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Abstract

Tensor operations have been traditionally limited to addition and multiplication op-
erations. For operations of sparse tensors, these semantics were extended to account
for the fact that tensors usually omit zero values. However, there are many operators
with a rich semantics of operator properties that can be used in dense and sparse
tensor computations.

This work addresses the problem of generating code for computing on a mix of sparse
and dense tensors based on the properties of the operators on those tensors. I in-
troduce the concept of a fill value to each tensor so that the data can be sparse on
non-zeros. I show how to reason about the operator properties, along with the fill
values of the input tensors in order to construct an IR describing how to iterate over
these tensors. I show how we can take advantage of the operator properties to per-
form useful optimizations for both iterating over tensors and performing reductions.
Lastly, I show how a user can leverage set notation to directly describe to a compiler
how it should iterate over sparse tensors.

The ideas discussed in this work have been prototyped in the open-source TACO
system. The API used makes operator properties and tensor fill values have to be
explicitly provided by the user. However, it makes the TACO system much more flex-
ible. I show how the primitives exposed in this work allows one to efficiently perform
several graph algorithms by drawing on the literature about GraphBLAS. In the eval-
uation section, we benchmark this system against the SuiteSparse implementation of
GraphBLAS on a variety of graph algorithms to demonstrate its performance.

Thesis Supervisor: Saman P. Amarasinghe
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Graph algorithms have been traditionally performed using special frameworks such

as Ligra [31], GraphIt [41] and Gunrock [38]. There has recently been a push to

use linear algebra primitives to support graph algorithms [10, 19]. Unfortunately,

the current work on sparse compilers cannot be leveraged to efficiently perform these

algorithms due to three key missing features. The first is that current sparse compilers

always assumes that tensors are sparse over zero. Secondly, sparse compilers are

limited to using the (+,×) semi-ring which limits their applicability. Lastly, sparse

compilers can only efficiently perform expressions that require iterating over the union

or intersection of the operands of an operator.

In this thesis, I propose solutions for all three of the previously mentioned problems

and also develop a framework for allowing computation outside of normal semi-rings.

This will allow works by Kjolstad et al. on the Tensor Algebra Compiler (TACO)

[21, 20, 12] to be used to tackle a broader set of problems. For example, this work

allows Breadth First Search, Page Rank, Floyd-Warshall, Bellman-Ford and Triangle

Counting graph algorithms to all be in expressed TACO by defining the appropriate

semi-rings [19]. Some of these algorithms assume that the matrices and vectors are

sparse over ∞ instead of 0 illustrating examples where non-zero sparsity is desired.

Additionally, the Viterbi algorithm which is used extensively in communication and

speech recognition can be expressed over a (min,+) semi-ring [35] and will now be

expressible in TACO. This work, in addition to TACO’s scheduling language [30]
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could allow users to achieve good performance on a wide variety of hardware for

graph and machine learning applications.

(a) XOR operation as it would be performed in current TACO. The compiler would
iterate over the Union of 𝐵 and 𝐶 and produce explicit zeros in the result matrix
𝐴. This is due to the fact that the loop structures the compiler can generate only
supports unions and intersections.

(b) XOR operation as it would be performed by TACO after it is modified by
this work. The compiler can support iterating over the union of 𝐵 and 𝐶 while
excluding the intersection. This helps to reduce the memory footprint of the result
tensor.

Figure 1-1: XOR with explicit zeros stored (top) vs without (bottom)

Current sparse compilers tie the optimizations they support to specific operations.

An example of this is that when adding two sparse tensors 𝐴 and 𝐵, the compiler

only needs to iterate over the union of 𝐴 and 𝐵 and can omit iterating over the space

where both 𝐴 and 𝐵 are 0. While this is great for most cases it limits the generality

of the current sparse compiler approach. Current compilers only support union and

intersection operators meaning that they cannot cleanly support an operation such

as an exclusive or. This leaves some performance on the table for such an operation

since for a sparse result, one ends up storing needless explicit zeros in the result

tensor as shown in Figure 1-1. As a result, I will first show how we can generalize

the current compiler approach to generate code to iterate over any set expression. I

will then show how we can decouple the implementation of the scalar operator with

its iteration pattern. I will also demonstrate how a compiler can reason about the

properties of scalar operations along with the fill values of the input tensors in order
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to automatically infer the iteration pattern it should use when computing the result.

Lastly, I will generalize the ideas in the sparse compilation literature to allow for a

tensor to be sparse on any value of the primitive types that the compiler supports.

The value compressed out of the tensor will be referred to as the fill value from here

onward. These new mechanisms will allow sparse compilers to be applied to a much

larger variety of domains.

I have prototyped these ideas in the open-source TACO sparse tensor algebra

compiler [21] which generates code for any sparse tensor algebra expression. The

structure of the prototype is shown in Figure 1-3. I expose the abstractions described

here by extending the tensor Index Notation in TACO to include a new generic

operator class. This class takes in a scalar description of the operation along with

its properties as well as an algebra to describe the iteration space. This provides a

clean interface which decouples the scalar computation from the iteration pattern.

Figure 1-2 shows the set patterns that TACO can now iterate over as a result of

this work for binary operators. Prior to this work, only the two patterns above the

red line in Figure 1-2 could be iterated over by the compiler for binary operators.

However, it is now possible to generate code that iterates over all 16 of the possible

subsets described in Figure 1-2 for binary operators. Further, this work generalizes

to an arbitrary number of sets meaning that the prototype can now generate code

that iterates over any subset of tensors given as operands to an operator.

My specific contributions are as follows:

1. Introduce the ability to define generic semi-ring and array operations in TACO,

2. Extend the TACO IR called merge lattices [21] or iteration lattices [22] so that

any set can be represented in the new IR instead of only intersections and unions

as shown in Figure 1-2,

3. Demonstrate that iteration patterns and optimizations such as short circuiting

can be inferred from operator properties, and

4. Generalize tensors to allow them to be sparse over any value instead of just

zero,

17
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Figure 1-2: Figure showing binary sets one may iterate over excluding sets that
include the universe. Previous work can only emit code to iterate over the sets above
the red line. This work adds the 6 other set iteration patterns along with the 8 not
shown that include the universe. In total, the remaining 14 of 16 binary iteration
patterns can all be expressed with the addition of this work. The ideas expressed in
this thesis also generalizes to an arbitrary number of sets.
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Figure 1-3: The structure of the prototype based on the Tensor Algebra Compiler
(TACO). The user specifies the result in index notation along with a format and
optionally a schedule. TACO transforms these through various intermediate repre-
sentation before generating code that can be used to compute the expression on input
tensors. The parts of TACO heavily modified in this work are highlighted in blue.
This work adds two new components - operator properties and iteration algebra. The
fact that the iteration algebra can be specified separately is what allows this work to
separate the scalar computation from the actual loop structure generated.

The rest of this thesis is organized as follows:

Chapter 2 - Motivating Example describes two example problems and how the

general ideas in this work allows TACO to be used to solve these problems. I describe

a Direction Optimizing Breadth First Search [5, 40] and an algebraic bellman-ford

formulation [19] and how this work allows TACO to solve these problems.

Chapter 3 - Array Index Notation describes a generalized language for computing

on sparse arrays.

Chapter 4 - Iteration Spaces describes iteration spaces and the extensions to

iteration space algebra and iteration lattices. These intermediate representations are

crucial to the generality this work aims to achieve.

Chapter 5 - Properties describes the properties of operators supported in the

prototype and how they influence iteration spaces. An explanation of how to infer

iteration spaces from the scalar properties is described along with some limitations

of only relying on properties. Demonstrates that there are some iteration spaces that
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cannot be derived from operator properties alone.

Chapter 6 - Code Generation describes extensions to the TACO code generator

to support the new IR as well as the new construction rules for iteration lattices.

Chapter 7 - Operator API describes the interface provided for defining new generic

operators to TACO.

Chapter 8 - Evaluation compares the performance of the generated code to a

GraphBLAS library, SuiteSparse for the linear algebra graph algorithms and against

hand-tuned works where available.

Chapter 9 - Related Work discusses this work in the context of previous work

done with sparse tensor compilation.

Chapter 10 - Conclusion and Future Work concludes and provides guidance for

future extensions of this work.

Appendix A - Operator Implementations provides the implementations of the

operators used in this thesis.
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Chapter 2

Motivating Example

In this chapter, I demonstrate a potential use case of this framework. I show how one

can use the general ideas here to execute two sample graph algorithms - breadth first

search and a single source shortest path (sssp) algorithm. This work enables taco

to perform two new general optimizations needed to get good performance on graph

algorithms performed using linear algebra. Firstly, this work allows TACO to perform

masking on both sparse and dense tensors. This means that the compiler can skip

performing computations based on the value of the mask. An example of this is seen

in BFS allowing TACO to omit computing entire dot products. Secondly, this work

allows TACO to realize when it can short circuit reductions. BFS also illustrates an

example of this optimization. The ideas in this thesis also allow the expression of

new algorithms that were not possible before (sssp) by taking advantage of the fact

that the fill values of the tensors can be user specified.

2.1 Preliminaries

A monoid is a set 𝐴 with a single associative binary operator and an identity element.

For example, the real numbers R under binary addition. From the definition, the set

is the real numbers R, the binary operator is addition and the identity element is 1.

A semiring is a set S along with two binary operators ⊕ and ⊙. These operators

must have the following algebraic properties:
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1. (S, ⊕) is a commutative monoid.

2. (S, ⊙) is a monoid

3. ⊙ distributes over ⊕

4. ⊕ is annihilated by the identity element of ⊕.

In this work, I use the notation (⊕,⊙,S) to denote a semi-ring. When S is omitted, I

assume that it is the real numbers. Examples of semi-rings are (+,×), (min,+) and

(max,+). An example of a semi-ring not over the reals is (∧,∨,B) where B is only

contains the elements {0, 1}.

2.2 Linear Algebra Breadth First Search

I consider the breadth-first search (BFS) on graphs 𝐺(𝑉,𝐸) where 𝑉 is the set of

vertices in 𝐺 and 𝐸 is the set of all ordered pairs (𝑢, 𝑣) with 𝑢, 𝑣 ∈ 𝑉 . A BFS on a

graph 𝐺 is an exploration of the graph that starts at some source node and explores

nodes at a the current depth level before moving to nodes at the next depth level.

The depth level is the number of edges needed to be traversed to get from the source

to the current set of nodes. For example, the source has a depth level of 0 and all

neighbors of the source have a depth of one since there is one edge the source and

its neighbors them. The algorithm terminates when no new vertices can be reached

from the current depth level.

There are two ways in which one can perform a breadth first search. The first

is by "push" or "top-down" which is the traditional way a BFS is performed. This

means that we start from a frontier of vertices and add all of the unvisited neighbors

of the frontier to the next frontier. The second is "push" or "bottom-up" meaning

that we start at all unvisited nodes and attach an unvisited node to the frontier if

there is an edge from the frontier to that node.

Both versions of BFS can be expressed using sparse linear algebra. Graphs are

usually stored as adjacency matrices of size 𝑉 ×𝑉 with a one in the cell (𝑢, 𝑣) if there
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is an outgoing edge from 𝑢 to 𝑣. So, the rows of the matrix contain the source nodes

for each edge while the columns of the matrix consists of the destination nodes for

the edges. Usually, most nodes only have a few neighbors so the adjacency matrix

representation is usually sparse containing only 𝐸 edges where 𝐸 ≪ |𝑉 |2. I will use 𝐴

to refer to the adjacency matrix representation of the graph from this point onward.

For the linear algebra formulation of the problem, a vector 𝑓 is used to represent

the current frontier. Typically, we want the frontier vector 𝑓 to be sparse when there

are only a few vertices available. This allows one to iterate over the vector to find

the neighboring vertices of those in the frontier by querying the graph. That is, we

want to find all of the destination nodes that can be reached from every vertex 𝑢

in the frontier. This is the push direction and corresponds to reading a row of the

adjacency matrix 𝐴 since row 𝑢 has all the outgoing edges of the vertex 𝑢. Since 𝐴

is sparse, then for the push direction, we want 𝐴 to be stored as a CSR matrix so

that the rows can be quickly queried. In the literature, the adjacency matrix 𝐴 is

usually transposed and stored in the CSC format (which is the same as storing 𝐴 in

CSR) so that the sparse vector times sparse matrix (SpVSpM) kernel can be applied

to perform the push step.

However, once the frontier gets large it is beneficial to store its dense representation

and to try to attach unvisited nodes to the frontier. Intuitively, this is because once

the frontier is large enough, there may be more edges going into it than going out

meaning that if we switch directions, less edges need to be traversed. In this scheme,

we iterate over the graph to find the source of an edge 𝑢 given its destination vertex

𝑣. Since all the sources of a given vertex are in the columns of the adjacency matrix,

it is beneficial to store 𝐴 as a CSC matrix for this scheme. This is the pull direction.

Generally, graph frameworks keep both the CSC and CSR versions in memory when

a graph is not symmetric. Again in the literature, the original adjacency matrix is

often transposed and stored as a CSR matrix so that the well studied sparse matrix

times dense vector (SpMV) kernel can be applied.

In matrix algebra, both directions perform the expression 𝑣 = 𝐴𝑇 × 𝑓 . The only

difference is that in the push direction, the vectors 𝑣 and 𝑓 are sparse while 𝐴𝑇 is
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stored in the CSC format. However, in the pull direction, the vectors 𝑣 and 𝑓 are

dense and 𝐴𝑇 is stored in the CSR format.

For both directions, BFS implementations use the (∨,∧,B) semi-ring [40]. Both

versions also update an dense vector tracking the earliest depth at which each node

was seen. A depth of 0 means the node is unvisited. This vector doubles as a mask

that can be used to avoid doing work for vertices that have already been visited.

State of the art work uses both directions during the BFS iterations depending on

heuristics to determine which would be more beneficial. TACO can already perform

this optimization by using the same expression but with different formats. However,

the pull direction leaves opportunities for optimization on the table. Namely:

1. There is no way to instruct the framework to only try to attach unvisited nodes

to the frontier without explicitly storing a sparse mask of all the unvisited

nodes. Current work already tracks the set of visited vertices in a dense vector

and updates this set after each iteration. This work in this thesis introduces

general iteration spaces allowing a user to express this masking optimizations

in terms of iteration spaces.

