Sparse Tensor Algebra Compilation
by
Fredrik Berg Kjelstad

B.E., Hogskolen i Gjgvik (2005)
M.S., University of Illinois (2011)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2020

© 2020 Massachusetts Institute of Technology. All rights reserved.

AUTNOT . .o
Department of Electrical Engineering and Computer Science

January 30, 2020

Certified by oo
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by

Leslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Abstract

This dissertation shows how to compile any sparse tensor algebra expression to CPU and GPU
code that matches the performance of hand-optimized implementations. A tensor algebra expres-
sion is sparse if at least one of its tensor operands is sparse, and a tensor is sparse if most of its
values are zero. If a tensor is sparse, then we can store its nonzero values in a compressed data
structure, and omit the zeros. Indeed, as the matrices and tensors in many important applications
are extremely sparse, compressed data structures provide the only practical means to store them.
A sparse tensor algebra expression may contain any number of operations, which must be com-
piled to fused sparse loops that compute the entire expression simultaneously. It is not viable to
support only binary expressions, because their composition may result in worse asymptotic com-
plexity than the fused implementation. I present compiler techniques to generate fused loops that
coiterate over any number of tensors stored in different types of data structures. By design, these
loops avoid computing values known to be zero due to the algebraic properties of their operators.
Sparse tensor algebra compilation is made possible by a sparse iteration theory that formu-
lates sparse iteration spaces as set expressions of the coordinates of nonzero values. By ordering
iteration space dimensions hierarchically, the compiler recursively generates loops that coiterate
over tensor data structures one dimension at a time. By organizing per-dimension coiteration into
regions based on algebraic operator properties, it removes operations that will result in zero. And
by transforming the sparse iteration spaces, it optimizes the generated code. The result is the first
sparse iteration compiler, called the Tensor Algebra Compiler (taco). Taco can compile any tensor
algebra expressions, with tensors stored in different types of sparse and dense data structures, to
code that matches the performance of hand-optimized implementations on CPUs and GPUs.

Acknowledgments

I thank Saman Amarasinghe, my advisor, mentor, and friend through eight years at the institute.
His intuition, energy, and care for students are second to none, and he pushed me to raise my
standards as high as I could live with (and then some). I cherish our long arguments, as we wrestled
with problem formulations, unpolished ideas, and designs so vague that they were not even wrong.
Saman treated me as if I was what I should be, and he made me a better researcher and person.

The work in this dissertation was a collaboration with brilliant researchers. Although almost
all the writing in this dissertation is new, most of the ideas are based on the papers we wrote to-
gether [78, 41, 79, 114]. Saman was involved from the start, helping shape early ideas and emerging
design. Stephen Chou was my office mate and close collaborator from the first paper. He led the
design of format support beyond dense and compressed, as well as the design of the format ab-
straction. Shoaib Kamil and I have worked together since he arrived at MIT a year after me, and
he was the first to join the taco project after Saman and I. David Lugato visited MIT for a year
and helped us develop and evaluate taco. Peter Ahrens and I worked together on the concrete in-
dex notation intermediate representation and the precompute and reorder transformations. Ryan
Senanayake developed the other optimizing transformations as a Masters student with me. I had
so much fun working with these amazing people and am forever thankful to them.

I have also collaborated with other researchers on projects that are not covered in this disserta-
tion. Simit was a programming language we designed for physical simulation. It was a collabora-
tion with Shoaib, Jonathan Ragan-Kelley, David Levin, Shinjiro Sueda, Desai Chen, Etienne Vouga,
Danny Kaufman, Gurtej Kanwar, Wojciech Matusik, and Saman. It taught me a lot about sparse lin-
ear algebra that led me to the ideas in this dissertation, which I originally began exploring because I
wanted a flexible compiler for Simit. Other dear collaborators during my PhD studies include Timo
Schneider, Torsten Hoefler, and Joel Emer. Finally, I would like to thank the undergraduate and
Masters students I have had the pleasure to work with: Gurtej Kanwar, Junda Huang, Parker Tew,
Sachin Shinde, Mengyuan Sun, Patricio Noyola, Ryan Senanayake, Suzy Mueller, Rawn Henry, and
Ziheng Wang. The joy of these relationships encouraged me to profess as my vocation.

I have had many mentors who gave me invaluable advice and support, particularly Saman,
Marc Snir, Danny Dig, David Lugato, Anne Elster, and Charles Leiserson. My thesis committee, of
Saman, Charles, and Martin Rinard, have also provided valuable advice and comments. I cannot
possibly measure the impact each has had in my life. I will pay them back with the currency they
value, by endeavoring to make a similar difference in the lives of those I mentor in the future.

I want to thank my many friends during graduate school, especially David Hayden, Raj Sodhi,
Adam and Miranda Smith, Chris Johnson, Brett Jones, Mallory Casperson, Aparna Chandramowli-
shwaran, Coleen Silva, Frank Arne Antonsen, Ethan Crawford, Marisa and Angela Puccini, James
Brodman, Ludwig Schmidth, the people of social reading, of TGIT and GSB, of the COMMIT group,
and many others. They made my life colorful, interesting, challenging, and fun!

But I am most grateful to my mother and sister who supported me on my journey. My sister and
nephews were a safe haven to me, and when I spent Christmas in Cambridge, my sister collected
and sent me presents from home. My mother believed her children should live our lives on our
own terms. She always supported me, even when I made unconventional choices like leaving a
job in Norway to study in America. Her attitude is perhaps best captured by her reply when I told
her I had been accepted to MIT: “You sound happy, so I am very happy for you, but what is MIT?”
Mom passed away during my graduate studies, and I dedicate my dissertation to her.

Dedicated to my mother, Turid Helland.

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

A Combinatorial View
The Issue with Libraries
The Sparse Tensor Algebra Compiler
Contributions and Scope
Dissertation Overview e

2 Data Structure Abstractions

2.1
2.2
2.3
24
2.5
2.6

Coordinate Relations
Coordinate Trees e
Level Abstraction
Six Level Types
Tensor Formats
Conclusion e

3 Sparse Iteration Spaces

3.1
3.2
3.3
34

Iteration Space Algebra
Iteration Graphs
Iteration Lattices
Conclusion

4 Tensor Notations

4.1
4.2
4.3
4.4
4.5

Matrix Multiply Example
Tensor Index Notation
Concrete Index Notation
Concretize Algorithm L L Lo
Conclusion e

5 Coiteration Code Generation

5.1
5.2
53
54
5.5

Algorithm Overview
Coiteration Code
Derived Iteration Spaces
Computeand Assembly L
Conclusion e

10
12
13
17
22
24

25
25
26
27
31
35
39

40
41
43
50
57

58
58
62
63
67
68

6 Optimizing Transformations

6.1 Reorder
6.2 Precompute
6.3 Collapse
6.4 Split. e
6.5 Bound.
6.6 Iteration Space Mapping
6.7 Conclusion

7 Evaluation

7.1 Experimental Setup L
7.2 Expressions Matter e
73 FormatsMatter
7.4 Optimizations Matter L
7.5 Kernelsare Competitive L L L

8 Related Work

8.1 Sparse Compilers
8.2 Sparse Kernel Libraries
8.3 Sparse Programming Systems
8.4 Dense Programming Systems and Compilers

9 Conclusion

Bibliography

83
84
86
89
89
90
90
92

94
95
96
97
101
103

112
114
119
122
124

127

131

List of Figures and Tables

1-1
1-2

1-3
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-15
2-16
2-17
2-18
2-13
2-14
2-19
2-20
2-21
2-22
2-23

Combinatorial explosion of implementations 11
Amazon product review tensor Lo 13
Sampled Dense-Dense Matrix Multiplication 15
Fused and Unfused SDDMM Performance Results 15
The Tensor Algebra Compiler (taco) 17
C++taco APL e 19
The taco code generationwebtool o o 0oL 19
Unscheduled GEMV C implementation 20
Unscheduled CSR SpMV C implementation 20
Unscheduled DCSR SpMV C implementation 20
Unscheduled CSR SpMSpV Ccode 20
Unscheduled coordinate SpMV C implementation 20
Scheduled CPU SpMV OpenMP C implementation 21
Scheduled GPU SpMV CUDA implementation 21
Coordinate tree with duplicates 26
Coordinate tree of adense matrix 27
Coordinate tree of a row-major sparse matrix 27
Coordinate tree of a column-major sparse matrix 27
Coordinate tree level 27
Full tree level property L 28
Ordered tree level property 28
Unique tree level property 29
Branchless tree level property 29
Compact tree level property 29
The properties of the six level types. 31
The capabilities of the six level types 31
Data structure of denselevels L L L. 32
Data structure of compressedlevels 32
Data structure of singletonlevels, . 32
Data structure of hashed levels 32
Access functions of the six level types o L. 33
Assembly functions of the six level types L. 34
Data structure of rangelevels oo L 35
Data structure of offsetlevels L oL 35
Data structures of vectors L L 35
Data structures of row-major unstructured matrices 36
Compressed Sparse Rows (CSR) format descriptor 36

2-24
2-25
2-26
2-27
2-28

3-1

3-2

3-3

3-4

3-5

3-8

3-6

3-7

3-9

3-10
3-11
3-12
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-27
3-26
3-28
3-29
3-30
3-33
3-31
3-32
3-34

4-2
4-3

4-4
4-5
4-7
4-8

Data structures of column-major unstructured matrices
Compressed Sparse Columns (CSC) format descriptor
Data structures of structured matrices L.
Data structures of blocked matrices
Data structures of 3-order tensors oL

Dense iteration space
Sparse iteration space
Sparse matrix addition

Sparse iteration space of a coordinate tree

Sparse iteration space examples

Sparse iteration space of a broadcast expression

Sparse iteration space of binary

point-wise expressions

Sparse iteration space of a tertiary point-wise expressions
Sparse iteration graphofa B;; UC;;o L

Sparse iteration graph examples

Sparse iteration graph with branches
Sparse iteration space formed by concatenating spaces
Derived index variable with a split relation
Iteration over a coordinate tree before and after collapse
Derived index variable with a collapse relation
Three ways to split up a two-dimensional space

Iteration regionsof bUc . . .
Iteration regionsof bNec . . .
Iteration regions of (b U c) Nd
Iteration domain simplifications
The iterate-and-locate strategy
Iteration lattice of (bUc)Nd .
Lattice point segments divide in

as segments run out of coordinates

to iterators and locatorssets

Iteration lattice and coiteration pseudocode

Iteration lattice examples . . .

A sublattice rooted at a lattice point £, 0L
An iteration lattice constructed from iteration subexpression
Iteration lattices of a segment expression
Iteration lattice of an iteration domain 000000
Iteration lattice intersection optimization
Iteration lattice resulting from an intersection
Iteration lattice resulting fromaunion
Iteration lattice subset optimization

The languages in the compiler overview
Matrix multiplication iteration graph for the inner product algorithm

Matrix multiplication iteration graph for the linear combination of rows algorithm

An m X n matrix and its sparse CSRindex
Sparse matrix multiplication code with CSR operands and dense result
Sparse matrix multiplication code with CSR operands and CSRresult
Matrix multiplication iteration graph with a temporary row vector

Tensor index notation example

37
37
37
38
38

40
40
40
41
42
42
42
42
43
44
45
45
48
48
49
50
51
51
51
52
52
53
53
53
54
54
54
55
55
55
56
56
56

58
59

60
61
61
62
62

4-9

4-10
4-11
4-12
4-13
4-14
4-15
4-16

5-1
5-2
5-3
5-4
5-5
5-6
5-7

6-1
6-2
6-3

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15

8-2
8-3
8-4
8-5

Grammar of tensor index notation 63

Concrete index notation example L L. 63
Grammar of concrete index notation L L. 64
Assignment statement Lo o Lo oL 64
Forall statement 65
Where statement L 65
Sequence statement Lo 65
Multi statement 65
The lowering step in the compiler overview 70
Algorithm to lower concrete notation to imperativeIR 71
A sublattice rooted at a latticepoint £, 0L 76
Advancing collapsed index variables L. 77
Generated loop for lattice with a single dimension iterator 77
Generated loop for lattice with a single position iterator 77
Coordinate mapping between iteration spaces 79
The schedule step in the compiler overview 83
Reorder transformation exampleo Lo oL 86
Precompute transformation SpGEMM example 89
Combinatorial explosion of kernels 0., 94
Performance of fused and unfused implementations of SDDMM 98
Format selection to fit matrix nonzero structures 99
Format selection to balance data structure reorganization and computation costs . 100
Scheduling for load-balance L L. 102
SpMV on a CPU with the CSR format 105
SpMV on a GPU with the CSR format 105
MTTKRP CPU with the CSFformat 106
MTTKRP GPU with the CSFformat 106
Comparison of taco and MATLAB TTB on four tensor expressions 107
SpMM CPU with the CSRformat. 108
SpMM GPU with the CSR format 108
SpMV on a CPU with the DIA format 110
SpMV on a CPU with the ELL format 110
Matrix Addition CPU with the CSR format 111
Tensor algebra programming system with a kernel library 113
Tensor algebra programming system with a compiler 113
Compilation approach to tensor algebra, 115
Optimization approach to tensor algebra, 115

Chapter 1

Introduction

The Fortran compiler [12] brought first-class support for dense loops
and arrays to programming languages in 1957. Since then, we have
made significant strides on compilation techniques for dense loop nests,
leading to dependence analysis [96, 18], the polyhedral model [85, 5],
and specialized compilers for stencil and dense tensor operations [9,
107]. The dense compilation techniques support sophisticated itera-
tion space transformations, different data layouts, and portable compi-
lation to general-purpose processors, accelerators, and domain-specific
hardware. They also support fusion to improve temporal locality and
keep data in caches.

Sparse operations go back almost as far, and the first sparse linear
algebra implementations appeared in the 1960s [113, 124]'. But there
has not been a similar development of a first-class sparse language
construct backed by general compilation techniques. I think the rea-
son is the complexity of sparse operations that stem from the irregular
data structures on which they operate. Many irregular data structures
have been designed only for matrices and are optimized for different
types of matrices, operations, and processors. Both the complexity and
number of possible data structures grow significantly when we gener-
alize to blocked matrices and tensors. Sparse operations may coiterate
over several data structures at the same time, manage temporary data
structures, and assemble results. The resulting code contains nested
while loops that coiterate over nested data structures, with if state-
ments to ensure that they compute values only at those data structure
intersections and unions that actually contribute to the result. There
is an almost biological complexity to many of these codes, with in-
direct memory references that access different data structures at dif-
ferent loop levels interleaved in a fine web. When we also consider
loop optimizations, parallelization, vectorization, and compilation to
accelerators, we face a substantial challenge.

As a result, current practice is either to implement sparse opera-
tions by hand on top of dense loop and array abstractions or to com-
pose library functions.

But there is something broken about function composition that

10

“The complexity of the problem
will defeat us unless we find a
simple way of writing it down,
which lets us break it into
smaller problems.”

— Christopher Alexander

“A composition is always more
than the sum of its parts.”

— Yo-Yo Ma

1.1 A Combinatorial View
1.2 The Issue with Libraries

1.3 The Tensor Algebra
Compiler (taco)

1.4 Contributions and Scope

1.5 Dissertation Overview

Thesis statement:

Sparse tensor algebra can be put
on the same compiler transforma-
tion and code generation footing
as dense tensor algebra and array
codes.

1 A linear or tensor algebra expression
is sparse if at least one of its operands is
sparse, and an operand is sparse if most
of its values are zero. If a matrix, vector,
or tensor is sparse, then we can store
its nonzero values in a compressed data
structure, and omit the zeros.

shows up in sparse tensor algebra. Modern sparse linear and tensor
algebra libraries contain handwritten functions that each compute a
single expression on operands stored in specific data structures. These
functions are composed by programmers or a programming system to
express compound operations. For example, to implement the linear
algebra operation A = B © (CD) from the data analytics literature,
where B is a sparse matrix and © is an element-wise multiplication,
we can write

Matrix T = gemm(C, D);
Matrix A = spelmul(B, T);

where T is a dense temporary matrix variable. Its materialization leads
to three issues:

1. Reduced temporal locality because values are produced long be-
fore they are consumed, which may cause them to be evicted
from caches.

2. Forced data structure reorganization if the two functions require
different data structures.

3. Increased asymptotic complexity when values produced by the
first function are not used.

The final issue is alarming and unique to sparse codes. I discuss the
issues with libraries in greater depth in Section 1.2.

Another challenge with hand-writing sparse linear and tensor al-
gebra libraries is the combinatorial explosion of implementations that
come from the Cartesian combination of expressions, data structures,
processor types, and optimizations:

expressions X formats X optimizations X architectures.

Figure 1-1 shows sufficient real-world examples to make it infeasible
to hand-implement all combinations, and the number of possible com-
binations is infinite. We can implement any, but not all.

These issues with composing expressions with each other and with
data structures, optimizations, and architectures point to a deeper prob-
lem of software abstraction. Our abstraction mechanisms impose fric-
tion at abstraction boundaries that shows up in force in sparse tensor
algebra and requires us to resort to enumeration for performance. We
need abstraction without friction.

This dissertation outlines how to implement abstractions without
friction by moving the abstractions into the compiler. The compiler
then weaves separate descriptions of tensor algebra expressions, data
structures, and optimizations into bespoke and frictionless implemen-
tations for the given architecture.

To achieve sparse tensor algebra compilation, I present a sparse
iteration theory, where sparse iteration spaces are described as set ex-
pressions of hierarchical data structures. I show how these iteration

11

A=Bc+a a= Bc
A=B&oC A=B+C a=aBc+Ba
A=aB A=0 A=BC
a=boOc A=B®(CD)
Aij = Z BiriCijDy; A=B" a=B"Be
" A=Y By Any = Y BuCyD,,
Aij = XI:B,HC/I ;LJ > Bl,ka,:) 4Dy

PR k
C= MyPuduPi 7= 3 o3 20,)(3 40)
:

A=BCd

ijkl 7 7
a= Y MyPyMy P P My, Py

ijklmnop
X

Dense Matrix CSR BCSR

coo DCSR ELLPACK CSB

DIA Blocked COO ¢sC
Blocked DIA DCSC

Sparse vector 1ash Maps
CSF Dense Tensors

Blocked Tensors
X
CPUs GPUs
TPUs FPGAs
Sparse TPUs
Distributed Computers

X

reorder
precompute parallelize

split divide yectorize

position unroll

Figure 1-1: The Cartesian combination
of expressions, data structures, opti-
mizing transformations, and computer
architectures produces a combinatorial
explosion of implementations.

spaces can be expressed, optimized, and lowered to code that iterates
over them by coiterating over intersections and unions of the irregular
data structures in each dimension. I then extend the sparse iteration
space descriptions to include tensor algebra expressions that compute
tensor expressions and subexpressions in different iteration space re-
gions. Finally, I demonstrate that these expressions can be optimized
and compiled to efficient and portable code for CPUs and GPUs. In
short, I show the following:

Thesis statement Sparse tensor algebra can be put on the same
compiler transformation and code generation footing as dense tensor
algebra and array codes.

1.1 A Combinatorial View

Tensors are often used to describe linear relationships between dis-
crete objects, such as people, products, words, movies, webpages, and
robotic limbs. One way to conceptualize a tensor as a set of relation-
ships is to consider the tensor modes? as sets of objects and the entries
as weighted relationships between these objects. For example, a ma-
trix has two modes, and its entries are linear relationships between
the objects of these modes. An example is a square matrix where the
modes represent people, and where the entries measure the strength
of their friendships. Other examples include how much a person likes
amovie and the interaction between two strands of hair on a character
in an animated movie. These relationships are often sparse, meaning
that most objects have no relationship, leading to sparse tensors where
most components are zero. Tensor sparsity thus comes from connec-
tions of the underlying system of objects. For example, most people
do not know each other, most webpages do not connect to each other,
and I have zero opinion on most movies because I have not seen them.

An example is a dataset of product reviews from the Amazon web
store spanning 18 years up to March 2013, which was used by McAuley
and Leskovec [91] to predict how users respond to new products. Fig-
ure 1-2 shows the dataset as a 3-order tensor where the tensor dimen-
sions are Amazon customers, products, and words in the English lan-
guage, and where a nonzero means that person used that word that
many times to review the given product. We can factorize this ten-
sor with one of the generalizations of singular value decomposition
(SVD) [50, 58] to higher dimensions, such as the canonical polyadic
decomposition (CP) [66]. This approach can provide us with insight
into its latent components, such as product categories, which can help
us make better product recommendations.? This tensor is extremely
sparse. If we were to store it in a dense array, it would consume 13.4
exabytes, assuming that each component consumes a single byte. If, on
the other hand, we store only the coordinates and values of nonzeros,
then it fits in only 14.6 gigabytes.

12

2 A tensor mode is a set, and the Carte-
sian combination of these sets identifies
all the tensor components. A k-order
tensor has k modes. For example, a ma-
trix is a 2-order tensor with two modes,
called rows and columns, and a vector
is a one-order tensor with one mode.

3 For instance, a key component of the
winning submission of the Netflix Chal-
lenge for movie recommendations was
an extension of the SVD algorithm [82]
that incorporated a temporal dimen-
sion to the collaborative filtering of a
(customer X movie) ranking matrix.

&P
@O‘k '4’7782//7%0’
The 9

Peter

Lisa

Paul

Billy
Sarah

Bob

customers

Sam
Mary

N O NS ST IV R IR I

products

1.2 The Issue with Libraries

The state of the art for sparse linear and tensor algebra is to use li-
braries. These libraries are collections of hand-optimized functions
that compute a single expression, on specific data structures, on a spe-
cific machine, with specific optimizations. Sometimes, these functions
are written to support a class of expressions, such as all tensor-times-
vector multiplications. In the absence of code generators, we have
found that the generality of these functions comes at a cost, such as the
functions of the MATLAB Tensor Toolbox. Many of these functions
can compute a class of expressions, but they can take up to twenty
times as long to compute and more memory than functions written for
specific operations. Examples of optimized sparse linear and tensor al-
gebra libraries include Eigen [60], Intel MKL [44], and SPLATT [116].
There also exist programming systems, such as MATLAB [123], Ju-
lia [22], and the Cyclops Tensor Framework [119], that provide sup-
port for general classes of expressions built on top of hand-optimized
functions. They must, therefore, map expressions and data structures
to the implementations at hand and suffer a mapping cost in addition
to the friction imposed by function composition.

Libraries of hand-written functions face the fundamental limita-
tion that you can write only so many functions. An engineering team
can push the boundary for important operations—Intel MKL [44] pro-
vides around 80 variants of the (sparse matrix)- (dense vector) (SpMV)
operation. But this paradigm breaks down in modern use cases, such as
data analytics, where you require more than one sparse operand (e.g.,
a sparse vector), compound operations with many operands, higher-
order tensors, and the ability to target different architectures (e.g., ac-
celerators). Each of these features adds another dimension to the com-
binatorial space of functions that must be written. And due to the fact
that some of these dimensions have an unlimited number of possible

13

Figure 1-2: Amazon product review
tensor with dimensions (customers X
products X words), representing how
many times that customer used that
word to review that product. Since most
customers never use most words to re-
view most products, the tensor is ex-
tremely sparse with 8 billion zeros for
every nonzero.

variants, we must either choose a small subset to implement or move
to a meta-programming approach, where a code generator produces
implementations on demand.

The issue with libraries of hand-optimized functions boils down
to our inability to easily build composable building blocks that per-
form well, using modern programming paradigms. Current sparse lin-
ear and tensor algebra libraries do not let us compose separate spec-
ifications of expressions, data structures, optimization strategies, and
architectures without sacrificing performance. And functions that im-
plement different expressions do not compose without losing perfor-
mance compared to a fused implementation. The first performance
loss is from lost temporal locality—a deficiency that is also present with
dense operations. Second, sparse operations may operate on many dif-
ferent data structures, which are each designed to work well on one
type of sparsity pattern. If two composed functions do not support the
same data structure, then it becomes necessary to perform an expen-
sive conversion between irregular data structures. But the most seri-
ous issue is that composing two sparse linear or tensor algebra func-
tions may perform asymptotically worse than a fused function written
to compute the entire expression at once.

The asymptotic complexity of the fused implementation of two
tensor algebra operations is different from the asymptotic complexity
of separate implementations when the result of the first operation is
multiplied by a sparse tensor. The complexity then changes to a func-
tion of the number of nonzeros, instead of a function of the size of the
tensor modes. The reason is that the fused operation can traverse the
nonzeros of the sparse operand and compute only those values that
are multiplied by those nonzeros. With separated operations, the first
operation does not know what values will be needed and must, there-
fore, compute them all. This inefficiency may seem like a theoretical
point that arises accidentally from the annihilation property of mul-
tiplication. But it is fundamental because the zeros of a sparse tensor
themselves derive from the locality properties of the system the tensor
represents. A sparse multiplication should, therefore, be interpreted as
a scaled intersection. Instead of a computation that happens to be mul-
tiplied by a zero, a better interpretation is that the computation did not
make sense in the first place.

The futility of these operations can be seen in an example from data
analytics: Suppose that we want to compute a similarity metric be-
tween friends in a social network. A natural way to express this com-
putation with linear algebra is by storing the properties of each person
as rows in a dense matrix and the friendship relationships in a separate
sparse matrix.From a database point of view, the dense matrix is a ta-
ble of properties with one row per person, whereas the sparse matrix
is a table of friend relationships with one row per friendship. To com-
pute the similarity of friends with linear algebra, we first square the
dense property matrix to compute the distance metrics between pairs
of persons. Then, we element-wise multiply it by the sparse friend-

14

PP
A
A

ship matrix to sample the distance metrics for pairs of friends. Clearly,
we would do far too much work if we compute similarity metrics be-
tween all pairs of persons when we need them only between friends.
In fact, if we assume that each person on average has a constant num-
ber of friends—perhaps Dunbar’s number [49] due to the size of our
neocortex—then we have done asymptotically too much work.*

The generalization of this linear algebra operation where different
dense property matrices are multiplied is referred to as the sampled
dense-dense matrix multiplication (SDDMM):

A=Bo(CD).

It computes a sparse n X m matrix A as the element-wise multiplication
(©) of a sparse nxm matrix B with the product of a dense nxk matrix C
and a dense k X m matrix D. This is the core operation of the alternat-
ing least squares algorithms for matrix factorization [137]. Figure 1-4
demonstrates the redundant work. A tall and skinny matrix is squared
and element-wise multiplied by a sparse matrix with six nonzeros. If
the expression is computed as separate operations, the complexity is

O(mnk)

due to the dominant cost of the dense matrix multiplication. If, on the
other hand, it is computed in a fused implementation that iterates over
the sparse matrix and computes only dot products the results of which
are multiplied by a nonzero, then the complexity changes to

O(nnzp - k),

where nnzg is the number of nonzeros in B. If we assume that nnzg
grows at a slower rate than nm, then the fused operation has lower
asymptotic complexity. The arrows demonstrate the redundant work
that is avoided by the fused code. The blue arrows on the top show
a dot product whose result is multiplied by a nonzero in B and that
therefore produces a nonzero result. The red dashed arrows on the
bottom, on the other hand, show a dot product whose result is multi-
plied by a zero. This operation does not contribute a nonzero to the
result; hence, it does not need to be done in the first place. Finally,
Figure 1-3 shows this effect empirically.

15

Figure 1-4: The SDDMM linear algebra
expression A = BO(CD), where Aand B
are sparse matrices, C and D are dense
matrices, and ® denotes element-wise
matrix multiplication. Also called Sam-
pled Dense-Dense Matrix Multiplica-
tion (SDDMM), the expression is used in
the alternating least squares matrix fac-
torization algorithm [137]. To compute
component (4, 5) of the result, that com-
ponent from B is multiplied by the inner
product of row 4 and column 5 from C
and D. Wherever B is sparse, however,
no operation is needed and computing
those inner products is wasteful.

4 In fact, we need only to assume that
friends per person does not increase lin-
early with the size of the human race.

> K
%\)’G"@ %66 Q,Q“b’
&K
ca-HepPh 0.2 0.002 68
email-Enron 1.2 0.012 101

soc-Epinionsl 5.3 0.018 291

Figure 1-3: Loop fusion on sparse op-
erations result in asymptotically less
work if work done in one loop is not
used by the next. The table shows this
effect for the SDDMM linear algebra op-
eration, used in tensor factorization, on
three sparse matrices constructed from
the SNAP dataset [88]. Times are given
in seconds. In these matrices, the spar-
sity increases with the size, and as the
sparsity increases the speedup also in-
creases. See Figure 7-2 for a full scaling
experiment.

SDDMM is just one example of an expression where operations
should be applied only to a subset. Other examples include:

Tensor Factorization: Zhang et al. [136] show that SDDMM is a spe-
cial case of a class of operations they refer to as tensor times
tensor products (TTTP). These operations have applications to
the quadratic optimization step in the alternating least squares
algorithm for tensor factorization. TTTP takes the form

N
Ai.in = Bi.in Z H CE:,)k’

k n=1

where N is the order of the result matrix and C™) is matrix num-
ber n. That is, for an N-order tensor, we multiply N dense ma-
trices and sample from the result. The notation is tensor index
notation, where index variables used in subscripts—e.g., i; and
k—index into tensor modes. Each index variable ranges over the
values of the modes it indexes, which must be the same sets.

Breadth-first search: Yangetal. [135] show how a breadth-first search
can be efficiently implemented with sparse matrix-vector multi-
plication. They use a masking vector b to avoid needless com-
putation and thus reduce the operation’s asymptotic complexity.
The resulting linear algebra operation is

a=bo(Cd,

where all operands are sparse.

Triangle queries: Azad et al. [10] show how to implement an effi-
cient linear algebra algorithm for triangle counting by using a
masking matrix. The algorithm finds wedges by multiplying the
lower triangular part of the graph adjacency matrix by the up-
per triangular part. In graph terms, L directs the edges in one
direction, and U directs them in the other. The algorithm then
closes the wedges to form triangles by element-wise multiplying
the LU result by the entire matrix. By computing the two oper-
ations with one linear algebra primitive, we avoid computing
wedges that will not close. The resulting operation is

A=Bo(LU),

where B is the adjacency matrix of a graph, L is the lower trian-
gular part of B, and U is the upper triangular part of B.

I believe that many such operations will arise as we apply tensor alge-
bra to data analytics, where we are often interested in computing infor-
mation about a subset of a system. In fact, the GraphBLAS API [90, 36]
for graph algorithms expressed as linear algebra makes extensive use
of masking vectors and matrices to omit needless computation.

16

Formats Expression Schedule
. A=Bc+a a= Be
Dense Matrix CSR - g A—Boc A=B+C a=aBc+fa reorder
ELLPACK A=aB A=0 A=BC .
coo DOSR csB A=BCd o, a—po(p) Precompute parallelize
DIA Blocked COO csc Ay =Y BuCyDy; A= BT 4=B"Bc -
Blocked DIA DCSC T ZB,M(,, 4y = Bucyn, split dVide yectorize
A= 3" BCiy ! -
Sparse vector Hash Maps 2" = (3 BnCin) + Dy positon unroll
Dense Tensors ¢ = Z My Py Pa - — Z Z o, Zwu
Blocked Tensors a= Y MyPyMuPy, TP TT Py
[Index Notation }
concretize
taco [Concrete Notation }
schedule
lower
Imperative IR
SPTV/ \\k
CUDA LLVM . }

1.3 The Sparse Tensor Algebra Compiler

This dissertation describes a sparse iteration theory. I use this theory to
create several intermediate representations (IRs) and a code generation
lowering algorithm that make it possible to compile sparse tensor al-
gebra expressions.’ The IRs and the algorithm have been implemented
in a compiler called the Tensor Algebra Compiler (abbreviated to taco).
Taco is the first sparse iteration compiler, and it can compile any tensor
index notation expression to code that computes it by coiterating over
sparse and dense tensor data structures. In this section, I outline the
rationale and design of the compiler, showing how the concepts de-
scribed in this dissertation fit together and providing a guide to future
implementers of systems built on these ideas.
As shown in Figure 1-5, taco has three types of inputs:

1. atensor algebra expression to compute,
2. tensor formats that describe the tensor data structures, and

3. a schedule of optimizing transformations that change the order
of computation, where temporaries are stored, and what parallel
hardware to use.®

The compiler transforms the index notation expression to concrete no-
tation, applies the schedule transformations to optimize it, and then

17

Figure 1-5: An overview of the Ten-
sor Algebra Compiler (taco). The input
to the compiler is an expression in the
tensor index notation, formats that de-
scribe the data structure of each tensor,
and a schedule that describes optimiz-
ing transformations to apply to the ex-
pression before generating code.

> A lowering transformation is a code
generation algorithm that takes code in
a higher-level abstract IR and produces
code in a lower-level detailed IR.

% The separation of transformations and
compiler internals was developed in the
CHILL compiler [39]. The Halide sys-
tem [107] pioneered a clean API design
that separates algorithms from sched-
ules. This design lets users override the
default schedules when they need more
performance. An automatic scheduling
system for taco is future work, perhaps
using machine learning, optimization,
or autotuning. The scheduling API and
the compiler techniques described in
this dissertation, however, enable such
scheduling systems by automating the
transformations and code generation.

lowers it to an imperative IR. This imperative code computes the ex-
pression by coiterating over the data structures described by the tensor
formats. Finally, the imperative IR is specialized to C code, CUDA GPU
code, or binary code through LLVM. These backends map the impera-
tive IR to loops and parallel constructs, as described by the schedule.

The taco compiler is implemented inside a C++ library for tensor
algebra. It can be used the same way as any other library; a user does
not need to know that it generates code behind the scenes. Like the
Eigen library [60], the taco C++ API makes extensive use of opera-
tor overloading and deferred execution to let users express operations
cleanly. Taco also has a Python API, and it can even be used as a sparse
linear and tensor algebra library generator—through the C++ AP, a
command-line tool, or a web tool. The code generation tools take de-
scriptions of expressions and formats as inputs, and they produce a C
or CUDA function that can be copied into an application.

I use a simple matrix-vector multiplication example to show how
taco is used and how formats and schedules affect the generated code.
The example comes from the linear algebra subset of tensor algebra. It
can be written in linear algebra and tensor index notation as

a=Bc and a; = ZB,-jcj.
Jj

The tensor index notation uses subscripted index variables—i and j in
this example—to implicitly range over the modes of the tensors they
index, which requires modes indexed by the same index variable to
be the same set. The sparse matrix-vector multiplication is likely the
most important function in the sparse tensor algebra. It is simple com-
pared to many tensor algebra expressions, but it is sufficient to show
the profound impact of formats and schedules on the generated code.
Figure 1-6 shows a small C++ code fragment that uses the taco library
to multiply a sparse matrix in the compressed sparse row (CSR) format
by a dense vector. The matrix is read from a file in the Matrix Market
format (mtx) [97], whereas the vector is read from a file in the FROSTT
tensor format (tns) [117]. Figure 1-7 shows a GUI for generating the
same code, using the taco web tool.

The chosen formats dictate the generated code, which must iterate
and coiterate over their data structures. Figure 1-8 through Figure 1-
12 show code snippets, which I call compute kernels, that compute
matrix-vector multiplications on matrices and vectors in different for-
mats. These codes are unscheduled, which means that they use the
default schedule that computes inner products without parallelization,
strip-mining, vectorization, or unrolling. Their only difference is their
formats. The dense matrix-vector multiplication (GEMV) code in Fig-
ure 1-8 is the simplest variant because the loops are independent of the
matrix and vectors. They iterate over the entire M X N iteration space
and randomly access the operands. The sparse matrix-vector multipli-
cation (SpMV) code in Figure 1-9 shows how sparse expressions are

18

Tensor<double> a({A.getDimension(@)}, Format({dense})); Figure 1-6: C++ code that computes

Tensor<double> B = read("pwtk.mtx", Format ({dense, compressed})); the sparse—matrix vector multiplication

Tensor<double> ¢ = read("b.tns", Format({dense})); using the taco C++ deferred execution

. APL
IndexVar i, j;

a(i) = B(1,3) * c(d);

write("a.tns", a);

The Tensor Algebra Compiler (taco) Docs Publicaons Demo GitHub

This is an alpha implementation of the tensor algebra compiler theory and contains known bugs, which are documented
here. If you find additional issues, please consider submitting a bug report.

Input a tensor algebra expression in index notation to generate code that computes it:

y(i) = A(i,3) * x(J) : GENERATE KERNEL
Tensor Format (reorder dimensions by dragging the drop-down menus)

Dimension 1

y Dense v
Dimension 1 Dimension 2

A Dense v Sparse Vv
Dimension 1

X Dense v

COMPUTE ASSEMBLY COMPLETE DOWNLOAD

// Generated by the Tensor Algebra Compiler (tensor-compiler.org)
// taco "y(i)=A(i,j)*x(j)" -f=y:d:0 -f=A:ds:0,1 -f=x:d:0 -write-source=taco_ke

int compute(taco_tensor_t *y, taco_tensor_t *A, taco_tensor_ t *x) {
int yl dimension = (int)(y->dimensions[0]);
double* restrict y vals = (double*)(y->vals);

Figure 1-7: The taco web tool for generating sparse tensor C functions. The user enters an expression in the text box, selects
formats from the drop-down boxes that appear, and presses the generate kernel button. A C header file with a function that
implements the expression then shows up at the bottom of the page.

optimized by iterating over only the subset of components that are
nonzeros. Because the coordinates of the nonzeros are stored as com-
pressed rows in the CSR matrix, the loop iterates over them instead
of over the entire row. The next SpMV code, in Figure 1-10, computes
with a matrix in the doubly compressed sparse rows (DCSR) format.

19

This format compresses both the set of rows and each row; thus, the
outer loop also iterates over a compressed data structure. The inner
loop now obtains row locations from the outer loop’s data structure.
The sparse matrix-sparse vector multiplication (SpMSpV) code in Fig-
ure 1-11 shows how multiple sparse operands lead to code that coiter-
ates over multiple compressed data structures. In this case, because the
operation is multiplication, which is nonzero only if both operands are
nonzero, the inner loop coiterates over the intersection of each com-
pressed matrix row and the compressed vector.” Finally, Figure 1-12
computes SpMV with a matrix in the coordinate format. Both coor-
dinates are stored for each component, requiring only one loop that
iterates over the coordinates and the value.

Changes to the schedules given to taco may also have a drastic
effect on the generated code. Figure 1-13 shows a scheduled SpMV
C code that does well on modern Intel CPUs, and Figure 1-14 shows a
scheduled SpMV CUDA device kernel that does well on modern NVIDIA
GPUs. These kernels are very different. The CPU code is not far re-

7 A multiplication requires a single
while loop, but expressions involving
additions, as we will see in Section 3.3,
result in more while loops.

for (int i = 0; i <M; i++) {
for (int j = 0; j < N; j++) {

int pa = 0;
for (int pB1

int p = i*N + j; alpal = 0.9;
ali] += BL[p] * c[jI; int pB2 = B
} int pc =c¢
} while (pB2
int jB =
Figure 1-8: Unscheduled GEMV: a = Bc with a dense matrix and int jc =
dense vectors. Two nested loops iterate over the entire M X N it- intj=m
eration space, computes a location in B, and computes the product. if EjB]:i
alpa
. X X }
for (int i = 0; i <M; i++) { f X
alil = 0.0; 1B =
} if (jc ==
for (int i = 0; i <M; i++) { ;a++;

for (int p = B_pos[il; p < B_pos[i+1]; p++) {

int j = B_crd[pl; }

= B1_pos[0@]; pB1 < B1_pos[1]; pB1++) {

2_pos[pB1];

1_pos[0];

< B2_pos[pB1+1] && pc < c1_pos[1]) {
B2_crd[pB2];

cl1_crd[pcl;

in(jB,jc);

j&& jc == 3 {

= B[pB2] * cl[pcl;

J) pB2++;
j) pctt;

ali] += B[p] * c[j];

3
3

Figure 1-9: Unscheduled CSR SpMV: a = Bc with a CSR matrix and
dense vectors. The dense outer loop iterates over every row, while
the inner loop iterates over only columns with nonzero values.

