The user must also decide how to split the index variables (if it

all), which is also specified through the distribution schedule as described in Section

4.1. Given a distribution schedule with these properties, the transformed expression

above becomes fully-defined, and SuperTaco can accordingly generate code for it.

The transformed expression here consists of three steps. The first one is just an

initialization step, in which we initialize all intermediate tensors 𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

51

to 0. The second step is the kernel computation step, in which the kernel is computed

for every appropriate combination of tensor blocks, and the results summed into

the output intermediate tensor. More specifically, the kernel is computed for every

integer point (𝐼0, 𝐼1, . . . , 𝐼𝑅−1, 𝐽0, 𝐽1, . . . , 𝐽𝑅′−1, 𝐽
′
0, 𝐽

′
1, . . . , 𝐽

′
𝑅′′−1) in the Cartesian grid

spanning from the origin to (𝑃𝑖0 −1, 𝑃𝑖1 −1, . . . , 𝑃𝑖𝑅−1
−1, 𝑃𝑗0 −1, 𝑃𝑗1 −1, . . . , 𝑃𝑗𝑅′−1

−

1, 𝑃𝑗′0
− 1, 𝑃𝑗′1

− 1, . . . , 𝑃𝑗′
𝑅′′−1

− 1). At a given integer point, the specific tensor blocks

used in the execution of a kernel are based off the values of the block index variables in

the point’s coordinates. The order of the ∀ loops determines the order in which these

points are traversed in the grid. Finally in the third step, the intermediate tensors

𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
are summed together into the actual output tensor 𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
.

It is useful here to define a mapping key function 𝜎() on any tuple of block index

variables (𝐼0, 𝐼1, . . . , 𝐼𝑅−1), such that 𝜎(𝐼0, 𝐼1, . . . , 𝐼𝑅−1) = 𝐼𝑅−1 +𝑃𝑖𝑅−1
· (𝐼𝑅−2 +𝑃𝑖𝑅−2

·

. . . · (𝐼1 + 𝑃𝑖1 · (𝐼0)) . . .). That is, the mapping key function generates from the tuple

(𝐼0, 𝐼1, . . . , 𝐼𝑅−1) a unique index into an array of size 𝑃𝑖0 · 𝑃𝑖1 · . . . · 𝑃𝑖𝑅−1
; we call this

the mapping key size. If we have some total ordering to the block index variables, we

can also define 𝜎() on sets of index variables instead of tuples, in which case it is equal

to 𝜎() applied the tuple formed from sorting the set by the total ordering. Since our

distribution schedule provides a index variable ordering, we shall use this ordering

for our mapping key function. Another useful function is the inverse mapping key

𝜎−1() function, which computes a tuple (𝐼0, 𝐼1, . . . , 𝐼𝑅−1) from a positive integer 𝑘

through repeated division, i.e. 𝑘 = 𝑞𝑅−1 ·𝑃𝑖𝑅−1
+ 𝑟𝑅−1, 𝑞𝑅−1 = 𝑞𝑅−2 ·𝑃𝑖𝑅−2

+ 𝑟𝑅−2, . . . ,

𝑞1 = 𝑞0 · 𝑃𝑖0 + 𝑟0 for quotients 𝑞𝑚 and remainders 𝑟𝑚. The tuple generated by 𝜎−1()

is then just (𝑟0, 𝑟1, . . . , 𝑟𝑅−1).

Before SuperTaco begins generating code, it does some preprocessing involving

the distribution schedule. It determines the set of free variables {𝐼0, 𝐼1, . . . , 𝐼𝑅−1} by

taking the variables from the output tensor, it determines the set of parallel hoisted

reduction variables {𝐽0, 𝐽1, . . . , 𝐽𝑅′−1} by taking the variables from the list of output-

extension variables, and it determines the set of non-parallel hoisted reduction vari-

ables {𝐽 ′
0, 𝐽

′
1, . . . , 𝐽

′
𝑅′′−1} by taking the set of all index variables in the expression, and

subtracting out the set of free variables and the set of output-extension variables. It

52

then generates C/C++ functions that compute the mapping keys for each of these

sets of variables (using the ordering given in the distribution schedule’s index variable

ordering), along with the mapping key sizes. To simplify notation, let the mapping

key function for {𝐼0, 𝐼1, . . . , 𝐼𝑅−1} be 𝜎𝐼 and the mapping key size be 𝜆𝐼 , and similarly

define 𝜎𝐽 , 𝜆𝐽 , 𝜎𝐽 ′ , and 𝜆𝐽 ′ . For each tensor, SuperTaco also calculates the mapping

key and mapping key sizes of its set of variables. To simplify notation, let the map-

ping key function for the variables of tensor 𝐴 be 𝜎𝐴 and the mapping key size be

𝜆𝐴.

For the first step of the transformed expression, we generate code for

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 0

)︁]︁
However, instead of actually initializing an intermediate .tcs tensor to 0 and storing

it inside a logical region, we will place a small sentinel value in the logical region

instead. Later when the logical region is passed to a kernel task, the kernel task

will check whether the sentinel is there. If it is, the kernel task will accordingly skip

adding its output tensor block to a zero tensor, and just return its output tensor

block to the parent task.

For this step’s code generation, we initialize an array intermediate_fts of fu-

tures, with length equal to 𝜆𝐼 · 𝜆𝐽 . This array will store the futures containing the

logical regions that store the intermediate tensors. We then emit two nested for

loops. The first for loop iterates through the mapping keys 𝑘𝐽 for {𝐽0, 𝐽1, . . . , 𝐽𝑅−1},

i.e. from 0 to 𝜆𝐽 − 1. The second for loop iterates through the mapping keys 𝑘𝐼

for {𝐼0, 𝐼1, . . . , 𝐼𝑅−1}, i.e. from 0 to 𝜆𝐼 − 1. In the innermost loop body, we create

a logical region and store a sentinel in it (via an inline map), and pack it inside a

future that is set to resolve immediately if waited on. We then compute the key into

intermediate_fts as 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 , and then store the future to this location. Note

that the overall loop order here doesn’t matter since the intermediate tensors are all

different, which is why the effective loop ordering used here isn’t sorted according to

the distribution schedule’s index variable ordering.

53

For the second step of the transformed expression, we generate code for kernel

computation, i.e.

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1
∀𝐽0∀𝐽1 . . . ∀𝐽𝑅′−1

∀𝐽 ′
0
∀𝐽 ′

1
. . . ∀𝐽 ′

𝑅′′−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
¯̄𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 𝑒𝑥𝑝𝑟

)︁
;

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
+= ¯̄𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁
This can be viewed as a nest of for loops with a child task launch in the innermost

loop that computes

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
¯̄𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 𝑒𝑥𝑝𝑟

)︁
;

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
+= ¯̄𝐴

𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁
which executes the kernel on the tensor blocks and adds the result into the interme-

diate tensor block.

For this step’s code generation, we emit a nest of for loops, with a for loop for

each index variable in the expression (even unsplit index variables). The order of

the loops is the same as the distribution schedule’s index variable ordering. In each

for loop, the block index variable 𝑖 runs from 0 to 𝑃𝑖 − 1. In the innermost for loop

body, we issue a task launch for the kernel task. For each input tensor 𝐴 in the

expression, the innermost loop body computes the mapping key for the tensor 𝜎𝐴

and uses it to index into an array that contains logical regions that store the tensor

blocks of 𝐴 (this was obtained during the distributed tensor loading step). This gives

the logical region containing the appropriate tensor block of 𝐴 needed for the kernel

task launch, and that logical region is then added to the task launch through a region

requirement (with read-only privilege). The innermost for loop body also computes

the intermediate tensor block mapping key 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 , which it uses to index into

intermediate_fts to get the future wrapping the logical region that contains the

intermediate tensor block needed by the kernel task. It then adds this future to the

kernel task launch to give it a reference to the logical region. Adding the future also

54

ensures that this kernel task won’t run until the previous kernel task operating on

the same intermediate tensor block is finished. When the kernel task is launched, the

return value of the task launch is a future wrapping the logical region that contains

the new intermediate tensor block as computed by the kernel task. The innermost

loop body then finally overwrites the old future in intermediate_fts with the new

one.

There is one slight workaround needed in this step’s code generation due to a

quirk surrounding Legion index spaces. Index spaces in Legion are immutable, which

means that once a logical region is created, its size cannot be changed. This is an

issue if a parent task has a child task that returns an output of variable size that

can’t be easily bounded, specifically if the parent wants to pass that output as an

input to another child task via futures. While the parent task will have the proper

privileges needed to access the logical region once the child task ends, it cannot pass

these privileges to the second child since the logical region is contained in a future.

