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Abstract

The current state of the art for transposing sparse tensors involves converting the
sparse tensor into a list of coordinates, sorting the list of coordinates and finally
packing the list of coordinates into the desired sparse tensor format. This thesis ex-
plores the potential for faster methodologies. Its main contributions are an algorithm
that exploits partial sortedness to minimize sorting passes and an implementation
that demonstrates that this transposition algorithm is competitive with state of the
art. In particular the algorithm takes advantage of the ordering that already exists
to apply selective sorting passes and thereby reduce the amount of work that needs
to be done to reorder the tensor.
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Chapter 1

Introduction

Tensors generalize vectors and matrices to any number of dimensions. Tensors used

in computation are often sparse, which means many of the values are zero. To take

advantage of the large number of zeroes in the tensor, we use sparse formats that

allow the zeroes to be compressed away. These formats can range from a simple list

of coordinates to much more complicated structures such as CSR [4], DCSR [3], and

CSF [8]. Many of these formats have a natural ordering of the dimensions. In a sorted

list of coordinates, the order of the sorting keys determines this ordering. We call

this ordering of dimensions a lexicographical ordering on the nonzero coordinates.

Tensor algebra is used to manipulate data stored in tensors. These multidimen-

sional computations need to access the nonzero entries in one or more tensors, com-

pute, and store the results. Accessing the nonzero entries requires some traversal of

the tensor. In sparse tensors, traversing all of the nonzeros is asymptotically faster

than in dense tensors. However, unlike for dense tensors, traversing the nonzeros in

different lexicographical orderings may be asymptotically more expensive than the

natural lexicographical ordering. Different tensor expressions may require traversing

the tensor in a different lexicographical order. Thus, reordering the dimensions, or

transposing the tensor, is an important operation for fast tensor computations.

A lot of work on making dense tensor transpositions fast has been completed;

however relatively little work has focused on sparse tensor transpositions.

The current state of the art for transposing sparse tensors involves converting the
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sparse tensor into a list of coordinates, sorting the list of coordinates, and finally

packing the list of coordinates into the desired sparse tensor format.

This approach reduces the problem of transposing a tensor into a problem of sort-

ing a list of coordinates. However, the lists of coordinates have partial orderings we

can use to accelerate the sorting algorithms. Take the example matrix in Figure 1-1.

In order to transpose the matrix, the column coordinates must be ordered lexico-

graphically before the row coordinates. This could be accomplished by sorting with

the column coordinate as the primary key and the row coordinate as the secondary

key.

However, we can do better than that. The coordinates are already sorted on the

row coordinates. By doing a stable sort on just the column coordinate, we get the

same result. In this paper, we will generalize this optimization to arbitrary tensor

transpositions.

Figure 1-1: The matrix A can be represented as a list of coordinates including only

the nonzero values. Transposing the tensor in this format switches the lexicographic

ordering of the rows and columns, such that the columns appear first. The top list

of coordinates represent the matrix in the top left. The bottom list of coordinates

represent the transposed version of this matrix.
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The main contributions of this thesis are:

1. A decomposition of tensor transposition into multiple partial sorts that option-

ally respect previous partial orderings.

2. An algorithm that uses partial orderings in the original sparse tensor format to

minimize the number of partial sorts required by the transposition algorithm.

3. An implementation that demonstrates that this transposition algorithm is com-

petitive with, and often faster than, state of the art approaches.

1.1 Thesis Overview

The remainder of this thesis is organized as follows:

Chapter 2 - Background provides background on different sparse tensor for-

mats and previous work to make tensor transposes fast. It also presents the Half-

Perm algorithm [6], which is a fast algorithm used for sparse matrix transposes.

Chapter 3 - Extending HalfPerm discusses work to extend HalfPerm to

other sparse formats, as well as to higher order tensors and the challenges that this

brings.

Chapter 4 - Partial Radix Sort poses the problem of transposing a tensor as

a sorting problem. This section also introduces sorting primitives that can be used

to partially sort coordinates.

Chapter 5 - Pass Minimization presents an algorithm called k-sadilla that

minimizes the number of partial sorts needed to reach a given permutation of dimen-

sions.

Chapter 6 - Results presents an implementation of k-sadilla and compares the

results to other algorithms for sorting sparse tensors.

Chapter 7 - Conclusion concludes with some future directions that could fur-

ther improve sparse tensor transposition techniques.

17



18



Chapter 2

Background

This section will provide background on tensor formats, as well as discuss prior work

on sparse matrix transpositions. This related work provides a starting point for our

exploration of k-dimensional sparse tensor transpositions.

2.1 Sparse Tensor Formats

There are many different sparse tensor formats that have been created to efficiently

store and compute on sparse tensors. This section describes the COO, CSR [4], and

CSF [8] formats as an introduction to some of these formats. All three of these

formats create a natural ordering of the dimensions; iterating over the tensor in the

natural order can be done very efficiently.

2.1.1 Coordinates (COO)

COO stores the nonzero coordinates in the tensor as a list of sorted coordinates. This

can be implemented either by having a list of lists (one for each dimension) or as a

list of tuples.

In terms of the number of dimensions, 𝑘, and the number of nonzeros, 𝑁 , the

total space to store the index is 𝑂(𝑘 *𝑁).

19



Figure 2-1: COO represents a tensor as a list of coordinates with all of the zero values

compressed out. The list of arrays in the bottom left represent the tensor in the top

left.

Most of this paper discusses transposes on COO in particular. COO is a popular

format supported by several libraries. TensorFlow [1] does all of its sparse tensor

computations in COO. It is also a convenient format to use as an intermediate stage

of tensor transposition.

Listing 2.1: C code to iterate over COO in the natural lexicographic order.

1 // Iterate in order (0, 1, 2).

2 for(int i = 0; i < N; i ++) {

3 int i0 = crd0[i];

4 int i1 = crd1[i];

5 int i2 = crd2[i];

6 int val = vals[i];

7 printf("(\%d, \%d, \%d) = \%d", i0, i1 , i2, val);

8 }

20



2.1.2 Compressed Sparse Row (CSR)

CSR is a format for storing sparse matrices that uses three arrays to store a matrix

with dimensions (𝑑0×𝑑1) with 𝑁 nonzero coordinates. For each row in the matrix, the

first array stores the locations of its column coordinates and values. The remaining

two arrays store these column coordinates and the values.

In addition to compressing the zero coordinates, this format also compresses du-

plicate row coordinates using an array 𝑝𝑜𝑠. The 𝑝𝑜𝑠 array stores the ranges of 𝑐𝑟𝑑

corresponding for each row. The segment of 𝑐𝑟𝑑 for row 𝑖 is from 𝑝𝑜𝑠[𝑖] to 𝑝𝑜𝑠[𝑖+ 1].

This format allows for fast access to each row of the tensor.

The array position array has a size of 𝑑0+1 and both the column coordinates and

values arrays have size 𝑁 . The total space needed to store this format is 𝑂(𝑑0 +𝑁).

Figure 2-2: CSR stores only the columns that contain nonzero values. To find the

value of (1, 1), first access 𝑝𝑜𝑠[1] to find the segment. Scan the segment in 𝑐𝑟𝑑 to find

the index of the column coordinate. The value is located at the same index in the

values array.
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Listing 2.2: C code to iterate over CSR in the natural lexicographic order.

1 // Iterate in order (0, 1).

2 for(int i0 = 0; i0 < 4; i0 ++) {

3 for(int idx = pos[i0]; idx < pos[i0 + 1]; idx ++){

4 int i1 = crd[idx];

5 int val = vals[idx];

6 printf("(\%d, \%d) = \%d", i0 , i1, val);

7 }

8 }

2.1.3 Compressed Sparse Fiber (CSF)

CSF is of particular interest because it is a sparse format that is very compressed.

It was introduced by Smith and Karypis in a paper that discusses the Surprisingly

ParalleL spArse Tensor Toolkit (SPLATT) [8].

CSF format is sparse tensor format that represents the tensor as a tree structure.

Leaves in a CSF tensor represent nonzeros. The branching factor of the tree is an

indicator of how well the format has compressed the values. Different dimension

orderings will result in different branching factors.

CSF stores these trees by layering pointer arrays to compress the additional tensor

dimensions, thereby reducing the duplication of coordinate values. The size of this

structure is upper bounded by the number of nonzero values.
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Figure 2-3: CSF stores a sparse tensor in a tree-like structure. To find the value of

(2, 2, 0), we use the layered 𝑝𝑜𝑠 and 𝑐𝑟𝑑 arrays to traverse down the tree.

Listing 2.3: C code to iterate over CSF in the natural lexicographic order.

1 // Iterate in order (0, 1, 2).

2 for(int idx0 = pos0 [0]; idx0 < pos0 [1]; idx0 ++) {

3 int i0 = crd0[idx0];

4 for(int idx1 = pos1[idx0]; idx1 < pos1[idx0 + 1]; idx1 ++){

5 int i1 = crd1[idx1];

6 for(int idx2 = pos2[idx1]; idx2 < pos2[idx1 + 1]; idx2 ++){

7 int i2 = crd2[idx2];

8 int val = vals[idx2];

9 printf("(\%d, \%d, \%d) = \%d", i0, i1 , i2, val);

10 }

11 }

12 }
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2.2 Dimension Permutations

COO, CSR, and CSF all impose a lexicographic ordering on the coordinates. Let a

lexicographic ordering of dimensions 𝜎(𝑖) refers to ordering each nonzero coordinate 𝑖

by the tuple (𝑖𝜎0 , 𝑖𝜎1 , 𝑖𝜎2 , . . .). A permutation of the dimensions 𝜎 can be expressed as

a final lexicographic ordering. Thus, transposing the matrix 𝐴 is equivalent to storing

𝐴 in 𝜎 = (1, 0) order. Without loss of generality, in this paper we always assume that

we start in order (𝑖0, 𝑖1, 𝑖2, . . .) so that the output ordering determines all the changes

that need to be made.

2.3 Reordering Tensor Dimensions

Certain computations will perform better when the dimensions can be iterated over

efficiently in a different order than the storage order. When we encounter such a

computation, it will be beneficial to transpose the tensor. In this section, we will

discuss some of the work to make sparse matrix and tensor transposes faster.

The simple example of matrix multiplication has a different asymptotic perfor-

mance depending on the storage order. In matrix multiplication, two 𝑀×𝑀 matrices

are multiplied such that 𝐶(𝑖, 𝑗) = 𝐴(𝑖, 𝑗) * 𝐵(𝑗, 𝑖). When both matrices are stored

in CSR with order (0, 1), such as in Listing 2.4, we need to search for the matching

coordinate to do the multiplication. However, when B is stored with dimension or-

dering (1, 0) we can simply iterate over both matrices in order, as seen in Listing 2.5.

Reordering the dimensions of 𝐵 leads to asymptotically better performance.
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Listing 2.4: C code to multiply two 𝑀 ×𝑀 matrices, 𝐶 = 𝐴 × 𝐵 when dimensions

of 𝐴 and 𝐵 are both stored in order (0, 1)

1 int n = 0;

2 for(int iA = 0; iA < M; iA ++) {

3 for(int idxA = A_pos[iA0]; idxA < A_pos[iA0 + 1]; idxA ++){

4 int jA = A_crd[idxA];

5 // Locate the matching coordinate in B.

6 int jB = jA;

7 for(int idxB = B_pos[jB]; idxB < B_pos[jB + 1]; idxB ++){

8 int iB = B_crd[idxB];

9 if ( iB == iA) {

10 C_pos[jA + 1] = n;

11 C_crd[n] = iA

12 C_vals[n] = A_vals[idxA] * B_vals[idxB];

13 n ++;

14 }

15 }

16 }

17 }
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Listing 2.5: C code to iterate multiply two M x M matrices, 𝐶 = 𝐴 × 𝐵 when

dimensions of 𝐴 are stored order (0, 1) and dimensions of 𝐵 are stored in order (1,0).