2. Once we find that a node can be attached to the frontier, we can exit the inner

product early. TACO has no way to currently recognize this and perform this

optimization. This work solves this by allowing TACO to reason about operator

properties.

The code TACO would currently generate to perform an iteration of BFS in

the pull direction is shown in Figure 2-1a. The code in Figure 2-1b demonstrates

optimization one which is referred to ask masking [40]. We avoid expanding any

visited edges which wastes work on unneeded dot products while reusing the dense

visited vector. Chapter 4 describes the concept of iteration spaces which allows a user

to express concepts like this to the compiler.

The code in Figure 2-1c demonstrates optimization two applied to the kernel. This

optimization allows early exit from the dot product and lead to the biggest speedup

in the performance of the pull direction of BFS [40]. TACO can realize this if a
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(a) Normal SpMV

(b) SpMV with mask. Note that the dot product is performed only when vis-
ited_vals is 0 since we do not need to try to attach a node that has already been
visited to the next frontier.

(c) SpMV with masking and short circuiting

Figure 2-1: Code showing several ways SpMV can be used to perform one BFS step.
All of the matrices are assumed to be sparse and stored in the CSR format. In the
above, A is assumed to be the transposed adjacency matrix, v is assumed to be the
next frontier and f is assumed to be the current frontier. Additionally, there is a dense
visited vals vector which stores the lowest depth at which each vertex was seen.

user replaces + with | and × with & so that we perform the computation on the

Boolean semi-ring. The graph interpretation of exiting early is that once we know an
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unvisited vertex can be attached to the frontier by one edge, we are sure that we can

add it to the next frontier and can stop exploring other edges incident to that vertex.

The linear algebra justification is that the OR operator has an annihilator of 1. An

annihilator of an operator has the property that 𝑎 op 𝑥 = 𝑎 ∀𝑥. Therefore once the

reduction value ends up being 1, we can be sure the result of the reduction will be 1

since no other value can cause it to change.

While the code in Figure 2-1a can already be generated, the ideas presented in

this thesis allows the compiler to generate the implementations shown in the rest of

the code in Figure 2-1. Next, I describe another graph algorithm that leverages one

more feature of this work.

2.3 Linear Algebra Bellman Ford

The Bellman-Ford algorithm solves the single source shortest path problem (sssp).

Given a graph 𝐺(𝑉,𝐸) with edge weights 𝑤 and a source 𝑠 ∈ 𝑉 , the algorithm

determines the shortest path distances ∆(𝑠, 𝑣) for all 𝑣 ∈ 𝑉 and the corresponding

paths assuming that there are no negative weight cycles.

Intuitively, Bellman-Ford proceeds by performing a series of edge relaxations. For

each vertex 𝑣 it stores an estimate 𝑑(𝑣) for the shortest path distance maintaining the

invariant that 𝑑(𝑣) ≥ ∆(𝑠, 𝑣). Relaxing an edge (𝑢, 𝑣) means that 𝑑(𝑣) = min(𝑑(𝑣),

𝑑(𝑢)+𝑊 (𝑢, 𝑣)) where 𝑊 is the adjacency weight matrix for the graph. |𝑉 | iterations

are performed and every iteration relaxes every edge in the graph.

In algebra terms, relaxing all edges incident on a vector 𝑣 can be expressed as:

∆𝑘(𝑠, 𝑣) = min
𝑢

(∆𝑘−1(𝑠, 𝑢) + 𝑊 (𝑢, 𝑣))

where ∆𝑘 represents the shortest path using at most 𝑘 hops. This is kept in the

distance estimate vector 𝑑. Therefore, the above can be translated to a dot product

between 𝑑 and a row of the weight matrix 𝑊 where we reduce using min and replace

the usual × with the + operator. Unlike usual operators, ∞ annihilates + and also
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is the identity of min. Therefore, our tensors must be sparse over ∞ for TACO to

realize that it only needs to iterate over the defined values in 𝑊 when performing

this dot product. The initial distance estimate 𝑑 is initialized as follows:

𝑑0(𝑣) =

⎧⎪⎨⎪⎩0 if 𝑣 = 𝑠

∞ otherwise

The algorithm computes the SpMV expression 𝑑𝑘 = 𝑑𝑘−1 min .+𝑊 for 𝑁 iterations

then terminates. The notation ⊕.⊙ implies that we are operating on a semiring with

⊕ as the usual plus operator and ⊙ as the usual multiply operator. The structure

of the code is exactly the same is shown in Figure 2-1a except the plus and multiply

operators are replaces with min and + respectively in the code above. TACO now

recognizes this by reasoning about fill values and operator properties. This shows

the benefit of TACO being able to reduce and compute on arbitrary scalar operators

based on their properties.

Like BFS, it is also crucial that the algebraic Bellman-Ford changes direction. It

uses a SpVSpM algorithm when the input vector is sparse then switches to SpMV

when the number of non-zeros in the input vector is above some threshold. In order

to switch correctly, TACO must use the general fill value of the sparse vector so that

the dense vector is correctly defined everywhere its sparse representation was missing

a value.

Finally, Bellman-Ford also benefits from the general concept of masking but in a

different form to the one shown in BFS. In Bellman-Ford, active vertices are those

whose shortest path weights changed during the previous iteration of the algorithm.

We only need to consider active vertices when performing a relaxation since other edge

weight would have been accounted for in previous iterations. This means that ideally,

when performing 𝑑𝑘 = 𝑑𝑘−1 min . + 𝑊 that the vector 𝑑𝑘−1 only consists of vertices

that changed during the previous iteration since this is the only new information we

need to take into consideration.

To make the discussion of masking clearer, I introduce a temporary 𝑡 so that

𝑡 = 𝑑𝑘−1 min . + 𝑊 . Now setting 𝑑𝑘 to be the active vertices is done as follows
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𝑑𝑘 = 𝑡 × (𝑡 < 𝑑𝑘−1) so now 𝑑𝑘 only consists of vertices that were updated. I note

again that having properties allows TACO to realize that for the mask sub-expression

(𝑡 < 𝑑𝑘−1), it only needs to iterate over the union when 𝑡 and 𝑑𝑘−1 are sparse over

∞. Additionally, a new multiply operator can be defined to perform final masking

multiply with ∞ as the annihilator so that TACO can set 𝑑𝑘 to the intersection of

the mask and 𝑡.

The examples shown in this chapter demonstrate how the general ideas expressed

in this work can be applied to graph algorithms. General iteration spaces and fill

values are two key elements that allow TACO to be extended to this domain. The

rest of this thesis describes how this generality is achieved in TACO and the APIs

through which it can be used.
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Chapter 3

Array Index Notation

Tensor Index Notation [21] is a tensor language where an indexed assignment

describes how each component on the left-hand side relates to an expression of the

operands on the right-hand side as shown in Figure 3-1. The expressions on the right-

hand sides consist of tensor operands indexed by index variables, scalar operators

that combine the indexed tensors, and reduction expressions that introduce an index

variable that is reduced (e.g., summed) over. An index variable is a variable that is

bound to a set of coordinate values in the corresponding tensor modes. For example,

in Figure 3-1, the index variable 𝑖 is bound to coordinates in mode zero of 𝐴 and

mode zero of 𝐵 while 𝑙 corresponds to coordinates in mode two of 𝐴 and mode one

of 𝐶.

𝐴𝑖𝑗𝑙 =
∑︁
𝑘

𝐵𝑖𝑗𝑘𝐶𝑘𝑙 𝐴0,3,1 =
∑︁
𝑘

𝐵0,3,𝑘 𝐶𝑘,1

Figure 3-1: A tensor index notation example of a 3-order tensor multiplied by a ma-
trix. The second expression shows, with indices separated by commas, the expression
that describes the component of 𝐴 at location (0, 3, 1).

Array Index Notation is an extension to Tensor Index Notation [22]. It allows a

user to perform arbitrary operations on sparse or dense arrays. The main difference

between the two notations is that Tensor Index Notation bundles the iteration pattern

with the operator and assumes that all input tensors are sparse over zero. An example
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(a) Code for 𝑐𝑖 = 𝑎𝑖×𝑏𝑖 where 𝑎 and 𝑏 are
sparse over 0 and 𝑐 is dense

(b) Code for 𝑐𝑖 = 𝑎𝑖× 𝑏𝑖 where 𝑎 is sparse
over 0 and 𝑏 is sparse over 1

Figure 3-2: Iteration patterns for the same scalar expressions 𝑐𝑖 = 𝑎𝑖 × 𝑏𝑖 where the
value compressed out is changed. Tensor Index Notation always generate the code in
(a) whereas Array Index Notation can generate code in both (a) and (b).

of this is when performing a sparse vector-sparse vector multiply 𝑐𝑖 = 𝑎𝑖 × 𝑏𝑖, the ×

operator always assumes that it only needs to iterate over the intersection of the two

vectors. The code that would be emitted is shown in Figure 3-2a. This is because the

result would be 0 when either of the input tensors is 0. However, tensors could be

sparse over any value meaning that the assumptions made by the operators in Tensor

Index Notation cannot generalize to cases where arbitrary values are missing. For

example, if only 𝑎 was sparse over 0 but 𝑏 was sparse over 1, then the compiler would

need to iterate over just 𝑎 instead of the intersection. The code for this case is shown

in Figure 3-2b.

To solve this problem, Array Index Notation introduces a generic operator that

decouples the computation from the iteration pattern. Thus, Array Index Notation is

simply tensor index notation with at least one generic operator used in the expression.

In its simplest form, an operator can be described by just a scalar computation to be

done for each value of a sparse array including the value that has been compressed

30



out. This computation is defined via a functor that is passed into the generic operator.

For example, we can define and use a generic multiply operator as shown below. The

last value in the tensor constructor is the value compressed out which defaults to

zero.

struct MulImpl {

ir::Expr operator()(const std::vector<ir::Expr> &v) {

return ir::Mul::make(v[0], v[1]);

}

};

IndexVar i;

Tensor<double> c("c", {10}, {Dense});

Tensor<double> a("a", {10}, {Compressed});

Tensor<double> b("b", {10}, {Compressed}, 1);

Op mulOp(MulImpl());

c(i) = mulOp(a(i), b(i));

Using this simple form causes the compiler to generate correct but inefficient code

since it assumes it needs to perform computations at every coordinate including those

where both 𝑎 and 𝑏 are missing values. In those cases, it generates the expression given

but replaces 𝑎 and 𝑏 with their missing values. An example of the code that would

be generated in this case is shown in Figure 3-3. In order for the operator to generate

the code shown in Figure 3-2b one needs to add properties to the operator. These are

explained in detail in Chapter 5 and Chapter 6 but I used them here for illustration.

One would only need to change the instantiation of the Op to the following:

Op mulOp(MulImpl(), {Annihilator(0), Commutative});

From this, the compiler can infer that when any input expression is 0, the operator

returns 0. It can use this knowledge to decide what iteration pattern is required. The

compiler uses this information to enable it to generate the code shown in Figure 3-2b

instead of the suboptimial code in Figure 3-3.
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Figure 3-3: Code showing unoptimized versions of sparse vector-sparse vector mul-
tiply. The compiler has applied no optimizations to the compute code in the sparse
example above. Later chapters will discuss this snippet showing how the compiler
can optimize this code given the properties and algebra defined in the operator.

In addition to the properties, the generic operators introduced with array index

notation also allows the user to specify an iteration algebra that describes the iteration

pattern. This is described in Chapter 4 but I mention them here to give the reader a

full overview of generic operators.

Array Index Notation extends Tensor Index Notation by introducing generic oper-

ators. These operators can be defined by just specifying a scalar operator. However,
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supplying properties and iteration algebra to the operator allows the compiler to emit

efficient code over the scalar computation when computing on sparse tensors. In the

rest of this thesis, I describe the iteration algebra and properties that are tagged

with the generic operator’s scalar definition and how it all comes together in order to

generate code that computes over sparse arrays.
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Chapter 4

Iteration Spaces

The iteration space of loops that iterate over dense tensors can be described as a

hyper-rectangular grid of points by taking the Cartesian product of the iteration

domain of each loop [22]. A sparse iteration space is a grid with missing points

called holes [22]. In traditional sparse tensor algebra, the holes come from tensor

components whose values are zero. Figure 4-1 illustrates this way of thinking about

iteration spaces. In this work, the holes can be any value of the primitives types that

the compiler supports which are integer, floating point and Boolean data types.

(0, 0)

(1, 0)

(2, 0)

(0, 1)

(1, 1)

(2, 1)

(0, 2)

(1, 2)

(2, 2)

(0, 3)

(1, 3)

(2, 3)

(a) Dense iteration space, with all points
present.

(0, 0) (0, 1)

(2, 1)

(1, 2)

(2, 3)

(b) Sparse iteration space, with some
points missing.

Figure 4-1: The Grid Representation of Iteration Spaces showing a dense and sparse
iteration space for 4 × 3 matrix

In this chapter, we will extend the iteration space algebra from TACO [22] to

include complements of iteration spaces instead of only unions and intersections. We

will see a generalization of the iteration lattices from the tensor algebra compiler
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that allows the complements introduced in the iteration space algebra language to

be expressed. This will allow any iteration pattern to be described to the compiler

instead of only union and intersection patterns. The extension to the iteration lattice

will include a new type of point called an omitter point which allows a user to

skip computing when specific subsets of the input tensors have holes in their iteration

spaces. The introduction of this new point requires a redefinition of the existing lattice

points in the tensor algebra compiler. They will be redefined to be producer points

meaning that they emit a compute statement whenever a specific subset of tensors

all have a value defined at a given coordinate. Additionally, we will see a distinction

between the new omitter points and missing points which are simply points that are

not in the lattice. Lastly, I show how compute statements can be tied to lattice points

to allow entirely different computations to be performed at each lattice point. The

ideas in this chapter builds the representations needed to compile code to compute on

sparse arrays and shows how to translate from an iteration algebra expression to an

iteration lattice. Figure 4-2 gives a high level overview of this chapter. The properties,

iteration algebra and region computations are bundled with the generic operator.

