
Universal Graph Framework: Achieving
High-Performance across Algorithms, Graph Types,

and Architectures

by

Ajay Rajendra Brahmakshatriya

Bachelor of Technology, Indian Institute of Technology Hyderabad (2016)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2020

Certified by. .
Professor Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Universal Graph Framework: Achieving High-Performance

across Algorithms, Graph Types, and Architectures

by

Ajay Rajendra Brahmakshatriya

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2020, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

The performance of graph programs depends highly on the algorithm, the size and
structure of the input graph, and the features of the underlying hardware. No single
set of optimizations or single hardware platform works well across all applications.
Currently, when switching to a different hardware platform, programmers must re-
implement graph algorithms in a completely different language or framework, and use
different optimizations to achieve high performance.

We propose the Universal Graph Framework (UGF), a new graph processing
framework that achieves high performance across CPUs, GPUs, and Domain-Specific
Accelerators (DSAs) automatically, using the same algorithm specification. UGF
achieves portability with reasonable effort by decoupling algorithm, schedule, and
backend. We introduce a new domain-specific intermediate representation, GraphIR,
that is key to this decoupling. GraphIR encodes high-level algorithm and optimization
information needed for hardware-specific code generation, making it easy to develop
different backends (GraphVMs) for diverse architectures spanning CPUs, GPUs, and
DSAs. UGF builds on the GraphIt domain-specific language (DSL), over which it
introduces a new extensible scheduling language that separates hardware-independent
and hardware-specific transformations. The scheduling language enables combining
load balancing, edge traversal direction, active vertex set creation, kernel fusion, and
other optimizations on GPUs and can be extended to support other hardware backends,
such as CPUs and DSAs. We also built an autotuner on top of UGF to automatically
find the best schedules for different hardware platforms.

We demonstrate that UGF’s techniques enable high performance and portability
across a wide range of architectures by building three backends that target highly
diverse hardware platforms: GPUs, CPUs, and the Swarm DSA. We evaluate UGF
on five algorithms and 9 input graphs on these architectures. UGF outperforms state-
of-the-art frameworks by up to 5.1×, and is the fastest in 62 out of 90 experiments.

Thesis Supervisor: Professor Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

To Mom, Dad and Jai

6

Acknowledgments

I would like to thank my advisor, Professor Saman Amarasinghe, for believing in me

and guiding me for two years. Saman always asked me to think big and work on

problems that have real impact and patiently supported me till I found one. I have

learnt a lot from Saman’s problem before solution approach and hope to continue

doing so in the coming years. I would also like to thank Professor Julian Shun who

guided me on the GraphIt project. Julian’s critical insights into graph applications

and valuable feedback accelerated the project and helped a lot with this thesis.

I would also like to thank Yunming Zhang, a mentor and great friend who has

guided me with the project and my research in general. Yunming’s expertise in the

field and laser focus really inspires me to be a better researcher. He has spent countless

hours with me debugging code, writing papers and providing constant feedback and

the project wouldn’t have been complete without his help. Even outside work, he has

always been there to listen and support me.

I would want to thank my Undergraduate advisor, Professor Ramakrishna Udaprasta

for believing in me, guiding me and inspiring me to pursue graduate studies.

I would like to thank Changwan Hong and Shoaib Kamil who have provided

valuable feedback on the GraphIt project and paper writing. I have learnt a great

deal about optimizing and debugging GPU code from Changwan. I would also like

to thank all the other collaborators on the project, Tugsbayasgalan Manlaibaatar

and Claire Hsu who have been great to work with. I would also like to thank all the

COMMIT group members for the amazing discussions and making my graduate school

more enjoyable.

I want to express my gratitude to my parents, Sangita Brahmakshatriya and

Rajendra Brahmakshatriya and my sister Jai for raising me to be the person I am

today. Their sacrifice, love and support have a major contribution in my success.

Thank you for always believing in me. Lastly, I would want to thank my close friends,

Pratik Bhatu and Saurabhchand Bhati who have been beside me through thick and

thin.

7

THIS PAGE IS INTENTIONALLY LEFT BLANK

8

Contents

1 Introduction 17

1.1 Motivation . 17

1.2 Contributions . 18

1.3 Thesis organization . 19

2 Background 21

2.1 GraphIt DSL compiler . 21

2.2 Algorithm Language . 22

2.3 Hardware Tradeoffs . 24

2.4 Hardware-Independent Optimizations 24

2.4.1 Direction-Optimization . 25

2.4.2 Active Vertexset Data Layout 25

2.4.3 Active Vertex De-duplication 25

2.4.4 Active Vertexset Processing Ordering 26

2.4.5 Parallelization . 26

2.5 GPU-Specific Optimizations . 26

2.5.1 Active Vertexset Creation . 26

2.5.2 Kernel Fusion across Iterations 27

2.5.3 Load-Balancing . 27

2.5.4 GPU Cache Optimization . 27

2.6 CPU-Specific Optimizations . 28

2.7 Swarm-Specific Optimizations . 28

9

3 Scheduling Language 29

3.1 GPU Scheduling Language . 30

3.2 Scheduling on CPUs and Swarm . 32

4 Graph Intermediate Representation (GraphIR) 33

4.1 GraphIR Representation . 33

4.2 GraphIR for BFS . 35

5 Compiler Implementation 37

5.1 Hardware-independent passes . 37

5.1.1 Liveness Analysis for Frontier Reuse 37

5.1.2 Dependence Analysis for Inserting Atomic Instructions 38

5.2 GPU GraphVM implementation . 39

5.2.1 Kernel Fusion Optimization 39

5.2.2 Edge-based Thread Warps CTAs (ETWC) 41

5.2.3 EdgeBlocking . 42

5.3 Swarm GraphVM . 43

5.4 CPU GraphVM implementation . 44

5.5 Autotuning . 45

6 Evaluation 47

6.1 Comparison with Existing Frameworks on a Pascal GPU 50

6.2 Comparison with Existing Frameworks on a Tesla V100 GPU 52

6.3 Comparison against CPU . 53

6.4 Performance of ETWC and EdgeBlocking 54

6.5 Evaluation of Swarm GraphVM . 55

6.6 Feature comparisons against other frameworks 56

7 Conclusions 59

7.1 Summary . 59

7.2 Future directions . 60

10

A Optimum UGF schedules 61

11

THIS PAGE IS INTENTIONALLY LEFT BLANK

12

List of Figures

1-1 A three way decouple between algorithm, schedule and target hardware

provided by UGF . 18

2-1 BFS program written in the UGF algorithm language. 23

3-1 An example schedule that can be applied to the BFS program suitable

for power-law degree graphs . 32

3-2 An example schedule that can be applied to the BFS program suitable

for high diameter graphs . 32

4-1 The GraphIR generated by the compiler for the BFS program with

Kernel Fusion enabled . 36

5-1 CUDA code generated for the BFS GraphIR with the kernel fusion

optimization. 38

5-2 Swarm C++ code genereated from the Swarm GraphVM for the PageR-

ank algorithm . 43

13

THIS PAGE IS INTENTIONALLY LEFT BLANK

14

List of Tables

3.1 Description of the SimpleGPUScheduling type and associated config

functions . 31

3.2 Description of the HybridGPUScheduling type and associated config

functions. 31

4.1 The key instructions in the GraphIR, the EdgeSetIterator and Ver-

texSetIterator . 34

6.1 Graph inputs used for evaluation. 48

6.2 Execution time in milliseconds for the five algorithms on 9 input graphs

for the 4 frameworks in comparison, UGF, Gunrock, GSwitch and

SEPGraph running on NVIDIA Titan Xp GPU 49

6.3 Execution time in milliseconds for the five algorithms on 9 input graphs

for the 4 frameworks in comparison, UGF, Gunrock, GSwitch and

SEPGraph running on NVIDIA V100 GPU 49

6.4 Comparisons of UGF-generated CPU, UGF-generated GPU and SEP-

Graph implementations on SSSP with DeltaStepping 53

6.5 Execution time of BFS (PUSH only) using ETWC, TWC and CM load-

balancing strategy . 53

6.6 Execution time of CC using ETWC, TWC and CM load-balancing

strategy . 53

6.7 Execution time per round of PageRank with and without EdgeBlocking 54

6.8 Number of lines of code for the five algorithms written using Gunrock,

GSwitch, SEPGraph and UGF . 54

15

6.9 Execution time of the code generated by the Swarm GraphVM for the

SSSP and PageRank applications with varying number of cores 55

6.10 Number of options in each category of optimizations in different GPU

graph frameworks . 57

A.1 The schedules used with UGF for all the applications and two types of

graph inputs (power-law degree and high-diameter) 62

16

Chapter 1

Introduction

Graph processing is at the heart of many modern applications, such as recommendation

engines [18, 70], social networks [58, 11], and map services [53]. Achieving high

performance is important because these applications often need to process large graphs

with trillions of edges [40] or have strict latency requirements [18].

However, the performance of graph programs is notoriously difficult to optimize [76].

Graph programs exhibit irregular memory access patterns that are difficult to execute

efficiently on modern hardware platforms, which are optimized for regular memory

accesses. Performance bottlenecks of graph programs depend on the algorithm, the

size and structure of the input graphs, and the underlying hardware.

1.1 Motivation

In the past, many diverse hardware platforms have been used to implement and

execute graph applications. But no single hardware platform performs best for all

graph applications. Some applications perform better on CPUs and others perform

better on GPUs or Domain-Specific Accelerators (DSAs). Shared-memory CPUs

have out-of-order execution, which helps hide the long latency of irregular memory

accesses that miss in the last-level cache. CPUs also have larger memories than GPUs

and other accelerators, which enables processing larger graphs. By contrast, GPUs

have up to an order of magnitude more compute power and memory bandwidth than

CPUs [51] and can better exploit the data parallelism of some graph programs when

17

Figure 1-1: The Unified Graph Framework (UGF) provides a three-way decoupling between
algorithm, schedule, and target hardware.

the graph fits in the GPU memory.

A large number of Domain-Specific Accelerators for sparse computations have

emerged recently [22, 30, 57, 37, 14, 46, 2, 69, 3]. They provide hardware features

such as efficient speculative execution that can drastically improve graph performance.

However, the program must be transformed specifically for each DSA to take advantage

of the new hardware features, yet it is infeasible to build a new compiler for each DSA.

As a result, building a portable compiler infrastructure is crucial to exploit the diverse

hardware of different DSAs.

Existing graph processing frameworks cannot achieve high performance across

multiple hardware platforms with one unified programming abstraction. To get the

highest performance, CPU and GPU processing libraries have adopted abstractions

and optimizations specific to their hardware platforms [9, 42, 66, 60, 68]. Graph

domain-specific languages (DSLs) [27, 20, 1], such as GraphIt [76, 74], are either

unable to support platforms other than CPUs or slower than state-of-the-art libraries

on the other platforms. Existing work cannot easily incorporate hardware-specific

optimizations while maintaining a unified programming model.

1.2 Contributions

To achieve portability across CPUs, GPUs, and DSAs, we need to separate hardware-

independent and hardware-specific optimizations. In this thesis, we propose a new

18

domain-specific intermediate representation (IR), Graph Intermediate Representation

(GraphIR), to encode hardware-independent optimizations and serve as a high-level in-

terface to different hardware backends. This way, hardware-independent optimizations

can be reused across backends, and high-level data structures and operators can be

mapped to different efficient hardware-optimized implementations. For example, the

DeltaStepping algorithm for solving the single-source shortest paths problem needs

priority queues to track the order of active vertices [44]. On CPUs, high-performance

priority queue implementations use thread-local buckets [74, 8]. On GPUs, it is more

efficient to compute the next bucket in the priority queue on the fly [42, 68]. And on

Swarm hardware [30], priorities are maintained implicitly by using speculative tasks

ordered with timestamps.

We also present a novel graph processing framework, the Unified Graph Framework

(UGF), that unifies the creation of compiler backends for different architectures. The

framework enables users to write high-performance graph algorithms once and run

across GPUs, CPUs, and DSAs. UGF is built on top of the GraphIt DSL [76, 74], which

decouples the algorithm from the performance optimizations (schedules) for graph

algorithms. UGF utilizes a new scheduling language that combines load balancing,

edge traversal direction, active vertex set creation, active vertex set ordering, and

kernel fusion optimizations on GPUs and can be extended to support CPU and

DSA-specific optimizations.

As shown in Figure 1-1, the UGF compiler performs various analyses and lowering

passes to generate GraphIR, and the GraphIR is lowered into code for different archi-

tectures using an architecture-specific Graph Virtual Machine (GraphVM). GraphVMs

perform hardware-specific transformations and code generation.

1.3 Thesis organization

In Chapter 2, we will talk about the GraphIt DSL compiler on which UGF is built.

We will also talk about the optimization space for GPUs and the Swarm architecture.

This will setup the stage for the new scheduling language that we have built.

In Chapter 3, we will delve deeper into the details of the extensible scheduling

19

language and how it is implemented for the GPU and Swarm architecture.

Chapter 4 talks about the details of the design of the GraphIR and GraphVMs. We

will also present details about the arguments and the common metadata associated

with the key GraphIR nodes (EdgeSetIterator and VertexSetIterator) and how this

metadata can be used for optimizations.