1 int n = 0;

2 for(int iA = 0; iA < M; iA ++) {

3 int iB = iA;

4 // Iterate over both

5 int idxA = A_pos[iA];

6 int idxB = B_pos[iB];

7 while(idxA < A_pos[iA + 1] && idxB < B_pos[iB + 1]) {

8 int jA = A_crd[idxA];

9 int jB = B_crd[idxB];

10 if(jA == jB){

11 C_pos[jA + 1] = n;

12 C_crd[n] = iA;

13 C_vals[n] = A_vals[idxA] * B_vals[idxB];

14 idxA ++;

15 idxB ++;

16 n ++;

17 } else if(jA > jB) {

18 idxB++;

19 }else if(jA < jB){

20 idxA++;

21 }

22 }

23 }

2.3.1 Sorting Strategies

Tensor dimensions can be reordered using any sorting method. Any comparison sort

can sort the coordinates. Since the coordinates come from a fixed range of values, we

can also use sorts that work on fixed length keys, like histogram or radix sorts.

SPLATT, a sparse tensor library designed to be highly parallel, uses a different
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sorting strategy to take advantage of potential parallelism that exists in the problem

[10]. SPLATT chooses to first do a histogram sort on dimension 𝑖𝜎0 . It then sorts

the buckets for each coordinate of dimension 𝑖𝜎0 using quicksort. In the sequential

implementation this strategy benefits from smaller subproblems for quicksort. In the

parallel version, SPLATT is able to sort these buckets in parallel.

2.3.2 Sparse Matrix Transpositions

In this work, we focus on sorting a list of coordinates. However, the HalfPerm

algorithm directly transposes matrices in CSR format, without using an intermediate

coordinates format [6]. This algorithm is used by libraries such Eigen [5] and Julia [2]

to do fast sparse matrix transposes from CSR to CSR. In this section, I will present the

algorithm as well as my work to generalize it to CSF matrices and tensors. I will also

describe why this was ultimately not the best solution for transposing k-dimensional

tensors.

2.3.3 HalfPerm Algorithm

HalfPerm computes the transpose 𝐵 = 𝐴ᵀ of a matrix 𝐴 stored in CSR format in

𝑂(𝑑0+ 𝑑1+𝑁) time, where matrix 𝐴 has 𝑑0 rows, 𝑑1 columns, and 𝑁 nonzero values

[6].

The HalfPerm algorithm transposes a matrix by computing the number of co-

ordinates per column, or the column counts, of matrix A. These column counts allow

HalfPerm to calculate row pointers using a prefix sum to random access to the

segment where the coordinate belongs in the output. Finally, HalfPerm iterates

over 𝐴 and uses the row pointers to scatter the row coordinates and numerical values

in the output matrix.
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Algorithm 1: HalfPerm

Input: Matrix 𝐴 has a three arrays: 𝐴_𝑝𝑜𝑠, 𝐴_𝑐𝑟𝑑, and 𝐴_𝑣𝑎𝑙𝑠.

𝐴_𝑝𝑜𝑠 is a length 𝑑0 + 1 array that holds the ranges of the 𝐴_𝑐𝑟𝑑 array for

each row coordinate.

𝐴_𝑐𝑟𝑑 and 𝐴_𝑣𝑎𝑙𝑠 are both length 𝑁 arrays that hold the column coordinates

and values respectively.

𝑁 is the number of nonzero elements

𝑑0 and 𝑑1 are the number of rows and columns in 𝐴 respectively.
Output: 𝐵 = 𝐴ᵀ

𝑐𝑜𝑢𝑛𝑡𝑠← an integer array of length 𝑑1 + 1 initialized to 0

𝐵_𝑝𝑜𝑠← an integer array of length 𝑑1 + 1 initialized to 0

𝐵_𝑐𝑟𝑑← an integer array of length 𝑁

𝐵_𝑣𝑎𝑙𝑠← an integer array of length 𝑁

for 𝑗 ← 0 to N do

𝑐𝑜𝑙 = 𝐴_𝑐𝑟𝑑[𝑗]

𝑐𝑜𝑢𝑛𝑡𝑠[𝑐𝑜𝑙 + 1] += 1;

end

for 𝑗 ← 1 to 𝑑1 + 1 do

𝑐𝑜𝑢𝑛𝑡𝑠[𝑗] += 𝑐𝑜𝑢𝑛𝑡𝑠[𝑗 − 1]

𝐵_𝑝𝑜𝑠 = 𝑐𝑜𝑢𝑛𝑡𝑠[𝑗]

end

for 𝑟𝑜𝑤 ← 0 to 𝑑0 do

for 𝑗 ← 𝐴_𝑝𝑜𝑠[𝑟𝑜𝑤] to 𝐴_𝑝𝑜𝑠[𝑟𝑜𝑤 + 1] do

𝑐𝑜𝑙 = 𝐴_𝑐𝑟𝑑[𝑗]

𝑖𝑑𝑥 = 𝑐𝑜𝑢𝑛𝑡𝑠[𝑐𝑜𝑙]

𝐵_𝑐𝑟𝑑[𝑖𝑑𝑥] = 𝑟𝑜𝑤

𝐵_𝑣𝑎𝑙𝑠[𝑖𝑑𝑥] = 𝐴_𝑣𝑎𝑙[𝑗]

𝑐𝑜𝑢𝑛𝑡𝑠[𝑐𝑜𝑙] += 1

end

end
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The transposition of matrix A using HalfPerm algorithm is shown in Figure

2-4. The column counts are calculated by iterating over 𝐴_𝑐𝑟𝑑 and incrementing

the count for each column encountered. The 𝐵_𝑝𝑜𝑠 array is then computed using a

prefix sum over the column counts array. The row pointers reserve enough space in

the 𝐵_𝑐𝑟𝑑 and 𝐵_𝑣𝑎𝑙𝑠 arrays for each column coordinate and value.

To fill in the 𝐵_𝑐𝑟𝑑𝑠 and 𝐵_𝑣𝑎𝑙𝑠 arrays, we iterate over the coordinates and

place the row coordinate in the first available position for the given column. By going

over the tensor in order, we will insert the rows into the transposed matrix in order

as well.

Figure 2-4: The sparse matrix is transposed using the HalfPerm algorithm. Half-

Perm counts the number of items for each column in an array of size 𝑑1 + 1, and

then fills in the position array of size 𝑑1 + 1 using these column counts.
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Chapter 3

Extending HalfPerm

HalfPerm is a fast algorithm for transposing matrices that does better than sorting

coordinates. The success of this algorithm brings to question whether there is a way to

make all sparse tensor transposes faster. In this section, we look at how HalfPerm

is able to beat sorting and what would be needed to extend this idea to CSF matrices

and tensors.

3.1 HalfPerm Optimizations

HalfPerm is able to do better than a sort because it takes advantage of the existing

ordering of the matrix. Iterating over the matrix in order will output the coordinates

sorted on the rows due to the lexicographic ordering enforced by CSR. HalfPerm

takes advantage of this by only sorting on the columns. The steps of HalfPerm

closely resemble a histogram sort, which is a stable sort. Doing a stable sort on the

columns preserves the ordering of the rows, so it can safely put the coordinates into

the output.

Another optimization made by HalfPerm is that it is able to use the intermediate

array to compute the 𝑝𝑜𝑠 array in the output tensor.

31



3.2 Extending to CSF Matrices

HalfPerm works specifically to perform a CSR to CSR transpose, but can be ad-

justed to transpose matrices from CSF to CSF.

First we can observe that the input format is not important for the runtime nor

the strategy of the algorithm. HalfPerm only requires that the input can be iterated

over in order and within a runtime of 𝑂(𝑑0 + 𝑑1 + 𝑁). All of the sparse formats we

are considering achieve that.

The extra compressed level in the output format poses an additional problem that

the transpose needs to solve. To compress the first level, we need to know how many

distinct column coordinates there are. This can be accomplished by keeping a size 𝑑1

array that stores boolean values. A prefix sum on this array will also reserve space

for each column in the 𝐵0_𝑐𝑟𝑑 array of the first dimension. The total can be used

to set the 𝐵0_𝑝𝑜𝑠 array as well as allocate the space. This provides us with a way

to random access by the column coordinate as well.

HalfPerm still gives the correct locations for the row coordinates, since we will

not have any duplicates to be compressed in the bottom dimension. The count array

simply needs to compress out the zeroes when storing in the 𝐵1_𝑝𝑜𝑠 array.

The runtime for this modified HalfPerm is 𝑂(𝑁 + 𝑑1). We actually drop a

dependence on the dimension of the rows because iterating over the input tensor can

be done in 𝑂(𝑁) instead of 𝑂(𝑁 + 𝑑0).

3.3 Extending to Tensors

I explored if there were a way to extend the ideas of HalfPerm to tensors by

constructing a way to random access into the output for higher order tensors.

In Section 3.2 we were able to extend HalfPerm to work for CSF output formats

by adding an additional array to find the distinct columns. Additional dimensions

means that we will need to compute the distinct coordinates for each dimension. In

fact, we will need to know all distinct 𝑖𝜎𝑗
for every coordinate pair for all distinct
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coordinate pairs (𝑖𝜎0 , 𝑖𝜎1 , ..., 𝑖𝜎𝑗−1
).

One way to do this would be to have a dense tensor for the top (k-1) levels in

the output order. We can use the HalfPerm algorithm for CSF using the top (k-1)

dimensions as one giant dimension of size
𝑘−2∏︀
𝑖=0

𝑑𝑖. This may require a large amount of

space, since we are storing all but one dimension in a dense tensor. The runtime for

this is 𝑂(𝑁 +
𝑘−2∏︀
𝑖=0

𝑑𝑖).

It is possible instead to do this in multiple passes to decrease the space required.

We can achieve this by building the tensor in output order sequence. The count

arrays from previous dimensions can be used to random access into the next. The

first level will use 𝑂(𝑑0) space, where 𝑑 is the size of the dimension, the next level

will use 𝑂(𝑑1 * 𝑧0) space, where 𝑧 is the number of distinct nonzero 𝑑0 coordinates.

This will continue for every level, and may use less space than a dense tensor. We

have to iterate over the whole tensor 𝑂(𝑘 − 1) times to set up the output structure,

before we are finally able to insert the values. The overall runtime for this method is

𝑂(𝑘 *𝑁 +
∑︀𝑘−2

𝑖=0 𝑑𝑖).

In either case, the need for random access into all dimensions results in an unac-

ceptable amount of space used. Due to this, this line of exploration was abandoned

in favor of attempting to take advantage of the specific structure of different permu-

tations.
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Chapter 4

Partial Radix Sort

The state of the art for sparse tensor transposition is to sort the coordinates into

the desired lexicographic order. Because coordinates already have an initial ordering,

we can think of sorting coordinates as simply changing the lexicographic ordering

to prioritize different dimensions. The fixed length keys allow us to use linear time

stable sorts like histogram sort to achieve asymptotic improvements over 𝑂(𝑁 log𝑁)

comparison sorts. We are also able to take advantage of partial ordering to sort them

faster. Halfperm uses a histogram sort to prioritize the second dimension in the

new ordering. Depending on the size of the second dimension, this single histogram

sort is often faster than a generic sort of the coordinates, and certainly faster than

redundantly sorting the first dimension before sorting the second. We will use this

idea of pass omission to get asymptotically better performance.

This section describes two sorting primitives that will be used to describe the

sorting strategies and will also introduce notation used to specify these strategies.

4.1 Histogram Sort

A histogram sort sorts bounded integer keys by counting the number of occurrences

of each of the different values and then performing a prefix sum, also known as a

cumulative sum or prefix scan, over the array to determine where the groups corre-

sponding to each key will lie in the output array. This array reserves enough space
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for all of the coordinates to appear in the output order, which allows the algorithm to

put each coordinate directly into its final location, as described by the prefix summed

array, as it does a second scan over the input.

Algorithm 2: Histogram

Input: 𝐴 is a length 𝑁 array of coordinate structs. Each coordinate struct has a list

of coordinates 𝑐𝑟𝑑 and a value 𝑣𝑎𝑙.

𝑐𝑟𝑑 is an array of length 𝑘. 𝑐𝑟𝑑[𝑖] contains the coordinate for the 𝑖th dimension.