The properties tell the compiler what mathematical properties the operator possesses

such as its identity and whether it is commutative or associative. The properties are

discussed in detail in Chapter 5. The iteration algebra is a set language for describing

iteration spaces. It can be inferred from the properties and tensor fill values or it can

be user specified. The region computations allow different computations to be done

when a certain subset of the tensors that form the iteration space have a coordinate

defined. For example, if the operator defines addition for 𝑎, 𝑏 and 𝑐, the region

computation allows the user to specify that 𝑎 and 𝑏 should be multiplied if 𝑐 lacks

a coordinate instead of being added. The iteration lattice is an IR used by TACO

to reason about the loops that should be generated to compute on sparse iteration

spaces. Finally, the imperative IR is another intermediate representation TACO uses

before it generates code for its different backends. Chapter 6 demonstrates how these

representations can be compiled into C code that iterates over and computes on any

iteration space.
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Properties

Iteration
Algebra

Region
Computa-

tions

Iteration
Lattices

Imperative
IR

Figure 4-2: Iteration spaces overview that highlights the iteration algebra, iteration
lattices and special region computations described in this chapter. Arrows in this
diagram imply that one representation is used to build the other. Dashed lines imply
that the prior representation is optional. For example, properties are optional when
constructing iteration algebra since the algebra can be user specified. Likewise, region
computations are not needed in order to construct an iteration lattice if the same
expression is being performed in every lattice point.

𝐴

U

(0, 0)

(0, 1)

(1, 2)

(2, 1)

(2, 3)

(0, 2)

(0, 3)

(1, 0)

(1, 1)

(1, 3)

(2, 0)

(2, 2)

Figure 4-3: Venn Diagram showing which sets tensor coordinates belong to. All the
coordinates belonging to A are in the subset A within the universe of coordinates.
This is a Venn Diagram representation of Figure 4-1

.

4.1 Iteration Space Algebra

One can also think about iteration spaces as a Venn Diagram of coordinates. The

Universe of this Venn Diagram is equivalent to set of all points in a dense iteration

space such as the one shown in Figure 4-1a. Since sparse tensors only define some of

the possible coordinates in the dense space, they form subsets within the universe of

points. This way of thinking naturally leads to a set expression language for describing
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U

𝐴 𝐵

(a) Venn Diagram representation of 𝐴𝑖𝑗 ∩𝐵𝑖𝑗

U

𝐴 𝐵

(b) Venn Diagram representation of 𝐴𝑖𝑗 ∩𝐵𝑖𝑗

Figure 4-4: The above shows the Venn Diagram regions of the iteration spaces two set
expressions with tensors 𝐴 and 𝐵. The colours are mixed where the tensors overlap.

tensor iteration spaces called iteration space algebra [22]. Figure 4-3 illustrates

this way of thinking about iteration spaces. Prior to this thesis, it was only possible

to combine iteration spaces by taking the intersections and unions of their points.

However, this work adds the capability to take the complement of point sets which

opens up a much wider range of iteration spaces that can be considered.

The representation of the algebra remains the same as the one described in section

3.1 of Sparse Tensor Algebra Compilation [22] with the addition of set complement,

which opens up all set combinations beyond intersections and unions. Briefly, the

notation uses index variables to index tensor expressions in order to control what

coordinates should be compared in the set operation. For example, one could write

𝐴𝑖𝑗 ∩ 𝐵𝑖𝑗 to indicate the intersection of two sparse matrices 𝐴 and 𝐵 as required for

element-wise multiplication (assuming fill values of 0). However, with the introduction

of complements, one can use expressions such as 𝐴𝑖𝑗∩𝐵𝑖𝑗 to denote an operation that

only uses results from a matrix 𝐴 whenever 𝐵 has no value defined at that coordinate.

An algebra such as this is useful for expressing a filtering operation between two

matrices. For example, if 𝐴 represents the set of MIT Computer Science students

and 𝐵 represents the set of MIT students with glasses then the result of the set

operation would return the set of MIT Computer Science students without glasses.

These set expressions are shown in Figure 4-4.

38



U

𝑎 𝑏

Figure 4-5: Venn diagram for 𝑎. The colors are mixed where both tensors need to
be coiterated. Shows that outside of 𝑎 multiplication does not been to be performed
since the result of the operation is known to be zero.

The Iteration Algebra is one of the extra pieces of information that can be tagged

to the operators described in Chapter 3. This tells the compiler the exact set of values

that needs to be iterated over to compute the final result. The compiler can then

reason about this set to reduce the number of while loops and conditionals needed to

iterate over sparse iteration spaces that arise from sparse tensor algebra.

Now, we go back to the sparse-sparse vector multiplication discussed in Chapter 3.

Suppose our two input vectors were 𝑎 with a fill value of 0 and 𝑏 with a fill value

of 1. Since the fill value of 𝑎 is 0, any time 𝑎 is missing a coordinate, the value of

the final result is known to be 0 since 0 · 𝑥 = 0 for all 𝑥. Therefore, this operator

can be tagged with the algebra 𝑎𝑖 meaning results are only generated when 𝑎 has a

defined coordinate. A graphical depiction of this algebra is shown in Figure 4-5. This

algebra allows the generated code to be simplified from the original code shown in

Figure 4-6a. For the simplified code shown in Figure 4-6b, assume the compiler has

initialized the result vector 𝑐 to the correct value of 0. Figuring out the initialization

value can be done by compile time constant propagation where tensor operands are

replaced by their fill values.
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(a) Code for computing 𝑐𝑖 = 𝑎𝑖 × 𝑏𝑖
where 𝑎 has a fill of 0 and 𝑏 has a fill
of 1. In this example, the algebra is
not used so the compiler unnecessar-
ily iterates over the entire space.

(b) Code after using algebra to it-
erate over the minimal part of the
iteration space.

Figure 4-6: The above is shown to illustrate the difference in code size and complexity
when the iteration algebra is used to reduce the iteration space. It shows an example
of a code snippet the compiler generates when no iteration algebra is specified with
the operator compared to the code generated when an iteration algebra is passed in.
The code with the algebra simplifications is much shorter since there are less regions
the compiler needs to iterate over.

4.2 Iteration Lattices

In this section, I discuss the iteration lattice representation while highlighting the con-

tributions of this thesis. TACO uses iteration lattices (formerly merge lattices [21]) to
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generate code for sparse iteration spaces. I extend the iteration lattice representation

by introducing a new point type called an omitter point. I also modified the existing

lattice construction rules to account for the new representation and introduced a new

rule when constructing lattices to allow for complements to be performed. Finally,

I explain the difference between loop lattices and case lattices. In prior works, the

iteration lattices are used both to generate loops as well as cases within those loops.

However, with the extensions in this work, the two use cases of the iteration lattices

need to be distinguished. This section discusses these modifications.

4.2.1 Iteration Lattice Background

This section is an adaptation of the description of iteration lattices provided in section

3.3 of Sparse Tensor Algebra Compilation [22].

The iteration space is divided into regions described by the tensors that intersect

there. These regions are the powerset of the tensors that form the iteration space;

that is, the set of all subsets. Thus, an iteration space with 𝑘 tensors divides into

2𝑘 iteration regions (the last region is the empty set ∅ where no sets intersect).

Figure 4-7 shows the Venn diagram of the union of three tensors with labels marking

the seven non-empty regions where subsets of tensors intersect (the last region is the

background, where no segments intersect). For notational convenience, the regions

in the Venn diagrams are labeled only with the sets that intersect there, leaving out

of the expression a subtraction of regions where other sets also intersect. Thus, for

example, the region where only 𝑐 and 𝑑 intersects is labeled

𝑐 ∩ 𝑑,

whereas the full expression is

𝑐 ∩ 𝑑− 𝑏 ∩ 𝑐 ∩ 𝑑.

To iterate over union spaces, we must iterate through each of these regions. But if

the iteration space contains intersections, we only need to iterate through some of the
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regions (a subset of the powerset). For example, in the intersection in Figure 4-8, we

only need to iterate through the single region described by the intersection of all three

tensors. Figure 4-9 shows that when the iteration space is a combination of union and

intersection operations, we need to iterate over more than one but not every region.

𝑏 𝑐

𝑑

𝑏 ∩ 𝑐

𝑏 ∩ 𝑑 𝑐 ∩ 𝑑

𝑏 ∩ 𝑐 ∩ 𝑑

Figure 4-7: Venn dia-
gram of iteration regions
of 𝑏 ∪ 𝑐 ∪ 𝑑.

𝑏 ∩ 𝑐 ∩ 𝑑

Figure 4-8: Venn dia-
gram of the iteration re-
gions of 𝑏 ∩ 𝑐 ∩ 𝑑.

𝑏 ∩ 𝑑 𝑐 ∩ 𝑑

𝑏 ∩ 𝑐 ∩ 𝑑

Figure 4-9: Venn dia-
gram of the iteration re-
gions of (𝑏 ∪ 𝑐) ∩ 𝑑.

The coiteration over an iteration space is organized so that when a region runs out

of coordinates, the coiteration algorithm jumps to a simpler algorithm that excludes

the tensors that ran out of coordinates (Figure 4-10). How, and whether, the algo-

rithm can detect when segments run out of coordinates depends on the coiteration

strategy. Two coiteration strategies are discussed over two segments and then general-

ized to any number of segments using a lattice formulation. The two-way coiteration

strategies are called merge and iterate-and-locate, and they demonstrate the coitera-

tion patterns that the lattices implicitly use to construct n-way coiteration strategies

for any number of tensors combined with any combination of set intersection and

union operators.

The two-way merge coiteration strategy is a common technique that is used in the

merge sort and merge join algorithms. It coiterates over two segments in 𝑂(𝑛) time,

where 𝑛 is the number of coordinates in the larger segment. A two-way merge can be

used to coiterate over any region, but it requires that the sparse tensors defining that

region have coordinates that are ordered. It coiterates through the tensors in order

until either runs out of coordinates. At each step, it compares their coordinates to

determine whether or not they match. If they do, then that coordinate lies in their

intersection, and both segments are advanced. If not, then the smaller coordinate is
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𝑏 𝑐

𝑑

𝑏 ∩ 𝑐

𝑏 ∩ 𝑑 𝑐 ∩ 𝑑

𝑏 ∩ 𝑐 ∩ 𝑑

Coiterate over regions with 𝑏, 𝑐, and 𝑑

𝑐

𝑑

𝑐 ∩ 𝑑

𝑏 runs out of values

𝑑

𝑐 runs out of values

Figure 4-10: Coiterate over the coordinates of 𝑏, 𝑐, and 𝑑, considering all regions.
When 𝑏 runs out of values the coiteration proceeds to coiterate over only 𝑐 and 𝑑,
ignoring regions that contain 𝑏. And when 𝑐 also runs out of values the coiteration
proceeds to only iterate over 𝑑, ignoring regions that contain 𝑏 or 𝑐.

considered next. It lies in the iteration region that contains only one tensor, and only

that tensor’s coordinate is advanced. The iteration terminates when either tensor

runs out of coordinates. At this point, the intersection variant of the merge strategy

has completed, whereas the union variant must iterate through whichever segment

still has coordinates left, if any.

The iterate-and-locate strategy is a simpler coiteration strategy that can be used

to coiterate over either an intersection, shown in Figure 4-11, or a union where one of

the regions is a superset of the other region. The two-way iterate-and-locate algorithm

iterates over one of the region and locates coordinates from the other region if the

tensors in that region support random access. Examples of tensors with this feature

are dense arrays and hash maps.

iterate over 𝑏 locate from 𝑐

𝑏 𝑐

Figure 4-11: The iterate-and-locate strategy iterates over one operand and locates
the coordinates in another.

An iteration lattice is a partial ordering of the powerset of some set of tensors S𝑡

by the number of tensors in each subset. It is, in other words, a lattice of increasingly

fewer tensors to coiterate over until all tensors run out of coordinates (Figure 4-12).
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Each one of the sets in the P(S𝑡) corresponds to one of the iteration regions in the

Venn Diagram corresponding to the iteration lattice. The sets within the powerset are

called iteration lattice points. The tensors of a point are divided into two sets called

its iterators and locators (Figure 4-13). The iterators are the tensors to coiterate

over in the lattice point, using a multi-way merge strategy, whereas the locators are

segments we can simply locate from using the iterate-and-locate strategy.

𝑏, 𝑐, 𝑑

𝑏, 𝑑 𝑐, 𝑑

∅

𝑐
𝑏

𝑏, 𝑑
𝑐, 𝑑

𝑑

Figure 4-12: The iteration lattice of the iteration domain (𝑏∪𝑐)∩𝑑 shown in Figure 4-
9. Nodes are lattice points with tensors to coiterate over (the top coiterates over all
tensors) and edges move to another point when a tensor runs out of coordinates.

A lattice can be viewed as a state machine that coiterates through subsets of

regions as in Figure 4-10. Figure 4-15 shows an example with pseudocode. But we do

not simply iterate over one region at a time. Instead, we coiterate over several regions

until a segment runs out of values and then proceed to coiterate over the subset of

regions that do not have that segment. Thus, the lattice points are used in two ways.

First, they enumerate the regions we will successively exclude until all segments have

run out of values; second, they enumerate the regions we must consider at the present

moment. To iterate over an iteration lattice, we proceed in the following manner. We

begin at the top lattice point:

1. Coiterate over the current lattice point’s iterators until any of them runs out of

values.

𝑏, 𝑐, . . . | 𝑑, 𝑒, . . .

iterators locators

Figure 4-13: The tensors in a lattice point are divided into iterators to coiterate over
coordinates, and locators to locate the coordinate in.
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ℒ𝑝

𝑏, 𝑐, 𝑑, 𝑒

𝑏, 𝑑, 𝑒 𝑐, 𝑑, 𝑒

𝑑, 𝑒𝑏 𝑐

∅

Figure 4-14: The sublattice of the lattice points below a lattice point ℒ𝑝. These are
the lattice points that exclude segments that have run out of values.

2. Compute the candidate coordinate, which at each step is the smallest of the

current coordinates of the tensors.

3. Determine which region the candidate coordinate is in by checking what tensors

are currently at that coordinate. The only regions we need to consider are those

of the lattice points underneath the current lattice point (Figure 4-14).