Chapter 5 gets into the details of how the GraphIt DSL compiler is extended to

separate all the transformations and analysis before the GraphIR generation. We will

also present the details and nuances in the implementation of the GraphVMs for GPUs

and Swarm. In this chapter we will also present two new performance optimizations

that we have implemented: EdgeBlocking and ETWC. Finally we will also talk about

how an autotuner can be built to automatically explore the vast scheduling space

exposed to the programmer.

In Chapter 6, we evaluate our implementations against the other state of the

art frameworks. We will also evaluate the effectiveness of our new optimizations by

comparing the performance with them enabled and disabled.

Chapter 7 summarizes all the work and talks about some future directions for

research.

20

Chapter 2

Background

The UGF framework is built as an extension to the GraphIt DSL compiler. UGF

reuses the algorithm specification, parser, internal classes and some graph domain

optimizations from GraphIt. In this chapter we will first provide some background

about the GraphIt DSL compiler and it’s algorithm language which is used to specify

a program that operates on a graph, without needing to supply low-level details about

how to execute it. We then contextualize this work by describing the tradeoffs inherent

in executing graph algorithms on different hardware platforms, and the large space of

existing hardware-independent and hardware-specific optimizations.

2.1 GraphIt DSL compiler

The main contribution of this thesis, UGF is built as an extension to the GraphIt

high-performance DSL compiler for graph analytics reusing its algorithm specifica-

tion, parser, CPU scheduling language and code generator and a lot of the existing

transformation and analysis passes.

GraphIt achieves consistent high-performance across different algorithms and

graphs while offering an easy-to-use high-level programming model for CPUs. GraphIt

achieves this by decoupling the algorithm specification from optimization strategies

for graph applications.

Because many graph applications require different optimization techniques, users

normally have to try out a large set of such techniques to determine the best implemen-

21

tation for a particular algorithm and graph input. Implementing all these variations is

not only time-consuming, but also requires whole program rewrite and careful debug-

ging to ensure correctness. GraphIt solves this problem by separating the high-level

algorithms from optimization decisions. Users specify graph algorithms using the

algorithm language involving just high-level operations on sets of vertices and edges.

They then use a separate scheduling language to compose different optimizations. This

scheduling language supports a large space of optimization techniques, such as edge

traversal direction, data layout, parallelization, cache efficiency and NUMA which are

essential for high-performance on CPUs.

The GraphIt compiler has three main components: a frontend that scans and

parses the high-level algorithm and the specific optimization chosen by the user, a

midend that analyses and transforms the program with inputs from the scheduling

decisions via multiple lowering passes to ensure correctness, and a backend that

generates high-performance C++ implementations to run on multi-core CPUs.

But since the GraphIt DSL compiler is built only to target CPUs, there is no

separation of transformations which are specific to CPUs and ones which can be

applied to different architectures. This makes adding a new backend to support targets

like GPUs or DSAs very tricky.

2.2 Algorithm Language

In this section we will describe GraphIt’s algorithm specification language which UGF

inherits. This algorithm language operates on vectors, vertex and edge sets, using

functional operators over the sets and priority queue abstractions. The key purpose of

the algorithm language is to allow programmers to specify the graph program without

needing to specify performance-related low-level details, such as whether to use atomic

synchronizations or which data structures to use for abstractions such as priority

queues. Because UGF inherits the exact same algorithm language, programmers

can specify a program using the algorithm language once, and specify details for

performance on different platforms separately using the scheduling language.

Figure 2-1 shows an example of breadth-first search (BFS) using the algorithm

22

1 element Vertex end
2 element Edge end
3 const edges : edgeset{Edge}(Vertex,Vertex) = load(argv[1]);
4 const vertices : vertexset{Vertex} = edges.getVertices();
5 const parent : vector{Vertex}(int) = -1;
6

7 func toFilter(v : Vertex) -> output : bool
8 output = (parent[v] == -1);
9 end

10

11 func updateEdge(src : Vertex, dst : Vertex)
12 parent[dst] = src;
13 end
14

15 func main()
16 var frontier : vertexset{Vertex} = new vertexset{Vertex}(0);
17 var start_vertex : int = atoi(argv[2]);
18 frontier.addVertex(start_vertex);
19 parent[start_vertex] = start_vertex;
20 #s0# while (frontier.getVertexSetSize() != 0)
21 #s1# var output : vertexset{Vertex} =
22 edges.from(frontier).to(toFilter).
23 applyModified(updateEdge, parent, true);
24 delete frontier;
25 frontier = output;
26 end
27 delete frontier;
28 end

Figure 2-1: BFS program written in the UGF algorithm language.

language. BFS constructs a BFS tree from a single source vertex, where each reachable

vertex from the source has a parent in the previous level. The user first initializes

the element types, vertexset, edgeset, and parent vector in Lines 1–5, then specifies

the updateEdge function (Line 12), which updates parents of newly-visited neighbor

vertices. The toFilter function is a boolean function that filters out vertices that

are already visited by checking if the parent value of the vertex is set to −1, which

is the initial value (Line 8). In the main function, the program first initializes a new

vertexset, frontier, (Line 16) and then adds a start_vertex to the frontier. On each

round of the while loop, the algorithm applies the updateEdge function to edges whose

destination vertices have not yet been visited (that is, the ones where the toFilter

function (Line 23) returns true). The applyModified operator tracks which destination

vertices’ parent fields have been updated and adds them to the output vertexset. The

program then deletes frontier, and then sets frontier to output (Lines 24–25). The

while loop iterates until the frontier becomes empty (Line 20); once the while loop

terminates, the parents of all reachable vertices are set, thus inducing the BFS tree.

23

2.3 Hardware Tradeoffs

One motivating reason for separating the algorithm language from low-level opti-

mizations in UGF is that different optimizations are suitable for different algorithms,

graph input and target hardwares. On one hand, CPUs have larger memories and

out-of-order execution, which can hide the long latencies of irregular accesses to a

large main memory and enable processing larger graphs. On the other hand, GPUs

have up to an order of magnitude more computing power and memory bandwidth than

CPUs [51] and can better exploit data parallelism in graph programs. We show in

Chapter 6 that latency-sensitive algorithms with limited parallelism, such as SSSP on

road graphs, run 2× faster on CPUs than on GPUs, whereas iterative graph processing

algorithms that operate on a large number of vertices or edges in parallel, such as

PageRank, perform up to 10× better on GPUs as long as the graph fits in GPU global

memory.

Recent work has also proposed graph accelerators, such as the Swarm architec-

ture [30], which adds hardware support for fine-grained task parallelism to a CPU.

Swarm can achieve order-of-magnitude improvements in scalability over conventional

CPUs on some graph algorithms by using dedicated hardware task queues and specula-

tive execution to distribute tasks across hundreds of simple cores [29, 63, 32]. However,

code must be optimized specifically to exploit the unique hardware acceleration features

in such new architectures, in order to obtain any advantage from them.

To obtain the highest possible performance on a specific graph algorithm for a

specific platform, programmers must utilized a combination of hardware-independent

and hardware-specific optimizations.

2.4 Hardware-Independent Optimizations

Naive implementations of graph algorithms are orders of magnitude slower than

optimized implementations [76, 43, 68, 42]. These optimizations are not always

beneficial for different types of algorithms and graphs. As a result, the programmers

often have to try multiple combinations of these optimizations to produce the best

24

implementation.

Some of the optimizations are hardware-independent as they either operate on

the algorithm level or exploit features that are common across different hardware.

UGF makes analyses and lowering passes for the hardware-independent optimizations

reusable across different hardware backends. Here we give some examples of hardware-

independent optimizations. We measure work-efficiency by the total number of

instructions executed.

2.4.1 Direction-Optimization

When traversing edges in a graph, we can update vertex data in either push or pull

mode. In the push mode, each source vertex updates their neighboring destination

vertices in parallel. In the pull mode, each vertex reads incoming neighbors’ data

and updates itself in parallel. Compared to the pull mode, the push mode is more

work-efficient, but incurs atomic synchronization overheads and has less parallelism.

The direction-optimization switches between the push and pull modes depending on

the size of the frontier [6, 60, 10].

2.4.2 Active Vertexset Data Layout

Vertexsets can have different data layout choices. A subset of vertices can be stored

as a boolean array or bitvector array, where each vertex present has a true value. A

vertexset can also be stored as a sparse array of IDs of vertices present in the set.

Different layouts obviously have different performance charateristics and are suitable

for different graph inputs and algorithms.

2.4.3 Active Vertex De-duplication

Since active vertices may share common neighbors, some vertices can be added multiple

times to the next frontier, which can cause redundant computation and even lead to

incorrect results. To perform deduplication efficiently, we use different implementation

strategies, such as a bitvector or byte array, to keep track of vertices already in the

output frontier.

25

2.4.4 Active Vertexset Processing Ordering

The active vertices can be processed according to a priority-based ordering, which

can significantly improve the work-efficiency for ordered graph algorithms such as

single-source shortest paths, but at the expense of lower parallelism [44, 74, 42]. There

is a plethora of variations in implementations of the priority queues that offer tradeoff

between work-efficiency, parallelization and synchronization.

2.4.5 Parallelization

We can exploit vertex-level or edge-level parallelism when performing data-parallel

operations on edges. The vertex-level approach generates less parallelism than the

edge-level approach, but incurs less synchronization overhead. The compiler uses this

information to insert appropriate synchronization primitives. Different hardware have

specific ways to implement vertex-level or edge-level parallelism.

2.5 GPU-Specific Optimizations

In addition to the hardware-independent optimizations, UGF also takes advantage of

the features of the underlying hardware to get the highest level of performance. In

this section, we describe the GPU-specific optimizations that we incorporated in UGF.

These optimizations are implemented as both compiler transformations and runtime

libraries as we will describe in Chapter 3 and Chapter 5.

2.5.1 Active Vertexset Creation

There are different ways to create the output frontier, including fusing it with the

edge traversal or having a separate operator [42]. This can be combined with different

representations of the vertexset, such as a sparse array (only storing indices of active

vertices), a bitmap (one bit per vertex for all vertices), or a byte map (one byte

per vertex for all vertices). The fused mode sacrifices parallelism but improves

work-efficiency. The bitmap array has better locality but creating it requires atomic

synchronization overhead.

26

2.5.2 Kernel Fusion across Iterations

The iterative nature of graph algorithms can be expressed with a loop. A GPU kernel

can be launched in each iteration of the loop. However, if there is not enough work per

iteration, the kernel launch overhead can dominate the running time. To alleviate this

overhead, the loop can be moved into the kernel so that the GPU kernel is launched

only once [52]. This improves work-efficiency but potentially sacrifices parallelism due

to worse load-balancing from a single kernel launch.

2.5.3 Load-Balancing

Different load-balancing schemes make trade-offs between parallelism and work-

efficiency to various degrees. Warp Mapping (WM) and CTA Mapping (CM) [42, 33]

divide the active vertices evenly across different warps and CTAs. Each thread pro-

cesses an equal number of vertices. WM and CM achieve high parallelism but sacrifice

work-efficiency due to overheads in partitioning the active vertices. Assigning each

thread the same number of edges (STRICT) incurs an even higher overhead than WM

and CM, but ensures that each thread in the grid processes the same number of edges.

TWC splits active vertices into buckets processed by threads, warps, or CTAs based

on their degrees [43, 68]. TWC has a small runtime overhead (high work-efficiency)

but a lower degree of parallelism compared to WM, CM, and STRICT. Vertex-Parallel

(VP) simply maps each vertex to a thread in the grid. VP has the lowest runtime

overhead, but potentially the worst load balancing. In this thesis, we also introduce

a new load balancing optimization, Edge-based Thread Warps CTAs (ETWC), that

can achieve load balancing as good as TWC while reducing the runtime overhead

compared to TWC. More details are provided in Section 5.2.

2.5.4 GPU Cache Optimization

Long-latency irregular memory access is a major performance bottleneck in many

graph algorithms. We introduce a new optimization, EdgeBlocking, which exploits

the fast shared GPU L2 cache by partitioning the graph (Section 5.2).

27

2.6 CPU-Specific Optimizations

UGF inherits NUMA and cache partitioning for graphs on CPUs to take advantage of

local DRAM and last level cache (LLC) in the systems outlined in existing work [76,

75]. These optimizations significantly improve the locality of memory access. For

priority-based algorithms, we utilized CPU-specific optimizations on improving the

work-efficiency and reducing the synchronization overhead to maintain priority-based

ordering introduced in previous work [74]. These optimizations make use of large

amounts of memory available to each core in CPUs to maintain thread-local priority-

based data structures.

2.7 Swarm-Specific Optimizations

Swarm provides hardware support for parallelization by relying on order as the main

synchronization primitive. This hides the effects of concurrency fom software. Swarm

programs consist of tasks that are ordered by timestamps. Tasks can read and write

memory and spawn more tasks. Each task is given a timestamp when it is spawned.

Swarm guarantees that tasks appear to run atomically and in timestamp order. To

scale, Swarm hardware executes tasks in parallel and out of order. To preserve ordered

semantics, tasks execute speculatively, and are aborted and re-executed if their memory

accesses produce an order violation.