𝑑𝑖𝑚𝑠 is a length 𝑘 array that stores the size of dimension 𝑖 at 𝑑𝑖𝑚𝑠[𝑖].

𝑗 is an integer representing the dimension to be sorted on.
Output: A list of coordinates 𝐵 that contains 𝐴 after a histogram sort on 𝑗.

𝑑← 𝑑𝑖𝑚𝑠[𝑗]

𝑐𝑜𝑢𝑛𝑡← a length 𝑑+ 1 array of integers initialized to 0

// Compute the count array

for 𝑖← 0 to N do

𝑐𝑟𝑑 = 𝐴[𝑖].𝑐𝑟𝑑[𝑗]

𝑐𝑜𝑢𝑛𝑡[𝑐𝑟𝑑+ 1] += 1

end

// Prefix Sum

for 𝑐𝑟𝑑← 1 to d do

𝑐𝑜𝑢𝑛𝑡[𝑐𝑟𝑑] += 𝑐𝑜𝑢𝑛𝑡[𝑐𝑟𝑑− 1]

end

// Move coordinates to final output destination

for 𝑖← 0 to N do

𝑐𝑟𝑑 = 𝐴[𝑖].𝑐𝑟𝑑[𝑗]

𝑖𝑑𝑥 = 𝑐𝑜𝑢𝑛𝑡[𝑐𝑟𝑑]

𝐵[𝑖𝑑𝑥] = 𝐴[𝑖]

𝑐𝑜𝑢𝑛𝑡[𝑐𝑟𝑑] += 1

end
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4.1.1 Runtime

The histogram sort iterates over the coordinates twice and the count array once. The

total runtime is 𝑂(𝑁 + 𝑑), where 𝑑 the size of the dimension being sorted on.

4.1.2 Effect on Ordering

A histogram sort will move the dimension to the top of the lexicographic order.

Claim 4.1.1. Given a lexicographic ordering 𝜎, where 𝜎𝑗 = 𝑑, a histogram sort on

dimension 𝑑 will result in a final ordering of, 𝜎′ = (𝑑, 𝜎0, ..., 𝜎𝑗−1, 𝜎𝑗+1, ..., 𝜎𝑘−1).

Before the sort on 𝑑 takes place, the coordinates are sorted on (𝜎0, ..., 𝜎𝑗−1) by

definition. If the keys only contained (𝜎0, ..., 𝜎𝑗), this is the state that the coordinates

would be in before the final pass in the radix sort. Sorting on 𝑑 will move the

dimension to the top of this ordering.

The relative order between coordinates with the same (𝑖𝜎0 , ..., 𝑖𝜎𝑗
) will not change

by this sort, because we use a stable sort. The equivalent coordinates will remain in

the same order, since these will also have equivalent values for the 𝑑 coordinate. This

preserves the order of the dimensions that come after 𝑑 in the initial lexicographic

ordering.

This will leave the final lexicographic ordering 𝜎′.

4.2 Bucketed Histogram Sort

Although radix sort is most commonly performed from least significant digit to most

significant digit, there is a variation that does the most significant digits first and then

sorts each of the buckets that occur when you fix particular values for the already

sorted digits. This process sorts each bucket recursively. However, the range of the

keys for each dimension may be rather large, so we need to do the histogram sort

only once, not once per bucket. This process can be accomplished by saving the

buckets that each coordinate belongs to, doing a histogram sort, and then moving

the coordinate back to its bucket.
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The buckets can be created for the first 𝑏 dimensions in the current lexicographical

ordering 𝜎. The sorting guarantees described in this section do not hold if the buckets

are created using any arbitrary dimension choices.
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Algorithm 3: BucketedHistogram

Input: 𝐴 is a length 𝑁 array of coordinate structs. Each coordinate struct has a list

of coordinates 𝑐𝑟𝑑 and a value 𝑣𝑎𝑙.

𝑐𝑟𝑑 is an array of length 𝑘. 𝑐𝑟𝑑[𝑖] contains the coordinate for the 𝑖th dimension.

𝑑𝑖𝑚𝑠 is a length 𝑘 array that stores the size of dimension 𝑖 at 𝑑𝑖𝑚𝑠[𝑖].

𝑗 is an integer representing the dimension to be sorted on.

𝑓𝑖𝑥𝑒𝑑_𝑑𝑖𝑚𝑠 is an integer array of dimensions to be bucketed on.
Output: A list of coordinates 𝐵 that contains 𝐴 after a bucketed histogram sort

on 𝑗 with fixed dimensions 𝑓𝑖𝑥𝑒𝑑_𝑑𝑖𝑚𝑠.

// Save the positions of the buckets.

𝑏𝑢𝑐𝑘𝑒𝑡← an integer array of size 𝑁

𝑐𝑜𝑢𝑛𝑡𝑠← an integer array of size 𝑁

𝑐𝑢𝑟𝑟𝑒𝑛𝑡← 0

for 𝑖← 1 to 𝑁 do

for 𝑗 ← 0 to 𝑏 do

𝑑← 𝑓𝑖𝑥𝑒𝑑_𝑑𝑖𝑚𝑠[𝑗]

if A[i].crd[d] != A[i-1].crd[d] then

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 += 1

𝑐𝑜𝑢𝑛𝑡𝑠[𝑐𝑢𝑟𝑟𝑒𝑛𝑡] = 𝑖

𝑏𝑟𝑒𝑎𝑘

end

end

𝑏𝑢𝑐𝑘𝑒𝑡[𝑖] = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

end

// perm[i] contains the index of A[i] before the sort.

𝐴, 𝑝𝑒𝑟𝑚 = histogramPerm(𝐴, 𝑁 , 𝑗, 𝑑𝑖𝑚𝑠)

// Reintroduce the ordering recorded in the original buckets.

for 𝑖← 0 to N do

𝐵[𝑐𝑜𝑢𝑛𝑡𝑠[𝑏𝑢𝑐𝑘𝑒𝑡[𝑝𝑒𝑟𝑚[𝑖]]] = 𝐴[𝑖]

𝑐𝑜𝑢𝑛𝑡𝑠[𝑏𝑢𝑐𝑘𝑒𝑡[𝑝𝑒𝑟𝑚[𝑖]]] += 1

end
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4.2.1 Runtime

Let 𝑏 be the number of dimensions being bucketed on and 𝑑 be the size of the dimen-

sion that is being sorted on. Saving the buckets takes 𝑂(𝑏 *𝑁) time, the histogram

sort takes 𝑂(𝑁 + 𝑑) time, and moving the coordinates back to their buckets takes

𝑂(𝑁) time. The total runtime of bucketed histogram sort is 𝑂(𝑁 * (𝑏+ 1) + 𝑑).

4.2.2 Effect on Ordering

Bucketed histogram sort will move the dimension 𝑑 to immediately follow the bucketed

dimensions in the lexicographical ordering.

Claim 4.2.1. Given a lexicographic ordering 𝜎, where 𝜎𝑗 = 𝑑, a bucketed histogram

sort on dimension 𝑑 with buckets for the top 𝑏 levels will result in a final ordering of,

𝜎′ = (𝜎0, ..., 𝜎𝑏−1, 𝑑, 𝜎𝑏, ..., 𝜎𝑗−1, 𝜎𝑗+1, ..., 𝜎𝑘−1).

The bucketed sort only does a sort within coordinates that have the same values

for dimensions (𝑖𝜎0 , ..., 𝑖𝜎𝑏−1
). The lexicographic ordering of these dimensions will not

change.

Within each bucket, the histogram sort will change the ordering from (𝜎𝑏, ..., 𝑑, ..., 𝜎𝑘−1)

to (𝑑, 𝜎𝑏, ..., 𝜎𝑗−1, 𝜎𝑗+1, ..., 𝜎𝑘−1) as proven above.

The final lexicographic ordering is then 𝜎′ = (𝜎0, ..., 𝜎𝑏−1, 𝑑, 𝜎𝑏, ..., 𝜎𝑗−1, 𝜎𝑗+1, ..., 𝜎𝑘−1).

4.3 Notation

The notation SORT(𝑖 [𝐵]) refers to the pass that sorts dimension 𝑖 while bucketing

on the levels in the set B. If B is the empty set, then a standard histogram sort is

used, otherwise a bucketed histogram sort is needed.

4.4 Comparison Sorts

Although the two sorting primitives presented are both histogram sort variants, they

could be replaced with any stable sort such as quicksort or merge sort. However, if a
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comparison sort is used, it will make sense to do the sort in a single pass. Although

the asymptotic runtime of doing them separately and together is the same, in practice

it is more efficient to run the comparison sort a single time.
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Chapter 5

Pass Minimization

In this thesis we wish to take advantage of the knowledge that parts of the desired

lexicographic ordering 𝜎 may already be partially satisfied. The permutation 𝜎 deter-

mines which of the 𝑘! different permutations is the final goal. Not all permutations

are equally difficult.

An obvious example of the variability of difficult is if the desired permutation is

the same as the input permutation. This permutation requires no work at all since

the data is already in the desired order. On the other hand if 𝜎 inverts the order of

the dimensions, nearly every dimension needs to be resorted. Sorting all dimensions is

needed because each of these dimensions was only sorted with respect to a bucket that

required selecting a single value for the 0th coordinate. When the order is inverted,

there is no partial ordering to take advantage of and every dimension (except the 0th)

will require a sort.

In this section, we minimize the number of passes by first setting lower bounds on

the number of sorting passes needed for a given 𝜎 and then describing an algorithm

that achieves this lower bound.

5.1 Cost of Passes

In Chapter 4, we described two types of histogram sorting passes. These both achieved

a linear runtime in the number of nonzeros and the size of the dimension being sorted
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on. In this paper we assume a cost function that weights all passes equally. To

minimize this cost function, we must minimize the number of passes. In later chapters,

we will discuss the effects this assumption may have on performance.

5.2 Pass Bounds

The number of dimensions 𝑘 is an upper bound on the number of passes needed to

sort coordinates. This is the number of passes that are needed if we have a completely

unsorted coordinate list and do a standard radix sort.

The histogram sort and bucketed histogram sort can only move dimensions up

in the lexicographic ordering. This provides a lower bound on the number of passes

needed to sort the coordinates into the new lexicographic ordering. All dimensions

that end up in a position before a dimension that preceded it in the initial ordering

will need to be sorted on. Any algorithm that outputs a correct permutation will at

least need to sort on these levels.

Figure 5-1: This figure shows which dimensions need to be sorted on to achieve

the output permutation, starting from (0, 1, 2). There must be a sorting pass on

the dimensions in red. The arrows point to the dimensions that preceded the red

dimension in the input permutation. There must be a sorting pass since this is the

only way to move before the preceding dimensions.
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Algorithm 4: NeedsSort

Input: 𝑖 is an integer index that refers to the 𝑖th element in the permutation array 𝜎.

𝜎 is a length 𝑘 array that contains a permutation of (0, 1, ..., 𝑘 − 1).

𝑘 is an integer representing the order of the tensor.
Output: True, if the dimension at index 𝑖 in the output order 𝜎 needs to be

sorted, False otherwise

for 𝑗 ← 𝑖+ 1 to k do

if 𝜎𝑗 < 𝜎𝑖 then

return True

end

return False

5.2.1 Sort scheduling

We present an algorithm called K-sadilla that outputs a sort schedule that achieves

the lower bound of number of passes from Section 5.2 on any desired output permu-

tation.
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Algorithm 5: K-sadilla

Input: 𝜎 is a length 𝑘 array that contains a permutation of (0, 1, ..., 𝑘 − 1).

𝑘 is an integer representing the order of the tensor.
Output: A sorting schedule that achieves the minimum number of passes to sort

(0, 1, ..., k-1) to permutation 𝜎

bucket ← ∅

curr ← an empty list

for 𝑖← 0 to 𝑘 do

if NeedsSort(i, 𝜎, 𝑘) then

curr.prepend(𝜎[i])

Continue

for 𝑑 ∈ 𝑐𝑢𝑟𝑟 do

OUTPUT “SORT(d [bucket])”

end

curr = [ ]

bucket = the first 𝑖 elements of 𝜎

end

Claim 5.2.1. K-sadilla produces the minimal number of passes needed to sort a

list of coordinates.