4. When any tensor run out of values, follow their lattice edge to a new lattice

point and repeat the process until reaching the bottom.

This strategy leads to successively fewer segments to coiterate and regions to consider.

We can use lattices, and this observation, to write code for any iteration space made

of unions and intersections. This code consists of a sequence of coiterating while

loops that become simpler as we move down the lattice.

4.2.2 New Representation

I introduce the concept of an omitter point to the original iteration lattices described

previously. An omitter point is simply a point where computation must be skipped

inside of the if statement for that lattice point. We still need these points in the

lattice because the code generator must still emit while loops that coiterate over the

tensors defining that point. A pseudocode example of this is shown for performing

the symmetric difference of two sparse tensors in Figure 4-18. To distinguish omitter
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𝑑

𝑏, 𝑐, 𝑑

𝑏, 𝑐 𝑏, 𝑑 𝑐, 𝑑

𝑑

∅

𝑑
𝑐

𝑏

𝑏
𝑐

𝑑

𝑏, 𝑐 𝑑 𝑑

while 𝑏, 𝑐 and 𝑑 have coordinates left do
if in region [𝑏, 𝑐, 𝑑] then . . .
else if in region [𝑏, 𝑐] then . . .
else if in region [𝑏, 𝑑] then . . .
else if in region [𝑐, 𝑑] then . . .
else if in region [𝑑] then . . .

while 𝑏 and 𝑐 have coordinates left do
if in region [𝑏, 𝑐] then . . .

while 𝑏 and 𝑑 have coordinates left do
if in region [𝑏, 𝑑] then . . .
else if in region [𝑑] then . . .

while 𝑐 and 𝑑 have coordinates left do
if in region [𝑐, 𝑑] then . . .
else if in region [𝑑] then . . .

while 𝑑 has coordinates left do
if in region [𝑑] then . . .

𝑏 𝑐

𝑑

𝑏 𝑐

𝑏

𝑑

𝑐

𝑑

Figure 4-15: Iteration lattice and corresponding coiteration pseudocode for the iter-
ation domain (𝑏 ∩ 𝑐) ∪ 𝑑. There is one while loop per lattice point and each while
loop contains one if statement per sub-lattice point. Next to each while loop is a
Venn diagrams showing the regions it coiterates over. The while loops iterate until
a tensor in its region runs out of values, and the if statements check which region a
coordinate is in. Depending on the region, different actions are taken.

points from the original lattice points, I rename the original lattice points to pro-

ducer points since they always produce a computation inside of their if statements.

Omitter points are semantically different from missing points since we do not iterate

over the missing regions. However, omitter points are equivalent to missing points

when the omitter has no non-empty set children points that are producers, since no

loops or conditionals need to be emitted for the entire lattice sub-tree. The beauty of

this extension is that all of the other concepts in the original iteration lattice remains

unchanged while giving us the ability to describe any iteration space instead of just

intersections and unions.

Figure 4-17b shows the lattice representation for the Venn Diagram shown in Fig-

ure 4-5. A lattice point is not explicitly needed to omit the region 𝑏 since it would have

no children that are producers. However, Figure 4-16 illustrates an iteration space for

the xor operator along with the corresponding iteration lattice for that space. The xor

example is shown since the old lattice representation does not support this space and

it illustrates the expressive power of omitter points in the new representation. The

46



U

𝑎 𝑏

(a) Venn Diagram for computing the symmetric
difference of 𝑎 and 𝑏.

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(b) Lattice for computing the sym-
metric difference of 𝑎 and 𝑏.

Figure 4-16: This shows the Venn Diagram for computing the XOR between two
tensors 𝑎 and 𝑏 and the lattice corresponding to that diagram. This iteration space
cannot be represented in the old representation since there is no way to instruct the
compiler that it does not need to produce a value when both 𝑎 and 𝑏 have values
defined at a particular coordinate.

U

𝑎 𝑏

(a)

𝑎, 𝑏

𝑎

∅

𝑏

𝑎

(b)

Figure 4-17: Lattice representation and Venn Diagram for the sparse vector - sparse
vector multiplication where we only need to iterate over 𝑎. The lattice point b is
absent because when 𝑎 is empty, we are done iterating.

omitter point is needed so TACO knows that it needs to co-iterate over the tensors 𝑎

and 𝑏 but it can avoid computing and storing values when both tensors are defined

during the co-iteration.
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𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

while 𝑎 and 𝑏 have coordinates left do
if in region [𝑎, 𝑏] then do nothing
else if in region [𝑎] then . . .
else if in region [𝑏] then . . .

while 𝑎 has coordinates left do
if in region [𝑎] then . . .

while 𝑏 has coordinates left do
if in region [𝑏] then . . .

𝑎 𝑏

𝑎 𝑏

𝑎 𝑏

Figure 4-18: Iteration lattice and corresponding coiteration pseudocode for the iter-
ation space describing a symmetric difference. The treatment of the omitter point
is the same when emitting while loops. However, when emitting if statements, we
do nothing in the intersection of 𝑎 and 𝑏 to ensure that it is skipped. Without this
explicit skip, we may accidentally end up performing computations inside the region
𝑎 ∩ 𝑏.

4.2.3 Construction

Iteration Lattices are constructed directly from the iteration algebra discussed previ-

ously. Before a lattice is constructed, the iteration algebra for the entire expression

is constructed then the lattice construction rules are applied to that algebra. Before

discussing these rules formally, I will describe an intuitive way of thinking about con-

structing merge lattice. This will always provide the correct lattice but not necessarily

the most optimized lattice.

The input to the lattice construction algorithm is an iteration algebra expression.

An intuitive way of thinking about the result lattice is to visualize the space using a

Venn Diagram. First, one can draw the Venn Diagram for the iteration algebra set

expression. We can then list the powerset of the set of input tensors in an ordered

lattice and include an extra point in that lattice for the universe. I refer to this lattice

as a template lattice from here onward. An example of this structure is shown in

Figure 4-19 for an arbitrary binary operation. After writing out this structure, we

mark each point corresponding to an unshaded region in the Venn Diagram as an

omitter point. Finally, to get the result lattice, we insert the universe into every

point (except itself) if the universe was not marked as omitted.

I will use the expression 𝑎 ⊕ 𝑏, where ⊕ is the XOR operator that iterates over

the symmetric difference of 𝑎 and 𝑏. The Venn Diagram for this operator is shown
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in Figure 4-16a as an example to demonstrate this intuitive framework. The actual

iteration algebra would be (𝑎 ∩ 𝑏) ∩ (𝑎 ∪ 𝑏). Since 𝑎 and 𝑏 are the inputs to the xor

operation, we observe that P({𝑎, 𝑏}) = {{𝑎, 𝑏}, {𝑎}, {𝑏} {}}. The result lattice after

including the universe and marking the necessary points as omitter points is shown in

Figure 4-20. This lattice is correct but contains a point for every region in the Venn

Diagram, which is unnecessary. It is also based on having the venn-diagram, which

the machine would not have when constructing the lattice.

𝑎, 𝑏

𝑎 𝑏

U

∅

𝑏 𝑎

𝑎 𝑏

Figure 4-19: Lattice showing the
structure a template lattice takes for
an arbitrary binary operation before
marking points as omitters. The dia-
gram assumes the input arguments are
regions 𝑎 and 𝑏.

𝑎, 𝑏

𝑎 𝑏

U

∅

𝑏 𝑎

𝑎 𝑏

Figure 4-20: The lattice corresponding
to the XOR Venn Diagram in Figure 4-
16a with the unshaded regions marked
as omitters. The universe is not in-
cluded with the other points since it
was marked as an omitter point in the
template. Note that this lattice is dif-
ferent from the one in Figure 4-16b
since it explicitly includes the universe
as an omitter point.

Now that an intuitive framework has been established, I describe a revised bottom-

up algorithm from the one detailed in sparse tensor algebra compilation [22]. I will

introduce the new complement rule and then describe the revised union and inter-

section rules. I will also introduce a rule called the augmentation rule that is used

to attach extra information to the iteration algebra in special cases to simplify the

construction algorithm. The segment rule remains unchanged from the original work

of TACO.

Before applying any of the rules to the input iteration algebra, we first apply
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De Morgan’s laws to simplify the algebra expressions. The primary reason for this

is to push complements down the algebra expression so that all complements are

applied to tensors and not complex algebra expressions. This preserves the meaning

of the algebra while making the complement rule much simpler than it would have

been otherwise. This simplicity is due to the fact that the algorithm would need to

reason about intersections, unions and dimensions separately in the complement rule

whereas now, the complement rule only needs to reason about segments containing

single tensors. With the algebra simplified, we can apply the lattice construction

rules below.

𝑏

∅

𝑏

U | 𝑏

∅

U

Figure 4-21: The iteration lattices of a segment expression, that supports an iterator
capability (left) and that instead only supports locate (right).

Segment Rule: When we get to a tensor in the iteration algebra expression, we

construct a segment for that tensor. This is the base case of the lattice construction

algorithm. The segment rule has two cases:

Case 1: The tensor can be iterated over.

Rule: Return a lattice with a single non-bottom lattice point whose

set of iterators contains the iterator for the tensor and whose set

of locations is empty.

Case 2: The tensor cannot be iterated but can be located into.

Rule: Returns a lattice with a single non-bottom lattice points, the

iterators set of which contains the dimension of the tensor and

the locators set contains the tensor.

Figure 4-21 contains an example of the application of both rules on a tensor 𝑏.

Complement Rule: The complement rule only has one case. It can only comple-

ment a single lattice point representing an input tensor. When given a single lattice
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𝑎

(a) Lattice
point for 𝑎.

𝑎

(b) Mark
point as
omitter

𝑎,U
(c) Insert
dimension

𝑎,U

U

𝑎

(d) Add
producer
dimension

Figure 4-22: The stages of the complement rule. The dimension is needed so that
TACO knows it needs to iterate over the entire space and must coiterate with 𝑎 and
the dimension until 𝑎 runs out of values.

point, the complement rule marks that lattice point as an omitter, adds a dimension

iterator to the new omitter point if one is not already present and inserts a lattice

point with just the dimension iterator at the bottom. A flow of this is shown in

Figure 4-22. The simplicity of this rule is due to the fact that De Morgan’s laws

are applied to the algebra before applying the lattice construction rules. Therefore,

complements always appear around a single tensor expressions instead of arbitrary

set expressions.

Intersection Rule: The intersection rule takes two lattices as its operands and

combines the lattices to produce a new lattice that describes iteration over the inter-

section. To intersect two lattices, we first take the Cartesian product of their lattice

points which produces a set of ordered lattice point pairs. Next, we merge the lattice

points in each pair: the union of the iterators and the union of the locators become

the iterators and locators of the merged point. Finally, we need to figure out the type

of the result lattice point being intersected. There are two cases when figuring out

the type of the result point formed by intersecting two lattice points. They are:

Case 1: The region described by the result is a producer in both input lattices.

Rule: The result should always be a producer.

For example if intersecting lattice point 𝑎 and lattice point 𝑏 from two lattices,

we must check if the region 𝑎∩ 𝑏 is a producer in both lattices. If so, the result

point type must be a producer point.

Intuitively, this is because the intersection takes elements both in set 𝑎 and set
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𝑏. Therefore, if a subset exists on both sets (indicated by the fact that both

sets have a producer) it must also exist in the result.

Note that in this case, the types of the lattice points being intersected do not

matter.

An example showing the necessity of this rule is shown in Figure 4-23.

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(a) Operand 1. Set: 𝑎

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(b) Operand 2. Set: 𝑎 ∪ 𝑏

𝑎, 𝑏

∅
(c) Result lat-
tice. Set: 𝑎∩ 𝑏

Figure 4-23: Here, we are computing (𝑎) ∩ (𝑎 ∪ 𝑏) and the inputs to the intersection
rule are shown in (a) and (b). At this point, we do not have the rules required to
construct the operand lattices. However, they can be derived by using the intuitive
framework described previously and removing the universe point. I use these lattices
since they allow a non-trivial example of the rules to be shown. This example shows
case 1 for the intersection rule using the lattice points highlighted in orange. When
intersecting the lattice points highlighted in orange, we get the region 𝑎, 𝑏. This region
is marked as a producer in both of the input lattices as seen by the blue highlighted
lattice points. Therefore, it must be a producer in the result lattice shown in (c).

Case 2: The region described by the result is not a producer in both input lattices. This

means that the region is either absent or an omitter.

Similar to case 1, this means that if intersecting the lattice points 𝑎 and 𝑏 from

two lattices, and we find that 𝑎∩ 𝑏 is not a producer in both lattices (it is either

missing or an omitter) then the result type depends on the types of 𝑎 and 𝑏 and

is given by the rule below.

Rule: If both of the lattice points being intersected are producers then

the result is a producer. Otherwise, the result should be an

omitter.

An example showing this rule is shown in Figure 4-24.
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𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(a) Operand 1. Set: 𝑎⊕ 𝑏

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(b) Operand 2. Set: 𝑎

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(c) Result lattice. Set: 𝑎 ∩ 𝑏

Figure 4-24: Example showing case 2 of the intersection rule using the highlighted
lattice points. As before, we do not have the rules required to construct the operand
lattices. They can be derived by using the intuitive framework described previously
and removing the universe point. I use these lattices since they allow a non-trivial
example of the rules to be shown. When intersecting the two highlighted points, we
get the region defined by 𝑏. This region is not marked as a producer in both lattices
so we apply the rule in case 2 of the intersection rule. This results in an omitter point
for 𝑏 as seen in the result lattice.

Union Rule: The union rule combines lattice of its operands to produce a new

lattice that describes iteration over the union of the iteration spaces described by

the operands. To union two lattices, we first apply the intersection rule to get an

intersection lattice then take the union of the lattice points of the intersection lattice

and the two input lattices. As with the intersection rule, there are two cases when

figuring out the type of the result point formed when intersecting two lattice points

under the union rule. They are:

Case 1: The region described by the result is an omitter in both input lattices.

Rule: The result must be an omitter point.

Note that, in this case, the types of the lattice points being unioned do not

matter.