This execution model is a natural fit for priority-based algorithms, where a task’s

priority can serve as its timestamp. Swarm’s speculative execution uncovers more

parallelism than conventional CPUs and GPUs by executing tasks with different

priority levels in parallel. However, this can incur performance penalties because of

aborts. To reduce the cost of aborting large tasks, they can be broken down into

small tasks [71]. Swarm’s hardware support makes task spawns as cheap as a few

clock cycles, enabling small tasks. This creates new opportunities and challenges for a

compiler to optimize performance by balancing parallelism and work-efficiency.

28

Chapter 3

Scheduling Language

We propose an extensible scheduling language design for UGF. We first describe

the object-oriented design for the scheduling language, then describe in more detail

the novel GPU scheduling language that allows users to combine the load-balancing,

traversal direction, active vertexset management, and work-efficiency optimizations

described in Chapter 2. A similar discussion is also presented regarding the Swarm

scheduling language. The extensible scheduling language design makes it easy to

implement a new scheduling language for other backends in future.

Scheduling Language Interface. We designed a common scheduling language

interface for the compiler to ensure that the scheduling language for a new hardware

can be added without modifying the hardware-independent analysis and lowering

passes in the compiler. A scheduling language constructs a scheduling object that keeps

track of the various performance optimizations applied. The scheduling objects for

different backends extend the same base scheduling object class that the compiler uses

to acquire information for hardware-independent optimizations outlined in Section 2.4.

For example, the compiler will use the scheduling object to determine the direction of

traversal and whether it exploits vertex-level or edge-level parallelism. Each scheduling

language can also include hardware-specific optimizations, which are passed directly

to the hardware backend.

29

3.1 GPU Scheduling Language

We introduce a novel scheduling language for GPU graph analytics that allows pro-

grammers to easily combine together different load balancing, edge traversal direction,

frontier creation, kernel fusion, and other optimizations. Users can search through a

large space of GPU optimizations without changing the algorithm specification. The

scheduling language uses two main types of scheduling objects: SimpleGPUSchedule and

HybridGPUSchedule to specify the optimizations.

The SimpleGPUSchedule object directly controls the scheduling choices related to load-

balancing, traversal direction, active vertexset management, and work-efficiency. As

shown in Table 3.1, the objects have six config* functions. The programmer can use

these functions to specify the load-balancing strategy, the edge traversal direction, the

output frontier creation strategy, whether or not de-duplication is enabled, the delta

value for priority queues, and whether or not Kernel Fusion is applied to particular

loops. Some of these functions also have optional parameters that the programmer or

an autotuner can use to further tune the schedule.

The HybridGPUSchedule objects combine two SimpleGPUSchedule objects with some runtime

condition. The two SimpleGPUSchedule objects can be entirely different, using different

load-balancing schemes, frontier creation types, traversal directions, etc. Depending on

whether the runtime condition evaluates to true or false, one of the two SimpleGPUSchedule

objects is invoked. Currently, the HybridGPUSchedule is only supported with the edges.apply

operator. This API enables the programmer to implement complex optimizations like

direction-optimization by combining two SimpleGPUSchedule objects. The details of the

HybridGPUSchedules are provided in Table 3.2.

The programmer uses the applyGPUSchedule function of the program object to apply

either a SimpleGPUSSchedule or a Hybrid GPUSchedule object to a statement identified by a label.

The programmer supplies the label of the statement as a string.

Scheduling for BFS. Figure 3-1 shows how to create and apply a direction-optimizing

schedule for the BFS program, which switches between a push-based and a pull-based

execution strategy based on the size of the frontier, as discussed in Section 2.4. On

30

Member function Parameters Description
SimpleGPUSchedule SimpleGPUSchedule s0 Creates a new SimpleGPUSchedule object with

an optional object to copy all the options from
Scheduling functions for edges.appply
configLoadBalance load_balance_type,

blocking_type,
int32_t blocking_size

Configure the load balance scheme to be used
from one of VERTEX_BASED, CM, WM, STRICT, EDGE_ONLY,
ETWC and TWC. Optionally enable blocking and set
blocking size

configDirection direction,
frontier_rep

Configure the direction of updates of vertex data
between PUSH and PULL. Optionally also config-
ure the representation of the frontier (BOOLMAP or
BITMAP) when PULL direction is used.

configFrontierCreation frontier_type Configure how the output frontier will be cre-
ated. Options are FUSED, UNFUSED_BOOLMAP and
UNFUSED_BITMAP

configDeduplication dedup_enable,
dedup_type

Configure if deduplication needs to be enabled
when producing the output frontier (ENABELD).
Strategy can be MONOTONIC_COUNTERS, BITMAP, BOOLMAP

Scheduling functions for edges.appplyUpdatePriority
configDelta int32_t delta Configure the delta value to be used when creating

the buckets in the priority queue
Scheduling functions for while(condition)
configKernelFusion enable_fusion Configure if kernel fusion is ENABLED or DISABLED for

this while loop
Table 3.1: Description of the SimpleGPUScheduling type and associated config functions.
Optional parameters are shown in italics.

Function Parameter Desription
HybridGPUSchedule hybrid_criteria,

float threshold,
SimpleGPUSchedule s1,
SimpleGPUSchedule s2

Create a HybridGPUSchedule object by combining
two SimpleGPUSchedule objects with a runtime con-
dition (currently can be only INPUT_VERTEXSET_SIZE)
and a threshold

Table 3.2: Description of the HybridGPUScheduling type and associated config functions.

Lines 2–6, we first declare a SimpleGPUSchedule object s1 for the push direction. We

configure the load-balancing strategy to be ETWC, direction to be PUSH, and select

the frontier creation to be UNFUSED_BITMAP. Then we declare another SimpleGPUSchedule s2 for

the pull direction on Line 7 that first makes a copy of s1. For the pull-based schedule

object, the programmer configures VERTEX_BASED load-balancing in the PULL direction. On

Line 11, we declare a HybridGPUSchedule, which selects between s1 and s2 based on the

size of the input frontier specified with "argv[3]". Finally, we apply this schedule to

the applyModified operator (Line 23 of Figure 2-1) in the algorithm language using the

applyGPUSchedule. "s0:s1" is a scoped label that references the applyModified operator (with

the label "s1") within the while loop (with the label "s0").

31

1 schedule:
2 SimpleGPUSchedule s1;
3 s1.configDeduplication(ENABLED);
4 s1.configLoadBalance(ETWC);
5 s1.configDirection(PUSH);
6 s1.configFrontierCreation(UNFUSED_BITMAP);
7 SimpleGPUSchedule s2 = s1;
8 s2.configLoadBalance(VERTEX_BASED);
9 s2.configDirection(PULL, BITMAP);

10 s2.configDeduplication(DISABLED);
11 HybridGPUSchedule h1 (INPUT_VERTEXSET_SIZE,
12 "argv[3]", s1, s2);
13 program->applyGPUSchedule("s0:s1", h1);

Figure 3-1: Example of a schedule that can
be applied to the BFS program. This schedule
is suitable when running BFS on graphs on
a GPU with power-law degree distributions,
such as social graphs.

1 schedule:
2 SimpleGPUSchedule s1;
3 s1.configDeduplication(DISABLED);
4 s1.configLoadBalance(ETWC);
5 s1.configDirection(PUSH);
6 s1.configFrontierCreation(FUSED);
7 program->applyGPUSchedule("s0:s1", s1);
8 SimpleGPUSchedule s0;
9 s0.configKernelFusion(ENABLED);

10 program->applyGPUSchedule("s0", s0);

Figure 3-2: Example of a schedule
that can be applied to the BFS pro-
gram. This schedule is suitable when
running BFS on high-diameter graphs
with low degree, such as road graphs
on a GPU.

3.2 Scheduling on CPUs and Swarm

Due to space constraints, we summarize the scheduling extensions for CPUs and Swarm

in a single section. We refactor the CPU scheduling language in GraphIt [76, 74] to

implemente the abstract sheduling classes mentioned above. This way the language can

share the ability to cofigure the target-independent analyses and transformations in

UGF like choosing the edge traversal direction, whether de-duplication is enabled, and

whether the iteration is vertex-parallel or edge-parallel. The CPU-specific optimizations

described in Section 2.6 are passed directly to the CPU backend (CPU GraphVM).

Similar to the CPU and the GPU GraphVMs, the Swarm GraphVM has its own

scheduling options apart from the high-level schedules. Since the Swarm architecture

speculatively executes tasks with timestamps, the GraphVM needs to divide the

program into tasks. The Swarm GraphVM lets the user specify scheduling commands

to split the writes to vertex data into separate tasks that hardware can cheaply abort

and re-execute. This scheduling option provides a tradeoff between the amount of

work wasted because of aborts and the overhead of launching more fine-grained tasks.

The Swarm GraphVM also lets the user set the number of cores used to execute the

program, exposing a tradeoff between parallelism and the amount of aborts.

32

Chapter 4

Graph Intermediate Representation

(GraphIR)

In this chapter, we present GraphIR, an intermediate representation that decouples al-

gorithm specification and hardware-independent optimizations from hardware-specific

optimizations. GraphIR enables us to build reusable intermediate representations,

program analyses, and lowering passes shared across different hardware platforms.

This greatly reduces the amount of effort needed to support a new backend (GraphVM)

for GraphIt.

4.1 GraphIR Representation

The GraphIR is composed of variables, functions, and instructions. Each variable,

function, or instruction carries both arguments and metadata as shown in Table 4.1.

The arguments capture all of the information derived from the algorithm specification.

The metadata capture information related to the performance optimizations. The

GraphIR metadata includes hardware-independent optimizations discussed in Sec-

tion 2.4, such as the direction of traversal and whether the operator exploits edge-level

parallelism.

To perform hardware-specific transformations and code generation, each backend

implements an abstract machine (GraphVM) to optimize and run the GraphIR, similar

to the Java VM or LLVM. We provide more details about the GraphVMs in Chapter 5.

33

GraphIR Types
Type Description
EdgeSet Graph data type. Can be weighted or unweighted. Can have COO or

CSR representation.
VertexSet Type to hold a set of vertices. Can have SPARSE, BITMAP or BOOLMAP

representation.
Function Top level function definition type. Functions can be annotated as

DEVICE, HOST or both.

GraphIR Instructions
Instruction Arguments Metadata
VertexSetIterator VertexSet input_vset,

Function apply_f
bool is_all_vertices: Specifies if iterates over
all the vertices.
bool is_parallel Specifies whether it is a paral-
lel iterator

EdgeSetIterator EdgeSet input_graph,
VertexSet input_vset,
VertexSet output_vset,
Function apply_f

bool is_all_edges: Specifies if it iterates over
all the edges.
bool requires_output: Specifies if it generates
an output set.
bool apply_deduplication: Specifies if the
generated output vertex requires an explicit
deduplication step.
VertexSetRepresentation output_representation:
Specifies the representation of the output
frontier.
bool can_reuse_frontier: Specifies if the output
frontier can reuse the input frontier data
structure.
bool is_edge_parallel: Specifies if it process
edges in parallel.
DirectionType direction: Specifies PUSH or PULL
direction.
VertexSetRepresentation pull_input_frontier:
Specifies the representation for the input
frontier in the PULL direction.

Table 4.1: The key instructions in the GraphIR, the EdgeSetIterator and VertexSetIterator

For each GraphVM, the GraphIR metadata can be extended easily to support the

hardware-specific optimizations discussed in Section 2.5 and Section 2.6. Hardware

GraphVM developers can add custom fields to the flexible metadata to perform

hardware-specific analyses, optimizations, and code generation that require some

capability information specific to the hardware. To ensure correctness, the compiler

needs to follow the specifications of arguments and hardware-independent metadata.

The two most important instructions in the GraphIR are the EdgeSetIterator and

VertexSetIterator instructions, which are shown in Table 4.1. The EdgeSetIterator iterates

through all or a subset of the edges of a graph and invokes a function on each edge.

The arguments of EdgeSetIterator specify the graph (input_graph), input frontier vertexset

34

(input_vset), output frontier vertexset (output_vset), and the user-defined function that

works on the edges (apply_f). These arguments are derived from the operators in the

algorithm specification. The instruction also has metadata for generating optimized

implementations, such as choosing the input/output frontier representations, edge

traversal direction, deduplicating the output frontiers, or generating specialized code if

the edge set representation is dense. The VertexSetIterator iterates over all of the vertices

in a frontier, and similarly has arguments and metadata for optimizations.

Apart from these key instructions, the GraphIR has instructions for data structure

allocation both on the host and on the device, general arithmetic and reductions,

and program control flow. The GraphIR abstraction is at a higher level than nested

for-loops because not all hardware can work with the for-loop abstractions. For

example, GPUs can spawn different threads for the outer loops or a set of threads for

both the loops combined.

Architectures with these features make use of the metadata attached to the

instructions to implement various optimizations. For example, GPUs, which have a

hierarchy of threads, can implement different load-balancing strategies to efficiently

process vertices with varying degrees. CPUs and GPUs both have multiple levels of

memory, which enables cache-blocking optimizations, such as EdgeBlocking.

4.2 GraphIR for BFS

We use snippets of code for BFS to illustrate the GraphIR representation as shown in

Figure 4-1. The GraphIR for BFS has the updateEdge function that is applied to each edge

in the EdgeSetIterator. Analyses, such as dependence analysis for inserting atomics and

liveness analysis for frontier reuse, are hardware-independent and are reusable across

the different hardware backends. Line 4 shows that the high-level compiler inserts an

AtomicCompareAndSwap after the dependence analysis. The AtomicCompareAndSwap instruction can

be mapped to different underlying implementations for different backends (GraphVM).

