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Abstract

In this thesis, I attempt to give some guidance on how to automatically optimize
programs using a domain-specific-language (DSLs) compiler that exposes a set of
scheduling commands. These DSLs have proliferated as of late, including Halide,
TACO, Tiramisu and TVM, to name a few. The scheduling commands allow suc-
cinct expression of the programmer’s desire to perform certain loop transformations,
such as strip-mining, tiling, collapsing and parallelization, which the compiler pro-
ceeds to carry out. I explore if we can automatically generate schedules with good
performance.

The main difficulty in searching for good schedules is the astronomical number
of valid schedules for a particular program. I describe a system which generates a
list of candidate schedules through a set of modular stages. Different optimization
decisions are made at each stage, to trim down the number of schedules considered.
I argue that certain sequences of scheduling commands are equivalent in their effect
in partitioning the iteration space, and introduce heuristics that limit the number of
permutations of variables. I implement these ideas for the open-source TACO system.
I demonstrate several orders of magnitude reduction in the effective schedule search
space. I also show that for most of the problems considered, we can generate schedules
better than or equal to hand-tuned schedules in terms of performance.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In recent years, many domain specific languages (DSLs) have been developed to de-

scribe scientific or machine learning computations. These DSLs typically target pro-

grams that can be expressed as loop nests. For example, the pairwise forces compu-

tation in molecular dynamics simulations involve a double for loop over all the atoms.

Image filtering algorithms involve 2D stencil computations which can be expressed

as a double for loop over the filter elements. Notable recent DSLs include Halide

(originally developed for image processing), TACO (sparse tensor algebra), Tiramisu

(sparse/dense linear algebra) and TVM (deep learning) [18, 3, 5, 10].

In addition to a language to describe the computation using an algorithmic lan-

guage, these recent DSLs typically include a way to describe the concrete implementa-

tion of the algorithm, which is called a schedule. A specification of the computation

and the schedule completes the program. The idea is that programmer can change

the schedule without impacting the computation, which allows rapid experimentation

with different implementations to find the fastest one [17]. The ease of performance

engineering is arguably why these DSLs exist. A lot of recent effort has focused on

autoscheduling—automatically finding the best schedule for the DSL for a specific

computation to get the best performance. The autoscheduler searches through the

space of possible schedules to find the best. [13, 1]

A schedule is typically expressed by a sequence of scheduling commands, exposed

by the scheduling API of the DSL, for example, unroll, reorder, or parallelize [18,
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10]. These scheduling commands effect different loop transformations in the DSL.

Many recent DSLs adopt this approach, including Halide, TACO, Tiramisu and TVM.

Different systems go to different depths on autoscheduling. TVM for example, needs

the user to manually specify the AST (template in TVM parlance). Auto-TVM then

proceeds to find the best parameters for this template, i.e. tile size, block size etc

[6]. The latest Halide autoscheduler generates this tree using a machine learning

approach, trained on billions of fake programs [1].

The autoscheduler could be viewed as a compiler. Whereas a traditional compiler

translates a piece of code into a sequence of instructions, the autoscheduler translates

a tensor algebra problem into a sequence of these scheduling commands.

Modern compilers are designed with multiple optimization passes. These opti-

mization passes makes the compiler modular and extensible. Each optimization pass

produces an intermediate representation of the original piece of code. These interme-

diate representations contain strictly more detail than the original code – they encode

choices made by the compiler at each stage to optimize the performance.

In this thesis, I will present autoscheduler whose design is inspired by the multi-

stage heuristics-based optimizations in modern compilers, in contrast with the one-

shot machine learning approaches typically employed today. Starting from a problem

described in the tensor algebra notation, it makes a sequence of decisions, which in-

crementally specify more and more of the schedule. The sequence of decision involves

how to partition the iteration space, how to reorder the index variables, which vari-

ables to parallelize, and finally what values tunable parameters take. At each step

in this sequence, there are multiple choices to explore, expanding upon which we get

even more choices at the next step, as shown in Figure 1-1a.

The first major stage is the generation of a list of schedule templates. A

schedule template is a schedule without parameters such as split factors filled in, a.k.a.

a loop transformation strategy without parameters. This stage could be divided into

two substages: partition and assignment. In the first substage I decide how to cut

up the iteration space. The second substage decides how to iterate over and through

the chunks. We will go through this in detail later.
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Figure 1-1: a) The autoscheduler has a sequence of stages, where each stage emit
possible choices for the next stage to explore further. b) If we restrict some choices
at some intermediate stage, it can greatly affect the number of schedules generated
in the end. Generally the earlier we restrict choices the greater effect we have.

The second stage is filling in the numbers in each schedule template to generate

schedules that can be lowered into code using a DSL. Needless to say, each schedule

template can correspond to multiple schedules.

These two stages generate a list of candidate schedules. One now has to search

through all the schedules we have generated. There are many approaches in literature,

from recent neural network based approaches such as [6] to decades-old approaches

like Thompson sampling. Figure 1-2 provides a visual description of the search space.

There is some confusion in the field pertaining to exactly what autoscheduling

entails. Some works, for example autoTVM, define autoscheduling to be finding

the best parameters for a fixed schedule template [5]. More recent works, [1] define

autoscheduling to also include the generation of the schedule template. Similarly, in

this work, I aim to both generate the schedule template and the schedule.

The key challenge in autoscheduling is that the list of viable schedules for a par-

ticular problem is often astronomically large. As a thought example, let’s imagine
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Figure 1-2: A visual illustration of the space of schedules. Each schedule template
can generate a family of schedules, by changing the values of the tunable parameters.
Different schedule templates can generate families of different sizes. Therefore, elimi-
nating one schedule template might have a substantially larger effect on reducing the
search space than eliminating another.

generating schedules for a particular program, say sparse matrix dense vector multi-

plication: 𝑦(𝑖) = 𝐴(𝑖, 𝑗) × 𝑥(𝑗). This is probably one of the simplest sparse tensor

algebra problems. In TACO, there are at least 1000 legal schedule templates for this

simple program. each of these schedule templates contains one or more parameters.

Assuming that there are at least three choices for each parameter, then each schedule

template can give rise to at least three schedules. The search algorithm at the end

would have to explore a space of three thousand schedules. If we assume that exe-

cuting a single schedule takes three seconds, then searching through this entire space

would take more than 2 hours. More complicated sparse tensor algebra problems can

take significantly longer. One could invest a lot of effort into a good search algorithm

that navigates this space efficiently, such as autoTVM or OpenTuner [5, 2]. To com-

plement those approaches, we can also invest some effort into reducing the search

space size.
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The key to reducing the search space size is restricting the set of optimizations

explored at each stage and substage, so that the total number of possible schedules

generated at the end is small enough for the search to be feasible, as illustrated in Fig-

ure 1-1b. We will design these stages based on an understanding of the computation

we are scheduling and the hardware we are targeting. I design the stages to be largely

independent of each other. For the total number at the end to be small, the number

of choices at each stage should be limited as much as possible. This means we can

either generate fewer schedule templates, or we can limit the number of parameter

choices for each schedule template. I claim that the first option is a lot more viable

than the second option. It is difficult to claim that a set of legal parameter choices is

better than another set of legal parameter choices for a particular schedule, assuming

no knowledge of the input data and underlying hardware. However, it is relatively

easier to claim that a particular schedule template is better than another schedule

template, even without the parameter values filled in.

I now justify the counter-intuitive assertion I made at the end of the last para-

graph. The schedule template makes qualitative statements about the properties of a

schedule, while the actual parameters determine quantitative aspects. For example,

the schedule template typically determines if a schedule is load-balanced, whereas

the actual parameters might determine the amount of parallelism the schedule ex-

poses. The schedule template determines the overall tiling strategy and iteration

order, whereas the actual parameters determine the tile sizes. It is much harder to

reason about the attractiveness of quantitative properties of schedules, whereas it’s

much easier to reason about their qualitative aspects. While quantitative properties

can be used to drive the machine learning systems to search the schedule space, simple

heuristics can be derived from qualitative properties to drastically reduce the search

space size.

Let’s now list some characteristics of bad schedule templates that we wish to

eliminate. The first type is illegal schedule templates that simply do not compile in

the DSL. On the grand scheme of things, they are actually not that bad, since if they

never compile, we will not have to search parameters for them. However, they can
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clutter up the schedule space, making meaningful analysis difficult. The second type

is redundant schedule templates. This means two, or a group of, schedule templates

all generate the same code. This scenario is painfully common in a lot of scheduling

languages. Naive autoschedulers for example, could get caught endlessly reordering a

couple of variables back and forth. How bad it is depends on how big the redundant

group size is, and how large the parameter search space for each of those schedule

templates is. The third type is inefficient schedule templates, which are almost

certainly slower than some other schedule template. How bad they are correlate

directly with how big their parameter search spaces are. A fundamentally flawed

schedule template that captures a significant proportion of the final schedule search

space is like a black hole that even the best search algorithms might have difficulty

escaping from. For example, in Figure 1-2, half of the schedule space is derived from

schedule template 1. If schedule template 1 is bad, then it would present such a “black

hole”.

Illegal schedule templates can be removed by following the scheduling language’s

rules. Redundant schedule templates can be removed by establishing functional

equivalences between different sequences of schedule commands. These two types of

schedule templates are relatively easy to remove. It is much harder, comparatively,

to remove inefficient schedule templates. To do so, we have to introduce subjective

criteria that good schedules probably fulfill, a.k.a. heuristics.

Up to this point, I have been talking in the context of some generic scheduling

language and some generic DSL. While I hope the ideas I describe below can apply to

many if not all of them, I will focus in particular on the DSL TACO [10]. TACO caters

to sparse tensor algebra programs, which can be described by index notations [10]. I

refer the unfamiliar reader to the multiple TACO publications for more information

[10, 9, 7]. The scheduling API is described in [20].

In the following chapters, I will first describe the different stages of the autosched-

uler in sequence (Chapter 2). I will first deal with partitioning dense and sparse itera-

tion spaces into chunks in Sections 2-4. We will see that seemingly different sequences

of scheduling commands can all describe virtually identical partition strategies. After
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partitioning, we are left with a list of derived index variables from the original index

variables. We will then explore how to reorder these derived index variables and

parallelize them. We will find that the number of unique choices here are overwhelm-

ing even for the simplest of problems. To address this, I design hardware-specific

trimming passes to eliminate inefficient reordering and parallelization strategies in

Section 5. Finally, we will describe how one can search through all the schedules gen-

erated, treating the problem in an hierarchical multi-arm bandit setting in Section

6. In Chapter 3, I will evaluate my approach on three different sparse tensor algebra

problems, SpMV, SpMM and MTTKRP on CPU and GPU. I will summarize my

approach and compare it to related works in Chapter 4.