Thus, naively the second child task would not be able to access the logical region

since it would not have the proper privileges (the inline map would fail). If the size

were fixed, the parent could create the logical region itself, and just pass it to both

child tasks using region requirements while stating the appropriate privilege in the

region requirements. However, since the output is variably sized, the parent’s logical

region may not be big enough to contain the output.

Legion presents a workaround for this problem using partitioning and virtual map-

ping. Returning to the previous example, the parent task would create a very large

logical region (larger than any relevant memory scale) and pass it to both tasks us-

ing region requirements, but declare that the region must be virtually mapped. This

means that when the child tasks run, that region will not be instantiated as a physical

instance. The first child task, after it computes the variably-sized output, partitions

off a part of this large region, and stores the output in that logical region via an inline

mapping. (This will only create a physical instance for the smaller partitioned region,

and not create a physical instance for the parent region.) The first child task then

returns the logical region via future, which is then passed to the second child task.

55

This time, however, when the second child task attempts to inline map the logical

region, it will also pass the virtually mapped region it received from its parent task

within the inline map’s region requirement. This allows the inline map to succeed,

since the second child task has privileges on an ancestor of the desired logical region.

We can use a similar solution in our code generation. That is, along with the

intermediate_fts array, we create an intermediate_lrs array that contains the

very large logical region that the corresponding logical region in the future was par-

titioned from. Going back to the first step of code generation (initialization), instead

of creating the logical region for the intermediate tensor block the typical way via

runtime, the innermost loop body creates a very large logical region and stores it

into intermediate_lrs array using the key 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 . The innermost loop body

then partitions a small portion of this region for the sentinel value, and inline maps

the partitioned logical region to store the sentinel value in it before wrapping it in a

future and placing it in intermediate_fts.

For the second step of code generation, the innermost loop body would fetch

the very large logical region from the intermediate_lrs array using the key 𝑘𝐼 +

𝜆𝐼 · 𝑘𝐽 , and then add it to the kernel task launch with a region requirement that

specifies the region is virtually mapped (with read-only privilege). This would allow

the kernel task to read the intermediate tensor block. The innermost loop body would

then create a new very large logical region, add it to the kernel task launch with a

region requirement that specifies the region is virtually mapped (with write-discard

privilege), and then overwrite the logical region in the intermediate_lrs array using

the same key 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 . This allows the kernel task to partition part of this logical

region for storing its output.

With this, we’ve generated code for the distributed kernel computation. For the

specifics of how the kernel task code is generated, see Section 4.5.3. We can now

finally move to the third step of the transformed expression, in which we generate

code for summing together the intermediate tensors into the output tensor. This is

56

given by

∀𝐼0∀𝐼1 . . . ∀𝐼𝑅−1

[︁
∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁]︁
Note that the summations on the right-hand side are not restricted by order, and

can be done in any manner. Naively, we could view this as a nested loop of only free

variables, and compute the sum

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
=

∑︀
𝐽0

∑︀
𝐽1
. . .

∑︀
𝐽𝑅′−1

𝐴
𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁
in a child task. But this could potentially overflow memory for the node that executes

the task. Moreover, the tensor sum would be pairwise for efficiency sake and not 𝑛-

ary, so many of the intermediate tensor blocks for a child task would be waiting in

memory to be added. A better solution is to launch summation tasks that sum a pair

of tensor blocks, and form a tree of summation tasks with the root summation task

returning the desired output tensor block. There will be a tree here for every output

tensor block, so in order to hide the latency of summation, we should schedule the

summation tasks by launching all summation tasks that are on one tree level before

moving to the next level of summation tasks, moving towards the roots.

For this step’s code generation, we emit three nested for loops, launching the

pairwise summation task in the innermost loop body. The first loop iterates through

stride lengths 𝑠, starting at 1 and doubling every loop iteration, and stopping when it’s

at least 𝜆𝐽 . The stride here represents what level of the tree is being iterated through,

with stride of 1 being the leaves. The second loop iterates through the mapping keys

𝑘𝐽 for {𝐽0, 𝐽1, . . . , 𝐽𝑅−1}. However, instead of going from 0 to 𝜆𝐽 −1, it instead starts

at 0 and increments by twice the stride 𝑠 every loop iteration, stopping when at least

𝜆𝐽 − 𝑠. The third loop iterates through the mapping keys 𝑘𝐼 for {𝐼0, 𝐼1, . . . , 𝐼𝑅−1},

going as usual from 0 to 𝜆𝐼 − 1.

In the innermost loop body, the mapping keys are computed for the two tensor

blocks being summed together, which are 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 for the first tensor block and

𝑘𝐼 + 𝜆𝐼 · (𝑘𝐽 + 𝑠) for the second tensor block. These are used to index into the

57

intermediate_fts and intermediate_lrs arrays to get to the futures wrapping the

logical regions containing those tensor blocks, along with the very large logical regions

from which they were partitioned. The innermost loop body adds the two futures to

the summation task launch and adds the two logical regions to the task launch with

virtually-mapped region requirements (with read-only privilege). The innermost loop

body then creates a new very large logical region, adds it to the kernel task launch with

a region requirement that specifies the region is virtually mapped (with write-discard

privilege), and then overwrite the logical region in the intermediate_lrs array using

the first tensor’s mapping key 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 . The return value of the summation task

launch is a future wrapping the logical region that contains the sum of the two input

tensors. The innermost loop body finally overwrites the old future of the first tensor

in intermediate_fts with the new one. After these for loops finish executing, the

output tensor block for {𝐼0, 𝐼1, . . . , 𝐼𝑅−1} will be located in a future-wrapped logical

region in intermediate_fts using key 𝜎𝐼 . This generated code thus sums together

the intermediate tensor blocks in a tree-like fashion into the output tensor blocks.

For the specifics of how the summation task code is generated, see Section 4.5.4.

This section has introduced how SuperTaco generates code to compute distributed

tensor algebra, but it isn’t the whole picture. Section 4.5.5 describes how tasks are

mapped to nodes, which is controlled by the distribution schedule and greatly affects

data movement. Section 4.5.6 talks about an aspect of Legion garbage collection that

could cause this code generation technique to result in memory overflow, and how we

prevent that by placing tensor block evictions in the kernel computation’s for loop

nest.

4.5.3 Kernel Task

The kernel task used in code generation consists of two steps: the main kernel is

evaluated for specific tensor blocks, and then the temporary result is summed into

a cumulative intermediate tensor block. First, the original kernel must be evaluated

58

via

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
¯̄𝐴
𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= 𝑒𝑥𝑝𝑟

)︁
This requires the parent task to supply the child task with the logical regions of the

block tensor operands, which were attained during the distributed tensor loading step.

Which block tensor operands are supplied depends on the values of the block index

variables (𝐼0, 𝐼1, . . . , 𝐼𝑅−1, 𝐽0, 𝐽1, . . . , 𝐽𝑅′−1, 𝐽
′
0, 𝐽

′
1, . . . , 𝐽

′
𝑅′′−1) when the child task is

executed, which is in turn dictated by the for loops in the parent task. These logical

regions will be mapped at the start of task execution since they were passed to the

kernel task via region requirements.

To generate the code to compute the kernel, we need only supply the original tensor

algebra expression to the Taco command-line tool, and it will accordingly generate the

C code for the assemble() and compute() functions to calculate ¯̄𝐴
𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
(recall

from Section 4.2 that these functions require slight modification for handling dense

dimensions efficiently). Note some metadata and pointer marshalling is required to

setup the block tensor operands using Taco’s native in-memory tensor format, but no

large copies are needed here. The generated code thus marshalls the input tensors,

and then calls assemble() and compute() to calculate the kernel.

The next step is to sum this temporary tensor into the previous intermediate

tensor block with

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
+= ¯̄𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁
To evaluate this expression, we do not directly sum into the intermediate tensor block

as written. Instead we add the previous intermediate tensor block to the temporary

tensor to generate a new intermediate tensor block. The parent task provides the

old intermediate tensor block to the child task through a future containing a logical

region, while the child task returns a future containing a logical region with the new

intermediate tensor block.

Recall that since the logical region containing the previous intermediate tensor

block is contained in a future, the logical region will not be automatically mapped

59

before the child task runs. The child task must instead inline map the logical region

(while passing a reference to the large ancestor logical region provided by the parent

task to satisfy privilege checks). This may cause a delay since Legion will have to

move the data while the child task is executing instead of before it executes. We hide

some of this latency by initiating the inline map before executing the main kernel, so

that the child task can do useful work while waiting for a physical instance of the old

intermediate tensor block to become available to the processor.