For CPUs, this can be mapped to the built-in compare-and-swap (CAS) instruction.

For GPUs, the atomic operation can be implemented efficiently using warp shuffling

instructions for easy synchronization and exchange of values among threads. The main

35

1 ...
2 Function updateEdge (int32_t src, int32_t dst,
3 VertexSet output_frontier, {
4 bool enqueue = AtomicCompareAndSwap(parent[dst], -1, src),
5 If (enqueue, {
6 EnqueueVertex<format=SPARSE>(output_frontier, dst)
7 }, {})
8 })
9 Function main (int32_t argc, char* argv[], {

10 ...
11 WhileLoopStmt<needs_fusion=true>(VertexSetSize(frontier), {
12 EdgeSetIterator<requires_output=true,
13 can_reuse_frontier=true,
14 direction=PUSH,
15 is_edge_parallel=true>(
16 edges, frontier, output, updateEdge, toFilter),
17 AssignStmt(frontier, output)
18 }),
19 ...
20 })

Figure 4-1: The GraphIR generated by the compiler for the BFS algorithm and the schedule
in Figure 3-2. Parameters to instruction are specified in () and metadata is specified in <>.
Some of the metadata is omitted for brevity.

function has an EdgeSetIterator instruction inside the WhileLoopStmt. This instruction has

can_reuse_frontier set to true because the liveness analysis determines that the output

frontier can reuse the memory allocated for the input frontier. This is a hardware-

independent optimization attached as metadata.

The GraphIR is also extensible to support hardware-specific optimizations. For

the GPU GraphVM, multiple kernel launches can be fused into a single kernel launch

as explained in Section 2.5. The GPU GraphVM extends the metadata of WhileLoopStmt

with a flag needs_fusion and sets it to true with a hardware-specific analysis compiler

pass. This indicates that the schedule has prescribed the fusion of all of the operator

calls inside the loop into a single kernel. The GraphVM will then generate a fused

kernel if the hardware supports it.

36

Chapter 5

Compiler Implementation

This chapter describes two hardware-independent passes in UGF—liveness analysis for

frontier reuse and dependence analysis for atomic instruction insertion—and provides

more details on the three GraphVMs for GPU, Swarm, and CPU.

5.1 Hardware-independent passes

The hardware-independent analysis and transformation passes are implemented in the

UGF compiler before generating the GraphIR and make use of the interface from the

abstract scheduling classes to query the hardware-independent scheduling decisions.

5.1.1 Liveness Analysis for Frontier Reuse

In algorithms such as BFS and SSSP, the edges.applyModified (Figure 2-1 Line 23) operator

allocates memory for the new output VertexSet that it produces. We can avoid the

overhead of allocation and deletion if we reuse the memory allocated for frontier for

output. To apply this optimization in a general way, we implement a liveness analysis

pass in the high-level compiler that finds applyModified operators where the input VertexSet

is deleted before it is used again and sets the can_reuse_frontier metadata in the generated

GraphIR as seen in Figure 4-1 Line 13. The compiler also removes the corresponding

delete operator.

37

1 void __device__ updateEdge(
2 int src, int dst, VertexFrontier output_frontier) {
3 bool enqueue = CAS(&parent[dst], -(1), src);
4 if (enqueue) {
5 enqueueVertexSparseQueue(
6 output_frontier.d_sparse_queue_output,
7 output_frontier.d_num_elems_output, dst);
8 }
9 }

10 void __global__ fused_kernel_body_1(void) {
11 ...
12 while (device_builtin_getVertexSetSize(local_frontier)) {
13 vertex_set_prepare_sparse_device(local_frontier);
14 local_output = local_frontier;
15 ETWC_load_balance_device<
16 int, updateEdge, AccessorSparse, true_function> (
17 edges, local_frontier, local_output);
18 swap_queues_device(local_output);
19 local_output.format_ready = VertexFrontier::SPARSE;
20 local_frontier = local_output;
21 }
22 ...
23 }
24 int __host__ main(int argc, char* argv[]) {
25 ...
26 cudaLaunchCooperativeKernel(
27 (void*)fused_kernel_body_1,
28 NUM_CTA, CTA_SIZE, no_args);
29 ...
30 }

Figure 5-1: CUDA code generated for the BFS GraphIR with the kernel fusion optimization.

5.1.2 Dependence Analysis for Inserting Atomic Instructions

Depending on the order of iteration over the edges, updates to shared memory may

introduce data races because the algorithm language does not require the user to

write atomic operations. The UGF compiler identifies which accesses inside the user-

defined functions can have data races. For example, Line 12 of Figure 2-1 updates

the parent field of the destination vertex, and if multiple threads update the same

destination vertex, there is a data race. This decision depends not only on the

algorithm representation but also on the schedules applied. For example, depending

on whether the threads are iterating in the PUSH or the PULL direction, a race can appear

at the access with src or dst vertex. The compiler performs a dependence analysis to

identify shared accesses among different threads. These access are marked to have a

SHARED access. After this, the compiler performs a read-write analysis to further identify

access that updates memory using some condition or with a reduction. Finally, atomic

accesses are inserted for those memory accesses that update memory and also have

the SHARED flag set.

38

5.2 GPU GraphVM implementation

The GPU GraphVM uses the GraphIR as input to perform GPU-specific transforma-

tions and optimizations, such as load balancing and fusing kernel launches. The GPU

GraphVM first performs a series of passes that analyze and optimize the GraphIR. It

then generates CUDA C++ programs and executes them with the UGF GPU runtime

library.

One of the first analyses that the GPU GraphVM performs is to determine which

functions need to run on GPU and which need to run on the host CPU, since this

affects the optimizations and code generation. Lines 1 and 10 of Figure 5-1 show

functions compiled for the GPU and Line 24 shows code for the functions to be

executed on the host. The GPU GraphVM also inserts appropriate instructions for

data transfers between the GPU and the host.

The GPU GraphVM generates code in multiple passes. First, the kernels executed

on the GPU are generated for each operator (EdgeSetIterator and VertexSetIterator). Any

specialized kernels for fused loops are generated next. Finally, the host code and other

device functions are generated.

5.2.1 Kernel Fusion Optimization

To apply kernel fusion, the GPU GraphVM first analyzes all loops to identify candidates

that can be fused. The compiler then transforms statements in the body of the

candidate loops. This optimization reduces the overhead incurred from launching a

separate kernel for each VertexSetIterator or EdgeSetIterator, as explained in Section 2.5. As

shown in Line 20 of Figure 2-1, we can add a label for the entire loop. The programmer

can then enable Kernel Fusion as shown on Line 9 of Figure 3-2. With this schedule,

the compiler must launch a single CUDA kernel for the entire loop. This means that

all steps inside the body of the loop should be executed on the device. The GraphVM

first performs an analysis to figure out if the body contains a statement that it cannot

execute on the device. This decision is GPU-specific and hence can be done only

in the GPU GraphVM. The GPU GraphVM then creates a single __global__ kernel for

39

linesnumbered 1 Pseudocode for the implementation of ETWC load balancing
strategy.
Input: Graph G in CSR format, Input Frontier (input_frontier), and three Queues Q[0. . .2], the number of threads
to process edges of a vertex in three Stages Stage_gran[0. . .2]
1: idx = threadblockID * threadblockSIZE + threadID
2: Initialize Q [0 . . . 2]
3: if idx < input_frontier .size then
4: src_id ← 𝑔𝑒𝑡𝐹𝑟𝑜𝑛𝑡𝑖𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡(input_frontier , idx);
5: size ← G.rowptr [src_id + 1]−G.rowptr [src_id]
6: start_pos ← G.rowptr [src_id]
7: end_pos ← G.rowptr [src_id + 1]
8: Stage_elt [2]← ⌊𝑠𝑖𝑧𝑒/Stage_gran[2]⌋ × Stage_gran[2]
9: if Stage_elt [2] > 0 then
10: Q [2].Enqueue({start_pos, start_pos + Stage_elt [2], src_id});
11: start_pos ← start_pos + Stage_elt [2]
12: size ← size − Stage_elt [2]

13: Stage_elt [1]← ⌊size/Stage_gran[1]⌋ × Stage_gran[1]
14: if Stage_elt [1] > 0 then
15: Q [1].Enqueue({start_pos, start_pos + Stage_elt [1], src_id});
16: start_pos ← start_pos + Stage_elt [1]
17: size ← size − Stage_elt [1]

18: if size > 0 then
19: Q [0].Enqueue({start_pos, end_pos, src_id});
20: 𝑠𝑦𝑛𝑐_𝑡ℎ𝑟𝑒𝑎𝑑𝑠()
21: for 𝑖 : 0, 1, 2 do
22: while !isEmpty.Q [i] do
23: if threadID%Stage_gran[i] == 0 then
24: {start_pos, end_pos, src_id} ← Q [i].deQueue()
25: 𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡({start_pos, end_pos, src_id}, threadID . . . threadID + Stage_gran[i]− 1)

26: cooperative for eid 𝑖𝑛 start_pos : end_pos − 1 do
27: dst_id ← G.edges[eid]
28: 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑒𝑑𝑔𝑒(src_id , dst_id)

the entire WhileLoopStmt with all the operations in the body inlined and inserts a single

kernel launch inside the main function. The GraphVM also creates thread copies and

__global__ copies of local variables that are accessed inside the loops and makes sure

that their accesses are coordinated. The GraphVM doesn’t have to analyze the entire

loop body because the high-level compiler has already annotated the variables used

inside. Line 10 of Figure 5-1 shows one such __global__ kernel for the WhileLoopStmt in the

BFS application.

One of the challenges when generating code using kernel fusion is that different

operators inside the body of the loop require different numbers of threads and CTAs,

but the fused kernel has fixed number of threads and CTAs. To handle this, the code

generator inserts a loop around the call to the operator so that a fixed number of CTAs

simulate the behavior of more CTAs. All of the threads in the grid are synchronized

after the execution of each operator.

40

5.2.2 Edge-based Thread Warps CTAs (ETWC)

ETWC further reduces the runtime overhead of TWC by performing TWC style

assignment within each CTA instead of across all CTAs. Similar to CM, an equal

number of vertices are assigned to each CTA, which can potentially hurt parallelism.

Within each CTA, ETWC partitions edges of vertices into chunks that are processed

by a thread, a warp, or the entire CTA. Each CTA processes chunks of different sizes

in separate stages to increase the number of threads involved in the computations

(i.e., a better parallelism) in each stage.

We show the pseudocode for the ETWC load-balancing strategy in Algorithm 1.

Each thread has a unique ID (𝑖𝑑𝑥), and three queues (𝑄[0], 𝑄[1], and 𝑄[2]) are

initialized on Line 3. In the first stage, 𝑆𝑡𝑎𝑔𝑒_𝑔𝑟𝑎𝑛[0] threads cooperatively process

edges of a vertex. Similarly, in the second and third stages, 𝑆𝑡𝑎𝑔𝑒_𝑔𝑟𝑎𝑛[1] and

𝑆𝑡𝑎𝑔𝑒_𝑔𝑟𝑎𝑛[2] threads process edges of a vertex together. Note that the optimal

values for 𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[0], 𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[1], and 𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[2] are dependent on the

algorithm, graph, and platform. Lines 4–20 shows how to split the edges of a vertex

into three chunks with division and modular operations to improve parallelism while

the number of edges in the first stage is minimized. First, for a vertex (𝑠𝑟𝑐_𝑖𝑑𝑥),

we pick up as many as edges that is a multiple of 𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[2], which is stored in

𝑆𝑡𝑎𝑔𝑒_𝑒𝑙𝑡[2] on Line 9 and put them in 𝑄[2] (Line 11) if 𝑆𝑡𝑎𝑔𝑒_𝑒𝑙𝑡[2] is not 0 (Line 10).

After that, 𝑠𝑡𝑎𝑟𝑡_𝑝𝑜𝑠 and 𝑠𝑖𝑧𝑒 are adjusted. Similarly, the maximum number of edges,

which is a multiple of 𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[1], is stored in 𝑄[1] (Lines 14–18). The remaining

edges are moved to 𝑄[0] (Lines 19–20). The for-loop on Line 22 processes edges of

vertices. For each stage, the representative thread (𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑%𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[𝑖] == 0)

dequeues the 3-tuple of the corresponding queue and broadcasts it for 𝑆𝑡𝑎𝑔𝑒_𝑠𝑖𝑧𝑒[𝑖]

threads to cooperatively process the corresponding edges in a cyclic fashion. We

note that queues are managed in shared memory to reduce the overhead for memory

operations (e.g., global memory atomic operations).