Figure 1-11: Unscheduled DCSR SpMSpV: a = Bc with
a DCSR matrix and compressed vectors. The while loop
coiterates over the intersection of each matrix row and
the vector, as a multiplication is nonzero only if both
operands are nonzero, in which case they are multiplied
and appended to the result.

for (int i = 0; i <M; i++) {
ali]l = 0.90;
}
for (int pB1 = B1_pos[@]; pB1 < B1_pos[1]; pB1++) {
int i = B1_crd[pB1];
for (int pB2 = B2_pos[pB1]; pB2 < B2_pos[pB1+1]; pB2++) {
int j = B2_crd[pB2];
afil += B[pB2] * c[j];
3
}

for (int 1 = 0; i <M; i++) {
ali] = o;

3

for (int pB1 = B1_pos[@]; pB1 < B1_pos[1]; pB1++) {
int i = Bl_crd[pB1];

int j = B2_crd[pB1];
ali] += B[pB1] * c[j];

}

Figure 1-10: Unscheduled DCSR SpMV: a = Bc with a DSCR matrix
and dense vectors. The outer loop now also iterates over a com-
pressed data structure that dictates row positions.

20

Figure 1-12: Unscheduled COO SpMV: a = Bc with a ma-
trix in the coordinate format. Both i and j are stored for
each component, so there is only one loop.

#pragma omp parallel for schedule(static)
for (int i = 0; i <M; i++) {

a[i] = 0.0;
3

#pragma omp parallel for schedule(dynamic, 1)
for (int i@ = 0; i@ < (M+31)/32; i0++) {
for (int i1 = 0; i1 < 32; i1++) {
int i = i0%x32 + i1;
if (i >= M) continue;

for (int pB2 = B2_pos[i]; pB2 < B2_pos[i+1]; pB2++) {
int j = B2_crd[pB2];
alil = B[pB2] * c[j];
}
3

}

Figure 1-13: Scheduled CSR CPU SpMV OpenMP C implemen-
tation. The schedule strip-mines and parallelizes the outer loop.

int ps = block*8192 + warpx512 + lanex*16;
int i = search(B_pos, rows[block], rows[block+1], ps);
double w[16];

#pragma unroll

for (int k = 0; k < 16; k++) {
int p = ps + k;
if (p >= B_nnz) break;

int j = B_crd[pl;
wlk] = BLp] * c[j];
}

double t = 0.0;

for (int k = 0; k < 16; k++) {
int p = ps + k;
if (p >= B_nnz) break;
while (p == B_pos[i+1]) i++;

t += wlk1;

if (p+1 == B_pos[i+1]) {
atomicAdd(&alil, t);
t =0.9;

¥

}
atomicAddWarp<double>(a, i, t);

Figure 1-14: Scheduled CSR GPU SpMV CUDA code. The
schedule performs an index variable split with respect to the
sparse matrix to load balance the computation. It then re-
orders the index variables so that consecutive threads load
consecutive values. The schedule also uses the precompute
transformation to store values into a temporary vector w.
Finally, the schedule splits and parallelizes the index vari-
ables across GPU blocks, warps, and threads, using reduction
strategies so that writes to the resulting vector a are synchro-
nized. Chapter 6 describes these scheduling commands.

moved from the unscheduled CSR code from Figure 1-9; it merely par-
allelizes the outer loop and strip-mines it to expose more granular par-
allelism. This code performs on par with the Intel MKL library (see
Figure 7-6). The GPU schedule does a lot to adapt the irregular SpMV
computation to the exacting requirements of modern GPUs. To avoid
thread divergence and load imbalance, it divides the nonzeros of the
matrix into fixed-size blocks that are executed by different warps and
threads. Thus, where the CPU code assigned each row to one thread,
the GPU code assigns consecutive values to consecutive threads in a
warp; hence, the GPU can coalesce loads. The result is a sophisticated
GPU device kernel for a simple expression in a simple format. The ker-
nel performs comparable to the SpMV implementation in the NVIDIA
cuSPARSE library for large matrices, but is load balanced and therefore

performs better on skewed matrices (see Figure 7-7).

As expressions, formats, and schedules get more complicated, it
becomes difficult to write sparse tensor algebra code. Separate expres-
sion, format, and scheduling languages drastically reduce the complex-
ity and let the compiler automate the sparse code generation. The end

goal is, of course, to fully automate schedule and format generation.

21

But because automatic scheduling and automatic formatting systems
will require a sparse code generator, a compiler like taco is their pre-
requisite. In the meantime, taco provides a far easier interface than
writing irregular code by hand for CPUs and GPUs.

1.4 Contributions and Scope

In this dissertation, I present a comprehensive sparse iteration theory
and its application to sparse tensor algebra compilation. I have used
these ideas to build a compiler that can generate fused code, with per-
formance comparable to handwritten code, for any sparse tensor alge-
bra expression, on many data structures, with different optimizations,
for CPUs and GPUS. My specific contributions are:

« Hierarchical tensor formats that describe sparse tensor stor-
age as a composition of per-dimension data structures that store
coordinates in a hierarchy.

« An algebra of sparse iteration spaces that let us reason about
sparse iteration spaces and how to iterate over them.

+ A lattice formulation of general coiteration that separates
coiteration over the intersections and unions of multiple data
structures into a sequence of coiterations over different regions
of the sparse iteration space. This data structure coiteration
omits operations that are structurally known to be zero.

+ Concrete index notation that extend tensor index notation to
describe the order of computation and where temporaries are
stored.

« Sparse optimizing transformations that let us fuse, tile, and
parallelize sparse iteration spaces, as we have long done for dense
iteration spaces, and that lets us insert temporaries. The opti-
mizing transformations can also tile a sparse iteration space with
respect to an operand, producing load balanced sparse code.

+ A code generation algorithm that lowers concrete index no-
tation to imperative code that coiterates only over compressed
tensor data structures to compute only those values that are re-
quired to produce the sparse tensor result.

These ideas were used in the design and implementation of taco. Chap-
ter 7 shows that generated sparse code performs comparably to hand-
optimized library implementations where those exist, but that the com-
piler approach generalizes to any expression. It also demonstrates the
importance of compiling compound expressions to fused sparse code,
the importance of support for many formats, and the importance of
sparse scheduling transformations for performance and portability.

22

My dissertation puts sparse tensor algebra compilation on a firm
foundation. It is the first step, however, and leaves several questions
for future work (see also in Chapter 9). Specifically, it does not address
the following topics:

« Automatic format and schedule selection, where an auto-
mated system determines the best formats and schedule for an
expression on a given architecture. Instead, I present clean sep-
arate APIs to specify formats and schedules that can be used
directly by a programmer or that can be the target for future
automatic formatting and scheduling systems.

« Matrix inversion and direct solvers, where code is gener-
ated from expressions that include matrix inversions and direct
solves.

« Formats that interleave the storage of dimensions beyond
simple struct-of-array vs array-of-struct transformations. Ex-
amples of such formats include Morton and Hilbert space-filling
curves, graph partitioning approaches, and quad-tree represen-
tations of tensors.

« Symmetric formats, where the data structure of a symmetric
tensor stores only the subset of values required to reconstruct
the tensor.

+ General tensor assembly, where code is generated to assem-
ble any data structures that appear on the left side of an index
notation expression. This dissertation describes how to assem-
ble tensors that are indexed by the free variables on the right
side. It does not, however, cover general parallel assembly or
the assembly of tensors the dimensions of which are not a direct
match to the indices on the right hand side of the tensor algebra
expression.

+ Distributed compilation, where taco generates code to run on
a distributed machine or a supercomputer. Together with collab-
orators, I have explored such compilation and believe that it is
entirely possible with extensions to the abstractions I present.

« Array operations beyond regular tensor algebra, including
any semiring, operations beyond semirings, and stencils.

But I stress that none of these topics is incompatible with the ideas in
this dissertation. In fact, I think the ideas presented here are a pre-
requisite for exploring these topics. Finally, I believe that the sparse
iteration space theory can be applied to computations beyond tensor
algebra, such as general array operations, relational algebra, and graph
computations. This dissertation, however, does not explore those ex-
tensions.

23

1.5 Dissertation Overview
The rest of this dissertation is organized as follows:

Chapter 2 - Data Structure Abstractions describes abstractions for
sparse tensors and arrays as coordinate hierarchies that encode those
positions that have values. Each level of a hierarchy encodes coordi-
nates in one dimension, and the level can be represented by different
data structures that are stacked.

Chapter 3 - Sparse Iteration Spaces shows how to form sparse itera-
tion spaces from set expressions with coordinate hierarchies as operands.
These iteration spaces can then be organized into iteration graphs and
coiteration lattices to describe iteration over the sparse space.

Chapter 4 - Tensor Notations defines two languages for describing
tensor algebra computations: a declarative tensor index notation and
an operational concrete index notation.

Chapter 5 - Coiteration Code Generation describes an algorithm
to lower concrete index notation to imperative code that coiterates
over the iteration space of compressed tensor data structures.

Chapter 6 - Optimizing Transformations presents an optimization
framework for transforming sparse iteration spaces to control the or-
der of iteration, tiling, parallelization, and the introduction of tempo-
rary tensors into tensor computations. The transformations can also
be used to target diverse hardware, such as CPUs and GPUs.

Chapter 7 - Evaluation evaluates the ideas of the previous chap-
ters and shows that a compiler that implements them can generate
code that performs comparable to hand-optimized code. It also demon-
strates that a compiler must support compiling compound expressions
to fused code, that different tensors benefit from different data struc-
tures, and that the optimization framework is important for perfor-
mance and portability.

Chapter 8 - Related Work draws connections to prior work on li-
braries, programming systems, and compilers for sparse and dense
tensor algebra.

Chapter 9 - Conclusion concludes with a discussion of some promis-
ing directions for future work.

24

Chapter 2

Data Structure Abstractions

Many data structures for storing sparse vectors, matrices, and tensors
are described in the literature and used in practice. These data struc-
tures are often called formats and some examples are dense, COO [113],
CSR [124], CSC, DCSR [34], ELL [110], DIA [112], BCSR, CSB [35],
CSF [115], and hash maps.® Each is preferable in some situation and
none is universally superior. The best format for an application de-
pends on the pattern and sparsity of the tensor data, the computation,
and the hardware. That is why it is important to support many formats
in a sparse tensor algebra system.

Tensors can have any order (dimensionality), so it is intractable to
enumerate all tensor formats. To support any-order tensors, it is nec-
essary to construct formats from a bounded number of primitives. I
describe how to define storage formats for tensors of any order by in-
dependently specifying the storage type of each tensor mode (dimen-
sion) and an ordering of the modes. This levelized formulation makes
it possible to describe an unbounded number of tensor formats from
a small number of composable building blocks. This leads to modular
code generation that supports many formats of any order, as we will
see in Chapter 5.

A tensor can be viewed abstractly as a coordinate relation with
associated values which is concretely stored in one of many possible
data structures. The data structure can be as simple as multidimen-
sional dense arrays or as complex as irregular and hierarchical com-
pressed data structures that store only nonzero coordinates. We will
see how tensor coordinate relations can be thought of as coordinate
trees and how to create types for those trees by independently typing
and composing their levels. My goal in formalizing tensor storage as
a type system is to make it possible to describe code generation and
optimizing transformations independent of any specific data structure.

2.1 Coordinate Relations

Tensors can be viewed as relations over their coordinates and their
values. A relation is a set whose elements are a subset of the Cartesian

25

“Abstraction is selective
ignorance.”

— Andrew Koenig

2.1 Coordinate Relations
2.2 Coordinate Trees

2.3 Level Abstraction

2.4 Six Level Types

2.5 Tensor Formats

2.6 Conclusion

8 1 describe these formats in Section 2.5
and show how they can be built from
the abstractions I outline in the rest of
this chapter.

product of other sets. A k-ary relation over k sets is a set of k-tuples
whose elements each come from one of the k sets. I define two tensor
relations, which I call “coordinate relation” and “component relation”.

A k-order tensor has k modes, and I model each mode as a set of
contiguous integers (a range). Tensor component locations are speci-
fied by k-tuples, where each element comes from a different mode. The
tensor thus forms a Cartesian space where each mode is a dimension
and the space is defined by the Cartesian product of the dimensions.
The elements of the modes are coordinates of the space, and a k-tuple
with one coordinate from each dimension is a point.

A coordinate relation is a relation over tensor modes. That is, its
elements are a subset of points of the Cartesian space formed by the
tensor modes. The relation may be complete and contain every point
in that space, or it may contain a subset. It is often useful to store only
the subset of points that correspond to nonzero tensor values, and to
remove the coordinates that correspond to zeros.

Finally, a component relation is a binary relation over a coordi-
nate relation and tensor values. It provides a unique mapping and ev-
ery coordinate maps to exactly one value. Coordinate and component
relations are abstractions for tensors that I use to describe sparse iter-
ation spaces. In Section 2.2, I show how to specify them hierarchically
as per-dimension storage trees that can be composed to describe many
popular tensor storage formats and many other formats that have not
been explored to date.

2.2 Coordinate Trees

A tensor and its coordinate relation can be viewed as a coordinate
tree.” The root of the tree represents the tensor itself, internal nodes
represent the coordinates, and the leaves represent the tensor com-
ponent values. A path from the root to a leaf fully specifies a tensor
component with coordinates and a value. A tree level consists of all
the coordinates in a tensor mode, divided into segments of siblings that
share a parent. Figure 2-1 shows that a level can have duplicates. The
duplicates are clones of the coordinate that occur at multiple positions
in a tree level, and the children of every duplicate are siblings. The
figure also shows an unlabeled node, which is a node that takes space
in the tree but that does not represent anything. Figure 2-2 shows a
dense 3X3 matrix and the corresponding coordinate tree, where a path,
a level, and a segment are marked in blue.

The coordinate tree representation is a convenient tool for rea-
soning about sparse tensor representations by removing from the tree
zero-valued leaf nodes and coordinates with no children. Figure 2-3
shows a sparse 3 X 3 matrix and the corresponding coordinate tree.
In contrast to the coordinate tree for the dense matrix in Figure 2-2,
this tree is not full, as zero leaves and childless coordinates have been
left out. By removing zeros from the coordinate tree, we have made

26

° The intuition that sparse tensors can
be viewed as coordinate trees comes
from the work of Smith and Karypis,
who use it to describe the Compressed
Sparse Fiber (CSF) tensor format [115].

duplicates\ of iy unlabe/led node
O
DIOIONND)
siblings

Figure 2-1: A coordinate tree with du-
plicates. Children of duplicated nodes
are siblings.

level a

1 oJ2 3
alajble siblings— @) () () () G2) G () ()
ipld|e|f
[)) [A)
(i)
Jv J2 3

o[e @ O

iz

i 8 |h [a|

1 J2 J3
ii] a c @ @
iy
i3] & |h [a]

the first step toward reasoning about sparse tensors in terms of data
structures that compress out zeros. Finally, we can interchange tree
levels to represent tensors whose modes are stored in a different order,
such as a column-major matrix instead of a row-major matrix. Fig-
ure 2-4 shows a coordinate tree for the same matrix as Figure 2-3, but
the tree levels have been interchanged to store the matrix in column-
major order.

2.3 Level Abstraction

The coordinate tree abstraction must be represented somehow by val-
ues in memory. This representation may be regular or irregular. I de-
fine regular representations as representations that require at most a
number of values proportional to the number of coordinate tree levels.
Examples include a dense representation that encodes a full coordinate
tree and a grid stencil that requires a constant number of values to en-
code the stencil offsets. Irregular representations, on the other hand,
require a number of values proportional to the number of coordinate
tree leaves. Examples include hash maps and segmented vectors.!

A key insight of our work is that coordinate trees can be described
by composing separately defined data structures for each tree level
into a hierarchy. The data structure of an internal tree level is an or-
dered set of maps, with one map for each segment of siblings (i.e.,
one map per node on the previous level). See Figure 2-5. The maps
connect each coordinate to the position of its sibling segment in the
next level. Finally, the tree leaves are represented by an ordered set
of component values. Any physical data structure that can represent
an ordered set of maps can be used. Furthermore, the maps need only
encode coordinate-position pairs; they do not, for example, need to

27

Figure 2-2: A dense 3 X 3 matrix and its
full coordinate tree. A path, a tree level,
and a set of siblings are marked.

Figure 2-3: A sparse matrix and its row-
major coordinate tree. Zeros in the ma-
trix are left out of the tree together with
childless coordinates.

Figure 2-4: The same sparse matrix and
its column-major coordinate trees. Ten-
sor modes can be stored in any order by
re-ordering tree levels.

iterate lookup —l
e
coordinates
positions

children

Figure 2-5: A coordinate tree level is an
ordered set of maps from coordinates to
the position of their children on the next
level. Levels may support functionality
such as traversals and looking up a po-
sition given a coordinate.

10° A segmented vector is an ordered
vector of ordered segments. Segmented
vectors have been used in the CSR ma-
trix format since 1967 [124]. Guy Blel-
loch describes a segmented vector as an
independent data structure in his dis-
sertation [29].

support O(1) mapping from coordinates to positions.

Level storage can be described by an abstraction that defines the
functionality and properties of a level without tying it to a specific
underlying data structure. This abstraction can then be instantiated
at compile time into many level types with different functionality and
underlying physical storage. Since the level types are an abstraction
inside the code generator, they do not appear in the generated code and
thus have no performance cost.!! The benefit of the level abstraction,
as we will see in the next chapter, is that it separates the code generator
from specific data structures. This design makes it possible to design
a general code generator in terms of the abstraction’s functionality
and properties. The code generator does not need to know what level
types exist. New level types can thus be designed without any need to
change the code generator algorithms.

Level types must declare their properties, and they may support
any one of five capabilities that will be used to generate code to iterate
over and modify levels. Properties provide information that the code
generator uses to optimize the generated code, such as whether a level
is ordered. Capabilities, on the other hand, are abstractions that pro-
vide code to the code generator for iterating over and manipulating
physical indices of tensor storage in a format-agnostic manner.

Level Properties

A coordinate tree level property describes a feature of a level type
that code generators can use to optimize iteration code. We define
five properties: full, ordered, unique, branchless, and compact. Each
property describes an attribute of a level, such as whether coordinates
are arranged in increasing order or not. The rows of a sorted CSR
matrix, for example, are both ordered and unique, meaning they store
every column coordinate just once and in increasing order. The code-
generation technique relies on level properties to produce optimized
code.

Full A level is full if every collection of coordinates that share the
same ancestors encompasses all valid coordinates along the correspond-
ing tensor dimension. For example, a dense vector stores a component
at every coordinate and is therefore full. By contrast, a sparse vector
that stores only the nonzero coordinates is not full. Figure 2-6 shows
a level that is full, assuming the full set of nodes is jj, j2, and js;, and a
level that is not full because it is lacking the j; node.

Ordered A level is ordered if all coordinates that share any ancestor
are arranged in a monotonically non-decreasing sequence. (Recall that
two nodes that share duplicates of an ancestor are considered to share
that ancestor.) Figure 2-7 shows a level that is ordered, from nodes

28

111 believe meta-abstractions will be-
come more important in the future due
to the cost of abstractions in the execu-
tion code. One goal of this dissertation
is to provide abstraction without friction
by moving abstractions to the code gen-
erator.

@ @ ® @ @)

full not full

Figure 2-6: A full level and one that is
not because it is lacking jj.

WHE O®®

ordered not ordered

Figure 2-7: An ordered level and one
that is not because j3 comes before ja.

with smaller indices to nodes with larger indices, and a level that is
not ordered because j; occurs before js.

Unique A level is unique if no identical paths end at the level. Two
paths are identical if the nodes at every step along both paths are the
same nodes. Figure 2-8 shows a level that is unique and one that is not
because paths i;-j; (blue) and i;-j; (green) appear twice. Note that it
does not matter if both nodes along the path are duplicates (the blue
path) or if one node is shared and the other a duplicate (the green path).

Branchless A level is branchless if every node at the parent level,
including each duplicate, has exactly one child. Knowledge of such
one-to-one relationships between levels can be used to efficiently col-
lapse their corresponding loops. Figure 2-9 shows one level that is
branchless and one that is not because i, has more than one child.

Compact A level is compact if no two coordinates are separated by
an unlabeled node. As we will see in Section 2.5, some physical stor-
age schemes, such as hash maps, have unlabeled nodes that represent
empty buckets.

Level Capabilities

A coordinate tree level capability is exposed as a set of coordinate
tree level functions with fixed interfaces that a level type may choose
to implement. These function interfaces are designed to return code
that implements the function. The code generator then emits this code
as part of the function that implements an expression. We define five
capabilities: coordinate iterate, position iterate, locate, append, and
insert.

Coordinate Iterate The coordinate iteration capability iterates over
coordinates and retrieves positions. It consists of two level functions:
one that returns an iterator over coordinates (coord_bounds) and one
that accesses the position of each coordinate (coord_access):

coord_bounds(ii, ..., ig_q) -> <ibeging, iendy>
coord_access(pPg_1, i1, ..., ig) => <pg, found>
Given a list of ancestor coordinates (iy, ..., ix_1), coord_bounds returns

the bounds of an iterator over coordinates that may have those ances-
tors. For each coordinate iy within those bounds, coord_access either
returns the position of a child of py_; that encodes i} and returns found
as true, or it returns found as false if the coordinate does not actually
exist. In practice, the emitted code can often be optimized by removing

29

unique
not unique

Figure 2-8: A unique level and one that
is not because two paths appear twice.

DIDIOEEDIOID
branchless not branchless

Figure 2-9: A branchless level and one
that is not because iy has two children.

WOE W ®

compact not compact

Figure 2-10: A compact level and one
that is not because an unlabeled node
appears between two nodes.

the if statement, because the value of coord_access is static in many
level types.

Position Iterate The position iterate capability iterates over posi-
tions and retrieves coordinates. It consists of two level functions: one
that returns an iterator over positions (pos_bounds) and one that ac-
cesses the coordinate encoded at each position (pos_access):

pos_bounds(pg_1) -> <pbeging, pendy>
pos_access(pg, i1, ..., ixp_1) -> <ip, found>

Given a coordinate at position py_1, pos_bounds returns the bounds of
an iterator over positions that may have py_; as their parent. For each
position pi in those bounds, pos_access either returns the coordinate
encoded at that position, or sets found to false if py is not a child of py_;
or if it does not encode that coordinate (i.e., if py is unlabeled).

Locate The locate capability retrieves a coordinates position in a level.

locate(pr_1, i1, ..., ix) —> <pg, found>

locate has similar semantics as coord_access. Given a coordinate ij_;
at position pg_1, locate attempts to locate among its children the coor-
dinate if. If locate finds ix, then it returns i;’s position pi and returns
found as true; otherwise it returns found as false. Traversing a path in a
coordinate hierarchy to access a single tensor component can be done
by successively calling locate at every level. As we will see in Chap-
ter 3, having operands that implements the locate capability can lead
to code that avoids accessing every nonzero.

Append Appends coordinates to a level and is also exposed as four
level functions:

append_coord(pg, ig) —-> void
append_edges(pg_1, pbeging, pendg) -> void

append_init(szg_;, szx) -> void
append_finalize(szy_;, szx) —-> void

The level function append_coord appends a coordinate i; to the end of

an output level (pr). The function append_edges appends edges that
connect all coordinates between positions pbeging and pendy to the co-
ordinate at position pr_; in the previous level. By appending edges,
inserted coordinates are attached to the rest of the coordinate hier-
archy. In contrast to the insert capability, the append capability re-
quires result coordinates to be appended in order. append_init and
append_finalize serve identical purposes as insert_init and insert_finalize,
and they take the same arguments.

Insert Inserts coordinates at any position and is exposed as four level
functions:

30

Level Types Full Ordered Unique Branchless Compact
Dense v) () X v
Compressed)) () X v
Singleton))) 4 v
Hashed) X) X X
Range X)) X X
Offset X)) v X
Level Types Iterate Type Locate Assembly Type
Dense X v Insert
Compressed Position Iterate X Append
Singleton Position Iterate X Append
Hashed Position Iterate v Insert

Range Coordinate Iterate X X

Offset Position Iterate X X

insert_coord(py, i) -> void
size(szp_1) —> szp

insert_init(szg_y, szx) -> void
insert_finalize(szj_;, szx) —-> void

The level function insert_coord inserts a coordinate i into an output
level at position px given by locate. It requires the level to provide
the locate capability. The level function insert_init initializes the data
structures that encode an output level, while insert_finalize performs
any post-processing required after all coordinates have been inserted.
Both take, as inputs, the sizes of the level being initialized or finalized
(szx) and its parent level (szx_;). For a level that provides an insert
capability, its size is computed as a function of its parent’s size by the
level function size. For a level that supports append, its size is the
number of coordinates that have been appended.

2.4 Six Level Types

In this section, I show how common variants of all the tensor formats
examined in Section 2.5 can be expressed as compositions of just six
level types that we have designed: dense, compressed, single, range,
offset, and hashed.!? Recall that a level type encodes the nodes in a
level along with their grouping into sibling sets. Some level formats
implicitly encode coordinates (e.g., as an interval), while others explic-
itly store them (e.g., in a segmented vector).

The properties of the six level types are shown in Table 2-11, and
their capabilities are in Table 2-12. The properties of some level types
can be configured depending on the application. Configurable prop-
erties reflect optional invariants that are not required by the way a
physical index encodes coordinates. For example, the crd array in
compressed levels typically stores coordinates in order when used in
the CSR format, but the same data structure can also store coordinates

31

Table 2-11: The properties of the six
level types. A (v') means that level type
can be configured to either have or not
have that property.

Table 2-12: The capabilities of the six
level types. Dense does not support any
iterate capability while range and offset
do not support assembly.

12 These level types are just six of many
possible level types that can be designed
for the level abstraction. I expect that
new and surprising level types will be
designed in the future.

out of order. Declaring the ordered property, however, helps the code
generator generate efficient code.

The six level types, their data structures, and their capabilities are
described below. The source code returned by their iterate and locate
level functions are listed in Table 2-13, while the source codes returned
by their assembly functions are listed in Table 2-14. Most levels sup-
port position iterators, except the range iterator, which supports a co-
ordinate iterator. The dense level type does not support iteration, as
it is a full level with fast locate and can, therefore, be accessed by an
iterator that iterates over an entire dimension.

Dense Level Type

Dense levels store a single number (size) that encodes every coordi-
nate in the range 0:size (inclusive-exclusive). Dense levels support
very efficient locate and insert capabilities. They do not, however,
support any iterate capabilities. As we shall see in Chapter 3, to iterate
over an entire dense level we must iterate over all the coordinates in
the full coordinate set and call locate to get positions in the dense level.

Compressed Level Type

Compressed levels store coordinates in a segmented vector consisting
of a coordinate array (crd) and a position array (pos) which store seg-
ment bounds (Figure 2-16). Each sibling set is stored in one segment,
so the children of the kth coordinate on the previous level are stored in
the kth segment. They are the coordinates in range pos[k]:pos[k+1]
in the crd array. Compressed levels support the position iterate
and append capabilities. Compressed levels do not support O(1) lo-
cate. Since they are ordered, however, it is possible to generate code to
locate the position of a coordinate by emitting code to binary search
the positions in O(log n) time.

Singleton Level Type

Singleton levels store a single coordinate with no siblings for each
node on the previous level in a coordinate array (crd). They are often
stacked underneath compressed levels configured to have duplicates
(not unique) to represent coordinates, as we shall see in Section 2.5.

Hashed Level Type

Hashed levels store the coordinates of each segment in a hash map
(crd). Figure 2-18 shows a hashed level that encodes a row vector,

32

size

Figure 2-15: Dense data structure. Only
one number is needed to encode every
coordinate in the range @: size for each
segment.

pos [0[2]4]4]7]

ad |o[1]o[1]o[3]4]

Figure 2-16: Compressed data structure.
Each segment in the crd array is de-
scribed by the range pos[k]:pos[k+1]
and depicted with thick separators.

cd [o]1]o]1]o]3]4]

Figure 2-17: Singleton data structure.
Each segment stores a single coordi-
nate.

size @
oo [0[1]6]-1[4]]

Figure 2-18: Hashed data structure.
Each segment is stored as a hash map.

Table 2-13: Definitions of level functions of the six level types that implement access capabilities. All level types except dense
levels provide coordinate or position iterators. In addition, dense and hash maps provide O(1) locate functions.

Level Types Level Function Definitions
Dense
locate(pr_1, i1, ..., ig):
return <pgp_; * Np + ip, true>
Compressed
pos_bounds(pg_1): pos_access(pg, i1, ..., 1p_1):
return <pos[pg_11, poslpr_; + 11> return <crd[pgl, true>
Singleton
pos_bounds(pg_1): pos_access(pPg, i1, ..., 1p_1):
return <pg_i, Pr_1 t 1> return <crd[pgl, true>
Range
coord_bounds(iy, ..., ig_q): coord_access(Pg_1, i1, ..., 1g):
return <max(@, -offsetl[irp_;1), return <pg_; * Np + i, true>
min(Ng, Mg - offsetlip_11)>
Offset
pos_bounds(pg_1): pos_access(pPg, i1, ..., 1p_1):
return <pg_i, Pr_1 *t 1> return <ip_; + offset[ip_,], true>
Hashed

pos_bounds(pg_1):
return <pg_1; * Wg, (Pg—q + 1) * Wi>

pos_access(pPg, i1, ..., 1p_1):
return <crd[pgl, crdlpgl != -1>

locate(pg_1, i1, ..., ig):
int pr = i % We + pr—1 * Wi
if (erdlpg] !'= ip && crdlpg] !'= -1) {
int end = pg
do {
Pr = (Pk + 1) % W + pr—g * W

} while (crdlpg] !'= ip &% crdlpi] !'= -1 && pr != end)

}
return <pg, crdlpgl == i>

33

Table 2-14: Definitions of level functions of the six level types that implement assembly capabilities.

Level Types Level Function Definitions
Dense
insert_coord(py, ip): insert_init(szy_q, Szg):
// do nothing // do nothing
size(szg_1): insert_finalize(szy_1, szg):
return szp_; * Ng // do nothing
Compressed
append_coord(pg, ix): append_init(szp_;, szg):
crdlpg] = ig for (int pg_y = 0; pg_1 <= sZp_1; ++pr_1) {
poslpg-11 = @
}
append_edges(pg_1, pbeging, pendg): append_finalize(szy_q, Szp):
poslpg_1 + 1] = pend; - pbeging int cumsum = pos[@]

for (int pg_q = 1; Pr—1 <= SZg_1; *Pr-1) {
cumsum += pos[pg_;]
pos[pg_1] = cumsum

}
Singleton
append_coord(pg, ix): append_init(szp_;, szg):
crdlpgl = ik // do nothing
append_edges(pg_1, pbeging, pendg): append_finalize(szy_1, Szg):
// do nothing // do nothing
Hashed
insert_coord(py, ig): insert_init(szg_q, szg):
crdlpr] = ig for (int pg = 0; pg < szp; ++pr) {
crdlpg] = -1
}
size(szp_1): insert_finalize(szy_q, szg):
return szp_q * Wi // do nothing

34

with empty buckets are marked by —1. Table 2-13 shows the level’s
hash function.

Range Level Type

Range levels encode coordinates in an interval with bounds computed
from an offset array and dimension sizes N and M. Figure 2-19 shows
the row dimension of a DIA matrix encoded as a range level with ar-
rays. Given a parent coordinate 1, the level encodes coordinates be-
tween max(0, —offset[1]) = 1 and min(4, 6 — of fset[1]) = 4.

Offset Level Type

Offset levels encode for each parent a single child coordinate with no
siblings. Each child is shifted from its parent coordinate by a value
in the offset array. Figure 2-20 shows the column dimension of a
DIA matrix encoded as an offset level. Given a parent coordinate 3
and an offset index 1, for instance, the level encodes the coordinate
(3 + offset[1] = 2).

2.5 Tensor Formats

The six level types can be composed hierarchically to form tensor for-
mats by assigning a level type to each tensor mode. Furthermore, an
ordering of the levels is needed to determine the order in which the
tensor modes will be stored. For example, storing matrix rows ahead
of columns yields a row-major matrix, while storing columns ahead of
rows yields a column-major matrix.

In this section I show how many vector, matrix, and tensor for-
mats from the literature can be recreated by composing the six level
types defined in Section 2.4. These level types, however, can be com-
bined in an unbounded number of ways to express additional tensor
formats that have not been explored yet. For instance, a variant of
DIA for matrices that have only sparsely filled diagonals can be ex-
pressed as the combination (dense, compressed, offset) which replaces
the range level that implicitly assumes diagonals are densely filled. Fi-
nally, I cast structured tensor formats, like the BCSR matrix format, as
formats for higher-order tensors where the added dimensions expose
sub-structures.

pos [O]4]
01 2 3 45 67 SIZG Crd

[s[1] [[2] [8] | ves [5[1]o[of2]o]8]0] vais [5]1]2]8]

offset m
N
v [e]
Figure 2-19: Range data structure. Each

segment is stored as range offsets and
sizes.

offset m

Figure 2-20: Offset data structure. Each
segment is stored as offsets.

size @
e [0]1]6]-1]4]-1)

vas [5]1]8]o[2]0]

Example 8-vector Dense vector Compressed vector Hash map vector

35

Figure 2-21: Vectors stored in data
structures described by different for-
mats. Elements shaded in blue show
the coordinates and values correspond-
ing to a single nonzero.

Figure 2-21 shows an 8-vector and three different data structures
for storing its values: a dense vector, a compressed vector, and a hash
map vector. These data structures are described as the dense, com-
pressed, and hashed level types. Since these data structures have differ-
ent capabilities, they work well in different circumstances. The dense
vector has no meta-data apart from the dimension size. It supports fast
iteration, random access, and insert, but it does not compress out zeros.
The compressed vector must explicitly store the coordinates and the
vector size (in pos[1]), but it compresses out zeros. Finally, the hash
map compresses out zeros, and it supports random access and insert.
But it is less efficient to iterate over it, and it stores some locations that
are not used, shown as —1 in the coordinate (crd) array.

A straightforward way to store a k-order tensor is to use an k-
dimensional dense array that explicitly stores all tensor components
including zeros. A desirable feature of dense arrays is that the value
at any coordinate can be accessed in constant time. Storing a sparse
tensor in a dense array is inefficient, however, because a lot of memory
is wasted to store zeros. Furthermore, performance is lost computing
with these zeros, even though they do not meaningfully contribute to
the result. For tensors with many large dimensions, it may even be
impossible to use a dense array due to a lack of memory.

columns

2 3 4 5 pos ﬂ slze

0 1
o [5]7 ed [oJo[1]Hls[sI8] . roTararal7]
é’ ; s cd [0]1]o[1]o[3]4] c«d [0[1]of1]0[3]4]
3|8 419 vas [6[1]7[8]8]4]9] vas [5]1]7]8]8]4]9]
A 4x6 matrix (6(0]0] CSR

Figure 2-22 shows a 4 X 6 matrix and seven row-major data struc-
tures for storing its values. The simplest way to store a sparse matrix
efficiently is to keep a list of all its nonzero coordinates and values.
This data structure is known as the Coordinate format (COO) [113]
and, in contrast to dense arrays, consumes only ©(nnz) memory. In
addition, many common file formats for storing tensors, such as the
Matrix Market exchange format [97] and the FROSTT sparse tensor
format [117], closely mirror the COO format. Storing tensors in a file
as a coordinate list minimizes the cost of file reads and writes, as insert-
ing a coordinate and its nonzero value only requires appending them
to the crd and vals arrays.

The Compressed Sparse Rows matrix format (CSR) stores every
row compressed. This reduces memory footprint for many matrices
over the COO format because it does not store redundant row coor-
dinates. Figure 2-23 shows its level descriptor with a dense level type
representing the rows (every row is stored) followed by a compressed
level type representing the columns (each row is compressed). The
CSR matrix in Figure 2-22 removes the duplicate row coordinates on
the last row of the COO matrix. The auxiliary array (pos) keeps track

36

Figure 2-22: A 4X6 matrix stored in
row-major unstructured data structures
described by the Coordinate (COO) and
Compressed Sparse Row (CSR) matrix
formats. Elements shaded in blue show
the coordinates and values correspond-
ing to a single nonzero.

rows dense
columns compressed

Figure 2-23: Compressed Sparse Rows
(CSR) format descriptor.

of which nonzeros belong to each row.

pos -
columns size @ crd m
2 3 4 5

0 1
o[5]1 pos [0]8]6]5]6[7[7] pos [0]8]E]6]7]
¢ 1S od [0]1[3]ofA]8]8] ou [o]1[3]ofA[3]3]
= 2
3|8 4|9 vals [5]7[8]1]8]4]9] vas [5]7]8]1[3]4]9]
A 4X6 matrix CSC DCSC

The Compressed Sparse Columns format (CSC) is the column-
major version of CSR. CSC is popular in linear solvers [46] because it
stores every column compressed. Figure 2-24 shows the same 4 X 6 ma-
trix with the column-major CSC data structures for storing its values.
Figure 2-25 shows its level descriptor with a dense level above a com-
pressed level. The ordering of the modes corresponding to these levels
is the opposite of CSR, however, with the top dense level correspond-
ing to the columns and the bottom compressed level corresponding to
the rows.

The Doubly Compressed Sparse Columns format (DCSC) [34],
also shown in Figure 2-24, achieves additional compression for hyper-
sparse matrices by storing only the columns that contain nonzeros.
In the example, the pos array of the DCSC format has fewer values
than the CSC format. When there are many empty rows, it uses less
memory, even though it stores additional column pos and crd arrays.
In addition, the Doubly Compressed Sparse Rows format (DCSR)
compresses the CSR format by storing only rows that have a nonzero.

size

size size
offset m

columns 0(0f0]|0
01 2 3 4 5 crd 1 1 1 3 i 4
NEE 22|24 sze
Slze @
¢ 1|7]8 5/7/ol8
8 2 vals [1]8]04 ... Lofolols[o[7]o]o]
3|8 4]9 olojol9 [5]8]o[4]1]o]o[9]
A 4X6 matrix ELL DIA

Many important applications have matrices whose nonzero com-
ponents have structure. Figure 2-26 shows two data structures that
take advantage of this structure to further compress the representa-
tion. Matrices that encode vertex-edge connectivity of well-formed
unstructured meshes, for instance, have a bounded number of nonzero
components per row. The bound on nonzeros per row is exploited by
the ELLPACK format (ELL), which stores the same number of com-
ponents for each row [110]. Thus, it has to store only the column co-
ordinates and nonzero values in the implicitly indexed row positions.
The column coordinates and nonzero values are stored contiguously
in memory, making it possible to efficiently vectorize the SpMV op-

37

Figure 2-24:

A 4X6 matrix stored in

column-major unstructured data struc-
tures described by the Compressed
Sparse Column (CSC) and Doubly Com-
pressed Sparse Column (DCSC) matrix

formats.
columns dense
rows compressed
Figure 2-25: Compressed Sparse

Columns (CSC) format descriptor.