This algorithm outputs exactly one sort per level where NeedsSort is true. This

is how we defined our lower bound on the number of sorts. The decision of whether

it needs to be sorted is based purely on the output permutation, not on any other

choices made in the algorithm. This algorithm achieves the desired minimal number

of sorts.

Claim 5.2.2. K-sadilla produces a schedule that will permute the coordinates to

have dimension ordering 𝜎.

We make a recursive argument for the correctness of K-sadilla. The algorithm

outputs sorting passes in phases, and we argue that a portion of 𝜎 will be satisfied

by each of these phases.
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When we output a set of sorting passes, we assume that all of the dimensions that

are bucketed on are already sorted for the recursive argument. At the beginning of

the algorithm, the bucket is empty so this assumption is valid. “Bucketing” on all of

the previous levels preserves their ordering.

We output a set of sorting passes when we see that the dimension at 𝜎𝑗 does not

need to be sorted. When we encounter 𝜎𝑗, this means that every coordinate that

precedes 𝜎𝑗 in the input order also precedes it in the output order. This means that

we will not have any dimensions that are in the order before index 𝑗 that need to be

after it.

We sort all of the dimensions we have seen since the last set of sorts in reverse

order. Each sorting pass will move the dimension to be immediately after the buckets.

Sorting in reverse order uses the same strategy as in a least significant digit radix sort

to get the dimensions to be in the correct lexicographic ordering.

At this point, applying the sort schedule will permute the dimensions such that

the first 𝑗 + 1 dimensions are in the correct output order.

The last level does not need to be sorted on, since there are no levels after it in

the output order. From above we can say that the lexicographic order after applying

the sorting phase terminated by level 𝑘 − 1 will result in a lexicographical ordering

where the top 𝑘 dimensions of 𝜎 are in the correct order.

Thus, the schedule produced will sort all 𝑘 levels correctly.

5.2.2 Algorithm Runtime

Finding the schedule takes 𝑂(𝑘2) time. The total time to sort using the schedule

generated by K-sadilla is 𝑂(𝑝 * 𝑁 +
𝑝∑︀

𝑖=1

𝑑𝑖), where the number of passes that are

required is 𝑝.
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Chapter 6

Results

6.1 Implementation

I implemented this algorithm by generating C++ code from a python script to sort the

list of coordinates into a given output permutation using the different sorting strate-

gies. I chose to do a code generator because this allowed for future flexibility to use

different intermediate formats, custom packing code, and bit packing optimizations.

Testing code was generated to use the tensor algebra compiler (taco) framework

[7] to load the tensors, time the sorting code, and check correctness of results.

There is a different function call for each transpose strategy and permutation.

The coordinates are stored as a list of structs. A different program was generated

for each tensor order (3, 4, and 5), such that the structs held the correct number of

coordinate values. In order to run all of the tensors that were being tested, the size

of the integers storing each coordinates value was 32.
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Listing 6.1: The struct type used to store each coordinate and its value.

1 struct coo_t

2 {

3 int32_t idx0;

4 int32_t idx1;

5 int32_t idx2;

6 double val;

7 };

The histogram sort and bucketed histogram sort described in 4 were used as

the sorting primitives for radix and k-sadilla. I generated the sorting strategies for

quicksort, radix, k-sadilla, and 𝑞-sadilla, a combination of k-sadilla and quicksort.

6.1.1 Quicksort

The quicksort strategy was implemented by calling the C++ standard qsort. The

comparison function passed to qsort compares each coordinate in the permutation

order.

Listing 6.2: C++ code for the qsort comparison function with dimension 0 as the

only key.

1 int cmp_0(const void *p, const void *q)

2 {

3 struct coo_t * r = (struct coo_t *)p;

4 struct coo_t * s = (struct coo_t *)q;

5 if(r->idx0 < s->idx0) {

6 return -1;

7 } else if (r->idx0 > s->idx0) {

8 return 1;

9 }

10 return 0;

11 }

50



6.1.2 Radix

The radix sort implementation concatenated histogram sort primitives to sort the

dimensions by the least significant digit first. A different function was generated for

each permutation.

6.1.3 K-sadilla

The k-sadilla algorithm was used to first determine the minimal sort strategy for every

permutation. A different function was generated for each permutation, implementing

the k-sadilla sort strategy for that permutation. The histogram sort was used when

there were no coordinates to bucket on, otherwise the bucketed histogram sort was

used.

6.1.4 Combining Quicksort and k-sadilla (eg 𝑞-sadilla)

I also implemented another sorting strategy that extended the idea of SPLATT. This

strategy uses k-sadilla to create buckets out of the top 𝑞 levels using minimal sorting

passes, and then uses standard qsort for the buckets created. We generated this

strategy for 𝑏 = [1, 𝑘).

If we have 𝜎 = (2, 1, 0) and 𝐿 = 1, then 1-sadilla will sort on dimension 2 and

then perform a quicksort in every bucket created by distinct 𝑖2 coordinates. However,

if we have 𝜎 = (0, 2, 1) and 𝑏 = 1, then 1-sadilla will bucket on 0 without sorting on

it first, since it is already sorted.

6.2 Comparison with other Frameworks (SPLATT)

I timed the SPLATT sorting implementation to compare to my implementation of the

different sorting strategies. I added an additional command to SPLATT that would

allow us to run the sort command from the command line and specify a permutation.

This command loaded the tensor and called the sort function defined in SPLATT. It

was built with ./configure --no-openmp to get a sequential implementation.
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6.3 Experimental Setup

I ran the different algorithms on 19 tensors from the FROSTT dataset [9]. The three

largest tensors were excluded from these results, as I was unable to get them running.

Table 6.1: FROSTT Tensors
filename order nnz dimensions density coo storage

flickr-3d.tns 3 112890310 319686x28153045x1607191 7.804412e-12 3.36GB

matmul-2-2-2.tns 3 8 4x4x4 1.250000e-01 256.00B

matmul-3-3-3.tns 3 27 9x9x9 3.703704e-02 864.00B

matmul-4-3-2.tns 3 24 6x8x12 4.166667e-02 768.00B

matmul-4-4-3.tns 3 48 12x12x16 2.083333e-02 1.50KB

matmul-4-4-4.tns 3 64 16x16x16 1.562500e-02 2.00KB

matmul-5-5-5.tns 3 125 25x25x25 8.000000e-03 3.91KB

matmul-6-3-3.tns 3 54 9x18x18 1.851852e-02 1.69KB

nell-1.tns 3 143599552 2902330x2143368x25495389 9.054155e-13 4.28GB

nell-2.tns 3 76879419 12092x9184x28818 2.402239e-05 2.29GB

vast-2015-mc1-3d.tns 3 26021854 165427x11374x2 6.914943e-03 794.12MB

chicago-crime-comm.tns 4 5330673 6186x24x77x32 1.457203e-02 203.35MB

delicious-4d.tns 4 140126220 532924x17262471x2480308x1443 4.255781e-15 5.22GB

enron.tns 4 54202099 6066x5699x244268x1176 5.458096e-09 2.02GB

flickr-4d.tns 4 112890310 319686x28153045x1607191x731 1.067635e-14 4.21GB

nips.tns 4 3101609 2482x2862x14036x17 1.829883e-06 118.32MB

uber.tns 4 3309490 183x24x1140x1717 3.849671e-04 126.25MB

lbnl-network.tns 5 1698825 1605x4198x1631x4209x868131 4.230708e-14 77.77MB

vast-2015-mc1-5d.tns 5 26021945 165427x11374x2x100x89 7.769626e-07 1.16GB

The tensors all began in the initial permutation 𝜎 = (0, ..., 𝑘 − 1) and were per-

muted to all 𝑘! permutations. The results used are the minimum of 100 consecutive

iterations on a warm cache.

6.4 Results

k-sadilla was the best strategy for 66% of all tensor and permutation combinations.

The improvement over SPLATT was at least 30% for half of the trials.

Overall there was some variation in performance across different tensors. K-sadilla
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performed very well on some tensors. For five of the seven smallest tensors, k-sadilla

was the best strategy for every single permutation. Those that did the best with

k-sadilla, also tended to have smaller dimensions.

Table 6.2: Aggregate timing results.
Values were normalized by the SPLATT runtime for that trial. These statistics are

aggregated across all possible output permutations for the FROSTT tensors.
stat qsort splatt 1-sadilla k-sadilla radix
min 0.13 1.00 0.23 0.00 0.10
Q1 1.69 1.00 1.11 0.43 0.88

median 2.04 1.00 1.39 0.70 1.16
Q3 2.67 1.00 1.60 1.10 1.85
max 6.42 1.00 3.35 4.61 6.70

wins (%) 0% 26% 6.9% 66% 1.1%
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Figure 6-1: Runtimes for all permutations for order 3 tensors.
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(f) vast-2015-mc1-3d.tns
These plots visualize the runtimes of the different sorting strategies for all permutations.
The permutation labels indicate the output order and all tensors start in order (0, 1, 2).
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6.4.1 Pass Timing

I also looked at the timings of the permutations that required k-sadilla to perform

only a single pass in order to get an idea of per pass performance.

Figure 6-2: Single pass runtime.
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(b) Single pass runtime for vast-2015-mc1-5d.tns.
These plots show the runtimes for the permutations of a 5 dimension tensor that require a

single sorting pass. They are sorted from least number of bucketed dimensions to most

number of bucketed dimensions. A lower bar indicates a faster runtime, which is better.

There are no sorts on dimension 0, since it is already sorted in the initial lexicographic

order and no permutations require a sort on it.

6.4.2 Histogram Sort Runtime

There is a correlation between the histogram sort runtimes and the size of the di-

mension being sorted on. Some variation in dimension sizes did not cause signifi-

cant changes. The longer runtimes from histogram sorts on larger dimensions was

expected. Asymptotically, these are going to require more computation and more

space. Allocating this space as well as accessing random indices within that larger

space may account for additional slowdowns.

The differences in the histogram pass runtimes can account for some of the slower
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runtimes that we see for certain permutations. For example, lbnl-network has some

of the worse aggregate statistics . Looking at its dimensions reveals that the last

dimension is much larger than the others (1605× 4198× 1631× 4209× 868131). The

per pass graph in Figure 6-3a reveals a much slower runtime for the histogram sort

on dimension 4.

If we split the permutations up into those that will run a sort on the last dimension

and those that will not, we see a big change in the statistics. k-sadilla performs best

out of all the algorithms for every permutation that does not do a sort on dimension

4. The runtimes for these permutations are all at least 38% better than SPLATT.

On the other hand, k-sadilla is the best of just 41.7% of the dimensions that require

a sort on dimension 4. Even with this slow dimension, k-sadilla performs as well as

SPLATT on half of the permutations.

Table 6.3: lbnl-network.tns statistics for permutations that sort dimension 4

stat qsort splatt 1-sadilla k-sadilla radix

min 1.48 1.00 1.07 0.61 0.90

Q1 1.98 1.00 1.46 0.88 1.11

median 2.31 1.00 1.51 1.03 1.31

Q3 3.44 1.00 1.68 1.40 1.79

max 5.24 1.00 2.02 3.33 2.83

wins 0% 58.3% 0% 41.7% 0%

Table 6.4: lbnl-network.tns4 statistics for permutations that do not sort dimension 4

stat qsort splatt 1-sadilla k-sadilla radix

min 1.44 1.00 0.98 0.00 0.86

Q1 1.66 1.00 1.25 0.36 0.89

median 1.78 1.00 1.35 0.41 0.96

Q3 2.06 1.00 1.43 0.51 1.10

max 2.81 1.00 1.87 0.62 1.45

wins 0% 0% 0% 100% 0%
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6.5 Bucketed Histogram Sort Runtime

The time to run a bucketed histogram pass is always larger than the time to run a

histogram pass, since the histogram pass is a subprotocol of the bucketed histogram.