41

linesnumbered 2 Algorithm for preprocessing the input graph for applying the
EdgeBlocking optimization. The algorithms takes as input a graph in the COO format
and the blocking size. The output is a new graph in COO format with the edges
blocked
Input: Number of vertices per segment N, Graph G in COO format
Output: Graph Gout in COO format
1: numberOfSegments ← 𝑐𝑒𝑖𝑙(G.num_vertices/N)
2: segmentSize[numberOfSegments + 1]← 0
3: Gout ← 𝑛𝑒𝑤 Graph
4: for 𝑒 : G.edges do
5: segment ← 𝑓𝑙𝑜𝑜𝑟(e.dst/N)
6: segmentSize[segment]← segmentSize[segment] + 1

7: prefixSum ← prefix_sum(segmentSize)
8: for 𝑒 : G.edges do
9: segment ← 𝑓𝑙𝑜𝑜𝑟(e.dst/N)
10: index ← prefixSum[segment]
11: Gout .edges[index]← 𝑒
12: prefixSum[segment]← prefixSum[segment] + 1

13: Gout .numberOfSegments ← numberOfSegments
14: Gout .segmentStart ← prefixSum
15: Gout .N ← 𝑁

5.2.3 EdgeBlocking

We propose a new EdgeBlocking optimization that tiles the edges into a series of

subgraphs to improve the locality of memory accesses. Algorithm 2 shows the steps

for preprocessing an input graph to apply the EdgeBlocking optimization. The

preprocessing is a two step process. The first for-loop (Line 4 of Algorithm 2) iterates

through all of the edges and counts the number of edges in each subgraph. The

algorithm then uses a prefix sum of these counts to identify the starting point for each

subgraph in the output graph edges buffer. The second for-loop (Line 8 of Algorithm 2)

then iterates over each edge again and writes it to the appropriate subgraph while

incrementing that subgraphs counter. We apply the function process_edge to each edge

as shown in Algorithm 3. The arguments to this function are the source vertex and the

destination vertex. The pseudocode shown in Algorithm 3 is executed by each thread

in a thread block. We use an outer for-loop (Line 1 of Algorithm 3) that iterates

over each subgraph. Within each subgraph, the edges are then processed by all of the

threads using a cooperative for (Algorithm 3 Line 4). All of the threads are synchronized

between iterations over separate subgraphs to avoid cache interference. EdgeBlocking

improves the performance of some algorithms by up to 2.94x as show in Table 6.7.

42

linesnumbered 3 Pseudocode for the implementation of the edgeset.apply operator
with the EdgeBlocking optimization. Here the input graph is pre-processed and the
edges are blocked. The function process_edge is applied to each edge in the graph.
Notice that the EdgeBlocking optimization can be applied only when all the edges in
the graph are being processed
Input: Graph G in COO format, Vertex data array V of type T
1: for segIdx : G.numberOfSegments do
2: start_vertex ← G.N * segIdx
3: end_vertex ← G.N * (segIdx + 1)
4: cooperative for eid 𝑖𝑛 G.segmentStart [segIdx − 1] : G.segmentStart [segIdx] do
5: 𝑒← G.edges[eid]
6: process_edge(e.src, e.dst)

7: sync_threads()

1 void updateEdge(int src, int dst) {
2 float &target = new_rank[dst];
3 float val = contrib[src];
4 swarm_spawn {
5 target += val;
6 }
7 }
8 ...
9 for (int _iter = 0; _iter < edges.num_edges; _iter++) {

10 int _src = edges.edge_src[_iter];
11 int _dst = edges.edge_dst[_iter];
12 updateEdge(_src, _dst);
13 };

Figure 5-2: Swarm C++ code generated from the Swarm GraphVM for the PageRank
algorithm. A separate task is launched for each edge to be processed. Some of the code has
been omitted for brevity.

5.3 Swarm GraphVM

Similar to the GPU GraphVM, we have also built a Swarm GraphVM to optimize

the GraphIR for the Swarm architecture. This further demonstrates UGF’s ability

to target different kind of architectures. As explained in Section 2.7, the Swarm

architecture uses task-based speculative execution to extract maximum parallelism

from applications. We will now discuss how the GraphVM generates code for different

types of applications. The Swarm GraphVM generates sequential C++ code (as shown

in Figure 5-2), which the T4 compiler [71] converts into tasks for the Swarm hardware.

T4 assigns tasks increasing timestamps to preserve sequential program order while

extracting speculative parallelism. The T4 compiler automatically parallelizes loop

nests by spawning a separate task for each iteration of each loop. The T4 compiler also

takes annotations to further split the code into smaller tasks. One such annotation is

shown on Line 4 in Figure 5-2.

For algorithms that iterate over all of the edges in the graph, a separate task is

43

created for each edge. As shown in the PageRank example on Line 9 of Figure 5-2,

the GraphVM generates a loop that iterates over all of the edges. The T4 compiler

then turns each loop iteration into a separate Swarm task. To achieve the maximum

performance, the GraphVM further breaks each iteration install finer tasks so that

speculative writes are performed in their own task, separate from non-speculative reads

at the start of each loop iteration. This reduces the overhead when some writes are

aborted and re-executed, since only the writes are re-executed again. The GraphVM

does this by inserting a task boundary annotation as shown on Line 4 of Figure 5-2.

The scheduling language for the Swarm GraphVM lets the user control these task

boundaries. T4 gives unique timestamps to all tasks, thus recording the sequential

code’s program order. Thus, the rounds of PageRank have increasing timestamps,

guaranteeing behavior equivalent to bulk-synchronous execution.

For algorithms that iterate over a dynamically determined frontier, we cannot

launch all of the tasks upfront. Tasks are launched speculatively whenever a vertex

is added to the frontier in the EdgeSetApply operator. SSSP is an example of one such

program, where a separate task is created for each vertex, with timestamp equal to the

priority from the priority queue. When a vertex’s data is updated, a task is launched

for each outgoing edge.

5.4 CPU GraphVM implementation

The CPU GraphVM generates high-performance C++ code to run on multi-socket,

multi-core CPUs. We refactored the CPU-specific passes, code generator, and runtime

libraries from existing work [76, 74] to be compatible with the new common scheduling

interface described in Chapter 3. Apart from the CPU-specific transformations, the

CPU GraphVM also generates data structures that are specific to the CPU backend,

such as intermediate buffers for prefix sums or thread-local buckets for priority queues.

Thread-local queues are only used by the CPU and not by the GPU because the GPU

has an order of magnitude larger number of threads and lesser amount of total memory.

An example of an optimization performed specifically by the CPU GraphVM is the

bucket fusion optimization introduced in previous work [74]. This optimization reduces

44

the amount of synchronization required among threads after processing the buckets

from the priority queue, and improves overall performance by up to 3×.

5.5 Autotuning

The UGF compiler exposes a large optimization space, with about 106 combinations

of different schedules. Even without the hybrid schedules that involve two traversal

directions, the compiler can generate up to 288 combinations of schedules for each

direction (Table 6.10). On top of that, integer and floating-point parameters like

the value of ∆ for ∆-stepping, blocking size of EdgeBlocking, and thresholds for

hybrid schedules need to be appropriately selected for each input graph and algorithm.

Searching through the huge optimization space exhaustively is very time-consuming.

To navigate the schedule space more efficiently, we built an autotuner using

OpenTuner [4]. For each direction, the autotuner chooses among all 288 combinations

of options for load balancing, deduplication, output frontier strategy, blocking, traversal

direction, and kernel fusion. For direction-optimized schedules that involve two

traversal directions, the autotuner combines together two sets of schedules, one for

each direction. The autotuner converges within 10 minutes on each input graph for

most algorithms and produces a schedule that matches the performance of hand-

optimized schedules.

45

THIS PAGE IS INTENTIONALLY LEFT BLANK

46

Chapter 6

Evaluation

We compare the performance of the code generated from UGF’s GPU backend with

other state-of-the-art GPU graph frameworks and libraries on five graph algorithms and

nine different graph inputs. We also study the performance impact of EdgeBlocking

and ETWC. The evaluation for GPUs is performed on both an NVIDIA Titan Xp

(Pascal-generation GPU with 12GB of GDDR5 main memory, 3MB of L2 cache,

and 48KB of L1 cache per SM with a total of 30 SMs) and an NVIDIA Tesla V100

(Volta-generation GPU with 32 GB of HBM2 main memory, 6MB of L2 cache, and

128KB of combined L1 cache and shared memory per SM with a total of 80 SMs). For

evaluation of the CPU GraphVM, we run the experiments on a dual-socket system

with Intel Xeon E5-2695 v3 CPUs with 12 cores each for a total of 24 cores and 48

hyper-threads. The machine has 128 GB of DDR3-1600 memory and 30 MB last level

cache on each socket and runs with Transparent Huge Pages (THP) enabled. Finally,

for evaluating Swarm, we simulate systems with up to 256 simple in-order cores, with

64 KB/core of L2 cache and 256 KB/core of L3 cache (for 64 MB total L3 capacity

on the 256-core chip). Simulation parameters and methodology are the same as in

prior work [29, 63, 32].

Data sets. We list the input graphs used for our evaluation in Table 6.1 along with

the sources they are downloaded from. Out of the 9 graphs, OK, TW, LJ, SW, HW,

and IC have power-law degree distributions while RU, RN, and RC are road graphs

with bounded degree distributions and high diameter.

47

Graph Input Vertex Count Directed Edge Count
Orkut (OK) [55] 2,997,166 212,698,418
Twitter (TW) [55] 21,297,772 530,051,090
LiveJournal (LJ) [17] 4,847,571 85,702,474
Sinaweibo (SW) [55] 58,655,849 522,642,066
Hollywood (SW) [17] 1,139,905 112,751,422
Indochina (IC) [17] 7,414,865 301,969,638
RoadUSA (RU) [17] 23,947,347 57,708,624
RoadCent (RC) [17] 14,081,816 33,866,826
RoadCA (RN) [17] 1,971,281 5,533,214

Table 6.1: Graph inputs used for evaluation.

Algorithms. We evaluate frameworks using PageRank (PR), Breath-First Search

(BFS), DeltaStepping for Single-Source Shortest Paths (SSSP), Connected Components

(CC), and Betweenness Centrality (BC). PageRank is a topology-driven algorithm

where we iterate over all the edges in every round. BFS generates the parent tree.

SSSP uses the DeltaStepping algorithm. CC, BC are all data-driven algorithms where

we iterate over only a subset of the edges.

Existing Frameworks. We compare UGF’s performance with three state-of-the-art

GPU graph processing frameworks: Gunrock [68], GSwitch [42], and SEPGraph [66].

All of the frameworks have optimized implementations of BFS for power-law graphs

using direction-optimization [6]. SEPGraph improves the performance of DeltaStep-

ping and BFS on high-diameter graphs with asynchronous execution. GSwitch

chooses among several optimal parameters for traversal direction, load balancing, and

frontier creation using a learned decision tree that makes use of graph characteristics

and runtime metrics. These frameworks implement all of the algorithms that we

evaluate, except for CC, PageRank, and BC, which are not implemented in SEPGraph.

SEPGraph instead implements PageRank-Delta which is a data-driven algorithm that

iterates over only a subset of edges and vertices. Since PageRank-Delta performs less

work per iteration, we cannot compare the performance against PageRank.

48

PageRank (time per round) CC BC
Graph UGF GU GW UGF GU GW UGF GU GW
OK 14.18 60.63 117.10 63.31 71.95 76.85 26.22 213.93 37.93
TW 77.86 113.55 211.03 196.78 374.59 OOM 174.83 505.31 122.81
LJ 7.68 17.67 OOM 24.65 35.96 27.81 28.93 88.04 26.98
SW 102.11 178.70 338.79 276.04 439.51 OOM 204.32 1095.60 415.06
HW 7.01 22.67 OOM 12.04 37.43 18.23 12.20 29.03 79.44
IC 18.24 13.16 9.30 31.66 235.92 43.10 35.78 47.97 10.70
RU 6.32 10.53 7.62 20.66 74.45 31.21 302.22 987.93 564.53
RC 5.56 9.96 8.86 27.03 48.22 27.13 239.55 632.97 332.91
RN 0.43 0.94 0.47 1.72 5.82 3.04 24.05 86.44 39.51

SSSP with DeltaStepping BFS
Graph UGF GU GW SEP-G UGF GU GW SEP-G -
OK 94.30 978.44 550.38 434.77 1.75 1.92 1.94 6.40
TW 114.34 264.54 233.54 237.12 21.13 OOM 22.52 40.18
LJ 54.46 260.19 172.99 172.07 4.66 4.80 3.68 11.63
SW 685.66 3470.59 1933.29 2296.01 20.17 OOM 18.96 93.69
HW 18.44 74.90 47.54 92.92 1.89 2.04 2.30 4.76
IC 120.42 232.55 268.95 511.70 10.68 15.92 70.69 55.15
RU 601.08 53518.87 1238.03 440.21 73.15 442.19 119.93 84.29
RC 337.62 29443.51 642.38 286.03 49.59 OOM 84.98 61.51
RN 17.01 89.18 27.80 16.48 6.13 OOM 10.29 6.88

Table 6.2: Execution time in milliseconds for the five algorithms on 9 input graphs for the
4 frameworks in comparison, UGF (Universal Graph Framework), Gunrock, GSwitch, and
SEP-G (SEPGraph) running on an NVIDIA Titan Xp GPU. The fastest results for each
algorithm-graph input are marked in bold. The PageRank, BFS, BC, and CC algorithms use
unweighted and symmetrized graphs. Single-Source Shortest Path (SSSP) with DeltaStepping
uses unsymmetrized graphs with edge weights. Uniformly random integer weights between
1–1000 are added for Orkut, Sinaweibo, Hollywood, and Indochina because they did not have
weights originally. OOM indicates that the framework ran out of memory for the particular
input and – indicates that the framework does not implement the algorithm.