My specific contributions in this thesis are:

1. described heuristics to limit the number of strategies to partition sparse and

dense iteration spaces into chunks

2. described heuristics to limit the number of ways to iterate through and paral-

lelize the chunks

3. constructed an automated system that implements these heuristics to automat-

ically write schedules for sparse tensor algebra problems in TACO.
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Chapter 2

Scheduling Framework

2.1 Background

Before we start, let’s discuss the TACO scheduling API we have at our disposal. For

more detail, the reader is referred to [19, 20]. As mentioned before, TACO is primar-

ily intended for sparse tensor algebra, and has scheduling commands to transform

dense and sparse loops. A sparse tensor algebra problem can be expressed in index

notation, e.g. 𝑥(𝑖) = 𝐴(𝑖, 𝑗) × 𝑦(𝑗) for sparse matrix dense vector multiplication,

where 𝐴 is a matrix in the CSR format. 𝑖 and 𝑗 are called index variables. The

ranges of the index variables define the iteration space of the program. They can

either be dense, like 𝑖, or compressed, like 𝑗. We will discuss the subtleties involved

in scheduling compressed loops in more detail later on. The important commands

that we need to know are:

1. 𝑟𝑒𝑜𝑑𝑒𝑟: swaps the order of iteration over two or more directly nested index

variables (permutes the order of for loops).

2. 𝑠𝑝𝑙𝑖𝑡: splits (strip-mines) an index variable into two nested index variables,

where the size of the inner index variable is constant. We call the two nested

index variables derived index variables.

3. 𝑑𝑖𝑣𝑖𝑑𝑒: same as split, except that it’s the size of the outer index variable that

is constant instead of the inner one.
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4. 𝑓𝑢𝑠𝑒: collapses two directly nested index variables, resulting in a new fused

index variable that iterates over the product of the coordinates of the fused

index variables.

5. 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒: parallelizes a loop over a parallel unit, e.g. OpenMP thread, GPU

block or GPU thread.

Compressed loops can be scheduled in the coordinate space or the position space,

via the 𝑝𝑜𝑠 scheduling command. We will talk about position space later.

Now that we have introduced the terminology and listed the scheduling commands,

this chapter will proceed to examine how we can use them to partition dense and

sparse iteration spaces. We will largely explore the partitioning from a geometrical

perspective, which will assist us in weeding out redundant schedules which express

the same partitioning strategy with different sequences of scheduling commands.

2.2 The Hypercube Perspective

Let’s take the example of matrix multiplication. The index notation is 𝐶(𝑖, 𝑘) =

𝐴(𝑖, 𝑗)× 𝐵(𝑗, 𝑘). We can represent the iteration space with a cube, as illustrated in

Figure 2-1. (Instead of a cube which suggest a solid object, perhaps I should empha-

size that it’s a 3D grid of points. In the following discussion, "cube" is implicitly

understood to be this 3D grid of points.) Each edge corresponds to an index

variable in the problem. The first matrix, which is sparse, is represented by the face

with the edges i and j, where j is the sparse dimension. The second matrix, which

is dense, is represented by the face with edges j and k. Each point inside this cube

represents an individual multiplication. Since the problem is sparse, we do not need

to iterate over every point inside the cube. Problems with more than 3 index variables

can natually be represented by higher order hypercubes. This is a very polyhedral

view of the world. A lot of disciples of this doctrine have written much better and

possibly more lucid explanations of this perspective [27, 4]. This polyhedral per-

spective allows to visualize what partition strategies described by different sequences
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Figure 2-1: The hypercube corresponding to matrix multiplication 𝐶(𝑖, 𝑘) = 𝐴(𝑖, 𝑗)×
𝐵(𝑗, 𝑘). If we discretize the edges, then this hypercube defines a grid of points,
which correspond to the multiplication operations. This is exactly the same as in the
Polyhedral model. Some points might not have to be visited if they correspond to
multiplication by zero in the sparse case.

of scheduling commands do to iteration space, which will help us in weeding out

redundant schedules.

We are faced with the task of taking this cube, which describes the sparse tensor

algebra problem, and specifying how it is to be actually carried out on our hardware,

be it CPU or GPU or potentially some FPGA accelerator. What does this entail?

Assuming we have some parallel hardware device, then we have to specify for each

point in this cube, two important attributes: which processor the point executes on

and when it is to be executed on said processor among all the points assigned to it.

The problem of autoscheduling can be thought of specifying these two things, for all

the points in the hypercube.

It’s important to note that the polyhedral model cares greatly about dependencies

between execution instances, i.e. points inside the cube. If some points must occur

after other points for example, then the number of transformations one can make
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to the cube are greatly restricted. Fortunately, in tensor algebra problems, all of

the execution instances are independent of one another. All of the multiplications

in the problem can occur in any order or all at once, before the reductions happen.

The reductions can also be done in any order. We thus do not have to worry about

dependency analyses here, though it can potentially be introduced into my approach

if necessary.

2.3 Dense Partition

In this section, we show how to think about partitioning a dense iteration space with

the commands 𝑓𝑢𝑠𝑒, 𝑠𝑝𝑙𝑖𝑡 and 𝑑𝑖𝑣𝑖𝑑𝑒. We show that the command 𝑓𝑢𝑠𝑒 is effectively

redundant, and we can proceed to partition each index variable independently using

𝑠𝑝𝑙𝑖𝑡 and 𝑑𝑖𝑣𝑖𝑑𝑒.

Before we proceed further, let’s attempt to establish a formalism that describes

the splitting we are going to be doing. Let us assume that the problem we are

interested in have 𝑛 index variables, which are called 𝑋1, 𝑋2, ..., 𝑋𝑛. Let’s use |𝑋𝑖|

to denote the maximum value that index variable can take (iteration bound). For

a moment, let’s assume that we cannot fuse dimensions. Then our job is to specify

partitions 𝜋1.𝜋2...𝜋𝑛 to divide up the index variables. A partition is a function defined

as 𝜋𝑖 : {0, 1...|𝑋𝑖|} → {0, 1...𝑑𝑖}, where we divide the range of index variable 𝑋𝑖 into

𝑑𝑖 non-overlapping subsets. Henceforth, we will abbreviate {0, 1...𝑥} as 𝑟𝑎𝑛𝑔𝑒(𝑥).

Because the domain of 𝜋𝑖 is discrete, we can also describe it as a sequence composed

of its action on each element in 𝑟𝑎𝑛𝑔𝑒(|𝑋𝑖|): (𝜋𝑖(0), 𝜋𝑖(1)..., 𝜋𝑖(|𝑋𝑖|)).

The partitions on each edge induce a straightforward partition of the hypercube

𝜋 :
∏︀𝑛

𝑖=1 𝑟𝑎𝑛𝑔𝑒(𝑋𝑖) → ∏︀𝑛
𝑖=1 𝑟𝑎𝑛𝑔𝑒(𝑑𝑖) through projection, as shown in Figure 2-2.

This partitions the hypercube into
∏︀𝑛

𝑖=1 𝑑𝑖 partitions. We can assign an 𝑛 long tuple

to each point in the cube specifying which partition it is in.

Let us focus on one single index variable, 𝑋𝑖 and think about what does 𝜋𝑖 have

to be. In particular, we’d like to gain some intuition regarding what 𝜋𝑖 should look

like. Naively, of course, the number of ways to partition a set of |𝑋𝑖| numbers is truly
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Figure 2-2: How we can induce a partition in 2 dimensions by partitioning each 1
dimensional-edge: 𝜋(𝑥1, 𝑥2) = (𝜋(𝑥1), 𝜋(𝑥2)).Higher dimensions are analogous.

massive. We’d like to restrict our attention to partitions that are 1) meaningful and

likely to be useful and 2) achievable using a scheduling language.

Let’s first consider the second condition, because it’s much easier to reason about.

What tools do we have to construct such a partition? As alluded to before we cannot

just arbitrarily specify this function. Let’s consider a scheduling function with two

commands: split and divide. Split is a command that divides a loop into fixed sized

inner loops, whereas divide divides a loop into a fixed number of outer loops. For

more information, please refer to [20]. For example, 𝑠𝑝𝑙𝑖𝑡(𝑋𝑖, 𝑥0, 𝑥1, 4) will produce

the following code (assuming that |𝑋𝑖| is divisible by 4):

f o r x0 = 0 . . . | Xi | / 4

f o r x1 = 0 . . . 4

Whereas 𝑑𝑖𝑣𝑖𝑑𝑒(𝑋𝑖, 𝑥0, 𝑥1, 4) will produce the following code:

f o r x0 = 0 . . . 4

f o r x1 = 0 . . | Xi | / 4

27



It is straightforward to see that the first command will produce the following

partition on 𝑟𝑎𝑛𝑔𝑒(𝑋𝑖) :

(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3...|𝑋𝑖|/4, |𝑋𝑖|/4, |𝑋𝑖|/4, |𝑋𝑖|/4)

It’s important to see that the first command can also be used to produce another

partition:

(1, 2, 3, 4, 1, 2, 3, 4...1, 2, 3, 4).

Let’s call 𝑥0 and 𝑥1 derived index variables. The first partition implicitly as-

sumes that we index the partitions with 𝑥0. However, we could also index the

chunks with 𝑥1. If we insist that in a two-level loop, the outer loop iterates over

the chunks and the inner loop iterates within a chunk, then this could be described

by 𝑠𝑝𝑙𝑖𝑡(𝑋𝑖, 𝑥0, 𝑥1, 4).𝑟𝑒𝑜𝑟𝑑𝑒𝑟(𝑥1, 𝑥0). This reorder can always be done, since the

iteration bounds of the two variables being reordered are completely independent.

This partition illustrates that the partition doesn’t necessarily have to be contigu-

ous. What does the 𝑑𝑖𝑣𝑖𝑑𝑒 command produce?

(1, 1, 1...1, 2, 2, 2...2, 3, 3, 3...3, 4, 4, 4...4) and

(1, 2, ...|𝑋𝑖|/4, 1, 2, ...|𝑋𝑖|/4, 1, 2, ...|𝑋𝑖|/4, 1, 2, ...|𝑋𝑖|/4, ).

In short, the 𝑠𝑝𝑙𝑖𝑡 command can produce a data dependent number of fixed

size contiguous chunks indexed by 𝑥0 and a fixed number of data dependent sized

noncontiguous chunks indexed by 𝑥1. Noncontigous means that the elements in the

chunk are not adjacent in memory, which could result in unfavorable spatial locality

properties. The 𝑑𝑖𝑣𝑖𝑑𝑒 command can produce a data dependent number of fixed size

noncontiguous chunks indexed by 𝑥1 and a fixed number of data dependent sized

contiguous chunks indexed by 𝑥0. I advise the reader to spend a moment reflecting

upon this.

To summarize, a partition can be characterized by three things: 1) whether or not

the number of disjoint sets, 𝑑𝑖, is statically known. 2) whether or not the size of each

disjoint set is statically known. 3) whether or not the disjoint sets are contiguous.