To execute the summation to the old intermediate tensor block, we again call the

Taco command-line tool, this time with the summation kernel

∀𝑖̄0∀𝑖̄1 . . . ∀𝑖̄𝑅−1

(︁
(𝐴𝑛𝑒𝑤)

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
= (𝐴𝑜𝑙𝑑)

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1
+ ¯̄𝐴

𝐼0𝐼1...𝐼𝑅−1

𝑖̄0 𝑖̄1...̄𝑖𝑅−1

)︁
We then execute the resulting assemble() and compute() functions to calculate

the new immediate tensor block. While marshalling the inputs to the two functions

avoids large copies, marshalling the output of compute() into a logical region requires

a copy of all the data arrays in the tensor block. The logical region itself, after being

partitioned from a very large logical region provided by the parent task, must still be

mapped inline for access. However, since this logical region was created on this node

and has never been mapped before, the logical region is guaranteed empty and will

inline map fast. After this computation is done, we also destroy the logical regions

for the old intermediate tensor block and its ancestor so that Legion may garbage

collect them.

One optimization we make to this kernel task is that we use a small sentinel value

in the old intermediate tensor block future to indicate if there is no old intermediate

tensor. This allows us to forgo initialization of the intermediate tensor block to the

zero tensor, along with the addition of a tensor to the zero tensor. Instead, when

the child kernel task sees the sentinel, it outputs the temporary tensor as the new

intermediate tensor block and avoids the addition.

60

4.5.4 Summation Task

The summation task in code generation just computes a pairwise addition between its

input tensors, similar to the last half of the kernel task. The logical regions containing

the first and second tensor blocks are extracted from their futures, and inline mapped

(passing in the appropriate ancestor logical regions for privilege checks). The task

must then wait for both logical regions to map to physical instances before proceeding.

Unfortunately there is no way to hide the latency in this scenario, since unlike with

the kernel task there is no kernel to execute.

Once the logical regions have mapped, the summation task code calls the same

assemble() and compute() functions used during summation in the kernel task.

Again, the input tensor marshalling into Taco’s native tensor format is cheap and

avoids large copies, but marshalling the output into a logical region is expensive due

to having to copy the .tcs data arrays. The output logical region needs to be inline

mapped after being partitioned off from the very large logical region provided by the

parent task, but similar to the case with the kernel task, this should be fast since it’s

never been mapped before. Once the computation is complete, the summation task

destroys the logical regions belonging to the input tensors (and their ancestors) so

they can be garbage collected by Legion, and returns the output logical region to its

parent in the form of a future.

4.5.5 Task Mapping

One of the considerations left out so far in our discussion is how tasks are mapped to

processors for execution, and where the data in logical regions is stored and when it

moves around. Having an understanding of this is necessary to minimize unneeded

data movement and express different schemes for distributing computation

Tasks are mapped to processors using Legion mapper objects, which are user-

defined objects that Legion can query during runtime to let the user make mapping

decisions (see Section 2.4 for an overview). You can pass information about where a

task should map in a Legion program through the task launch API, which lets you

61

tag the task with a mapper tag. When the runtime asks the mapper to map a task, it

will pass the task’s tag information along to the mapper. In this fashion, the Legion

application can communicate with the mapper object about which processor the tag

should map to.

Data movement in Legion, in contrast, is handled automatically. That is, if a

Legion task runs on a processor that uses a logical region, Legion will automatically

create a physical instance of that logical region on that node if it’s not already on that

node. That is, it will move the needed data by copying it from some other physical

instance on another node. This means that to minimize data movement, tasks that

use the same data should have a way of being mapped to the same node. SuperTaco

implements a static mapper class that provides this functionality.

Before describing this mapper class, it’s important to make a distinction between

nodes and processors. It is often the case that a user doesn’t need to map a task to

a specific processor, but rather any processor on a node. For example, if a task is

going to use a logical region and there’s already a physical instance on some node,

it doesn’t matter which processor on that node that the task runs on. The physical

instance won’t need to be copied over the network provided the task is mapped to

some processor on that node. For this reason, Legion provides a way to assign a task

to a group of processors instead of a single processor. A task assigned to a group of

processors will execute on whichever processor in the group becomes idle first, which

effectively provides a form of load balancing over those processors.

Using this functionality, the SuperTaco mapper can assign a task to a given node

ID instead of a specific processor. The SuperTaco mapper class subclasses Legion’s

default mapper class while overriding two methods of the default mapper. The first

is default_policy_select_initial_processor(), which the default mapper class

uses in select_task_options() to determine which processor to send the task to

for remote mapping. In this function, the SuperTaco mapper checks the tag of the

task for a binary flag. If the flag is unset, the SuperTaco mapper will map the task

like the default mapper would. However, if the flag is set, the SuperTaco mapper will

extract a node ID from the rest of the tag, and take it modulo the number of nodes

62

to ensure it’s a valid node ID. It will then give a processor on that node as the return

value for default_policy_select_initial_processor(), which will cause the task

to be remotely mapped at that node.

The second method of the default mapper class that the SuperTaco mapper over-

rides is default_policy_select_target_processors(), which the default mapper

class uses in map_task() to determine which processors a task can map to. Once

again, the SuperTaco mapper checks the tag of the task for a binary flag, and if unset,

maps the task like the default mapper. If the flag is set, the SuperTaco mapper will re-

turn a list of all local processors for default_policy_select_target_processors(),

which will cause the task to be load-balanced over the processors on that node.

The SuperTaco mapper thus allows tasks to be targeted towards nodes and load

balanced over their processors via the mapper tag in task launches. However, this

does not decide what function should be used for the mapper tag for a given task.

Since we desire tasks that use the same data to have the capacity to map to the same

node, it makes sense here to use the same labels we use for data in the mapper tag

function. In this context, the data is tensor blocks, and the labels are index variables.

A natural choice is then to use the mapping key function 𝜎() on some set of index

variables as the mapper tag.

First consider how the tensor blocks are mapped. The node they reside on (at the

start of computation) is the node they were assembled on, i.e. the node that the tensor

block assembly task ran on. When this task is assembling a tensor block 𝐴𝐼0𝐼1...𝐼𝑅−1 ,

the natural choice for the mapper tag for this task would be 𝜎({𝐼0, 𝐼1, . . . , 𝐼𝑅−1}),

since it would evenly distribute the tensor blocks across all nodes. We could po-

tentially leave an index variable out, but then splitting along that index variable

would be pointless since they would all end up on the same node regardless. For

example, consider if a matrix 𝐵𝐼𝐽 was had a mapper tag of 𝜎({𝐼}) for tensor block

assembly. All the blocks belonging to the same row would end up on the same node,

which could have been accomplished by not splitting along 𝐽 at all (and in that case,

𝜎({𝐼}) = 𝜎({𝐼, 𝐽}) since 𝐽 = 0 and 𝑃𝑗 = 1). Hence, in our generated Legion pro-

grams, the tensor block assembly task for 𝐴𝐼0𝐼1...𝐼𝑅−1 uses a mapper tag function of

63

𝜎({𝐼0, 𝐼1, . . . , 𝐼𝑅−1}).

For the kernel task, the mapper tag is determined by the distribution schedule’s

mapping variables. That is, the kernel task’s mapping tag is the mapping key function

𝜎() applied to the set of the distribution schedule’s mapping variables. This allows

us to express a number of various task schedules. For example, the owner’s compute

rule, in which the node that stores an output block is responsible for performing

the computations that sum into that block, can be expressed by making the mapping

variables the same as the set of the output tensor’s index variables. (This is the default

behavior by SuperTaco if no mapping variables are given.) If we were computing

SpMV 𝑎𝑖 =
∑︀

𝑗 𝐵𝑖𝑗𝑐𝑗 and had split over both 𝑖 and 𝑗, then to prevent the data

movement of the matrix blocks, we could use the set of mapping variables {𝑖, 𝑗}. In

that case, the input vector block would be copied to each node.

For the summation task, the mapper tag is the same as the mapper tag for the

kernel task (𝜎() applied to the set of the distribution schedule’s mapping variables),

with the exception that any non-parallel hoisted reduction variables 𝐽 ′
𝑚 that appear

in the mapping key function are set to 𝑃𝑗𝑚 − 1 in that function. We use this be-

cause at the end of the kernel computation phase, the intermediate tensor block

𝐴𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1 was last computed during a kernel task launch where the for

loop variables (𝐼0, 𝐼1, . . . , 𝐼𝑅−1, 𝐽0, 𝐽1, . . . , 𝐽𝑅′−1, 𝐽
′
0, 𝐽

′
1, . . . , 𝐽

′
𝑅′′−1) were set according

to (𝐼0, 𝐼1, . . . , 𝐼𝑅−1, 𝐽0, 𝐽1, . . . , 𝐽𝑅′−1, 𝑃𝑗′0
− 1, 𝑃𝑗′1

− 1, . . . , 𝑃𝑗′
𝑅′′−1

− 1). That is, the free

variables and output-extension variables were as specified by the block variables in

𝐴𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1 , but the remaining variables had exhausted their for loops and

accordingly had 𝐽 ′
𝑚 = 𝑃𝑗𝑚 −1. This means the node that launched the task (and thus

the node that currently stores the intermediate tensor block) is determined by the

kernel task’s mapper tag for that point. Recall that the first tensor in the summa-

tion has mapping key 𝑘𝐼 + 𝜆𝐼 · 𝑘𝐽 , meaning it corresponds to the intermediate tensor

block 𝐴𝐼0𝐼1...𝐼𝑅−1𝐽0𝐽1...𝐽𝑅′−1 , and that the summation output tensor is stored with the

same key and ends up on the same node. This means that when the summation task

launch executes, the second tensor is effectively transferred to the node containing

the first tensor and the summation of the two tensors stays at that node, taking the

64

place of the first tensor. Using this mapping technique, we can guarantee that each

summation task only has to move one of its input tensors, which minimizes data

movement.