I was unable to find what caused the changes in the runtime for different buckets.

There does not appear to be a clear correlation between the change in the number of

buckets and the time needed to do the bucketing. In some cases, having more buckets

actually resulted in a faster computation. A closer analysis would be needed to see

what causes these changes.

The bucketed histogram sort is often significantly slower than its histogram coun-

terpart. This disparity raises the question of whether to consider avoiding these all

together. This change would result in only being able to omit passes at the way

bottom or instead using a comparison sort for the remaining levels when a bucketed

histogram sort would be required.

However, it is possible that a different implementation could also be used in prac-

tice to improve the runtime. The bucketed histogram sort was chosen since the large

histogram size would dominate if we were to perform a histogram sort within each

bucket (since buckets are often small). We can swap this out with either a radix with

a smaller digit or a stable comparison sort within the buckets.

6.5.1 SPLATT and 1-sadilla

SPLATT and 1-sadilla implement nearly the same strategy. Section 2.3.1 explains

that SPLATT will do a histogram sort on the first dimension in the output order

and then quicksort each of the buckets created. 1-sadilla finds the best algorithm

for the first level and then runs quicksort on each of the buckets. 1-sadilla will only

do the histogram sort on the first dimensions if necessary. In the results, we can see

that SPLATT outperforms 1-sadilla in 79.8% of the trials. Even when there is no

histogram pass, SPLATT is still faster in 62.3% of the trials. We would expect 1-

sadilla to outperform SPLATT in these cases, since it can skip some of the work. This

indicates that the SPLATT quicksort implementation is faster than the C++ standard
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qsort for the tensors and permutations when 1-sadilla loses despite doing less work.

We could expect to match SPLATT by switching to the SPLATT implementation of

quicksort.
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Chapter 7

Conclusion

7.1 Summary

This project shows that we can transpose sparse tensors faster than sorting arbitrary

coordinates. By taking advantage of the ordering that already exists, we can apply

selective passes of a radix sort and thereby reduce the amount of work to sort the co-

ordinates. We showed that this improves performance using a C++ implementation.

These passes can be replaced with more optimized versions as well.

7.2 Future Work

There are several additional opportunities for optimizations that we have not imple-

mented but that would provide additional improvements.

7.2.1 Cost Function Improvements

In this paper, we considered a histogram pass and a bucketed histogram pass to have

the same cost. We also did not take the size of the dimension into account. It could be

worth exploring improvements to this cost function in the future. This may also allow

us to incorporate comparison sorts into strategy selection to sort some dimensions of

the tensor.
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7.2.2 Pass Optimizations

The size of a dimension greatly affects the runtime of the the histogram sort. Asymp-

totically, the histogram sort runs in 𝑂(𝑁 + 𝑑), where N is the number of nonzeros,

and 𝑑 is the size of the dimension. We can replace this histogram sort with a radix

sort that uses a smaller digit size 𝑏. This will change the asymptotic complexity to

𝑂(log𝑏(𝑑)(𝑁 + 𝑏)). Since these dimensions may be quite large, switching to a radix

sort may provide significant speedup, especially if the count array for this smaller

digit can fit in the cache.

7.2.3 Pass Combinations

The algorithm described in Section 5.2.1 chooses to switch to additional buckets when

there is a pass that could be skipped.

The current implementation will move each coordinate back to its bucket after each

pass. This ensures that the lexicographical ordering is as expected after performing

that pass. However, it is not necessary to move the coordinates back so soon, since

each pass after that will also take place within those buckets. Instead, these buckets

can be applied at the end.

This modification will reduce the cost of multiple bucketed histogram passes. This

seems like a more reasonable cost tradeoff since a bucketed histogram sort is roughly

two histogram sorts. By incurring this cost just once, we will make it more worthwhile

to switch to a new bucket.

This strategy will require more space, since the information needs to be kept

around until the sorting is complete.

7.2.4 Bit Packing Optimizations

By having control over the intermediate format, we can apply further optimizations

to the way we store the coordinates. Assuming that we know the size of each of the

dimensions at compile time, we can pack the coordinates into fewer integers. This

can also help improve performance of comparison sorts, as less comparisons need to
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be made in order to do the sort.

7.3 Intermediate Formats

The intermediate steps that sort the coordinates of the tensor operate on a list of

coordinates. However, the input and output formats may not be in coordinate format.

Turning the sparse tensor into coordinate format requires 𝑂(𝑘 * 𝑁) space for the

coordinate values.

The required space is acceptable since we must be using at least 𝑂(𝑁) space to

store the coordinates in both the input and output formats, and 𝑘 is a small constant.

However, we may also be able to reduce both the space needed for the intermediate

formats as well as the time spent sorting the coordinates. In order to see this, we

need to understand the structure of these sparse tensor formats. CSF format has a

position and index array for every dimension of the tensor. The method creates a

type of tree structure, where each index that appears in each dimension is a node.

The children of each index can be found by looking at the corresponding positions in

the next level of the tensor.

While a permutation may require a complete rebuild of this tree structure, certain

permutations will not need to rebuild the whole structure and others can iterate over

the tree structure instead of the list of coordinates. This may save time for unpacking,

space used in the intermediate format and work done to sort the coordinates. This

section describes an idea for an intermediate transpose format that combines COO

and CSF to accomplish these goals.

7.3.1 Grouping Dimensions

We can group the dimensions of a tensor transpose to understand which coordinates

need to be materialized.

Sorting passes move dimensions up. If there is a boundary at index 𝑗 where no

dimensions move across, then any sorts that happen on the dimensions below that

level will always occur in buckets where the first 𝑗 dimensions all have the same value.
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In the existing tree structure, we can easily find the roots of each of these buckets.

In the result tree, the coordinates and values in each of these buckets will stay in the

same buckets, even if the dimensions above < 𝑗 or below > 𝑗 are reordered.

7.3.2 Creating Smaller Problems

To reduce sorting work and space used there are a two key optimizations that we can

make: we do not need to duplicate coordinates across a boundary and we only need

to turn a groups into coordinate format if they contain a sort. We do this by turning

each grouping into a coordinate list, and using a 𝑝𝑜𝑠 array to keep track of which

coordinates belong in which subtrees.

For example if only the bottom dimensions are being sorted, we do not need to

unpack the top of the tree. We can leave it as is during the sorting process. Figure

7-1 shows the intermediate format that avoids unpacking the first dimension of the

input tensor when transposing.

7.3.3 Adding Pointers

In CSF format, the position of the coordinate at level 𝑖 determines where to find

the positions of the coordinates at level 𝑖 + 1. If we sort the coordinates above a

boundary, we would need to move its subtrees. However, in the contiguous CSF

arrays, we cannot do this easily. In order to know where to move its subtree, we

need to know how much space the coordinates before it in the new order will take up,

which we cannot know until we have the ordering of all the coordinates that appear

before it. We can solve this problem by introducing an extra level that stores its

index as a pointer to its children. Since this is a boundary, these subtrees will remain

intact even if they are reordered within each subtree. Figure 7-2 shows an example

that uses pointers to index into the input tensors last dimension to pack the tensor.
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Figure 7-1: An example of the intermediate format that can be used to transpose to

the permutation (0, 2, 1). The arrays boxed in green are all from the input tensor.

The coordinates from dimension 0 are not turned into coordinates. No new space is

needed to store dimension 0 since it will not be affected by the sort.
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Figure 7-2: An example of the intermediate format that can be used to transpose to

the permutation (1, 0, 2). The perm array is used as a pointer to the subtree that

contains the remaining dimensions. We can then iterate over the appropriate subtree.

The arrays boxed in green are all from the input tensor. No new space is needed to

store dimension 2 since it will not be affected by the sort.
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7.4 Parallelism

There are many opportunities to make the k-sadilla sorting strategy parallel.

There are parallel versions of all of the sorting algorithms that we considered in this

paper. In particular, each radix pass can be implemented in parallel. By adding this

parallel implementation to each pass, we can parallelize the k-sadilla implementation.

SPLATT already implements a parallelized histogram sort.

Additionally, the sort schedule takes advantage of existing structure, producing a

sort schedule that will sort on existing buckets. Each bucket can be sorted in parallel,

since there will be no movement across the boundaries. Producing the schedule in

this way takes advantage of the structure that is easily parallelized.

The groups from the intermediate formats described above can all be sorted in

parallel, as they are separate sorting problems. This allows for parallelization between

groupings, in addition to the the parallelization that we can add for each pass.
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Appendix A

Tables

To understand the performance of the different algorithms, we normalized the results

by the SPLATT runtime for each tensor and permutation. A smaller number means

that the algorithm was faster.

A.1 Statistics

These tables contain statistics about the performance of the algorithms across all

permutations and tensors. In addition, we counted the number of times that each

strategy was the best of all of the strategies. We exclude 2-sadilla and 3-sadilla from

these results, as the strategy is not comparable across tensors of different orders.

Table A.1: Aggregate timing results

stat qsort splatt 1-sadilla k-sadilla radix

min 0.13 1.00 0.23 0.00 0.10

Q1 1.69 1.00 1.11 0.43 0.88

median 2.04 1.00 1.39 0.70 1.16

Q3 2.67 1.00 1.60 1.10 1.85

max 6.42 1.00 3.35 4.61 6.70

wins (%) 0% 26% 6.9% 66% 1.1%
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Table A.2: Median results by tensor
filename qsort splatt 1-sadilla k-sadilla radix

flickr-3d.tns 3.77 1.00 1.52 0.90 2.09
matmul-2-2-2.tns 0.38 1.00 0.27 0.13 0.31
matmul-3-3-3.tns 1.06 1.00 0.58 0.14 0.31
matmul-4-3-2.tns 0.84 1.00 0.32 0.14 0.29
matmul-4-4-3.tns 1.21 1.00 0.45 0.10 0.32
matmul-4-4-4.tns 0.91 1.00 0.43 0.13 0.25
matmul-5-5-5.tns 2.04 1.00 0.76 0.14 0.33
matmul-6-3-3.tns 1.15 1.00 0.57 0.16 0.31

nell-1.tns 2.74 1.00 1.70 0.71 2.78
nell-2.tns 2.51 1.00 1.74 0.54 1.23

vast-2015-mc1-3d.tns 2.95 1.00 1.19 0.46 1.71
chicago-crime-comm.tns 1.93 1.00 1.55 0.47 0.82

delicious-4d.tns 2.37 1.00 1.34 1.02 1.63
enron.tns 2.19 1.00 1.39 0.58 1.06

flickr-4d.tns 2.97 1.00 1.32 0.98 1.79
nips.tns 2.51 1.00 1.67 0.75 1.73
uber.tns 2.14 1.00 1.64 0.60 1.07

lbnl-network.tns 2.11 1.00 1.49 0.95 1.28
vast-2015-mc1-5d.tns 1.74 1.00 1.24 0.67 1.13

Table A.3: Wins by file
filename qsort splatt 1-sadilla k-sadilla radix

flickr-3d.tns 0% 33.3% 0% 66.7% 0%
matmul-2-2-2.tns 0% 0% 0% 100% 0%
matmul-3-3-3.tns 0% 0% 0% 100% 0%
matmul-4-3-2.tns 0% 0% 0% 100% 0%
matmul-4-4-3.tns 0% 0% 0% 100% 0%
matmul-4-4-4.tns 0% 0% 0% 66.7% 33.3%
matmul-5-5-5.tns 0% 0% 0% 100% 0%
matmul-6-3-3.tns 0% 0% 0% 83.3% 16.7%

nell-1.tns 0% 33.3% 0% 66.7% 0%
nell-2.tns 0% 33.3% 0% 66.7% 0%

vast-2015-mc1-3d.tns 0% 0% 0% 100% 0%
chicago-crime-comm.tns 0% 8.33% 0% 91.7% 0%

delicious-4d.tns 0% 54.2% 0% 45.8% 0%
enron.tns 0% 12.5% 0% 83.3% 4.17%

flickr-4d.tns 0% 41.7% 0% 58.3% 0%
nips.tns 0% 25% 12.5% 62.5% 0%
uber.tns 0% 16.7% 0% 83.3% 0%

lbnl-network.tns 0% 46.7% 0% 53.3% 0%
vast-2015-mc1-5d.tns 0% 14.2% 23.3% 61.7% 0.833%
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A.2 Results

These tables contain the results of running all of the experiments. They are organized

by file and the permutations are ordered lexicographically. A cell that contains a value

of 1 is colored white. This value means that it performed as well as SPLATT. A cell

that contains a value > 1 is colored red and performed worse than SPLATT. A cell

that contains a value < 1 is colored blue and performed better than SPLATT.