All three describe important qualitative aspects of the schedule, and will play an

important role in heuristics used to eliminate inefficient schedules. Let’s give a preview

here. In some parallel models, there are a limited number of parallel units available.
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If we are to assign each disjoint set in the partition to a parallel unit, then we need to

know the number of disjoint sets statically to ensure that there is sufficient parallel

resources. Sometimes, parallel units strongly prefer to operate over a contiguous set

of points in the hypercube, e.g. due to memory locality. Then we would prefer the

disjoint sets to be contiguous.

Of course, all this discussion about data dependent loop bounds assumes that we

do not know what |𝑋𝑖| is at compile time. If we do know, then it’s evident that these

two commands or more or less equivalent to each other. Both can produce either

a fixed number of fixed size noncontiguous chunks or a fixed number of fixed size

contiguous chunks. Some scheduling languages allow for user input of this kind of

information. For example, we could use the 𝑏𝑜𝑢𝑛𝑑 command in TACO to explicitly

specify what the value of a data dependent number is.

Obviously, there are other forms 𝜋𝑖 could take, for example (1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3...).

This partition strategy is achievable through repeatedly applying the 𝑠𝑝𝑙𝑖𝑡 command.

In fact, we can apply these four partition strategies above recursively and without

end in an infinite loop to effect the death of any autoscheduler.

To simplify our discussion, let’s restrict our attention to only these four

partition strategies for now. We also include a fifth strategy, which just leaves

the index variable as is. While this could be expressed as 𝑠𝑝𝑙𝑖𝑡(𝑋𝑖, 𝑥0, 𝑥1, 1), writing

it this way produces overhead in the resulting code and could lead to overcounting

the number of schedules in the end. This point will be elaborated on further later on.

It is straightforward now to imagine that if each dimension of this hypercube is split

in one of these five strategies, we could project the partitions to form a partition of

the hypercube itself.

2.3.1 Addressing Fuse

Now let’s think about the 𝑓𝑢𝑠𝑒 command. What does this do? Let’s imagine that

we can fuse some subsets of the index variables 𝑋1, 𝑋2, ..., 𝑋𝑛. Does that increase the

repertoire of partitions of the hypercube at our disposal?

To start, let’s imagine we can only fuse the first two axes, 𝑋1 and 𝑋2, to get a
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new axis 𝐹 . Now we can apply our four partition types to this axis 𝐹 . We realize

that none of the strategies actually produce a partition that is substantially different

from what we can obtain from just partitioning the two axes independently. How so?

Let’s imagine the two partitions produced by 𝑠𝑝𝑙𝑖𝑡. Consider 𝑠𝑝𝑙𝑖𝑡(𝐹, 𝑥0, 𝑥1, 𝐾). To

simplify our analysis, let’s assume that |𝑋1| and |𝑋2| and 𝐾 are all powers of two.

Let’s just consider the case where the chunks are contiguous.

Then there are two cases. The first case is if 𝐾 ≤ |𝑋2|. In this case, we re-

alize that the resulting partition pattern can be achieved without fuse, by splitting

the two axes separately and considering their projection, i.e. 𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥11, 𝑥12, 1).

𝑠𝑝𝑙𝑖𝑡(𝑋2, 𝑥21, 𝑥22, 𝐾). Note that the projection would create a 2-D array of chunks

indexed by 𝑥0 and 𝑥2, whereas splitting 𝐹 would have resulted in a 1-D array of

chunks, indexed by 𝑥0. This is just a technical difficulty that could be resolved post-

facto by fusing 𝑥0 and 𝑥2 in the former case. The second case is if 𝐾|𝑋2|. In this

case, the equivalent operation is simply 𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥11, 𝑥12, 𝐾/|𝑋2|). An example il-

lustration is shown in Figure 2-3. The argument for the case where the chunks are

noncontiguous is exactly analogous. Note we could argue that we do not know the

value of |𝑋2| at compile time, thus there is no way to produce the equivalent command

statically. However, as mentioned in Chapter One, the autoscheduler is preoccupied

with producing a list of correct schedule templates, without the exact parameters

filled in. We can assume that later, we will perform exhaustive autotuning on these

parameters. As a result, though we cannot determine the value of 𝐾/|𝑋2| statically,

we can assume it will be explored in the autotuning process.

Now let’s consider 𝑑𝑖𝑣𝑖𝑑𝑒(𝐹, 𝑥0, 𝑥1, 𝐾). Again let’s consider the contiguous chunk

case. Again there are two cases. The first case is if 𝐾 ≤ |𝑋1|. Then in this case

we realize that the command is exactly equivalent to 𝑑𝑖𝑣𝑖𝑑𝑒(𝑋1, 𝑥0, 𝑥1, 𝐾). The sec-

ond case is if 𝐾 > 𝑋1. Then the command is equivalent to the following sequence

of commands 𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥11, 𝑥12, 1).𝑑𝑖𝑣𝑖𝑑𝑒(𝑋2, 𝑥21, 𝑥22, 𝐾/|𝑋1|), followed by fusing 𝑥11

and 𝑥21. Similarly, the argument for the noncontiguous case is analogous.

For the fifth partition strategy where we don’t do anything to the fused variable,

the fuse is then not particularly useful. In fact, it is probably harmful, because you
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Figure 2-3: a) Splitting after fusing 𝑋0 and 𝑋1. b) Splitting just one axis and pro-
jecting this partition across the other one. We see that splitting the fused coordinate
space of size 16 is equivalent to splitting just along one axis of size 4, and projecting
that split across the other axis.

have to use the remainder and integer division operations to recover the original

indices, which tend to be expensive on modern architectures.

We have just proved a rather significant result: in the dense case where things

are powers of two, it is futile to consider fusion of 2 dimensions for expanding the

number of ways to partition the 2-D iteration space. At most, we should only fuse

the variables that are being used to index the chunks. In general, if things are not

powers of two, this result will not hold exactly. However, one could show with some

more complicated arithmetic that the sizes of the chunks in partitions of the fused

variable are within a reasonable neighborhood of the sizes of the chunks achievable

by partitioning both index variables independently. Let’s ignore this for the sa, and

write down the following theorem. The precise formal language is not as important

as the intuition in the proof I just described.

Theorem 1 Assuming |𝑋1|, |𝑋2| are powers of 2. The set of partitions that can be

achieved by fusing 𝑋1 and 𝑋2 and applying one of the five aforementioned strategies
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with 𝐾 a power of 2 is contained in the set of partitions that can be achieved by

partitioning 𝑋1 and 𝑋2 independently using one of the five strategies with 𝐾 a power

of 2, and projecting the result.

Following this theorem, we can use induction to prove the corollary, which asserts

that 𝑓𝑢𝑠𝑒 does not need to be considered for all 𝑛 dimensions.

Corollary 1.1 Assuming |𝑋1|, |𝑋2|...|𝑋𝑛| are powers of 2. The set of partitions that

can be achieved by fusing 𝑋1, 𝑋2...𝑋𝑛 and applying one of the five aforementioned

strategies is contained in the set of partitions that can be achieved by partitioning

𝑋1, 𝑋2...𝑋𝑛 independently using one of the five strategies, and projecting the result.

To prove this, we will use induction. The base case has been proven in Theorem 1.

Let’s assume this corollary holds for 𝑋1, 𝑋2, ...𝑋𝑛−1. We see that 𝑓𝑢𝑠𝑒(𝑋1, 𝑋2, ...𝑋𝑛)

can be broken down to be the fusion of two index variables 𝑓𝑢𝑠𝑒(𝑋1, ...𝑋𝑛−1) and 𝑋𝑛.

By Theorem 1 all partitions on 𝑓𝑢𝑠𝑒(𝑋1, 𝑋2, ...𝑋𝑛) can be expressed by projections of

partitions on 𝑓𝑢𝑠𝑒(𝑋1, ...𝑋𝑛−1) and 𝑋𝑛. But by the induction hypothesis, partitions

of 𝑓𝑢𝑠𝑒(𝑋1, ...𝑋𝑛−1) can be expressed as projections of partitions on 𝑋1, 𝑋2, ...𝑋𝑛−1.

Thus, all partitions on 𝑓𝑢𝑠𝑒(𝑋1, 𝑋2, ...𝑋𝑛) can be expressed as projections of parti-

tions on 𝑋1, 𝑋2, ...𝑋𝑛.

Corollary 1.1 provides immense value to thinking about autoscheduling. We realize

that partitioning the hypercube of a dense iteration space can be done one axis at

a time without any interactions between them. This also suggests we can partition

it in any order we see fit, since there is no dependence in the partitions specified for

each independent index variable. Note that the corollary only establishes that the all

partitions resulting from fusion can be produced from partitioning the index variables

separately. It does not assert the opposite. In fact the opposite is not true: simply

fusing all the index variables and partitioning that fused result will result in a loss of

expressive power.

What does this suggest about the scheduling commands that we should issue? We

see that for each index variable, we can use 𝑠𝑝𝑙𝑖𝑡 or 𝑑𝑖𝑣𝑖𝑑𝑒, and optionally reorder the

resulting two variables. The analysis thus far has suggested that for 𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛,

32



we should first partition each of them independently, producing up to 2𝑛 variables, up

to 2 from each one of the original index variable. Whereas reordering the 2 variables

resulting from partitioning one particular axis results in different partition strategies,

we can actually reorder all 2𝑛 variables thus produced. In the dense case, there are

no external restrictions on the order of iterations of the variables, since their iteration

ranges do not depend on one another.

We might wish not to split a variable and easily repeat the following analysis with

fewer than 2𝑛 variables. Then we will have to consider potentially up to 2𝑛 cases,

where each variable could be split or not. This sounds unmanageable, but in reality

𝑛 is typically very small, so this is okay. The astute reader will note that we can

encapsulate “not splitting” an index variable by splitting it with split factor 1. This

suggests that if we allow the search process to explore split factor 1, then we can just

split all the index variables in a single case, and then let the search process decide if

some index variables shouldn’t be split after all. It seems like we should just produce

a single schedule template with a bunch of split factors to fill in, and let the search

process do its job, vs. produce a bunch of schedule templates with potentially fewer

split factors to fill in, and search each of them.

While the latter strategy appears more complicated, it actually reduces the final

search space. This is because if we allow a split factor of 1, then we are effectively

introducing a useless loop into the schedule. However, we had already considered the

set of valid permutations containing this loop, not knowing that it is useless. As a

result, we will explore different permutations where the only difference is where this

useless loop is executed in regards to other loops, and there is no difference. In short,

some schedule templates might be redundant under certain parameter choices. This

tradeoff is depicted visually in Figure 2-4.

The next question to be answered is how to globally reorder the up to 2𝑛 variables

generated, and which of them to parallelize over. We will discuss that momentarily.