Figure 2-26:

A 4X6 matrix stored in

structured matrix data structures de-

scribed by the ELLPACK (ELL) and di-

agonal (DIA)

matrix formats.

eration [11]. If nonzeros are further restricted to a few dense diago-
nals, their coordinates can be computed from the offsets of the diag-
onals. This pattern is common in grid and image applications. It lets
the Diagonal format (DIA) forgo storing the column coordinates alto-
gether [112]. However, for matrices that do not conform to assumed
structures, structured tensor formats may needlessly store many zeros
and actually degrade performance.

size
pos [OA3] |
columns size e
01 2 3 45 g pos ﬂ
o [5]1 od [0[1][4]0]1]1]1]
: ks e e G I CIE
S 2 vas [0[0[0[8]0]0]
S E 419 [0[o[o[4]9]o] vas [5][7[8]1]8]4]9]

A 4X6 matrix BCSR CSB

Moreover, many applications have matrices with sub-structures
that can be taken advantage of by storing them as blocked matrices.
Figure 2-27 shows the data structures of two blocked formats. The
Block Compressed Sparse Rows format (BCSR) [67] generalizes CSR
by storing a dense block of nonzeros in the vals array for every nonzero
coordinate. Its cousin, the Blocked Compressed Sparse Columns
format (BCSC), generalizes CSC the same way. Since the BCSR and
BCSC formats reduce storage and expose opportunities for vectoriza-
tion, they are ideal for the inherently blocked matrices from FEM appli-
cations. By contrast, the Compressed Sparse Blocks (CSB) format,
proposed by Bulug et al. [35], represents a matrix as a dense collection
of sparse blocks stored in the COO format.

Columns (J)

; crd
o
V V 7 cd [0]0[0]2[2]2]2]2] crd 2]of2]3]

0
od [0]0[2][0[2]2]3[3] ‘0]2[34lels]
ed [0[1]1]1]0]1]0][1]

vais [1]7[5[2[4]8]3]9]
coo

VV 4/ 3|0

212 8/9/1

Tubes)

A 3Xx4X2 tensor CSF

All the data structures we have described so far, including those de-
scribed by unstructured, structured, and blocked formats, can be gen-
eralized to tensors of any order. Figure 2-28 shows a 3x4X2 tensor and
three hierarchical data structures that store it. These data structures
are generalizations of the matrix data structures above, and count-
less more generalizations are possible for tensors of any order. The

38

oo [O[1]1]1]0l1]0]1]
vas [1]7]5]2]418]3]9]

Figure 2-27: A 4X6 matrix stored
in blocked matrix data structures de-
scribed by the Block Compressed Sparse
Row (BCSR) and Compressed Sparse
Block (CSB) matrix formats.

pos [O]5]

oa [0[0[2]2]2]

od [0[2]0]2]3]

size

vas [1]7]o[s[o]2]4]8]3]9]

Mode-generic

Figure 2-28: Tensors stored in data
structures described by different for-
mats. Elements shaded in blue show
the coordinates and values correspond-
ing to a single nonzero.

Coordinate format (COO) trivially generalizes to higher-order tensors
by adding another coordinate array for every new mode. The Com-
pressed Sparse Fibers (CSF) tensor format, designed by Smith and
Karypis [115], is a generalization of CSR that compresses every dimen-
sion (Figure 2-28). Tensors stored in any of these compressed formats,
however, are costly to assemble or modify. Finally, the mode-generic
sparse tensor format, proposed by Baskaran et al. [20], generalizes the
idea of BCSR to higher-order tensors. It stores a tensor as a sparse col-
lection of any-order dense blocks, with the coordinates of the blocks
stored in COQ (i.e., the crd arrays).

2.6 Conclusion

In this chapter, I showed how to compose tensor formats from a hi-
erarchy of per-mode data structures. I described coordinate trees and
coordinate level abstractions that hide the details of each data structure
behind a compiler abstraction. These abstractions are essential build-
ing blocks for a tensor algebra compiler because they enable modular
reasoning, optimization, and code generation. The per-mode level is
the smallest tensor building block, and from it, I formulate in Chap-
ter 5 a simple recursive code generation algorithm that coiterates over
tensors by coiterating over levels.

The coordinate trees and levels facilitate modular reasoning about
tensors in both compilers and computer architectures. And they can
generalize beyond tensors to any mathematical abstraction that is a
sparse subset of a Cartesian coordinate space, such as database rela-
tions and graphs. In the next chapter, I show how to reason about
sparse iteration spaces composed of coordinate relations represented
as coordinate trees. I also show how to iterate over the spaces effi-
ciently by coiterating over the trees. And Chapter 5 shows how to
compile tensor algebra expressions to imperative code that coiterates
over the physical data structures underneath coordinate trees. Finally,
Section 7.3 of the Evaluation chapter provides empirical evidence for
why a sparse tensor algebra compiler needs to support many different
formats.

39

“Solving a problem simply means
representing it so as to make the
solution transparent.”

— Herbert Simon

Chapter 3

Sparse Iteration Spaces

We can describe the iteration space of loops that iterate over dense
tensors as a hyperrectangular grid of points by taking the Cartesian
product of the iteration domain of each loop. The polyhedral model
takes this view for general affine loop nests [70, 85], and recent work 3.3 Iteration Lattices
has specialized it for dense tensor computations [9, 127]. Figure 3-1 3.4 Conclusion

shows the iteration space for iterating over a dense matrix. Because

the iteration space is dense, the grid contains every point.

A sparse iteration space is a grid with holes, as shown in Fig- 0.0 o0 (0.2 J0.3)
ure 3-2. The holes are locations in the grid where points are missing wo loy lag s
and therefore should not be visited when iterating over the space. In
sparse tensor algebra, the holes come from tensor components whose
values are zero, and we can avoid iterating over them because 0+0 = 0 Figure 3-1: Dense iteration space, with
and a - 0 = 0. Figure 3-3 demonstrates how the property that 0+ 0 =0 411 points present.
results in sparse iteration in a sparse matrix addition. The locations in
the addition iteration space in Figure 3-2—the union of the operand it-
eration spaces—where the resulting values are zero (colored white) are 0.0) (0.1)
not visited. Sparse iteration spaces can be described by coordinate re-
lations represented as coordinate trees or by combining relations using
an iteration space algebra. (2. 1) (2:3)

In this chapter, I describe an algebra for multi-dimensional sparse
iteration spaces. I also describe an intermediate representation, called
iteration graphs, that describes how to iterate through them. These
graphs separate the iteration space into per-dimension iteration spaces,
capture the dependencies between dimensions that come from iterat- A B c
ing over coordinate trees, and describe the iteration through each di-
mension as a set expression of coordinate tree levels. Finally, I describe
how to efficiently coiterate over coordinate tree levels by dividing the

set expressions into ordered iteration lattices of subsets that can, in Figure 3-3: A sparse matrix addition,
turn, be iterated over. where zeros are white and nonzeros are
colored by the matrix it comes from.

3.1 Iteration Space Algebra
3.2 Iteration Graphs

(2,0) 1(2,1) [(2,2) [(2,3)

(1,2)

Figure 3-2: Sparse iteration space, with
some points missing.

This chapter provides the theory and representations we will need
to express, compile, and optimize sparse tensor algebra expressions.
Chapter 4 will extend the two sparse iteration representations—iteration
space algebra and iteration graphs—with arithmetic assignment state-
ments to form two tensor languages called tensor algebra index no-

40

®

@QG

tation and concrete index notation. Chapter 5 shows how coordinate
trees, iteration graphs, and iteration lattices can be used to generate
efficient code to iterate over the sparse multi-dimensional iteration
spaces. Finally, Chapter 6 presents several transformations on sparse
iteration spaces that let us control the order of iteration, so that we can
optimize the generated code.

3.1 Iteration Space Algebra

The simplest sparse iteration space is described by a coordinate rela-
tion. The full set of nodes at each internal tree level is a dimension of
the space. Further, the nodes along each tree path, from the root to the
leaves, are the coordinates of one point in the space; every other point
is left out. By iterating over the coordinate tree, we iterate over the
points of the sparse iteration space. Figure 3-4 shows a coordinate tree
and its sparse iteration space. The coordinates are arranged along the
dimensions of the space without duplicates, and tree paths are shown
as graph edges. The sparse iteration space has a point if a tree path
connects the point coordinates.

We can combine sparse iteration spaces by intersecting and union-
ing their points.!* Let us define a sparse iteration space algebra by
introducing index variables into set expressions where the variables
are coordinate relations, represented by coordinate trees. The index
variable index into the coordinate relations and thus controls what co-
ordinates are compared in the set operations. For example, B;; U C;;
and B;jr N Ck. The points in the variable sets are ordered k-tuples of
coordinates, and index variables index into tuple locations determined
by their position in the index lists. That is, j in B;;; index the coordi-
nates of the second dimension of coordinate relation B. The number of
dimensions of the iteration space is determined by the total number of
index variables in the expression. And the size of each dimension is the
size of the coordinate sets each index variable ranges over. Coordinate
sets indexed by the same, repeated, index variable are combined using
the set operations that combine the coordinate relation variables they
index. For example, the k coordinates of the third dimension of B and
the second dimension of C are combined in B;jx N Cijy.

One class of expressions index into every coordinate relation with

41

Figure 3-4: A coordinate tree and the
corresponding sparse iteration space.
The tree paths from the i; and i3 nodes
are shown both in the tree and overlaid
on the sparse iteration space.

13 The expressions in this chapter use
only intersection and union operations;
however, I believe that the concepts can
be readily extended to other set opera-
tions.

(0,0) (0,1) (0,3)

(1,2) (1,0) (1,2) (1,0) (1,2)

(2,1) (2,1)

(0,0) (0,1) (0,0) (0,1) (0,0) (0,1) (0,2) (0,3)

| 00 ¢
(.2 (ol EXEE] EEETEES e (1.2) (0,1)

2,1) / (x,2)

(2,1) (2,1) (2,0) (2,1) [(2,2) [(2,3)

every index variable. We call these point-wise expressions, and two ex-
amples are B;; N C;; and B;; N Cj;. In the first expression, coordinates
of B and C are intersected by comparing the first coordinates and the
second coordinates of B and C with each other. The second expression,
on the other hand, compares the first coordinate of B with the second
of C and vice versa. Figure 3-5 shows three sparse iteration spaces
and Figure 3-6 shows the sparse iteration spaces resulting from apply-
ing the two binary two-dimensional point-wise operations B;; N C;;
and B;j U C;;. The latter figure also shows coordinate Venn diagrams
that illustrate the operations. Figure 3-7 shows a tertiary point-wise
operation where the union of two iteration spaces is intersected by a
third. We can form arbitrarily complicated operations by combining
any number of iteration spaces this way.

The other class of sparse iteration space expressions contain index
variables that do not index into all the coordinate relation variables. I
refer to these expressions as broadcast expressions, and examples in-
clude B;jk N ¢k, Bij U ¢j, (Bij N ¢j) U d;, and B N Cg;.!* In these ex-
pressions, the combined iteration space has more dimensions than the
number of coordinate sets in some or all of the coordinate relations.
In fact, in the last example, it has more dimensions than any coordi-
nate relation. As stated, the iteration space has as many dimensions as
there are index variables. Point sets not indexed by an index variable
are broadcast over that space, meaning that the lower-dimensional it-
eration space of the coordinate relation is replicated for every point
in the missing dimensions. In set language, the iteration space of a
coordinate relation is the flattened Cartesian product of its points and
the sets the missing index variables range over. Figure 3-8 shows the
sparse iteration space of the expression B;; N c;. The iteration space of
¢ is one-dimensional; however, in the expression, it is broadcast over
the set that i ranges over. A more complicated example is the three-
dimensional iteration space of the expression B;x N Ci; where both B
and C are broadcast, over the range sets of j and i respectively.

42

Figure 3-5: Three examples of two-
dimensional sparse iteration space.

Figure 3-8: The sparse broadcast iter-
ation space resulting from the expres-
sion Bjj N ¢;, including the coordinate
Venn diagram. The iteration space of
c is broadcast over the coordinate uni-
verse of j, shown as dotted lines.

0,0
5 (0,0) / (1,2) w0 e
(0,1 @1)

(1,2)

(2,1)

(0,0) (0,1)

5 0,00 (1,2) 1,0) c (1,0) (1,2)

0,1) 21

(2,1)

Figure 3-6: The sparse iteration spaces
resulting from the intersection and
union of B and C from Figure 3-5.

14 1 yse lower-case letters to name sets
whose points have one coordinate and
upper-case letters to name sets whose
points have two or more coordinates.

(0,0)/(2,1)
B[(0,1) w2 C (1,0) (1,2)
(1,0)
(0,3)
D

Figure 3-7: The sparse iteration space
resulting from the iteration space ex-
pression (B;; U Cjj) N Dj; on the sparse
iteration spaces from Figure 3-5.

3.2 Iteration Graphs

The iteration graph representation describes how to iterate over sparse
iteration spaces. The iteration spaces were described as set expressions
of coordinate relations. These relations, as we saw in Section 2.2, are
represented as coordinate trees. An iteration graph describes how to
iterate over the iteration spaces by iterating over a set expression of
the coordinate trees. These trees impose a hierarchy on coordinates,
and iterating over tree levels from top to bottom is faster than iterating
in another order.’> The coordinate trees and their order are reflected
in iteration graphs, and they describe how to iterate over the iteration
space by coiterating over coordinate trees.

An iteration graph represents a lexicographical iteration through
an iteration space. The iteration through each dimension is repre-
sented by an index variable, and the index variables are organized in
a tree structure. Nested index variables represent iteration over par-
ents in a coordinate tree and their children, whereas sequenced index
variables represent iteration through one coordinate tree segment fol-
lowed by another. That is, if the index variable i is above j, then for
each coordinate of i, we iterate through all the coordinates of j. And
if j is left of k, then we first iterate through the coordinates of j and
then through the coordinates of k. An iteration graph has directed
paths going through the index variables that represent iteration over
coordinate trees. These paths are ordered from the index variable that
indexes into the top level to the one that indexes into the bottom level.
Intuitively, each path represents a coordinate tree by symbolically col-
lapsing all coordinate tree paths into a single path through index vari-
ables.

Representation

A graphical representation of iteration graphs lays out the nodes or-
dered by the tree embedding, and thus its iteration order, from top to
bottom with children ordered from left to right. We label each edge
with the coordinate tree level it represents and give each path a differ-
ent color. For readability, we will often use the same colors for the cor-
responding operands in iteration space expressions. Finally, we place
set operators between edges where they meet at dimension nodes to
indicate how the tree levels they represent must be combined. Fig-
ure 3-9 shows the graphical iteration graph representation of the it-
eration space described by B;; U C;;, where the coordinate tree level
ordering of both B and C is the i dimension followed by the j dimen-
sion. Note that the edges incoming on both dimensions are combined
with the union operator, which turns a union of iteration space points
into nested unions of coordinates (e.g., B; U C; at node i).

Although graphical representations are intuitive, a symbolic itera-
tion graph representation is terser and will be easier to manipulate in a
computer system. We represent iteration graphs symbolically as an ex-

43

15 For coordinate trees, whose levels
support random access, such as those
encoding dense tensors, iterating out of
order only costs a constant amount of
work to compute a strided formula, as
well as reduced temporal locality.

MNuft

1
B,)C

Vi\'/j Bij U Cij
i€eBiUC
jEB Uy

Figure 3-9: The sparse iteration graph
of Bjj U Cjj, represented both graphi-
cally and symbolically. The expressions
under the line are iteration domains cre-
ated from the iteration graph for dimen-
sions i and j.

A2

Vi biNc;

ieblﬂcl

V,'Vjvk Bijk U Cijk

i€ By UC
jE€By Uy
k € B3 U (s

ViViVj Big N Cy;j
i€ BiNU;
keB,NCy
JjeU;nc,

V,'Vj (Bij U C[j) ﬂDij

i€ (Bl UCl) N Dy
S (Bz U (\Z) N Doy

Bs

O
]

D
N

@

ViViViVj Bigr N ij al Dlj

BllU dq

@)

Vi(Vj Bij N L‘j) Ud;

ieB NU;NU;
keB,NnCi NUL
leB3NU;N Dy
JjeU;nc,nD,

ie(BinNnU;)Ud;
je€ByNcy

Figure 3-10: Eight sparse iteration graphs with index variable iteration domains computed from the iteration graph’s symbolic
expression for each index variable.

tension to the iteration space algebra where iteration over dimension
nodes are represented as forall expressions that are nested according
to the tree embedding. This extension gives the iteration graph ex-
pressions an operational semantics (iterate through dimensions in the
given order), whereas iteration space expressions have declarative se-
mantics (a point is in the iteration space if it is in the set described
by the expression). The inner expressions are syntactically the same
in the two algebras, but are in the iteration graph expressions reinter-
preted so that indexed operands describe paths and operators describe

how the coordinate tree levels should be combined.

Figure 3-10 provides eight examples of iteration graphs to help

44

us build a intuition for what they look like for different expressions.
These graphs contain intersection and union operations, and some
contain a mix of both. Iteration graphs can become arbitrarily com-
plex when an arbitrary number of operations are combined.

Tree embeddings of iteration graphs can have branches, expressed
symbolically as forall expressions nested inside set operators (Figure 3-
11). Siblings in a tree embedding are concatenated iteration sub-spaces,
nested inside their ancestors (Figure 3-12). The operator that combines
the forall subexpressions also combines their iteration spaces, whereas
the foralls nested inside it are concatenated.

We construct an iteration graph from an iteration space by wrap-
ping its expression in one forall expression for each index variable. A
choice must be made about the forall nesting order, and the construc-
tion machinery should aim to order them so that all iteration graph
edges point down.!® The reason is that coordinate trees, and their data
structures, are organized to make it efficient to iterate over levels in
order. Iterating over levels out of order requires locating positions by
a call to their locate function or with search costing O(log(n)) or O(n).
Iteration graphs may also have cycles, making it impossible to find an
ordering without back edges. We must then either absorb the cost of
out-of-order iteration or reorder the levels of the back edge’s coordi-
nate tree at the cost of a data structure transformation.

Index Variable Iteration Universes and Domains

The index variables of an iteration graph each has an iteration uni-
verse and an iteration domain. Its iteration domain is the set of
coordinates it iterates over, and its iteration universe is the universe
of that set. In other words, an index variable’s iteration universe is
the set of coordinates that the iteration domain is drawn from. If the
coordinate tree was full, say it comes from a dense tensor, then the
domain would be the whole universes. The universe of index variable
i is written as a blackboard bold U;. The universes considered in this
dissertation are dense integer ranges, although future work includes
generalizing them arbitrary sets. For example, the universe if i can be
written as

Ui € [0: n)a

where n is some integer, say the size of a tensor mode.

An index variable’s iteration domain consists of the coordinates it
iterates over, which is a non-strict subset of its universe. An iteration
domain is expressed as a set expression over coordinate tree segments,
where the segments are coordinate relation operands labeled with the
coordinate tree level that contains the segment. For example, the index
variables of the iteration graph V;V; B;;UC;; has the following domains

45

| &
N\o/b a\o/
OO

A (Vj Bij N Cj) N (Vg Bjx N dj)

ieB1NU;))Nn(B;NU;)=B1NT;
je€ByNecy
k € BoNd;

Figure 3-11: A sparse iteration graph

with branches that describe concate-
nated iteration spaces.

Figure 3-12: The sparse iteration space
described by the iteration graph in Fig-
ure 3-11. The iteration spaces are con-
catenated on the x axis and intersected
on the y axis.

16 An ordering where all iteration graph
edges point down can be achieved by
forming a graph from the indexing ex-
pressions and topologically sorting the
nodes ordered by the directed edges.

when the coordinate trees of B and C are both row-major:

ie BiuU(C; and
j€BzUC2.

(The expression has the domains i € B, U C, and j € By U C; when
the coordinate trees are column-major.) The notation does not indicate
which segment is combined and the domains must therefore be inter-
preted recursively, with the domains of inner dimensions combining
the segment given by the current index in outer dimensions. Hence,
in the above expression the outer iteration domain of i describes it-
eration over the (single) segment of the top levels of the coordinate
trees, whereas the inner iteration domain of j describes iteration over
the segment of the second level indexed by the location of the current
coordinate of i.

A broadcast is an operation where some operands are not indexed
by some index variables. For example, the iteration graphs

V,‘Vj Bij N Cj and
Vl‘ aJ bi,

where ¢ and « are broadcast across the entire iteration space, even
though they are not indexed by every index variable. Thus, the itera-
tion domain of every index variable must include operands not indexed
by its index variable. Because such operands do not have a tree level
with coordinates to iterate over in that dimension, we insert instead
an iterator over the full universe of the mode that i iterates over, la-
beled U; for dimension i.!” Thus, the expression V;V;B;j N ¢; yields
the iteration domains

i€ BiNU; and
JE€ByNey,

while Via U bi ylelds i€ Uj U bl.

Derived Iteration Graphs

Iteration graphs constructed from an iteration space expression have
exactly one forall statement per index variable that indexes into an
operand. These forall statements iterate over an iteration space with
the same dimensions as the original iteration space described by the
iteration space expression. I refer to them as original iteration graphs
and their index variable original index variables. But I also permit it-
eration graphs that iterate over index variables that derive from other
index variables. I refer to such iteration graphs as derived iteration
graphs, and they iterate over a derived iteration space. The derived
index variables arise from optimizing transformations that add or re-
move dimensions from the iteration space. I discuss these transforma-

46

17 The effect on the graphical notation
would be to add additional edges la-
beled by dimensions; however, for read-
ability, we leave them out.

tions in Chapter 6, whereas this section describes the derived iteration
graphs that they transform.

Derived index variables relate back to the original index variables
through a sequence of relations. From these relations, the code gen-
erator generates code to map coordinates back and forth between the
derived iteration space and the original iteration space. For example, it
can map a coordinate in the derived iteration space, which we iterate
over, to an original iteration space coordinate that we can use to index
into a coordinate tree level. Or it can map an original iteration space
coordinate that we read from a coordinate tree level, into a derived
iteration space coordinate to compare it to a coordinate we are cur-
rently iterating over. There are two types of index variable relations:
split and collapse.

The split relation splits an index variable j into two nested index
variables j, and j;. The outer variable jj iterates over an integer range
that enumerates blocks, and its domain is identical to its universe. The
inner variable j; coiterates over the same coordinate levels as j. In
other words, j, iterates over blocks, while j; coiterates over the coor-
dinate trees within the block. These coordinate trees are in different
coordinate spaces—the universe of j; is the dense range from [0, n/4),
where n s the size of j’s universe. The coordinates in the data structures
B, and C,, however, are in the universe of j. AsIdescribe in Section 5.3,
the coordinates of each space are mapped back to the original space,
where they are compared to resolve the current combined coordinate
value of j. The resolved j coordinate is then mapped back to the de-
rived spaces. A split relation has three arguments: direction, size, and
an optional coordinate tree. The direction—up or down—determines
whether the number of blocks is constant (up) or whether the size of
each block is constant (down). If the number of blocks is constant, then
the size of each block is proportional to the size of j’s universe. But if
the size of each block is constant, then the number of blocks is propor-
tional to the size of j’s universe. The size argument is an integer that
specifies the number of blocks or block size, depending on the direc-
tion. Finally, the optional coordinate tree argument creates blocks with
the same number of coordinates from that tree, but that are variable-
sized with respect to j’s universe. Figure 3-13 shows the difference
between a coordinate universe split (purple dashed) and a coordinate
tree split (red)—a universe split evenly divides j's domain, while a tree
split evenly divides the coordinate tree segments j indexes.

Figure 3-14 shows an example where an index variable j is split
in the up direction with respect to its universe. The split changes the
(original) iteration graph from

ViV Vi Bijk N Cijk,
which corresponds to an element-wise tensor multiplication, as

. split(T.4)
ViV Vi ¥k Biji 0 Cijic :] —— Joj1-

47

J1 J2 js Ja JsyJe J7|Js Jo Jio
domain U

OLO)
coordi;late segment of b

Figure 3-13: Two splits of the index vari-
able j in V; b; Nc;—a universe split (pur-
ple dashed) and a b coordinate tree split
(red).

18 A coordinate tree split results in
an inner index variable with a dense
domain, leading to code such as the
generated CUDA SpMV implementa-
tion in Figure 1-14.

Bl\m/(wl

B: C; B; C:
z;m;) e 2
:/ split(T, 4) ﬂ
T
B- C-
3{)3
B C-
@ \n)

)

split(T,4)
ViVij Bijk N Cijk ViVjOlevk Bijk al Cijk L —— joj1
ieB1NCy ieBiNCy
JEBNCy Jjo €1[0,4)
ke€eB3NCs j1 €B2aNCy
k €B3sNCs

The derived iteration graph has two derived index variables, jy and j,
that derive from j. These index variables have corresponding forall
statements, and their universes are dimensions of the iteration space,
but they do not index into the original coordinate trees. The relation-
ship between jj, ji, and j is given as a relation after the : symbol,
which should be read as “such that”. Relations use an arrow annotated
with the type of the relation and its arguments to map index variables
to their derived counterparts. Figure 3-14 also contains the graphical
representation of the derived iteration space. It shows how the rela-
tion maps between j in the original iteration graph and j, and j; in the
derived iteration graph. It also shows the iteration graph expressions
and index variable iteration domains for each iteration graph. The j,
index variable iterates over the dense range [0, 4) denoting four blocks.
The j; index variable iterates over each block by coiterating over coor-
dinate levels B, and C,, intersected with the coordinates in the block.
Each block contains one fourth of the coordinates in the universe of j’s
iteration domain—the first block contains the first fourth, the second
block the second fourth, and so forth.

The collapse relation combines two nested index variables into a
single index variable that iterates over the Cartesian combination of
their coordinates. Collapse relations have no arguments. Figure 3-15
shows the effect fusion has on the iteration over a coordinate tree. Fig-
ure 3-15b shows the iteration after fusion: The j coordinates of every
segment at the bottom level of the tree enumerates the subset of the i-j
Cartesian combination that is present in the tree. Hence, the collapsed
variable f can simply iterate over them to iterate over the Cartesian

43

Figure 3-14: Two iteration graphs con-
nected by a split relation. An origi-
nal graph (left) that coiterates over two
three-level coordinate hierarchies with
three index variables, and a derived
graph (right) whose middle index vari-
ables jo and j; derive from j in the orig-
inal graph. Under the graphs there are
iteration graph expressions, followed
by the iteration domains of each index
variable. The index variable jj iterates
through equal-sized blocks of j’s itera-
tion domain, while each execution of j;
coiterates through the coordinates of By
and C, within each block.

i —>(in) (is)
e DR OB O

(a) The original index variables i and j
iterate over their respective levels. For
each iteration of i, j iterates over the

corresponding segment.

0
R OSORON OO

advance i

(b) The collapsed index variable f iter-
ates over the Cartesian combination of i
and j by iterating over the bottom level
of the coordinate tree. At each step it
tracks the current j and i coordinates.

Figure 3-15: Iteration over a coordinate
tree before and after fusing the i and j
index variables into f.

Mot

1
e
o B)C
Bs A Cs colla;is%:::iBg Cs
T Be(L)ca
n)c @
O

collapse

ViVi¥iVi Bijki N Cijki ViVeV Bijkr N Cijkl : jk ———

i€B1NCy i€BiNCy

JE€B2NC f €(Ba xB3) N (Cz X C3)
ke€B3sNCs ke€BysNCy

l€By4NCy

combination. At each point in the iteration, the j and i coordinates can
be recovered: the j coordinate can be read from the current position
in the bottom level, and the i coordinate can be found by searching
for the i coordinate that maps to the current j position. (If we collapse
more index variables, then we must recover each index variable above
the bottom through search.) Furthermore, we can improve on a search
by tracking the current i coordinate and advancing it to the next when
we come to the end of a row of j, as shown in the figure.

Figure 3-16 shows an example where a derived iteration graph
(right) contains an index variable f that derives from two collapsed
index variables j and k in an original iteration graph (left). The orig-
inal iteration graph has four iteration variables that iterate over two
coordinate trees with four levels each; whereas the derived iteration
graph has only three index variables, it is still iterating over coordinate
trees with four levels. The collapsed index variable coiterates over the
Cartesian combination of the two levels by coiterating over the bottom
levels—B; and Cs—and comparing both j and k.

Finally, Figure 3-17 compares three ways to divide into two pieces
a two-dimensional iteration space formed by taking the intersection
of a sparse coordinate relation B and a dense coordinate relation c.
This iteration space appears in the doubly compressed sparse matrix-
vector multiplication. Figure 3-17a and Figure 3-17c split the outer loop
i with respect to its universe or the first level of B. The result is either
an implementation that has the same number of rows in each block or
one that has the same number of non-empty rows per block. Neither of
these have the same amount of iteration space points, however, since

49

Figure 3-16: Two iteration graphs con-
nected by a collapse relation. An orig-
inal graph (left) that coiterates over
two four-level coordinate tree with four
index variables, and a derived graph
(right) that coiterates over the same
threes with three index variables. The
middle collapsed index variable j coit-
erates over the cartesian combination of
two coordinate tree levels from each of
the coordinate trees. Under the graphs
there are iteration graph expressions,
followed by the iteration domains that
highlight the iteration at each index
variable.

the rows may have a different number of points. Figure 3-17c combines
an index variable collapse with a coordinate tree split to divide the
iteration space into two pieces that have exactly the same number of
non-empty points. This approach can be used to create statically load-
balanced iteration spaces, and is the approach taken to create the load-
balanced GPU SpMV implementation in Figure 1-14.

split(T.2) PR P
Bll R i &——@ o
el e
B, / e i3) '
C IR -m - 1
By /Cl . '
N 15 :
@ <L o @@@@@@@@@@

(a) By applying a universe split to the i dimension, we cut it into two halves with with the same number of rows and points, but
with different numbers of of nonempty rows and points.

split(T, 2, B
plit(T) Jv oJ2 J3 Ja J5 J6

B, N i @ ® ®
b7

i3 ® ‘—

B /o i
@ B@/ "

e —@ o—

(b) By applying a coordinate tree split to the i dimension, we cut it into two halves with the same number of nonempty rows.

1 Jz Js Ja Js Je

i1 @ | I @
Bll collapse split(T, 2, B) 2 _l__l_t
i ®
\\\}Bl\ﬂ/clz/q iz @ @ @ @
b ﬂ/cl Bj@ - Bl\m ay
@// Bj@ s —@ o— @9@@@@@@@@

(c) By fusing the two dimensions followed by a coordinate tree split, we cut the iteration space into two halves with the same
number of nonempty points. Observe that collapse and split are not inverse transformations.

Figure 3-17: Three ways to split up the two-dimensional iteration space of the iteration graph V;V;B;; N c¢;, which is the graph

we would get from an SpMV operation a; = }; Bjjcj. The three ways are a purple dashed universe split of the i dimension (a)
and two red coordinate splits—one of the i dimension (b) and one of the collapsed i and j dimensions (c).

3.3 Iteration Lattices

An iteration graph describes iteration over a multidimensional itera-
tion space as a hierarchy of iteration over index variables. Iteration
domain expressions describe how to iterate over one index variable by

50

bNnec

bnend bnend
bnd cnNd

Figure 3-18: Venn diagram of itera- Figure 3-19: Venn diagram of the it-
tion regions of bU c U d. eration regions of bNcNd.

coiterating over a set expression of coordinate tree segments. Since
coiterating over segments can be expensive, I introduce a formulation
that divides an iteration domain into smaller units that each coiterates
over a subset of the segments. Iterating over only some of the segments
is possible when the iteration algorithms determine that one or more
of the segments has no more coordinates left to iterate over. It then
jumps to a simpler iteration algorithm that ignores these segments.

We divide an iteration domain into regions described by the seg-
ments that intersect there. These regions are the powerset of the seg-
ments in an iteration domain; that is, the set of all subsets.'® Thus, the
iteration domain with k segments divide into 2¥ iteration regions
(the last region is the empty set () where no sets intersect). Figure 3-
18 shows the Venn diagram of the union of three segments with la-
bels marking the seven non-empty regions where subsets of segments
intersect (the last region is the background, where no segments inter-
sect). For notational convenience, the regions in the Venn diagrams are
labeled only with the sets that intersect there, leaving out of the ex-
pression a subtraction of regions where other sets also intersect. Thus,
for example, the region where only ¢ and d intersects is labeled

cNd,
whereas the full expression is
cNnd-bnNnend.

To iterate over union domains, we must iterate through each region,
as shown in Figure 3-18. But if the iteration domain contains intersec-
tions, we only need to iterate through some of the regions (a subset of
the powerset). For example, in the intersection in Figure 3-19, we only
need to iterate through the single region described by the intersection
of all three segments. Figure 3-20 shows that when the iteration do-
main is a combination of union and intersection operations, we need
to iterate over more than one but not every region.

We organize the coiteration over an iteration domain so that when
a region runs out of coordinates, the coiteration algorithm jumps to
a simpler algorithm that excludes the segments that ran out coordi-

51

bnend
bnd cnNd

Figure 3-20: Venn diagram of the it-
eration regions of (b U c) Nd.

19 A power set P(S) of a set S is the set
of all subsets of S, including S and the
empty set.

bNnec

bnend

bnd cNd cNd

Coiterate over regions with b, ¢, and d b runs out of values

¢ runs out of values

Figure 3-21: Coiterate over the coordinate tree segments b, c, and d, considering all regions. When b runs out of values the
coiteration proceeds to coiterate over only ¢ and d, ignoring regions that contain b. And when c also runs out of values the

coiteration proceeds to only iterate over d, ignoring regions that contain b or c.

nates (Figure 3-21). How, and whether, the algorithm can detect when
segments run out of coordinates depends on the coiteration strategy.
I discuss two coiteration strategies over two segments and then gen-
eralize to any number of segments using a lattice formulation. I call
the two-way coiteration strategies merge and iterate-and-locate, and
they demonstrate the coiteration patterns that the lattices implicitly
use to construct n-way coiteration strategies for any number of seg-
ments combined with any combination of set intersection and union
operators.

The two-way merge coiteration strategy is a common technique
that is used in the merge sort and merge join algorithms.?° It coiterates
over two segments in O(n) time, where n is the number of coordinates
in the larger segment. A two-way merge can be used to coiterate over
either an intersection or a union, but requires ordered segments. It
coiterates through the segments in order until either runs out of co-
ordinates. At each step, it compares their coordinates to determine
whether or not they match. If they do, then that coordinate lies in
their intersection, and both segments are advanced. If not, then the
smaller coordinate is considered next. It lies in the iteration region
that contains only one segment, and only that segment is advanced.
The iteration terminates when either segment runs out of coordinates.
At this point, the intersection variant of the merge strategy has com-
pleted, whereas the union variant must iterate through whichever seg-
ment still has coordinates left, if any.

The iterate-and-locate strategy is a simpler coiteration strategy
that can be used to coiterate over either an intersection, shown in Fig-
ure 3-22, or a union where one of the segments is a superset of the
other segment.?! The two-way iterate-and-locate algorithm iterates
over one of the segments and locates coordinates from the other seg-
ment using its locate capability.

The iteration lattice?? of an iteration domain combines a set S of
coordinate tree segments and is an ordered lattice of a non-strict subset
of the power set of S. It is inversely ordered on segment exclusion that
occurs when a segment runs out of coordinates to iterate over. It is, in

52

iterate over b locate from ¢

Figure 3-22: The iterate-and-locate
strategy iterates over one operand and
locates the coordinates in another.

20 Knuth has a good description of the
two-way merge algorithm in Chapter
5.2.4 of Volume 3 of The Art of Com-
puter Programming [80].

21 Databases sometimes use multi-
phase union hash-join algorithms that
I do not cover in this dissertation.

22 1n prior work, we referred to itera-
tion lattices as merge lattices, but I take
this opportunity to provide them with a
more suitable name.

other words, a lattice of increasingly fewer segments to coiterate over
until all segments run out of coordinates (Figure 3-23). The segment
subsets are called iteration lattice points. The segments of a point are
divided into two sets called its iterators and locators (Figure 3-24). The
iterators are the segments to coiterate over in the lattice point, using a
multi-way merge strategy, whereas the locators are segments we can
simply locate from using the iterate-and-locate strategy.

A lattice can be viewed as a state machine that coiterates through
subsets of regions as in Figure 3-21. Figure 3-25 shows an example
with pseudocode. But we do not simply iterate over one region at a
time. Instead, we coiterate over several regions until a segment runs
out of values and then proceed to coiterate over the subset of regions
that do not have that segment. Thus, the lattice points are used in two
ways. First, they enumerate the regions we will successively exclude
until all segments have run out of values; second, they enumerate the
regions we must consider at the present moment. To iterate over an
iteration lattice, we proceed in the following manner. We begin at the
top lattice point:

1. Coiterate over the current lattice point’s iterators until any of
them runs out of values.

2. Compute the candidate coordinate, which at each step is the
smallest of the current coordinates of the segments.

3. Determine which region the candidate coordinate is in by check-
ing what segments are currently at that coordinate. The only
regions we need to consider are those of the lattice points un-
derneath the current lattice point (Figure 3-26).

b,c,d
d b

(be) Cz,d)cCc,d)

while b, ¢ and d have coordinates left do b
if in region [b,c,d] then ... d
else if in region [b,c] then . ..
else if in region [b,d] then . ..
else if in region [c, d] then ...

Figure 3-23: The iteration lattice of the
iteration domain (b U ¢) N d shown in
Figure 3-20. Nodes are lattice points
with segments to coiterate over (the top
coiterates over all segments) and edges
move to another point when a segment
runs out of coordinates.

iterators locators
b,c,... | die,...

Figure 3-24: The segments in a lattice
point are divided into iterators to coit-
erate over coordinates, and locators to
locate the coordinate in.

b else if in region [d] then ...

while b and ¢ have coordinates left do b ¢
if in region [b,c] then . ..

while b and d have coordinates left do b
if in region [b,d] then . ..

else if in region [d] then ... d
while ¢ and d have coordinates left do &
if in region [c, d] then ... ”
else if in region [d] then ...
while d has coordinates left do d

if in region [d] then ..

Figure 3-25: Iteration lattice and corresponding coiteration pseudocode for the iteration domain (b N ¢) N d. There is one while
loop per lattice point and each while loop contains one if statement per sub-lattice point. Next to each while loop is a Venn
diagrams showing the regions it coiterates over. The while loops iterate until a segment in its region runs out of values, and the
if statements check which region a coordinate is in. Depending on the region, different actions are taken. Figure 5-2 in Chapter 5

will describe an algorithm that produces C coiteration code.

53

(a) Compressed bjc; (b) Compressed b; +c;d;

o))
o) o)

(d) Dense b; + ¢; (e) Mixed bjc; (dense c)

o)
o)

(c) Dense bjc;

(f) Mixed (b; + c;)d;

Figure 3-27: Iteration lattices for several expressions. (a)-(b) have only compressed operands, (c)-(d) have only dense operands,
and (e)—-(f) have mixed operands where c is dense while b and d are compressed. Lattices with dense operands are optimized.