Figure A-1: flickr-3d.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 3.56 1 1.59 0.49 0 4.84

021 2.56 1 1.46 1.37 0.94 1.73

102 3.89 1 1.24 1.27 0.86 2.16

120 4.06 1 1.31 2.81 2.58 2.84

201 4.69 1 1.77 1.18 0.64 2.01

210 3.65 1 1.73 1.35 1.21 1.44

Figure A-2: matmul-2-2-2.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 0.43 1 0.8 0.66 0 0.37

021 0.44 1 0.33 0.54 0.31 0.41

102 0.13 1 0.23 0.17 8.21 · 10−2 0.19

120 0.24 1 0.23 0.15 8.14 · 10−2 0.23

201 0.52 1 0.25 0.21 0.23 0.39

210 0.34 1 0.28 0.17 0.18 0.26
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Figure A-3: matmul-3-3-3.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 0.41 1 0.47 0.41 0 0.16

021 0.55 1 0.31 0.42 0.15 0.19

102 1.11 1 0.63 0.42 0.12 0.32

120 2.94 1 1.51 1.65 0.72 0.84

201 1.1 1 0.6 0.47 0.13 0.33

210 1.01 1 0.56 0.59 0.24 0.31

Figure A-4: matmul-4-3-2.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 0.96 1 1.34 0.94 0 0.39

021 0.48 1 0.38 0.41 0.14 0.24

102 0.84 1 0.25 0.37 0.11 0.31

120 0.97 1 0.27 0.59 0.24 0.33

201 0.84 1 0.27 0.22 0.13 0.17

210 0.75 1 0.42 0.35 0.16 0.27

Figure A-5: matmul-4-4-3.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 1.16 1 1.76 1.14 0 0.46

021 0.5 1 0.27 0.29 0.1 0.32

102 1.47 1 0.34 0.45 9.9 · 10−2 0.15

120 1.29 1 0.59 0.55 0.41 0.61

201 1.26 1 0.5 0.23 9.9 · 10−2 0.31

210 0.63 1 0.39 0.31 0.11 0.2
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Figure A-6: matmul-4-4-4.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 0.56 1 0.55 0.44 0 0.14

021 1.01 1 0.24 0.27 0.13 0.29

102 0.81 1 0.36 0.24 0.13 0.31

120 2.81 1 1.21 1.63 0.43 0.4

201 0.69 1 0.24 0.34 6.39 · 10−2 0.21

210 1.02 1 0.5 0.47 0.13 0.1

Figure A-7: matmul-5-5-5.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 2.13 1 1.99 1.39 0 0.43

021 0.92 1 0.23 0.39 0.13 0.19

102 6.42 1 2.32 1.49 0.33 0.43

120 2.01 1 0.74 0.62 0.18 0.34

201 1.7 1 0.33 0.4 0.11 0.25

210 2.07 1 0.79 0.69 0.14 0.33

Figure A-8: matmul-6-3-3.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 0.49 1 0.54 0.17 0 0.11

021 1.03 1 0.34 0.46 0.19 0.31

102 1.11 1 0.61 0.38 6.31 · 10−2 0.3

120 1.46 1 0.32 0.66 0.23 0.23

201 1.18 1 0.59 0.46 0.13 0.34

210 1.62 1 0.71 0.71 0.2 0.33
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Figure A-9: nell-1.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 3.6 1 1.7 0.82 0 6.7

021 2.81 1 1.7 3.53 3.32 3.42

102 3.67 1 1.85 1.17 0.61 4.19

120 2.67 1 1.85 2.27 2.13 2.14

201 1.54 1 0.87 0.76 0.67 1.01

210 1.52 1 0.97 0.83 0.75 0.81

Figure A-10: nell-2.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 3.42 1 1.98 1.1 0 3.42

021 2.28 1 1.65 1.47 1.22 1.34

102 4.62 1 2.41 1.48 0.43 3.02

120 2.35 1 1.83 1.26 1.01 1.13

201 2.67 1 1.2 0.81 0.57 0.83

210 2.1 1 1.3 0.72 0.51 0.57

Figure A-11: vast-2015-mc1-3d.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla k-sadilla radix

012 3.61 1 1.18 0.29 0 3.59

021 3.11 1 1.08 1.64 0.65 2.47

102 2.8 1 1.21 0.6 0.52 0.95

120 2.4 1 1.06 1.3 0.64 0.73

201 3.1 1 3.35 1.33 0.41 2.58

210 1.84 1 1.96 0.83 0.38 0.58
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Figure A-12: chicago-crime-comm.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla 3-sadilla k-sadilla radix

0123 2.45 1 1.09 0.73 0.29 0 2.35

0132 1.98 1 1.11 0.83 0.98 0.72 1.06

0213 1.79 1 1.01 0.84 0.68 0.51 1.34

0231 1.83 1 1.11 0.99 1.23 1.04 1.29

0312 1.78 1 1.12 0.74 0.53 0.32 0.94

0321 1.98 1 1.29 1.07 0.81 0.7 1.23

1023 3.44 1 1.95 0.99 0.61 0.35 2.03

1032 2.65 1 1.72 0.98 0.93 0.77 1.04

1203 1.62 1 1.53 0.75 0.36 0.25 0.67

1230 1.65 1 1.54 1.13 0.83 0.5 0.56

1302 1.8 1 1.62 0.79 0.37 0.22 0.53

1320 1.8 1 1.66 1.26 0.61 0.29 0.48

2013 3.9 1 1.84 0.88 0.63 0.34 1.93

2031 2.8 1 1.55 0.83 1.14 0.93 1.33

2103 1.9 1 1.45 0.91 0.53 0.48 0.67

2130 1.87 1 1.46 1.32 0.81 0.49 0.56

2301 1.98 1 1.6 1.02 0.61 0.48 0.7

2310 1.92 1 1.56 1.4 0.75 0.49 0.55

3012 4.37 1 2.07 1.05 0.69 0.32 1.61

3021 2.83 1 1.66 0.97 1.35 1.16 1.29

3102 2.06 1 1.53 0.85 0.4 0.24 0.56

3120 1.91 1 1.47 1.29 0.6 0.29 0.48

3201 1.91 1 1.58 0.7 0.33 0.22 0.61

3210 1.94 1 1.62 1.13 0.76 0.47 0.49
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Figure A-13: delicious-4d.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla 3-sadilla k-sadilla radix

0123 2.88 1 1.17 0.38 0.26 0 4.45

0132 3.05 1 1.25 0.41 1.9 1.53 4.1

0213 2.33 1 1.33 1.38 1.17 1.03 2.11

0231 2.33 1 1.35 1.44 1.85 1.64 2.34

0312 2.29 1 1.16 1.12 0.95 0.68 2.6

0321 2.28 1 1.25 1.29 2.12 1.92 2.57

1023 2.14 1 1.08 0.87 0.79 0.69 1.65

1032 2.15 1 1.04 0.88 1.51 1.34 1.7

1203 1.89 1 1.1 1.18 1.1 1.01 1.45

1230 1.9 1 1.1 1.26 1.25 1.15 1.35

1302 1.9 1 1.06 0.75 0.73 0.56 1.24

1320 1.83 1 1.08 0.76 1.15 1.05 1.23

2013 3.43 1 1.37 0.78 0.62 0.48 1.97

2031 3.04 1 1.33 0.78 1.83 1.64 1.94

2103 2.53 1 1.49 1.16 1.08 0.98 1.28

2130 2.47 1 1.5 1.22 1.02 0.92 1.1

2301 2.26 1 1.39 0.76 0.6 0.49 1.46

2310 2.41 1 1.53 1.03 1.23 1.13 1.17

3012 4.32 1 1.85 0.89 0.66 0.35 3.65

3021 3.33 1 1.63 0.88 2.16 1.99 2.67

3102 2.4 1 1.63 1.13 1.1 0.85 1.55

3120 2.44 1 1.67 1.22 1.53 1.4 1.59

3201 2.34 1 1.67 0.87 0.71 0.57 1.61

3210 2.5 1 1.83 1.15 1.39 1.28 1.31
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Figure A-14: enron.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla 3-sadilla k-sadilla radix

0123 2.63 1 1.68 1.12 0.32 0 2.43

0132 1.99 1 1.48 1.09 0.74 0.33 1.16

0213 1.69 1 1.24 0.93 0.73 0.58 1.06

0231 1.67 1 1.25 1.1 1.13 0.87 0.93

0312 1.75 1 1.39 0.75 0.58 0.23 0.93

0321 1.69 1 1.37 0.95 0.96 0.73 0.92

1023 3.63 1 1.8 1.46 0.65 0.35 2.33

1032 2.52 1 1.51 1.31 1 0.57 1.15

1203 2.08 1 1.39 1.13 1.04 0.83 1.13

1230 2.18 1 1.47 1.27 1.28 1.1 1.3

1302 2.23 1 1.54 0.72 0.69 0.28 0.94

1320 2.3 1 1.59 0.79 1.08 1.01 1.19

2013 2.74 1 1.26 0.91 0.63 0.42 1.07

2031 2.18 1 1.19 0.93 1.21 0.97 0.81

2103 1.9 1 1.16 0.76 0.69 0.52 0.69

2130 2 1 1.24 0.86 0.77 0.68 0.84

2301 1.86 1 1.25 0.76 0.74 0.46 0.74

2310 1.93 1 1.3 0.89 0.8 0.64 0.72

3012 4.55 1 1.83 1.46 1.07 0.32 2.03

3021 2.57 1 1.33 1.08 1.21 0.96 1.06

3102 3.09 1 1.54 1 0.95 0.41 1.24

3120 3.04 1 1.58 1.04 1.43 1.31 1.49

3201 2.2 1 1.33 0.82 0.78 0.49 0.81

3210 2.37 1 1.43 0.96 0.91 0.86 0.96
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Figure A-15: flickr-4d.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla 3-sadilla k-sadilla radix

0123 2.98 1 1.27 0.41 0.25 0 4.26

0132 2.96 1 1.3 0.41 1.22 0.76 2.95

0213 2.2 1 1.26 1.14 0.9 0.81 1.45

0231 2.09 1 1.19 1.12 1.38 1.12 1.5

0312 2.92 1 1.29 1.55 1.04 0.69 3.91

0321 2.1 1 1.15 1.29 1.65 1.38 1.87

1023 3.35 1 1.02 1.05 0.89 0.73 2.02

1032 3.33 1 1.06 1.05 1.3 0.98 2.11

1203 3.41 1 1.11 2.33 2.33 2.18 2.67

1230 3.26 1 1.08 2.38 2.66 2.37 2.57

1302 3.5 1 1.1 1.03 1.08 0.76 1.81

1320 3.4 1 1.13 1.07 1.76 1.57 1.79

2013 3.8 1 1.41 0.98 0.65 0.5 1.66

2031 3.82 1 1.41 1.01 1.84 1.46 1.82

2103 3.19 1 1.53 1.14 1.19 1.04 1.38

2130 3.09 1 1.48 1.14 1.1 0.99 1.18

2301 2.66 1 1.34 0.9 0.81 0.54 1.31

2310 2.76 1 1.41 1.01 1.18 1 1.11

3012 4.24 1 2.08 1.15 0.71 0.34 3.56

3021 2.89 1 1.63 1.02 1.53 1.25 1.63

3102 2.38 1 1.72 0.85 0.8 0.64 1.3

3120 2.47 1 1.74 0.85 1.75 1.65 1.79

3201 2.2 1 1.64 0.79 0.71 0.5 1.16

3210 2.32 1 1.73 0.92 1.06 1 1.04

76



Figure A-16: nips.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla 3-sadilla k-sadilla radix