Let’s first extend the above analysis to sparse iteration spaces.
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Figure 2-4: A comparison of two strategies. a) less choices at earlier stages could lead
to potential redundant schedules in the end while b) more choices at earlier stages
could actually lead to fewer viable schedules in the end.

2.4 Sparse Partition

In the world of sparse linear algebra, where holes might exist in the cube, partitioning

the cube such that each partition has the same number of points is an unattainable

luxury. Cutting the cube like we did above for the dense case is now called scheduling

in coordinate space. We can divide each edge of the cube evenly, and hope that the

the holes are evenly distributed in this cube. Then, each slice of the cube will roughly

have the same number of holes, or the same number of points for us to process.

However, this usually doesn’t happen in sparse tensor algebra problems in science

and engineering because the sparsity pattern is often highly structured.

We can get a bit creative, and perform cuts in the position space of an edge. What

is a position space? It is described in detail in [20]. Briefly, you are partitioning the

nonzeros of a dimension, guaranteeing that each partition has the same number of

nonzeros. This kind of cutting has a lot of subtleties, an important one of which

is that it might produce loops with bounds that depend on the iteration of another
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Figure 2-5: What the hypercube looks like is one of the dimensions, 𝑗 is sparse, with
corresponding dimension 𝑖.

loop. For example, if 𝐴(𝑖, 𝑗) is a sparse matrix in the CSR format, then iterating

through 𝑗’s position space means iterating through the nonzero columns. However

the number of nonzeros columns change depending on the row, so we have the iterate

over 𝑗 afer 𝑖. The bound of the loop over 𝑗 changes for each iteration of the loop

over 𝑖, since there are different number of nonzeros in each row. This kind of loop

bound is not merely a data dependent bound as we had seen in the dense case. In

fact, this kind of loop bound imposes a fundamental ordering among the iteration

variables, stemming from their ordering in the given data structure, which is absent

in the dense case. This introduces quite a bit of complexity to our hypercube picture,

as seen in Figure 2-5.

Indeed, let’s return to our index variables, 𝑋1, 𝑋2, ..., 𝑋𝑛. For simplicity, let’s

consider just two of them, 𝑋1 and 𝑋2. Let’s say that 𝑋2 is sparse, and 𝑋1 is the

corresponding dimension, which is dense. Note that all sparse dimensions need to

have a corresponding dimension in the same tensor that provides the sparse dimension

with indexing information. For example in CSR, we need the dense row offsets array
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to index into the compressed column indices array. The corresponding dimension

could also be sparse, as in DCSR. In the original TACO formulation, one would say

the corresponding dimension’s node has an edge leading to this sparse dimension in

the iteration graph [10].

We shall see that this limits the partitions we could do on 𝑆 = 𝑟𝑎𝑛𝑔𝑒(|𝑋1|) ×

𝑟𝑎𝑛𝑔𝑒(|𝑋2|). Let’s keep on considering the case where 𝑋1 is dense and 𝑋2 is sparse.

We will consider the other two cases (sparse-sparse, sparse-dense) later. Note again,

that this assumes that 𝑋1 and 𝑋2 belong to the same tensor. We will briefly discuss

the case where they belong to different tensors later. In short, when we encounter a

pair 𝑋1, 𝑋2, we could classify them as belonging in 8 categories, depending on three

Boolean flags: if 𝑋1 is sparse, if 𝑋2 is sparse and if 𝑋1 and 𝑋2 belong to the same

tensor. Let’s consider now one of the eight categories (dense, sparse, same), which is

by far the most intricate case, here.

Before when both index variables are dense, we mentioned that there are four par-

tition strategies for each index variable. Since we consider the projection of partitions

on 𝑆, there are 16 ways to partition 𝑆. How many ways are there now?

Well of course, we could continue cutting in coordinate space and recover the pre-

vious 16 ways. However this is probably not a great thing to do, since the chunks

might be very load-imbalanced. In the worst case, imagine all the nonzeros clus-

ters around the start of 𝑋2. Then a lot of chunks in the latter part of 𝑋2 would be

completely empty. In addition, due to the compressed storage format of 𝑋2, parti-

tioning the coordinate space means that when a parallel unit starts to iterate over a

chunk, it would need to locate where to start in memory, since the memory is laid out

in position space. This involves a binary search operation which could bring severe

overhead. Again, more details are in [20].

It is important to note that this deficiency does not need to exist. If we imagine

the scenario where the sparse matrix values are quite evenly distributed, such as in

the cases encountered in deep learning for example, then this splitting strategy, or

slight variants of it, could be perfect. The problem that arises from locating into

the sparse matrix could also be solved if the sparse matrix is stored in some other
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format. For example, these indices could be precomputed or quickly estimated from

the sparse matrix data entries, if we know the distribution of the nonzero values. In

short, we could proceed to schedule the problem as in the dense case, and simply take

away the unnecessary work when lowering it into code.

However, the matrices we encounter in scientific computing typically do not have

an even distribution of nonzeros. They are also typically not known statically. As a

result, we have to deal with storage formats, the most efficient of which tend to store

nonzeros in contiguous position space.

There are then in principle two ways to iterate over 𝑋1 and 𝑋2 efficiently. The

first way is if we iterate over 𝑋1 and then iterate over the position space of 𝑋2, which

we will denote by 𝑝𝑜𝑠(𝑋2). The second way is if we fuse 𝑋1 and 𝑋2, and iterate

over the position space of the fused index variable. They roughly correspond to the

following:

f o r i = 0 . . |X1 |

f o r j = s t a r t [ i ] . . . s t a r t [ i + 1 ]

and

i = 0

f o r j = 0 . . . s t a r t [ | X1 | ]

whi l e ( s t a r t [ i ] < j )

i = i + 1

Let’s consider the first way first, and see what are the splitting strategies we can

use. We are now splitting 𝑋1 and 𝑝𝑜𝑠(𝑋2). We realize that we can partition 𝑝𝑜𝑠(𝑋2)

in much the same way as we can partition a dense loop, since it’s just a for loop,

albeit with bounds that depend on 𝑥1. This suggests that if we do the following:

𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥0, 𝑥1).𝑝𝑜𝑠(𝑋2).𝑠𝑝𝑙𝑖𝑡(𝑋2, 𝑥2, 𝑥3) then we must iterate over 𝑥2 only after we

have iterated over both 𝑥0 and 𝑥1 and can calculate what the value of 𝑖 is (where

we are in 𝑋1). This means that after splitting the two index variables to get four

variables, we can no longer freely reorder them globally. This is good, because this

will limit the number of permutations we need to consider!
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It is important to note that if we split 𝑋1 and 𝑋2 separately and project the

partitions to get a partition of 𝑆, the chunks might not be load balanced, i.e. they

might have a different number of nonzero elements. This would occur if we’d split

the position space of 𝑋2 into chunks whose sizes are data-dependent, either by 𝑠𝑝𝑙𝑖𝑡

or 𝑑𝑖𝑣𝑖𝑑𝑒. Unlike in the dense case, the data-dependent no longer means |𝑋2|. |𝑋2|

in position space depends on which iteration we are in 𝑋1! Now if the position space

of 𝑋2 is partitioned into fixed size chunks, the chunks will be load balanced. But

unfortunately, as we will see, these partition strategies are not very amenable to

parallelization so might get filtered out later on.

The alternative to splitting 𝑋2 in position space is fusing 𝑋1 and 𝑋2 and splitting

the fused result. We can split the for loop that results from the fusion in the same

four partition strategies that we have been using all along. Splitting it this way has

a couple benefits. The first is that all the chunks are guaranteed to be load balanced.

The second is that instead of producing 4 variables, it produces only 2, making our

autoscheduling job a lot easier! (Or if you’re manually writing a schedule, it’s much

easier to figure out how to order 2 variables than 4.)

Let’s now remind ourselves of the assumption we made, we have been considering

𝑋1 dense, 𝑋2 sparse and 𝑋1 and 𝑋2 belonging to the same tensor. What happens in

the other seven cases? We’ve already considered the two cases where 𝑋1 and 𝑋2 are

both dense. There remains five cases, where at least one of them is sparse. Now if they

belong to different tensors, then fusing is hopeless. We could still partition either (or

both) sparse dimensions in its (their) position space. However, the ordering constraint

will now be with respect to the corresponding dimension in their respective tensors.

There remains two cases: (sparse, dense, same) and (sparse, sparse, same). We don’t

have much to say about the latter: it’s easy to see that the two strategies above for

(dense, sparse, same) would apply. What about (sparse, dense, same)? I argue that

𝑓𝑢𝑠𝑒 here is futile. The reason is that the partition it induces on 𝑆 is too similar to

what you could obtain by just partitioning the index variables independently. Perhaps

a picture here should suffice: Figure 2-6. This situation is summarized in Table 2.1.

Having decided what to do when there are two index variables, let us think about
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Figure 2-6: This is what a compressed-dense iteration space looks like. a) the result
from splitting after fuse. b) the result if just splitting the compressed dimension. As
we can see, it’s quite similar, up to some difference bounded by the size of the dense
dimension. If the compressed dimension has an even number of nonzeros, then it
would’ve been exactly the same.

the case when there can be 𝑛 of them, potentially belong to 𝑘 different tensors.

Let’s first think about 𝑓𝑢𝑠𝑒. If we are going to fuse index variables, which ones

we are going to fuse? Well, we should start by picking one of the 𝑘 tensors with

compressed dimensions. Then, we can potentially fuse some of the dimensions of that

tensor. Let’s imagine that this tensor has 𝑚 dimensions, which could be a sequence

of compressed or dense dimensions. Our analysis for the two dimensional case told

us that fusion is only useful if we are fusing a sparse dimension directly into its

corresponding dimension. Of course, the corresponding dimension might be sparse,

and we could choose to fuse that into its own corresponding dimension! This quite

severely limits the fusion that we are allowed to do inside a sparse tensor.

In addition, whichever group of dimensions we would like to fuse, it must end

with a compressed dimension. If it ends with one or several dense dimensions, then

the partitions that would result can be roughly produced by fusing until the last
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Table 2.1: Applicability 𝑓𝑢𝑠𝑒 on 𝑋1 and 𝑋2 depending on their formats and if they
belong to the same tensor.

Same/Different Tensors 𝑋1 format 𝑋2 format 𝑓𝑢𝑠𝑒?
Same Dense Dense No
Same Dense Sparse Yes
Same Sparse Dense No
Same Sparse Sparse Yes
Different Dense Dense No
Different Dense Sparse No
Different Sparse Dense No
Different Sparse Sparse No

compressed dimension before the last dense dimensions and partitioning that fused

variable and the dense dimensions separately. Of course, we could fuse multiple

groups of variables in a single tensor. After we are done selecting a fusion strategy

for a single tensor, we would take a look at what index variables are left unfused in

the overall problem, select another tensor for fusion opportunities, and carry on.