4. When any segments run out of values, follow their lattice edge
to a new lattice point and repeat the process until reaching the
bottom.

This strategy leads to successively fewer segments to coiterate and re-
gions to consider. We can use lattices, and this observation, to write
code for any iteration domain that consists of a sequence of coiter-
ating while loops that become simpler as we move down the lattice.
Chapter 5 will show how to generate coiteration code from iteration
lattices. Figure 3-27 provides several more lattice examples.

An iteration lattice can be constructed from an iteration domain.
The construction algorithm proceeds bottom up, creating lattices at
operands and merging them at operators (Figure 3-28). There are two
types of operands (segments and dimensions) and two types of itera-
tors (intersections and unions), resulting in four construction rules to
create lattices that generalize the merge strategy. In addition, several
optimizations can be employed to simplify the lattices and to move
iterators to the locators set, thus creating lattices that combine the
merge and iterate-and-locate strategies. The four iteration lattice con-
struction rules are:

Segment rule The segment rule has two cases. If the level type of a
segment supports an iterator capability, then the rule returns a
lattice with a single non-bottom lattice point whose set of iter-
ators contains the segment and whose set of locators is empty.
If the level type does not support an iterator capability but in-
stead supports locate, then the rule returns a lattice with a single
non-bottom lattice point, the iterators set of which contains the

54

Cb)(dr)@)
(o)

Figure 3-26: The sublattice of the lattice
points below a lattice point L. These
are the lattice points that exclude seg-
ments that have run out of values.

Figure 3-28: An iteration lattices con-
structed from the subexpressions of an
iteration domain.

dimension of the segment and locators set contains the segment o
(Figure 3-29). b U

Dimension rule The dimension rule returns a lattice point with a o o
single non-bottom lattice point whose iterators set contains the

dimension and locators set is empty (Figure 3-30). Figure 3-29: The iteration lattices of a

segment expression, that supports an it-
erator capability (left) and that instead

Intersection rule The intersection rule combines the lattices of its |
only supports locate (right).

operands to produce a new lattice that describes iteration over

the intersection of the operand iteration domains (Figure 3-31).

To intersect two lattices, we first take the Cartesian product of
their lattice points, which produces a set of ordered lattice point

pairs. Next, we merge the lattice points in each pair: the union of

the iterators and the union of the locators become the iterators “
and locators of the merged point. If there are multiple iterators
in the merged iterators set and at least one of them is unordered,
then we insert a dimension into the iterators set and move the
unordered iterators to the locators set. Finally, we remove dupli-
cates from the merged lattice points to produce the set of lattice
points of the resulting lattice.

U

Figure 3-30: The iteration lattice of a di-
mension expression.

Union rule The union rule combines the lattices of its operands to
produce a new lattice that describes iteration over the union of
the operand iteration domains (Figure 3-32). To union two lat-

tices, we first apply the intersection rule to produce an intersec-
tion lattice. We then take the union of the lattice points of the
b c b

iterate over b locate from ¢

intersection lattice and the two operand lattices to produce the
lattice points of the resulting lattice.

The four rules above produce correct iteration lattices; however,
we can apply two optimizations during construction to produce lat-
tices that coiterate over fewer segments:

Figure 3-33: Venn diagram that shows
the intersection optimization applied to
b N ¢ where ¢ supports locate. Instead
of coiterating over b and c, we iterate
Intersection optimization The intersection optimization takes ad- over b and locate from c to determine if

vantage of the fact that the intersection of two sets is fully con- a coordinate is in the intersection.
tained in either set. It is therefore sufficient to iterate over one

of them to cover the entire intersection, provided there is a way

to query whether coordinates exist in the other set and therefore

is in the intersection (Figure 3-33).

The intersection optimization applied to the pre-merger lattice
point pairs in the intersection rule, except when it is used to con-
struct an initial lattice in the union rule. One of the locations in
the pairs is chosen as the query side.?> For each lattice point on 23 We can chose either side as the query

the query side, we then move segments with the locate capabil- ~ side, but a reasonable heuristic is to se-
ity to the locators set lect the side with more segments that

can be moved to the locate set.

Subset optimization The subset optimization takes advantage of the
fact that the union of a subset and a superset is fully contained in
the superset. It is therefore sufficient to iterate over the superset

55

CoC o CD
o) o)

(bUc) (dUe) (buc)n(duUe)

Figure 3-31: The iteration lattice intersection rule constructs a lattice from the Cartesian product of the lattice points of the
operands, merging the resulting lattice point pairs.

@D CD @ CD
D D

(bUc) (dUe) (bUc)U(dUe)

Figure 3-32: The iteration lattice union rule constructs a lattice from the union of the Cartesian product of the lattice points of
the operands, merging the resulting lattice point pairs, and the lattice points of each operand.
iterate over b locate from ¢

to cover the entire union, provided the subset supports locate to \ /
b c b

query what region each coordinate lays in (Figure 3-34).

The subset optimization applies rules both to the pre-merger

lattice point pairs and to the post-merger lattice points, in the

union rule. One of the lattices of the union is first determined .

to be a subset of the other, and its location in the lattice point fﬁiusrsb::tpZﬁ;‘;ﬁg?&gﬁtt;};o:i
pairs is the subset side. Pre-merger, the optimization moves the pere b 5 ¢ and ¢ supports locate. In-
segments with the locate capability of every lattice point on the stead of coiterating over b and ¢, we it-
subset side to the locators set. Post-merger, it remove all lattices ~ erate over b and locate from c to deter-
whose iterators are all subsets of the iterators of a prior lattice mine the region of the coordinate.
point. For example, if the top lattice point has a full iterator, then

we remove all iterators that do not have this lattice point.

56

3.4 Conclusion

In this chapter, I developed a comprehensive sparse iteration theory.
This theory included an algebra that describes sparse iteration spaces
as an indexed set operations of coordinate relations. It also included
the iteration graph expression language that describes how to iterate
through a sparse iteration space by recursively iterating over each di-
mension in turn. The iteration graphs can also express iteration over
a derived space that is then mapped to the original space in order to
enable fusion and tiling. Finally, I introduced an iteration lattice for-
mulation that describes iteration over a single dimension of a space
as a sequence of successively simpler iterations, ruling out coordinate
trees when they run out of values.

The sparse iteration space theory puts sparse operations on a firm
compiler foundation. It complements the polyhedral model for dense
iteration spaces. Further, it lets us apply many of the traditional dense
loop or iteration space transformations—reordering, loop collapsing,
strip-mining, and tiling—to sparse loops and iteration spaces. Finally,
the iteration lattice formalism enables us to reason about and gen-
erate code for data structure coiteration—joins!—over any number of
data structures simultaneously. And it includes merge algorithms (e.g.,
merge join), locate algorithms (e.g., hash join), and any combination,
with any number of data structures, all at once.

The sparse iteration space theory in this chapter is a foundation
for reasoning about optimizing and compiling code that iterates over
sparse iteration spaces. This includes tensor algebra, but I expect it to
grow to also include relational algebra and graph operations. These
operations also work on sets and can be formulated as iteration over
sparse Cartesian coordinate spaces.

In Chapter 4, I extend the iteration space algebra and the iteration
graphs to also include tensor computations. The resulting languages—
tensor index notation and concrete notation—let us express tensor com-
putations over sparse tensors. Chapter 5 shows how to compile the
concrete notation to imperative code using iteration lattices. Because
the concrete notation is an extension of iteration graphs, the code gen-
eration algorithm also works for iteration graphs in general. Finally,
Chapter 6 shows how to transform concrete notation, and hence iter-
ation graphs, to optimize iteration order.

57

Chapter 4

Tensor Notations

Tensor notations are powerful tools that describe relationships be-
tween tensors and how they should be combined. Mathematics ad-
vances with improvements in notation and the tensor index notation,
since its development in the 1890s [109], has been used to express
laws, relationships, and processes in physics, chemistry, engineering,
data analytics, and machine learning. The general theory of relativity
was first expressed as a tensor equation [51], quantum mechanics de-
pends on tensors [54], they let us describe relationships between data
sets [81], and tensor operations have now become the dominant lan-
guage of neural networks [1].

We will examine two tensor languages—a generalization of the ten-
sor index notation developed by Ricci-Curbastro and Levi-Civita [109]
and a new language I call the concrete index notation. Tensor index no-
tation is a declarative notation that describes the relationships between
components of the result and the operands. The concrete index nota-
tion, one the other hand, is procedural and describes how to compute a
result tensor from the operands. The power of the concrete index nota-
tion is that it lets us describe the order of operations, where temporary
values are stored, and how iterations map to hardware—precisely the
information we need to optimize computation. It does not, however,
include the details of how to iterate over irregular data structures—
while loops, if statements, and indirect memory accesses—and there-
fore requires no complicated analysis. These operations are introduced
during the lowering of concrete index notation to imperative IR that I
describe in Chapter 5.

4.1 Matrix Multiply Example

We will first walk through a matrix multiplication example (A = BC)
to get a sense of the notations and what the code generated from them
looks like. We will also see how different transformations of the con-
crete index notation, described further in Chapter 6, can have a pro-
found impact on the generated code. We will start out assuming that
all matrices are dense but as we transform the intermediate repre-

58

“The utility of a language as a
tool of thought increases with the
range of topics it can treat, but
decreases with the amount of
vocabulary and the complexity of
grammatical rules which the user
must keep in mind. Economy of
notation is therefore important.”

— Ken Iverson

4.1 Matrix Multiply Example
4.2 Tensor Index Notation
4.3 Concrete Index Notation
4.4 Concretize Algorithm

4.5 Conclusion

[Index Notation }

concretize

[Concrete Notation }

lower

schedule

[Imperative IR }

Figure 4-1: Compiler overview that
highlights the tensor index notation,
concrete notation, and concretize algo-
rithm described in this chapter.

sentation, we will change the data structures of first the operands
and then also the result to the compressed sparse row (CSR) format
(see Section 2.5 for a description of CSR). Although matrix multipli-
cation comes from the linear algebra subset of tensor algebra, the lan-
guage concepts, and compilation, applies the same way to higher-order
tensor expressions. Matrix multiplication can be expressed in tensor

index notation as
Ajj = ZBikaj-
k

This notation is a declarative description that gives the relationship
between each result component A;; and the operands as an expression
on the left-hand side.

The matrix multiplication can also be written in the concrete index
notation.?* Whereas tensor index notation is a declarative language
that describes the relationship between results and operands, concrete
index notation is a procedural language that describes computation
that must be carried out to compute the results. The resulting state-
ment, with dense pseudocode on the right, is
for i el

for jeJj
Aij=0

for k € K
Ajj += Bjj # Cy;

V,‘Vij Aij += Bikckj~

The concrete index notation statement includes outer forall statements
for the two free index variables i and j that index into the result. It also
includes an inner forall statement for the summation variable k and
replaces the assignment with a compound summation assignment +=.
The statement has operational semantics, with the order of the forall
statements giving the order of computation and the inner statement
describing the computation that occurs for each iteration. Further-
more, result variables are implicitly initialized to zero. The pseudocode
for the concretized matrix multiplication is given on the right. But, as
we will see, the generated code may look very different depending on
the storage formats of the tensors. Due to these storage formats, which
describe coordinate hierarchies, the concrete index notation must it-
erate over the sparse iteration space of the operands that is described
by an iteration graph. Figure 4-2 shows the iteration graph for the
above concrete index notation statement, where the matrix C is stored
in column-major order to avoid inefficient iteration through its data
structure in the reverse direction.

The concrete index notation statements that result from concretiza-
tion are often suboptimal. Reasons include traversing coordinate hier-
archies in a different order than their level order, scattering into data
structures that do not support random insert, or loop-invariant tensor
subexpressions. In fact, in many cases, concretized sparse expressions
are asymptotically suboptimal. By placing the reduction variable k in
the innermost forall statement, the concretized matrix multiplication
implements an inner product algorithm. This algorithm is typically the
best algorithm for dense matrix multiplication because it avoids scat-

59

24 In the taco compiler, users typi-
cally do not write concrete index no-
tation. Instead, they write index nota-
tion and rely on taco to concretize it to
concrete notation, where optimizations
take place. The concrete index notation
is thus used as an intermediate repre-
sentation (IR).

Figure 4-2: The iteration graph of the
inner product matrix multiplication al-
gorithm. The iteration graph assumes
C is stored column-major. Because the
reduction variable k is nested inside
the free variables, there are no scat-
tering behavior. But since there are
no operand data structures connecting
i and j, the algorithm requires iterating
over the entire dense i-j iteration space.

tering into the result matrix®® For sparse multiplications, however, it
has two issues. The first issue is due to the (often asymptotically) high
cost of iterating through the levels of a sparse coordinate hierarchy
data structure out of order. If this forall statement ordering is to let us
iterate over the coordinate hierarchies of matrices B and C in order, B
must be stored in row-major order (e.g., CSR) and C must be stored in
column-major order (e.g., CSC). The second issue is that the inner loop
must coiterate over a sparse row and column. This coiteration requires
an intersection merge algorithm that does work proportional to the
number of components on the row with fewest components, instead
of proportional to the intersection between them. Because the inter-
section can be smaller than the smallest of the two vectors, a merge
algorithm may iterate over coordinate space points that do not con-
tribute to the result.

By reordering the forall statements, we can change the matrix mul-
tiplication algorithm to a linear combination of rows algorithm that
computes a row of A as a sum of rows from C scaled by a row from
B. This algorithm does work only proportional to the number of mul-
tiplication that contributes to the result. We optimize concrete index
notation statements by applying scheduling transformations, and one
of these transformations is the reorder transformation. To obtain a lin-
ear combination of rows algorithm, we reorder the forall statements of
j and k, yielding

A=20
for iel
for k e K
for je]J
Ajj += Bjg = Cy;

VinVj Aij += Bikckj-

Figure 4-3 shows the corresponding iteration graph. The new order of
the forall statements iterates through both operands in row-major or-
der, which means a sparse row-major CSR data structure yields good
performance. Furthermore, this algorithm does not require the merg-
ing of compressed data structures, the rows of B and C because the only
merge happens at k, which indexes a compressed row and a dense col-
umn. The k forall statement, however, is now above the j forall state-
ment resulting in scattering behavior into A because A is indexed by
j and the k causes each coordinate in j to be visited multiple times.
Scattering into the result matrix A is not an issue if its format supports
efficient O(1) insertion, such as a dense matrix.

Figure 4-4 shows C code generated from the linear combination of
rows concrete index statement, where the operands are CSR matrices,
and the result is a dense matrix. Figure 4-6 provides an example CSR
data structure for the matrix B. Because it contains the subexpression
Bk, ititerates over B’s sparse matrix data structure with the loops over
i (line 2) and k (lines 3—-4). The loop over i is dense because the CSR
format stores every row, whereas the loop over k is sparse because
each row is compressed. To iterate over the column coordinates of the
ith row, the k loop iterates over [B_pos[i], B_pos[i+1]) in B_crd.

In many applications, the result of a sparse matrix multiplication

60

25 This coding pattern, where free vari-
ables are collected in the outer loops,
computes results separately without
any scattering behavior. It is often
called owner-computes or output sta-
tionary and is particularly useful in
dense computations, due to ease of vec-
torization and parallelization. In com-
putations where the result is sparse,
however, it can be problematic because
one does not know a priori what result
components are nonzero and therefore
need to be computed.

g

2

;
@

Figure 4-3: The iteration graph of the
linear combination of rows matrix mul-
tiplication algorithm. The matrix C is
now stored row-major. The iteration
is now asymptotically efficient, but the
last free variable j is nested under the
reduction variable k resulting in values
being scattered into the result matrix A.
Since A is a compressed matrix, this is
asymptotically inefficient.

Bpos [0]2]3]6]
Bcrd [1[3]2]o]1]2]
B [afbfcldle]f]

Figure 4-6: An m X n matrix B and its
sparse CSR data structure.

1 memset(A, 0, Al_size * A2_size * sizeof(float)); 1 memset(row, @, row_size x sizeof(float));
2 for (int 1 = 0; i < 1I; i++) { 2 for (int i = 0; 1 < 1I; i++) {

3 for (int pB = B_pos[i]; pB < B_pos[i+1]; pB++) { 3 for (int pB = B_pos[i]; pB < B_pos[i+1]; pB++) {
4 int k = B_crd[pB]; 4 int k = B_crd[pBl;
5 for (int pC = C_pos[k]; pC < C_pos[k+1]; pC++) { 5 for (int pC = C_pos[k]; pC < C_pos[k+1]; pC++) {
6 int j = C_crd[pC]; 6 int jp = C_crd[pCl;
7 A[i*n+j] += B[pB] * C[pCI; 7 row[jp] += B[pB] * C[pCI;
8 } 8
9 } 9 }
10 } 10
1 for (int pA = A_pos[i]; pA < A_pos[i+1]; pA++) {
12 int jc = A_crd[pAl;
13 ALpAl = row[jc];
14 row[jc] = 0.90;
503
16 %}
Figure 4-4: A sparse matrix multiplication, A;; = Figure 4-5: A sparse matrix multiplication where

2k BikCrj, where the operands are spares and the the operands and the result are sparse. Sparse ma-

result is dense. The sparse matrices are stored with trices do not support O(1) insert so the code uses a

the CSR format and an example of the data struc- dense row workspace. The index data structures of

tures of B is given in Figure 4-6. the result matrix A have been pre-assembled and all
memory pre-allocated.

is sparse, and we may want the result matrix to also be stored in the
CSR format. To gain intuition for when the result is sparse, consider a
square matrix with one row and one column for every person in a so-
cial network. This matrix has a nonzero component wherever the per-
son whose row the component is on is friends with the person whose
column it is on. A multiplication of the matrix by itself acts like one
step in a breadth-first search starting at every person. Thus, the re-
sulting matrix will have nonzero components wherever two people are
friends and wherever two people share a friend. The Milgram experi-
ment estimated the degree of separation in the US population to be as
high as six [94]; therefore, a single multiplication leaves most matrix
components at zero. Other matrices, such as a finite element stiffness
matrix of a mesh, have far higher degrees of separation, meaning the
results of multiplying them are highly sparse.

A CSR result matrix complicates the kernel because the assign-
ment on line 7 is nested inside the reduction loop k. This nesting or-
der causes the inner loop j to iterate over and insert into each row of
A several times. Compressed data structures, however, do not support
fast random inserts (only appends), and inserting into the middle of a
CSR matrix costs O(nnz) due to data movement.

The precompute transformation lets us sidestep the high cost of in-
serting into a compressed data structure, by rewriting the concrete in-
dex statement to accumulate results into a temporary row vector with
O(1) insertion, followed by a copy of the row to the end of the com-
pressed result matrix. I refer to such temporary tensors as workspaces.
Workspaces are often tensors of lower order than the result tensor,
that support efficient random insertion, such as dense or a hash map.
The concrete index notation that results from applying the precompute
transformation to compute each row into a row workspace is

61

for iel
w=0
for k e K
for je]J
wj += Bik*ckj
for jeJ
Aij:‘vj

V,‘(Vj A,’j =Wwj where Vij wj += Bikckj)

A where statement precomputes an expression and stores the result in
a temporary workspace. In the concrete index statement above, one
row at a time is computed and appended to A. The computation of the
row into the workspace w is described on the right-hand side of the
where statement. Figure 4-7 shows the iteration graph of the expres-
sion, where iteration domain over the workspace is concatenated to
the second dimension.

Figure 4-5 shows C code generated from the above concrete index
notation statement where both the operands and the result are stored
in the CSR matrix format. The code assumes that A has been pre-
assembled and the second loop can therefore replace the iteration over
w with iteration over the ith row of A. Pre-assembling indices, com-
mon in simulation codes, increases performance when assembly can be
moved out of inner loops, but it is also possible to simultaneously as-
semble and compute. Because values can be scattered efficiently into
a dense workspace, the loop nest k, j (lines 3-9) looks similar to the
kernel in Figure 4-4. Instead of storing values into the result matrix A,
however, it stores them in a dense workspace vector. When a row of
the result is fully computed in the workspace, it is appended to Ain a
second loop over j (lines 11-15).

4.2 Tensor Index Notation

The tensor index notation? is a tensor language where an indexed
assignment describes how each component on the left-hand side re-
lates to an expression of the operands on the right-hand side (e.g., Fig-
ure 4-8). The expressions on the right-hand sides consist of tensor
operands indexed by index variables, scalar operators that combine
the indexed tensors, and reduction expressions that introduce an in-
dex variable that is reduced (e.g., summed) over. An index variable is
a variable that is bound to a set of coordinate values termed its domain.
These values correspond to values along tensor modes, and index vari-
ables can therefore be used to index into tensor modes. We call index
variables that index into the result free variables, and the index vari-
ables that are bound to a reduction expression reduction variables.
Figure 4-9 shows the grammar of index notation. It contains only a
few common binary expressions and reduction expressions; however,
it can readily be extended with new operators and reductions.
Reduction expressions consist of a binary operator &, a reduction
variable k, and an expression E. It is evaluated by calculating E for ev-
ery value of k, combining the results with @. Common reduction oper-
ators have special reduction symbols, such as addition (summation }})

62

)

&

I
o

Figure 4-7: The iteration graph of
the linear combination of rows matrix
multiplication algorithm, with a row
workspace vector w. This algorithm is
efficient and avoids scattering into the
compressed mode of the result A.

g
o

)

26 The tensor index notation I use in
this dissertation is more general than
the one used in the tensor algebra be-
cause it supports arbitrary nesting of
reductions, additions inside reductions,
and broadcast semantics for additions
as well as multiplications. In Chap-
ter 9, I describe other possible exten-
sions such as support for operations in
any semiring, support for general oper-
ations, and support for stencils.

Ajj = Z BijkCri
X

Ags1 = Z Bozk Ck1
X

Figure 4-8: A tensor index notation ex-
ample of a 3-order tensor multiplied by
a matrix. The second expression shows,
with indices separated by commas, the
expression that describes the compo-
nent of A at location (0, 3, 1).

assignment := access “=” expr operator := “-”expr
expr := reduction expr “+” expr
operator expr “-” expr
access expr expr
literal access := tensoripdices
wo wn o .
(" expr) indices := indexsx
. — “« »
reduction := “}”i dices€XPT

Figure 4-9: The grammar of tensor index notation, where tensor, index and literal are
identifiers. The notation can be extended with new operators and reductions.

and multiplication (product []). Other operators are simply indexed
by the reduction variable, such as ming. Syntactically, the expression
E is the next term after the reduction symbol unless parentheses are
used to define scope, such as in > (br + ci).

The notation also supports powerful broadcast semantics when
one or more of the operands are not indexed by one or more of the
index variables, such as a; = }; Bjjc;j or A;j = B;j+c; where the vector
c is not indexed by i. When an index variable is missing from a ten-
sor access expression, then that access expression is broadcast across
the variable’s index set.?’” Hence, in the above examples, the vector c is
broadcast across i, meaning that it is respectively multiplied and added
to every row of B.

4.3 Concrete Index Notation

The concrete index notation, or concrete notation for short, is a ten-
sor language that specifies the order of computation and the storage
location of intermediate computations (e.g., Figure 4-10). It is an ex-
cellent target for optimizing transformations that change the order of
computation and that introduce temporary tensors to reduce work, in-
crease locality, and take advantage of hardware features such as vec-
torization and parallelism. Although it is possible to express compu-
tations directly in concrete notation, such programs are not perfor-
mance portable because they include optimization decisions that may
only apply to one machine architecture. Instead, the concrete notation
is intended to be an intermediate representation that is targeted by the
optimizing transformations in Chapter 6.

Grammar

The concrete index notation comprises five statements—assignment,
forall, where, sequence and multi—and a scalar expression language
(Figure 4-11). The assignment statement assigns the result of a scalar
expression to a tensor component, the forall statement executes a state-
ment over an index range inferred from tensor dimensions, the where
statement creates temporaries that store subexpressions, the sequence

63

27 An access expression that lacks an
index variable will be broadcast across
the full index set of the index variable,
even if the index variable indexes an-
other operand that is sparse and there-
fore only has values at a subset of the
coordinates of the index variable’s in-
dex set.

Vi¥;Vi A;ji =t where t += B;;;Cy;

Figure 4-10: A concrete index notation
example of a 3-order tensor multiplied
by a matrix (A;j; = Xk BijkCri)-

notation := stmt [*” environment] expr:= operator environment
stmt := forall access .
. relation
where literal
sequence (" expr”)
multi operator := “-”expr bound
assignment expr “+” expr tag :
forall := “V”jnex stmt expr “-” expr
where := stmt “where” stmt expr expr
sequence := stmt “;” stmt access := tensorindices
multi ;== stmt “|” stmt indices := index*
assignment := access “=" expr

access “+=" expr

«

index

index index ‘
coplit(d“ sy’

“parallelize(” index " p
“unroll(”

((relation | bound | tag))=

“collapse”
s

3 >

> index

” index index

“bound(” index “:s b «)”

RN

r «)»
W€y @y

index “ u®)

Figure 4-11: The grammar of concrete index notation. I show only some incrementing assignments and binary expressions and
others are possible. The grammar rules literal, tensor, index, d, s, b, p, r, and u are identifiers

statement reuses results, and the multi statement computes two results
at the same time.

Concrete index notation expressions have two types of variables:
index variables and tensors. An index variable is bound to a set of coor-
dinate values by a forall statement and takes on each of these values at
different iterations. They are also used in access expressions to access
the tensor components to operate on in assignment statements. Index
values could, in principle, be anything—numbers, strings, names, or
webpages—but I only treat index values that are integers in this dis-
sertation. Tensors are maps from coordinates to scalar components
(see Chapter 2. They are only used in access expressions where they
are indexed in each mode by an index variable or an index literal. The
type of the index values must match the type of the corresponding ten-
sor modes, and the index values must be a subset of the index values
in the tensor mode. The tensor components are scalar values that can
be a type that can be computed on by the operators they are used in.
Common types are integers of different bit-widths, floats and doubles,
complex numbers, and booleans.

The notation rule describes a complete concrete index notation
statement. It consists of a statement body and an optional environ-
ment. The statement body can be either of the five statements, which
in turn can be nested. The environment consists of relations, bounds,
and tags. The relations relate derived index variables to the index vari-
ables they derived from. I describe them in Section 3.2, Section 6.3 (col-
lapse), and Section 6.4 (split). The bounds place a constraint on the size
of the universe of an index variable, and are describes in Section 6.5.
And the tags specify how the index variable’s forall statements should
be lowered to imperative code, and are described in Section 6.6. Each
index variable can be associated with at most one bound and one tag
and can at most be the target of one relation.

An assignment statement computes the value of a single tensor
component in the result tensor Figure 4-12). The result of an assign-

64

Figure 4-12:

Ai... = expr

Assignment statements

compute a scalar expression and assign
it to a component of a result tensor.

ment expression is one tensor indexed by index variables i... that
are bound by enclosing forall statements and iterate through a set of
index values. Expressions in concrete index notation cannot contain
reductions. Rather, an assignment statement may be a compound as-
signment, which means that they use some operator to combine the
result computed on the right-hand side. For example, an incrementing
assignment += adds the value computed in each forall iteration to the
result tensor.

A forall statement binds an index variable i € I to a set of index
values I, called its range, and executes a statement stmt once for each
index value (Figure 4-13). The range of the index variable must be the
same set of index values as the mode of every tensor that it is used
to index into. It can therefore be inferred from the tensor modes and,
for ease of notation, we omit it when we write forall statements. A
forall statement does not define an execution ordering and can be con-
figured to be sequential, parallel, or vectorized (see Section iteration
space mapping transformations).

A where statement consists of a producer statement stmt,, that
computes temporary tensor variables that are consumed as operands
in a consumer statement stmt, (Figure 4-14). The temporary tensors,
also referred to as workspaces, are defined and initialized on entering
the where statement. They can be written to in the producer state-
ment and exported as read-only tensors to the consumer side, where
they can be used as operands. Their scope is the where statement, their
lifetime is its duration of the where statement, and they are semanti-
cally recreated for each invocation (i.e., for each iteration of outer forall
statements). A where statement can be used to introduce temporaries
that can be scattered into, that are cheaper to coiterate over, and that
can be used to hoist loop invariant code (see Section 6.2).

A sequence statement computes a tensor in two stages. It con-
sists of a statement stmt; that defines a tensor and a statement stmt,,
that mutates it (Figure 4-15). Sequence statements can be nested to
compute a tensor in multiple stages: stmty; stmty, ; stmty,; A
sequence statement can be used to remove temporaries by instead suc-
cessively adding additional computations to the same result (see Sec-
tion 6.2).

A multi statement combines two statements stmt; and stmt, that
compute different results (Figure 4-16). The statements may execute
in any order and can share operands. A multi statement can be used
to compute two tensors inside the same shared outer loop.

Connection to Iteration Graphs

The concrete notation has a close connection to iteration graphs. Con-
crete statements compute tensor expressions with sparse tensors and
may, due to the algebraic properties of their operators, iterate over
only a sparse subset of the expression’s full iteration. The concrete
notation lowering machinery in Chapter 5 converts a concrete forall

65

V; stmt

Figure 4-13: Forall statements execute
a statement for every value of an index
variable’s range.

stmt, where stmt,

Figure 4-14: Where statements produce
one or more temporary tensors in a pro-
ducer statement that are then consumed
as operands in a consumer statement.

stmty; stmt,,

Figure 4-15: Sequence statements de-
fine one or more temporary tensors in
a definition statement that are then mu-
tated in a mutate statement.

stmt; | stmt,

Figure 4-16: Multi statements combine
statements with separate result.

statement to an iteration lattice, by way of iteration graphs and the
forall index variable’s iteration domain. I described how to convert it-
eration graphs to iteration domains, and iteration domains to iteration
lattices in Chapter 3. This section describes how to convert a concrete
notation statement into an iteration graph.

We can turn a concrete notation statement into an iteration graph
that only iterates over a sparse iteration space, by taking advantage of
the algebraic properties of the operators in the concrete expressions.
Specifically, because sparse tensors compress out zeros, we will take
advantage of the zero annihilators and zero identities.?® An operator
is annihilated (or absorbed) by zero if applying it to any value, and a
zero yields a zero. For example,

ax0=0

for all values of a. Owing to the fact that both operands must be
nonzero for the result to be nonzero, it is sufficient to iterate over the
intersection of two tensors combined by an operator with a zero an-
nihilator. Furthermore, an operator has zero as its identity element if
applying it to any value, and a zero yields the value. For example,

at+0=a

for all values of a. A consequence of this property is that applying the
operator to two zeros yields a zero. Because at least one operand must
be nonzero for the result to be nonzero, it is enough to iterate over the
union of two tensors combined by an operator with a zero identity.

We can use these insights to define an algorithm to convert a con-
crete notation forall statement to an iteration graph expression. The
algorithm recurs bottom up on the forall statement and applies differ-
ent rules to the statements and expressions in its body based on their
type. These rules combine the iteration graphs produced at substate-
ments and subexpressions and are listed below.

Access Return an indexed coordinate relation with the same coordi-
nates as the nonzero components of the tensor.

Literal Return a scalar coordinate relation.
Negation Return the iteration graph produced for the subexpression.

Parenthesis Return a parenthesisiteration graph expression that con-
tains the iteration graph produced for the subexpression.

Addition and Subtraction Return the union of the iteration graphs
produced for the left and right subexpressions.

Multiplication Return the intersection of the iteration graphs pro-
duced for the left and right subexpressions.

Assignment Statement Return the iteration graph expression pro-
duced for the right-hand side of the assignment.

66

28 This dissertation does not cover the
generalization of these ideas so that any
function can be used in index and con-
crete notation expressions.

Forall Return aforall iteration graph expression, the index variable of
which is the same as the concrete notation forall and the body of
which is the iteration graph produced for the concrete notation

forall body.

Where Return the consumer iteration graph where the producer re-
sult (the temporary) is replaced by the producer iteration graph.

Sequence and Multi Return the union of the iteration graphs pro-
duced for the two substatements.

4.4 Concretize Algorithm

The concrete index notation was designed to be an intermediate rep-
resentation for expressing program transformations and optimizations
and not a primary language users would write their programs in. The
reason is that programs written in concrete index notation are more
difficult to read than equivalent programs in index notation and also
interleave application code and optimization decisions. They therefore
tend to be specific to one machine architecture and less performance
portable.

The intended usage model is therefore that users write their pro-
grams in tensor index notation that is then transformed to concrete
index notation through a process I call concretization (see Figure 4-
1). This process is designed to be simple so that users can predict how
the concretized code will look. Optimizations are then applied through
a sequence of transformations of the concrete notation expressed with
a scheduling language (Chapter 6).

The concretization algorithm converts an index notation assign-
ment statement into a concrete notation statement. It replaces reduc-
tion expressions with compound assignments inside where statements
and wraps the resulting statement in forall statement for the index
variablefree variable. Each reduction expression is replaced by a where
statement. The producer statement is a forall statement over the reduc-
tion variable that contains a compound assignment with the reduction
operator. The left-hand side of the assignment is a scalar temporary
variable, and the right-hand side is the reduced expression. The con-
sumer statement is the original index statement with the reduction
expression replaced by the temporary tensor. The following matrix-
vector multiplication plus vector example (a = Bc + d) demonstrates
this rewrite:

a = Z (Bijcj) + di = V; (a,- =t+ dl' where Vj I += Bijcj) .
J
One simplification is applied to make the concrete index notation state-
ments cleaner for the subsequent scheduling transformations. The

simplification is applied if the assignment statement that consumes the
temporary only has the temporary on its left-hand side and is either

67

not a compound assignment or is a compound assignment with the
same operator as the compound assignment that produced the tempo-
rary. The simplification

1. hoists the loop in the producer statement out of the where state-
ment,

2. replaces the temporary tensor on the consumer side with the
right-hand side of the assignment that produced it and replaces
the consumer assignment with a compound assignment with the
same operator as the assignment that produced the temporary,
and

3. replaces the where statement with its consumer side.

The step-by-step effect of this transformation is shown in the following
matrix-vector multiplication example (a = Bc):

Vi (a; =t where V; t += Bjjc;)
V;V¥; (a; = t where t += B;jc;)

ViV, (a,- += B;jc; where t += Bl-jcj)
ViV a; += Bjjcj

Finally, the concretization algorithm wraps the assignment statement
in one forall statement for each index variablefree variable in the in-
dex notation statement, nested by the order they index the assignment
statement’s left-hand side.

4.5 Conclusion

In this chapter, I introduced two tensor notations. The declarative ten-
sor index notation describes the relationships between components of
the result and the operands. It is intended to be used by the end user.
The concrete notation, on the other hand, is primarily intended as an
intermediate representation. It specifies how to compute results by it-
erating over an iteration space made sparse by the algebraic properties
of scalar operators. I have also described a concretization algorithm
that translates tensor index notation to concrete notation.

The tensor languages and the translation let us convert the ten-
sor index notation provided by the user to computation over sparse
iteration spaces. They therefore facilitate sparse imperative tensor
algebra code generation. Furthermore, the concrete notation lets us
reason about optimizing transformations on tensor algebra iteration
spaces before we introduce sparse imperative constructs such aswhile
loops, if statements, and indirect memory accesses. This separation
of transformations from sparse code is an essential design feature be-
cause sparse code makes it substantially difficult to analyze and opti-
mize sparse code.

68

In Chapter 5, I show how to generate imperative code from the
concrete notation, using the connection to iteration graphs and itera-
tion lattices. Further, in Chapter 6, I describe several transformations
that apply to concrete notation to optimize its sparse iteration, its com-
putations, and its mapping to imperative code and parallel hardware.

69

Chapter 5

“Smart data structures and dumb
code works a lot better than the
other way around.”

— Eric Raymond

Coiteration Code Generation

In this chapter, I use the ideas and intermediate representations from
the preceding chapters—coordinate trees, concrete notation, iteration
graphs, and iteration lattices—to describe a code generation algorithm
that lowers concrete notation statements to imperative code. Figure 5-
1 highlights the lower algorithm in the compiler flow. It is applied after
optimizing transformations have been applied to the concrete nota-
tion, as described in the next chapter. The lower algorithm takes in
a concrete notation statement and produces imperative loops. These
loops iterate over the concrete statement’s sparse iteration space by
coiterating over the data structures of its operands. The lower algo-
rithm also produces code to compute result values and code to assem-
ble result index data structures. It can be configured to emit compute
code, assembly code, or both, which makes it possible to reuse the in-
dex data structure of the result when the values of the operands have
changed but not their index data structures.

5.1 Algorithm Overview

Figure 5-2 shows the pseudocode for the lowering code generation al-
gorithm. It operates recursively on statements in the concrete nota-
tion, and it has one lower function for each statement type. The figure
uses color coding to separate the algorithm’s control flow (black text)
from the statements that emit code (colored text).

Most of the action is in the forall lower function. It generates code
to iterate over one index variable, which describes one dimension of
the iteration space. (The recursion composes per-dimension iteration
into multi-dimensional iteration.) The forall lower function has two
salient features: nested loops over iteration lattice points and state-
ment simplification before the recursive call.

The first statement in the forall lower function constructs an iter-
ation lattice from the forall loop by converting it to an iteration graph,
extracting the index variable’s iteration domain, and building a lat-
tice from it. Section 4.3 describes how to convert concrete notation
to an iteration graph, and Chapter 3 describes how to get iteration

70

5.1 Algorithm Overview

5.2 Coiteration Code

5.3 Derived Iteration Spaces
5.4 Compute and Assembly

5.5 Conclusion

{ Index Notation j

concretize

{ Concrete Notation

lower schedule

[Imperative IR }

Figure 5-1: Compiler overview that
highlights the lowering algorithms de-
scribed in this chapter.

function LowER(forall statement Sy, of index variable i)
let £ be an iteration lattice constructed from Sgoran

Emit initialize iterators > Section 5.2
for each lattice point £, in £ do
Emit loop header > Section 5.2
Emit access iterators > Section 5.2
Emit map candidate coordinates to the original space > Section 5.3
Emit resolve the coordinate of i > Section 5.2
Emit map resolved coordinate to each derived space > Section 5.3
Emit locate from locators > Section 5.2
for each lattice point £, < £, in £ do
Emit conditional header > Section 5.2

let Sgimplificd be a statement constructed from
the body of Storan by removing operands
that have run out of values in £,

LOWER(Ssimpliﬁed)
Emit assembly code > Section 5.4
Emit conditional footer > Section 5.2
end for
Emit advance iterators > Section 5.2
Emit loop footer > Section 5.2
end for

end function

function LOwWER(assignment statement Sassignment)
Emit compute code > Section 5.4
end function

function LowER(where statement Syhere)
LOoWER(producer statement of Syhere)
LOWER(consumer statement of Syhere)
end function

function LOWER(sequence statement Sgequence)
LOoWER(definition statement of Ssequence)
LOWER(mutation statement of Sgequence)
end function

function LowER(multi statement Sp,1;)
LOWER(left statement of Syut)
LOWER(right statement of Syyyiti)
end function

Figure 5-2: Algorithm that lowers concrete notation to imperative IR. The LowER function recurs on concrete
notation statements, and each call invokes the lower function that match the statement type. Black statements
are the control flow of the lower algorithm, while colored statements emit code. Blue statements emit code to
iterate over the concrete notation’s sparse iteration space and green statements emit code to assemble result
data structures and to compute values that go into those data structures.