0123 3.44 1 1.67 1.46 0.3 0 3.34

0132 3.27 1 1.61 1.41 2.04 0.66 2.95

0213 0.83 1 0.43 0.75 0.71 0.65 0.86

0231 0.84 1 0.43 0.74 0.9 0.8 0.85

0312 3.3 1 1.63 2.26 2.06 0.67 3.06

0321 0.6 1 0.31 0.41 0.59 0.52 0.59

1023 5.12 1 2.25 2 0.87 0.56 3.62

1032 4.95 1 2.19 1.95 2.38 1.01 2.92

1203 3.41 1 1.75 1.9 1.89 1.48 2.35

1230 3.4 1 1.75 1.91 2.36 2.13 2.05

1302 5.01 1 2.21 2.29 2.23 0.83 3.04

1320 4.15 1 1.93 1.9 2.46 2.2 2.84

2013 2.52 1 1.18 0.71 0.63 0.49 1.09

2031 2.43 1 1.16 0.7 1.02 0.8 1.06

2103 2.14 1 1.4 0.76 0.75 0.63 0.81

2130 2.08 1 1.41 0.7 0.84 0.72 0.82

2301 2.51 1 1.15 1.21 0.98 0.78 1.05

2310 2.1 1 1.25 1.3 0.87 0.77 0.88

3012 3.15 1 2.87 1.97 1.73 0.46 2.91

3021 1.79 1 1.7 1.13 1.83 1.61 1.8

3102 2.42 1 2.29 1.29 1.22 0.46 1.66

3120 2.51 1 2.38 1.35 1.76 1.59 2.01

3201 1.81 1 1.67 0.82 0.64 0.48 0.84

3210 1.98 1 1.92 1.22 0.92 0.82 0.93
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Figure A-17: uber.tns results normalized by splatt
qsort splatt 1-sadilla 2-sadilla 3-sadilla k-sadilla radix

0123 3.36 1 2.16 1.48 0.62 0 2.79

0132 2.23 1 1.65 1.32 1.06 0.78 1.43

0213 1.91 1 1.4 1.03 0.77 0.45 1.47

0231 1.99 1 1.42 1.31 1.31 1.1 1.64

0312 1.92 1 1.5 0.76 0.6 0.34 1.11

0321 2.09 1 1.64 1.11 1.09 0.9 1.38

1023 4.49 1 2.87 1.91 1.06 0.47 2.62

1032 2.7 1 1.97 1.47 1.43 1.15 1.38

1203 1.87 1 1.68 0.98 0.61 0.36 0.97

1230 1.81 1 1.68 1.34 0.98 0.68 1.04

1302 1.89 1 1.73 0.75 0.47 0.26 0.73

1320 2.02 1 1.83 1.17 0.85 0.6 0.9

2013 3.87 1 1.98 1.3 0.86 0.45 2.2

2031 2.53 1 1.64 1.18 1.38 1.29 1.63

2103 2.12 1 1.48 1.18 0.84 0.61 0.81

2130 1.94 1 1.46 1.49 0.92 0.64 0.97

2301 1.84 1 1.54 0.96 0.7 0.53 0.93

2310 1.9 1 1.6 1.31 1.05 0.71 0.88

3012 4.71 1 2 1.31 0.91 0.45 2.25

3021 2.98 1 1.66 1.2 1.53 1.29 1.67

3102 2.47 1 1.53 1.19 0.86 0.61 0.8

3120 2.31 1 1.46 1.47 0.91 0.57 0.96

3201 2.17 1 1.54 0.95 0.69 0.53 0.92

3210 2.25 1 1.6 1.29 1.04 0.79 0.88
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Figure A-18: lbnl-network.tns results normalized by splatt (1)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

01234 1.99 1 1.4 1.31 1.2 1.12 0 1.45

01243 1.85 1 1.31 1.21 1.12 0.89 0.74 1.41

01324 1.62 1 1.12 1.06 1.24 1.21 0.39 0.98

01342 1.7 1 1.21 1.13 1.35 1.08 0.95 1.19

01423 1.85 1 1.31 1.22 0.82 0.76 0.61 1.29

01432 1.81 1 1.33 1.22 0.81 1.16 1.03 1.32

02134 1.45 1 1 1.21 1.16 1.08 0.33 0.97

02143 1.53 1 1.09 1.3 1.25 0.95 0.83 0.99

02314 1.44 1 0.98 1.2 1.37 1.32 0.58 0.96

02341 1.48 1 1.07 1.29 1.49 1.19 1.07 1.1

02413 1.57 1 1.12 1.37 0.89 0.9 0.84 1.15

02431 1.61 1 1.12 1.38 0.97 1.26 1.14 1.07

03124 1.5 1 1.05 1.19 1.11 1.1 0.35 0.89

03142 1.62 1 1.18 1.3 1.24 1.02 0.82 1.09

03214 1.49 1 1.04 1.17 1.31 1.28 0.56 0.93

03241 1.52 1 1.1 1.23 1.41 1.13 1.03 1.05

03412 1.69 1 1.21 1.32 1 0.99 0.87 1.16

03421 1.71 1 1.21 1.35 0.99 1.27 1.15 1.12

04123 2.01 1 1.47 0.84 0.84 0.84 0.7 1.41

04132 2.04 1 1.46 0.83 0.84 1.29 1.15 1.42

04213 2.04 1 1.47 0.86 1.18 1.17 1.04 1.38

04231 2 1 1.45 0.84 1.16 1.51 1.36 1.37

04312 2 1 1.45 0.84 1.19 1.2 1.01 1.4

04321 2.03 1 1.46 0.85 1.21 1.52 1.39 1.41
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Figure A-19: lbnl-network.tns results normalized by splatt (2)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

10234 2.55 1 1.82 1.62 1.51 1.41 0.34 1.4

10243 2.26 1 1.65 1.46 1.37 1.08 0.94 1.3

10324 2.16 1 1.52 1.37 1.43 1.44 0.56 1.11

10342 2.31 1 1.69 1.51 1.59 1.38 1.24 1.25

10423 2.29 1 1.7 1.49 1.04 1.04 0.91 1.24

10432 2.3 1 1.69 1.5 0.97 1.24 1.22 1.28

12034 1.79 1 1.41 1.2 1.17 1.1 0.37 0.94

12043 1.77 1 1.43 1.25 1.22 0.98 0.88 1.02

12304 1.67 1 1.31 1.14 1.2 1.19 0.49 0.89

12340 1.79 1 1.46 1.25 1.33 0.95 0.84 0.95

12403 1.85 1 1.5 1.28 0.76 0.76 0.71 1.04

12430 1.87 1 1.51 1.32 0.83 1.05 0.94 1.08

13024 1.72 1 1.39 1.14 1.11 1.07 0.36 0.91

13042 1.95 1 1.54 1.26 1.21 1.07 0.96 1.03

13204 1.69 1 1.37 1.16 1.2 1.19 0.49 0.89

13240 1.89 1 1.49 1.27 1.33 0.95 0.85 0.9

13402 1.99 1 1.6 1.36 0.87 0.88 0.76 1.08

13420 2.01 1 1.62 1.36 0.88 1.05 0.93 1.07

14023 2.31 1 1.86 0.81 0.82 0.81 0.68 1.27

14032 2.34 1 1.88 0.82 0.81 1.24 1.04 1.24

14203 2.29 1 1.9 0.81 1 1.01 0.88 1.25

14230 2.32 1 1.91 0.82 1.01 1.23 1.09 1.27

14302 2.32 1 1.9 0.82 1.08 1.08 0.94 1.31

14320 2.38 1 1.85 0.8 1.07 1.27 1.11 1.3
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Figure A-20: lbnl-network.tns results normalized by splatt (3)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

20134 2.7 1 1.75 1.63 1.56 1.45 0.36 1.36

20143 2.4 1 1.6 1.5 1.42 1.05 0.91 1.36

20314 2.06 1 1.36 1.26 1.47 1.41 0.56 1.09

20341 2.3 1 1.5 1.39 1.66 1.32 1.19 1.28

20413 2.33 1 1.58 1.45 1 1 0.87 1.33

20431 2.35 1 1.59 1.44 1.01 1.25 1.1 1.32

21034 2.07 1 1.47 1.43 1.36 1.29 0.44 1.1

21043 1.99 1 1.39 1.35 1.32 1.02 0.91 1.12

21304 1.8 1 1.28 1.24 1.32 1.3 0.54 0.96

21340 2.05 1 1.42 1.38 1.46 0.96 0.93 1.1

21403 2.04 1 1.46 1.41 0.82 0.82 0.77 1.09

21430 2.07 1 1.45 1.42 0.89 1.12 1.01 1.07

23014 1.85 1 1.27 1.24 1.18 1.14 0.39 0.96

23041 2.02 1 1.41 1.43 1.35 1.06 0.95 1.15

23104 1.64 1 1.17 1.22 1.19 1.18 0.49 0.88

23140 1.83 1 1.32 1.32 1.29 0.9 0.85 1

23401 2.07 1 1.46 1.51 0.91 0.91 0.79 1.14

23410 2.05 1 1.46 1.53 0.9 1.13 1 1.15

24013 2.53 1 1.78 0.87 0.88 0.87 0.73 1.39

24031 2.48 1 1.8 0.89 0.88 1.31 1.15 1.38

24103 2.45 1 1.8 0.82 1.1 1.16 1.01 1.43

24130 2.5 1 1.81 0.88 1.14 1.37 1.23 1.28

24301 2.56 1 1.79 0.89 1.16 1.16 1.03 1.31

24310 2.5 1 1.78 0.82 1.16 1.37 1.23 1.42
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Figure A-21: lbnl-network.tns results normalized by splatt (4)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

30124 2.81 1 1.87 1.61 1.5 1.48 0.36 1.44

30142 2.95 1 1.96 1.71 1.59 1.38 1.14 1.58

30214 2.28 1 1.55 1.32 1.57 1.53 0.62 1.14

30241 2.43 1 1.68 1.47 1.78 1.47 1.34 1.34

30412 2.62 1 1.78 1.54 1.21 1.19 1.06 1.45

30421 2.6 1 1.77 1.55 1.2 1.59 1.44 1.37

31024 1.79 1 1.36 1.14 1.09 1.09 0.37 0.9

31042 2.01 1 1.55 1.26 1.23 1.07 0.96 1.04

31204 1.77 1 1.35 1.16 1.21 1.21 0.49 0.89

31240 1.9 1 1.52 1.29 1.35 0.97 0.86 1.02

31402 2.1 1 1.64 1.4 0.9 0.9 0.78 1.11

31420 2.12 1 1.68 1.39 0.89 1.07 0.96 1.11

32014 1.67 1 1.32 1.12 1.06 1.03 0.34 0.86

32041 1.84 1 1.44 1.23 1.18 0.98 0.88 1.01

32104 1.71 1 1.34 1.22 1.16 1.19 0.5 0.9

32140 1.94 1 1.53 1.37 1.37 0.89 0.82 1.01

32401 1.95 1 1.51 1.39 0.83 0.83 0.72 1.05

32410 1.96 1 1.51 1.36 0.83 1.03 0.93 1.07

34012 2.57 1 1.97 0.88 0.84 0.88 0.75 1.29

34021 2.51 1 2.01 0.89 0.89 1.33 1.19 1.36

34102 2.52 1 2.02 0.86 1.06 1.17 1.01 1.42

34120 2.56 1 1.97 0.89 1.15 1.36 1.21 1.39

34201 2.59 1 1.96 0.89 1.1 1.09 0.96 1.37

34210 2.5 1 1.97 0.88 1.1 1.28 1.15 1.35
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Figure A-22: lbnl-network.tns results normalized by splatt (5)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