With this, we have defined the mapper tag for each of the tasks relevant to the

computation phase of tensor algebra distribution. For any remaining tasks, e.g. tasks

during tensor loading or tensor storing, the tasks are distributed evenly across the

nodes unless stated otherwise.

4.5.6 Tensor Block Eviction

One pitfall of Legion’s approach to data is that physical instances will not be garbage

collected unless either the logical region is destroyed, or the logical region is mapped

to some node with read-write privileges, at which point all other physical instances

become invalidated (or “evicted”). To understand how this becomes a problem, con-

sider the SpMV example in the last section where we had split over both 𝑖 and 𝑗.

Suppose we used owner’s compute for mapping, and knew that a node was big enough

to hold a block 𝐵𝐼𝐽 , but not an entire row 𝐵𝐼 . Under owner’s compute, a single node

would be responsible for computing all parts of 𝑐𝐼 , which means that over time, the

node would eventually have loaded all the tensor blocks needed to compute 𝑐𝐼 . That

would include 𝐵𝐼𝐽 for all 𝐽 , which constitutes a row of 𝐽 . Since none of those blocks

would be garbage collected, this would result in an overflow of memory on the node.

To prevent this from happening, it is useful to think of all the kernel tasks that map

to the same node by virtue of having the same mapping key; we call such kernel tasks

a task group, and accordingly the task groups are labelled by the value of the kernel

task’s mapping key (equivalently, it could be labelled by the tuple of the distribution

schedule’s mapping variables that derived that mapping key). Tasks within a task

group using different tensor blocks from the same tensor is what leads to multiple

tensor blocks from the same tensor ending up on one node, which causes overflow.

A natural solution to this problem is to make sure that before a task in a task

group loads a new tensor block from a tensor onto a node, that the old tensor block

from that tensor is evicted from that node. However, recall that the only way to cause

65

eviction, which is to open a logical region with read-write privileges, causes eviction

from all nodes (and thus all task groups). That is, there is no way to evict a tensor

block from a single task group; tensor block eviction is an all-or-nothing process.

This means that task groups to some extent must stay synchronized about their

evictions; if not, they could potentially disrupt another task group that was relying

on a particular tensor block to stay on a node for a while for efficient computation

of the tasks within the task group. To this end, we desire to perform evictions in the

loop nest of the kernel computation step, since it offers natural points of synchrony

in each loop body.

As for where to evict a block tensor to, the solution that uses the least data

movement is to have it stay on the node that constructed it. That is, when SuperTaco

emits code to evict a tensor block, it will consist of a task launch with a region

requirement with read-write privileges for the logical region containing the tensor

block, and its mapper tag will be the same as the mapper tag for the tensor block

assembly task (which from the previous section is the mapping key function 𝜎()

applied to the index variables of the tensor). In this fashion, if the tensor was never

moving in the first place, then the tensor will continue to not move by evicting it to

where it was constructed. Note that the body of the evict task is empty; the only

purpose of the task is to invalidate physical instances, and it’s done that by the time

it executes so it can immediately return.

The next question is where in the loop nest to place evictions. To answer this,

consider a tensor block 𝐴𝐼0𝐼1...𝐼𝑅−1 . Within a task group, certain block variables will

stay “fixed”, namely the block variables that are mapping variables. Only the non-

mapping block variables of the tensor will change in the task group, and when any of

them do, we need to evict the last tensor block accordingly. Inside the loop nest, this

manifests when any of the non-mapping block variables increments in a loop header.

However, we only need to evict in the deepest such loop, since that will in turn

also evict for increments in the other non-mapping block variables. We also shouldn’t

evict in deeper loop nests, since that would cause unnecessary data movement through

unnecessary eviction. Note that if all the block variables of the tensor are mapping,

66

then there is no need to evict it.

Thus, for each tensor 𝐴, SuperTaco decides where to place the tensor block eviction

for 𝐴𝐼0𝐼1...𝐼𝑅−1 in the loop nest by taking a list of the tensor block index variables and

subtracting out the set of mapping variables, and if the resulting set is non-empty,

then finding the deepest loop body with a loop variable in the set of such non-mapping

tensor block variables. However, SuperTaco can’t just place an eviction task launch at

the bottom of this loop body. This is because the tensor block may depend on block

index variables that haven’t appeared yet in the loop nest. Conceptually, the later

loops containing a block index variable that the tensor depends on means that more

than just a single tensor block has been accessed since the last eviction (one for each

tuple of such later variables), and accordingly more than just a single tensor block

eviction is needed. Hence, SuperTaco instead emits a for loop nest at the bottom of

this loop body, with a loop for each of the tensor’s block index variables that occurs

later in the loop nest. At the bottom of this loop nest, is when SuperTaco emits the

eviction task launch, as described above.

The tensor block evictions have now been placed within the loop nest so that

the old tensor blocks within each task group will be evicted once a new tensor block

needs to be loaded, as determined by one of the non-mapping tensor block variables

incrementing. However, while the non-mapping tensor block variables incrementing

signals when the tensor block evictions should occur, it doesn’t force the next series

of kernel task launches that use the incremented values to happen after eviction is

complete. That is, there’s nothing making the next series of task launches dependent

on the tensor block evictions, so new tensor blocks could be loaded into a task group’s

node before the old tensor block is evicted. (Note that this is not true for past task

launches and evictions, since the read-write privilege of evict task launches means

they will occur after past task launches that use the same tensor blocks.)

SuperTaco solves this problem by manually implementing the dependencies using

futures; this requires modifying the evict task so that it returns a dummy value instead

of doing nothing. Note a kernel task launch is only dependent on the last tensor block

eviction corresponding to its task group, which means they have the same values for

67

the tensor block variables that are also mapping variables. Suppose for a tensor 𝐴,

we call the set of its mapping tensor block variables {𝑀0,𝑀1, . . . ,𝑀𝑇−1}; call its

mapping key function 𝜎({𝑀0,𝑀1, . . . ,𝑀𝑇−1}) = 𝜎𝑀 and its mapping key size 𝜆𝑀 .

Then SuperTaco generates code to create an array of futures evict_fts with 𝜆𝑀

length right before the kernel computation loop nest, and to initialize all futures to

ones that immediately resolve. When an evict task launch for tensor 𝐴 is executed,

the mapping key 𝜎𝑀 will be computed and the future returned from the evict task

launch stored in evict_fts using index 𝜎𝑀 . Additionally, in the kernel task launch

loop body, SuperTaco adds code to compute 𝜎𝑀 and indexes into evict_fts with it

to get back the evict task launch future, adding it to the kernel task launch.

By augmenting the kernel computation loop nest with these evictions, SuperTaco

ensures that the tasks within a task group can never load two different tensor blocks

from the same tensor simultaneously, and thus bounds the memory consumed by a

task group at the cost of a loss in parallelism. Note that if the number of task groups

(equal to the mapping key size of the kernel task’s mapping key) is many times larger

than the number of nodes, then many task groups will alias to the same node, which

in turn may cause an overflow even if each individual task group is limited to a single

tensor block from each tensor. Thus, care must be taken when choosing the number

of split ranges for mapping variables.

4.6 Distributed Tensor Storing

The third and last phase of a Legion program generated by SuperTaco is merging

the tensor blocks together and storing the data to disk. Similar to tensor loading, a

tensor may not be able to fit into a single node’s memory, so this needs to be done in

a distributed fashion. Most of the code that makes up this component is static, and

the routines share similarities with the ones for distributed tensor loading.

During the first step (Section 4.6.1), each of the block tensors is split into tensor

block pieces via load balancing. Unlike tensor loading, actual tensor size is not used

to determine where to split the tensor block into pieces. Instead, the top-level task

68

partitions the space of index coordinates into equally sized pieces (coordinate space

pieces), with the number of pieces equal to the number of processors; this gives a set

of coordinates that would divide the the entire output tensor into roughly equally

sized pieces provided the output tensor is not significantly skewed. The parent task

creates a task for every output block, and each task iterates through its output block,

finding the position vectors that yield index values close to the desired coordinates

(but not going over). In this fashion, each output tensor block is split into tensor

block pieces.