71

domains from iteration graphs and iteration lattices from iteration do-
mains. The lowering algorithm uses the lattice to generate while loops
and if statements that coiterate over tensor coordinate trees. It gen-
erates these statements using two nested loops over lattice points: the
outer loop generates while loops that coiterate over coordinate seg-
ments until they run out of values, and the inner loop generates if
statements that execute different code in different regions of the itera-
tion domain. The inner loop iterates over only the lattice points below
the current point in the outer loop, because the regions of the other
lattice points have already run out of coordinates when we get to this
point. See Section 3.3 for more information on iteration lattices.

The current lattice point in the inner loop is used to simplify the
body of the forall statement before it is passed down the recursion.
The simplification sets tensor access expressions in the forall body to
zero if they have run out of values in a prior lattice point, which is the
case if the tensor is not included in the current lattice point. The sim-
plification then further algebraically simplifies the concrete statement
by propagating the zeros. For example, if B; runs out of values in

ViV;Vi(Bix + Cik)Dg;js
then Bjy is set to zero and the expression simplifies to
ViV;VkCixDy;.

The simplification creates a peculiar recursion pattern, where the re-
cursive call for each lattice point emits different code into each if
statement. But the simplified code is cleaner and does not need to
guard against out-of-bounds data structure accesses.

In the next sections, I describe the code emitted by the lowering
algorithm. The lowering algorithm has several colored emit state-
ments that emit blocks of imperative code with different functions.
I divide the emit statements into statements that generate coiteration
code (Section 5.2), statements that map index variables to the current
index variable’s universe (Section 5.3), and statements that compute
values or assemble result data structures (Section 5.4). I give examples
of emitted code in the C language, although the taco compiler emits
an imperative IR that is specialized to C, CUDA, or LLVM.

The lowering algorithm has an environment with information about
iterators. There is one level iterator for each coordinate tree level, as
well as one universe iterator for each index variable. The iterators are
compile-time concepts: they do not iterate over data structures. In-
stead, they provide imperative code to do the iteration. This code is
retrieved from the level types in the tensor formats, which I described
in Chapter 2. The iterators of a tensor coordinate tree are chained to-
gether, and the iterator at level k + 1 iterates over the segment at the
position described by the iterator at level k. The iterator chaining thus
affects the code to compute the beginning and end of coiteration loops.

72

5.2 Coiteration Code

The blue statements in Figure 5-1 emit imperative code that coiterates
over the index data structures of the tensor coordinate trees. I describe
each emit statement and give C examples that iterate over compressed
levels and universe iterators.

Iteration Variable Naming Conventions

There are three types of induction variables involved. Each iterator
that iterates over a coordinate tree segment has one variable that tracks
its current position and one variable that tracks its current coordinate.
The naming convention of the position variable of an iterator is the let-
ter p followed by the name of the coordinate tree level of the segments
that the iterator iterates over. For example, the position variable of an
iterator over segments of B is named pB2. The naming convention of
the coordinate variable of an iterator is the name of the index variable
whose domain the iterator contributes to, followed by the name of the
coordinate tree whose segments the iterator iterates over. For exam-
ple, the coordinate variable of an iterator that is part of index variable
i’s domain and that iterates over a coordinate tree B is named iB.
The current coordinate of each iterator is called a candidate coor-
dinate. The candidate coordinates may differ from each other at any
given iteration, depending on what coordinates are stored in their re-
spective coordinate trees. They must, therefore, be combined to deter-
mine the coordinate of the current iteration, called its resolved coordi-
nate. The merge strategy considers the smallest candidate coordinate
to be the resolved coordinate, and it uses the min function to find it.
The variable of the resolved coordinate is named after the iterator. For
example, the candidate coordinate variable of iterator i is named 1i.

Emit initialize iterators

The first step is to emit code to define and initialize one loop induction
variable for each segment in the iterator set of the entire lattice, which
is the union of the iterator sets of its lattice point. These induction
variables are integers, and the initialization expressions are the ibeging
results of the bounds level function in each iterator’s iterator capability.

If the iterator capability is a position iterator, then the naming con-
vention for the induction variable is a p followed by the level name, and
the naming convention for the variable that holds the end of a seg-
ment is p followed by the level name followed by _end.?’ For a level
B, where the i coordinate index into the parent level By, the generated
C code is:

int pB2 = B2_pos[il];
int pB2_end = B2_pos[it+1];

If the iterator capability is a coordinate iterator, then the naming
convention is the name of the forall’s index variable followed by the

73

29 Note that the end of segment vari-
ables are often collapsed into the loop
bounds for code readability.

name of the coordinate relation of the level (e.g., iB). Universe iterator
variables are named after the index variable, as are segment iterator
induction variables if there is only a single level iterator. The generated
initialization code for a universe induction variable over i is:

int i = 0,

If the resulting tensor is appended to, as opposed to inserted into,
then this step also emits code to define the position variable of the last
result level and initialize it to 0. For example:

int pA2 = 0;

Finally, suppose an index variable i is split into two nested index
variables iy and i;, where i iterates over blocks and i; iterates through
each block. Since each iteration of iy jumps to the next block, the iter-
ators of i; must be initialized by searching for the block start. For ex-
ample, suppose we split i into iy and i; in the computation a; = b; +¢;,
where b and ¢ are compressed vectors. Then the i1b and ilc itera-
tors over i are initialized to the start of the current block indexed by
ip. If b and ¢ support the locate capability, then the emitted code can
use it to find the block start and end positions in b and c. Compressed
formats do not support locate, however, so the code must perform a
search. If the compressed formats are ordered, then the code can use a
binary search; otherwise it must use a linear search. For example, the
initialization of the iterator of b in this example is:

int pb
int pb_end

search(b_crd, b_pos[0], b_pos[1], i@ =*block_size);
search(b_crd, b_pos[@], b_pos[1], (i0+1)xblock_size);

The search function that initializes pb searches the b_crd array, in
the range [b_pos[0]:b_pos[1]), for the value of i0*block_size. It
returns the position of i@*block_size in b_crd or, if b_crd does not
contain i@*block_size, the position of the largest value that is smaller
than it. The search function is used in the SpMV kernel optimized for
GPUs given in Figure 1-14.

The search function is also used to initialize the upper variables of
a collapsed set of index variables. Figure 3-15 shows how a collapse
relation replaces the nested iteration over two nested index variables
with the iteration over their Cartesian combination. In the generated
code, this means that the two nested loops are replaced by a single
loop that iterates across all the segments of the coordinate tree level(s)
of the bottom variable. But the coordinates of the top variable or vari-
ables must also be computed. The search function can be used to com-
pute the top variable’s coordinates for each of the bottom variable’s
coordinates inside the generated loop for bottom variable. But, if the
coordinate trees the top variable iterates over supports an iteration
capability, then a tracking optimization can be applied. The tracking
optimization is applied during code generation and produces code that
initializes the upper variable(s) once before the loop of the inner vari-
able is executed, and then advances them each time the inner variable

74

loop reaches the end of one of their segments. The initialization uses
the search function, and the upper iterator advancement is described
in the section below on emitting code to advance iterators.

Emit loop header

We saw in Section 3.3 that iteration lattices describe iteration through
successive regions of an index variable’s iteration domain. In code,
this results in a sequence of while loops, one for each region. Each
of them coiterates over segments or coordinate universes until one of
them runs out of coordinates. The header of each while loop tests
whether any of the iterators have run out of coordinates. This test
is done by checking whether the iterator induction variables are still
less than the value of the end result of the bounds level function of
the iterator’s iterator capability. If two coiterating segments B, and
C,, where the i coordinate indexes into the parent levels By and C; are
both compressed, then the while loop header is:

while (pB2 < B2_pos[i+1] && pC2 < C2_pos[i+1) {

Emit access iterators

The next step is to emit code to access each iterator using its itera-
tor access capability. This code defines and initializes the candidate
coordinate variables of position iterators and the position variables of
coordinate iterators. For a compressed iterator B, that partakes in it-
erating over the j index variable, the emitted access code is:

int jB = B2_crd[pB2];

Emit resolve the coordinate of i

Each iterator in the loop lattice point £, produces a coordinate for
each while loop iteration, either from its induction variable or from its
access function. From these candidate coordinates, the generated code
must compute a single resolved coordinate that is the coordinate of
the current while loop iteration. Since the lattice point iterators are
guaranteed to be ordered the same way, we choose the smallest of the
iterator coordinates as the resolved coordinate for this iteration. The
resolved coordinate is named after the current forall’s index variable,
and any segment whose coordinate is equal to the resolved coordinate
is called an active segment. The emitted C code to resolve the current
coordinate when coiterating over ib, ic, and iD is:

int i = min(ib, ic, iD);

Emit locate from locators

With the resolved coordinate computed, the next step is to retrieve its
position in every locator segment in the lattice point by calling the
locator’s locator level function. Following this step, the emitted code

75

has computed the current coordinate and position of every active seg-
ment. The emitted C code to locate the position of a dense segment
B,, where m is the size of the i dimension, is:

int pB2 = (i * m) + j;

Emit conditional header

The code generation algorithm emits one if statement for every lattice
point £, underneath the loop lattice point £, in the lattice structure
(ie., Ly < Ly). These if statements check which iteration domain re-
gion/intersection the resolved coordinate lies in by testing what seg-
ments have that coordinate and are therefore active. Since the lat-
tice points are partially ordered, we can nest these if statements so
that we test only whether the coordinate is in the region described by
L, if it is not in any of the regions described by lattice points above
(greater than) £,;. Thus, we emit an if statement for the first lattice
point and an if statement nested inside an else statement for the oth-
ers. The if statement’s test checks whether each segment in the if
statement’s lattice point are at the resolved coordinate by comparing
the segment’s coordinates with the resolved coordinate. The emitted
nested C if statements for the sub-lattice in Figure 5-3, whose lattice
points are underneath £, is:

if (ic ==1 88 id == i 88 ie == i) {

/...

}
else if (id == i && ie == 1) {
/7 ...

3

else if (ic == 1) {
/7 ...

3

Emit advance iterators

The final step is to emit code to advance the lattice iterator induction
variables. An iterator induction variable is advanced if its coordinate
was consumed in the current iteration, meaning the coordinate value
is equal to the resolved coordinate. The emitted C code to advance the
position induction variable of a compressed segment B; is:

if (iB == i) pB2++
This code can be replaced with an optimized variant that avoids an if
statement:
pB2 += (int)(iB == i);

A dense segment results in an increment of its coordinate induc-
tion variable. Since a dense segment has every coordinate (is full), we

do not need to test whether it contains the resolved coordinate. There-
fore, the emitted C code for a dense segment c; is just:

icH+;

76

Cb)(dr)@)
(o)

Figure 5-3: The sublattice of the lattice
points below £, whose lattice points
result in if statements.

As described in Section 3.2, a collapsed index variable iterates over
the Cartesian combination of the coordinates of more than one origi-
nal index variables. As shown in Figure 5-4, this means the the code
iterates through and across all the segments of the innermost index
variable and tracks the coordinate values of outer index variables. For
each iteration step, when the generated code advances the inner vari-
able, it must also advance the outer variables. This involves checking
whether the inner variable has reached the end of its segment, if so,
advancing the outer variable. Since the inner variable’s data structure
may have empty segments, meaning the outer variable has coordinates
with no children, the emitted code must perform the segment check in
a while loop. For example, the collapsed iteration shown in Figure 5-
4 results in a single loop that iterates over the inner index variable j.
When generating code to advance the (single) iterator of this loop, the
code generator also generates code to advance the iterator over the
outer index variable i if j has reached the end of a segment. Assum-
ing the coordinate tree is stored in a CSR matrix B then the code to
advance i is:

while (pB2 == B2_ptr[i+1]) i++;

Ranger and Merger Optimization

We can optimize the above code generation by dividing the iterators
of each loop lattice point L, into two sets called rangers and mergers.
The ranger iterators are the iterators we iterate over until one runs
out of values in the loop header emitted in Step (2), while the merger
iterators are the iterators we combine to compute the resolved coordi-
nate in Step (4). These sets both start out with the full set of iterators—
and it would be correct to leave them like that—but we can potentially
optimize the generated code by removing iterators from either set. We
can remove an iterator from the ranger iterators if it is guaranteed to
not be exhausted before the other rangers, which holds if the largest
coordinate of the iterator is smaller than or the same as the largest co-
ordinate of the other iterators. A common case is when the iterator is
a subset of the other iterators, such as when one of the other iterators
is full. We can remove an iterator from the merger iterator if it is a su-
perset of the other iterators, since it will then always have the resolved
coordinate. This condition holds when the iterator is full.

Unary Loop Simplification

A lattice with a single iterator can be emitted as a for loop instead of
while loops. A for loop improves code readability, makes it easier for
compilers to analyze the code, and makes it possible to parallelize the
loop with OpenMP [45] and Cilk [32]. Figure 5-5 shows the for loop
of a lattice with a single dimension iterator, and Figure 5-6 shows one

77

N ® ®
G ED

advance i to next segment

Figure 5-4: The collapsed index variable
j iterates over the Cartesian combina-
tion of i and j coordinates by iterating
over the bottom level of the coordinate
tree. The variable j is advanced at each
step, and the variable i is advanced at
each segment boundary, to the next co-
ordinate with a nonempty segment.

for (int i=0; i<m;
/] ...
3

i++) {

Figure 5-5: A for loop generated from a
lattice that has a single dimension iter-
ator. No conditions are needed and the
loop induction variable is advanced in

the loop header.

for (int pB2 = B2_pos[i];
pB2 < B2_pos[i+1];
pB2++) {
/7 ...
3

Figure 5-6: A for loop generated from
a lattice that has a single position iter-
ator. No conditions are needed and the
loop induction variable is advanced in
the loop header.

for a lattice with a single compressed iterator. The loop bodies are the
code generated by recursive calls to CODEGEN in Figure 5-2.

5.3 Derived Iteration Spaces

Coordinates from different derived iteration spaces must be mapped
to the same coordinate space so that they can be combined to compute
the resolved coordinate. For example, consider an iteration graph
_osplit(l.4) .
ViOVil b,‘ NnNej 11— loll,
where the original index variable i, with universe [0, n), has been split
into two index variables, i° and i'. The universe of i’ is the range

[0,n/4), and its domain is the same as its universe: i’ € [0,n/4). The
universe of i! is the range [0, 4); however, its domain is the same as i:

il € bl Ncq,

The coordinates of b; and ¢; are in the universe of i, which we cannot
change without transforming the data structure. Since all the coordi-
nates must be resolved in the same space, the code generation algo-
rithm emits code to map between coordinate spaces.

Figure 5-7 illustrates the situation when the outer index variable i°
indexes the third block. The figure shows the sparse iteration spaces of
i and i', and the iteration space of i is divided into tiles that are indexed
by i°. The inner index variable i! iterates through the coordinates in
each tile by coiterating over the coordinate levels b; and c;. The itera-
tion strategy first maps every coordinate to the original iteration space
of i, and it combines them there to compute the resolved coordinate.
It then maps the resolved coordinate back, through any intermediate
derived spaces, to the iteration space of i'. For each step in the map-
ping the resolved coordinate back through a split relation, the iteration
strategy checks that the resolved coordinate is inside the universe of
the inner index variable (the tile). If it is outside that universe, then
the iteration over i! exits and i® moves on to the next block.

Emit map candidate coordinates to the original space

The algorithm emits code to map every candidate coordinate variable
in the index variable’s domain to the original space. The algorithm
tracks backward through the relations from the inner index variable
of the derived candidate coordinate variable. For every split relation,
it creates a new coordinate variable whose value is the sum of the value
of its derived inner variable and the total size of the blocks preceding.
This size is found by multiplying the inner index variable’s universe
by the current resolved coordinate value of the outer variable. For
example, if in the above example we had accessed a temporary tensor
t with the inner variable i', then it can be calculated from i1t as

78

current block indexed by i = 2

block size k = 4
P

Figure 5-7: Coordinates in derived iteration spaces are mapped back to the original
space, so that they can be combined to compute the resolved coordinate. This figure

. split(|,4) 01
— 11

shows the mapping for the iteration graph V;,V;, b;N¢; = i when i® = 2.

follows:

int it = i0*4 + i1t;

And if the variable it in turn derived from another variable through a
split, then a similar statement would map it to this variable.

Emit map resolved coordinate to each derived space

The second mapping step comes after the candidate coordinates in the
original space have been combined to compute the resolved coordi-
nate. In this step, the resolved coordinate is mapped back to each space
that is involved in the fully derived inner index variable’s domain. We
need the resolved coordinate mapped back to each space for three rea-
sons. First, the emitted code must check whether it is outside any of
the derived inner loop’s universes; in other words, whether it is outside
any of the tiles. Second, any of the derived index variables might have
been used to locate into a temporary tensor, and we need the resolved
coordinate in that space to pass to the locate call. Third, we need the
resolved variable in each space in the region tests in the if statements
and in the advancement tests at the bottom of the loop.

The process to map the resolved coordinate to each space proceeds
in steps. In the first step, it is mapped to the derived resolved coordi-
nate of the inner index variable following the first split. Next, that
resolved coordinate is mapped to the first inner index variable of the
split that follows it, and so forth. After each resolved coordinate is
mapped to its derived inner variable, a tile check tests whether coor-
dinate landed outside the universe of the inner index variable. If so,
the emitted code breaks out of the inner index variable’s loop. In this
section’s running example, the emitted code to map the index variable
i to its derived inner variable i1 and to perform a tile check is:

int i1 = 1 - i0*4;
if (i1 >= 4) break;

79

54 Compute and Assembly

The green emit statements in Figure 5-1 generate code to compute re-
sult values and to assemble result coordinate index structures. The
computed results, coordinates, and positions that make up the result’s
tensor data structure can either be appended to these data structures or
randomly inserted into them. The code generator supports only inser-
tion into result coordinate levels that support the insert capability. It
is an error to attempt to generate code from a concrete notation state-
ment that scatters into a result that does not support insert, as seen by
the presence of compound assignments (e.g., +=).

Emit compute code

In the concrete index notation, assignment statements compute re-
sults. The assignment lower function generates imperative compute
code by traversing the concrete assignment and generating equiva-
lent imperative expressions that compute scalar values. Each concrete
access expression is rewritten to an array load or store expression in-
dexed by the position variable of the last level of the accessed tensor’s
coordinate tree.’ To give an example, the generated code for the as-
signment statement in

ViVij Aij += Bikaj,

where A and B are stored in the CSR and C in the CSC format, is

A[pA2] += B[pB2] * C[pC1];

The first forall loop iterates over the universe of i, while the second
and third forall loops coiterate over the coordinate trees indexed by
j and k. The iteration code generates one position variable for each
coiterated or located data structure. The last coordinate level of A and
B are the second tensor modes as they are stored row-major, while
the last level of C is the first mode as it is stored column-major. The
generated code uses the corresponding position variables to index into
the array access expressions.

Emit assembly code

The levels of the coordinate tree index data structure of the result ten-
sor encode coordinate-position pairs. The lowering algorithm emits
coordinate-position insertion code into the body of loops that iterate
over free index variables. The pairs are inserted after the recursive
code generation call for the body of the forall statement, and an op-
tional optimization checks if any nonzero values were produced in the
body’s code and only then inserts the coordinate.
For example, the generated code for the i forall in

ViV Aij = BijCij,

80

30 An optimization is to treat scalar ten-
sors as a special case that are stored in a
variable and not loaded from an array.

where all matrices are doubly-compressed row-major DCSR, is

A2_crd[pA2++] = j;
A2_pos[pA1+1] = pA2;

The code stores the resolved i coordinate to the current position of the
crd index array of the compressed level A2. Since this kernel appends
to the result, it then increments the position variable pA2 to be ready
to insert the next coordinate. It then increments the segment size to
record that it has one more coordinate.3! The array A2_crd is indexed
by the position variable pA2 of the second level, while the array A2_pos
is indexed by the position variable pA1 of the previous level.

5.5 Conclusion

In this chapter I showed how to compile concrete notation to impera-
tive code, using the concepts of iteration graphs and iteration lattices.
The code generation algorithm recurs on the concrete index notation
and turns forall statements into imperative while loops, by turning
concrete notation to iteration graphs and then to iteration lattices. The
algorithm also generates code that coiterates over different iteration
spaces—original and derived spaces—and emits code to map between
them. Finally, the algorithm emits code inside these loops that com-
pute tensor results and assemble result data structures.

This algorithm is the first code-generation algorithm to compile
the full sparse tensor algebra to sparse imperative code, parallel hard-
ware, or accelerators. It also unifies sparse and dense tensor algebra
by showing that both can be framed as loops that coiterate over data
structures—compressed or dense—and coordinate universes. With a
sparse tensor algebra compilation algorithm in hand, we can address
the sparse composition problem I described in the Introduction. We
can avoid asymptotic slow-down and poor temporal locality by com-
piling compound tensor algebra expressions to fused code that com-
putes the whole expression at once. And we can avoid data structure
reorganization and store tensors in the format that best fits them by
compiling expressions to the data structures at hand. The code shapes
to data, so data may rest.

Now that we have a code generator for sparse operations, we can
start to expand its reach to encompass sparse operations beyond tensor
algebra, like graph and mesh operations, robotics, and relational alge-
bra. We can also explore sparse compilation to distributed systems and
a plethora of interesting sparse data structures. And we can develop
specialized computer architectures for sparse computations with some
confidence that we will be able to compile sparse operations to them.
That is, portable compilation of sparse operations is now in reach.

In the next chapter, I show how to optimize the concrete notation
statements we just learned how to compile. And in Section 7.5 of the
Evaluation chapter, I show empirical results demonstrating that the
generated code performs on par with hand-optimized implementations

81

31 An optimization is to hoist the code
that records the segment size to after
the loop body, where the size of the
whole segment can be stored once.

in sparse linear and tensor algebra libraries. Furthermore, Section 7.2
shows empirical results that demonstrate why support for compiling
compound expressions matters. Finally, the Related Work chapter ties
it all to the history of compilers and programming models for sparse
and dense computations. It shows that this dissertation presents the
first compiler for the entire sparse tensor algebra and the first compre-
hensive theory of sparse iteration spaces, their optimizing transforma-
tions, and their compilation.

82

Chapter 6

Optimizing Transformations

Optimizing transformations, which change iteration order to use caches

and parallel hardware efficiently and which move computation to re-
duce work, are important for dense and sparse codes alike. But these
transformations have additional effects on sparse codes. They can re-
place data structure accesses with asymptotically cheaper accesses,
simplify coiterating code, and even create static load balance.

Concrete notation sits between the declarative index notation and
the detailed imperative IR. It is operational, and it specifies both iter-
ation order and where temporary results are stored. But it does not
specify the low-level details of how to coiterate over compressed data
structures—while loops, if statements, and indirect memory accesses.
This makes concrete notation a great target for transformations that
alter iteration order and introduce temporaries, as there is no need for
sophisticated data-flow, dependence, or alias analysis. In Chapter 5,
we saw how statements in concrete notation can be lowered to imper-
ative coiterating code. This chapter shows how concrete notation can
be optimized before lowering.

In the design I propose, a sequence of transformations called a
schedule®? are specified through a scheduling API and applied to
concrete index notation (Figure 6-1). Specifying these scheduling trans-
formations through a clean API separates the policy (what to do) from
the mechanism (how to do it). The separation of policy and mecha-
nism is an important design principle whose roots go back to early
operating systems [62, 134]. In an optimizing compiler, the policy says
what optimizing transformations to apply and in what order, while
the mechanism applies them and generates code. Separating policy
from mechanism—by a script [39] or an API [107]—leads to modu-
lar systems where they can be developed independently. Because a
policy tends to change faster than the mechanisms, it is important to
make the policy easy to replace without the need to also redevelop the
mechanisms [108]. This dissertation describes how to design sparse
tensor algebra mechanisms that apply schedules and generate code.
The schedules can be specified by the user code or by some automatic
scheduling system, but I leave the design of such systems as future

83

“If a problem has no solution, it
may not be a problem, but a
fact—not to be solved, but to be
coped with over time.”

— Shimon Peres

6.1 Reorder

6.2 Precompute

6.3 Collapse

6.4 Split

6.5 Bound

6.6 Iteration Space Mapping

6.7 Conclusion

{ Index Notation j

concretize
{ Concrete Notation\j}
lower schedule

[Imperative IR J

Figure 6-1: Compiler overview that
highlights the schedule step that applies
optimizing transformations described
in this chapter.

32 The convention to use schedule to
mean a sequence of transformation
comes from the Halide language [107],
while the term itself comes from the
polyhedral model literature where it
refers to mapping statement instances
in a polyhedral iteration domain to or-
dered execution instances [53]. The
idea to specify a sequence of transfor-
mations from the outside comes from
the CHIiLL compiler [39].

work. That work, however, can now be built on top of the code gener-
ator presented here.

There are two types of transformations in this chapter: those that
transform the iteration space by moving, adding, or removing index
variables, and those that tag index variables with information about
how they should be mapped to imperative IR. There are five itera-
tion space transformations (reorder, precompute, collapse, split, and
bound) and two mapping transformations (parallelize and unroll). These
transformations are designed to preserve correctness, and I give pre-
conditions that report an error if applying them changes the meaning
of a concrete notation statement.*

The sparse iteration space transformations—reorder, precompute,
collapse, split, and bound—transform concrete notation. They are verbs,
and I described the nouns they act on in Section 3.2 and Section 4.3. I
leave descriptions of the generated sparse code to those sections and
focus in this chapter on the transformations and their preconditions.

6.1 Reorder

The reorder transformation takes a concrete statement S and two nested
index variables i and j as arguments:

reorder(S, i, j).
It then rewrites S to move the forall statement V; of j past V; of i:

VZVJT - VJV, T,

where T is a statement. The forall statements may be directly nested
or Y; may be nested inside other statements, such as the consumer side
of a where statement. The reorder transformation moves V; past V; in
a sequence of steps, moving it past each statement on the way. The
supported cases and their preconditions are:

1. The forall statement V; is directly nested inside another forall
statement: VV; T, where k may be equal to i. The V; state-
ment can be moved past V. if the operator @ of any compound
assignment statement in T is associative.>

2. The forall statement V; is the producer of a where statement:
(C where V; P). Let t be a temporary tensor on the left hand
side of a compound assignment statement A with operator & in
P. The V; statement can be moved out of the where statement
if, for every t in P, every operator © that combines ¢t with other
expressions in C distributes over &.

33 1 assume that floating-point oper-
ations are associative, although it is
not entirely true since reassociating
floating-point numbers can give differ-
ent results. The new results, however,
are not any more wrong in principle.

34 Recall that a compound assignment is
an assignment that combines the right
hand side with the current value of the
variable on the left hand side. For ex-
ample, += or —=. The compound oper-
ator of a normal assignment statement
= has no effect, and it is therefore both
associative and commutative, and it dis-
tributes over every other operator.

The sparse matrix-vector multiplication (SpMV) is sufficient to demon-

84

strate both cases. In index notation, SpMV is expressed as
a; = Z Bijcj-
J

The simplest concrete notation statement that computes SpMV is
V,‘Vj a; += Bijcja

which implements the inner product algorithm. We can reorder the
i and j loops in this statement to turn it into a linear combination of
columns algorithm, with the resulting expression:

Vle' a; += Bijcj-

This transformation is legal because the + operator of the compound
assignment is associative. Suppose we started out with an inner prod-
uct concrete statement that accumulated the partial results into a tem-
porary scalar, to avoid address calculations. The reorder algorithm
applies a sequence of transformations that result in the following in-
termediate statements:

V,-(ai =t where V; t += Bijcj),
ViV;(a; = t where t += Bjjc;),
V;Vi(a; = t where t += B;jc;),and
V;V¥; a; += Bjjc;.

The first step applies the second reorder case to move V; outside the
where statement, and the second step applies the first case to move
V; past V;. The third step is a simplification step that is applied after
every transformation to remove where statements that do nothing.

To demonstrate how the precondition of the second reorder case
can fail, I extend the SpMV example to add a vector:

a; = (ZBijCj) + di.
J

This is a common expression in sparse linear algebra libraries, and it
can be implemented by the inner product algorithm with a temporary
variable £:

Vi(a; = t + d; where V; t += Bjjc;).

The presence of d;, however, prevents us from reordering V; and V;
in this statement. The reason is that the + operator that combines ¢
with d; does not distribute over the compound assignment operator
+=. Thus, moving V; out of the where statement causes d; to be added
to the result many times. If the operator was a multiplication, however,
then the reordering would be fine. The multiplication distributes over
+=, so applying it before or after accumulation makes no difference.
Section 6.2 shows how to apply precompute and reorder in sequence

85

to rewrite this concrete statement to a linear combination algorithm,
which can be useful if we are stuck with a column-major data structure.
Figure 6-2 shows the concrete notation statement and its iteration
graph before and after reordering, assuming B is stored in row-major
order. The reorder transformation does not take data structures into
account, and it is possible to reorder forall statements so that they tra-
verse up coordinate trees, which appear as back-edges in the itera-
tion graph. When coordinate trees are stored with compressed data
structures that do not support fast random access, such bottom-up
traversals are asymptotically slow, as they require searching through
levels.> And the iteration space transformations do not change the
data layout of tensors, since this is the job of the format description
language. Therefore, if you wanted an efficient linear combination of
columns SpMV, for example, then you must store your data structure
column-major. The user or an auto-scheduling system must, there-
fore, be aware of the storage of the tensor data structures and avoid
lowering a concrete statement that traverses bottom-up a coordinate
tree without random access. Such statements, however, are still legal
concrete notation and are useful as intermediate scheduling steps.

6.2 Precompute

The precompute transformation takes a concrete statement S, a con-
crete expression e from S, a tensor t, and a sequence of index variable

three-tuples I = (i, ic, ip), (s jes jp) - - -
precompute(S, e, t,).

It then rewrites S by cloning the forall statements of the first index
variables in each of the tuples, V;V; ..., into the two sides of a new
where statement. The producer side precomputes e into a temporary
tensor t, while the consumer side computes the original assignment
statement with e replaced by t. Without loss of generality, assume
there are only two index variable tuples I = (i, ic, ip), (j, je, jp) and that
e is the leftmost expression. Then:

V,V] a. .. @=e®f -

e (Vicvjc a. = tic]c ®f where Vip‘v’ip tipjp b= 6),

where @ and © are operators, e is an expression, and a is a result ten-
sor. The forall statements of the index variables i, j, . .. in the original
statement must be directly nested without any other forall statements
in their body, and the operator ® must distribute over @. The trans-
formation then does a three-step cleanup. First, it removes redundant
forall statements and where statements. Second, it pushes forall state-
ments outside the where statement, whose index variables are used
only on one side, into that side. And third, it replaces where state-

ments with sequence statements to reuse temporaries.

86

S

y
o
Lo

ViV¥j ai += Bjjcj V;Viai += Bijcj
Figure 6-2: A concrete notation state-
ment and its iteration graph before and
after reordering V; and V.

35 The lowering machinery in Chap-
ter 5 does not support concrete nota-
tion statements with bottom-up traver-
sals of coordinate trees without ran-
dom access. Given a statement with a
bottom-up traversal, the lowering ma-
chinery will report an error. A future
version could add support for bottom-
up traversals, but it is unclear whether
they have any benefits.

The precompute transformation has many uses, including enabling
the reorder transformation, introducing temporaries that support ran-
dom insert, simplifying costly coiteration code, hoisting loop-invariant
work out of loops, and setting up efficient warp-level reductions on a
GPU. In the following subsections, I show examples of some of these
uses, to better illustrate the subtle effects of the precompute transfor-
mation and its cleanup step.

Facilitate Reorder

The first example shows how the precompute transformation can be
used to work around the preconditions of the reorder transformation.
Let us return to the SpMV plus a vector example from Section 6.1 and
see how to turn it into a linear combination algorithm to compute with
a column-major matrix:

a; = (ZBijcj) + di.
J

The concrete statement for this expression produced by the concretiza-
tion algorithm implements the inner product algorithm:

Vi(al- =t+ d,‘ where Vj t+= Bijcj)~

We wish to reorder the loops to iterate over B in column-major order.
But the reorder algorithm cannot move V; out of the where statement,
because the operator (+) that adds ¢ to d; does not distribute over the
compound assignment operator (also +). To facilitate the reordering,
we can apply the precompute transformation to precompute ¢ +d; over
i. This transformation, following the simplification step that removes
a redundant where statement, yields the concrete statement

(Vl-c aj. = tic + d,‘ where Vi.ﬂvj tip += BinCj).

We can now reorder V; » with V;, as the operation in the new statement
takes place inside the producer side and does not need to move the j
loop out of the where statement. The result is a linear combination
algorithm that traverses B column-major:

(Vic aj. =t + di where VjV,-p tip += Biijj).

The downside of this algorithm is that it introduces a temporary vector
that consumes memory and reduces temporal locality. It should there-
fore be used only when the cost of the temporary vector is less than
the cost of transposing B. Finally, we must chose a format for vector
t. Since it is scattered into, we need a format that supports random
insert, such as a dense vector or a hash map.

87

Scatter into result

This section shows how to use precompute to transform a sparse matrix-
matrix multiplication (SpGEMM)

Ajj = Z BiiCyj,
3

where each matrix is in row-major CSR format, into the linear com-
bination of rows algorithm from Section 4.1. The initial concretized
statement is

ViVij Aij += Bikckj,

and it implements an inner product algorithm. The first step is to re-
order V; and V, so that we access C in row-major order. The resulting
concrete statement implements a linear combination algorithm:

VinVj A[j += Bikckj-

This algorithm computes one row of A at a time by scaling the rows
of C with values from B and then adding them together. The row ad-
dition can be done in place by adding each computed value directly
into the row of A. This leads to scattered writes, which you can see
from the concrete statement by observing that V; of j, which indexes
A, is nested inside Vj, which does not index A. Therefore, the algo-
rithm inserts into the second mode of A once for each k. The second
mode, however, is compressed in the CSR format and does not sup-
port O(1) random insert. To get fast random inserts, we can apply the
precompute transformation to precompute the B;;Cy; subexpression
over j into a result temporary vector t that supports random insert
(e.g., a dense vector or a hash map). The resulting concrete statement,
after the simplification step has pushed Vj into the producer side of
the where statement, is:

Vi(Vj, Aij, =wj, where ViV, wj, += Bikajp).

The precompute transformation moved the compound assignment onto
the producer side, where it scatters into the temporary t instead of A.
After a full row has been computed and stored in ¢, the consumer side
simply appends the row to A, which can be done efficiently with a com-
pressed format.>® Figure 6-3 shows the effect of the transformation on
the iteration graph of the concrete notation. The j index variable is
cloned and, since only j, has an incoming arrow from k, j. moves up
underneath i.

88

36 The linear combination sparse matrix
multiplication algorithm with a tempo-
rary array is often called Gustavson’s
algorithm after Fred Gustavson, who
proposed it in 1978 [61]. The precom-
pute transformation recreates it, but
also generalizes the underlying opti-
mization so that it can be used on other
tensor algebra expressions.

=
-

)

By ‘ ml(]

o
[\]
(=)
<~
®)

) ()

&
@

ViViVj Aij += Bikckj V,’(Vjc aij, = wj, where Vijp wj, += bikckjp)

<—
o
(D
Do

6.3 Collapse

The collapse transformation takes a concrete statement S and three
index variables i, j, and f as arguments:

collapse(S, i, j, f).

It then rewrites S to collapse the two forall statements V; and V; into
a single V¢, and it adds a collapse relation to its environment:

. collapse

where T is a statement and a collapse relation describes the provenance
of f. The collapse transformation requires that V; and V; are directly
nested. The iteration domain of f is the Cartesian product of the do-
mains of i and j. I described the collapse relation in Section 3.2. There
I showed that when i and j iterate over two levels of a coordinate tree,
the f iterates over their Cartesian product by iterating the bottom of
those levels.

6.4 Split

The split transformation takes a concrete statement S, three index vari-
ables i, iy, and iy, a direction d, a split factor s, and an optional coordi-
nate tree c as arguments:

split(S, i, io, i1, d, s, ¢).

It then rewrites S to split V; into nested forall statements V;, and V;,,
and it adds a split relation to its environment:

. split(d,s) |
LY T = ...ViOVl-l T:i— ipiy,

where T is a statement and a split relation describes the provenance of
io and i;. The outer forall V;, iterates over a dense coordinate range,
while the inner V;, coiterates over whichever data structures the index

89

Figure 6-3: A concrete notation state-
ment and its iteration graphs before and
after precomputing B; Cy; into t over j.

variable i coiterated over.

The bounds of the new index variables iy and i; depend on the
direction, split factor, and coordinate tree arguments. The size of the
domain of i is roughly equal to the size of the Cartesian product of the
domains of iy and i;.>” The direction d—up or down—controls whether
the domain of iy (up) or i; (down) has a fixed number of iterations, as
determined by the split factor s. The domain of the other index variable
will have a number of iterations determined by dividing the domain of
i by s. That is, the up direction creates a loop nest that iterates over
a fixed number of blocks the size of which is proportional to the size
of i’s domain, and the down direction creates a loop nest that iterates
over fixed-size blocks, the number of which is proportional to the size
of i’s domain.

The optional coordinate tree argument ¢ changes how the blocks
of iy are determined. The index variable i; coiterates over the same
data structures as i, within the dense coordinate range identified by
the current value of iy. These ranges are always the same size, but their
size is with respect to different coordinate sets. When c is left out, the
ranges are the same size with respect to the universe of i. But when c
is given, the ranges are the same size with respect to the coordinates
that are actually stored in c—a (non-strict) subset of the universe. The
effect, as we saw when we discussed the corresponding derived index
variable split relation Section 3.2, is to load-balance the computation
with respect to that coordinate tree.

6.5 Bound

The bound transformation takes a concrete statement S, an index vari-
able i, and a bound b as arguments:

bound(S, i, b).

It then rewrites S to add a constraint to the domain of i as specified by
the bound. There are two types of bounds: upper bounds and strided
bounds. Upper bounds restrict the domain’s upper limit to a compile-
time constant. Strided bounds restrict the domain’s upper bound to
be a multiple of a compile-time constant. Bound transformations give
the compiler information about loop bounds that lets it unroll loops,
vectorize them, or omit the tail strategy guards.

6.6 Iteration Space Mapping

The iteration space mapping transformations tag concrete forall state-
ments with information about how they should be mapped to hard-
ware features, such as CPU threads, GPU warps, and vector instruc-
tions, or to imperative code patterns, such as unroll. This information
is then used by the lowering machinery to generate iteration code from

90

37 The domain of the Cartesian prod-
uct of iy and i; may be slightly larger
than the domain of i if i’s domain is not
evenly divided by the split factor s. The
additional iterations are removed by a
tail strategy that changes the iteration
over the last execution of i; to iterate
over fewer values.

each forall statement.

Parallelize

The parallelize transformation takes a concrete index notation state-
ment S, an index variable i, a parallel unit p, and a reduction strategy
r as arguments:

parallelize(S, i, p, r).

It then rewrites S to add a tag to the environment, stating V; should
be parallelized with the given parallel unit and the given reduction
strategy:

Y T = ...V T« parallelize(i, p, r),

where T is a statement and parallelize is a tag describing the mapping
strategy of V;. The parallelize tag changes the iteration order of an
index variable and therefore requires every reduction in T to be as-
sociative and commutative. Furthermore, parallelize does not support
forall statements that coiterate over more than one data structure. The
parallelize transformation is therefore often combined with the split
transformation, as an enabling transformation to create a dense outer
loop that can be parallelized.