For example, if intersecting two lattice points 𝑎 and 𝑏, under the union rule we

check to see if their intersection 𝑎 ∩ 𝑏 is present as an omitter in both of the

operands to the union rule. If this is the case then we ignore the types of 𝑎 and

𝑏 and mark the result as an omitter.

Intuitively, this is because the union takes elements in either set 𝑎 or set 𝑏.
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However, if an element is omitted from both sets then it cannot appear in the

result.

An example showing the necessity of this rule is shown in Figure 4-25.

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(a) Operand 1: set 𝑎 ∩ 𝑏

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(b) Operand 2: set 𝑎 ∩ 𝑏

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(c) Result lattice 𝑎⊕ 𝑏

Figure 4-25: Example showing case 1 of the union rule using the points highlighted
in orange. The lattices in the operands are derived using the intuitive framework
and removing the universe point as in the prior examples. When intersecting the
highlighted points 𝑎 and 𝑏, we get the region defined by 𝑎, 𝑏 which is highlighted in
blue in the operands. Since this region is an omitter in both of the operands it must
be an omitter in the result as seen in the result lattice in (c).

Case 2: The region described by the result is not an omitter in both input lattices.

For example, if intersecting two lattice points 𝑎 and 𝑏, under the union rule we

check to see if their intersection 𝑎 ∩ 𝑏 is present as an omitter in both of the

operands to the union rule. If the lattice point describing 𝑎, 𝑏 is missing or is

a producer in either operand then the point type returned when intersecting 𝑎

and 𝑏 is given by the rule below:

Rule: If both of the input lattice points being intersected under the

union rule are omitters, then the result must be an omitter.

Otherwise, the result is a producer.

An example showing the necessity of this rule is shown in Figure 4-26.

These construction rules are sufficient when all operator operands are present

in the iteration algebra. However, in the sparse vector-sparse vector element-wise

multiplication discussed in Section 4.1 and shown in Figure 4-5, the entire iteration

algebra can be accurately specified with just 𝑎. Although the iteration space and
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𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(a) Operand 1: symmetric differ-
ence set

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(b) Operand 2: set: 𝑎

𝑎, 𝑏

𝑎 𝑏

∅

𝑏 𝑎

𝑎 𝑏

(c) Result lattice 𝑎 ∪ 𝑏

Figure 4-26: Example showing case 2 of the union rule using the highlighted lattice
points. The lattices in the operands are derived using the intuitive framework and
removing the universe point as in the prior examples. When unioning the highlighted
points (𝑎, 𝑏) and (𝑎, 𝑏), we get the region defined by (𝑎, 𝑏). This region is not marked
as an omitter in both operands so we apply the rule in case 2 of the union rule. This
results in a producer point in the result lattice for the region (𝑎, 𝑏)

is fully specified by the algebra 𝑎, the computation partially happens over 𝑎 and 𝑏

and so they must be coiterated. Since the construction algorithm only recurses on

the iteration algebra, there is no way for it to get information about 𝑏. This means

that TACO will only make a lattice point for 𝑎 during construction since there is no

notion of the iteration space containing the tensor 𝑏 in the algebra. Intuitively this

can be described as coiterating over a set of operands, and if one of the operands is a

set complement then you want to iterate over everything else instead. But you don’t

have information about everything else in that iteration algebra node, so you need an

environment that contains every tensor so that you know about them. As a result,

before running the construction algorithm the augmentation rule is applied to add in

elements that are in the operator’s operands but not present in the iteration algebra.

Augmentation Rule: The augmentation rule handles case where operands ap-

pear in an operator’s scalar definition but not in the iteration algebra. These set

expressions are valid but cause issues for the lattice construction algorithm since it

only recurses on iteration algebra for simplicity. To augment an algebra with infor-

mation about missing operands, I note two set relations. Given a set S, a set T and
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the empty set ∅ the following relations hold:

S ∪ ∅ = S

T ∩ T = ∅

Therefore, we can combine these relations to see that

S ∪ (T ∩ T) = S (4.1)

The above gives us a way to augment an arbitrary set expression S with informa-

tion about another set T without changing the semantics of S. This relation forms

the foundation for the augmentation rule and it can now be stated.

Rule: If operands exist in the operator’s scalar definition but not in the iter-

ation algebra, the iteration algebra is augmented using Equation (4.1)

where S is iteration algebra tagged with the operator and T is an operand

to the operator that is not in the algebra. The result is updated to be

the new tagged algebra of the operator. This rule is then repeated once

for each operand in the operator’s definition that is missing from the

iteration algebra. If T is a set expression instead of a single tensor, De

Morgan’s laws are applied to T and T to simplify the expression.
I note that the trick above only works due to the fact that simplifications to the

lattice are done after the lattice has been fully constructed. This would not work if

simplifying was done during construction since the augmented expression T∩T would

return a lattice with no lattice points.

So for the algebra 𝑎 with operands 𝑎 and 𝑏, the augmentation rule will update the

tagged operator algebra to include information about 𝑏 by applying Equation (4.1)

as shown below:

S𝑛𝑒𝑤 = 𝑎 ∪ (𝑏 ∩ 𝑏)

It will then set S𝑛𝑒𝑤 as the new tagged algebra. If there were more operands in the
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operator, the augmentation rule would be applied once for each of operands missing

from the algebra.

As a final note about lattice construction, I add that there are cases where du-

plicate lattice points defining the same region appear with conflicting point types.

These are resolved each time the intersection and union rules are applied as a final

step. When applying the intersection rule, omitters always win the conflict and when

applying the union rule, producers always win the conflict. Example input lattices

that conflict for both intersections and unions are shown in Figure 4-27.

𝑎,U

U

∅

𝑎

(a) Input lat-
tice. Set: 𝑎∪𝑎

𝑎,U

U

∅

𝑎

(b) Lattice for
the Set 𝑎

𝑎,U

U

∅

𝑎

(c) Intersec-
tion of lattice
(a) with
lattice (b)

𝑎,U

U

∅

𝑎

(d) Union of
lattice (a)
with lattice
(b)

Figure 4-27: An example showing lattices that cause duplicate points for intersections
and unions along with the result for both operations. When combining the two
input lattices (a) and (b) above, the highlighted points always combine to result in a
producer (𝑎,U) while the points that are not highlighted always combine to give an
omitter (𝑎,U). Intersections always resolve duplicates by preferring omitters so the
region (𝑎,U) is an omitter in the result in (c) while the opposite is true for unions as
seen in (d).

4.2.4 Special Region Definitions

The introduction of generic operators also allows for special computations to be per-

formed at each lattice point. This is another piece of information that can be tagged

to the operator. This is done by specifying the input tensors that should have a

defined non-fill value and the computation to perform when all of those input tensors

have a non-fill value defined at a given coordinate. This can be conceptualized as at-

taching a computation to each lattice point. By default, TACO will replace exhausted
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𝑎, 𝑏, 𝑐: 𝑎 + 𝑏 + 𝑐

𝑎, 𝑏: 𝑎× 𝑏 𝑎, 𝑐: 𝑎 + 𝑐 𝑏, 𝑐: 𝑐− 𝑏

𝑎:
√
𝑎 𝑏: −𝑏 𝑐: 𝑐

∅

Figure 4-28: The above shows how TACO handles computations in special regions.
Assume the fill values of all of the tensors are 0. Regions (𝑎, 𝑏, 𝑐), (𝑎, 𝑐) and 𝑐 highlight
the default behaviour of TACO as the exhausted tensors are replaced with 0 and
the expression is simplified. All the other points in the lattice perform a different
operation specified in the operator interface.

tensors in the default operator with their fill values unless a special computation has

been defined for a given lattice point. In that case, TACO will perform the special

computation at that lattice point instead. Figure 4-28 shows an example of special

operator where the default operator is a ternary addition 𝑎 + 𝑏 + 𝑐.

4.2.5 Case Lattices and Loop Lattices

Optimizations can be applied to the lattice after it is constructed in order to prune

points. However, we can no longer unconditionally apply optimizations in lattice

construction since we have to account for omitter points and points where some

special computation must be performed. If one of these points is removed during

construction, the code generator downstream will lose the information telling it to

skip computing in some regions or to compute a special function in some region.

As a result, these special points must be kept when applying optimizations during

construction and leads to the distinction between loop and case lattices.

A case lattice is simply an iteration lattice after construction with no points re-

moved. It is called a case lattice since it will have all the lattice points where a

computation has to be performed under the emitted if cases along with all the lattice

points where computation should be skipped in the if cases. A loop lattice is a case
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𝑎 | 𝑏, 𝑐

𝑎 | 𝑏 𝑎 | 𝑐

∅

𝑐 𝑏

𝑎, 𝑏 𝑎, 𝑐

(a) Case lattice

𝑎 | 𝑏, 𝑐

∅
(b) Loop lat-
tice

Figure 4-29: This example shows a case and a loop lattice for (𝑎∩𝑏)∪(𝑎∩𝑐)−(𝑎∩𝑏∩𝑐).
The highlighted lattice point denotes a special region. The code generator only needs
to generate a loop over 𝑎, so when generating loops it is fine to use the lattice in (b).
However, if attempting to generate cases within the loops using the lattice (b), the
code generator lacks information saying it needs to perform a different computation in
the highlight lattice point. It also has no way of knowing that it should not compute
when 𝑎 and 𝑐 have defined values but not when all of 𝑎, 𝑏 and 𝑐 are defined. The case
lattice in (a) contains all of this information and therefore this is the lattice that will
be given to the code generator as input.

lattice formed after pruning unneeded lattice points. It dictates what loops should be

emitted but it lacks all special points where different computations should be done

or computations should be omitted.

The lattice construction algorithm always returns a case lattice. The code gener-

ator simplifies the case lattice to a loop lattice later when generating loops and uses

the case lattice to generate the conditionals inside of those loops. These two uses

of lattice already existed in TACO, but the addition of new point types required an

explicit distinction between the two uses of the iteration lattices.

Figure 4-29 illustrates a case lattice for the expression (𝑎∩ 𝑏)∪ (𝑎∩ 𝑐)− (𝑎∩ 𝑏∩ 𝑐)

along with the loop lattice. This example assumes 𝑏 and 𝑐 support locate while 𝑎

only supports iterate.

This concludes the discussion about iteration spaces and iteration lattices. In

Chapter 5, I describe how one can derive iteration algebras from reasoning about the

scalar properties of operators along with their input values to allow the compiler to

automatically generate the correct lattices. Additionally, Chapter 6 describes how

omitter points and special regions are handled when lowering the iteration lattices.
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Chapter 5

Properties

In this chapter, I introduce the concept of operator properties to the TACO system

of Kjolstad et al. [21]. I describe how these properties, along with the fill value of

the input tensors to the operators can be used to reason about the iteration space of

the operator. I show that these properties allow the compiler to infer the iteration

space algebra and hence the iteration pattern needed to compute the operator. I

also discuss some limitations of the properties and consider iteration spaces that they

cannot describe. I demonstrate that in these cases, a user can simply supply the

compiler with the desired algebra that describes the space they would like to iterate.

5.1 Operator Properties

This work introduces six operator properties to the Tensor Algebra Compiler. Prop-

erties are another piece of information that can be tagged with an operator along

with the iteration algebra and the special region definitions. This list is in no way ex-

haustive; it may be beneficial to add more operators in the future. Each operator can

be tagged with a list of properties which can be any one of the following properties:

1. Associative - This property is only applied to binary operators. In an ex-

pression containing two or more occurrences of a binary operator, this property

tells the compiler that the order in which it performs the computations does
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not matter as long as the sequence remains the same. This tells the compiler

that it can parallelize reductions over the binary operator.

2. Commutative - This means that the order in which the operands appear

in the operator does not change the result. An operator with this property

allows TACO to rearrange forall loops in concrete index notation, and therefore

the reorder command in the TACO scheduling language [30] requires that the

operands affected by changing the loop ordering are used by operators with the

commutative property.

3. Idempotent - This is only defined for binary operators. An idempotent oper-

ator is one where the operator can be applied multiple times without changing

the result beyond the first application. The idempotent law for an operator

∙ states that ∀𝑥, 𝑥 ∙ 𝑥 = 𝑥. This property helps the compiler realize when it

does not need to iterate over the fill values when performing reductions. It also

helps the compiler infer the iteration algebra for a given operator. Examples of

idempotent operators are max and min.

4. Annihilator - The annihilator property specifies a value 𝑎 for an operator ∙

such that ∀𝑥, 𝑥 ∙ 𝑎 = 𝑎. This property is used to short circuit during reductions

and to infer what the iteration algebra should be for a given operator based on

the fill value of its operands. An example of an operator which benefits from

this is multiplication, which has an annihilator of 0.

5. Identity - The identity property specifies a value 𝑖 for an operator ∙ such that

∀𝑥, 𝑥 ∙ 𝑖 = 𝑥. This property helps the compiler realize when it can skip reducing

all of the fill values of the input tensors since, if the fill value is the identity

value, explicitly reapplying it does not change the result. It also helps with

inferring what the iteration algebra of an operator should be based on its input

tensors.

6. Distribution - This is a special property that specifies a relationship between

two operators ∙ and ⊙. This tells the compiler that ∙ distributes over ⊙ and is
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essential for performing the workspace transformation [20] for an arbitrary pair

of operators. In this work, the operators ∙ and ⊙ must be binary operators. So

the distributive property tells the system that:

𝑎 ∙ (𝑏⊙ 𝑐) = (𝑎 ∙ 𝑏) ⊙ (𝑎 ∙ 𝑐)

For example, × distributes over +, + distributes over max and min and ∧

distributes over ∨. I show this rule concretely for the (max,+) pair of operators

below. In this case, the max assumes the usual role of addition while + assumes

the usual role of multiply.

𝑎 + max(𝑏, 𝑐) = max(𝑎 + 𝑏, 𝑎 + 𝑐)

As mentioned, it is possible to use some of these scalar properties in order to infer

what the iteration algebra given the operands and the properties. The rest of this

chapter details the method for inferring iteration algebra from properties and operand

fill values then discusses iteration spaces that the properties above are not sufficient

to describe.