For the second step (Section 4.6.2), each processor is assigned a coordinate space

piece, and gathers all the tensor block pieces that are within that same piece of space.

Each tensor block piece comes with the offsets of each of its data arrays within the

original data arrays to allow iteration. Each processor constructs a tournament tree,

with each of the leaves being pointers to a tensor block piece and its iteration state.

This allows for a multi-way merge between the tensor block pieces, which can create

a piece of the output tensor. However, this process requires two parts.

The first part (Section 4.6.3) consists of each processor iterating through the

entries of its output tensor piece via the tournament tree and gathering partial header

information for the tensor. Similar to 4.4.2, the partial header information is sent

back to the parent task, allowing it to assemble the full .tcs header for the output

tensor. The parent task then creates the file on disk, and writes the header to it.

During the second part (Section 4.6.4), the parent task computes certain state

information the processors need to make a second pass, in which it assembles the

tensor pieces. The parent sends that state to the each processor, and the processors

make their second pass to assemble the tensor pieces. For the final step (Section

4.6.5), each processor then must sequentially writeout its data arrays to disk.

4.6.1 Load Balancing

Unlike tensor loading, we cannot split the tensor blocks based on their size. Instead,

tensor blocks must be split on their coordinate value, i.e. the values of their indices.

The parent task determines the space of coordinates as a Cartesian grid, with each

69

index variable bound by a minimum and maximum. We could potentially determine

these minima and maxima from the split ranges, but this could be inaccurate since

they’re user-defined. Instead, during the first-pass of streaming through input tensors

in Section 4.4.2, recall that each processor additionally collects minima and maxima

information to send to its parent task. The parent task here is augmented to compute

a global minima/maxima for the whole tensor, which gives minima/maxima on the

corresponding index variables. Pooling then gives a minima and maxima per index

variable.

For an index variable 𝑖, let the minimum and maximum values found be 𝑖𝑚𝑖𝑛

and 𝑖𝑚𝑎𝑥, so that the index size is 𝑍𝑖 = 𝑖𝑘,𝑚𝑎𝑥 − 𝑖𝑘,𝑚𝑖𝑛 + 1. For an output tensor

𝐴𝑖0𝑖1...𝑖𝑅−1
, the parent task computes the size of the space of index coordinates as

𝑍 = 𝑍0 · 𝑍1 · . . . · 𝑍𝑅−1. Next, the parent task computes the coordinates that give

size offsets close to 𝑍/𝑁, 2𝑍/𝑁, . . . , (𝑁 −1)𝑍/𝑁 , where the size offset of a coordinate

(𝑖0, 𝑖1, . . . , 𝑖𝑅−1) is (𝑖𝑅−1−𝑖𝑅−1,𝑚𝑖𝑛)+𝑍𝑖𝑅−1
·((𝑖𝑅−2−𝑖𝑅−2,𝑚𝑖𝑛)+𝑍𝑖𝑅−2

·. . .·((𝑖1−𝑖1,𝑚𝑖𝑛)+

𝑍𝑖1 · ((𝑖0 − 𝑖0,𝑚𝑖𝑛))) . . .). Note that this last function is the mapping key function, but

with 𝑃𝑖 replaced by 𝑍𝑖 and 𝐼𝑘 replaced by 𝑖𝑘 − 𝑖𝑘,𝑚𝑖𝑛. Accordingly, computing the

inverse to find the coordinates is the same as computing 𝜎−1 as described in 4.5.2.

With this, the parent task has computed coordinates that span the range from

(𝑖0,𝑚𝑖𝑛, 𝑖1,𝑚𝑖𝑛, . . . , 𝑖𝑅−1,𝑚𝑖𝑛) to (𝑖0,𝑚𝑎𝑥, 𝑖1,𝑚𝑎𝑥, . . . , 𝑖𝑅−1,𝑚𝑎𝑥), and are equidistant in coor-

dinate space (i.e. if you sorted the list of integer points in the Cartesian grid between

the min and max points, the coordinates would be equally spaced in the list). The

parent task now launches a task for every output block (using the output block’s

mapping key), passing the set of coordinates to each task via logical region. Each

child task then iterates through its output block as described in 4.4.2, and determines

the position vectors that give index values closest to the given coordinates (without

going over). These position vectors thus conceptually break each tensor block into

tensor block pieces.

To actually break the tensor block into tensor block pieces, each child task then

creates a logical region for every coordinate space piece, and then for each tensor block

piece, copies over the full header and the appropriate sections of the data arrays into

70

the corresponding logical region. (The position vectors are used here to determine

the size of the data array sections.) The offsets of each of the sections of the data

arrays in their original data arrays is stored as a vector, and packed into the header

to allow for iteration. The headers here are updated to point at the new byte offsets

within the logical regions. The child tasks destroy their original tensor block logical

regions so they can be garbage collected, and each child task then returns the logical

regions corresponding to the tensor block pieces by placing them in a containing

logical region, which was passed to the child task by the parent. After the parent

task launches all the child tasks, it then maps the containing logical regions inline

and waits for them to become available. This gives the parent task the logical regions

for all the tensor block pieces.

4.6.2 Tournament Tree

Now that each tensor block has been split into pieces by position vectors, each pro-

cessor will create a tournament tree and pull in the appropriate tensor block pieces

to create an iterator for a multi-way merge. In the Legion program, the parent task

launches a tournament tree task for each coordinate space piece, and for each task

launch adds to it the logical regions for all tensor block pieces that correspond to the

same coordinate space piece.

When the child task executes, it creates a tournament tree within a logical region,

where there are enough leaves for each of the tensor block pieces; the remaining leaves

are negative infinity sentinels. This tournament tree can perform a k-way merge on

the tensor block pieces by keeping in each leaf a position vector (and index vector)

that points into the appropriate tensor block piece. In this sense, the tournament tree

can be treated like an iterator; when a value is consumed, the branch corresponding

to the value is emptied, the leaf node of the branch has its tensor block piece make one

step forward in iteration to the next position vector, and then the branch is updated

with the new index values from that new position. When a tensor block piece is

exhausted, its leaf becomes negative infinity. When all leaves are exhausted, the root

node will become negative infinity, signalling the iterator is exhausted. Resetting

71

just involves resetting the position vectors of all the tensor block pieces, fetching the

index values, and updating the tournament tree. Using this schema, the tournament

tree is an iterator over the merged tensor block pieces. Note that since this merge

is over all tensor blocks, then the result must be the piece of the tensor that lies in

the coordinate space piece. The tournament tree is then an iterator over that tensor

piece.

Also note that all the components of this tournament tree iterator (the tournament

tree itself, each of the tensor block pieces) are logical regions. This means that they

can be returned to the parent task via being packaged in a containing logical region,

and as long as the parent launches the next task that needs that iterator on the same

node (which can be accomplished via the mapper tag), there will be no movement

of that data over a network. The child task thus returns the logical regions of the

components that make up the tournament iterator to the parent task.

4.6.3 Tensor Header Assembly

The tournament tree from the previous section gave us an iterator over the tensor

piece spanned by each coordinate space piece. For the next step, each processor

gathers partial header information about the tensor piece it has, similar to how tensor

block pieces were processed in Section 4.4.2. That is, we iterate through the entries

of the tensor piece and gather information similar to the first-pass of .tns to .tcs

conversion; we keep vectors that store the level size, minimum and maximum values,

and additionally copies of the first and last lines encountered to account for edge

effects when the information is merged together with that of other processors.

In the Legion program, this is parallelized similar to the last section. The parent

task launches a tensor header assembly task for every tensor piece/coordinate space

piece, passing along the tournament tree iterator logical regions, and the parent task

receives from each processor the header information they gathered while iterating

through the tournament tree (via logical regions). The parent then reconstructs the

.tcs header for the output tensor based on the partial header information it received

from each processor. (Again, this is primarily pooling minima/maxima, summing

72

level size vectors, and accounting for edge effects.) The parent task then opens the

file corresponding to the output tensor, and writes out its header to the file before

closing it.

4.6.4 Tensor Piece Assembly

Now that the output tensor’s .tcs header has been computed, the next step is for

each processor to make a second-pass through its tensor piece and assemble the piece

itself, similar to how tensor block pieces were processed in Section 4.4.3. Once again

we iterate through the tournament tree, and the callback resembles the second-pass

of .tcs conversion to form the tensor pieces.

Recall from Section 4.4.3 that the second-pass of .tcs conversion can’t be as eas-

ily parallelized due to the level counters being wrong for a processor that only passes

through a tensor piece instead of the whole tensor. We use the same solution from

that section, i.e. the parent task computes partial sums over the level size counters

it collected from each processor (and accounts for edge effects), and the parent addi-

tionally provides information to each processor about the sizes of the data arrays in

that processor’s tensor piece.