The parallel unit p specifies the parallel hardware feature to tar-
get the loop, such as CPU threads, GPU warps, or vector instructions.
Some parallel units, such as GPU warps and vector instructions, can
only be used on fixed-size loops. The split or bound transformations
can be used to create fixed-sized loops to target. Supported parallel
units are:

CPU Threads divides the loop’s iteration domain between CPU threads.

CPU Vector Instructions divides the loop’siteration domain between
lanes in a warp; it can be applied only to a dense inner loop.

GPU Threads divides the loop’siteration domain between GPU threads.

GPU Blocks divides theloop’siteration domain between GPU blocks;
requires the loop to have an inner loop parallelized with GPU
Threads and groups those threads into blocks.

GPU Warps divides a loop’s iteration domain between GPU warps,
requiring the loop to have an inner loop parallelized with GPU
threads, and groups those threads into warps.

The reduction strategy r specifies how reduced values from com-
pound assignment statements in T should be combined. Possible strate-
gies include:

No Races asserts that there are no reductions in the loop; it raises a
compile-time error if there are any.

91

Ignore Races states that reductions in the loop should be ignored.
Any reduction will then be stored using regular store instruc-
tions at the cost of atomicity.

Atomics inserts atomic instructions or locks to ensure parallel writes
are sequentialized.

Temporary is a shortcut for a precompute transformation to store the
values to a temporary tensor with one component per thread to
remove the reduction, followed by a serial reduction.

GPU Warp Reduction uses specialized warp-level reduction primi-
tives on GPUs.

Unroll

The unroll transformation takes a concrete index notation statement
S, an index variable i, and an unroll factor u as arguments:

unroll(S, i, u).

It then rewrites S to add a tag to the environment, stating that V; should
be unrolled with the given unroll factor:

YT = LY T unroll(G, u),

where T is a statement and unroll is a tag describing the mapping strat-
egy of V;. The unroll transformation requires a fixed-size loop, and the
split and bound transformations are therefore useful to facilitate the
unroll transformation.

6.7 Conclusion

In this chapter, I described several optimizing transformations on con-
crete notation. Some of these transform the iteration space by reorder-
ing, fusing, and splitting index variables, while others introduce tem-
poraries or map index variables to parallel hardware features. The
transformations apply to dense and sparse loops alike, can tile sparse
loops, and can even create statically load-balanced parallel sparse code.

I have described, for the first time, how to adapt these common
dense loop transformations to sparse codes. It is thus the first com-
prehensive compiler transformation framework for sparse operations.
Moreover, it also unifies compiler optimization for sparse and dense
loops and iteration spaces. The transformations can form a starting
point for much work on sparse code optimization. They are good tar-
gets for automatic sparse code optimizers and automatic scheduling
systems. And their flexibility makes them suitable for transforming
code to target the specialized sparse hardware that is likely to appear
at high rates. Section 7.4 in the Evaluation provides empirical evidence
for why these sparse transformations matter. And Section 7.5 shows

92

how they let us generate efficient sparse code for GPU accelerators and
mixed sparse-dense operations that require tiling. These generated im-
plementations are competitive with handwritten implementations in
popular libraries.

This concludes the core of my dissertation on sparse tensor algebra
compilation. I have described intermediate representations and algo-
rithms that together provide, for the first time, a complete approach
to compiling sparse linear and tensor algebra. The approach unifies
sparse and dense computations by framing them both as coiteration
over data structures. From here, we can apply these ideas more broadly
to sparse operations beyond tensor algebra, such as relational algebra
and graph operations. We can also start to explore interfaces between
tensor algebra, relational algebra, and graph operations, as well as op-
erator fusion across them. I, therefore, believe I have satisfied my thesis
statement, and that sparse operations, like dense operations, are now
on a solid compiler foundation.

93

Chapter 7

Evaluation

The Cartesian combination of all possible expressions, formats, and
architectures form a space with an infinite number of tensor algebra
implementations. The focus of this dissertation has been on laying out
ideas, intermediate representations, and algorithms to automatically
generate these implementations. Figure 7-1 shows a part of the space,
and the entire space can be expressed as

expressions X formats X optimizations X architectures,

where each factor represents the variants in each category (e.g., all pos-
sible expressions), and the expression comprises their Cartesian com-
binations. Each combination is a tuple

(expression, formats, optimizations, architecture)

that describes an implementation that computes the expression, on the
formats, on the given architecture, with the given optimizations.
Each factor represents a large number of variants, and many of
these variants are necessary in practice.®® In this chapter, I provide em-
pirical evidence and arguments for the proposition that a large number
of the expressions, formats, and optimizations are necessary in prac-
tice. Because the resulting practical space contains a large number of
expressions—can implement any but not all— we need an automated
approach to generate them. This dissertation supplies that approach.

A=DBc+a a= Be
A=Boc A=B+C a=abesba Dense Matrix CSR
\—pea A=oB A=0 A=BC BCSR
o a=boe A=Bo(CD) coo DCSR ELLPACK ~gp
Ay =3 BuCiDy A=B' a=Bbe DIA Blocked COO csG precom
" A = ZBnkC; Ay = ZBMG;D” X Blocked DIA DCSC "
Aiip = . C J il spli
Aiji X]:B,uﬁj fi” = (; BijkCiji) + Dy Sparse vector Hash Maps P)
C=3 MBIy Pl % Dense Tensors positi

w30 z0)(Y zbix)
k

ijkl n 7
a= Y Mi;PjxMuPiy My PaoMpo Py
ijklmnop

Blocked Tensors

“When you can measure what
you are speaking about, and
express it in numbers, you know
something about it.”

— Lord Kelvin

7.1 Experimental Setup
7.2 Expressions Matter
7.3 Formats Matter

7.4 Optimizations Matter

7.5 Kernels are Competitive

38 In fact, there are an infinite number
of possible expressions, an exponential
number of formats for a tensor of fixed
order, and an unlimited number of pos-
sible architectures.

et CPUs GPUs
pute parallelize TPUs FPGAs
divide yectorize Sparse TPUs

Distributed Computers

on unroll

Figure 7-1: A subset of the combinatorial space of tensor algebra kernels described by the Cartesian combination of tensor algebra

expressions, a format for each operand, target architectures, and sequences of optimi

94

zations.

Finally, in Section 7.5, I show that the Sparse Tensor Algebra Com-
piler (taco), described in Section 1.3, generates implementations that
are comparable with hand-optimized implementations available in li-
braries such as Intel MKL [44], Eigen [60], MATLAB Tensor Tool-
box [14], and SPLATT [116]. I focus on sparse linear/tensor algebra
expressions where at least one operand is stored in a compressed data
structure. Purely dense kernels, such as dense matrix multiplication
(GEMM), have been explored extensively in prior work. I compare
to libraries that each supports a subset of tensor algebra expressions,
formats, architectures, and optimizations, whereas taco supports them
all. Taco does not, however, do anything special for the expressions I
evaluate in this chapter that does not generalize to other expressions.
Therefore, by showing competitive performance to some of the hand-
optimized implementations from state-of-the-art libraries, I provide
evidence that the code generated by taco has good baseline perfor-
mance across the board.

7.1 Experimental Setup

We ran the experiments on kernels generated by two different ver-
sions of taco: one that supports schedules and one that supports level
formats beyond dense and compressed ones. These versions of taco
are not merged yet; hence, kernels that use other level formats are not
scheduled.

Most experiments use sparse matrices from the SuiteSparse matrix
repository [47]. Many experiments show scatter plots with results for
1684 matrices, which include all real-valued SuiteSparse matrices ex-
cept ones for which the number of nonzeros is too large to be indexed
by a 32-bit integer.®® Other experiments show bar charts with results
for subsets of the real-valued SuiteSparse matrices. For example, the
DIA experiment uses only SuiteSparse matrices that have few diago-
nals and that therefore benefits from this format. For experiments with
higher-order kernels, we use tensor from the FROSTT sparse tensor
repository [117]. Finally, we use synthesized matrices and tensors in
some experiments and will describe the rationale in the text.

Some CPU experiments in this chapter are new, whereas others
were taken from the papers we have published on taco. Unless clearly
stated in figure captions, the experiments are new and were run on
dual-socket machines with Intel Xeon E5-2680 v3 CPUs running at 2.5
GHz with 12 cores, 24 threads, 30 MB L3 cache per socket, and 128 GB
of main memory. The machines ran Ubuntu 18.04.3 LTS. We compiled
the kernels with Intel ICC (version 19.1.0.166) using the -03, -DNDEBUG,
-march=native, -mtune=native, and -ffast-math compiler flags.

We ran all GPU experiments on a NVIDIA DGX machine with 8
V100 GPUs with 32 GB global memory, 6MB L2 cache, 128KB L1 cache
per SM (80 SMs), and a bandwidth of 897 GB/s. We compiled the CUDA
kernels with NVCC v9.0 with the -03 and --use_fast_math flags.

95

39 We removed this matrix to save time
because running experiments with it
would have required us to recompile all
the compared libraries to use 64-bit in-
dexing. Note that a compiler-backed
library such as taco can be extended
to support custom bit-widths for all in-
dices and to compile kernels accord-

ingly.

We ran each new experiment 25 times and report the median time.
We cleared caches before each run; therefore, reported times are with
cold caches. We used numactl to limit execution to one socket because
taco does not yet support NUMA-aware code generation. We did not
time data transfers between CPU and GPU memories.

The experiments adapted from our papers cite the appropriate pa-
per in the figure caption. Those taken from the original paper on the
taco compiler [78] were run on a two-socket, 12-core/24-thread 2.4
GHz Intel Xeon E5-2695 v2 machine with 32 KB of L1 data cache, 30
MB of L3 cache per socket, and 128 GB of main memory, running
MATLAB 2016b and GCC 5.4. We report average cold cache perfor-
mance (i.e. with the cache cleared of input and output data before
each run), and results are for single-threaded execution unless other-
wise stated. Multi-threaded results were obtained using 12 threads and
using numactl to limit execution to one socket.

The experiments adapted from our paper on format extensions to
the taco compiler [41] were run on a two-socket, 12-core/24-thread 2.4
GHz Intel Xeon E5-2695 v2 machine with 30 MB of L3 cache per socket
and 128 GB of main memory, using GCC 5.4.0 and MATLAB 2016b. We
ran each experiment between 10 (for longer-running benchmarks) to
100 times (for shorter-running benchmarks), with the cache cleared of
input data before each run, and report average execution times. All
results are for single-threaded execution.

7.2 Expressions Matter

In this evaluation, I describe two experiments to show why it is im-
portant to support many expressions in linear or tensor algebra sys-
tems, and hence the necessity of a compiler. There are two reasons
why the number of possible expressions grows very large: a tensor
can have any number of modes, and a compound expression can con-
sist of many subexpressions. The alternative to a code generator or
interpreter if we wish to support many expressions, is to convert them
to the finite number of implementations we have available to us. This
is the strategy taken by general programming systems such as MAT-
LAB and CTF. Using this strategy, programming systems turn high-
order tensors and tensor operations into matrices and matrix opera-
tions. They also divide compound expressions into binary or tertiary
subexpressions for which they have implementations. The limitation
with converting high-order expressions to matrix expressions is that
converting tensors into matrices requires expensive data transforma-
tions. And the limitation with dividing compound expressions into
binary subexpressions is that their composition may suffer from poor
temporal locality or even have asymptotically worse performance than
a fused implementation of the compound expression. In this section,
I address the potential benefits of general support for compound ex-
pressions.

96

I described why the composition of separately implemented sparse
expressions may suffer asymptotic slowdown from in Section 1.2. This
is a serious issue for a library implementer because it means that we
cannot simply implement the binary expressions and then compose
these implementations to compute compound expressions without se-
rious performance implications. I empirically demonstrate this effect
using the SDDMM expression

A=Bo(CD),

where A and B are square n X n sparse matrices, C is an n X k dense
matrix, D is a k X n dense matrix, and © is an element-wise operation.
The asymptotic complexity of the fused version of this expression is

nnzg - k,

where nnzg are the number of nonzeros of the matrix B. But the
asymptotic complexity of the expression when computed as two sep-
arate operations T =CD; A=B0oT,is

n’k.

These asymptotes grow at different rates and when the matrix B is
sparse, then nnzg << n®.

Figure 7-2 shows empirically the difference between the fused and
unfused SDDMM implementations. Figure 7-2a plots their execution
time as a function of nnzg, whereas Figure 7-2b plots their execution
time as a function of n. As shown in Figure 7-2a, the fused implementa-
tion is agnostic to the size of B and grows as a function of the necessary
computations represented by its nonzeros. The unfused implementa-
tion performs, however, every operation in the dense multiplication
whether or not they will be used, and it therefore only needs to per-
form one additional scalar multiplication for each new nonzero. Fig-
ure 7-2b shows what happens when we keep the number of nonzeros
fixed and instead increase the matrix dimensions n. The fused imple-
mentation is unaffected, as the amount of necessary work does not
change, whereas the unfused implementation performs increasingly
more needless work.

7.3 Formats Matter

In this evaluation, I describe two experiments that show why it is im-
portant to support many sparse matrix or tensor data structures (for-
mats) in linear or tensor algebra systems. These experiments provide
further evidence for why we need a compiler. Two reasons for why we
may want to choose a particular format for a tensor are that it is a good
fit for the nonzero structure of the tensor, and that we want to avoid
an expensive data structure reorganization. I show two experiments

97

== Fysed == == Unfused
800 ms

Execution Time
|
|
|
|
|

0 ms
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of Nonzeros

(a) SDDMM performance as a function of number of nonzeros. The experiment uses a fixed-size 16,384 X 16,384 sparse matrix B
with a varying percentage of nonzeros that varies along the x axis. The matrix B is then multiplied by the product of a 16,384 x
128 dense matrix C and a 128 X 16,384 matrix D. The fused implementation’s performance is a function of nonzeros, while the
unfused implementation is dominated by the fixed dense multiplication cost. For number of nonzero percentages below 30%, the
unfused implementation performs better because it uses a cache-optimized dense matrix multiplication (GEMM) routine.

== Fysed == == Unfused
400 ms

-

Execution Time
\

—-—
————
-—

—

0Oms
3664 4936 6208 7480 8752 10024 11296 12568 13840 15112 16384

Number of Rows and Columns

(b) SDDMM performance as a function of dimensions. The experiment uses a sparse square matrix B with a fixed number
of 13,424,896 nonzeros, whose dimensions vary along the x axis. The fused implementation’s performance is a function of the
number of nonzeros and remains flat as the matrix dimensions increase, while the unfused implementation performs increasingly
larger dense matrix multiplications.

Figure 7-2: Execution time of fused and separated implementations of Sampled Dense-Dense Matrix Multiplication (SDDMM),

A = B - (CD), where A and B are sparse, whereas C and D are dense. Two scaling plots show execution time as functions of (a)
the number of nonzeros in B and (b) the dimension sizes of B.

98

that demonstrate these two reasons.

Fit the format to the tensor

The first experiment shows the benefits of choosing a format that is
a good fit for the nonzero structure of the tensor. Figure 7-3 (a-d)
shows four matrices with different nonzero structures that appear in
real-world applications. Each figure also shows the normalized SpMV
execution time and normalized storage size for the matrix stored in
each of the row-major formats from combining one dense and one
compressed dimension. Each format is best for one of the matrices.

®Normalized time
®Normalized storage

2X

e B _ 1R

(a) A dense matrix.

(c) A thermal matrix, where rows are sparse.

112X 95X

Nl R

DC CD CcC CDp7

(e) A column-slided matrix, with a sparse set of dense columns.

Figure 7-3: SpMV execution time and storage size of six matrix stored in different formats. Each format is best for one matrix class
and no format fits all matrices. The left half of each subfigure depicts the sparsity pattern of the matrix, while the right half shows

158X 99x
s

w 2X
1x

D DC CD CC

g

(b) A row-sliced matrix, with a sparse set of dense rows.

17150X 26542x 88X 123X

. " LI -
o 2><.
T BN

2X

nh .

DC CC DCDD SCDD

(f) An FEM matrix, where nonzeros come in 3 X 3 blocks.

the normalized average execution times (relative to the optimal format) of matrix-vector multiplication and the normalized storage

costs using the storage formats labeled on the horizontal axis to store the matrix. The storage format labels describe the formats

by describing their per-mode level types (D means dense and C means compressed). The dense matrix input has a density of 0.95,

the hypersparse matrix has a density of 2.5 X 107>, the row-slicing and column-slicing matrices have densities of 9.5 x 1073, and

the thermal and blocked matrices have densities of 1.0 x 1073. The SpMV kernels in this experiment are unscheduled—blocking
the dense kernel would give better dense performance but not affect the conclusion. This figure was adapted from our original

paper on the taco compiler [78].

99

And some of the formats are highly unsuitable for some of the matri-
ces. Figure 7-3 (e) further demonstrates this point by showing that the
transposed version of Figure 7-3 (b) benefits from a transposed ver-
sion of the CD format. Finally, Figure 7-3 (f) goes further and shows
that a blocked FEM matrix benefits from a blocked format.*” These ex-
periments show that the smallest storage size of a matrix and the best
performance when computing with it can be achieved by choosing the
format that best expresses the nonzero structure of the matrix.

Fit the code to the format

The second experiment illustrates the benefits of being able to com-
pute with a given format (data structures). Often, libraries are used
together, and it is important that they compose well. In Chapter 1, I
mentioned the potential performance cost of composing libraries that
require different data structures due to the cost of reorganizing data.
It is therefore useful to have software components that can adapt to
a given format so that data structures are only reorganized when that
benefits performance. Assume that we need to compute an SpMV, but
the matrix is given to us from another component in the COO format.
We can compute the SpMV on the COO format data structures, or to
pay a price to convert it to a more compressed CSR data structure to
accelerate the SpMV. Figure 7-4 shows the cost of the CSR SpMV op-
eration on ten matrices from the SuiteSparse repository when the cost
of conversion from COO is included. The y axis is the SpMV execu-
tion time in multiples of COO. A CSR SpMV (blue) on these matrices
is faster than a COO SpMV (the black line). But when conversion cost
is included (red), the COO SpMV becomes faster. Unless the conver-
sion cost can be amortized across multiple operations, we are better
off computing with the COO matrix.

@ CSRAssembly [CSR Compute

Normalized Execution time (to COO SpMV)

SuiteSparse Matrices

100

40 A blocked matrix format is equiva-
lent to a higher-order tensor format. In
this FEM matrix, a 4-tensor suffices to
express the natural blocking, but fur-
ther blocking can be achieved by adding
more tensor modes.

Figure 7-4: Execution time of CSR as a
multiple of the execution time of COO,
including the cost of converting the
CSR matrix from an initial COO repre-
sentation. The result shows that con-
verting to and computing with CSR is
faster only when the cost of conversion
can be amortized across multiple uses.
This figure was adapted from our paper
on format extensions to the taco com-
piler [41].

7.4 Optimizations Matter

In this final evaluation section, I describe experiments to show that the
optimizing transformations I proposed in Chapter 6 matter for per-
formance. I demonstrate their importance by providing experimen-
tal results that show that we can often obtain better performance by
scheduling, and that the best schedule depends on the situation.

Optimizing for GPUs

A good GPU schedule is different from a good CPU schedule. These
processor architectures and their memories behave very differently,
and kernels must be scheduled to iterate so that the machine at hand
can work efficiently. For example, GPUs are sensitive to thread diver-
gence and uncoalesced loads; hence, kernels should be scheduled to
avoid these issues where it is practical. GPU schedules therefore tend
to be more complicated than CPU schedules in order to ensure that
operations are done in the right order. For instance, when we com-
pile the best parallel SpMV schedule for our Intel CPU to our NVIDIA
GPU, it performs 6.9x worse than a warp-per-row GPU schedule. This
experiment was run on a matrix with four million nonzeros placed at
random locations.

The best schedule for the SpMV operation on our Intel CPU is to
split the outer i index variable by 16 into two variables i; and i, and to
parallelize over i;. This approach creates an outer parallel loop where
each iteration processes 16 rows, which is sufficient work to amortize
parallel overhead on this processor. This schedule does not work well
on a GPU because they are much more sensitive to load imbalance.
Furthermore, threads in GPU warps load different matrix rows and
therefore cannot coalesce memory loads. Hence, the kernel only uses
a fraction of the possible memory bandwidth.

In contrast, a schedule optimized for GPUs is carefully tiled to
achieve coalesced loads and load balance and achieves excellent per-
formance, even compared to hand-optimized kernels (Figure 7-7). It is
tiled by the nonzeros of the matrix, and therefore assigns exactly the
same number of matrix nonzeros to load to each thread. It also uses
warp-level synchronization primitives to compute partial sums and
atomic instructions to combine the partial sums. Finally, the inner loop
is unrolled to increase instruction-level parallelism. On a matrix with
four million randomly allocated nonzeros, this increased instruction-
level parallelism provided a 36% performance improvement for our op-
timized schedule over the same schedule without the temporary or
loop unrolling. All these transformations to target GPUs significantly
increase performance over the obvious SpMV implementation. But
they are difficult to carry out by hand, further motivating an auto-
mated system.

101

== \Narp per Row == == |oad Balanced

90 ms

60 ms

30 ms

Execution Time
/

T
bl -
-——_
O e o aw omw o e
-_—

0Oms
1 1.00256 1.00512

1.00768 1.01024

Exponential skew in number of nonzeros per row

Figure 7-5: The execution time of an SpMV warp-per-row (blue) and load-balanced (green dashed) schedules, on matrices with
a fixed number of nonzeros that become exponentially more skewed. The skew is controlled by the tuning knob ¢, whose value

increases along the x axis.

Optimizing for Load Balance

This study shows that the best schedule to use also depends on how
load-imbalanced the computation is because we can transform the iter-
ation space to be more load balanced by fusing loops to create bottom-
up iteration. Such iteration was described in Section 3.2 and trades
improved load balance for increased overhead. I demonstrate the ef-
fect of scheduling on an SpMV kernel, but the observations generalize
to general sparse tensor expressions.

In the previous section, I described a warp-per-thread GPU SpMV
kernel that performs well across many matrices. It schedules threads in
a warp to collectively work on a matrix row in order to coalesce loads.
But if the pattern of nonzeros in the matrix is skewed so that some
rows have a lot of nonzeros and others have very few or none, then
this version suffers from load imbalance.*! The schedule of the opti-
mized GPU kernel in Figure 7-7 collapse the loops and then split them
with respect to the matrix. This approach perfectly divides the multi-
plications across blocks and provides good load balancing at the cost
of overhead from recovering the i coordinates by tracking the current
row in B. The scatter plot in Figure 7-5 compares the performance of
warp-per-thread and load-balanced schedules as the nonzero pattern
becomes increasingly skewed according to an exponential formula. We
use the formula

k * ¢,

where i is the row number, c is a skew tuning knob that varies along
the x axis, and k is chosen relative to ¢ to give the same overall number
of nonzeros. In addition, the rows are randomly shuffled. The figure
shows that the execution time of the warp-per-thread schedule (blue)

102

41 Skewed matrices are common in
data analytics, where we often observe
power-law distributions, which have
most of the nonzeros on a few of the
Tows.

increases as the skew increases, even though the number of nonze-
ros remains the same, due to thread divergence. The load-balanced
schedule (green dashed) does not suffer from load imbalance, and it
actually performs better because skew increases due to longer rows
that decrease atomic conflicts at row ends. The execution times inter-
sect when the value of the base c is approximately 1.00256. The load-
balanced schedule is therefore more robust to skew, and it is preferable
when the skew is high.

Optimizing for Increased Parallelism

We can also collapse loops to increase the amount of available paral-
lelism. This approach does increase the overhead because there is less
work per parallel task, but it can help in situations where there is little
available parallelism in the first place. The schedule of the warp-per-
row GPU SpMV kernel assigns a full row to each warp. Therefore, if
the row has many nonzeros, then each thread gets to compute mul-
tiple values, and the startup overhead can be amortized across these
computations. But if a matrix has few rows, then there may be too lit-
tle parallelism to occupy a GPU, and fusing the two SpMV loops may
be a better option. For example, we executed the SpMV kernel gen-
erated from each schedule on a short and wide 100 X 100,000 matrix
with 10,000 nonzeros per row. This matrix had too few rows to occupy
a GPU, and across 10 runs, the median execution time of the collapsed
kernel was 4.5 times faster.

Optimizing for Locality

Finally, sparse tensor algebra expressions that iterate over compressed
data structures can still have some dense loops that may be tiled for
better temporal locality. An important example is the SpMM expres-
sion, where a sparse matrix is multiplied by a dense matrix. The re-
sulting kernel has two dense loops that we can tile. We generated
tiled and untiled versions and ran them on a 100,000 X 100,000 sparse
matrix with an average of 1,000 randomly placed nonzeros per row
that we multiplied by a 100,000 x 32 dense matrix. The tiled version
performed 2 times better due to increased temporal locality; this re-
sult demonstrates the importance of tiling transformations in mixed
dense-sparse loop nests.

7.5 Kernels are Competitive

The performance of taco-generated kernels is comparable with hand-
optimized CPU and GPU implementations from leading linear and ten-
sor algebra libraries. Sometimes, taco generates faster code (e.g., one
taco-generated CSR SpMV kernel is on average 6.8% faster than MKL
over 1677 SuiteSparse matrices), whereas sometimes the hand-optimized

103

code is faster (e.g., the SPLATT MTTKRP implementation is on aver-
age 14.6% faster than one taco-generated kernel).

But the point is not to beat these specific library implementations,
with these specific tensor formats, on these specific architectures. The
point is generality. Generality in the expressions we can compute.
Generality in the formats we can use. Generality in the optimizations
we can apply. And generality in the hardware we can target. The bene-
fits of this generality—expressiveness and performance—are described
in Section 7.2, Section 7.3, and Section 7.4.

The experiments in this section show how taco compares to lead-
ing implementations of the kernels that have received most attention
from the performance optimization community. Because the taco com-
piler applies the same general optimizations—sparse coiteration and
schedules—to any expression, the experiments provide evidence of its
performance on all tensor expressions. For example, the reorder, col-
lapse, split, precompute, and parallelize transformations are sufficient
to optimize the expressions in this section, which range from linear
algebra multiplications to higher-order tensor contractions and addi-
tions.

To provide a fair comparison, we made taco generate kernels that
compute on the same tensor formats as the libraries we compare to.
As we will see in Section 7.3, it is often possible to obtain better per-
formance by changing the format to fit the tensor. The purpose of the
experiments in this section, however, is to show that we can generate
similar code to what performance engineers write by hand. Further,
it is important to do well on these formats because the user cannot
always afford the cost of converting between tensor data structures.

Sparse Matrix-Vector Multiplication (SpMYV)

Figure 7-6 and Figure 7-7 plot the time it took taco-generated ker-
nels and hand-optimized library implementations to compute sparse
matrix-vector multiplication (SpMV) on a CPU and a GPU. We ran
both experiments on 1677 sparse matrices from the SuiteSparse repos-
itory [47], and they are ordered by increasing number of nonzeros.
The CPU results in Figure 7-6 compare two taco-generated kernels to
the Eigen [60] and Intel MKL [44] libraries. The first taco-generated
kernel has a parallel outer loop (taco). The second kernel also has a
parallel outer loop, but the loop has been strip-mined to create coarse-
grained parallel tasks (taco strip-mined). The first kernel performs bet-
ter on small matrices, presumably because it has more parallel tasks.
The Eigen library performs best on small matrices of the compared li-
braries. Its performance then degrades relative to the other libraries,
until the matrices reach approximately 20,000 entries. At that point,
it switches to a parallel implementation and performs on par with the
other libraries. The experiment shows that the performance of the
taco-generated kernels is similar to MKL and Eigen across many large
matrices.

104

1,000.00 ms

® taco
[l taco strip-mined " ¢
100.00 ms v MKL . .'-
== Eigen 1 +ﬁ
o 10.00 ms ‘l,
S
'_
C
L 1.00 ms
5
(8}
(0]
x
w 0.10 ms
0.01ms ay= &K=
ee® S0
e ¥ -1-:"..-1-‘L ¥
0.00 ms 1 2 3 4 6 7 8 9
10 10 10 10 10° 10 10 10 10

SuiteSparse Matrices (sorted by their number of nonzeros)

Figure 7-6: SpMV CPU results with the CSR format. I compare two taco-generated kernels to the Eigen [60] and Intel MKL [44]
libraries. The first taco-generated kernel has a parallel outer loop (taco). The second kernel also has a parallel outer loop, but the
loop has been strip-mined to create coarse-grained parallel tasks (taco strip-mined).

1,000.00 ms
® taco .
100.00 ms V cuSPARSE M
’ == MergeSpMV vy,
1]
o 10.00 ms
£
|_
C
2 1.00 ms
5
(8}
(0]
x
w 0.10 ms
e eI ®
0.01 ms
0.00 ms 1) ,
10 10° 10° 10 10° 10° 10 10° 10°

SuiteSparse Matrices (sorted by their number of nonzeros)

Figure 7-7: SpMV GPU results with the CSR format. I compare a taco-generated load-balanced kernel with the SpMV imple-
mentation in the NVIDIA cuSPARSE [125] library and with the Merge-based load-balanced SpMV implementation of Merrill and
Garland [93].

105

The SpMV GPU results in Figure 7-7 compare a taco-generated ker-
nel to the NVIDIA cuSPARSE library [125] and to the load-balanced
merge-based SpMV implementation of Merrill and Garland [93]. The
taco-generated kernel is generated using a collapse transformation fol-
lowed by a split transformation that results in load-balanced execution.
Thus, its execution time scales roughly with the number of nonzeros,
similar to the MergeSpMV implementation. The NVIDIA cuSPARSE
library performs better on small matrices, due to fewer kernel calls,
but the results show that its performance is sensitive to load imbal-
ance. For larger matrices, the taco-generated kernel typically performs
better. These experiments demonstrate that taco can generate both
CPU and GPU kernels that have competitive performance compared
to hand-optimized libraries.

B taco [tacoprecompute [SPLATT

10000 ms
1000 ms
g 100 ms
=
c
K]
5 - “‘ ‘l “l ‘
[S]
Q
X
"
1ms
<
0{{* ‘\Q% o@ 6\6\ 00 fbé bb \0{\ \\,(1/ ,b‘b fbb ,b‘é :336 \\,\] \‘f.)
N < & J . N N O o \ N & & @ N
O (/] o)) < WO WO N NS <)
¥ ¢ & & & & ¢ ¢° &
& E S S ¥ ¥ 4
§ & & & &
(.\\o'b S & @ K
()

FROSTT Tensors (sorted by their number of nonzeros)

Figure 7-8: MTTKRP CPU with the CSF format

B taco [Nisaetal. COO [Nisaetal. HCSR Nisa et al. BCSF
100 ms 98.0 85.2
69.3
54.1 50.455:2
270 40.1
) 24.6
£
'—
c
Kl
"(5_; 10 ms 87
[9)
x
| Ii
1ms 0.4

vast-2015-mc1-3d nell-2 flickr-3d
FROSTT Tensors (sorted by their number

Figure 7-9: MTTKRP GPU with the CSF format

106

delicious-3d

of nonzeros)

nell-1

Matricized Tensor Times Khatri-Rao Product (MTTKRP)

Figure 7-8 shows a bar graph that compares the execution time of two
matricized tensor times Khatri-Rao (MTTKRP) product implementa-
tions generated by taco with the hand-optimized SPLATT library [116].
The first taco-generated implementation has not been optimized be-
yond parallelizing the outer loop (taco), whereas the precompute trans-
formation was applied to the second implementation (taco precom-
pute). The SPLATT library outperforms the taco-generated precom-
pute implementation on CPUs by an average 15%. Figure 7-9 depicts
a bar graph that compares the execution time of a taco-generated MT-
TKRP GPU implementation with three implementations from a re-
cent paper by Nisa et al. [100] that use three different tensor formats:
COOQ, HCSR, and BCSR. The taco-generated implementation with the
CSF format performs well across the five tensors, particularly on the
vast-2015-mc1-3d tensor. On the nell-2 tensor, however, the BCSF
format performs significantly better, which demonstrates the utility of
supporting different formats.

Sparse-Dense Matrix Multiplication (SpMM)

Figure 7-11 and Figure 7-12 plot the time it took taco-generated and
handwritten library implementations to compute sparse matrix-dense
matrix multiplication (SpMM) on a CPU and a GPU. This experiment
was run on 1677 sparse matrices from the SuiteSparse repository that
were ordered by increasing number of nonzeros. The taco-generated
unblocked CPU kernels perform better than Intel MKL on small ma-
trices, and worse on large matrices. The taco-generated GPU ker-
nel, however, performs significantly worse than the cuSPARSE kernel,
particularly on small matrices. The primary reason is that the taco-
generated kernels perform three kernel launches. I leave as future
work to decrease the number of kernel launches. For matrices with
more than 1 million nonzeros, however, the performance of the taco-
generated GPU implementation is on average 89.5% of cuSPARSE’s
performance.

Table 7-10: Comparison of taco and MATLAB TTB on four tensor expressions with tensors stored in the coordinate format. taco
performs up to 20 times faster than TTB, while supporting the entire tensor index notation. NA means TTB ran out of memory.

TTV TTM Tensor Add MTTKRP
taco TTB taco TTB taco TTB taco TTB

vast-2015-mc1-3d 543 2950 10302 NA 1553 20895 1357 19706
nell-2 310 4762 2732 42816 3906 77757 4322 60356

flickr-3d 1059 9095 15739 NA 6018 90116 16066 103629
delicious-3d 1803 12695 26882 NA 8120 133167 20249 138943
nell-1 3377 12900 63272 NA 7682 139685 37200 199451

107

Execution Time

® taco . .
1,000.00 ms [l taco blocked $e
Vv MKL
100.00 ms
10.00 ms
1.00 ms
0.10 ms
|
¥
001ms 38 SESE
0.00 ms
10" 10° 10° 10" 10° 10° 10 10°

SuiteSparse Matrices (sorted by their number of nonzeros)

Figure 7-11: SpMM CPU with the CSR format

Execution Time

® taco
1,000.00 ms V¥ CcuSPARSE
100.00 ms
10.00 ms
1.00 ms
oo o 0.00 .«
0.10 ms
YYW W WYw Wy
0.01 ms
000ms , ; 4 6 7 °
10 10 10 10 10° 10 10 10

SuiteSparse Matrices (sorted by their number of nonzeros)

Figure 7-12: SpMM GPU with the CSR format

108

10

10

General High-Order Tensor Expression Support

I have shown that taco can generate code that performs better, the
same, or within 15% of hand-optimized implementations on three of
the expressions that are most studied in the performance literature,
namely SpMV , SpMM, and MTTKRP. The number of expressions is
unlimited, however, and many expressions have not yet been hand-
written. For these expressions, there exists a few programming sys-
tems that support general classes of expressions. One such system is
the MATLAB Tensor Toolbox (TTB) by Bader and Kolda [14]. TTB was
an early system for sparse tensor computations that provided unprece-
dented generality. It is built on top of handwritten routines combined
with data reorganization, and its generality comes at a performance
cost. Table 7-10 shows the performance of taco compared to TTB on
four higher-order tensor expressions with tensors stored in the coor-
dinate format. The expressions are tensor times vector multiplication
(TTV), tensor times matrix multiplication (TTM), tensor addition, and
MTTKRP. Due to its code generator approach, taco is up to 20 times
faster than TTB, while at the same time supporting more expressions.
taco also supports GPU code generation that further increases perfor-
mance when a GPU is available. Chapter 8 further argues the case
for a compiler-backed programming system. With a code generation
approach, we do not have to choose between the performance of hand-
written routines and the generality of programming systems.

Specialized formats

Figure 7-13 and Figure 7-14 contain bar charts that show the perfor-
mance of taco-generated SpMV implementations that compute on ma-
trices stored in the DIA and ELL formats respectively. As I describe
in Section 2.5, DIA and ELL are specialized formats for matrices with
special structure. The DIA format is designed for matrices with only
a few diagonals, such as those that arise from finite difference meth-
ods on structured grids and filters on images. The DIA results in Fig-
ure 7-13 compare a taco-generated implementation to handwritten im-
plementations in Intel MKL [44] and SciPy [69]. The taco-generated
implementation performs on par with SciPy’s implementation, while
Intel MKL performs better due to sophisticated cache blocking. I leave
recreating these results, by combining taco’s format support with the
scheduling language, as future work. The ELL format optimizes ma-
trix data structures by assuming every row has the same number of
nonzeros. This assumption lets it omit the row sizes and potentially
enables vectorization. Because the Intel MKL and SciPy libraries do
not support the ELL format, I compare to the matrix template library
(MTL4) [59]. The ELL results in Figure 7-14 show that taco also per-
forms well on this format, further demonstrating that it performs well
across expressions and formats.

109

Sparse Matrix Addition

Figure 7-15 plots the time it took taco-generated kernels and hand-
optimized library implementations to compute a matrix addition. The
x-axis lists 1677 matrices from the SuiteSparse repository. Each ma-
trix was added to a synthetic matrix that was created by increasing
the column coordinate of each nonzero by one, wrapping the last col-
umn around to zero. This approach yields two matrices with similar
nonzero structure and with a mix of nonzeros that either overlap or
do not. The plot shows that the taco-generated implementation per-
forms similar to the best performing alternative, which is the SciPy im-
plementation. The Matrix Template Library (MTL4) [59] perform less
well on this particular kernel. The Intel MKL matrix addition kernel
is a parallel kernel that we ran with one thread to get a direct com-
parison. Taco does not yet support generating parallel code when the
result is sparse, which I leave as future work. When running MKL in
parallel, it performs better than taco on large matrices, but worse on

10000 ps
B taco B MKL [SciPy
1000 ps
100 ps
10 us
1

S
X
<
& @Q &

Execution Time

T

(\ Q; \\
'bc‘)(\ do}' Q@(b 0‘6\ C$\ \0q 66\0

'b
< @ $ 9
i S xR oy & Y @Q O o
S © % ¥ R LS
FROSTT Tensors (sorted by their number of nonzeros)

Figure 7-13: SpMV CPU results with the DIA format.

10000 ps
B taco B MTL4
1000 ps
g
= 100 us
c
kel
§ 10 us
x
L
1us
Q > & © RS
& «9 ,bé‘ & @ 6\ & F NGO S
& o & @ & S 6‘ S R Y Ny Q
SR S N < S » NS < S F
9 W 2 > X 4 N 'b
S é@@/ S 9 Q & @ @ &@

FROSTT Tensors (sorted by their number of nonzeros)

Figure 7-14: SpMV CPU results with the ELL format.

110

small matrices.

Concluding Remarks

Together, these experiments demonstrate that taco can generate fast
CPU and GPU code across many different operations from both the
sparse linear and tensor algebras. Further, it generates the code using
general code generation techniques and optimizing transformations
that apply across all tensor algebra expressions with tensors stored in
many different formats. Section 7.2 shows why it is important to sup-
port the entire tensor algebra—not just a subset. Section 7.3 illustrates
why it is important to support many different tensor formats. And
Section 7.4 shows how the optimizing transformations can be used to
adapt the generated code to the peculiarities of accelerators, by trans-
forming its sparse iteration space, precomputing temporary tensors,
and even tiling sparse loops for static load balance.