5.2 Deriving Algebras from Properties

Of the six operators introduced, TACO can leverage four of those in order to automat-

ically infer an iteration algebra for a given operator. TACO attempts to generate the

fewest number of lattice points needed to correctly evaluate an expression since this

generally reduces the overall code size since there fewer loops and conditionals that

have to be generated. The properties are checked in the order below, since properties

earlier in the list will generate algebras resulting in weakly fewer lattice points that

those later in the list. This derivation is only attempted if the user did not specify an

iteration algebra explicitly. In that case, this step is skipped and the user’s algebra

is used to lower the operator.
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Each operator starts with a default algebra which is simply the universe U. This

implies that the compiler needs to iterate over every point in the dense space. I

did not include an explicit representation of the universe in the set language so the

algebra is initialized to the complement of the empty set in the implementation. In

the examples below, I use the notation 𝑇𝑓 to refer to a tensor 𝑇 with a fill value of 𝑓 .

U, 𝐴,𝐵,𝐶

U, 𝐴,𝐵 U, 𝐴, 𝐶 U, 𝐵, 𝐶

U, 𝐴 U, 𝐵 U, 𝐶

U

∅
(a) Default lattice where all points are visited

𝐴,𝐵,𝐶

𝐴,𝐵

∅
(b) Lattice
generated for
𝐴 ∩𝐵.

Figure 5-1: Example lattice with and without generating an algebra for an operator
with a commutative annihilator. The augmentation rule is crucial in both cases to
inform the compiler of all the tensors forming the iteration space.

1. Commutative Annihilator: The system gathers all tensors with fill values

equal to the annihilator and intersects them. This is because any time one

of those input tensors is missing a coordinate, we know that its fill value will

annihilate the expression meaning there is no need for it to be explicitly evalu-

ated. In the case where there is only one tensor with its fill value equal to the

annihilator, the system generates an algebra only for that tensor.

For example, I consider the ternary max operator max(𝐴∞, 𝐵∞, 𝐶0) with ∞

specified as an annihilator. Since max is commutative, the compiler will check

the fill values of all of the tensors and since only 𝐴 and 𝐵 have fill values of

∞, the compiler will generate an algebra for 𝐴 ∩ 𝐵 and override the default
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algebra of U. This is because outside of the intersection of 𝐴 and 𝐵 at least

one of the inputs to max will be ∞ meaning the result will be ∞. Figure 5-1a

illustrates the lattice that would be generated if the default algebra was used

instead of the generated algebra while Figure 5-1b shows the lattice produced

for the generated algebra.

U, 𝐴,𝐵

U, 𝐴 U, 𝐴

U

∅
(a) Default lattice where all points
are visited

𝐴,𝐵

𝐴

∅
(b) Lattice
generated for
𝐴.

Figure 5-2: Example lattice with and without generating an algebra for an operator
with a non-commutative annihilator. This optimization allows the compiler to skip
considering points where 𝐴 is not defined. However, it must still co-iterate with 𝐵 to
actually perform division where the values of 𝐵 are defined.

2. Non-commutative Annihilator: In this case, the user must specify which

arguments in the operator can annihilate the expression. This is done by passing

in a vector of argument positions that can annihilate along with the annihilator

value. The system uses this value and the vector of argument positions to

perform the same check as above with the exception that it only considers the

tensors that the user specified.

To illustrate an example, I consider the division operator div(𝐴0, 𝐵4). The user

can pass in a property to the operator as follows Annihilator(0, {0}). This

tells the compiler that the 0𝑡ℎ operand annihilates the expression when it has a

value of 0. Since division is not commutative and the annihilator has a position

value, the compiler will only check the fill value of 𝐴 and will realize that is is 0.

This will cause it to generate an iteration algebra that only iterates over 𝐴 and
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ignores everywhere where 𝐴 lacks a coordinate since it knows that the result of

the expression will be 0. Therefore, the default algebra of the operator, U will

be overridden to contain the algebra of 𝐴. Figure 5-2a illustrates the lattice that

would be generated without using the properties while Figure 5-2b illustrates

the lattice generated when the algebra is inferred to be 𝐴 from the properties.

In the cases where 𝐴 has a coordinate but 𝐵 does not, the compiler will perform

the division using the fill value of 𝐵.

U, 𝐴,𝐵

U, 𝐴 U, 𝐴

U

∅
(a) Default lattice where all points
are visited

𝐴,𝐵

𝐴 𝐵

∅
(b) Lattice generated for 𝐴 ∪𝐵.

Figure 5-3: Example lattice with and without generating an algebra for an idempotent
operator. This optimization allows the compiler to skip considering the points where
both 𝐴 and 𝐵 lack coordinates.

3. Idempotent Operator: This is similar to the commutative identity case. If

we fall through to this case, the system checks if all of the input tensors have the

same fill value. If this is true and the operator is idempotent then the system

generates an algebra to iterate over the union of the tensors. This is because of

the idempotent law above; if the two fill values are the same then applying the

operator to them will not change the result.

Here, I consider the min operator min(𝐴𝑥, 𝐵𝑥). I do not set the fill values

to any specific value for this example since for idempotent operators, the only

requirement is that the fill values are equal. A user can specify that an operator

is idempotent by specifying the Idempotent property in the operator’s property

list. Since 𝐴 and 𝐵 have the same fill value in this example, the compiler can
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infer that the result of the operator when both tensors lack a coordinate is 𝑥.

This means that the compiler will replace the default iteration algebra with

the algebra 𝐴 ∪ 𝐵 since the code generator only needs to consider coordinates

where either 𝐴 or 𝐵 is defined. Figure 5-3a illustrates the lattice without the

properties while Figure 5-3b illustrates the lattice generated for computing the

minimum of these two tensors.

4. Commutative Identity: Once we fall through to this case, the best the system

can do is generate a union algebra. If all of the input tensors have a fill value

that is the identity of the operator then TACO can emit an algebra to iterate

over the union of the sparse spaces to avoid computing on the entire dimension.

TACO can also emit a union algebra if only one of the input tensors has a fill

value that is not the operator identity. This case is examined in the example

below.

An example of an operator where this is useful is the max operator. Suppose

the operator is called as max(𝐴−∞, 𝐵42) and −∞ is specified as the identity

of the operator. The identity of max is −∞ since max(−∞, 𝑥) = 𝑥. In this

example, TACO realizes that since only one operand has a fill value that is

not the identity, it can infer the result of the computation when both tensors

lack a defined coordinate. More concretely, since 𝐴’s fill value is −∞ and is

the identity of the operator, TACO knows the result has to be 𝐵’s fill value

which is 42. This means that the compiler can emit a union algebra since when

both 𝐴 and 𝐵 lack a coordinate, it knows the result of the computation so it

does not need to consider this space. The iteration lattices are the same as the

ones shown in Figure 5-3a for the default algebra and Figure 5-3b for the union

algebra inferred from the operator’s properties and fill values.

5. Non-commutative identity: Again, the user must specify which arguments

to the operator can actually be identity elements using the same interface as

the non-commutative annihilator case. We can only generate a union algebra

here if all of the tensors are specified as possible identity elements and all of the
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fill values are equal to the identity element. If this does not hold then we need

to generate an algebra for the entire space.

However, the code generator can avoid using tensors whose fill values are the

identities when performing computation since it will know that the identity

element will not change the result. Currently, this is only possible for binary

operators since the generator can simply return one side of the operator when

the other is the identity element.

In general, the result tensor can have any fill value. Therefore, these algebras can

only be generated if either the result tensor’s fill value is left undefined (it is illegal

to do this for any other tensor), allowing TACO to constant to replace the tensors in

the expression with their fill values and constant propagate to set the fill value of the

result. Once this is done, TACO can leverage the operator properties.

5.3 Limitations of Properties

As seen from above, properties cannot generate algebras for every iteration space. For

example, we cannot infer a symmetric set difference or infer that we need to iterate

over a tensor 𝐴 without its intersection with other tensors. In general, it is unclear

how to extract the notation of complements from properties so any iteration space

requiring a complement cannot currently be inferred. It is for this reason that the

algebra was exposed directly to the user.
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Chapter 6

Code Generation

In this chapter I explain how the representations described earlier are used to ex-

tend the sparse tensor algebra compiler code generator described by Kjolstad et al.

[22, 21] to generate code for any iteration space as well as for any fill value. I will

begin by describing how an iteration algebra is extracted from a general expression

before it is fed as input to the lattice construction algorithm. I will then describe

places where the code generator needs to change to account for the extensions made

to the iteration lattices described in Chapter 4. Finally, I will describe how the code

generator can use fill values and the properties of operators to realize certain opti-

mization when performing generic contractions and relate these optimizations to the

BFS and Bellman-Ford algorithms described in Chapter 2.

6.1 Extracting Algebra from Index Notation

The first change to the code generation algorithm is that instead of just lowering

Index Expressions, we must first generate iteration lattices from explicit iteration

algebra so that the correct loops and cases can be constructed. Prior to this work,

it was possible to simply recurse on the index expressions since the iteration lattices

were inferred directly from the operator. To convert index expressions to algebra, we

recurse down each node in the expression tree and query these nodes for the algebra

that should be used. We combine the algebra of different nodes by combining the
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iteration algebras returned by their operands. This is shown schematically in figure

Figure 6-1.

𝑎 ∩ 𝑏 ∩ 𝑐 ∪ 𝑑

∩

𝑎 ∩ 𝑏

∩

𝑎 𝑏

𝑐 ∪ 𝑑

∪

𝑐 𝑑

Figure 6-1: The above shows a schematic of how the algebra is extracted from an
index expression. Assume an expression in the form foo(𝑎 × 𝑏, 𝑐 + 𝑑) where foo has
the algebra 𝑙 ∩ 𝑟. The above depicts how the algebra is derived by combining nodes
bottom up in the expression tree. Complements are applied to each operand which
are surrounded by boxes and operands are either unioned or intersected and combined
at the circles above.

6.2 Lowering Iteration Lattices

The construction algorithm describe in Chapter 4 is used to generate iteration lattices

from the extracted iteration algebra. I will describe the changes made to the lowering

mechanism in TACO to account new concepts introduced in the iteration lattices and

the minimal changes made to case and loop generation.

6.2.1 Explicit and Implicit Fill Values

The code generator interprets complements to mean that it should skip computation

everywhere a tensor has a non-fill value. Since complements are expressed by omitter

points, this means that the code generator needs to check for two conditions when

deciding if to omit computing using certain tensors. These are:
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1. The sparse tensor data structure does not have a coordinate for some point in

the iteration space. This means that the structure has an implicit value at that

coordinate which is equal to the fill.

2. The value at some coordinate is equal to the fill value. In cases where a coor-

dinate is defined and equal to the fill value, this is called an explicit fill.

When deciding if to omit computing using certain tensors, both conditions need

to be satisfied for sparse tensors in order to omit the region. However, to omit a dense

tensor region, only condition two needs to be satisfied.

The explicit fill value checks allow the code generator to ensure that the semantics

of the lattice for sparse tensors matches the semantics for dense tensors. Without

the explicit checks omitter points including a dense space would remove the entire

iteration space. However for sparse spaces, it would only remove the coordinates that

have been defined in tensor’s data structure. This would break the core principle of

the compiler generating the same results regardless of the format used.

The code generator will only perform checks for explicit fill values when there is

an omitter point present in the lattice or there are special regions of computation

defined in the lattice.

6.2.2 Loop Generation

The way the code generator generates loops from the merge lattice changes minimally

from the original work. One difference is that the part of the code generator that

lowers loops is always passed a case lattice. The code generator must now remove

lattice points that have the same iterators itself in order to get a lattice describing

the loops that need to be lowered. Loops are lowered for producer points as well as

omitter points. Figure 4-29 demonstrates the application of the subset optimization

to a case lattice and shows the resulting loop lattice which lets the code generator

know that only one loop is needed over the tensor 𝑎.
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6.2.3 Case Generation

Inside the loop body, the code generator emits cases from the full case lattice. If the

input lattice only consists of producer points without any special region definitions,

the code generator uses the original method of generating cases within the loop body

[22, 21]. However, if this is not the case the code generator emits a boolean flag

indicating whether a tensor value is non-zero. It emits this check for each tensor

whose value array can be read at the current level. This flag is true if the tensor

coordinate is defined and the value at that coordinate is non-zero. Since coordinates

are always defined for dense structures the code generator does not perform the

coordinate check for dense tensors.

There are two ways in which one could perform the case checks with the boolean

flag. The first is that the method used by the current work which is to check if

increasingly larger subsets are defined. In this case, compute statements would be

excluded for omitter points meaning omitter points would simply have empty condi-

tionals. The other option is to only emit checks for producer points. In this case, the

code generator sometimes needs to include extra checks to ensure that it doesn’t acci-

dentally compute in a region that should be omitted. I implement the latter strategy

since it seemed more readable but I show the two possible strategies in Figure 6-2

for performing a symmetric difference. These strategies may exhibit different perfor-

mance based on the input data so it may be best to leave the decision about what

case generation format to use for the scheduling language.

In order to figure out if extra checks are necessary, the code generator queries the

lattice to figure out if any other lattice points are omitters and are subsets of the

current lattice point. Specifically, the code generator checks if there are any parent

lattice points that are omitters and contain the same tensors as the current lattice

point. If this is true, the code generator needs to emit a check to ensure that it is not

in one of those subsets. To do so, it collects all tensors present in the omitter points in

a set and removes all tensors from that set that are part of the current lattice point.

Figure 6-3 demonstrates an example of this check.
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(a) Old Cases: Here a case is generated for
each lattice point and computation omitted
for omitter points

(b) New Cases: A case is only generated for
producer points and extra checks are added
when necessary to ensure we are not in some
other region.

Figure 6-2: Two potential ways for generating the cases for the symmetric difference
lattice such as the one shown in Figure 4-16b

𝑎, 𝑏, 𝑐

𝑎, 𝑏 𝑎, 𝑐 𝑏, 𝑐

𝑎 𝑏 𝑐

∅

Figure 6-3: This demonstrates how the code generator handles lowering cases. When
lowering the merge point for 𝑎, the code generator sees that (𝑎, 𝑐) is an omitter
and realizes it must emit a check to ensure that 𝑐 is zero before computing within
𝑎. However, when emitting a check for 𝑏, the code generator knows that it has
emitted checks for all of the subsets within 𝑏 so will avoid added extra checks in the
if statement.