This allows the parallelization of the conversion’s second-pass, and generates ten-

sor pieces on each processor. In the Legion program, parallelization is similar to the

previous section, but this time the parent task doesn’t access the output of the task,

i.e. the tensor pieces. The parent task does, however, have references to the logical

regions holding that data, so it may pass those logical regions to other tasks. Also

note that since the tournament tree iterators are no longer needed after the tensor

pieces are assembled, the logical regions making up the tournament tree iterator are

destroyed.

4.6.5 Tensor Writeout

The final step of tensor storing is writing the tensor pieces back to disk. This requires

each processor to write its tensor piece to disk in-order, since the pos, idx, and

73

val arrays within the tensor pieces can be concatenated to form the data section of

the tensor. This cannot be done in parallel since the NFS filesystem does not allow

processors on different nodes to write to the same file at the same time. Note that

the generated code uses the same mapping key for this writeout task as the previous

task, otherwise the entire tensor piece would move between nodes.

In the Legion program, a child task is launched per tensor piece with its corre-

sponding tensor piece logical region, but the child tasks are sequential and in-order.

The first child task holds the first tensor piece in its memory and writes out the first

tensor piece to file, returning a future to the parent task with the disk offsets into

each of the data arrays when its tensor piece ended. The parent task sends these

offsets (via task argument) to the next child task to execute, which is responsible for

writing out the second tensor piece starting at the data array offsets given by the first

tensor piece. By repeating this process, the child tasks sequentially write their tensor

pieces to file.

Thus, through these steps, we are able to store the tensor to disk in a distributed

fashion. Note that our guarantees are not as strong here about load balancing com-

pared to tensor loading, since we divide tensors based on coordinates instead of their

actual size and accordingly any skew in the data density will cause imbalance. How-

ever, provided the output of the tensor operation is sufficiently random, this method

of load balancing will be adequate.

74

Chapter 5

Evaluation

5.1 Experimental Methodology

To evaluate the performance of SuperTaco, we analyze the scalability of our generated

programs for sparse matrix-vector (SpMV) multiplication 𝑎𝑖 =
∑︀

𝑗 𝐵𝑖𝑗𝑐𝑗 and tensor-

times-matrix (TTM) multiplication 𝐴𝑖𝑗𝑘 =
∑︀

𝑙 𝐵𝑖𝑗𝑙𝐶𝑘𝑙. We specifically look at strong

scaling, in which the problem size remains fixed but the number of cores/processors

in the system increases. For each experiment, we first test processor scaling on a

single node to test multicore performance. We then see how performance scales as we

increase the number of nodes up to 10 while using 4 cores per node and then 20 cores

per node. We only measure the execution time of the distributed computation, and

not tensor loading or storing. This is because in practical applications, loading and

storing are done as seldom as possible due to the unavoidable cost of disk I/O; data

is kept in memory as long as it can be. To assess the overhead of splitting and data

movement, we perform an additional experiment in which we increase the number

of split ranges for a reduction variable (without output-extension) for an owner’s

compute schedule at fixed core count (5 nodes with 20 cores per node), and observe

the corresponding slowdown.

Evaluation was performed on an Infiniband cluster, with each node possessing two

12-core CPUs and 128 GB of memory. The CPUs were Intel Xeon E5-2695 v2 CPUs

at 2.40 GHz, with 32 KB L1 data cache, 32 KB L1 instruction cache, 256 KB L2

75

cache, and 30720 KB L3 cache. Generated Legion programs and the Legion runtime

were compiled with GCC 8.2.0 using -O3 -march=ivybridge. Legion is configured

to run using GASNet for networking, which is in turn configured to use ibv-conduit

for communicating over Infiniband. We reserved two cores per node as utility cores

for Legion, leaving 22 cores per node for compute at maximum.

5.2 SpMV Results

SpMV is an algebraic kernel 𝑎𝑖 =
∑︀

𝑗 𝐵𝑖𝑗𝑐𝑗 that appears widely throughout scientific

and engineering applications. In this section, we see how the computation of SpMV

scales when distributed using SuperTaco. The sparse matrix 𝐵𝑖𝑗 we use is formatted

CSR (i.e. as (dense𝑑1 , sparse𝑑2)) while the vector 𝑐𝑗 is dense. The matrix has dimen-

sions of 50 000 000×50 000 000 and is randomly populated with a density of 1 × 10−6.

In .tns form it takes up 72 GB, while its .tcs form takes up 38 GB.

For the distribution schedule, splitting along 𝑗 (columns) is expensive since it must

either be sequential or require combining partial sums due to 𝑗 being a reduction

variable. There’s not much benefit in splitting along 𝑗 either, since the input vector

𝑐𝑗 is relatively small compared to the sparse matrix, and any parallelism we get from

using partial sums could also just be attained by splitting more along 𝑖 (rows) instead.

So for index splitting, we only split along 𝑖. We shall use a number of split ranges

equal to the number of processors being tested. For the mapping variables of the

schedule, we use 𝑖. This, along with 𝑗 not being split, means that each node contains

a row block of 𝐵𝐼0
𝑖̄𝑗 and computes the corresponding output row block 𝑎𝐼𝑖̄ . The input

vector 𝑐0𝑖 is not blocked, and correspondingly every node gets a copy of it. Since 𝑖 is

a free variable and accordingly in the output already, we can’t extend along it, so the

schedule has no output-extension variables. With this, we’ve completely described

our schedule.

The results of our strong scaling experiments for SpMV are shown in Figure 5-1.

For single-node, performance scales almost linearly for the first few cores and then

degrades to 50% strong scaling efficiency, speeding up 10.1x when going from 1 to

76

(a) Scaling across processors for a single node.

(b) Scaling across nodes with 4 cores per node.

(c) Scaling across nodes with 20 cores per
node.

Figure 5-1: Strong scaling analysis for SpMV.

77

20 cores. When we scale across nodes instead, we get similar efficiencies; for 4 cores

per node, the strong scaling efficiency is 50% when going from 1 to 7 nodes due to a

3.49x speedup, and for 20 cores per node, the strong scaling efficiency is 58% when

going from 1 to 6 nodes due to a 3.45x speedup.

For experiments past 6-7 nodes, the performance noticeably degrades as shown

in Figures 5-1b and 5-1c. Note that this degradation occurs around a certain num-

ber of nodes and not a certain number of processors, indicating that node-to-node

communication could potentially be to blame.

The distribution schedule above for SpMV minimized data movement, since the

matrix rows and output vector rows were already assembled on the nodes they needed

to be on for computation; the only tensor that needed moving was the input vector,

which is relatively small. While this is good for efficient computation, it doesn’t give

us information about the costs of data movement. We also don’t get information

about the cost of index splitting; previously we only split as much as needed to make

sure all processors were utilized. However, scenarios can arise in which we need to

split more, e.g. if the tensor blocks don’t fit into a node’s memory otherwise.

Our next experiment thus performs SpMV using a suboptimal distribution sched-

ule. In this case we split along 𝑖, but also along reduction variable 𝑗. To force parts

of the matrix to move around the network, we set the mapping variable to only 𝑖

(owner’s compute). We don’t use output-extension on 𝑗, since owner’s compute here

means different 𝐵𝐼𝐽 can’t be computed on simultaneously for the same 𝐼, i.e. tensor

block evictions would serialize the task launches that output-extension along 𝑗 would

try to parallelize. For the index variable ordering, it’s more efficient to use (𝑗, 𝑖) since

there is no parallelism along 𝑗. To ensure we don’t underutilize or overutilize the

processors, the kernel mapping key size should be around the number of processors,

so we set the number of split ranges for 𝑖 to be the number of processors. The only

variable in our distribution schedule remaining is the number of split ranges for 𝑗,

which will be varied during the experiment.

The results of this overhead analysis experiment are shown in Figure 5-2. Note

that we use a smaller sparse matrix here of size 300 000 × 300 000 with a density of

78

Figure 5-2: Overhead from increasing the number of splits along reduction variable 𝑗
in SpMV. The red curve is a quadratic fit with equation 𝑦 = 0.445𝑥2−1.015𝑥+2.043.

1 × 10−2, since the scale of the slowdown makes experiments longer. The slowdown

here is super-linear with the number of split ranges, and although it appears to almost

be linear when the number of split ranges nears 10, the slowdown for 20 split ranges

is 150x (compared to 37.1x at 10 split ranges). Using polynomial fitting determines

that the curve is close to a quadratic fit (shown in red in Figure 5-2); the quadratic

curve predicts a slowdown of 160x at 20 split ranges, which is close to the actual

150x. The overhead of splitting along the reduction variable for SpMV is thus nearly

quadratic in the number of split ranges.