This seems very complicated, but for lower-dimensional tensors we are likely to

encounter in practice it’s quite trivial. For example, let’s consider SpMM: 𝐶(𝑖, 𝑘) =

𝐴(𝑖, 𝑗)×𝐵(𝑗, 𝑘), where 𝐴 is sparse CSR. Then we can only fuse 𝑖 and 𝑗. In MTTKRP:

𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑘, 𝑙)× 𝐶(𝑘, 𝑗)×𝐷(𝑙, 𝑗) where 𝑘 and 𝑙 are sparse, we can either fuse 𝑘

and 𝑙, or fuse 𝑖, 𝑘 and 𝑙.

After the fusion strategy has been determined, we can proceed to split the index

variables (replacing the variables being fused by a new variable) individually, each

with the five partition strategies, just like what we did in the two dimensional case.

Then, we will have to consider the allowed permutations among the resulting variables

and pick groups of them for parallelization, just as in the dense.

2.5 Reordering and Parallelism

We now proceed to answer the most important question after the partitioning has

been settled: in what order are we going to iterate over the derived variables. Instead

of thinking about it in terms of functions on the range of the iteration variable and
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the geometry of the hypercube, it is more expedient to think about it in terms of the

order of the for loops in the generated code.

The fact that we can globally reorder all 2𝑛 split variables suggests that we should

not locally reorder after splitting each variable to effect the two different partition

strategies associated with either the 𝑠𝑝𝑙𝑖𝑡 or 𝑑𝑖𝑣𝑖𝑑𝑒 command. We can just defer

the reordering step until after we have partitioned all the axes, since we will always

be able to express whatever local reorder we intended with a global reorder later. A

global ordering of the 2𝑛 variables has an implied order for the two variables resulting

from each index variable, which can determine if the partition of that index variable

is contiguous or not. Note that in the global ordering, the two variables resulting

from a index variable may not even end up next to each other. Nor might they be

ordered in a way that suggests we are iterating over chunks in the projected partition.

For example, let’s consider the case where we split three index variables 𝑋1, 𝑋2, 𝑋3

into six variables𝑥11, 𝑥12, 𝑥21, 𝑥22, 𝑥31, 𝑥32, where 𝑥11 and 𝑥12 result from splitting

𝑋1, etc. Let’s assume we use the first type of partition for all three axes, i.e.

𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥11, 𝑥12, 𝐾). Now most performance engineers would recognize that we are

performing cache blocking, and put 𝑥12, 𝑥22, 𝑥32, the inner loops of the tile, after

𝑥11, 𝑥21, 𝑥31. For example, we could order the six variables as 𝑥11, 𝑥21, 𝑥31, 𝑥12, 𝑥22, 𝑥32.

This is the most straightforward way to reflect the projected partition of the hyper-

cube (which is just a cube here) – we have divided into chunks of smaller cubes by

projecting the partitions on the edges, and we are iterating over the smaller cubes.

However, it is important to see that we don’t have to reorder that way. An equally

valid, and potentially equally performant way of reordering might be 𝑥12, 𝑥11, 𝑥21, 𝑥31,

𝑥22, 𝑥32. In this case we are going to iterate over 𝑋1 fully before iterating over 𝑋2

and 𝑋3 in a blocked fashion. At least, this is a permutation that the autoscheduler

should consider, and not just throw away.

The fact that the derived index variables can be globally reordered raises the

interesting question of whether or not we should have categorized the two different

partitions from either 𝑠𝑝𝑙𝑖𝑡 or 𝑑𝑖𝑣𝑖𝑑𝑒 as a single partition. In particular, why bother

ourselves with thinking about the difference between the two different partitions that
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result from 𝑠𝑝𝑙𝑖𝑡 or 𝑑𝑖𝑣𝑖𝑑𝑒? Assume we have 𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥1, 𝑥2, 𝐾). Then the first

partition have contiguous chunks that are indexed by 𝑥1, whereas the second partition

has noncontiguous chunks that are indexed by 𝑥2. But this doesn’t appear to matter,

since the fact that the chunks are iterated over by different index variables is not

reflected in the algorithm we described in the last paragraph.

This brings us to the next step of the problem: parallelism. What this means

in practice, is that we would have to pick one out of the up to 2𝑛 variables, and

parallelize it. We could also fuse several variables, and parallelize the fused result.

We decreed in the very beginning that after we end up with chunks of the hypercube

from projecting the partitions on each index variable, we will assign chunks to parallel

units. Each parallel unit could be allotted multiple chunks, but a chunk cannot be

divided across parallel units. This means that we must parallelize the index variables

that are being used to index the chunks, i.e. 𝑥11 in the first partition strategy and

𝑥12 in the second partition strategy assigned to 𝑠𝑝𝑙𝑖𝑡. We don’t have to parallelize

all of them, i.e. assign a chunk its own parallel unit, but in the extreme case we

can. Assuming we partitioned each of the 𝑛 index variables, then we are left with 𝑛

variables we can parallelize over and another 𝑛 variables which we cannot. Let’s call

the 𝑛 variables which we can parallelize over parallelizable variables.

At some point, we would have to choose what are the variables that we can

parallelize. By differentiating the two partitions resulting from 𝑠𝑝𝑙𝑖𝑡, I am just making

this decision at the partition stage. One could also presumably make the decision at

this stage. This was just a presentation choice. The reader can think about this any

way they prefer.

We are now faced with the momentous task of examining all the permutations of

the variables, and for each permutation, specifying what should be parallelized. A

naive solution would be to examine all (2𝑛)! permutations, and for each permutation,

examine all 𝑛+
(︁
𝑛
2

)︁
+
(︁
𝑛
3

)︁
+...+

(︁
𝑛
𝑛

)︁
choices of what to parallelize over. This assumes that

we can fuse these 2𝑛 derived variables back together. If 𝑛 happens to be 3, then this

amounts to 5040 choices, all for just one partition strategy! (With 5 different partition

strategies for each iteration variable, there are 53 = 125 strategies.) Granted, some
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other strategies that don’t split all 𝑛 index variables will have fewer derived index

variables to reorder, but this still presents an infeasibly large search space.

2.5.1 Trimming Passes

Trimming the number of permutations and parallelism choices is at the

heart of autoscheduling. Because parallelism choices and the loop choices are so

intertwined, we will consider them together. But first, let’s extend all of the above

discussion to sparse tensor algebra.

We have now described how to reduce the problem of autoscheduling dense and

sparse iteration spaces to considering permutations of variables and choosing what

variables to parallelize over. The general strategy now, will be to come up with

trimming passes that limits these choices. Each trimming pass is expressed as a

condition that the permutations and parallelism must satisfy, based on either heuris-

tics or hardware constraints. In particular, we will define a mathematical object called

a mapping (naming inspired by Timeloop [16]). A mapping consists of a tuple of an

ordered set, which contains the permutation, and an unordered set, which contains

the variables over which we would like to parallelize. Note we have not discussed

how we’d like to actually implement our desire to parallelize some variables in actual

scheduling commands yet. This will depend greatly on the hardware architecture.

The philosophy of introducing trimming passes is also seen in [1] in the form of

pruning the search space. Some of the rules mentioned in that work for Halide is also

applicable to TACO. I believe that some of the rules that applies to TACO which I

will mention here is also applicable to Halide.

Let’s describe one particular trimming pass for example.

Trimming pass 0: Sparse Iteration

If we did not fuse a sparse dimension into its corresponding dense dimension, then we

can only iterate over the data-dependent variable resulting from this sparse dimension

(𝑥1 from .𝑠𝑝𝑙𝑖𝑡(𝑋, 𝑥1, 𝑥2) or 𝑥2 from .𝑑𝑖𝑣𝑖𝑑𝑒(𝑋, 𝑥1, 𝑥2)) after all the variables from the
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corresponding dense dimension have been iterated over. This is because the program

needs to fully know where it is in the corresponding dense dimension to determine

the iteration bounds for the sparse dimension.

Note that the analysis so far has made no assumption whatsoever about the hard-

ware backend. It is a good time now to introduce the hardware and discuss their var-

ious characteristics. This work targets CPUs and GPUs, but I will also discuss how

potentially other hardware architectures can be accommodated. For each hardware

type, we consider the logical programming model, not the actual physical resources.

For example, for GPU we consider the programming model exposed by CUDA. For

CPU, we consider programming with OpenMP threads. This work will present some

trimming passes for both CPUs and GPUs. To support a new hardware architecture,

one would have to write their own trimming passes for it. Of course, one could also

devise more trimming passes for CPUs and GPUs that I overlooked. I designed the

concept of trimming passes to be composable, very similar to LLVM optimization

passes.

In the OpenMP programming model, a loop can be parallelized by adding a

schema. Then, different iterations of the loop would be assigned to different threads,

either via a static round-robin assignment schedule or a dynamic first-come-first serve

schedule. It is important to note that typically, the number of iterations far exceed

the number of threads, so each thread can be expected to process a large number

of iterations. This suggests that from the perspective of each thread, it still need to

iterate over however many variables as there are in the specified permutation, albeit

for one of them, it has to do fewer iterations.

In addition to the OpenMP parallelism, CPUs offer additional parallelism in the

form of vector units, which consist of a collection of vector lanes that can operate in

parallel. These vector units are highly powerful (potential of doing 16 floating point

operations in one cycle in AVX512) and should be leveraged if possible. However,

sometimes the best way to use them is to not make an effort, as smart compilers

such as ICC can usually perform intelligent automatic vectorization. Convoluted

44



code intended to guide usage of the vector units might have an opposite effect on

performance. Here we consider vector parallelism as another annotation on a loop.

The code generation mechanism in the scheduling language will understand that the

iterations of this loop should be distributed to separate vector lanes.

2.5.2 CPU

Let’s talk about trimming passes for CPUs first. I will describe three obvious ones,

and then describe some more advanced ones.

Trimming pass CPU-1: Parallelize One Variable

We realize that on the CPU, there is very limited parallelism. As a result, we will

not consider parallelizing over more than one variable. In particular, we will not fuse

multiple variables are parallelize the result. Note that by disallowing the fusion of

derived index variables that iterate over the chunks, Corollary 1.1 no longer holds:

fusing index variables and then splitting can produce partitions that splitting index

variables independently can’t. This trimming pass can be interpretted as saying that

we are not going to consider those partitions.

Trimming pass CPU-2: Parallelize Outer Loop

We realize that in OpenMP, parallelizing inner loops often incur massive overhead.

Combined with the fact that there is not that much parallelism to begin with, we will

only consider parallelizing the outer loop. This rule is also mentioned in [1]. This also

implies that if we had partitioned a sparse iteration variable in position space with

𝑠𝑝𝑙𝑖𝑡(𝑋, 𝑥𝑖, 𝑥𝑗, 𝐾), 𝑥𝑖 will never get parallelized because it needs be iterated after the

variables from 𝑋’s corresponding dimension.