6.2.4 Special Regions

To emit special compute statements described in Section 4.2.4, the code generator

leverages the fact that TACO zeros tensors that are exhausted. That is, when we are

lowering a lattice point that does not contain an iterator for some tensor expression,

it is removed from the index expression. In this work, ’zeroing’ means replacing the

tensor with its fill value. However, the code generator also keeps track of the indices

of the tensors that are still defined for a given operator. Since the user gives a list
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of the argument indices that must be defined in order to emit some special code, the

code generator queries the operator for this list. If the code generator’s current list of

defined arguments matches one of the lists the user gave as input, the code generator

substitutes the users computation in the lowered code.

6.3 Reduction Optimizations

Currently, the code generator can leverage three of the operator properties when

emitting reductions. It does this by first attempting to infer the fill value of the

tensor expressions during lowering and comparing that fill value against properties.

This means that it replaces all the tensors in the expression tree with their fill values

and attempts to simplify this to a single Literal. For now the code generator uses

properties to attempt to simplify the expression with the tensors replaced by fill

values. This can be generalized by allowing the TACO system to constant fold through

the low-level IR so that any expression can be simplified regardless of its operator

properties. The properties used to simplify reductions are useful since without them,

the system would be forced to assume it needed to iterate over the entire dimension

even in the sparse case instead of simply reducing over the defined values. The three

properties I currently use in the code generator are as follows:

1. Identity: If the fill value of the tensor expression being reduced is equal to

the identity of the operator then for sparse tensors this tells TACO it can skip

iterating over the entire dimension since the explicit fill values will not change

the result.

The code generator implements this by checking if there is a reduction being

performed inside of an Assignment Node. If this is the case, it infers the fill

value of the tensor expression being reduced after removing all tensors that are

not indexed by the forall loop variable that is currently being lowered. This is

so that the computation controlled by that loop can be captured by the code

generator. Once the generator infers the fill value for the input expression with
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unneeded tensors removed, it checks if the fill value of that expression is the

identity of the reduction operator. If this is the case, then the code generator

leaves the lattice returned by the construction algorithm as is. However, in

the event that the fill of the expression is not the operator identity, the code

generator unions a dimension iterator forcing the fill values of the sparse tensors

to be considered.

An example of this is the well-known SpMV kernel which can be expressed in

TACO as 𝑦(𝑖) = 𝐴(𝑖, 𝑗)×𝑣(𝑗). Since there is an implicit reduction using addition

being performed, the code generator will check the fill value of 𝐴 against the

addition identity when lowering the 𝑖 loop. When lowering the 𝑗 loop, it will

check the fill value of the expression 𝐴(𝑖, 𝑗) × 𝑣(𝑗) against the identity of the

addition operator.

I note that this optimization alone allows TACO to realize when the identity

of the addition is equal to the annihilator of the multiplication operator as is

the case in a semi-ring. In the SpMV example for instance, if the fill of 𝐴 is 0,

TACO keeps the 𝑖 loop sparse since 0 is the identity of addition. Additionally,

since 0 × 𝑣(𝑗) = 0 (because 0 annihilates multiply), the inferred fill value of

the expression in the reduction loop 𝑗 is 0. Again, since 0 is the identity of

the addition operator, the 𝑗 loop also remains sparse due to the relationship

between the annihilator and the identity of the operators being used in the

expression.

2. Idempotent: If reducing over an idempotent operator, the code generator can

simply initialize the result variable to be the fill value of the reduction expression

and iterate over the sparse space. This is because the fill value of the expression

is some constant 𝑐 and applying idempotent operator repeatedly to a constant

does not change its value.

For example, suppose in the SpMV expression above the reduction was over a

max instead of addition. Since max(0, 0) = 0 then there is no need to explicitly

apply the max operator to all the fill values. As a result, the code generator
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only needs to initialize the reduction variable to 0 then perform the reduction

as normal.

3. Annihilator: If the reduction operator has an annihilator, then the code gen-

erator can insert code to short circuit only if the reduction is being performed

into a scalar. That is, we cannot short circuit scatter reductions since it is

possible that value updates would be missed by erroneously exiting early.

To check if the reduction is into a scalar, the code generator simply checks the

ordering of the forall loops in concrete index notation and sets a flag indicating

if the reduction is a scatter. Reductions into scalars will always maintain a loop

ordering with all of the loops over free variables coming before all of the loops

over reduction variables. If any loop over a reduction variable appears before a

free variable loop, then a scatter is being performed. Figure 6-4 demonstrates

loop orderings where short circuiting can and cannot be performed.

If the code generator detects that reduction is being done into a scalar, it will

emit a condition in the reduction loop that checks if the value of the reduction

variable is the annihilator of the reduction operator. If this is true, if will break

out of the loop to early exit.

(a) A loop ordering where short circuiting is
not possible

(b) A loop ordering where short circuiting is
possible

Figure 6-4: Loop orderings for the expression 𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑘) ∧ 𝐶(𝑘, 𝑗) where I
assume the reduction is being performed over the logical or operator. In the first
case, the code generator cannot short circuit because the reduction variable 𝑘 appears
before the free variable 𝑗. However, in the second case short circuiting is possible since
the loops appear with the free variables loops followed by the reduction variable loops.
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Chapter 7

Operator API

I expose the iteration algebra explicitly in the TACO system. This is needed since the

iteration algebra was decoupled from scalar computation performed inside the loop in

this work and because the properties of the operators were not sufficient to describe

any iteration space. I also introduce a new class called the Properties class which is

a super class for all of the properties described in Chapter 5. Lastly, I expose a class

needed to define new operators in taco as a new class called TensorOp. This class

takes in a scalar implementation for a function and optionally an iteration algebra,

properties of the operator and scalar implementations for special regions described in

Chapter 4. This new class is an extension of the IndexNotation class in TACO.

7.1 Iteration Algebra Class

The declarations below are the constructors that a user would use to create an Iter-

ationAlgebra expression.

Region(IndexExpr expr);

Complement(IterationAlgebra alg);

Intersect(IterationAlgebra left, IterationAlgebra right);

Union(IterationAlgebra left, IterationAlgebra right);

IterationAlgebra(IndexExpr expr);
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These classes only have one method called accept which allows algorithms to be

expressed over these data structures using the visitor pattern. I now show how a user

could define the symmetric difference set algebra using the classes above.

Tensor<double> a("A", {NUM_I}, {Compressed});

Tensor<double> b("x", {NUM_I}, {Compressed});

IndexVar i, j;

IterationAlgebra tensorUnion = Union(a(i), b(i));

IterationAlgebra noIntersect = Complement(Intersect(a(i), b(i));

IterationAlgebra symDiff = Intersect(tensorUnion, noIntersect);

...

The constructors are simple and self explanatory but I explain them briefly below:

Region(IndexExpr expr): This instantiates a region in the iteration space that one can

intersect, union and complement. These regions can be arbitrary tensor expressions and

their iteration algebras can be extracted when combining iteration spaces.

Complement(IterationAlgebra alg): Instantiates a class that represents the comple-

ment of the input iteration algebra. That is, represents complement(alg).

Intersect(IterationAlgebra left, IterationAlgebra right): Instantiates a class that

represents the intersection of the left and right algebras.

Union(IterationAlgebra left, IterationAlgebra right): Instantiates a class that rep-

resents the union of the left and right algebras.

IterationAlgebra(IndexExpr expr): Instantiates an IterationAlgebra region from an

IndexExpression.
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7.2 Properties

In addition to the algebra, the six properties explained in Chapter 5 were also intro-

duced as new classes. Their class constructors are shown and explained below.

Commutative(std::vector<int>& positions): Instantiates a properties class that im-

plies that the associated operator is commutative. The positions list is optional and omitting

it implies that the operator is fully commutative (any of the elements can be swapped). How-

ever, if only some subset of the arguments to the operator can be swapped while maintaining

the correctness of the operator, then their argument positions can be specified.

Associative(): Instantiates a properties class that implies that the associated operator

is associative. The operator tagged with this property must be a binary operator.

Idempotent(): Instantiates a properties class that implies that the associated operator is

idempotent. The operator tagged with this property must be a binary operator.

Annihilator(Literal annihilator, std::vector<int>& positions): Instantiates a prop-

erties class that implies that associated operator has annihilator given by annihilator. The

positions list can be left empty implying that any input can annihilate the operator. How-

ever, a list of positions in the operator’s arguments can be specified to let the compiler know

that only the inputs at these specific positions can annihilate an expression.

Identity(Literal identity, std::vector<int>& positions): Instantiates a proper-

ties class that implies that associated operator has identity given by identity. The positions

list can be left empty implying that any input can annihilate the operator. However, a list

of positions in the operator’s arguments can be specified to let the compiler know that only

the inputs at these specific positions can annihilate an expression.

Distribute(TensorOp op1, TensorOp op2): Instantiates a properties class that informs

the code generator that op1 distributes over op2.
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7.3 TensorOp Class

Before I describe the TensorOp class, I first introduce two typedefs to simplify the

operator definition. I introduce an opImpl which is a functor that takes in some

scalar expressions in the TACO IR and returns a single expression representing the

computation that should occur using the input. Similarly, algebraImpl is also a

functor that takes in some IndexExprs and returns an iteration algebra describing

how the regions described by those IndexExprs should be iterated. These typedefs

are shown below:

typedef std::function<ir::Expr(const std::vector<ir::Expr>&)> opImpl;

typedef std::function<IterationAlgebra(const std::vector<IndexExpr>&)> algebraImpl;

Now I introduce the constructor of a TensorOp. The only required input to

construct the operator is the lowererFunc.

TensorOp(std::string name, opImpl lowererFunc, algebraImpl algebraFunc,

std::vector<Property> properties,

std::map<std::vector<int>, opImpl> specialDefinitions = {});

The arguments of the TensorOp constructor are as follows:

1. name: This is the name of the operator that will be used when debugging. If

no name is given, the compiler generates a random name for the operator.

2. lowererFunc: This is a functor that the lowerer calls to get the TACO im-

perative IR expressing the computation this operator performs. The functor

takes in a vector of exprs that it combines based on the body in the IR. Part of

the reason a functor is used is because it makes the issue of matching formals

to actuals trivial. Additionally, a user has more flexibility with a functor as

they can analyze the arguments themselves and potentially return optimized

IRs when certain arguments are certain values.
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3. algebraFunc: This is a functor used to create an iteration algebra from a

vector of IndexExpr. If this is functor specified, TACO will not attempt to infer

the algebra from the operator properties and will trust what the user gave. If

this is not specified, and no properties are given, TACO will attempt to iterate

over the entire space.

4. properties: A vector of properties which can be any of the six properties shown

above. It is illegal to have duplicate properties in this vector.

5. specialDefinitions: A map containing a vector of indices that must be defined

and the corresponding computation to perform when these indices are defined.

By default, when a tensor is exhausted or not involved in an expression TACO

replaces it with the tensor’s fill value. However, if this region map specifies that

some special operation needs to be performed when a tensor is defined then the

IR given by the user is used instead.

Once a TensorOp has been instantiated, there is one method that the user can

call on the TensorOp which is shown below:

TensorOp operator()(IndexExprs&&... exprs);

The call operator is overloaded to take in an arbitrary number of index expressions.

The order of the expressions passed in here is the same as the order of the expressions

passed to the algebra and lowerer functions.

7.4 API Example

Appendix A shows a comprehensive example using operators on a series of graph

algorithms. However, I include a simple example here to show how one can compute

the symmetric difference between two tensors. This has a relatively complex algebra

and illustates the use of both the algebra and the operator properties.
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// Define a functor to return the algebra for XOR.

struct XorAlgebraGenerator {

IterationAlgebra operator()(const std::vector<IndexExpr>& regions) {

// First, remove the intersection

IterationAlgebra noIntersect = Complement(Intersect(regions[0], regions[1]));

// Intersect the set without the intersection with the union of the sets to

// remove the background.

return Intersect(noIntersect, Union(regions[0], regions[1]));

}

};

// Define a functor that actually performs XOR.

struct XorImpl {

ir::Expr operator()(const std::vector<ir::Expr> &v) {

return ir::Xor::make(v[0], v[1]);

}

};

// Default fill value is 0.

Tensor<double> a("a", {NUM_I}, {Compressed});

Tensor<double> b("b", {NUM_I}, {Compressed});

Tensor<double> c("c", {NUM_I}, {Compressed});

...

IndexVar i;

Op xorOp(XorAlgebraGenerator(), XorImpl(), {Associative(), Commutative(), Identity(0)});

c(i) = xorOp(a(i), b(i));

Figure 7-1 demonstrates the code generated for the example in this section. The

algebra causes the compiler to skip computing when in the intersection of the two
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tensors. This means that in the sparse case, the compiler never actually emits an xor

operation since the loop structure can describe the operator.

Figure 7-1: Code for computing symmetric difference with sparse tensors.
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Chapter 8

Evaluation

I carry out experiments to compare the performance of the code generated by this

technique with other libraries for Breadth-First search. I chose to focus on this kernel

since it is prevalent in the performance engineering literature. However, the generality

of this work extends to more applications such as the Viterbi algorithm or general

sparse array operations similar to numpy. This work also allows graph algorithms

other than BFS to be expressible in TACO since custom operators, properties and

general fill values allow users to define arbitrary semi-rings. I demonstrate that this

work has the potential to deliver good performance on these graph algorithms as

TACO’s scheduling language matures to support parallel sparse assembly.

8.1 Methodology

The work in this thesis is implemented as an extension to the Tensor Algebra Compiler

(TACO). To evaluate the performance of this work on CPUs, I compare against

the optimized versions of the graph algorithms in the GAP Benchmark Suite [6],

GraphIt (commit 7973721) and LAGraph 0.0.1 with SuiteSparse:GraphBLAS 3.2.2

as the back-end.