100,000.00 ms

® taco
10,000.00 ms Vv SciPy
o= MKL
£ 100.00 ms
c
° 10.00 ms
>
]
%5 1.00 ms
0.10 ms
++ W 4 oy W
0.01 ms) ".:!.
LA
0.00 ms
10" 10° 10° 10" 10° 10° 10

SuiteSparse Matrices (sorted by their number of nonzeros)

Figure 7-15: Matrix Addition CPU with the CSR format.

111

10

8

10

Chapter 8

Related Work

In this chapter, I provide a history of the work on compilers, libraries,
and programming systems for sparse linear and tensor algebra. Fig-
ure 8-1 shows a timeline of significant developments classified into
three categories: sparse compilers, sparse kernel libraries, and sparse
programming systems. Throughout this chapter, I describe and con-
trast these categories and discuss their pros and cons. To put these
sparse developments in context, I then end with a brief overview of
the longer history on language and compiler support for dense ar-

1950 1960 1970 1980 1990 2000
| | | | | |

“Do not seek the footsteps of the
wise; seek what they sought.”

— Matsuo Basho

8.1 Sparse Compilers
8.2 Sparse Kernel Libraries

8.3 Sparse Programming
Systems

8.4 Dense Programming
Systems and Compilers

2010
|

Sparse Tensor Algebra Compilation

~

taco [78] e

Inspector-Executor [95] e SIPR [105] Sparse
Sparse Loop Optimizations Bik et al. [25] o CHILL-I/E [128] o Compilers
Bernoulli [84]
COO [113] ITPACK [75] o SPARSKIT [111] e CSPARSE [46] o
CSR [124] o PETSc [17] o SPLATT [116] e ;Parsel
Algorithm 408 [92] Shared Memory [131] o . ernt.e
Libraries
GPUs [21] »
Sparse MATLAB [56] o Julia [22] e Sparse Pro-
TTB [14] o gramming
Sparse CTF [120] e Systems
Fortran [12] MATLAB [123] e NumPy [102] D
APL [68] Vector Model [29] » Halide [107] o ense
Programming
NESL [30] SPIRAL [106] ¢ LL [7] « TVM [40] e S
ystems
TCE [9] o TC [127] o
Loop-Invariant Code Motion [2] e Distributed-Memory [38]
Loop Unroll and Fusion [3] ¢ Loop Skewing [132] e Polaris [31] e
Operator Strength Reduction [42] e PolyLib [130] e
Loop Interchange [133] o SUIF [4] e PLUTO [33]
Polyhedral Model [85] ¢ Polyhedra Scanning [5] PENCIL [15 Dense Loop
olyhedral Mode . olyhedra Scanning . [15] Optimization

Parametric Integer Programming [53] e
Automatic Loop Parallelization [96] e Omega Library [71] e
Omega Test [104] o

Unimodular Trans. [19] e

Dependence Testing [18] e
Dataflow Analysis [74] e

Transformation Scripts [39] e

Figure 8-1: Timeline of efforts to provide library and programming system support for array and tensor computations.

112

ray and tensor algebra codes. I have chosen to make a distinction be-
tween libraries and programming systems, where I define a library as
software that provides implementations for single operations, whereas
programming systems offer general support for a class of operations.
The programming systems vary in the type of operations they support.
For example, NumPy supports dense array operations with broadcast
semantics, the MATLAB Tensor Toolbox supports any binary pairwise
sparse tensor contractions on coordinate tensors, and taco supports
any n-ary tensor expression and tensors stored in many dense and
sparse formats.

There are two ways to create a function that computes a tensor al-
gebra expression (a kernel): it can be handwritten by a programmer or

generated by a compiler. For any given kernel, it is, of course, easiest A=Bo(CD)
to write it by hand than to develop a compiler. In fact, how to generate l transform
general sparse tensor algebra kernels was, until this dissertation, an

Matrix T = gemm(C,D);

open problem. The downside of handwritten kernels is, however, that Matrix A = spelmul(B.T):

every expression incurs a development and optimization cost for each

Kernel Library
data structure and for each machine it is required for. Developing even B mttkrp | matadd
. . . 1Imul
one such kernel necessitates an intellectual effort that is often of such sperm omv tm e

significance as to be published in a peer-reviewed conference or jour-
nal paper. Thousands of papers have been written on different sparse Figure 8-2: Programming system built
linear and tensor algebra kernels for different expressions, data for- on top of a kernel library. The system
mats, optimization strategies, and machines. Furthermore, as argued must trar?Sform EXpIESSIOons and tensors
K .] to fit available hand-written kernels.
in Section 1.2, the number of possible kernels for sparse tensor algebra

grows a the cartesian combination of these factors. Therefore, unless

. . . A=B0o(CD)
we move to a code-generation approach, such as the one described in
.1 . compile
this dissertation, we should expect thousands more. l P
A compiler approach promises to reduce overall implementation P
. . : : for (int pB1 = B1_pos[0];
cost by enabling programmers to express their tensor expressions in a PB1 < B1_pos[11; pBl++) {
high-level tensor notation. These expressions are then combined with Int 1 = B1crdlpB1l;
for (int pB2 = B2_pos[pB1];
separate descriptions of data formats, optimization strategy, and ma- PB2 < B2pos[pBI+T]; pB2++) {
int j = B2_crd[pB2];
chine to automatically generate an optimized kernel. This approach double t = 0.0;
) . K . for (int k = 0; k < 0; k++) {
provides users with the best of both worlds: they write their expres- int pCz =1 % 0+ ks
. int pD2 =k * N + J;
sions in high-level tensor notation and obtain the performance as if t += CLpc2] * DIpD2];
. .)
they wrote and optimized the kernel by hand in a low-level language AlpA2++] = B[pB2] * t;
)
such as C.)

General programming systems for tensor algebra can be designed
in two ways: they can either be built on top of libraries of handwritten — Figure 8-3: Programming system built

kernels (Figure 8-2) or on top of a compiler (Figure 8-3). on top of a compiler. The system can in-
voke the compiler to generate any ker-

nel and is therefore not forced to trans-

Programming systems built on top of kernel libraries must im- ¢ expressions and tensors.

plement a strategy to map general expressions to a fixed number
of kernels. These programming systems, such as MATLAB[123]
and Cyclops [119], rewrite compound expressions as a sequence
of sub-expressions and rearrange tensors to fit the available ker-
nels. This strategy reduces their performance because sequences
of unfused subexpressions may perform asymptotically more op-
erations, may suffer from poor temporal locality, and may re-

113

quire data movement. And reorganizing tensors to look like ma-
trices, so that tensor contractions can be expressed as linear al-
gebra, requires costly data movement and transpose operations.

Programming systems built on top of compilers can generate im-
plementations for any expression on demand and are not forced
to rewrite expressions to subexpressions or reorganize data.*> 42 AsTam writing this dissertation, taco
These programming systems are, however, still free to rewrite ~ is the only compiler that can generate
expressions when doing so improves performance. A program- Lfgjzzf;rfjuons for any tensor algebra
ming system built on top of a compiler combines the perfor- '
mance of hand-optimized implementations with the generality
of an expression language.

This dissertation describes how to build a sparse tensor algebra com-
piler. I have also outlined an implementation of a sparse tensor algebra
compiler called taco (The Tensor Algebra Compiler), which we have
made available as an open-source project under the MIT license.

In the following three sections, we will survey prior work on com-
piler techniques, kernel libraries, and programming systems. Most of
this work has been on developing libraries of hand-optimized kernels
for specific computations on specific formats on a specific machine and
programming systems backed by those kernels. There has also been
some work on compiler support for sparse tensor algebra; however,
it has been limited to small classes of linear algebra expressions on a
handful of matrix formats. The work in this dissertation, on the other
hand, handles all of the basic linear as well as tensor algebra on a large
class of vector, matrix, and tensor formats.

8.1 Sparse Compilers

This dissertation describes the compiler techniques that are needed
to generate code for any sparse tensor algebra expression on tensors
stored in the many formats that can be described by our format lan-
guage. These techniques are the first to accomplish this level of gener-
ality. Prior to this work, code generation and optimization for sparse
linear or tensor algebra was considered to be an open problem by the
compiler community, as demonstrated by the following quote from
Professor Sadayappan of the University of Utah, who is unaffiliated
with this work [63]:

“Many research groups over the last two decades have
attempted to solve the compiler-optimization and code-
generation problem for sparse-matrix computations [...]
The recent developments from Fred and Saman represent
a fundamental breakthrough on this long-standing open
problem.”

In the rest of this section, I describe the work by these groups and
attempt to compare and contrast it to the work in this dissertation.

114

a = Bc

l lower

for (int i = 0; i < M; i++) { for (int i = 0; i < M; i++) { for (int i = 0; i <M; i++) {
double t = 0.0; double t = 0.0; double t = 0.0;
for (int p = B_pos[il; p < B_pos[i+1]; p++) { for (int j = 0; j < N; j++) { optimize for (int p = B_pos[il; p < B_pos[i+1]; p++) {
int j = B_crd[pl; int pB2 = i*N + j; int j = B_crd[pl;

t += B[pl * c[j]; t += B[pB2] * c[j]; t += Blp] * c[jl;
}
alil = t; afi] = t; alil = t;

} 3)

Figure 8-4: The top-down compilation ap- Figure 8-5: The sideways optimization approach to sparse tensor algebra compi-
proach to sparse tensor algebra compilation, lation, where imperative loops are optimized and potentially converted to sparse
where a high-level notation are lowered toan loops that iterate over a different format. For example, a dense loop nest is con-
optimized kernel by a code generator. verted to a sparse loop nest over a CSR data structure.

There are two approaches to sparse compiler techniques:

compilation of high-level language constructs, where the compu-
tation is expressed in high-level mathematical languages, such
as tensor algebra, that is compiled down to optimized imperative
code (Figure 8-4); and

optimization of sparse imperative code, where sparse imperative
loops are optimized or where dense loops are transformed to
sparse loops (Figure 8-5).

The work in this dissertation falls into the first category and explores
how to compile and optimize a tensor algebra expression language on
dense and sparse operands. This expression language can then be im-
plemented as part of a language or as a library. The prior work, how-
ever, falls into the second category, exploring how to transform dense
imperative linear algebra code to sparse code or how to optimize sparse
code.

High-Level Language Construct Compilers

In the compilation approach, the linear and tensor algebras are viewed
as programming languages, or part of programming languages, to be
optimized and compiled to machine code, similar to the other program-
ming language constructs. The history of compiler construction has
been a march towards higher-level programming language constructs,
from assemblers, through to the replacement of goto statements with
half a dozen language constructs in structured programming, to mod-
ern high-level object-oriented and functional languages. As stated by
Backus et al. [12], the goal of the FORTRAN Automatic Coding System

“was to enable the programmer to specify a numerical pro-
cedure using a concise language like that of mathematics
and obtain automatically from this specification an effi-
cient 704 program to carry out the procedure”

115

Support for tensor algebra—a mathematical language on multilinear
collections of numbers—can be viewed as another step. Indeed, Parnas
traced the history of automatic programming back to a machine that
converted instructions to holes in punch cards, and concluded that

“automatic programming always has been a euphemism
for programming with a higher-level language than was
then available to the programmer. Research in automatic
programming is simply research in the implementation of
higher-level programming languages.” [103]

There are several benefits to viewing tensor algebra as a program
to be optimized and compiled to machine code. First, and perhaps fore-
most, is that programmers obtain a high-level language to work in that
is far more productive than an imperative language. Further, the lan-
guage consists of simple expressions that can easily be presented to a
programmer in the form of a library for easier adoption—indeed, the
work in this dissertation was implemented by the author and collabo-
rators as a C++ library. It is also easier to optimize programs written
in tensor algebra than the corresponding program written in impera-
tive code. They are closed expression languages and can be reasoned
about algebraically, from mathematical properties, without the need
for sophisticated control flow and dependence testing.

Sparse Imperative Code Optimizers

In the imperative code optimization approach, the sparse linear and
tensor algebras are viewed as a compiler optimization problem on im-
perative code. These approaches take a loop nest that expresses a
sparse or dense computation, such as a matrix multiplication, and op-
timizes it, either by transforming it to operate on a different data struc-
ture (e.g., from dense to CSR) or by changing loops to parallelize or tile
dense sub-computations in mixed sparse and dense code.

The benefit of the code optimization approach is that it has the
potential to generalize to a larger class of sparse computations than
those computations that can be expressed in a high-level expression
language. This generalization is compelling, and the history of dense
computations has showed us that dense linear algebra was an excellent
testbed for a large class of important loops. Many analysis, tiling, and
auto-vectorization techniques developed from exploring such kernels,
including dependence testing and the polyhedral mode. We should
hope that the research on optimization of sparse code has similar suc-
cess, despite the serious challenges related to analyzing code that de-
pends on runtime values. Furthermore, the implicit use of linear and
tensor algebra, where computations are linear but not phrased as oper-
ations on explicit tensors, is common. For example, the seven key nu-
merical methods in science and engineering identified by Phil Collela
in 2004 [43, 8] are predominately linear algebra in different guises.*>

116

43 The seven numerical methods are
dense linear algebra, sparse linear
algebra, spectral methods, N-body
methods, structured grids,
unstructured grids, and Monte Carlo.
The first two are explicit linear algebra,
and spectral methods, such as the FFT,
are also predominately linear. The next
three are typically either implicit
matrix-free linear algebra, or turn into
linear algebra through a matrix
assembly. Finally, Monte Carlo random
sampling methods are often a driver on
top of a linear optimization or
integration problem.

Compiler techniques that target general classes of sparse linear, mul-
tilinear, or even nonlinear computations that cannot yet be efficiently
expressed in explicit algebraic form without loss of performance are
therefore of significant value.

The drawback of the code optimization approach, however, is that
it requires extensive control flow and dependence analysis, often in-
volving expensive inspectors, that makes them more complicated and
more fragile than compilation from high-level languages. Further-
more, the extensive use of linear and tensor algebra libraries and lan-
guages shows that programmers prefer to use high-level abstractions
instead of writing imperative code by hand. Thus, I believe that com-
pilers for high-level language constructs are preferable for computa-
tions that can be expressed in these high-level abstractions.

Prior Sparse Compilation Techniques

I discuss prior work on systems and techniques for sparse compila-
tion in chronological order, starting with the work of Bik and Wijshoff
in 1993 [25] and ending with the work of Venkat, Strout, Hall, and
Olschanowsky on the CHIiLL-I/E compiler [128] and the Sparse Poly-
hedral Framework [122].

The first research on compiler techniques for sparse linear alge-
bra that is known to me was carried out by Bik and Wijshoff in the
mid 1990s at Leiden University in the Netherlands. In a series of pub-
lications from 1993 to 1998, they presented a set of compiler transfor-
mations, implemented in their MT1 compiler, to convert dense FOR-
TRAN implementations of some linear algebra primitives to sparse im-
plementations [25, 26, 24]. In their approach, the programmer writes
dense code and annotates the code to instruct the compiler regarding
what matrix to sparsify. Alternatively, they also have a technique re-
ferred to as sublimation, published by Spek and Wijshoff in 2011 [126],
that turns sparse code into dense code so that it can be sparsified into
another data structure by the other techniques. In either case, the com-
piler then performs a dependence analysis on the dense loops and ap-
plies several incremental loop transformations that results in sparse
code that uses a sparse data structure. The loop transformations they
present are limited to matrix multiplication kernels, including a triag-
onal solve, where only one operand can be sparse. Their system can
sometimes also apply a technique called loop distribution to densify
a sparse array, similar to the temporaries in concrete index notation
(Section 4.3). Their method does not work for addition expressions or
for expressions that require coiteration over multiple sparse tensors.
Their approach is also complicated because it must execute many fine-
grained loop transformations, with preconditions that rely on loop de-
pendence analysis, in exactly the right order to obtain to the correct
sparse code.

The Bernoulli project took place at Cornell in the last half of the
1990s and was carried out by Kotlyar, Stodghill, and Pingali [84, 121,

117

83]. It presented a radically different approach to sparsifying dense
loop nests than that of Bik and Wijshoff. Rather than applying a se-
quence of transformations on imperative loops, the Bernoulli system
lifts the loops into a high-level relational algebra formulation that enu-
merates the dense iteration space as a cartesian product. Sparsity is
then introduced as predicates in filters that are then pushed down into
the cross products to turn them into relational joins. Finally, the sys-
tem produces code similar to how traditional database systems work
by selecting join algorithms from a menu of hand-coded join imple-
mentations. The Bernoulli system was demonstrated to work on many
of the same matrix multiplication kernels as Bik and Wijshoff’s ap-
proach, including triagonal solve. But it expanded the number of pos-
sible data structures and could generate sparse multiplication kernels
with more than one sparse matrix if a suitable join implementation
existed. By lifting the code to a higher level of abstraction than im-
perative code, the Bernoulli system substantially simplified the intro-
duction of sparsity. The lifting still requires complex control flow and
dependence analysis, however, and may therefore be fragile to minor
changes in the loop nest. Furthermore, it is restricted to multiplication
kernels, and there is no concept of temporaries because the relational
algebra only describes the iteration space and not computation. Fi-
nally, it is limited by the need to map multiplications to hand-coded
join implementations that, for binary operations, grows as the Carte-
sian product of supported data structures and machines increases. And
for operations with more than two operands, such as the MTTKRP
and SDDMM families of expressions, the number of join implementa-
tions grows exponentially. The techniques presented in this disserta-
tion show how to instead generate code to coiterate over any combina-
tion of multiplications and additions over any number of tensor data
structures stored in different formats.

The Sparse Intermediate Program Representation (SIPR) was de-
veloped by Pugh and Shpeisman as an IR for sparse compilers such
as Bik’s MT1 compiler and the Bernoulli compiler [105]. It was in-
tended to separate the complications of sparse matrix data structures
from computations and could express accesses and iteration over data
structures as well as matrix format changes during program execu-
tion. Similar to the concrete index notation (Section 4.3), it represents
programs as imperative code, but with sparsity predicates in the loop
bounds. As straight-line imperative code, it has much looser seman-
tics than the concrete index notation and does not type its operands.
Furthermore, the compiler techniques are limited to those used in MT1
and Bernoulli: each loop can only iterate over one sparse data Struc-
ture, and additions are not supported. A particularly interesting fea-
ture of the SIPR system, however, is that it has a cost model that counts
the number of operations of each sparse loop and thus provides a cost
of the overall expression.

The LL language was developed by Arnold et al. to express and
verify sparse matrix codes [7, 6]. It is a functional language with many

118

of the common functional constructs, such as map, filter, and reduce,
and they show that it is expressive enough to describe assembly and
SpMV kernels for many sparse formats, including COO, CSR, BCSR,
and Jagged Diagonals. They also describe a compilation approach in-
spired by the flattening techniques and segmented vectors of the NESL
language compiler [28]. Finally, they use the tight variable-free func-
tional semantics of LL to verify, for the first time, the correctness of
the assembly of SpMV programs. A limitation of the functional ap-
proach of the LL language is that programs are tied to the details of
sparse formats; each program must therefore be written for each for-
mat. It is also not clear how well the language generalizes to more
complicated programs, such as matrix-matrix multiplication and ma-
trix addition. The ability to verify sparse matrix routines, however,
is obviously appealing because they are used in applications such as
nuclear simulations and bridge design optimization, where I think we
would all prefer correct results.

Finally, Strout, Hall, and Olschanowsky developed the Sparse Poly-
hedral Framework in the far west of the USA in the 2010s [122]. It com-
bines polyhedral compilation with an inspector-executor approach to
data inspection. The framework shows how to generate and compose
inspectors and how to optimize sparse data using polyhedral tech-
niques with uninterpreted functions to model non-affine data accesses.
This framework is being incorporated into the CHILL-I/E compiler
by Venkat, Hall, and Strout [128], and it complements this compiler
by providing optimizing transformations to move between dense and
sparse similar to those of Bik, Spek, and Wijshoff. The result is a
promising general sparse compilation framework.

8.2 Sparse Kernel Libraries

Kernel libraries have been the dominant approach to sparse linear and
tensor algebra. The first use of sparse matrix data structures known
to me is by Sato and Tinney in 1963, who use the coordinate format to
store a network admittance matrix [113]. Tinney and Walker then de-
scribed the compressed sparse row (CSR) data structure in a paper from
1967 [124]. Since then, an enormous number of papers has been writ-
ten on different linear algebra kernels optimized for different sparse
data structures, and this is still an active area of research. In the last
two decades, we have seen a similar development for sparse tensor al-
gebra, and many papers concerning sparse tensor data structures and
optimized implementations of tensor algebra expressions are produced
every year.

The advantage of kernel libraries is that every kernel can be man-
ually optimized by a human. It is also easier to develop an optimized
tensor algebra kernel than a sparse tensor algebra compiler. In fact, un-
til this dissertation, it was not even known how to develop a compiler
that could generate sparse kernels for expressions more complicated

119

than a linear algebra multiplication with a single sparse operand in
one of a small number of formats. The disadvantage with a kernel li-
brary is that humans can, in principle, only handwrite a finite number
of optimized kernels. In practice, however, we can only handwrite and
hand optimize a small number of kernels, and kernel libraries typi-
cally restrict support to a small number of expressions, one sparse ma-
trix data structure, and one type of machine.** Applications must thus
be written to map their computations to this finite set of kernels, po-
tentially leading to asymptotically worse performance, poor temporal
locality, and data structure reorganization. This style of writing ap-
plications is particularly troublesome in tensor algebra, where tensors
of any order lead to any number of tensor contractions. The standard
solution, apart from developing a new hand-optimized kernel, is to
transpose the tensor so that the contracted dimension is last, convert
it to a sparse matrix, perform matrix multiplication, convert it back
to a tensor, and then transpose the contracted dimension back in its
place. This approach results in significant data movement, especially
when multiple dimensions are contracted with different tensors such
as in the MTTKRP operation [14].

Many sparse linear algebra libraries have been developed, and I
will mention a few of particular significance. The first sparse linear al-
gebra library known to me is referred to as Algorithm 408, developed
by McNamee and published in 1971 [92]. The paper describes a number
of operations on sparse matrices, including multiplications, transposi-
tions, and permutations. Implementations that took advantage of spe-
cial matrix structure came along soon thereafter. The ITPACK library
was developed in the early 1970s, and the first publication describing
its sparse functionality appeared in 1975 [75, 76]. It was an early com-
prehensive package that offered support for selecting among differ-
ent matrix formats, including CSR [124] and ELLPACK [110]. A large
number of matrix formats for special matrix structures has since been
developed, typically intended to be used with the sparse matrix-vector
multiplication (SpMV) operation. The SPARSKIT package [111] is no-
table for supporting SpMV on as many as 16 different sparse matrix
formats and also provides conversion routines between these formats
and the CSR format that is used by the rest of the package. This trend
continues today, with recent developments of specialized formats for
power-law matrices [37]. In the mid 2000s, shared-memory multicore
processors became common, and Williams et al. wrote in depth about
optimizing SpMV for these machines in 2007 [131]. The Intel MKL li-
brary [44] is a highly optimized dense and sparse multi-threaded linear
algebra library that is widely used by applications on Intel processors.
The last shared-memory library I describe is the Eigen library [60].
Eigen is an open-source header-only C++ library that has seen wide
adoption in the last decade due to its ease of installation and use. It
makes heavy use of template metaprogramming to generate special-
ized code for different data types, to fuse dense operations, and to in-
line vectorized code for common small dense operations into user code

120

44 Some libraries, such as cuS-

PARSE [125] and SPARSKIT [111], have
partial support for multiple formats.
This partial support typically means
that the SpMV operation works with
multiple formats, and these libraries
provide conversion routines between
these formats and the format supported
by the rest of the library.

(e.g., 3 X 3 matrix multiply).

In recent years, researchers have begun to investigate new com-
pound sparse linear algebra kernels, such as the sampled dense-dense
matrix multiplication (SDDMM) kernel used in factor analysis algo-
rithms, such as alternating least squares [137]. In this kernel, a dense
matrix multiplication is element-wise multiplied by a sparse matrix:

A=Bo(CD),

where © is an element-wise multiplication. If the operations are per-
formed separately, then the element-wise multiplication discards re-
sults wherever the sparse matrix has a zero, whereas a custom com-
pound kernel that computes the entire expression at once never needs
to compute those results in the first place. The compound kernel is
therefore asymptotically faster if the number of nonzeros in the sparse
tensor is included in the asymptotic expression. The techniques in this
paper were shown to generate an asymptotically superior compound
version of this kernel [78], and an optimized version of the kernel was
implemented on a multi-node GPU cluster by Nisa et al. [99].

Graphics processing units (GPUs) have become popular for com-
puting applications over the last decade. They have an order of mag-
nitude more floating-point-operation throughput than CPUs, making
them excellent compute units for dense linear algebra. GPUs are sensi-
tive to load locality and are therefore challenging to use for sparse lin-
ear algebra; however, because they have an order of magnitude more
memory bandwidth than CPUs, they perform better than CPUs on
many operations, including SpMV [93, 21]. The NVIDIA cuSPARSE li-
brary [125] is a popular GPU library written using the NVIDIA CUDA
programming model [101]. It provides optimized GPU SpMV kernels
for several sparse matrix formats [21], including COO, CSR, CSC and
BCSR, as well as a statically load-balanced implementation of SpMV on
the CSR format that uses a merge strategy to distribute work evenly
between threads [93].

Many sparse linear algebra libraries have also been developed for
distributed-memory supercomputers, typically using the MPT API [118].
The PETSc library from Argonne National Laboratory [16] was an
early MPI library for sparse linear algebra basic operations and solvers.
It pioneered an insightful object-oriented approach to the construc-
tion of supercomputing software, with sparse matrices modeled as dis-
tributed objects and with abstract matrix operations [17]. A more re-
cent MPI library for sparse linear algebra is the Epetra linear algebra
package in the Trilinos collection of supercomputing libraries from
Sandia National Laboratories [65]. This library pushes the envelope
on modular MPI software design and was built to make it easy to com-
pose many different software packages to solve linear and non-linear
systems.

Finally, the last years have seen a flourishing of kernel libraries
for sparse tensor algebra, following the publication of the MATLAB

121

Tensor Toolbox (TTB) by Bader and Kolda [14]. These libraries typ-
ically focus on optimizing a handful of specific tensor kernels that
are used to compute variants of the Canonical Polyadic Decomposi-
tion and Tucker Decomposition, which are generalizations of Singular
Value Decomposition (SVD) for higher-order tensors. These opera-
tions include tensor-times-vector (TTV), tensor-times-matrix (TTM),
and the matricized tensor times Khatri-Rao product (MTTKRP).*> The
MATLAB Tensor Toolbox proposed implementations of these oper-
ations for sparse tensors of any order stored in the Coordinate for-
mat. Baskaran et al. then described an early specialized tensor for-
mat for tensor factorization in data analytics, called the mode-generic
format [20]. The performance of the MTTKRP operation was signifi-
cantly improved by the SPLATT library of Smith et al. [116] that stores
tensors in a high-order generalization of CSR termed CSF and pro-
vides hand-optimized MTTKRP functions for up to order-4 tensors.
Furthermore, Li et al. proposed a sparse tensor library that uses a
high-performance tensor format called HiCOO, a variant of Baskaran’s
mode-generic format, to further optimize MTTKRP [89]. Finally, Zhang
et al. recently proposed a new class of tensor kernels that general-
ize the SDDMM linear algebra kernel, described above, for alternating
least squares to higher-order tensor operations [136]. All of these ker-
nels, except those that use the HICOO format, can be generated by taco
with performance that match or exceed the above implementations.

8.3 Sparse Programming Systems

A programming system, as defined here, lets the user specify and com-
pute general tensor expressions on sparse tensors. Many general pro-
gramming systems have been developed for sparse linear algebra, in-
cluding MATLAB [123] and Julia [23]. They are built on top of sparse
linear algebra kernel libraries and work by splitting general linear alge-
bra expression into a fixed set of sub-expressions that can be executed
by available kernel functions. For example, the residual

r=>b-Ax
may be split into two sequenced computations

t = Ax
r=b-t

if no kernel is available for the compound expression. As I described
in Section 1.2, there are at least three problems with this approach:

1. values computed by early kernels may be discarded when later
multiplied by zeros, causing asymptotically worse worst-case
behavior;

2. loss of temporal locality and increased reuse distance as ¢ is fully

122

45 See Table 7.1 in Bader and Kolda’s pa-
per for a comprehensive list of the op-
erations they proposed [14].

materialized before it is consumed, which may cause values to
be flushed from caches; and

3. arequirement that the two kernels agree on the data structure
of t, or else its data structure must be changed on the fly.

Despite these issues, the approach of dividing linear algebra expres-
sions to fit available kernels has been the dominant paradigm because
code generation from sparse compound linear algebra expressions was
an open problem until the approaches in this dissertation were pre-
sented.

Programming systems for general sparse tensor algebra are more
challenging than programming systems for sparse linear algebra. There
are two reasons: a tensor can have any order, and any subset of ten-
sor dimensions can be contracted in a tensor expression. Thus, even
the number of binary tensor expressions is limitless, whereas the num-
ber of binary expressions in linear algebra is finite. These sources of
generality provide additional challenges to efficient implementation
in addition to the, potentially asymptotic, inefficiency of composing
handwritten kernels that we described above. In the absence of a code-
generation technique as described in this dissertation, prior systems
for sparse tensor algebra supported these sources of generality in two
ways. They

interpret operations in a general routine that determine what oper-
ations to perform, and

permute tensors so that the modes to contract come last and then call
matrix multiplication to perform the contraction.

An example of interpretation is the MATLAB Tensor Toolbox’s sup-
port for tensor-times-tensor multiplications [13], and an example of
permutation is Cyclops’s support for general tensor contractions [119].
Both approaches add overheads to the computation that can be avoided
if a compiler is available to generate custom kernels on demand for ar-
bitrary operations.

The MATLAB Tensor Toolbox [14] provides a handful of kernel
functions that each work for a small class of tensor expressions. For
example, tensor-times-vector (ttv) works for tensors of any order, and
tensor-times-tensor lets the user specify how many modes to contract
when multiplying two tensors, as long as the contracted modes are at
the beginning of the input tensors [13, Section 3.3]. Even this modest
generality comes at a high cost in the absence of a compiler to generate
custom kernels. As we saw in Chapter 7, the MATLAB Tensor Toolbox
kernels are often two orders of magnitude slower than hand-optimized
kernels or the kernels generated by the techniques in this dissertation.

The libtensor of Epifanovsky et al. [52] generalizes the limited ten-
sor multiplications of the Tensor Toolbox to general tensor contrac-
tions of two tensors for block-sparse tensors. The general contraction
lets two tensors of any order be contracted in any number of modes,

123

which is often required in quantum chemistry and quantum physics.
The contractions are controlled by an indexing expression, as shown
by the following example from their paper:

Cijkl = Z @ipkqbjplg-
Pq

Their execution scheme interprets the contraction expression at the
block level and dispatches block contractions, after appropriate ten-
sor permutation (e.g., transpose), to the dense general matrix-matrix
multiplication (GEMM) operation. Such an execution scheme requires
interpretation and data transposition; however, when the dense blocks
are large, this overhead can to some degree be amortized by the high
cost of the dense multiplication.

The Cyclops Tensor Framework (CTF) from Solomonik et al. [119]
computes general tensor algebra expressions in the Einstein summa-
tion notation on distributed machines using MPI. It was later extended
to sparse matrices and tensors, including support for tensor algebra
computations in several semirings [120]. Their system provides a func-
tion that can compute any binary tensor contraction with two operands
by turning the tensor into a matrix and using GEMM for the contrac-
tion. They handle contractions with more than two operands by turn-
ing them into a sequence of binary contractions. Furthermore, terms of
additions are independently computed and then added together in op-
timized kernels. Similar to libtensor, their execution scheme relies on
matching general tensor expressions to handwritten kernels. This ap-
proach causes some overhead from data reorganization, from permu-
tation and data structure conversion. Furthermore, when operands are
sparse, as we discussed above, it can lead to asymptotic performance
degradation when computed values are later multiplied by zeros. The
Cyclops programming system, such as the MATLAB Tensor Toolbox
and libtensor, can therefore benefit from a compiler to generate custom
tensor algebra kernels on demand.

8.4 Dense Programming Systems and Compilers

The use of digital computers for dense array and tensor computations
stretches back at least as far as the Manhattan project, where they were
used to simulate nuclear reactions. Programming language and com-
piler support started appearing in the 1950s and has since received
significant attention. Fortran, the first programming language, was
designed to make it possible to specify numerical procedures with a
language closer to mathematics and provided first-class support for
expressions, do loops, and dense arrays [12]. Shortly thereafter came
the APL language with first-class support for operations on arrays as
a whole, instead of loops that access array components [68]. First-
class programming language support for dense matrix codes was pio-
neered by the MATLAB programming system in the 1980s [123]. The

124

SPIRAL project explored mathematical descriptions of linear trans-
forms as a programming model and showed how they could be com-
piled to autotuned implementations on data in dense arrays [106, 55].
The NumPy Python library, released in 2006, popularized operations
on multi-dimensional dense arrays and the concept of implicit array
broadcast semantics [102]. Dense tensor operations were introduced
into programming systems in the same year by the Tensor Contraction
Engine [9] and the MATLAB Tensor Toolbox [13]. In the early 2010s,
the Halide system showed how deep stencil code pipelines could be
separately expressed and optimized by two different languages [107].
Finally, the last decade has seen a significant amount of interest in
dense tensor algebra compilers for deep learning following the release
of the TensorFlow system [1], including XLA [87], TVM [40], and Ten-
sor Comprehensions [127].

There have been two approaches to loop optimization: individual
transformations applied directly to the loops and frameworks where
the loops are modeled and manipulated as mathematical objects. Of
the latter, the two main branches are referred to as the unimodular
transformation framework and the polyhedral model.

The first published discussion on program optimization known to
me was a book chapter by Allen from 1969, where she describes sev-
eral optimizations, including loop-invariant code motion [2]. In 1971,
Allen and Cocke put together the first systematic catalog of optimiz-
ing loop transformations, which includes the unrolling and fusion loop
optimizations [3]. That same year in his dissertation, Muraoka was the
first to describe a technique to automatically parallelize loops [96]. He
generalized work by Bingham and Fischer [27], which computed de-
pendencies between straight-line statements, to compute dependen-
cies between statements in a loop to determine whether they can be
run in parallel. Banerjee developed the GCD and Banerjee dependency
tests in his 1976 Masters thesis that improves the efficiency of au-
tomatic parallelization and vectorization [18]. The next year, Cocke
and Kennedy described what I believe was the first operator strength
reduction algorithm for loops [42]. Wolfe introduced the loop inter-
change and showed how it can be composed with strip-mining to tile a
loop (Figure 54) in his dissertation from 1982 [133]. He also introduced
the loop skewing transformation in a later paper from 1986 [132]. Fi-
nally, in 2008, Chen et al. proposed a scripting language to expose
compiler transformations, thus cleanly separating the implementation
of the transformations and code generation from the machinery to de-
cide what transformation to apply [39].

The unimodular transformation framework, proposed by Baner-
jee in 1990, is a unified loop transformation framework that describes
many loop transformations as linear matrix transformations on vec-
tors of loop indices [19].

The polyhedral model views loop nests as a multidimensional in-
teger polyhedra that can be optimized through mathematical trans-
formations. Its roots go back to Lamport’s paper from 1974 on the

125

parallel execution of DO loops [85], which built on work by Karp et
al. on organizing equations for parallel execution [70]. Two break-
throughs around 1990 made the model practical. The first was when
Feautrier in 1988 introduced parametric integer programming that can
be used for dependence analysis and scheduling [53]. The second came
in 1991, when Ancourt and Irigoin showed how to efficiently compute
loop bounds and thus generate code by scanning polyhedra [5]. One
more polyhedral model development was the Omega, introduced by
Pugh in 1990, that generalizes Fourier-Motzkin elimination to inte-
ger programming [104]. Since then, the polyhedral model has been
used to develop many successful compilers, including SUIF that ex-
plored distributed-memory auto-parallelization [4], PLUTO that ex-
plored multicore auto-parallelization [33], and PENCIL that explored
machine-neutral auto-parallelization [15]. There has also been work
on tooling for working with polyhedra, such as PolyLib for rational
polyhedra [130] and the Omega Library and isl for integer sets with
affine constraints [71, 129].

126

Chapter 9

Conclusion

At its heart, my dissertation is about sparse iteration spaces. I develop
a comprehensive sparse iteration theory, including an algebra of sparse
iteration spaces and an algebra of iteration over those spaces. I show
how these spaces can be developed from coordinate relations and co-
ordinate trees, how to transform them to optimize iteration order, and
how to compile them to efficient sparse iteration algorithms. I extend
the iteration algebra with the concrete index notation to include tensor
algebra computation, with the result that we now know how to com-
pile the sparse tensor algebra. The evaluation chapter demonstrated
that sparse tensor algebra implementations generated with taco have
comparable performance to handwritten implementations in modern
sparse linear and tensor algebra libraries. I believe the concepts and
techniques I have introduced fulfill the promise in my thesis statement
and demonstrates that:

Sparse tensor algebra can be put on the same compiler
transformation and code generation footing as dense ten-
sor algebra and array codes.

Sparse tensor algebra expressions, like their dense counterparts, can
now be collapsed, tiled, parallelized, and compiled to code that uses
different data layouts and runs on different machines.

Although this dissertation provides a foundation for reasoning about
and optimizing sparse iteration spaces and sparse tensor algebra, there
are many things left to do.

Sparse Automatic Scheduling

My dissertation shows how to compile sparse iteration spaces to code
that iterates over different data structures, and how to transform them
to optimize iteration order. But I have left open the question of what
the right data structure and iteration order is for a given tensor and
expression. That is, I have focused on the mechanism (how to do it)
and left the policy (what to do) as future work. This focus was inten-
tional because a mechanism is required to explore policy and because

127

“We can only see a short distance

ahead, but we can see plenty
there that needs to be done.”

— Alan Turing

“Most likely you go your way

and I'll go mine.”
— Bob Dylan

the policy can be supplied by users or by simple heuristics while re-
search into sophisticated policy methods takes place. The dissertation
does, however, describe clean scheduling and format languages that
will facilitate policy research. Such research is necessary both regard-
ing how to find the best format for a given tensor (auto-formatting) and
how to find the best schedule (auto-scheduling). This research may
include heuristics, auto-tuners, hand-crafted models, learned models,
and sampling approaches.

Sparse Hardware

The iteration space algebras are abstract descriptions that by design
are independent of the physical layout of data and access order. This
approach makes it possible to generate efficient algorithms for differ-
ent architectures. I showed how to specialize code for CPUs and GPUs
in this dissertation, but a promising direction is to build hardware that
is specialized for computing sparse iteration spaces and for executing
operations at their nonempty points. The ExTensor processor is an
early architecture influenced by the ideas that went into this disserta-
tion [64] and is the first domain-specific architecture to compute any
sparse tensor algebra expression. In the future, I believe that there will
be more processors for sparse computing problems and that the theory
laid out in this dissertation will be directly applicable to the hardware
itself and to the compilers that will target it.

Sparse Array Operations

The ideas of sparse iteration spaces presented in this dissertation gen-
eralize beyond tensor algebra, and I believe that they can serve as a
foundation for compiler work to address sparse array computations in
general. The first steps is to expand sparse iteration theory to apply
to sparse array computations in general, including tensor algebra in
other semirings*®, general array operations, transpositions, and sten-
cils*’. Another step is to incorporate symmetry descriptions into ten-
sors and arrays, to reduce storage size, and to increase performance.
Beyond basic array operations, I believe that the theory can general-
ize to many linear and nonlinear solvers that cannot be expressed as
basic linear algebra operations, such as Cholesky factorization and LU
decomposition.