PageRank (time per round) CC BC
Graph UGF GU GW UGF GU GW UGF GU GW
OK 10.87 20.59 32.77 15.18 - 16.33 20.11 213.93 20.56
TW 35.83 43.04 103.88 136.73 - 137.12 94.93 505.31 56.44
LJ 4.54 7.66 6.49 7.96 - 11.12 20.12 88.04 16.88
SW 56.23 66.41 163.88 174.91 - 290.02 392.24 1095.60 216.05
HW 4.15 6.47 8.67 8.23 - 6.85 6.04 29.03 6.08
IC 13.68 16.64 46.55 22.08 - 4.46 10.67 47.97 55.58
RU 3.14 2.68 3.22 12.85 - 17.94 395.26 987.93 536.95
RC 2.17 2.61 2.97 10.66 - 14.14 247.8 632.97 336.78
RN 0.23 0.27 0.29 1.42 - 2.79 40.43 86.44 47.06

SSSP with DeltaStepping BFS
Graph UGF GU GW SEP-G UGF GU GW SEP-G -
OK 53.47 243.05 199.59 164.69 1.51 1.66 1.51 5.72
TW 62.10 97.52 132.94 117.97 13.60 13.52 10.60 38.18
LJ 42.85 14.55 77.95 103.40 2.56 3.63 3.05 9.59
SW 645.26 235.75 1062.56 1066.57 83.74 94.77 12.26 70.70
HW 16.21 5.87 26.77 51.75 1.63 1.67 1.60 4.81
IC 155.09 13.63 211.85 350.58 31.04 12.57 40.60 39.39
RU 253.25 788.23 390.23 191.08 74.53 775.16 186.43 97.62
RC 195.40 429.24 222.05 128.02 119.66 434.01 115.13 65.49
RN 26.78 66.79 32.47 19.46 10.25 68.35 16.76 9.33

Table 6.3: Execution time in milliseconds for the same experiments in Table 6.2 running
on an NVIDIA V100 GPU.

49

6.1 Comparison with Existing Frameworks on a Pas-

cal GPU

Table 6.2 shows the execution times of all of the algorithms in UGF and the other

frameworks on a Pascal GPU. UGF outperforms the next fastest of the three frame-

works on 36 out of 45 experiments by up to 5.1× and is never more than 36% slower

than the fastest framework on the rest of the experiments. Table 6.8 shows UGF

always uses significantly fewer lines of code compared to other frameworks. We show

the best schedules selected for all the applications and graphs in the supplementary

materials.

PageRank. UGF has the fastest PageRank on 8 out of 9 graphs. Compared to

Gunrock and GSwitch (SEPGraph does not provide the original PageRank algorithm),

UGF is up to 4.2x faster. This is mainly because of the EdgeBlocking optimization that

reduces the number of L2 cache misses, as described in Section 5.2. For Hollywood

and Indochina, the graphs are already clustered, meaning that each vertex only has

neighbors in a small range of vertices.

BFS. UGF has the fastest BFS on 7 of the 9 graphs. UGF outperforms GSwitch and

Gunrock by up to 6.04x and 1.63x, respectively, on the road graphs because Gunrock

and GSwitch do not use the Kernel Fusion optimization which reduces kernel launch

overheads as discussed in Section 2.5. SEPGraph is only up to 1.24x slower than

UGF on the road graphs because it uses asynchronous execution. However, the better

load balancing achieved by using ETWC makes UGF faster than SEPGraph. On the

power-law graphs, direction optimization is very effective. Both Gunrock and GSwitch

use direction optimization and hence the performance of UGF is very close to both of

them. GSwitch and Gunrock also use idempotent label updates, which eliminates

atomic compare-and-swap operations.

Indochina is a special case of a power-law graph that does not benefit from direction

optimization because the number of active vertices increases very gradually. Thus

for most of the iterations, the PUSH strategy is the most efficient. Both Gunrock and

50

GSwitch use direction optimization for Indochina and suffer from the extra work done

in the PULL direction. UGF uses the more efficient (PUSH only) schedule.

CC. For CC, UGF is the fastest on all the graph inputs. UGF is up to 3.4x faster

than the next fastest framework. All of the frameworks use the same algorithm and

execution strategies. We tune the performance by choosing different load balancing

strategies for each graph (ETWC for power-law graphs and CM for road-graphs).

Table 6.6 shows the impact of choosing an efficient load balancing strategy for the CC

algorithm.

DeltaStepping. UGF has the fastest DeltaStepping performance on 6 out of the 9

graph inputs and runs up to 5.11x faster than the next fastest framework. DeltaStep-

ping needs the Kernel Fusion optimization for road graphs because of their high

diameter and low number of vertices processed in each iteration. Without this op-

timization, GSwitch and Gunrock are slower on road graphs by up to 2.05x and

89x, respectively. On power-law graphs, UGF benefits from the better ETWC load

balancing strategy and performs up to 5.11x faster than the next fastest framework.

On road graphs, SEPGraph executes up to 1.36x times faster because of the highly

optimized asynchronous execution. Table 6.4 shows that UGF’s execution time on

CPU is up to 2x faster than that of SEPGraph.

BC. UGF has the fastest BC performance on 8 out of the 9 graph inputs. UGF run

up to 2.03x faster than the next fastest framework and is never more than 1.4x slower.

Gunrock does not use direction optimization, which is critical for high performance

on power-law graphs. GSwitch uses direction optimization, but UGF outperforms

GSwitch because of the better load balancing from ETWC. For high diameter graphs,

UGF benefits greatly from the Kernel Fusion optimization. Both GSwitch and Gunrock

do not implement Kernel Fusion.

51

6.2 Comparison with Existing Frameworks on a Tesla

V100 GPU

To demonstrate UGF’s portability across different GPU architectures, we also compare

the performance of UGF against existing frameworks on an NVIDIA V100 GPU as

shown in Table 6.3. The Volta-generation GPU requires different code generation

because of different hardware features, such as a faster and larger L1 cache and threads

not being required to execute in lockstep.

Similar to the Pascal experiments, we ran the five algorithms—PageRank, SSSP,

CC, BFS, and BC—on 9 graphs and compared the performance of UGF with the

three other frameworks. Currently, the CC algorithm is explicitly disabled on the

Gunrock repository because their implementation does not support the newer GPUs.

Thus we have not included the performance. Table 6.3 shows the execution times in

milliseconds for all of the experiments. UGF is the fastest for 26 out of 45 experiments

with up to 4.49× speedup over the next fastest framework. For most of the algorithms

and graphs, UGF follows similar trends as that of the Pascal experiments. Just like

for the Pascal GPU, we also apply the EdgeBlocking optimization for PageRank. But

due to the larger L2 cache size on the V100 GPU, each sub-graph can hold more

vertices and thus there is less overhead from duplicating vertices.

UGF is still faster than GSwitch and Gunrock on data-driven algorithms like

SSSP, CC, and BFS for high diameter graphs because UGF implements the kernel

fusion optimization. We see that the speedup for CC on power-law graphs is not as

significant as in Pascal because V100 has more SMs and semi-warp execution, and our

ETWC load balancing scheme is less effective. Finally, in some cases for algorithms

like SSSP, the execution times for all frameworks on Volta is higher than that of

Pascal. This is because the kernel launch overhead and thread synchronization costs

for Volta are higher than that of Pascal. And since applications with limited available

parallelism are not able to saturate the higher number of threads on Volta, these costs

start slowing down the application.

52

SSSP UGF CPU UGF GPU SEPGraph
RU 212.30 601.80 440.21
RC 162.49 337.62 286.03
OK 106.00 94.30 434.77
LJ 90.05 54.46 172.07

Table 6.4: Comparisons of UGF-generated CPU, UGF-generated GPU, and SEPGraph
implementations on SSSP with DeltaStepping. The running times are in milliseconds. We
do not count the data transfer time from CPU to GPU.

6.3 Comparison against CPU

We compare the performance of UGF-generated CPU implementations with GPU im-

plementations. We ran the evaluation on a dual-socket system as specified earlier. UGF

generates the same CPU implementation as in the previous GraphIt framework [74, 76].

On PageRank, BFS, and CC, the GPU implementations are faster because these

algorithms can easily utilize the large amount of parallelization and memory bandwidth

available on the GPUs. On the other hand, DeltaStepping, which has less parallelism

available when running on road graphs, executes up to 2.07× faster on the CPU due

to more powerful cores and larger caches. The execution times for DeltaStepping on

GPU and CPU can be found in Table 6.4. Furthermore, GPUs cannot even process

some graphs that are much larger than the GPU memory but run fine on CPUs.

These experiments provide evidence for our claim that a single hardware is not

suitable for all algorithms and shows how a unified framework that decouples algorithms

and optimizations from the target hardware can help users achieve high performance.

Graph ETWC TWC CM
OK 43.58 40.69 42.24
TW 106.11 107.57 116.06
LJ 19.72 20.03 18.42
SW 226.35 230.00 230.03
HW 4.94 5.79 8.17
IC 11.38 11.50 22.16
RU 136.64 255.89 168.90
RC 91.20 162.54 109.89
RN 13.10 25.77 16.25

Table 6.5: Execution time (in millisec-
onds) of BFS (PUSH only) using ETWC,
TWC, and CM load-balancing strategies.
The fastest results are in bold.

Graph ETWC TWC CM
OK 69.93 81.10 63.31
TW 196.78 232.58 252.83
LJ 28.87 31.64 24.65
SW 431.02 276.04 379.12
HW 12.04 12.80 14.76
IC 42.06 31.66 42.94
RU 32.33 24.73 20.66
RC 28.42 37.62 27.03
RN 3.02 1.92 1.72

Table 6.6: Execution time (in millisec-
onds) of CC using the ETWC, TWC, and
CM load-balancing strategies. The fastest
results are in bold.

53

Graph Without
EB

With
EB

Speed
up

Preprocess
time

OK 41.75 14.18 2.94x 22.75
TW 88.25 77.86 1.13x 129.43
LJ 15.67 7.68 2.04x 20.65
SW 144.88 102.11 1.41x 141.86
HW 7.01 7.02 0.99x 12.00
IC 18.24 19.55 0.93x 32.25
RU 8.35 6.32 1.35x 11.77
RC 8.39 5.56 1.50x 8.20
RN 0.44 0.43 1.02x 1.08

Table 6.7: Execution time (in milliseconds)
per round of PageRank with and without Edge-
Blocking. The fastest results are in bold.

Framework PR BFS SSSP CC BC
Gunrock 2207 2189 1438 3014 1792
GSwitch 159 164 203 160 280
SEPGraph – 481 473 – –
UGF 61 66 50 62 128

Table 6.8: Number of lines of code for the five
algorithms written using Gunrock, GSwitch,
SEPGraph, and UGF. SEPGraph does not
implement CC, PageRank and BC. The fewest
number of lines is in bold. The number of
lines for UGF includes both the algorithm and
the schedule.

6.4 Performance of ETWC and EdgeBlocking

We evaluate the performance of the two new optimizations, ETWC and EdgeBlocking

using BFS and PageRank. To evaluate the ETWC load-balancing scheme, we run

the BFS algorithm on all nine graph inputs. For these experiments we used only the

PUSH strategy and disabled the Kernel Fusion optimization. The rest of the scheduling

parameters are fixed to the best values we found for each graph. We then vary the

load balancing scheme to be ETWC, TWC, and CM (TWC and CM are the best

performing methods on power-law graphs and road graphs , respectively, and hence

other load-balancing schemes are not shown). The results are shown in Table 6.5.

CM is faster than TWC on graphs that have a regular degree distribution, such as

road graphs and the Indochina graph, while TWC performs better on power-law

graphs. This is because TWC can adapt to large variation in degrees of vertices in the

power-law graphs, but at the same time is slower on road graphs due to the overhead

from load balancing. ETWC outperforms the other two load-balancing schemes on 7

of the 9 graphs. ETWC does well both on power-law graphs and road graphs because

it is able to achieve good load balancing without incurring a large overhead. Unlike

TWC, ETWC balances the edges only locally within a CTA, thus communicating only

using shared memory. We show results for similar experiments with CC in Table 6.6.

In the case of CC, even though ETWC is not always the fastest scheme, it is close to

the fastest for most graphs.

We evaluate EdgeBlocking by running PageRank on all of the input graphs, and

54

SSSP PageRank (time per round)
Graph 1 4 16 64 256 1 4 16 64 256
RN 1.569 0.229 0.057 0.034 0.022 0.355 0.092 0.029 0.010 0.005
RC 11.591 1.924 0.442 0.228 0.143 3.562 0.906 0.277 0.077 0.036
RU 18.752 2.926 0.673 0.387 0.246 4.386 1.143 0.357 0.119 0.057
HW 26.078 5.671 1.757 0.680 0.407 4.899 1.187 0.364 0.125 0.243
LJ 30.775 7.032 2.028 0.650 0.332 5.999 1.428 0.403 0.121 0.082
OK 86.424 20.184 5.410 1.430 0.691 17.153 3.948 1.049 0.282 0.125

Table 6.9: Execution time (in seconds) of the code generated by the Swarm GraphVM for
the SSSP and PageRank (time per round) application with varying number of cores.

the results are shown in Table 6.7. We fix the schedule to use edge-only load-balancing

(which is the fastest for PageRank) and compare the execution times with and without

EdgeBlocking. The vertex data of these vertices fit in the L2 cache of the GPU.