I used the five graphs from the GAP Benchmark Suite as inputs to test BFS on

each library. The graphs used are listed in table 8.1 and represents a diverse range

of properties. The kron and uniform graphs are synthetic graphs while the twitter,
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road and web graphs are from real world data. The twitter, kron and web graphs

are scale-free graphs with a low diameter. The road graph is smaller than the others

but has a high diameter which can cause issues for some implementations. The road

graph is also weighted so the weights were removed to evaluate the performance of

BFS since they are unneeded. The uniform graph represents the worst case with

respect to locality since every vertex has an equal probability of being a neighbor of

any other vertex.

Name Description # Vertices (M) # Edges (M) Degree Degree Distribution
Twitter Twitter Follow links 61.6 1.468.4 23.8 power
Web Web Crawl of the .sk Domain 50.6 1949.4 38.5 power
Road Distances of roads in the USA 23.9 58.3 2.4 bounded
Kron Synthetic Kronecker Graph 134.2 2111.6 16 power
Urand Synthetic Uniform Random Graph 134.2 2147.4 16 normal

Table 8.1: Description of Graphs used in Evaluation

I use the timing method specified in the GAP Benchmark Suite for timing to

time CPU codes. That is, I do not include the time to load the graphs into shared

memory. For all graphs, I load a CSR and CSC version in memory to allow for

direction optimization in each kernel without including the transpose time in the

algorithm run time. Since BFS has a single source, I repeat the algorithm 64 times

with random vertices and report the average time across those 64 runs in order to

account for the variance of starting at different nodes. The random number generator

used to pick start vertices has a fixed seed so the same sequence of start vertices is

picked for every framework tested. For LAGraph, the source vertices were generated

using the GAP suite and stored in an Matrix Market file that the framework could

read. Table 8.2 below summarizes the trials and sources for BFS.

Algorithm Trials Sources
BFS 64 64 unique sources

Table 8.2: Summary of timing method for each algorithm evaluated.

All CPU experiments are run on a dual-socket, 12-core with 24 threads, 2.5 GHz

Intel Xeon E5-2680 v3 machine with 30 MB of L3 cache per socket and 128 GB of main

memory, running Ubuntu 18.04.3 LTS. On CPU, I compile codes using g++ 7.5.0 with
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the compiler flags -O3, -DNDEBUG, -march=native, -mtune=native, -ffast-math and

-fopenmp. I used std::chrono::high_resolution_clock to record execution times

on CPU. Correctness was verified by comparing against the reference version of the

algorithm in the GAP Benchmark Suite.

8.1.1 Discussion of performance

In this section, I first compare the performance of TACO with and without the opti-

mizations enabled by this work. I omit the road graph from this comparison since it

has very long run times in both versions of TACO and it almost exclusively uses the

SpVSpM kernel which does not take advantage of the masking and short circuiting

capabilities introduced in this work. Figure 8-1 is a graph showing the performance

of TACO on all of the graphs except road with and without the features of this work.

This work is 5.08 times faster in the geomean compared to the prior version of TACO

due to the ability to mask and short circuit.

Figure 8-1: Comparison of TACO on BFS with optimizations enabled by using the
features in this work (blue) and without (red)
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Graph Runtime (s) (lower is better)
GAP GraphIt LAGraph TACO

Twitter 0.260 0.263 1.153 0.831
Web 0.382 0.486 1.325 2.212
Road 0.328 0.287 6.145 67.79
Kron 0.393 0.404 OOM 0.996
URand 0.637 1.038 OOM 1.653

Table 8.3: Average time in seconds for running BFS on each framework. The times
are averaged after running 64 trials from the same start vertices across frameworks.
OOM means the framework ran out of memory.

Graph Edge throughput (MTEPS) (higher is better)
GAP GraphIt LAGraph TACO

Twitter 5648 5583 1274 1767
Web 5103 4011 1471 881.3
Road 152.6 203 9.487 0.860
Kron 5373 5227 OOM 2120
URand 3371 2069 OOM 1299

Table 8.4: Million traversed edges per second (MTEPS) for each framework (Higher
is better). OOM means the framework ran out of memory.

Table 8.3 and Table 8.4 shows the performance results obtained for Breadth-First

search against state-of-the-art work. In terms of run time, TACO is slower on all

of the graph algorithms with the GAP reference being the fastest. TACO was only

able to beat LAGraph, which is a library for performing graph algorithms using linear

algebra on the twitter graph. However, LAGraph failed to execute on the large graphs.

The disparity in the run times can be explained by a few reasons:

1. when performing the top down step TACO must use a dense result whereas the

other frameworks can maintain sparsity.

2. Before every top down step, the frontier must be converted into a sparse rep-

resentation since both kernels give a dense output. This is done completely

serially and takes one third to half of the total time to perform the top-down

step.

3. The code generated by TACO has to use an atomic operation inside of the

reduction loop in SpVSpM which induces another serial bottleneck as shown in
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Figure 8-2.

Figure 8-2: Code for the sparse vector sparse matrix kernel into a dense result. The
sparse vector is 𝑥, the sparse matrix is 𝐴 and the result is 𝑦.

The addition of sparse parallel assembly to TACO would help to solve these prob-

lems by removing both serial bottlenecks in the current kernel. Firstly, one would

only pay the sparse to dense conversion once when initially switching from bottom up

traversal to top down traversal instead of at the beginning of each top down traver-

sal. This would be greatly beneficial since this is currently done completely serially.

Additionally, a more general way to perform scatter reductions into a sparse result

could potentially be free of locks as seen in the works of Azad and Buluc [3] which

would further reduce the amount of serialization.

The results support the claim that the top down kernel is the much slower than

bottom up. The road graph has a very small average number of neighbors so the

frontier rarely becomes large enough for the direction to switch to pull during BFS

execution. This explains why it exhibits such a long run time in comparison to all

the other frameworks.

Finally, even if the SpVSpM kernel is rectified, the pull direction in the GAP suite

is up to 3x faster than TACO on the same BFS step. The code format looks extremely

similar where both iterate over the graphs and employ masking and short circuiting.

However, GAP uses special data structures for BFS since it knows it is operating

on booleans. Namely, GAP packs the bits manually in uint64_ts and performs bit

manipulations to get and set bits in the frontier. Additionally, it leverages the fact
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that the graph is a boolean with no explicit zeros stored in the matrix so that it

does not need to store a value indicating that an edge is present. The presence of

an edge is implicitly inferred by the presence of a coordinate. Both of these features

reduce the memory traffic which is very beneficial to graph algorithms. These could

potentially be supported in a TACO and exposed via the scheduling language, where

a user can instruct TACO to pack larger integer types into smaller ones in general.

Additionally, a scheduling or format primitive which instructs TACO that there are

no explicit zeros in the tensor could enable it to omit storing the values of a boolean

tensor. I leave implementing these features along with parallel sparse assembly as

future work.
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Chapter 9

Related Work

Many researchers have worked on compilers to generate code for computing on sparse

tensors. Recently, researchers have explored performing graph algorithms using sparse

linear algebra computations over general semi-rings. I discuss prior work from both

categories in this section since this work blends the two fields.

Sparse Compilers: Prior work on sparse linear algebra compilers forms the

foundation of this approach. Works by Bik and Wijshoff [7, 9] used a technique

called guard encapsulation to transform code for computing on dense linear algebra

into the analog sparse linear algebra code. Kotlyar et al. [23] soon followed with a

relational algebra based framework that compiled efficient sparse matrix code from

dense loops and a specification of the representation of the sparse matrix. Pugh and

Shpeisman introduced SIPR [28] which was a new intermediate representation that

separated the maintenance of the complicated sparse data structures from the ac-

tual matrix operations performed. Their new representation allowed for cost-analysis

to predict program efficiency allowing them to compile dense code into the equiv-

alent efficient sparse code. There has been recent work to use a sparse polyhedral

framework [33, 32] to emit efficient code for computing on sparse data structures.

Generally, these strategies inspects and reorders the data at run-time and executes

the original computation on the newly transformed data-structures. Most recently,

the Tensor Algebra Compiler (TACO) [12, 20, 21] emits efficient code that computes

on sparse and dense tensors. It uses a description of the format each tensor is stored
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in along with the computation to be performed to generate efficient tensor algebra

code. TACO is great for tensor algebra operations falling in the usual (×,+) semi-

ring but it does not generalize to arbitrary semi-rings and does not allow computation

outside of semi-rings. I build on TACO in this work allowing generic operations and

introducing properties that TACO can explicitly use to perform its transformations.

This generality allows TACO to be used to compile codes for a wide range of linear

algebra based graph algorithms.

Linear Algebra Graph Algorithms: Pregel [24] introduced the vertex-centric

framework for thinking about graph algorithms. It relies on message passing to send

data among the vertices in the graph and updates vertex state based on the mes-

sages received. The edge-centric model for graph computations was introduced by

PowerGraph [16] to address performance and scalability issues with vertex-centrix

model for scale-free graphs. The edge-centric model is conceptually split into three

phases - Gather, Apply, Scatter (GAS) where information is first gathered about ad-

jacent vertices and edges to apply an update to the vertices which is then scattered

to update data on adjacent edges. Lastly, linear algebra graph frameworks have been

proposed. This began with work by Combinatorial BLAS [11] which exposes a small

set of linear algebra primitives that target graph applications. One issue is that users

often are unaware of how to express certain graph algorithms in linear algebra terms.

GraphMat [34] attempts to bridge the gap between the vertex centric model and the

linear algebra based frameworks by translating vertex centric graph algorithms to

their linear algebra equivalents in the back end. This provides the productivity of the

familiar vertex centric models without sacrificing performance. GraphBLAS [10] is

an open source effort to define building blocks for graph algorithms in the language

of linear algebra. SuiteSparse [15] was the first fully GraphBLAS compliant library

and has a multi-threaded CPU version. GraphBLAST [39] is a GPU linear algebra

based graph system inspired by GraphBLAS. It generalizes the concepts of semirings

to allow users to express a wide range of graph algorithms using highly optimized

kernels for operations on sparse matrices and vectors.

The current work on sparse compilers is very promising but it is restricted to one
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semi-ring. In this work, I lift this restriction to allow the sparse compiler approach

taken by TACO to work on arbitrary semi-rings by allowing the compiler to exploit

the properties of the operators in the expression. This work also allows operations

outside of semi-rings to be defined and generalizes the concept of iteration spaces

introduced in TACO enabling new optimizations to be defined that are beneficial to

running graph algorithms.
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Chapter 10

Conclusion and Future Work

This thesis presents a new framework for thinking about optimizations and operators

on sparse tensors in terms of the operator properties and generalizes the concept of

iteration spaces by introducing complements. I extended the iteration lattices from

the previous work and I show how properties can allow a sparse tensor compiler to

construct lattices and reason about the loop domains for reductions. I also introduce

the concept of a general fill value to the compiler so that fill values no longer have to be

just zero. The framework presented here can recreate general optimizations on graph

algorithms in linear algebra but does not currently support sparse parallel assembly of

tensor results which limits its performance on the graph algorithms tested. I believe

that this work is a stepping stone to unlocking a sparse equivalent of numpy since it

allows a wide range of operators to be supported efficiently and allows optimizations

to be uncovered by simply reasoning about the properties of the operators used in

some computation.

Future work includes implementing support for custom tensor types in the com-

piler to complement the custom operators presented here. This would give users more

flexibility when describing algorithms. One instance is that with the sssp problem,

it is possible to derive both path lengths and the actual source to target paths using

one semiring instead of two [19]. One could also add support for sparse slicing to the

compiler to match the kind of numpy-style slicing as well as generalize the notion of

indices in index notation so that indices can be anything. This would allow TACO to
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be used in data science frameworks such as pandas as a backend and allow those users

to benefit from the efficient code that it generates. Lastly, one could allow TACO

operators to be implemented in C/C++ code instead of in the TACO IR. This would

make it easier for users already familiar with C to introduce new operators to the

compiler allowing it to be easier to leverage the operator abstractions expressed in

this thesis. On the scheduling side, it could be useful to include a scheduling primitive

to pack smaller types such as int8_ts into larger types such as int64_ts. This could

be beneficial for a sparse compiler since algorithms are usually memory bound and

this could help the compiler emit wider sizes reads and writes so more data is moved

with each instruction. Lastly, parallel sparse assembly would be very beneficial since

it would give users much more flexibility when using TACO’s scheduling language.
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Appendix A

Operator Implementations

A.1 BFS Pull Implementation

struct BfsLower {

ir::Expr operator()(const std::vector<ir::Expr> &v) {

return v[0];

}

};

struct BfsMaskAlg {

IterationAlgebra operator()(const std::vector<IndexExpr>& regions) {

return Intersect(regions[0], Complement(regions[1]));

}

};

Tensor<double> A("A", {NUM_I, NUM_J}, CSR);

Tensor<double> f("f", {NUM_J}, {Dense});

Tensor<double> mask("mask", {NUM_I}, {Dense});

Tensor<double> v("v", {NUM_I}, {Dense});

...
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A.pack();

f.pack();

mask.pack();

IndexVar i, j;

// Instantiate Operator

Op bfsMaskOp("bfsMask", BfsLower(), BfsMaskAlg());

IndexExpr bfsStep = bfsMaskOp(taco::And(A(i,j),f(j)), mask(i));

v(i) = taco::Reduction(taco::Or(), j, bfsStep);

IndexStmt stmt = v.getAssignment().concretize();

stmt = stmt.split(i, i0, i1, 16)

.reorder({i0, i1, j})

.parallelize(i0, ParallelUnit::CPUThread, OutputRaceStrategy::NoRaces);

v.compile(stmt);

v.assemble();

v.compute();
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A.2 BFS Pull Implementation

Tensor<double> A("A", {NUM_I, NUM_J}, CSC);

Tensor<double> f("f", {NUM_J}, {Compressed});

Tensor<double> mask("mask", {NUM_I}, {Dense});

Tensor<double> v("v", {NUM_I}, {Dense});

...

A.pack();

f.pack();

mask.pack();

IndexVar i, j;

v(i) = Reduction(taco::Or(), j, taco::And(A(i, j), f(j)));

IndexStmt stmt = v.getAssignment().concretize();

stmt = stmt.reorder(i,j)

.parallelize(j, taco::ParallelUnit::CPUThread,

taco::OutputRaceStrategy::Atomics);

v.compile(stmt);

v.assemble();

v.compute();
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