Sparse Operations beyond Tensors and Arrays

Beyond sparse array and tensor operations, I believe sparse iteration
theory can also be a foundation for sparse iteration compilers for re-
lated mathematical abstractions that model sparse systems, such as
sets, relations, meshes, and graphs.

Viewed as relationships between sets of objects, tensors have a
strong connection to both graphs and relational tables. The connection

128

46 A semiring is an algebraic structure
that bundles two binary operators @
and O. These operators that must have
the algebraic properties that @ is a com-
mutative monoid, ® is a monoid, ® dis-
tributes over @, and O is annihilated by
the identity element of ®. Many graph
algorithms can be expressed as linear
algebra in different semirings. Kepner
and Gilbert collect several examples in
their edited collection of graph algo-
rithms in the language of linear alge-
bra [72]. A few common semirings are
(+, *), (max, +), (min, max), and (V, A),
which were included in a set of stan-
dard graph algorithm building blocks by
Mattson et al. [90].

47 A stencil is a function applied to an
array to produce a new array, where
each new array cell is a function of a
specified set of neighbors of the corre-
sponding cell in the original array.

comes from the fact that each of these abstractions provides a mathe-
matical way to represent a system of interconnected objects. Viewed
as a graph, each component of a k-order tensor is a weighted k-degree
hyperedge between the objects of the tensor modes. Viewed as a rela-
tion, each component is a row of a table with k + 1 columns.

The operations on tensors, graphs, and relations have many simi-
larities because they all, underneath the hood, boil down to operations
on sets of objects [73]. A graph vertex program that computes a vertex
value as the linear combination of values from the vertex’s neighbors
(e.g., PageRank or a step of a breadth-first search) is the same as a
matrix-vector multiplication. And an element-wise multiplication of
two tensors is similar to an inner join in relational algebra: the for-
mer multiplies values in the tensor’s intersection, whereas the latter
returns the intersection.

Do we need three abstractions—relations, graphs, and tensors—to
describe systems of objects? I believe that we do because each provides
a different conceptual model that makes it easy to express and reason
about a different type of operation on systems:*3

+ Relational algebra lets us create systems by combining, filter-
ing, and projecting relations.

« Graph operations let us operate locally on the parts of a sys-
tem, by mapping functions to vertices and edges and by travers-
ing from vertices to their neighbors.

« Tensor algebra lets us operate globally on the system as a whole,
by viewing it as a single part in a high-dimensional configura-
tion space.

It would be difficult to express global operations, such as factorization
or matrix addition, in terms of graph operations or relational algebra.
But it would also be difficult to force operations whose control flow
depends on local states, such as Dijkstra’s algorithm, into an extension
of tensor algebra operations.

To highlight the similarities between graph operations, relational
algebra, and tensor algebra, I give one example that shows the same
operation expressed in each. The problem of counting triangles (3-
clique) in a graph is one example of an important class of graph struc-
ture queries from data analytics. There have been papers on expressing
and optimizing triangle counting in each of the three abstractions.*’
Latapy [86] proposes a twelve-step graph algorithm called compact-
forward that achieves the optimal bound of ©(m?/?), where m is the
number of edges in the graph. Ngo et al. [98] show that relational tri-
angle queries must be implemented with a single 3-way join algorithm
to achieve the optimal worst-case bound @(m3/?). Relational triangle
queries can be represented as the relational joins

Qa =R(A,B) = S(B,C) = T(A,QC),

129

4 An analogy comes from struc-
tured programming, where the goto
statement can be replaced by half a
dozen statements that compose [48].
For example, we routinely use several
loop variants with the same expressive
power such as do, while, and for be-
cause each is better at expressing one
type of iteration.

49 Although triangle counting works
well in any of the three abstraction, in
my opinion structural queries are easi-
est to express as relational algebra op-
erations.

where >¢ denotes an inner (intersecting) join, A, B, and C are sets, and
Q,R, S, and T are relations. Moreover, Godsil and Royle [57, Corollary
8.1.3] show how to count triangles using linear algebra operations, by
dividing by 6 the trace of the cube of the adjacency matrix of a graph®’:

1
gtrace(A3).

Finally, Azad et al. [10] show that triangle counting can be further
optimized by computing and then closing wedges. They first direct
the graph by multiplying the lower and upper triangular parts of the
adjacency matrix. Then, they element-wise multiply the result by the
entire adjacency matrix:

A0 (LU),

where © is an element-wise multiplication, L is the lower triangular
part of A, and U is its upper triangular part.

Because of the underlying similarities between their operations
and because each abstraction operates on sets and their relationships, I
believe sparse iteration theory can be generalized to support the union
of sparse array and tensor operations, relational algebra, and many
graph operations. This approach would make it possible to not only
individually compile the operations in each abstraction but to also
compile algorithms that transition between them.>! The resulting uni-
fied sparse iteration theory would thus provide us with a compiler ap-
proach for sparse computation in general.

130

50 The intuition is that each matrix mul-
tiplication does one step of a breadth-
first search from each vertex; hence,
in two steps, you get back to yourself
through triangles. The number of trian-
gles each vertex v takes part in is half of
A3, because one can traverse each tri-
angle in two directions from each ver-
tex. By counting the number of tri-
angles of each vertex, we obtain three
times the number of total triangles be-
cause three vertices partake in each tri-
angle. Thus, the number of triangles is
%%trace(A3) = %trace(A3).

1 The Simit programming lan-
guage [77] that I worked on during
graduate school, but which is not
covered in this dissertation, is a first
step in this direction. It lets users
write programs that transition between
graph and linear algebra abstractions.
It demonstrated we can get perfor-
mance, productivity, and portability
across abstractions by introducing new
programming language constructs to
express these transitions.

Bibliography

(1]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh
Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vi-
jay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, Paul Barham, Jian-
min Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for large-scale machine
learning. In USENIX Symposium on Operating Systems Design and Implementation, pages
265-283, 2016. ISBN 978-1-931971-33-1. URL https://www.usenix.org/conference/
osdil6/technical-sessions/presentation/abadi.

Frances E. Allen. Program optimization. In Mark I. Halpern and Christopher J. Shaw, edi-
tors, Annual Review in Automatic Programming, volume 5, pages 239-307. Pergamon Press,
Elmsford, NY, 1969.

Frances E. Allen and John Cocke. A catalogue of optimizing transformations. In R. Rustin,
editor, Design and Optimization of Compilers, pages 1-30. Prentice-Hall, Englewood Cliffs,
NJ, 1972.

Saman P. Amarasinghe and Monica S. Lam. Communication optimization and code gener-
ation for distributed memory machines. ACM SIGPLAN Notices, 28(6):126—138, June 1993.
doi:10.1145/173262.155102.

Corinne Ancourt and Frangois Irigoin. Scanning polyhedra with do loops. Principles and
Pratice of Parallel Programming, 26(7):39-50, April 1991. doi:10.1145/109626.109631.

Gilad Arnold. Data-Parallel Language for Correct and Efficient Sparse Matrix Codes. PhD
thesis, University of California, Berkeley, 2011.

Gilad Arnold, Johannes Hoélzl, Ali Sinan Kéksal, Rastislav Bodik, and Mooly Sagiv. Specify-
ing and verifying sparse matrix codes. In ACM SIGPLAN international conference on Func-
tional programming, pages 249-260. ACM, 2010. doi:10.1145/1863543.1863581.

Krste Asanovi¢, Rastislav Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Husbands,
Kurt Keutzer, David A. Patterson, William L. Plishker, John Shalf, Samuel W. Williams, and
Katherine A. Yelick. The landscape of parallel computing research: A view from berkeley.
Technical report, UC Berkeley, 2006.

131

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/173262.155102
https://doi.org/10.1145/109626.109631
https://doi.org/10.1145/1863543.1863581

(9]

[11]

Alexander A. Auer, Gerald Baumgartner, David E. Bernholdt, Alina Bibireata, Venkatesh
Choppella, Daniel Cociorva, Xiaoyang Gao, Robert Harrison, Sriram Krishnamoorthy, Sand-
hya Krishnan, Chi-Chung Lam, Qingda Lu, Marcel Nooijen, Russell Pitzer, J. Ramanujam,
P. Sadayappan, and Alexander Sibiryakov. Automatic code generation for many-body elec-
tronic structure methods: the tensor contraction engine. Molecular Physics, 104(2):211-228,
2006. d0i:10.1080/00268970500275780.

Ariful Azad, Aydin Bulug, and John Gilbert. Parallel triangle counting and enumeration
using matrix algebra. In IEEE International Parallel and Distributed Processing Symposium
Workshops, pages 804-811. IEEE, October 2015. doi:10.1109/IPDPSW.2015.75.

Eduardo F. D. Azevedo, Mark R. Fahey, and Richard T. Mills. Vectorized sparse matrix mul-
tiply for compressed row storage format. In International Conference on Computational Sci-
ence, pages 99-106, Atlanta, Georgia, 2005. Springer. doi:10.1007/11428831_13.

[12] John W. Backus, R. J. Beeber, Sheldon Best, Richard Goldberg, Lois M. Haibt, Harlan L.

[14]

[15]

[16]

[17]

Herrick, Robert A. Nelson, David Sayre, Peter B. Sheridan, Harold Stern, Irving Ziller,
Robert A. Hughes, and Roy Nutt. The FORTRAN automatic coding system. In West-
ern Joint Computer Conference, pages 188-198, Los Angeles, California, February 1957.
doi:10.1145/1455567.1455599.

Brett W. Bader and Tamara G. Kolda. Algorithm 862: MATLAB tensor classes for fast
algorithm prototyping. ACM Transactions on Mathematical Software, 32(4):635-653, 2006.
doi:10.1145/1186785.1186794.

Brett W. Bader and Tamara G. Kolda. Efficient MATLAB computations with sparse and fac-
tored tensors. Journal on Scientific Computing, 30(1):205-231, 2007. doi:10.1137/060676489.

Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chandan
Reddy, Sven Verdoolaege, Adam Betts, Alastair F. Donaldson, Jeroen Ketema, Javed Absar,
Svenvan V. Haastregt, A. Kravets, Anton Lokhmotov, Robert David, and Elnar Hajiyev. PEN-
CIL: A platform-neutral compute intermediate language for accelerator programming. In
Proceedings of the International Conference on Parallel Architecture and Compilation (PACT),
pages 138—149, San Fransisco, March 2015. IEEE. do0i:10.1109/PACT.2015.17.

S Balay,] Brown, K Buschelman, V Eijkhout, W Gropp, D Kaushik, M Knepley, L Curfman
Mcinnes, B Smith, and H Zhang. PETSc users manual. Technical report, Argonne National
Laboratory, 2019. URL https://www.mcs.anl.gov/petsc.

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Effcient man-
agement of parallelism in object-oriented numerical software libraries. In E. Arge, A. M.
Bruaset, and H. P. Langtangen, editors, Modern Software Tools for Scientific Computing, pages
163-202. Birkh#user, Boston, MA, 1997. ISBN 978-1-4612-7368-4. do0i:10.1007/978-1-4612-
1986-6_8.

Utpal Banerjee. Data dependence in ordinary programs. Masters thesis, University of Illinois
at Urbana-Champaign, November 1976.

Utpal Banerjee. Unimodular transformations of double loops. In Proceedings of the Workshop
on Languages and Compilers for Parallel Computing (LCPC), 1990.

132

https://doi.org/10.1080/00268970500275780
https://doi.org/10.1109/IPDPSW.2015.75
https://doi.org/10.1007/11428831_13
https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1137/060676489
https://doi.org/10.1109/PACT.2015.17
https://www.mcs.anl.gov/petsc
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-1-4612-1986-6_8

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Muthu Baskaran, Benoit Meister, Nicolas Vasilache, and Richard Lethin. Efficient and scal-
able computations with sparse tensors. In IEEE Conference on High Performance Extreme
Computing, pages 1-6, Waltham, MA, 2012. IEEE. doi:10.1109/HPEC.2012.6408676.

Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings International Conference for High Perfor-
mance Computing, Networking, Storage, and Analysis, pages 18:1-18:11, Portland, Oregon,
2009. ACM. doi:10.1145/1654059.1654078.

Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. Technical Report, September 2012.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A fresh approach
to numerical computing. SIAM Review, 59(1):65-98, 2017. doi:10.1137/141000671.

Aart J. C. Bik. Compiler Support for Sparse Matrix Computations. PhD thesis, 1996.

Aart J. C. Bik and Harry A. G. Wijshoff. Compilation techniques for sparse matrix com-
putations. In International Conference on Supercomputing, pages 416—424. ACM, July 1993.
do0i:10.1145/165939.166023.

Aart]. C. Bik, Peter J. H. Brinkhaus, Peter M. W. Knijnenburg, and Harry A. G. Wijshoff. The
automatic generation of sparse primitives. ACM Transactions on Mathematical Software, 24
(2):190-225, 1998. d0i:10.1145/290200.287636.

Harvey W. Bingham and Earl W. Reigel. Parallelism exposure and exploitation in digital
computing systems. Technical report, Burroughs Corp, June 1969.

G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementation of
a portable nested data-parallel language. Journal of Parallel and Distributed Computing, 21
(1):4-14, April 1994. ISSN 07437315. doi:10.1006/jpdc.1994.1038.

Guy E. Blelloch. Vector Models for Data-Parallel Computing. PhD thesis, Massachusetts
Institute of Technology, 1990.

Guy E Blelloch. NESL: A nested data-parallel language. Technical Report CMU-CS-92-103,
CMU, 1992.

Bill Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David Padua,
Paul Petersen, Bill Pottenger, Lawrence Rauchwerger, Peng Tu, and Stephen Weatherford.
Polaris: The next generation in parallelizing compilers. In Proceedings of the Workshop
on Languages and Compilers for Parallel Computing (LCPC), pages 141-154, August 1994.
doi:10.1007/BFb0025866.

Robert D. Blumofe, Charles E. Leiserson, Christopher F. Joerg, Keith H. Randall, Bradley C.
Kuszmaul, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55-69, August 1996. doi:10.1006/jpdc.1996.0107.

Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, Jagannathan Ramanu-
jam, Atanas Rountev, and Ponnuswamy Sadayappan. Automatic transformations for
communication-minimized parallelization and locality optimization in the polyhedral
model. In International Conference on Compiler Construction, pages 132-146, Budapest,
March 2008. Springer. doi:10.1007/978-3-540-78791-4_9.

133

https://doi.org/10.1109/HPEC.2012.6408676
https://doi.org/10.1145/1654059.1654078
https://doi.org/10.1137/141000671
https://doi.org/10.1145/165939.166023
https://doi.org/10.1145/290200.287636
https://doi.org/10.1006/jpdc.1994.1038
https://doi.org/10.1007/BFb0025866
https://doi.org/10.1006/jpdc.1996.0107
https://doi.org/10.1007/978-3-540-78791-4_9

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Aydin Bulug and John R. Gilbert. On the representation and multiplication of hypersparse
matrices. In IEEE International Symposium on Parallel and Distributed Processing, (IPDPS).,
pages 1-11, April 2008. doi:10.1109/IPDPS.2008.4536313.

Aydin Bulug, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E. Leiserson.
Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks. In ACM Symposium on Parallelism in Algorithms and Architectures, page 233,
New York, NY, USA, 2009. ACM. doi:10.1145/1583991.1584053.

Aydin Bulug, Tim Mattson, Scott McMillan, Jose Moreira, and Carl Yang. De-
sign of the GraphBLAS api for c. Proceedings - 2017 IEEE 31st International Paral-
lel and Distributed Processing Symposium Workshops, IPDPSW 2017, 0(0):643-652, 2017.
doi:10.1109/IPDPSW.2017.117.

Daniele Buono, Fabrizio Petrini, Fabio Checconi, Xing Liu, Xinyu Que, Chris Long, and
Tai Ching Tuan. Optimizing sparse matrix-vector multiplication for large-scale data analyt-
ics. In International Conference on Supercomputing, pages 37:1-37:12, Istanbul, Turkey, June
2016. ACM. doi:10.1145/2925426.2926278.

David Callahan and Ken Kennedy. Compiling programs for distributed-memory multipro-
cessors. The Journal of Supercomputing, 2(2):151-169, 1988. doi:10.1007/BF00128175.

Chun Chen, Jacqueline Chame, and Mary Hall. CHiLL: A framework for composing high-
level loop transformations. Technical report, University of Southern California, 2008.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. TVM: An automated end-to-end optimizing compiler for deep learning this paper
is included in the proceedings of the. In Symposium on Operating Systems Design and Imple-
mentation, pages 578-594, Carlsbad, CA, October 2018. USENIX Association. ISBN 978-1-
939133-08-3. URL https://www.usenix.org/conference/osdi18/presentation/chen.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Format abstraction for sparse
tensor algebra compilers. Proceedings of the ACM on Programming Languages, 2(OOPSLA):
123:1-123:30, November 2018. doi:10.1145/3276493.

[42] John Cocke and Ken Kennedy. An algorithm for reduction of operator strength. Communi-

[43]

[44]

[45]

[46]

[47]

cations of the ACM, 20(11):850-856, 1977.
Phil Colella. Defining software requirements for scientific computing. presentation, 2004.
Intel Corporation. Intel math kernel library developer reference. Technical Report 25, 2019.

Leonaxdo Dagum and Ramesh Menon. OpenMP: an industry standard api for shared-
memory programming. [EEE Computational Science and Engineering, 5(1):46-55, January
1998. d0i:10.1109/99.660313.

Timothy A. Davis. Direct Methods for Sparse Linear Systems. SIAM, 2006.
doi:10.1137/1.9780898718881.

Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1), December 2011. ISSN 0098-3500.

134

https://doi.org/10.1109/IPDPS.2008.4536313
https://doi.org/10.1145/1583991.1584053
https://doi.org/10.1109/IPDPSW.2017.117
https://doi.org/10.1145/2925426.2926278
https://doi.org/10.1007/BF00128175
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/3276493
https://doi.org/10.1109/99.660313
https://doi.org/10.1137/1.9780898718881

[48]

[49]

[50]

[51]

[53]

[54]

[55]

Edsger W. Dijkstra. Go to statement considered harmful. Communications of the ACM, 11
(3):147-148, March 1968. doi:10.1145/362929.362947.

R.I. M. Dunbar. Neocortex size as a constraint size in primates on group ecologically. Journal
of Human Evolution, 20:469-493, March 1992. doi:10.1016/0047-2484(92)90081-].

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211-218, 1936. doi:10.1007/BF02288367.

Albert Einstein. The foundation of the general theory of relativity. Annalen der Physik, 354:
769-822, 1916.

Evgeny Epifanovsky, Michael Wormit, Tomasz Ku$, Arie Landau, Dmitry Zuev, Kirill
Khistyaev, Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I. Krylov. New
implementation of high-level correlated methods using a general block tensor library for
high-performance electronic structure calculations. Journal of computational chemistry, 34
(26):2293-2309, 2013. d0i:10.1002/jcc.23377.

Paul Feautrier. Parametric integer programming. RAIRO-Operations Research, 22(3):243-268,
1988. doi:10.1051/r0/1988220302431.

Richard Feynman, Robert B Leighton, and Matthew L Sands. The Feynman Lectures on
Physics, volume 3. Addison-Wesley, 1963. ISBN 9780465025015.

Franz Franchetti, Tze Meng Low, Doru Thom Popovici, Richard M. Veras, Daniele G.
Spampinato, Jeremy R. Johnson, Markus Piischel, James C. Hoe, and Jose M.F.
Moura. SPIRAL: Extreme Performance Portability, volume 106. IEEE edition, 2018.
d0i:10.1109/JPROC.2018.2873289.

[56] John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB: Design and

[57]

(58]

[59]

implementation. SIAM journal on Matrix Analysis and Applications, 13(1):333-356, 1992.
doi:10.1137/0613024.

Chris Godsil and Gordon Royle. Algebraic Graph Theory. Graduate Texts in Mathematics.
Springer, New York, 2001. ISBN 9780387952208.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solu-
tions. Numerische Mathematik, 14(5):403-420, 1970. doi:10.1007/BF02163027.

Peter Gottschling, David S. Wise, and Michael D. Adams. Representation-transparent ma-
trix algorithms with scalable performance. In Proceedings of the 21st Annual International
Conference on Supercomputing, ICS 07, pages 116—-125, New York, NY, USA, June 2007. ACM.
doi:10.1145/1274971.1274989.

Gaél Guennebaud, Benoit Jacob, and Others. Eigen v3, 2010. URL http://eigen.
tuxfamily.org.

Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Transactions on Mathematical Software, 4(3), September 1978.

Per Brinch Hansen. The nucleus of a multiprogramming system. Communications of the
ACM, 13(4):238-241, April 1970. doi:10.1145/362258.362278.

135

https://doi.org/10.1145/362929.362947
https://doi.org/10.1016/0047-2484(92)90081-J
https://doi.org/10.1007/BF02288367
https://doi.org/10.1002/jcc.23377
https://doi.org/10.1051/ro/1988220302431
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1137/0613024
https://doi.org/10.1007/BF02163027
https://doi.org/10.1145/1274971.1274989
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1145/362258.362278

[63]

[64]

[68]

[69]

[70]

[71]

Larry Hardesty. Faster big-data analysis. MIT News, 2017. URL http://news.mit.edu/
2017/faster-big-data-analysis-tensor-algebra-1031.

Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer Jaleel, Edgar
Solomonik, Joel Emer, and Christopher W. Fletcher. ExTensor: An accelerator for sparse
tensor algebra. Proceedings of the Annual International Symposium on Microarchitecture (MI-
CRO), pages 319-333, October 2019. doi:10.1145/3352460.3358275.

Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu Williams,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew
Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan Williams. An
overview of Trilinos. Technical report, Sandia National Laboratories, 2003.

Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal
of Mathematics and Physics, 6(1-4):164-189, April 1927. doi:10.1002/sapm192761164.

Eun-jin Im and Katherine Yelick. Model-based memory hierarchy optimizations for sparse
matrices. In Workshop on Profile and Feedback-Directed Compilation, pages 1-10, 1998.

Kenneth E. Iverson. A Programming Language. John Wiley & Sons, 1962. ISBN 0-471430-
14-5.

Eric Jones, Travis E. Oliphant, Pearu Peterson, and Others. SciPy: Open source scientific
tools for python, 2001. URL http://www.scipy.org/.

Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The organization of com-
putations for uniform recurrence equations. Journal of the ACM, 14(3):563-590, 1967.
doi:10.1145/321406.321418.

Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and David
Wonnacott. The Omega library. Technical report, March 1995.

[72] Jeremy Kepner and John R. Gilbert. Graph algorithms in the language of linear algebra,

volume 22. SIAM, 2011. doi:10.1137/1.9780898719918.

[73] Jeremy Kepner and Hayden Jananthan. Mathematics of big data: Spreadsheets, databases,

[74]

[75]

[76]

[77]

matrices, and graphs. MIT Press, 2018. ISBN 9780262038393.

Gary A. Kildall. A unified approach to global program optimization. In ACM SIGPLAN
Symposium on Principles of Programming Languages, pages 194-206. ACM, October 1973.
doi:10.1145/512927.512945.

David R. Kincaid and David M. Young. The development of a computer package for solving
a class of partial differential equations by iterative methods. Mathematics and Computers in
Simulation, 17(3):186-191, 1975. doi:10.1016/S0378-4754(75)80051-6.

David R. Kincaid and David M. Young. A brief review of the ITPACK project. Journal of Com-
putational and Applied Mathematics, 24(1-2):121-127, 1988. doi:10.1016/0377-0427(88)90347-
0.

Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-kelley, David I. W. Levin, Shinjiro Sueda,
Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar, Wojciech Matusik, and
Saman Amarasinghe. Simit: A language for physical simulation. ACM Transactions on
Graphics, 35(2):20:1-20:21, 2016. doi:10.1145/2866569.

136

http://news.mit.edu/2017/faster-big-data-analysis-tensor-algebra-1031
http://news.mit.edu/2017/faster-big-data-analysis-tensor-algebra-1031
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1002/sapm192761164
http://www.scipy.org/
https://doi.org/10.1145/321406.321418
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1145/512927.512945
https://doi.org/10.1016/S0378-4754(75)80051-6
https://doi.org/10.1016/0377-0427(88)90347-0
https://doi.org/10.1016/0377-0427(88)90347-0
https://doi.org/10.1145/2866569

(78]

[79]

(80]

(84]

[85]

(86]

(87]

(88]

[89]

[90]

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. The
tensor algebra compiler. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
77:1-77:29, October 2017. do0i:10.1145/3133901.

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. Tensor algebra com-
pilation with workspaces. In International Symposium on Code Generation and Optimization,
pages 180-192, Washington, DC, February 2019. IEEE Press. ISBN 978-1-7281-1436-1. URL
http://dl.acm.org/citation.cfm?id=3314872.3314894.

Donald Ervin Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Pearson Education, 2nd edition, 1973. ISBN 0-201-89685-0.

Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455-500, 2009. doi:10.1137/07070111X.

Yehuda Koren. Collaborative filtering with temporal dynamics. Communications of the ACM,
53(4):89-97, April 2010. doi:10.1145/1721654.1721677.

Vladimir Kotlyar. Relational Algebraic Techniques for the Synthesis of Sparse Matrix Programs.
PhD thesis, Cornell University, 1999.

Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to the compi-
lation of sparse matrix programs. In Euro-Par Parallel Processing, pages 318-327. Springer,
Passau, Germany, 1997. doi:10.1007/BFb0002751.

Leslie Lamport. The parallel execution of do loops. Communications of the ACM, 17(2):
83-93, February 1974. doi:10.1145/360827.360844.

Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-
law)) graphs. Theoretical Computer Science, 407(1-3):458-473, November 2008.
doi:10.1016/j.tcs.2008.07.017.

Chris Leary and Todd Wang. XLA: Tensorflow, compiled! TensorFlow Dev Summit, Febru-
ary 2017.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Jiajia Li, Jimeng Sun, and Richard Vuduc. HiCOO: Hierarchical storage of sparse tensors.
International Conference for High Performance Computing, Networking, Storage, and Analysis,
pages 238-252, 2019. doi:10.1109/SC.2018.00022.

Tim Mattson, David Bader, Jon Berry, Aydin Bulug, Jack Dongarra, Christos Faloutsos,
John Feo, John R. Gilbert, Joseph Gonzalez, Bruce Hendrickson, Jeremy Kepner, Charles E
Leiserson, Andrew Lumsdaine, David Padua, Stephen Poole, Steve Reinhardt, Michael
Stonebraker, Steve Wallach, and Andrew Yoo. Standards for graph algorithm primi-
tives. In IEEE High Performance Extreme Computing Conference, pages 1-2. IEEE, 2013.
d0i:10.1109/HPEC.2013.6670338.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating
dimensions with review text. In Proceedings of the 7th ACM conference on Recommender
systems, pages 165-172. ACM, 2013. doi:10.1145/2507157.2507163.

137

https://doi.org/10.1145/3133901
http://dl.acm.org/citation.cfm?id=3314872.3314894
https://doi.org/10.1137/07070111X
https://doi.org/10.1145/1721654.1721677
https://doi.org/10.1007/BFb0002751
https://doi.org/10.1145/360827.360844
https://doi.org/10.1016/j.tcs.2008.07.017
http://snap.stanford.edu/data
https://doi.org/10.1109/SC.2018.00022
https://doi.org/10.1109/HPEC.2013.6670338
https://doi.org/10.1145/2507157.2507163

[92]

[93]

[94]

[95]

[96]

[97]

[99]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

John Michael McNamee. Algorithm 408: A sparse matrix package. Communications of the
ACM, 14(4):265-273, 1971. d0i:10.1145/362575.362584.

Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-vector multiplica-
tion. In International Conference for High Performance Computing, Networking, Storage, and
Analysis, pages 58:1-58:12, Salt Lake City, Utah, 2016. IEEE Press. doi:10.1109/SC.2016.57.

Stanley Milgram. The small world problem. Psychology Today, 2(1):60-67, 1967.

Ravi Mirchandaney, Joel H. Saltz, Roger M. Smith, David M. Nicol, and Kay Crowley. Prin-
ciples of runtime support for parallel processors. Proceedings of the International Conference
on Supercomputing, pages 140-152, July 1988. do0i:10.1145/55364.55378.

Yoichi Muraoka. Parallelism Exposure and Exploitation in Programs. PhD thesis, University
of Illinois at Urbana-Champaign, February 1971.

National Institute of Standards and Technology. Matrix market file formats. File Format
Specification, August 2013. URL http://math.nist.gov/MatrixMarket/formats.html.

Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.
In ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 37-48,
Scottsdale, Arizona, 2012. ACM. do0i:10.1145/2213556.2213565.

Israt Nisa, Aravind Sukumaran-Rajam, Sureyya Emre Kurt, Changwan Hong, and P. Sa-
dayappan. Sampled dense matrix multiplication for high-performance machine learning.
In IEEE International Conference on High Performance Computing, pages 32-41, Bengaluru,
India, December 2018. IEEE. doi:10.1109/HiPC.2018.00013.

Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P Sadayappan. Load-
balanced sparse mttkrp on gpus. In IEEE International Parallel and Distributed Processing
Symposium, pages 123-133. IEEE, May 2019. doi:10.1109/IPDPS.2019.00023.

NVIDIA. CUDA programming model v10.1, 2019.
Travis E. Oliphant. A guide to NumPy. Trelgol Publishing USA, 2006.

David Lorge Parnas. Software aspects of strategic defense systems. Communications of the
ACM, 28(12):1326-1335, December 1985. d0i:10.1145/214956.214961.

William Pugh. The Omega test: A fast and practical integer programming algorithm for de-
pendence analysis. In International Conference for High Performance Computing, Networking,
Storage, and Analysis, pages 4-13. IEEE, November 1991. doi:10.1145/125826.125848.

William Pugh and Tatiana Shpeisman. SIPR: A new framework for generating efficient code
for sparse matrix computations. In Proceedings of the Workshop on Languages and Compilers
for Parallel Computing (LCPC), pages 213-229. Springer, August 1998. doi:10.1007/3-540-
48319-5_14.

Markus Puschel, José M.F. Moura, Jeremy R. Johnson, David Padua, Manuela M. Veloso,
Bryan W. Singer, Jianxin Xiong, Franz Franchetti, Aca Gaci¢, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for dsp transforms.
Proceedings of the IEEE, 93(2):232-273, 2005. doi:10.1109/JPROC.2004.840306.

138

https://doi.org/10.1145/362575.362584
https://doi.org/10.1109/SC.2016.57
https://doi.org/10.1145/55364.55378
http://math.nist.gov/MatrixMarket/formats.html
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1109/HiPC.2018.00013
https://doi.org/10.1109/IPDPS.2019.00023
https://doi.org/10.1145/214956.214961
https://doi.org/10.1145/125826.125848
https://doi.org/10.1007/3-540-48319-5_14
https://doi.org/10.1007/3-540-48319-5_14
https://doi.org/10.1109/JPROC.2004.840306

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amaras-
inghe, and Frédo Durand. Decoupling algorithms from schedules for easy optimiza-
tion of image processing pipelines. ACM Transactions on Graphics, 31(4):1-12, 2012.
doi:10.1145/2185520.2335383.

Eric Steven Raymond. Philosophy. In The art of Unix programming, chapter 1, pages 24-51.
Addison-Wesley Professional, 2003. ISBN 0131429019.

Gregorio Ricci-Curbastro and Tullio Levi-Civita. Méthodes de calcul différentiel absolu et
leurs applications. Mathematische Annalen, 54(1-2):1900, 1900. doi:10.1007/BF01454201.

John R. Rice and Ronald F. Boisvert. Solving Elliptic Problems Using ELLPACK. Springer-
Verlag, 1985. d0i:10.1007/978-1-4612-5018-0.

Yousef Saad. Sparsekit: a basic tool kit for sparse matrix computations. Technical report,
1994.

Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM, 2003.
doi:10.1137/1.9780898718003.

Nobuo Sato and W. F. Tinney. Techniques for exploiting the sparsity of the network ad-
mittance matrix. IEEE Transactions on Power Apparatus and Systems, 82(69):944-950, 1963.
doi:10.1109/TPAS.1963.291477.

Ryan Senanayake, Fredrik Kjolstad, Changwan Hong, Shoaib Kamil, and Saman Amaras-
inghe. A unified iteration space transformation framework for sparse and dense tensor
algebra. Technical report, 2019. URL http://arxiv.org/abs/2001.00532.

Shaden Smith and George Karypis. Tensor-matrix products with a compressed sparse tensor.
In Workshop on Irregular Applications: Architectures and Algorithms, pages 1-7. ACM, 2015.
doi:10.1145/2833179.2833183.

Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. SPLATT:
Efficient and parallel sparse tensor-matrix multiplication. In IEEE International Parallel and
Distributed Processing Symposium, pages 61-70. IEEE, May 2015. doi:10.1109/IPDPS.2015.27.

Shaden Smith, Jee W Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and George
Karypis. FROSTT: The formidable repository of open sparse tensors and tools. Open
Dataset, 2017. URL http://frostt.io/.

Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra, and David
Walker. MPI: The Complete Reference. The MIT Press, 2 edition, 1998. ISBN 9780262692151.

Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton, and James
Demmel. A massively parallel tensor contraction framework for coupled-cluster com-
putations. Journal of Parallel and Distributed Computing, 74(12):3176-3190, 2014.
doi:10.1016/j.jpdc.2014.06.002.

Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. Scaling betweenness
centrality using communication-efficient sparse matrix multiplication. In Proceedings In-
ternational Conference for High Performance Computing, Networking, Storage, and Analysis,
pages 47:1-47:14, Denver, Colorado, 2017. ACM. doi:10.1145/3126908.3126971.

139

https://doi.org/10.1145/2185520.2335383
https://doi.org/10.1007/BF01454201
https://doi.org/10.1007/978-1-4612-5018-0
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1109/TPAS.1963.291477
http://arxiv.org/abs/2001.00532
https://doi.org/10.1145/2833179.2833183
https://doi.org/10.1109/IPDPS.2015.27
http://frostt.io/
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1145/3126908.3126971

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Paul Stodghill. A Relational Approach to the Automatic Generation of Sequential Sparse Matrix
Codes. PhD thesis, Cornell, 1997.

Michelle Mills Strout, Mary Hall, and Catherine Olschanowsky. The sparse polyhedral
framework: Composing compiler-generated inspector-executor code. Proceedings of the
IEEE, 106(11):1921-1934, 2018. d0i:10.1109/JPROC.2018.2857721.

The MathWorks Inc. MATLAB.

William F Tinney and John W Walker. Direct solutions of sparse network equations by
optimally ordered triangular factorization. Proceedings of the IEEE, 55(11):1801-1809, 1967.
doi:10.1109/PROC.1967.6011.

NVIDIA V10.1.243. cusparse software library, 2019.

Harmen L. A. Van Der Spek and Harry A. G. Wijshoff. Sublimation: Expanding data struc-
tures to enable data instance specific optimizations. In Proceedings of the Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC), pages 106—-120, Houston, Texas, 2010.
Springer. doi:10.1007/978-3-642-19595-2_8.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary De-
Vito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor com-
prehensions: Framework-agnostic high-performance machine learning abstractions. Tech-
nical report, June 2018. URL http://arxiv.org/abs/1802.04730.

Anand Venkat, Mary Hall, and Michelle Strout. Loop and data transformations for sparse
matrix code. In ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI 2015, pages 521-532, 2015. do0i:10.1145/2737924.2738003.

Sven Verdoolaege. isl: An integer set library for the polyhedral model. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6327 LNCS:299-302, 2010. ISSN 03029743. do0i:10.1007/978-3-642-15582-
6_49.

Doran K. Wilde. A Library for Doing Polyhedral Operations by. Masters thesis, Oregon State
University, December 1993.

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms. In International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1-12, New York, NY, USA, November 2007. IEEE.
doi:10.1145/1362622.1362674.

Michael Wolfe. Loops skewing: The wavefront method revisited. International Journal of
Parallel Programming, 15(4):279-293, November 1986. doi:10.1007/BF01407876.

Michael J Wolfe. Optimizing Supercompilers for Supercomputers. PhD thesis, University of
Illinois at Urbana-Champaign, November 1982.

William Wulf, Ellis Cohen, William Corwin, Anita Jones, Roy Levin, Charles Pierson, and
Fred Pollack. Hydra: The kernel of a multiprocessor operating system. Communications of
the ACM, 17(6):337-345, June 1974. do0i:10.1145/355616.364017.

140

https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1109/PROC.1967.6011
https://doi.org/10.1007/978-3-642-19595-2_8
http://arxiv.org/abs/1802.04730
https://doi.org/10.1145/2737924.2738003
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/1362622.1362674
https://doi.org/10.1007/BF01407876
https://doi.org/10.1145/355616.364017

[135] Carl Yang, Aydin Bulug, and John D Owens. Implementing push-pull efficiently in Graph-
BLAS. In International Conference on Parallel Processing, pages 89:1-89:11, Eugene, OR, Au-
gust 2018. ACM. doi:10.1145/3225058.3225122.

[136] Zecheng Zhang, Xiaoxiao Wu, Naijing Zhang, Siyuan Zhang, and Edgar Solomonik. En-
abling distributed-memory tensor completion in python using new sparse tensor kernels.
Technical report, October 2019. URL http://arxiv.org/abs/1910.02371.

[137] Huasha Zhao. High Performance Machine Learning through Codesign and Rooflining. PhD
thesis, University of California, Berkeley, September 2014.

141

https://doi.org/10.1145/3225058.3225122
http://arxiv.org/abs/1910.02371

	1 Introduction
	1.1 A Combinatorial View
	1.2 The Issue with Libraries
	1.3 The Sparse Tensor Algebra Compiler
	1.4 Contributions and Scope
	1.5 Dissertation Overview

	2 Data Structure Abstractions
	2.1 Coordinate Relations
	2.2 Coordinate Trees
	2.3 Level Abstraction
	2.4 Six Level Types
	2.5 Tensor Formats
	2.6 Conclusion

	3 Sparse Iteration Spaces
	3.1 Iteration Space Algebra
	3.2 Iteration Graphs
	3.3 Iteration Lattices
	3.4 Conclusion

	4 Tensor Notations
	4.1 Matrix Multiply Example
	4.2 Tensor Index Notation
	4.3 Concrete Index Notation
	4.4 Concretize Algorithm
	4.5 Conclusion

	5 Coiteration Code Generation
	5.1 Algorithm Overview
	5.2 Coiteration Code
	5.3 Derived Iteration Spaces
	5.4 Compute and Assembly
	5.5 Conclusion

	6 Optimizing Transformations
	6.1 Reorder
	6.2 Precompute
	6.3 Collapse
	6.4 Split
	6.5 Bound
	6.6 Iteration Space Mapping
	6.7 Conclusion

	7 Evaluation
	7.1 Experimental Setup
	7.2 Expressions Matter
	7.3 Formats Matter
	7.4 Optimizations Matter
	7.5 Kernels are Competitive

	8 Related Work
	8.1 Sparse Compilers
	8.2 Sparse Kernel Libraries
	8.3 Sparse Programming Systems
	8.4 Dense Programming Systems and Compilers

	9 Conclusion
	Bibliography