Trimming pass CPU-3: No Useless Partition

If 𝑥1 and 𝑥2 are the two variables resulting from the same index variable, say 𝑋𝑖 via

either 𝑠𝑝𝑙𝑖𝑡(𝑋𝑖, 𝑥1, 𝑥2, 𝐾) or 𝑑𝑖𝑣𝑖𝑑𝑒(𝑋𝑖, 𝑥1, 𝑥2, 𝐾) and neither is parallelized, then 𝑥2
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should not follow directly after 𝑥1 in the permutation. If this is the case, then we

should not have split 𝑋𝑖.

Trimming pass CPU-4: Concordant Iteration

Here let’s examine our assumption that index variables can be freely reordered in the

dense case. While there are no code legality concerns, there could be huge efficacy

concerns. In particular, let’s imagine a dense matrix stored in row-major format.

Iterating through it row major will be a lot faster than iterating through it column

major. This suggests that there is a strongly preferred order in which we iterate over

each of the input tensors. How do we relate the order over the 2𝑛 variables resulting

from the partitioning to the iteration order over the original index variables to respect

these preferences? We seek to define an ordering on the original index variables, with

the possibility for equality, in the case of simultaneous iteration from 𝑓𝑢𝑠𝑒.

We note that we can recover where we are in our iteration of our original index vari-

able after we have encountered both of the variables it generated in the permutation.

Say we got 𝑠𝑝𝑙𝑖𝑡(𝑋1, 𝑥11, 𝑥12).𝑠𝑝𝑙𝑖𝑡(𝑋2, 𝑥21, 𝑥22).𝑠𝑝𝑙𝑖𝑡(𝑋3, 𝑥31, 𝑥32).𝑟𝑒𝑜𝑟𝑑𝑒𝑟({𝑥11, 𝑥32,

𝑥31, 𝑥12, 𝑥21, 𝑥22}). Then 𝑋1 is recovered after the program encounters 𝑥11 and 𝑥12,

𝑋2 is recovered after 𝑥21 and 𝑥22, and 𝑋3 is recovered after 𝑥31 and 𝑥32. This suggests

that 𝑋3 is iterated before 𝑋1 before 𝑋2 in this particular permutation.

In the case where there are sparse index variables and where 𝑓𝑢𝑠𝑒 is used, we might

simultaneously recover two index variables. For example, if we have 𝑓𝑢𝑠𝑒(𝑋1, 𝑋2, 𝐹 ).

𝑠𝑝𝑙𝑖𝑡(𝐹, 𝑥0, 𝑥1) then once we have encountered both 𝑥0 and 𝑥1 in our program, both

𝑋1 and 𝑋2 are recovered. From the perspective of other index variables, the iteration

of 𝑋1 and 𝑋2 is simultaneous.

Now that we have figured out how to reason about the order of the original index

variables, how do we pick the concordant ones? In general, it is infeasible to select an

ordering of the original index variables that respects the data layout preferences for

all the input tensors. The easiest counterexample to construe is matrix transposition:

if you cater to the input matrix’s format you will doom the output matrix’s and vice

versa. What we can do is to establish a concordancy score, which counts the number
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of iteration preferences between pairs of index variables are obeyed in a particular

iteration order of the index variables. We should only pick iteration orders with the

best concordancy scores.

For example in SpMM: 𝐶(𝑖, 𝑘) = 𝐴(𝑖, 𝑗) × 𝐵(𝑗, 𝑘) as an example, where 𝑗 is

compressed in A. , there are two dense data structures, 𝐶 and 𝐵. Iteration orders

that iterate over 𝑖 first then 𝑗 then 𝑘 would have concordancy scores of 2, which is

the best concordancy score achievable here.

Trimming pass CPU-5: Vector Variable

We limit the variables that can be vector parallelized to the last two variables in the

permutation. In addition, they will have to be contiguous variables, i.e. they must

be the inner variable resulting from a 𝑠𝑝𝑙𝑖𝑡 or 𝑑𝑖𝑣𝑖𝑑𝑒. While CPU AVX instructions

can specify strides, strided vector instructions are nowhere as efficient as unstrided

ones in terms of L1 cache locality.

2.5.3 GPU

Now let’s consider what to do for GPUs. Different from CPUs, GPUs offer a massive

amount of parallelism in the CUDA programming model. The programmer can launch

tens of thousands of logically independent “threads" with options for cooperation and

synchronization. A loop can be completely dissolved spatially across a parallelism

dimension. For example, instead of iterating over a loop of size 1024, we could launch

1024 threads, each of which will handle one single iteration. However, each of those

threads does not execute its assigned portion as efficiently as a CPU thread. In

particular, lack of branch prediction hardware makes branching expensive, lack of

thread-independent local data caches causes unpredictable cache thrashing between

different threads and a lower clock rate makes executing code inherently slow. On

GPUs, it is much more important to achieve some semblance of load balance between

threads because the hardware often dictates that a group of threads cannot be retired

until the slowest thread in that group has finished execution.

47



While there are many different philosophies to program GPUs efficiently, we here

subscribe to the general philosophy that we should maximize the available parallelism

and thus minimize the work per thread. As in the CPU case, let’s assume we have

fixed some permutations of the potentially up to 2𝑛 variables that we want to schedule

over.

Importantly, we will treat the GPU warp as the basic parallel unit, similar to

a CPU thread. We will think about parallelizing over warps and how they could

be organized into thread blocks. How do we parallelize over warps? We can pick

one of the 𝑛 variables that iterate over chunks, and assign each (or a group of)

iteration of it to a distinct warp. We could also potentially pick a group of the 𝑛

parallelizable variables, fuse all of them, and assign each (or a group of) iteration of

the fused variable to a distinct warp. After we have done that, let’s think about how

to consider the thread block level parallelism. Well now each warp will still iterate

over the same list of variables, but for one of them, it will do a reduced number of

iterations. Whatever we do, we will gain a variable which iterates over the warps.

We now have the opportunity to group GPU warps into thread blocks. The

practical way to implement this would be to consider the variable that now iterates

over the warps, and then partition it, assigning chunks to different thread blocks.

While this method of considering block level and warp level parallelism is exhaustive

in nature, not all parallelism recipes attained by this method is accomplishable.

Unfortunately, TACO does not give us this much freedom in scheduling warps

and blocks. As we will describe in the trimming passes, we can not fuse variables

resulting from 𝑠𝑝𝑙𝑖𝑡 or 𝑑𝑖𝑣𝑖𝑑𝑒, which suggests that we can only parallelize one of the 𝑛

parallelizable variables, say 𝑥𝑖, over warps. We could then pick another parallelizable

variable, say 𝑥𝑗 to parallelize over blocks. This would correspond to fusing 𝑥𝑖 and

𝑥𝑗 and parallelizing the fused variable over warps, and then partitioning the warps

such that they operate on different chunks of 𝑥𝑗. Of course, we could parallelize 𝑥𝑖

itself further across blocks. These two parallelization strategies correspond to a very

small subset of all strategies, which will assist us greatly in narrowing down the search

space.
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Once we decide what each warp does, it is relatively easier to decide what happens

at the thread level. Each warp functions basically like a vector unit with 32 lanes.

We will simply pick one of the variables, and iterate over it in a vector fashion.

Trimming pass GPU-1: No Useless Partition

Same as CPU.

Trimming pass GPU-2: No Hierarchial Tiling

This means that when we choose to parallelize a variable, we will completely “dissolve”

it. Individual parallel units will no longer need to iterate over that variable, because

each parallel unit will be assigned a unique iteration. We are using this trimming

pass for three reasons: 1) the hardware supports massive parallelism, which we should

cater to. 2) each parallel unit itself is less efficient at handling branching. 3) simplify

the scheduling: if one or more variables are dissolved, then effectively it’s position

in the permutation no longer matters. 4) a very wise man once said that we should

program GPUs as if caches don’t exist.

Trimming pass GPU-3: Parallelize One Variable at Each Level

As described above, using variables derived from 𝑠𝑝𝑙𝑖𝑡 and 𝑑𝑖𝑣𝑖𝑑𝑒 is basically not

supported. As a result, we should consider only parallelizing one variable over warps.

Similarly, we should only parallelize one variable over blocks. This could be the same

variable as the one parallelized over the warps or another variable.

Before we proceed further, let’s think about what kind of parallelism strategies

we are still left to explore. Imagine that we partition 𝑋1, 𝑋2 and end up with the

variables 𝑥11, 𝑥12, 𝑥21, 𝑥22 after our partitioning. Let’s say that 𝑥11 and 𝑥21 are the

parallelizable variables that iterate over the chunks in the partitions. Then the first

parallelization strategy would be to pick one of those two, and parallelize it across

both warps and blocks, for example the following schedule:.𝑠𝑝𝑙𝑖𝑡(𝑥11, 𝑏𝑙𝑜𝑐𝑘, 𝑤𝑎𝑟𝑝, 4).

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒(𝑏𝑙𝑜𝑐𝑘,𝐺𝑃𝑈𝐵𝑙𝑜𝑐𝑘).𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒(𝑤𝑎𝑟𝑝,𝐺𝑃𝑈𝑊𝑎𝑟𝑝).𝑟𝑒𝑜𝑟𝑑𝑒𝑟(𝑥21, 𝑥12, 𝑥22). The

second strategy would be to parallelize one of those variables over warps and the other
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over blocks, for example: .𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒(𝑥11, 𝐺𝑃𝑈𝐵𝑙𝑜𝑐𝑘).𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒(𝑥21, 𝐺𝑃𝑈𝑊𝑎𝑟𝑝).

In the first case each warp would iterate over 𝑥21, 𝑥12 and 𝑥22, whereas in the second

case each warp would iterate over 𝑥12 and 𝑥22.

Trimming pass GPU-4: No Indeterminate Warps

We realize that in the second strategy, the number of warps per thread block is the

same as the parallelization variable. Since the number of warps per thread block on

the GPU is limited to 16, the size of this parallelization variable must not be data

dependent. As a result, it must result from only two of the four partition strategies

(it must be the inner variable of a split or the outer variable of a divide).

Trimming pass GPU-5: Enforce Load Balance

All GPU schedules are decreed to be load balanced. While we recognize that some-

times non load-balanced schedules could potentially have better performance, as there

is some overhead associated with load balancing. For example, if we parallelize over a

fused variable, then each parallel unit will have to perform a binary search [20]. How-

ever, on GPUs such an overhead is often justified as common practice, for example

in the popular Merge SpMV strategy [12].