PageRank runs up to 2.94x faster with EdgeBlocking enabled. EdgeBlocking causes

some slowdown on Indochina and Hollywood because of lower work-efficiency. Table 6.7

also shows the preprocessing time for each of the input graphs. We can see that the

preprocessing time for all the graphs is less than three iterations of PageRank and

thus is easily amortized.

6.5 Evaluation of Swarm GraphVM

Finally, we evaluate the Swarm GraphVM by running the code it generates on the

Swarm hardware simulator. When tuning the scheduling parameters, we find

that Swarm offers unique performance characteristics. For example, SSSP with

DeltaStepping obtains the best performance with ∆ set to 1, as Swarm readily extracts

parallelism across priority levels using speculative execution. UGF’s scheduling

language makes it easy to tune each algorithm for different architectures.

We vary the number of cores to measure the scalability of the generated code.

Scalability is an important metric because the Swarm hardware uses in-order cores

that are simpler than conventional CPU cores, and relies on massive parallelism to

achieve good performance. Table 6.9 shows the execution time in seconds for the

PageRank and the SSSP with DeltaStepping applications. We can see that with 256

cores, we are able to get up to 95x speedup over a single core. This speedup shows

that the generated code is able to utilize the Swarm hardware effectively to extract

speculative parallelism available in the program. Performance improves as the core

55

count increases to hundreds of cores, unlike conventional multi-core systems where

performance for SSSP saturates or even decreases with increasing the number of cores.

6.6 Feature comparisons against other frameworks

Graph Frameworks for CPUs. There has been a large body of work on graph

processing for shared-memory (e.g., [60, 61, 21, 27, 20, 75]), distributed-memory

(e.g., [13, 77, 15, 41]), and external-memory (e.g., [36, 56, 65, 67, 73, 79, 40, 78]).

These frameworks support a limited set of optimizations and cannot achieve consistent

high performance across different algorithms and graphs. Abelian [20] uses the Galois

framework as an interface for shared-memory CPU, distributed-memory CPU, and

GPU platforms. However, it lacks support for direction-optimization, various load

balancing optimizations, and active vertex set creation optimizations, which are needed

to achieve high performance. GraphIt [76, 74] is a domain-specific language that

expands the optimization space to outperform other CPU frameworks by decoupling

algorithm from optimizations. However, GraphIt generates code only for CPUs. UGF

extends GraphIt by decoupling algorithms, optimizations, and hardware with the

GraphIR to enable efficient implementations for CPUs, GPUs, and potentially other

architectures by exploring a large optimization space (Table 6.10).

Graph Frameworks for GPUs. There has been tremendous efforts on developing

high-performance graph processing frameworks on GPUs (e.g., [43, 52, 9, 66, 39, 50,

34, 33, 68, 24, 28, 38, 59, 25, 16, 62, 49, 12, 35, 19, 23]). Gunrock [68] proposes a

novel data-centric abstraction and incorporates existing GPU optimization strategies.

IrGL [52] introduces the Kernel Fusion optimization that reduces the overhead of

kernel launch for SSSP and BFS on high-diameter road networks. However, most of

the frameworks support only a subset of existing optimizations and cannot achieve

high performance on all algorithms and graphs using GPUs [42]. GSWITCH [42]

identifies and implements a set of useful optimizations and uses autotuning to achieve

high performance.

Compared to the existing GPU frameworks, UGF further expands the optimization

space by an order of magnitude by decoupling the algorithm from GPU performance

56

Framework UGF GSwitch SEPGraph Gunrock
Load Balancing 6 4 1 3
Edge Blocking 2 1 1 1
Vertexset Creation 3 2 1 2
Kernel Fusion 2 1 2 1
Direction Optimization 2 2 2 2
Vertexset Deduplication 2 1 2 2
Vertices Ordering 2 2 2 2
Total Schedules (One Di-
rection)

288 16 8 24

Table 6.10: Number of options in each category of optimizations in the different GPU
graph frameworks. The last row shows the total number of possible schedules supported by
the framework for one direction

optimizations and introducing new optimizations, ETWC and EdgeBlocking, as

shown in Table 6.10. UGF’s scheduling language and compiler enable us to find new

combinations of optimizations, which gives up to 5.1× speedup over the fastest of

state-of-the-art GPU frameworks. UGF also supports generating code for both CPU

and GPU platforms without changing the algorithm specification.

Domain-Specific Accelerators (DSAs) for Graph Processing. DSAs can en-

hance the performance and energy-efficiency for graph processing [45, 46, 22, 30, 57, 37,

14, 2, 69, 3]. Swarm [31, 32, 63] employs hardware-accelerated speculative execution

to achieve high parallelism and good scalability. Tesseract [3] utilizes in-memory

graph processing to reduce the overhead for memory transactions. Graphicionado [22]

enables energy-efficient processing while achieving high performance with memory

subsystem specialization. One of the main goals of UGF is to make it easy to develop

backends for these different DSAs.

Load-balancing and Locality-enhancing Optimizations on GPUs. TWC is

a dynamic load balancing strategy designed for efficient BFS on GPUs [43]. Gun-

rock [68] and GSwitch [42] implement both TWC and a few other static load balancing

techniques, which we describe in more detail in Section 2.5. The irregular memory

access pattern in graph algorithms makes it hard to take advantage of the memory

hierarchy [7, 75]. To reduce the irregular memory access, several tiling approaches for

graphs have been proposed [75, 72, 77, 64]. However, a naive graph tiling approach

on GPU results in poor performance due to insufficient parallelism. EdgeBlocking

finds a good balance between locality and parallelism by tiling for the shared L2 cache

on GPUs and processing one tiled subgraph at a time. Previous work [48, 26] have

57

employed tiling strategies for sparse matrix operations.

Scheduling Languages. Scheduling languages have been proposed in several other

domains. Halide [54] decouples algorithms with scheduling for image processing

pipelines, which allows users to explore optimization space without modifying the

algorithmic code. Halide also explores the tradeoffs between locality, parallelism, and

redundant computations. PolyMage [47] and Tiramisu [5] also support a scheduling

language based on a polyhedral model. However, these scheduling languages only

support loop optimizations for dense arrays. GraphIt [76] also adopts the concept of

decoupling graph algorithms with scheduling. However, GraphIt only supports graph

algorithms on CPUs, while our approach can be applied across different architectures

such as GPU and Swarm.

58

Chapter 7

Conclusions

7.1 Summary

This thesis introduces Universal Graph Framework (UGF), a novel graph process-

ing framework for writing high-performance graph applications for GPUs, CPUs,

and Swarm. UGF decouples algorithm, schedule, and the hardware with a novel

intermediate representation, the GraphIR. The GraphIR encodes information for

algorithms and hardware-independent optimizations, enabling the reuse of high-level

program analyses and transformations across different backends. The extensible GPU

scheduling language and compiler enables users to search through many different

combinations of load-balancing, traversal direction, active vertexset management,

and work-efficiency optimizations. This thesis also proposes two new performance

optimizations, ETWC and EdgeBlocking, to improve load-balancing and locality of

edge processing on GPUs. We evaluated UGF on five algorithms and 9 graphs and

showed that it achieves up to 5.1× speedup over the next fastest state-of-the-art GPU

framework, and is the fastest in 62 out of 90 experiments on GPUs. Similarly, UGF

generates CPU implementations that match the performance of the original GraphIt

compiler and also generates efficient code for the Swarm architecture.

59

7.2 Future directions

This thesis presents UGF a framework that enables graph experts to generate code for

different hardware backends with easy. The GraphIR and the extensible scheduling

language allows the developer to only have to deal with hardware specific optimizations

while reusing the hard-independent optimizations in the compiler.

Recently, many new hardware platforms have been proposed targetting graph and

other sparse applications including the Symphony architecture from NVIDIA or the

Hammerblade architecture. All these architectures have very different performance

characteristics which present a very different optimization space from traditional CPUs

and GPUs. These architectures also provide a very different programming model. For

example, the Symphony architecture is a dataflow architecture and the Hammerblade

architecture with its large number of cores and high-bandwidth memory transfers is

very different to program from CPUs.

UGF can be used to rapidly target different graph applications to run on these

upcoming architectures from the same high-level algorithmic description. This will

help both the application writers to choose the best platform for their applications and

inputs and also help the architects understand the characteristics of these applications

and better adapt their hardware to suit the needs.

We are planning to work with other groups and build GraphVMs to target these

architectures. As a part of this work, we will also explore the optimization space for

these architectures and use the extensible scheduling language to create a scheduling

language specifically tailored for them.

60

Appendix A

Optimum UGF schedules

Table A.1 shows the optimum schedule selected for each graph input and algorithm

for the GPU experiments.

Algo Power-Law graphs Road Graphs
BFS SimpleGPUSchedule s1;

s1.configDeduplication(DISABLED);

s1.configLoadBalance(ETWC);

s1.configDirection(PUSH);

s1.configFrontierCreation(FUSED);

SimpleGPUSchedule s2 = s1;

s2.configLoadBalance(VERTEX_BASED);

s2.configDirection(PULL, BITMAP);

s2.configDeduplication(DISABLED);

s2.configFrontierCreation(UNFUSED_BITMAP);

HybridGPUSchedule h1

(INPUT_VERTEXSET_SIZE, "argv[3]", s1, s2);

program->applyGPUSchedule("s0:s1", h1);

SimpleGPUSchedule s1;

s1.configDeduplication(DISABLED);

s1.configLoadBalance(ETWC);

s1.configDirection(PUSH);

s1.configFrontierCreation(FUSED);

program->applyGPUSchedule("s0:s1", s1);

SimpleGPUSchedule s0;

s0.configKernelFusion(ENABLED);

program->applyGPUSchedule("s0", s0);

61

PR SimpleGPUSchedule s1;

s1.configDirection(PULL);

s1.configLoadBalance(EDGE_ONLY, BLOCKED,

0x42000);

program->applyGPUSchedule("s1", s1);

SimpleGPUSchedule s1;

s1.configDirection(PULL);

s1.configLoadBalance(EDGE_ONLY, BLOCKED, 0x42000);

program->applyGPUSchedule("s1", s1);

SSSP SimpleGPUSchedule s1;

s1.configLoadBalance(ETWC);

s1.configFrontierCreation(UNFUSED_BOOLMAP);

s1.configDelta("argv[3]");

program->applyGPUSchedule("s0:s1", s1);

SimpleGPUSchedule s1;

s1.configLoadBalance(ETWC);

s1.configFrontierCreation(FUSED);

s1.configDelta("argv[3]");

program->applyGPUSchedule("s0:s1", s1);

SimpleGPUSchedule s0;

s0.configKernelFusion(ENABLED);

program->applyGPUSchedule("s0", s0);

CC SimpleGPUSchedule s1;

s1.configLoadBalance(ETWC);

s1.configDeduplication(ENABLED);

s1.configFrontierCreation(UNFUSED_BITMAP);

program->applyGPUSchedule("s1", s1);

SimpleGPUSchedule s1;

s1.configLoadBalance(ETWC);

s1.configDeduplication(ENABLED);

s1.configFrontierCreation(UNFUSED_BITMAP);

program->applyGPUSchedule("s1", s1);

BC SimpleGPUSchedule s1;

s1.configLoadBalance(ETWC);

s1.configFrontierCreation(FUSED);

s1.configDeduplication(ENABLED, FUSED);

SimpleGPUSchedule s2;

s2.configLoadBalance(ETWC);

s2.configDirection(PULL, BITMAP);

s2.configFrontierCreation(UNFUSED_BITMAP);

HybridGPUSchedule h1

(INPUT_VERTEXSET_SIZE, "argv[3]", s1, s2);

program->applyGPUSchedule("s1", s1);

program->applyGPUSchedule("s2", s1);

SimpleGPUSchedule s1;

s1.configLoadBalance(ETWC);

s1.configFrontierCreation(FUSED);

s1.configDeduplication(ENABLED, FUSED);

program->applyGPUSchedule("s0:s1", s1);

program->applyGPUSchedule("s2:s3", s1);

SimpleGPUSchedule s0;

s0.configKernelFusion(ENABLED);

program->applyGPUSchedule("s0", s0);

program->applyGPUSchedule("s2", s0);

Table A.1: The schedules we used for the five applications. The table shows separate
schedules for power-law graphs and road-graphs. The delta and threshold parameters are
input at runtime and are different for each graph. Hence they are not shown in this table.

62

Bibliography

[1] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,
and Christopher Ré. Emptyheaded: A relational engine for graph processing.
volume 42, pages 20:1–20:44, October 2017.

[2] A. Addisie, H. Kassa, O. Matthews, and V. Bertacco. Heterogeneous memory
subsystem for natural graph analytics. In 2018 IEEE International Symposium
on Workload Characterization (IISWC), pages 134–145, Sep. 2018.

[3] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable processing-in-
memory accelerator for parallel graph processing. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA), pages 105–
117, 2015.

[4] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,
Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner: An
extensible framework for program autotuning. In International Conference on
Parallel Architectures and Compilation Techniques, 2014.

[5] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Abdurrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and
Saman Amarasinghe. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 193–205. IEEE, 2019.

[6] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing
breadth-first search. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, pages 12:1–12:10,
2012.