5.3 TTM Results

While SpMV is a ubiquitous kernel, it only involves matrices and vectors, and does

not take advantage of Taco’s ability to generate code for higher-order tensor expres-

sions. The TTM kernel 𝐴𝑖𝑗𝑘 =
∑︀

𝑙 𝐵𝑖𝑗𝑙𝐶𝑘𝑙 involves a rank-3 tensor, and is central

to the Alternative Least Squares (ALS) method of solving non-convex optimization

problems [14]. In this section, we see how the computation of TTM scales when

distributed using SuperTaco. The sparse tensor 𝐵𝑖𝑗𝑙 we use is formatted CSF (i.e. as

(sparse𝑑1 , sparse𝑑2 , sparse𝑑3)) while the matrix 𝐶𝑘𝑙 is dense. The tensor has dimen-

sions of 500 000×50 000×5000 and is randomly populated with a density of 1 × 10−6,

while the matrix is 32 × 5000. This is meant to be a slightly larger imitation of the

79

Netflix Prize tensor (approximately 480K×18K×2K with a sparsity of 5.79 × 10−6),

which has previously been used to evaluate TTM implementations [15]. In .tns form

the tensor takes up 3.6 GB, while its .tcs form takes up 3.8 GB.

For the distribution schedule, splitting along the reduction variable 𝑙 is again

expensive since it must either be sequential or require combining partial sums, and

the benefits in this context are low. We shouldn’t split along 𝑘 either, since 𝑘’s

dimension size is 32 and we may want to scale past that. The best candidates for

splitting are then 𝑖 and 𝑗. We could potentially split them both, but this would

complicate analysis. Since the first mode is largest in dimension size, we choose

to split 𝑖 since there will be a less of a chance of equidistant split points resulting

in skewed block sizes. For the mapping variables of the schedule, we just use 𝑖.

Then in terms of mapping, each node contains a row block of 𝐵𝐼00
𝑖̄𝑗𝑙 and computes

the corresponding output row block 𝐴𝐼00
𝑖̄𝑗𝑘 . The input matrix 𝐶00

𝑘𝑙 is not blocked, and

correspondingly every node gets a copy of it; this is fine since it only contains 160K

entries as a dense matrix, which comes out to 1.28 MB for the val array. Since 𝑖 is a

free variable and accordingly in the output already, we can’t extend along it, so the

schedule has no output-extension variables. With this, we’ve completely described

our schedule.

The results of our strong scaling experiments for TTM are shown in Figure 5-3.

The trends are somewhat similar to SpMV. For single-node, performance scales almost

linearly for the first few cores and then degrades to 58% strong scaling efficiency,

speeding up 9.25x when going from 1 to 16 cores. Unlike the SpMV case there is a

slight dip in performance at 20 cores; this could potentially be due to TTM requiring

a much larger write bandwidth since it’s writing to a tensor instead of a vector. More

specifically, for this TTM computation the output tensor has 1.81 billion non-zero

entries while the input tensor only has 125 million.

When we scale across nodes instead, the efficiencies are slightly different depending

on whether we use 4 cores per node or 20 cores per node. In the former case, the

strong scaling efficiency is 46% when going from 1 to 9 nodes due to a 4.14x speedup.

In the latter, the strong scaling efficiency is 68% when going from 1 to 7 nodes due

80

(a) Scaling across processors for a single node.

(b) Scaling across nodes with 4 cores per node.

(c) Scaling across nodes with 20 cores per
node.

Figure 5-3: TTM strong scaling analysis

81

to a 4.75x speedup. Lower cores per node led to less efficiency, but more nodes could

be used before performance degradation.

Similar to the case of SpMV, the degradation in performance happens closer to a

certain node count threshold than a processor count threshold. However in this case,

the number of processors shifts where that threshold is slightly; more cores per node

brings down the node threshold.

Once again our distribution schedule used above minimized data movement, since

the tensor rows and output vector rows were already assembled on the nodes they

needed to be on for computation; the only tensor that needed moving was the input

matrix, which is only 1.28 MB. While this is good for efficient computation, it doesn’t

give us information about the costs of data movement. We also don’t get information

about the cost of index splitting.

Our next experiment thus performs TTM using a suboptimal distribution sched-

ule. In this case we split along 𝑖, but also along reduction variable 𝑙. To force parts

of the tensor to move around the network, we set the mapping variable to only 𝑖

(owner’s compute). We don’t use output-extension on 𝑙, since owner’s compute here

means different 𝐵𝐼0𝐿 can’t be computed on simultaneously for the same 𝐼, i.e. tensor

block evictions would serialize the task launches that output-extension along 𝑙 would

try to parallelize. For the index variable ordering, it’s more efficient to use (𝑗, 𝑘, 𝑙, 𝑖),

with (𝑗, 𝑘) on the outside since they’re not split, then 𝑙 since there is no parallelism

along 𝑙, then 𝑖 since kernel tasks can be parallelized along it. To ensure we don’t un-

derutilize or overutilize the processors, the kernel mapping key size should be around

the number of processors, so we set the number of split ranges for 𝑖 to be the number

of processors. The only variable in our distribution schedule remaining is the number

of split ranges for 𝑙, which will be varied during the experiment.

The results of this overhead analysis experiment are shown in Figure 5-4. We use

the same tensors and matrices here as the previous TTM experiment. The slowdown

curve is much less smooth than the SpMV case. While the general trend is for the

slowdown to get worse, there’s a bump in the slowdown curve where it rises fast and

then falls suddenly before increasing. Once again, the curve appears to be almost

82

Figure 5-4: Overhead from increasing the number of splits along reduction variable 𝑙
in SpMV.

linear when the number of split ranges nears 10, but the slowdown for 20 split ranges

is 34.5x (compared to 11.2x at 10 split ranges). This isn’t quite quadratic, but it’s still

super-linear. Moreover, the scale of the slowdown is much smaller than SpMV; at 10

split ranges SpMV is 3.3x worse, and at 200 split ranges SpMV is 4.3x worse. Overall,

the overhead of splitting along the reduction variable for TTM is super-linear, but

sub-quadratic and not as steep as the SpMV slowdown curve.

5.4 Discussion

The strong scaling efficiencies for the kernels we analyzed were generally consistent,

with the TTM kernel coming out slightly higher at 20 cores per node but slightly

lower at 4 cores per node. If we take the optimal conditions for each kernel, then

the SpMV kernel achieves a 33.3x speedup from single-core performance (45.0 sec) by

using 8 nodes with 20 cores per node (for an overall strong scaling efficiency of 21%),

while the TTM kernel achieves a 42.0x speedup from single-core performance (55.9

sec) by using 7 nodes with 20 cores per node (for an overall strong scaling efficiency

of 30%).

As for the performance degradation that occurs past a certain number of nodes,

Legion’s profiling tool points to a few potential causes. One is the inline mapping

performed in the kernel task. When accessing a physical instance that has been

83

mapped inline, the task can potentially yield to the scheduler when accessing the

instance initially, even if the requested instance is in memory. This can delay the

completion of the kernel task for some time, and potentially significantly increase

compute time when compute time becomes small. It also delays the execution of any

tasks that depend on this task to complete first.

Unfortunately the inline mapping cannot easily be avoided. Logical regions have

a fixed size upon creation, so since the kernel task returns a variably-sized output

tensor, the kernel task must create that logical region in its context and return it

either through a future or inside another logical region that was provided to the

task at launch. To avoid the inline mapping in the next kernel task that uses that

logical region, the logical region must be provided in a region requirement to the task

when it launches in the parent. But getting a reference to the logical region would

require either waiting on the containing future or performing an inline map on the

containing logical region. Both of these would stall the parent task, which would be

worse than stalling the child task. One potential solution is to have the parent launch

a helper task that depends on the containing future or has a region requirement for

the containing logical region. The helper task would then launch the child task using

the results of the containing future or a physical instance of the containing logical

region, which would be guaranteed to be available to the helper task when it runs.

This has the downside that the kernel task is no longer able to hide the latency of the

logical region mapping with the kernel assemble() and compute() like it did before.

Furthermore, for any kernel tasks that would have waited little time after yielding to

resume, the helper task may impose more of a delay.

Another noticeable issue found by the profiling tool is that the starts of kernel

tasks that should take place in parallel aren’t synchronized. When a group of tasks

that can be run in parallel is issued on a node, some of those tasks can start much

later than the others, sometimes as long as 1–2 seconds. The discrepancy between

start times is so long that the scheduler may execute multiple kernel tasks on the same

processor while another processor waits for its first kernel task to execute. It’s unclear

what’s causing these delays in some of the kernel tasks. It could be a delay in task

84

mapping or a delay in other control signals in the Legion runtime. It’s also possible

there’s a logical region dependency that hasn’t mapped yet, and the kernel task is

waiting on that dependency to resolve. However, in both kernels, the distribution

schedules are such that very little tensor data needs to be transferred between nodes.