What this restriction means in practice, is that 1) you must not split compressed

dimensions in coordinate space 2) you cannot parallelize the corresponding di-

mensions of any sparse variables. If you’d like to do so, you’d have to fuse that

dimension into the sparse dimension first. For example, in the SpMM problem

𝐶(𝑘, 𝑖) = 𝐴(𝑖, 𝑗) × 𝐵(𝑗, 𝑘), where 𝐴 is sparse and 𝑗 is the sparse dimension, you

cannot parallelize 𝑖. Since 𝑗 is sparse, different values of 𝑖 will have a different num-

ber of nonzero 𝑗 elements. If parallel units receive different chunks of 𝑖, then they are

almost guaranteed to receive different numbers of nonzeros. You could parallelize 𝑘,

on the other hand, even though 𝑘 is also dense while still ensuring load balance.

Trimming pass GPU-6: Concordant Iteration

Same as CPU.
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Trimming pass GPU-7: Contiguous Thread Iteration

An important principle in programming GPUs is memory coalescing. This basically

states that threads should access contiguous memory addresses, up to some margin.

(For example, threads can access stride-K addresses efficiently using the L1 cache

if K is sufficiently small.) This is all the more important in sparse tensor algebra,

since most kernels are memory bound. As a result, we impose the limit such that the

threads within a warp can only be parallelized across contiguous variables.

Trimming pass GPU-8: Illegal Parameters

There are certain schedules where there are guaranteed to be no valid parameter

settings, if certain split factors are guaranteed to be smaller than one. These can be

safely excluded.

We have now finished describing the trimming passes we employ for CPU and

GPU backend. What comes out of the trimming passes are lists of viable mappings

that can be easily converted to schedule templates, through emitting the appropriate

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒 and 𝑟𝑒𝑜𝑟𝑑𝑒𝑟 scheduling commands.

2.6 Search

I would like to briefly describe how one could search through the resulting list of

schedules generated from this process. Let’s remind ourselves that to generate the

schedules, we did three things: determine the overall partition strategy, determine

the reordering and parallelization strategy and finally fill in the parameter values.

The search space can be grouped hierarchically based on the choices made at each

of these three stages. This is a classic multi-arm bandit problem. The schedule

templates correspond to different arms of the slot machine. We could try to exploit

more parameter choices for a particular schedule template or explore different schedule

templates.

It seems to be in fashion as of late to featurize this search space and use some

form of machine learning guided optimization, e.g. [6, 1]. This approach is great but
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requires significant engineering effort and compute resources. It is not hard to imagine

how we could featurize our schedule templates given our detailed analysis up to this

point. Perhaps features could include some qualitative aspects, such as what type of

partitioning each index variable has undergone (contiguous vs. noncontiguous, fixed

vs. data dependent chunk size, etc.), which index variables are paralellized over what

kinds of parallel units etc. The features could also include some quantitative aspects,

such as how big is the tile size, how big is the thread block size, etc. We could then

directly use the methods in [5, 1] to perform a guided search on this search space.

However, there exists simpler alternatives. One of which is Thompson sampling.

We could start with the same prior distributions of runtimes for all the schedules

associated with a partition strategy. We can then start the exploration process.

Since all the prior distributions are the same, we are equally likely to explore each

partition strategy. Every time we pick a partition strategy, pick a schedule template

from it and fill in some parameters to get a runtime. Then we update the belief

distribution of runtimes for that partition strategy. We then reweight the likelihood

to pick a select partition strategy based on this updated belief distribution.

The simplest strategy, however, is human guided search, which I employ. I dis-

cover that for many problems of interest, the space of partition strategies, and in

turn, the space of schedule templates has been reduced so vastly through our metic-

ulous trimming passes that it is feasible to search through them by hand. I strongly

recommend this approach when approaching a new problem, especially if you are a

generally astute programmer. In this case, the human replaces the Thompson sampler

and updates belief distributions in her head.
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Chapter 3

Evaluation

I implemented the strategy described in Chapter Two in Python. The schedules

generated target TACO, a DSL for sparse linear algebra. When this work is being

done, there is no 𝑑𝑖𝑣𝑖𝑑𝑒 command implementation yet so we only consider 𝑠𝑝𝑙𝑖𝑡. As

described, we first specify the partition strategy, to generate a list of split schedules,

which do not contain reordering or parallelization information. Then, each split

schedule is expanded to consider all possible reordering and parallelization schemes to

a list of schedule templates. Finally, each schedule template generates a few different

schedules based on different tunable parameter settings.

Here let’s present some preliminary results for different sparse tensor algebra prob-

lems that we consider. We should especially pay attention to how effective our strate-

gies are in cutting down the search space of our schedule templates. The first step we

did was to restrict the ways you could partition up the iteration space, eliminating

fusing dense variables etc. Then we severely restricted the number of ways you could

reorder and parallelize the resulting variables through the trimming passes.

In order to see our efficacy, we’d need a baseline system. Note that theoretically,

every problem has an infinite number of viable schedule templates, e.g. accomplish-

able simply by reordering two index variables back and forth, or by splitting an axis

by a factor of one as many times as you’d like, etc. A naive scheduling system that

explores viable commands in a breadth-first or depth-first fashion without heuristics

to prune choices is certain to end up with an infinite number of schedule templates.
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Because I have no interest in implementing such a system, let’s just study the efficacy

of our trimming passes, after we have split up the iteration space in a finite number

of ways in accordance with the methods proposed in this thesis. (A good reference

point might be the work in [1], where they use literally billions of random schedules.)

The baseline system that we consider, is simply one that allows all possible per-

mutations and parallelization choices of the variables resulting from each partitioning

strategy. The number of choices can often be calculated analytically for each par-

tition strategy based on the number of variables it produces. For CPUs, assuming

that we end up with 𝑛 variables, then there are 𝑛! permutations times 𝑛2 choices for

parallelizing over threads and vector. (It is 𝑛 × 𝑛 instead of 𝑛 × (𝑛 − 1) since you

could choose not to use vector parallelism). This suggests that naively there are 𝑛2𝑛!

choices.

For GPUs, if we parallelize one variable across blocks and warps, there are 𝑛

choices for this variable and (𝑛− 1)! permutations for the remaining variables. There

are 𝑛− 1 choices for a variable to parallelize over threads and two ways to parallelize

it, for a total of 2𝑛(𝑛 − 1)!(𝑛 − 1) = 2𝑛!(𝑛 − 1) strategies. If we parallelize one

variable across blocks and another across warps, then there are 𝑛(𝑛−1)/2 choices for

these variables and (𝑛− 2)! permutation for the remaining variables. There are 𝑛− 2

choices for a variable to parallelize over threads and two ways to parallelize it, for a

total of 𝑛(𝑛− 1)(𝑛− 2)!(𝑛− 2) = 𝑛!(𝑛− 2) strategies. So for GPU, there are naively

𝑛!(3𝑛− 4) choices.

We evaluate the autoscheduler on three different sparse tensor algebra problems

for CPUs and GPUs. Sparse matrix dense vector multiplication (SpMV), sparse

matrix dense matrix multiplication (SpMM) and Matricized Tensor Times Khatri-

Rao Product (MTTKRP). For SpMM and SpMV, we use a suite of 12 matrices

from the UFlorida SparseSuite Collection [11]. These matrices are selected to be

representative of different number of nonzero distributions, densities and sizes.

For MTTKRP, we evaluate on three tensors in the FROSTT dataset [21]. For

SpMM, we use a random dense matrix with 128 columns. All evaluation except

MTTKRP on GPU was done in double precision. MTTKRP on GPU was done in
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single precision.

For each of these problems, we generate a list of schedules and search through

all of the generated schedules exhaustively. Due to our aggressive trimming, the

search space size is small enough such that we can afford some form of exhaustive

search. The tunable parameters are chosen from 8, 16 and 32 for CPU and 4, 16, and

64 for GPU. The exact exhaustive search procedure differs by problem and will be

elaborated below. The exhaustive search took anywhere between a few minutes to a

day, using at most 48 cores.

For SpMV, we report the runtimes of baselines such as MKL [28] and Eigen [8] for

CPU and cuSPARSE [14] and Merge SpMV [12] for GPU on the suite of problems.

For SpMM the baselines are MKL for CPU and cuSPARSE for GPU. We also report

the runtime of a handtuned schedule baseline. For each problem, we also report

the best runtime found during the search as “autoscheduled TACO" results. Note

that different problems might use different schedule templates and/or different values

of tunable parameters. We do not use unscheduled TACO because the handtuned

schedules used in each case are shown to have better or equal performance.

All CPU experiments are run on a dual-socket, 12-core with 24 threads, 2.5 GHz

Intel Xeon E5-2680 v3 machine with 30 MB of L3 cache per socket and 128 GB of

main memory, running Ubuntu 18.04.3 LTS. On CPU, the code is compiled using Intel

icpc 19.1.0.166 with -O3, -DNDEBUG, -march=native, -mtune=native,–ffast-math,

and -fopenmp. CPU experiments are cold cache.

All GPU experiments are run on an NVIDIA DGX system with 8 V100 GPUs.

Only one GPU is used at a time. I compile the generated code with NVIDIA nvcc

9.0.176 with -O3, -gencode arch=compute_70,code=sm_70, and –use_fast_math.

3.1 SpMV

Index Expression: 𝑦(𝑖) = 𝐴(𝑖, 𝑗)× 𝑥(𝑗)

For SpMV, the autoscheduler is capable of generating five different split schedules,

as listed in Table 3.1. These five split schedules lead to a total of 50 viable schedules
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Table 3.1: SpMV split schedules

1 Empty
2 .𝑓𝑢𝑠𝑒(𝑖, 𝑗, 𝑥0).𝑝𝑜𝑠(𝑥0).𝑠𝑝𝑙𝑖𝑡(𝑥0, 𝑥1, 𝑥2,𝐾0)
3 .𝑝𝑜𝑠(𝑗).𝑠𝑝𝑙𝑖𝑡(𝑗, 𝑥0, 𝑥1,𝐾0)
4 .𝑠𝑝𝑙𝑖𝑡(𝑖, 𝑥0, 𝑥1,𝐾0)
5 .𝑠𝑝𝑙𝑖𝑡(𝑖, 𝑥0, 𝑥1,𝐾0).𝑝𝑜𝑠(𝑗).𝑠𝑝𝑙𝑖𝑡(𝑗, 𝑥2, 𝑥3,𝐾1)

Figure 3-1: The results from trimming the search space of SpMV schedules for a)
CPU and b) GPU.

for GPU and 87 viable schedules for CPU that were evaluated on the dataset. I

search through all these schedules for all the problems in the benchmark, running

them once on every problem to save time. For the best schedules, we proceed to run

them 25 times across each problem in the benchmark to collect an average running

time, which we report here.

For CPU, one of the schedules exactly correspond to the handtuned schedule in

terms of the scheduling commands used and the tunable parameters. However, the

autoscheduler uses a different OpenMP schedule than the handtuned schedule (static

vs. dynamic), leading to performance differences in some cases. We see from Figure

3-3 that for some of the matrices the autoscheduler does better and for others it does
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Figure 3-2: Runtimes for cuSPARSE, Merge SpMV, handtuned scheduled TACO and
autoscheduled TACO

significantly worse. Interesting the performance of the autoscheduler is very similar

to MKL, suggesting that MKL also uses a static load balancing strategy. The best

schedule template found for the problems is either the handtuned schedule of a slight

variation where one of the variables is vectorized.