40123 5.23 1 1.53 1.43 1.42 1.42 1.08 2.83

40132 5.14 1 1.43 1.34 1.41 2.69 2.27 2.79

40213 5.24 1 1.52 1.42 2.64 2.62 2.23 2.77

40231 5.01 1 1.48 1.37 2.57 3.68 3.33 2.44

40312 5.04 1 1.46 1.36 2.59 2.59 2.19 2.65

40321 5.02 1 1.47 1.37 2.37 3.47 3.31 2.68

41023 5.09 1 1.47 1.89 1.88 1.9 1.57 2.76

41032 5.01 1 1.47 1.89 1.88 3.04 2.74 2.77

41203 4.92 1 1.49 1.89 2.28 2.29 1.94 2.75

41230 4.99 1 1.49 1.9 2.3 2.75 2.39 2.75

41302 5.02 1 1.48 1.88 2.32 2.32 2 2.74

41320 5.02 1 1.47 1.89 2.35 2.71 2.4 2.75

42013 5.14 1 1.52 1.84 1.82 1.83 1.49 2.76

42031 5.22 1 1.55 1.84 1.85 3.05 2.72 2.76

42103 5.21 1 1.52 1.67 2.07 2.24 1.9 2.53

42130 5.22 1 1.54 1.84 2.26 2.72 2.37 2.48

42301 5.18 1 1.53 1.83 2.29 2.18 1.94 2.76

42310 5.03 1 1.52 1.81 2.26 2.67 2.38 2.74

43012 5.15 1 1.51 1.92 1.92 1.79 1.49 2.83

43021 5.02 1 1.51 1.94 1.94 3.05 2.71 2.79

43102 5.1 1 1.51 1.94 2.35 2.34 2.04 2.78

43120 5.02 1 1.51 1.93 2.34 2.75 2.43 2.78

43201 5.17 1 1.4 1.94 2.33 2.31 2 2.82

43210 5.06 1 1.46 1.96 2.33 2.64 2.44 2.83
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Figure A-23: vast-2015-mc1-5d.tns results normalized by splatt (1)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

01234 2.67 1 0.84 0.17 0.17 0.17 0 3.34

01243 2.67 1 0.86 0.18 0.18 2.34 2.06 3.23

01324 2.69 1 0.85 0.18 2.37 2.19 2.21 3.51

01342 2.69 1 0.86 0.18 2.3 5.12 4.49 4.01

01423 2.64 1 0.85 0.18 2.22 2.37 2.14 3.46

01432 2.72 1 0.86 0.18 2.46 4.75 4.61 3.79

02134 2.26 1 0.74 1.15 0.65 0.6 0.49 2.85

02143 2.25 1 0.74 1.19 0.65 2.6 2.53 2.85

02314 1.81 1 0.83 1.1 1.17 1.12 0.97 1.92

02341 1.74 1 0.85 1.08 1.22 1.98 1.91 1.64

02413 1.86 1 0.83 1.1 1.11 1.13 0.92 1.94

02431 1.82 1 0.83 1.06 1.21 1.99 1.88 1.54

03124 1.98 1 0.92 1.13 0.95 1.02 0.86 2.03

03142 2.05 1 0.92 1.09 0.99 2.45 2.25 2.46

03214 2.03 1 0.91 1.12 1.56 1.6 1.32 1.99

03241 1.94 1 0.9 1.07 1.69 2.26 2.02 1.85

03412 1.93 1 0.9 1.14 2.02 2 1.76 2.07

03421 1.94 1 0.9 1.15 1.99 2.61 2.34 1.69

04123 2.08 1 0.93 1.13 1.01 1.03 0.85 2.15

04132 2.08 1 0.93 1.13 0.96 2.24 2.37 2.49

04213 1.98 1 0.91 1.13 1.63 1.63 1.43 2.16

04231 1.93 1 0.9 1.07 1.7 2.19 2.04 1.86

04312 1.95 1 0.9 1.16 2.11 2.01 1.91 1.9

04321 1.98 1 0.91 1.16 2.06 2.52 2.35 1.91
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Figure A-24: vast-2015-mc1-5d.tns results normalized by splatt (2)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

10234 1.99 1 0.85 0.42 0.45 0.44 0.38 1.32

10243 2.06 1 0.84 0.44 0.45 1.56 1.45 1.28

10324 2.11 1 0.84 0.46 1.51 1.61 1.45 1.3

10342 1.96 1 0.85 0.43 1.45 2.5 2.58 1.56

10423 1.92 1 0.84 0.44 1.44 1.57 1.43 1.25

10432 2 1 0.83 0.45 1.49 2.52 2.62 1.44

12034 1.67 1 0.7 0.89 0.52 0.54 0.5 1

12043 1.64 1 0.68 0.87 0.5 1.4 1.29 1.06

12304 1.34 1 0.8 0.92 0.57 0.5 0.45 0.95

12340 1.34 1 0.8 0.89 0.7 0.59 0.5 0.63

12403 1.32 1 0.76 0.88 0.58 0.5 0.42 0.89

12430 1.32 1 0.79 0.87 0.71 0.61 0.49 0.64

13024 1.4 1 0.86 0.61 0.47 0.48 0.42 1.03

13042 1.48 1 0.85 0.61 0.47 1.23 1.1 1.14

13204 1.37 1 0.84 0.58 0.81 0.68 0.62 1.03

13240 1.4 1 0.88 0.71 0.87 0.61 0.52 0.74

13402 1.34 1 0.85 0.68 0.58 0.54 0.48 0.68

13420 1.34 1 0.86 0.7 0.55 0.72 0.7 0.73

14023 1.39 1 0.82 0.58 0.49 0.49 0.43 0.96

14032 1.47 1 0.84 0.61 0.46 1.17 1.04 1.22

14203 1.34 1 0.81 0.6 0.82 0.64 0.62 0.92

14230 1.38 1 0.85 0.7 0.88 0.63 0.51 0.75

14302 1.36 1 0.82 0.73 0.58 0.54 0.45 0.75

14320 1.39 1 0.82 0.72 0.55 0.72 0.63 0.74
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Figure A-25: vast-2015-mc1-5d.tns results normalized by splatt (3)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

20134 2.18 1 2.43 0.97 0.46 0.46 0.32 2.48

20143 2.21 1 2.39 0.95 0.46 2.43 2.3 2.69

20314 1.57 1 1.71 0.84 1.14 1.08 1.01 1.55

20341 1.54 1 1.66 0.85 1.17 1.86 1.69 1.33

20413 1.61 1 1.68 0.84 1.21 1.09 1.01 1.66

20431 1.53 1 1.65 0.83 1.15 1.81 1.7 1.43

21034 1.24 1 1.3 0.58 0.33 0.34 0.27 0.82

21043 1.31 1 1.3 0.57 0.33 1.01 0.87 0.74

21304 1.21 1 1.27 0.78 0.55 0.46 0.38 0.9

21340 1.26 1 1.26 0.79 0.67 0.55 0.47 0.6

21403 1.21 1 1.27 0.76 0.57 0.43 0.42 0.85

21430 1.23 1 1.25 0.73 0.66 0.55 0.42 0.58

23014 1.3 1 1.32 0.6 0.25 0.21 0.17 0.84

23041 1.26 1 1.34 0.63 0.28 0.55 0.47 0.91

23104 1.32 1 1.42 0.99 0.56 0.47 0.45 0.8

23140 1.33 1 1.32 0.96 0.65 0.57 0.52 0.63

23401 1.18 1 1.29 0.9 0.53 0.27 0.2 0.7

23410 1.34 1 1.37 1.01 0.82 0.55 0.47 0.59

24013 1.3 1 1.34 0.59 0.25 0.2 0.16 0.87

24031 1.23 1 1.33 0.62 0.28 0.5 0.45 0.9

24103 1.32 1 1.41 1.01 0.54 0.47 0.45 0.82

24130 1.35 1 1.39 0.97 0.66 0.59 0.54 0.65

24301 1.22 1 1.28 0.9 0.53 0.27 0.19 0.71

24310 1.31 1 1.35 1.01 0.83 0.55 0.43 0.59
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Figure A-26: vast-2015-mc1-5d.tns results normalized by splatt (4)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

30124 4.33 1 1.86 0.7 0.54 0.56 0.39 2.76

30142 4.09 1 1.81 0.68 0.53 1.61 1.42 3.38

30214 4.13 1 1.82 0.67 0.98 0.83 0.7 2.76

30241 3.38 1 1.65 0.64 0.9 1.59 1.3 2.32

30412 3.33 1 1.57 0.62 1.23 1.27 1.06 2.69

30421 3.36 1 1.6 0.62 1.22 1.55 1.26 2.35

31024 1.96 1 1.4 0.73 0.64 0.61 0.53 1.19

31042 1.9 1 1.4 0.78 0.65 1.05 1.09 1.37

31204 1.87 1 1.32 0.72 0.89 0.78 0.73 1.14

31240 1.78 1 1.36 0.83 1.05 0.86 0.73 0.95

31402 1.84 1 1.32 0.87 0.72 0.68 0.62 0.96

31420 1.79 1 1.36 0.84 0.8 0.99 0.84 0.96

32014 2.86 1 1.27 1.65 0.8 0.71 0.67 2

32041 2.52 1 1.24 1.54 0.82 1.26 1.2 1.69

32104 1.63 1 1.17 1.39 0.71 0.55 0.5 0.96

32140 1.65 1 1.17 1.33 0.81 0.73 0.62 0.77

32401 1.57 1 1.15 1.32 0.67 0.33 0.26 0.85

32410 1.61 1 1.2 1.37 1.03 0.63 0.57 0.69

34012 1.67 1 1.25 0.68 0.31 0.29 0.22 1.11

34021 1.73 1 1.26 0.7 0.32 0.43 0.36 1.01

34102 1.74 1 1.33 1.06 0.67 0.59 0.57 0.76

34120 1.67 1 1.26 1.06 0.61 0.82 0.69 0.76

34201 1.61 1 1.19 0.64 0.86 0.47 0.43 0.9

34210 1.6 1 1.29 1.02 1.2 0.68 0.6 0.66
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Figure A-27: vast-2015-mc1-5d.tns results normalized by splatt (5)

qsort splatt 1-sadilla 2-sadilla 3-sadilla 4-sadilla k-sadilla radix

40123 4.22 1 1.84 0.67 0.54 0.55 0.38 2.99

40132 4.3 1 1.9 0.7 0.55 1.68 1.51 3.18

40213 4.2 1 1.87 0.67 1 0.88 0.67 2.9

40231 3.32 1 1.62 0.61 0.87 1.53 1.23 2.26

40312 3.36 1 1.57 0.62 1.21 1.17 1.13 2.42

40321 3.41 1 1.6 0.63 1.31 1.55 1.36 2.38

41023 1.95 1 1.35 0.74 0.63 0.58 0.58 1.16

41032 1.91 1 1.41 0.72 0.62 1.08 1.01 1.37

41203 1.89 1 1.34 0.77 0.92 0.76 0.74 1.14

41230 1.8 1 1.37 0.87 1.04 0.82 0.7 0.99

41302 1.87 1 1.36 0.89 0.79 0.78 0.69 0.99

41320 1.81 1 1.31 0.83 0.75 0.94 0.82 0.91

42013 2.93 1 1.28 1.69 0.89 0.8 0.61 2

42031 2.51 1 1.24 1.53 0.81 1.29 1.19 1.83

42103 1.67 1 1.21 1.36 0.71 0.55 0.54 0.98

42130 1.65 1 1.15 1.35 0.78 0.68 0.62 0.83

42301 1.58 1 1.15 1.32 0.67 0.32 0.25 0.87

42310 1.62 1 1.2 1.35 1.02 0.66 0.52 0.68

43012 1.72 1 1.2 0.69 0.3 0.28 0.21 1.06

43021 1.72 1 1.24 0.67 0.31 0.43 0.35 1.03

43102 1.73 1 1.29 1.05 0.66 0.57 0.57 0.76

43120 1.68 1 1.29 1.06 0.67 0.8 0.69 0.74

43201 1.63 1 1.19 0.63 0.88 0.51 0.42 0.9

43210 1.65 1 1.28 1.03 1.18 0.65 0.55 0.74
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