Performance degradation appearing at a certain node count threshold and not a

processor threshold supports the idea that this delay is at least in part caused by

node-to-node communication issues.

With regards to the overhead analysis for reduction variable splitting, SpMV

experienced a steep quadratic slowdown with increasing splits along the reduction

variable while TTM had a gentler sub-quadratic slowdown. We expected at least

linearity from the slowdown, since more reduction variable split ranges means more

tasks that must be executed sequentially, and accordingly any fixed costs of those

tasks (e.g. summation into the output tensor, copying output tensor data, Legion

overheads) manifest as a linear cost in the number of reduction variable splits. What

can lead to super-linearity is if the kernel task execution time increases with more

splits, or if the time between kernel tasks (e.g. time spent waiting for data) increases

with more splits. Given that the SpMV kernel requires much less work to execute

than the TTM kernel, SpMV’s increased slowdown with splitting could be due to

the time spent computing the kernel being on the scale of other factors which cause

delay linear in the number of splits, while the TTM kernel isn’t as affected as heavily

because its kernel compute time outweighs these factors. Determining what those

factors are that cause super-linearity will require further study.

While SuperTaco has shown an ability to scale to 120–140 cores with 20–30%

strong-scaling efficiency for various kernels, future work must be done to minimize

performance degradation with further scaling and determine how to structure our

generated Legion programs to avoid hidden latencies.

85

86

Chapter 6

Conclusion and Future Work

In this work, we have demonstrated a code generation technique for creating Legion

programs to distribute Taco tensor algebra kernels. The technique is versatile in that

it can structure the distributed computation in a variety of ways, which is controllable

through a scheduling language. Our scaling analyses showed that our tested kernels

achieved significant speedup for both multi-core and multi-node settings, but the

scaling efficiency could be improved.

Looking forward, there are three areas of SuperTaco that need focus. The most

pressing one is improving scalability by reducing overhead associated with the Legion

runtime. In some cases, this may amount to changing what paradigms we use, how

we structure tasks, or tweaking environment settings. In other cases though, it may

require actively working with the Legion team to come up with a satisfactory solution.

One example of this is Legion’s garbage collection; if there was a method to mark a

physical instance as invalid, we wouldn’t have to resort to tensor block eviction, which

forces all physical instances to be marked invalid instead of just one and forces tasks

to synchronize. However, being able to invalidate a specific physical instance could

be potentially unsafe if it’s the only physical instance, and determining whether it’s

the last remaining physical instance in a distributed system could be costly. Finding

a tenable middle ground for these kinds of problems will require effort.

The next area is the scheduling policy. While this work introduces a scheduling

language, it doesn’t formalize any policies of how to choose a distribution schedule in

87

the general case. There are many metrics that could be used to gauge the performance

of a policy, such as the amount of data movement incurred or running time. However,

we have not developed efficient algorithms or heuristics for choosing schedules, and

instead typically reason about it on a case-by-case basis.

The third area is evaluation. The Taco compiler is a very versatile tensor algebra

library in that it can compile a wide variety of expressions to C code, and the choice

added through distribution schedules means there’s now a wide variety of ways to

distribute those computations. However, very few of these cases have been tested

and evaluated for performance. This is made worse by the fact that performance can

depend on the sizes and data patterns of the tensors. Without more evaluations, it

will be difficult to gauge optimal policy beyond theoretical models.

The Taco compiler was groundbreaking in its ability to compile general sparse

tensor algebra expressions into competitive C code, and the SuperTaco project has

the potential to extend those performance gains to a distributed setting. If further

development can address Legion overhead, scheduling policy, and evaluation, then in

the future SuperTaco may be competitive with hand-optimized distributed kernels.

88

Bibliography

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM

Rev., vol. 51, no. 3, pp. 455–500, Aug. 2009, issn: 0036-1445. doi: 10.1137/

07070111X. [Online]. Available: http://dx.doi.org/10.1137/07070111X.

[2] J. Bennett, C. Elkan, B. Liu, P. Smyth, and D. Tikk, “Kdd cup and workshop

2007,” SIGKDD Explor. Newsl., vol. 9, no. 2, pp. 51–52, Dec. 2007, issn: 1931-

0145. doi: 10.1145/1345448.1345459. [Online]. Available: http://doi.acm.

org/10.1145/1345448.1345459.

[3] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution of

user interaction in facebook,” in Proceedings of the 2Nd ACM Workshop on On-

line Social Networks, ser. WOSN ’09, Barcelona, Spain: ACM, 2009, pp. 37–42,

isbn: 978-1-60558-445-4. doi: 10.1145/1592665.1592675. [Online]. Available:

http://doi.acm.org/10.1145/1592665.1592675.

[4] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Understanding

rating dimensions with review text,” in Proceedings of the 7th ACM Conference

on Recommender Systems, ser. RecSys ’13, Hong Kong, China: ACM, 2013,

pp. 165–172, isbn: 978-1-4503-2409-0. doi: 10.1145/2507157.2507163. [On-

line]. Available: http://doi.acm.org/10.1145/2507157.2507163.

[5] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The tensor

algebra compiler,” Proc. ACM Program. Lang., vol. 1, no. OOPSLA, 77:1–77:29,

Oct. 2017, issn: 2475-1421. doi: 10.1145/3133901. [Online]. Available: http:

//doi.acm.org/10.1145/3133901.

89

[6] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction for sparse tensor

algebra compilers,” Proc. ACM Program. Lang., vol. 2, no. OOPSLA, 123:1–

123:30, Oct. 2018, issn: 2475-1421. doi: 10.1145/3276493. [Online]. Available:

http://doi.acm.org/10.1145/3276493.

[7] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing local-

ity and independence with logical regions,” in Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Anal-

ysis, ser. SC ’12, Salt Lake City, Utah: IEEE Computer Society Press, 2012,

66:1–66:11, isbn: 978-1-4673-0804-5. [Online]. Available: http://dl.acm.org/

citation.cfm?id=2388996.2389086.

[8] S. Hiranandani, K. Kennedy, and C.-W. Tseng, “Compiling fortran d for mimd

distributed-memory machines,” Commun. ACM, vol. 35, no. 8, pp. 66–80, Aug.

1992, issn: 0001-0782. doi: 10 . 1145 / 135226 . 135230. [Online]. Available:

http://doi.acm.org/10.1145/135226.135230.

[9] M. E. Bauer, “Legion: Programming distributed heterogeneous architectures

with logical regions,” PhD thesis, Stanford University, 2014.

[10] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, “Op-

timization of sparse matrix-vector multiplication on emerging multicore plat-

forms,” in Proceedings of the 2007 ACM/IEEE Conference on Supercomputing,

ser. SC ’07, Reno, Nevada: ACM, 2007, 38:1–38:12, isbn: 978-1-59593-764-3.

doi: 10.1145/1362622.1362674. [Online]. Available: http://doi.acm.org/

10.1145/1362622.1362674.

[11] D. Merrill and M. Garland, “Merge-based parallel sparse matrix-vector mul-

tiplication,” in Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, ser. SC ’16, Salt Lake

City, Utah: IEEE Press, 2016, 58:1–58:12, isbn: 978-1-4673-8815-3. [Online].

Available: http://dl.acm.org/citation.cfm?id=3014904.3014982.

[12] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Modern software

tools for scientific computing,” in, E. Arge, A. M. Bruaset, and H. P. Langtan-

90

gen, Eds., Cambridge, MA, USA: Birkhauser Boston Inc., 1997, ch. Efficient

Management of Parallelism in Object-oriented Numerical Software Libraries,

pp. 163–202, isbn: 0-8176-3974-8. [Online]. Available: http://dl.acm.org/

citation.cfm?id=266469.266486.

[13] F. Kjolstad, S. Kamil, and S. P. Amarasinghe, “Automatic generation of sparse

tensor kernels with workspaces,” CoRR, vol. abs/1802.10574, 2018. arXiv: 1802.

10574. [Online]. Available: http://arxiv.org/abs/1802.10574.

[14] S. Smith and G. Karypis, “Tensor-matrix products with a compressed sparse

tensor,” in Proceedings of the 5th Workshop on Irregular Applications: Archi-

tectures and Algorithms, ser. IA3 ’15, Austin, Texas: ACM, 2015, 5:1–5:7, isbn:

978-1-4503-4001-4. doi: 10.1145/2833179.2833183. [Online]. Available: http:

//doi.acm.org/10.1145/2833179.2833183.

[15] O. Kaya and B. Ucar, “High performance parallel algorithms for the tucker de-

composition of sparse tensors,” 2016 45th International Conference on Parallel

Processing (ICPP), pp. 103–112, 2016.

91