[7] Scott Beamer, Krste Asanovic, and David Patterson. Locality exists in graph pro-
cessing: Workload characterization on an ivy bridge server. In IEEE International
Symposium on Workload Characterization (IISWC), pages 56–65, 2015.

[8] Scott Beamer, Krste Asanovic, and David A. Patterson. The GAP benchmark
suite. CoRR, abs/1508.03619, 2015.

[9] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. Groute: An
asynchronous multi-gpu programming model for irregular computations. In

63

Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 235–248, 2017.

[10] Maciej Besta, Michal Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. To push or to pull: On reducing communication and synchronization
in graph computations. In Proceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Computing, pages 93–104, 2017.

[11] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatara-
mani. TAO: Facebook’s distributed data store for the social graph. In USENIX
Annual Technical Conference (USENIX ATC), pages 49–60, 2013.

[12] Shuai Che. Gascl: A vertex-centric graph model for gpus. In IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–6, 2014.

[13] Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo
Chen. Powerlyra: Differentiated graph computation and partitioning on skewed
graphs. TOPC, 5(3):13:1–13:39, 2018.

[14] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang.
GraphH: A processing-in-memory architecture for large-scale graph processing.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(4):640–653, April 2019.

[15] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. Gluon: A communication-
optimizing substrate for distributed heterogeneous graph analytics. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 752–768, 2018.

[16] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-
efficient parallel gpu methods for single-source shortest paths. In 2014 IEEE 28th
International Parallel and Distributed Processing Symposium (IPDPS), 2014.

[17] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[18] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul
Sharma, Charles Sugnet, Mark Ulrich, and Jure Leskovec. Pixie: A system for
recommending 3+ billion items to 200+ million users in real-time. In Proceedings
of the 2018 World Wide Web Conference (WWW), pages 1775–1784, 2018.

[19] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. Xbfs: exploring runtime
optimizations for breadth-first search on gpus. In Proceedings of the 28th Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
pages 121–131, 2019.

64

[20] Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth, and Keshav
Pingali. Abelian: A compiler for graph analytics on distributed, heterogeneous
platforms. In Euro-Par, pages 249–264, 2018.

[21] Samuel Grossman, Heiner Litz, and Christos Kozyrakis. Making pull-based graph
processing performant. In Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), pages 246–260,
2018.

[22] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi. Graphicionado: A
high-performance and energy-efficient accelerator for graph analytics. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–13, Oct 2016.

[23] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. Graphie: Large-
scale asynchronous graph traversals on just a gpu. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages
233–245, 2017.

[24] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms on the
gpu using cuda. In International Conference on High-Performance Computing
(HiPC), pages 197–208, 2007.

[25] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P. Sadayappan.
Multigraph: Efficient graph processing on gpus. In 26th International Conference
on Parallel Architectures and Compilation Techniques (PACT), pages 27–40, 2017.

[26] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P. Sa-
dayappan. Adaptive sparse tiling for sparse matrix multiplication. In Proceedings
of the 24th Symposium on Principles and Practice of Parallel Programming
(PPoPP), pages 300–314, 2019.

[27] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-marl:
A dsl for easy and efficient graph analysis. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 349–362, 2012.

[28] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Acceler-
ating cuda graph algorithms at maximum warp. In Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
267–276, 2011.

[29] Mark C. Jeffrey, Suvinay Subramanian, Maleen Abeydeera, Joel Emer, and Daniel
Sanchez. Data-centric execution of speculative parallel programs. In Proceedings
of the 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–13, Oct 2016.

65

[30] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
A scalable architecture for ordered parallelism. In Proceedings of the 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
228–241, Dec 2015.

[31] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. Unlocking ordered parallelism with the swarm architecture. IEEE
Micro, 36(3):105–117, 2016.

[32] Mark C. Jeffrey, Victor A. Ying, Suvinay Subramanian, Hyun Ryong Lee, Joel
Emer, and Daniel Sanchez. Harmonizing speculative and non-speculative execu-
tion in architectures for ordered parallelism. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 217–230, Oct
2018.

[33] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable simd-efficient graph pro-
cessing on gpus. In 2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 39–50, Oct 2015.

[34] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. Cusha:
vertex-centric graph processing on gpus. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing, pages
239–252, 2014.

[35] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jinwook Kim.
GTS: A fast and scalable graph processing method based on streaming topology
to GPUs. In Proceedings of the 2016 ACM SIGMOD International Conference
on Management of Data, pages 447–461, 2016.

[36] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph
computation on just a pc. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation (OSDI), pages 31–46, 2012.

[37] Gushu Li, Guohao Dai, Shuangchen Li, Yu Wang, and Yuan Xie. GraphIA:
An in-situ accelerator for large-scale graph processing. In Proceedings of the
International Symposium on Memory Systems (MEMSYS), pages 79–84, 2018.

[38] Hang Liu and H Howie Huang. Enterprise: breadth-first graph traversal on gpus.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–12, 2015.

[39] Hang Liu and H Howie Huang. Simd-x: Programming and processing of graph
algorithms on gpus. In USENIX Annual Technical Conference, pages 411–428,
2019.

[40] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan
Kumar, and Taesoo Kim. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 527–543, 2017.

66

[41] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale
graph processing. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 135–146, 2010.

[42] Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. A pattern based algo-
rithmic autotuner for graph processing on GPUs. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages
201–213, 2019.

[43] Duane Merrill, Michael Garland, and Andrew Grimshaw. High-performance and
scalable gpu graph traversal. volume 1, pages 14:1–14:30, February 2015.

[44] Ulrich Meyer and Peter Sanders. 𝛿-stepping: a parallelizable shortest path
algorithm. J. Algorithms, 49(1):114–152, 2003.

[45] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez. Exploiting
locality in graph analytics through hardware-accelerated traversal scheduling. In
2018 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–14, Oct 2018.

[46] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Phi: Architectural
support for synchronization- and bandwidth-efficient commutative scatter updates.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 1009–1022, 2019.

[47] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Auto-
matic optimization for image processing pipelines. ACM SIGARCH Computer
Architecture News, 43(1):429–443, 2015.

[48] Y. Nagasaka, A. Nukada, and S. Matsuoka. Cache-aware sparse matrix formats
for kepler gpu. In IEEE International Conference on Parallel and Distributed
Systems (ICPADS), pages 281–288, Dec 2014.

[49] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. Data-driven versus
topology-driven irregular computations on gpus. In IEEE 27th International
Symposium on Parallel and Distributed Processing (IPDPS), pages 463–474, 2013.

[50] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. Tigr: Transform-
ing irregular graphs for GPU-friendly graph processing. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 622–636, 2018.

[51] NVIDIA. Cuda c++ programming guide. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html, August 2019.

67

[52] Sreepathi Pai and Keshav Pingali. A compiler for throughput optimization of
graph algorithms on gpus. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 1–19, 2016.

[53] Stefano Pallottino and Maria Grazia Scutellà. Shortest Path Algorithms In
Transportation Models: Classical and Innovative Aspects, pages 245–281. 1998.

[54] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain
Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. Halide: Decoupling
algorithms from schedules for high-performance image processing. Commun.
ACM, 61(1):106–115, December 2017.

[55] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

[56] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-Stream: Edge-centric
graph processing using streaming partitions. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP), pages 472–488, 2013.

[57] Albert Segura, Jose-Maria Arnau, and Antonio González. SCU: A GPU stream
compaction unit for graph processing. In Proceedings of the 46th International
Symposium on Computer Architecture (ISCA), pages 424–435, 2019.

[58] Aneesh Sharma, Jerry Jiang, Praveen Bommannavar, Brian Larson, and Jimmy
Lin. Graphjet: Real-time content recommendations at twitter. Proc. VLDB
Endow., 9(13):1281–1292, September 2016.

[59] Xuanhua Shi, Xuan Luo, Junling Liang, Peng Zhao, Sheng Di, Bingsheng He,
and Hai Jin. Frog: Asynchronous graph processing on gpu with hybrid coloring
model. IEEE Transactions on Knowledge and Data Engineering, 30(1):29–42,
2017.

[60] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework
for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 135–146, 2013.

[61] Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. Smaller and faster:
Parallel processing of compressed graphs with ligra+. In IEEE Data Compression
Conference (DCC), pages 403–412, 2015.

[62] Jyothish Soman, Kothapalli Kishore, and PJ Narayanan. A fast gpu algorithm
for graph connectivity. In 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW), pages 1–8, 2010.

[63] Suvinay Subramanian, Mark C. Jeffrey, Maleen Abeydeera, Hyun Ryong Lee,
Victor A. Ying, Joel Emer, and Daniel Sanchez. Fractal: An execution model
for fine-grain nested speculative parallelism. In Proceedings of the 44th Annual

68

International Symposium on Computer Architecture (ISCA), pages 587–599, June
2017.

[64] Jiawen Sun, Hans Vandierendonck, and Dimitrios S. Nikolopoulos. Graphgrind:
Addressing load imbalance of graph partitioning. In Proceedings of the Interna-
tional Conference on Supercomputing, ICS ’17, pages 16:1–16:10, 2017.

[65] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the edges you need: A generic
i/o optimization for disk-based graph processing. In 2016 USENIX Annual
Technical Conference, pages 507–522, 2016.

[66] Hao Wang, Liang Geng, Rubao Lee, Kaixi Hou, Yanfeng Zhang, and Xiaodong
Zhang. Sep-graph: finding shortest execution paths for graph processing under a
hybrid framework on gpu. In Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 38–52, 2019.

[67] Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. Graphq: Graph query
processing with abstraction refinement—scalable and programmable analytics
over very large graphs on a single PC. In USENIX Annual Technical Conference,
pages 387–401, 2015.

[68] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T Riffel, et al.
Gunrock: Gpu graph analytics. ACM Transactions on Parallel Computing
(TOPC), 4(1):3, 2017.

[69] Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, and Bingsheng He. An
efficient graph accelerator with parallel data conflict management. In Proceedings
of the 27th International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 8:1–8:12, 2018.

[70] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamil-
ton, and Jure Leskovec. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 974–983, 2018.

[71] Victor A. Ying, Mark C. Jeffrey, and Daniel Sanchez. T4: Compiling sequential
code for effective speculative parallelization in hardware. In Proceedings of the
47th International Symposium in Computer Architecture (ISCA), June 2020.

[72] Kaiyuan Zhang, Rong Chen, and Haibo Chen. NUMA-aware graph-structured
analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pages 183–193, 2015.

[73] Mingxing Zhang, Yongwei Wu, Youwei Zhuo, Xuehai Qian, Chengying Huan, and
Kang Chen. Wonderland: A novel abstraction-based out-of-core graph processing
system. pages 608–621, 2018.

69

[74] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib
Kamil, Saman Amarasinghe, and Julian Shun. Optimizing ordered graph al-
gorithms with graphit. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, CGO 2020, page 158âĂŞ170,
New York, NY, USA, 2020. Association for Computing Machinery.

[75] Yunming Zhang, Vladimir Kiriansky, Charith Mendis, Saman Amarasinghe,
and Matei Zaharia. Making caches work for graph analytics. In 2017 IEEE
International Conference on Big Data (Big Data), pages 293–302, 2017.

[76] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. Graphit: A high-performance graph dsl. Proc. ACM
Program. Lang., 2(OOPSLA):121:1–121:30, October 2018.

[77] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gemini: A
computation-centric distributed graph processing system. In 12th USENIX
Symposium on Operating Systems Design and Implementation, pages 301–316,
2016.

[78] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale graph
processing on a single machine using 2-level hierarchical partitioning. In Proceed-
ings of the USENIX Annual Technical Conference, pages 375–386, 2015.

[79] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,
Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. Grapple: A graph system
for static finite-state property checking of large-scale systems code. In Proceedings
of the Fourteenth EuroSys Conference, page 38, 2019.

70

	Introduction
	Motivation
	Contributions
	Thesis organization

	Background
	GraphIt DSL compiler
	Algorithm Language
	Hardware Tradeoffs
	Hardware-Independent Optimizations
	Direction-Optimization
	Active Vertexset Data Layout
	Active Vertex De-duplication
	Active Vertexset Processing Ordering
	Parallelization

	GPU-Specific Optimizations
	Active Vertexset Creation
	Kernel Fusion across Iterations
	Load-Balancing
	GPU Cache Optimization

	CPU-Specific Optimizations
	Swarm-Specific Optimizations

	Scheduling Language
	GPU Scheduling Language
	Scheduling on CPUs and Swarm

	Graph Intermediate Representation (GraphIR)
	GraphIR Representation
	GraphIR for BFS

	Compiler Implementation
	Hardware-independent passes
	Liveness Analysis for Frontier Reuse
	Dependence Analysis for Inserting Atomic Instructions

	GPU GraphVM implementation
	Kernel Fusion Optimization
	Edge-based Thread Warps CTAs (ETWC)
	EdgeBlocking

	Swarm GraphVM
	CPU GraphVM implementation
	Autotuning

	Evaluation
	Comparison with Existing Frameworks on a Pascal GPU
	Comparison with Existing Frameworks on a Tesla V100 GPU
	Comparison against CPU
	Performance of ETWC and EdgeBlocking
	Evaluation of Swarm GraphVM
	Feature comparisons against other frameworks

	Conclusions
	Summary
	Future directions

	Optimum UGF schedules