For GPU, we see from Figure 3-2 that the best schedule that can be generated

from the autoscheduler matches the handtuned schedule in all cases, which in turn is

on-par with Merge SpMV and cuSPARSE in terms of performance. The best schedule

template found for all the problems is exactly the handtuned schedule, though the

parameters are different. The handtuned schedule

57



Figure 3-3: Runtimes for cuSPARSE, Merge SpMV, handtuned scheduled TACO and
autoscheduled TACO
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Figure 3-4: The results from trimming the search space of SpMM schedules for a)
CPU and b) GPU.

3.2 SpMM

Index Expression: 𝐶(𝑘, 𝑖) = 𝐴(𝑖, 𝑗)×𝐵(𝑗, 𝑘) (GPU)

𝐶(𝑖, 𝑘) = 𝐴(𝑖, 𝑗)×𝐵(𝑗, 𝑘) (CPU)

Table 3.2: SpMM split schedules

1 Empty
2 .𝑠𝑝𝑙𝑖𝑡(𝑘, 𝑥0, 𝑥1,𝐾0)
3 .𝑓𝑢𝑠𝑒(𝑖, 𝑗, 𝑥0).𝑝𝑜𝑠(𝑥0, 𝑥1).𝑠𝑝𝑙𝑖𝑡(𝑥1, 𝑥2, 𝑥3,𝐾0)
4 .𝑓𝑢𝑠𝑒(𝑖, 𝑗, 𝑥0).𝑝𝑜𝑠(𝑥0, 𝑥1).𝑠𝑝𝑙𝑖𝑡(𝑥1, 𝑥2, 𝑥3,𝐾0).𝑠𝑝𝑙𝑖𝑡(𝑘, 𝑥4, 𝑥5,𝐾1)
5 .𝑝𝑜𝑠(𝑗, 𝑥0).𝑠𝑝𝑙𝑖𝑡(𝑥0, 𝑥1, 𝑥2,𝐾0)
6 .𝑝𝑜𝑠(𝑗, 𝑥0).𝑠𝑝𝑙𝑖𝑡(𝑥0, 𝑥1, 𝑥2,𝐾0).𝑠𝑝𝑙𝑖𝑡(𝑘, 𝑥3, 𝑥4,𝐾1)
7 .𝑠𝑝𝑙𝑖𝑡(𝑖, 𝑥0, 𝑥1,𝐾0)
8 .𝑠𝑝𝑙𝑖𝑡(𝑖, 𝑥0, 𝑥1,𝐾0).𝑠𝑝𝑙𝑖𝑡(𝑘, 𝑥2, 𝑥3,𝐾1)
9 .𝑠𝑝𝑙𝑖𝑡(𝑖, 𝑥0, 𝑥1,𝐾0).𝑝𝑜𝑠(𝑗, 𝑥2).𝑠𝑝𝑙𝑖𝑡(𝑥2, 𝑥3, 𝑥4,𝐾1)
10 .𝑠𝑝𝑙𝑖𝑡(𝑖, 𝑥0, 𝑥1,𝐾0).𝑝𝑜𝑠(𝑗, 𝑥2, 𝐴(𝑖, 𝑗)).𝑠𝑝𝑙𝑖𝑡(𝑥2, 𝑥3, 𝑥4,𝐾1).𝑠𝑝𝑙𝑖𝑡(𝑘, 𝑥5, 𝑥6,𝐾2)

For SpMM, the autoscheduler is capable of generating ten different split sched-

ules, as listed in Table 3.2. The tenth split schedule results in hundreds of schedule

templates and thousands of schedules. I run each schedule template with a single

59



Figure 3-5: SpMM runtimes for cuSPARSE, handtuned scheduled TACO, and au-
toscheduled TACO.

parameter setting, and discover that none was able to come close in performance to

schedules generated from other split schedules. As a result, the tenth split schedule is

discarded as a “black hole" (a region of the search space that is immense but barren).

These nine other split schedules lead to a total of 1039 viable schedules for GPU

and 798 viable schedules for CPU. I search through all these schedules for all the

problems in the benchmark, running them once on every problem to save time. For

the best schedules, we proceed to run them 10 times across each problem in the

benchmark to collect an average running time, which we report here.

The CPU results are reported in Figure 3-6. We see that for some matrices,

the autoscheduler is slower than the handtuned schedule while for others it’s slightly

faster. The handtuned schedule is outside of the autoscheduler’s search space, because

the chosen variable ordering violates the concordant iteration heuristic. In addition,

the autoscheduler generated schedules use a different OpenMP schedule as mentioned

above in the SpMV section.
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Figure 3-6: SpMM runtimes for cuSPARSE, handtuned scheduled TACO, and au-
toscheduled TACO.

The GPU results are reported in Figure 3-5. We see that the best schedule able to

be generated by the autoscheduler is usually faster than the handtuned schedule and

slower than cuSPARSE. However, this difference is mostly due to different tunable

parameters being used. The best schedule template for each problem still matches

exactly with the handtuned schedule.
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3.3 MTTKRP

Index Expression: 𝐴(𝑖, 𝑗) = 𝐵(𝑖, 𝑘, 𝑙)× 𝐶(𝑘, 𝑗)×𝐷(𝑙, 𝑗).

On CPU, we manually specify the precompute command to hoist loop invariant

code: 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝐸𝑥𝑝𝑟 = 𝐵(𝑖, 𝑘, 𝑙)×𝐷(𝑙, 𝑗), 𝐴(𝑖, 𝑗) = 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝐸𝑥𝑝𝑟×𝐶(𝑘, 𝑗).

We allocate a buffer to precompute 𝑗, called 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑. Then we emit the following

precompute command: 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒(𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑𝐸𝑥𝑝𝑟, 𝑗, 𝑗, 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑). In terms

of the TACO IR, it inserts a where node after iterating over 𝑖 and 𝑘 to handle the

precomputed buffer. Practically, this suggests that we can only reasonably reorder 𝑖

and 𝑘 so as to not interfere with the precompute, and we cannot partition 𝑗 due to

limitations in the scheduling API. This leads to much fewer explored schedules for

MTTKRP on CPU, even though it has a more complicated index expression than

SpMM and SpMV. Naive estimates suggest around 1000 possible schedule templates,

which we trim to 27. This results in around 120 schedules with parameters filled in.

On GPU, we do not use precompute. All the index variables are thus free to be

rearranged in whatever order, resulting in a massive potential search space. Naive es-

timates suggest more than 1 million possible schedule templates. After the trimming,

only around 1000 are left. However, only around 200 legal schedules are generated in

the end, as a lost of them fail with compile errors, despite the scheduling commands

being semantically correct. Note that this is something that any autoscheduling sys-

tem should consider: the autoscheduler is typically pushing the scheduling API of

a DSL to its limits by exploring a deluge of possible schedules. Many semantically

correct schedules could fail to compile because of compiler bugs that were simply not

exposed during initial tests of the scheduling API with limited handtuned schedules.

Because there are too many split schedules for both CPU and GPU, we do not

list them in a table as we do for the other two.

For CPU MTTKRP we find that the autoscheduler can generally match or ex-

ceed the handtuned schedule’s performance. We observe not much variation in the

performance of the schedules.

For GPU MTTKRP we see from Figure 3-8 that the best schedule discoverable
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Figure 3-7: The results from trimming the search space of MTTKRP schedules for
a) CPU and b) GPU.

by the autoscheduler is much worse than the expert code written by Nisa et al.

[15] and the handtuned schedule. This is because the ordering of variables used in

the handtuned schedule is excluded from the search space because of the concordant

iteration heuristic for dense tensors, similar to the situtation for SpMM. In particular,

the handtuned schedule iterates over 𝑗 before 𝑘 and 𝑙. However, in the handtuned

schedule as well as the similar autoscheduler-generated schedules, the range of 𝑗 is

32 and 𝑗 is completely parallelized over threads in a warp, with each thread only

iterating over 1 value of 𝑗. Theoretically then the position of 𝑗 in the loop order

should not change the iteration pattern, suggesting that the autoscheduler-generated

schedules process the iteration space in the exact same way as the handtuned schedule.

However, in practice, where this size-1 loop is put in the program has a strong impact

in performance. Unfortunately this is below the level of abstraction used to construe

the heuristics used in the autoscheduler, which reasons about the way the iteration

space is traversed.
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Figure 3-8: B-CSF Kernel by Nisa et al., handtuned schedule and autoscheduled
TACO performance on 4 tensors.

3.4 Analysis and Future Work

To remind ourselves of the general procedure, first we fixed the partitions and gener-

ated a list of split schedules. Then for each split schedule we proceeded to consider

all permutations and parallelization schemes to obtain a list of schedule templates.

Finally for each schedule template we tried different parameter combinations to obtain

the final schedules.

For SpMV, SpMM and MTTKRP, we more or less did some form of exhaustive

search over all the final schedules generated on all the problems in the benchmark

suite. For SpMM, we reasoned that one of the split schedules was a “black hole",

so we threw away all of its schedule templates despite only experimenting with one

parameter setting.

Here, we seek to gain a better understanding of what the space of schedules look

like. Let’s remind ourselves of the bubble chart in Figure 1-2. We realize now that

the bubble chart is hierarchical—there are different bubbles corresponding to different
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Figure 3-9: Bubble chart with more details filled in. The green circles represent the
different schedules generated from the same schedule template. Note that schedule
templates from different split schedules can generate different numbers of schedules
because they have a different number of tunable parameters.

split schedules with differing sizes considering how many schedule templates they can

generate. Inside each split schedule bubble there are smaller bubbles corresponding

to different schedule templates. These bubbles are more or less of the same size, as

the number of tunable parameter combinations associated to each schedule template

depends solely on the number of tunable parameters, which depends only on the

split schedule. Some permutation strategies might result in more illegal parameter

settings, but those differences are expected to be minor. Here is a slightly updated

bubble chart in Figure 3-9.

Let’s shed some more light onto the schedule space by seeing what the performance

distribution looks like. Let’s examine the distribution of runtimes for SpMM on CPU,

for two matrices Cage15 and Si41Ge41H72 in Figure 3-10 and Figure 3-11. Different

colors correspond to different split schedules. For each of the split schedule, we show

what percentage of the schedule templates that result from it is faster than a particular

runtime. We see that interestingly, though the runtimes span a huge range across all
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Figure 3-10: Distributions of runtimes for SpMM for cage15 matrix on CPU. Different
colors correspond to different split schedules. Some colors overlay almost exactly on
each other.

the schedules, they tend to cluster around a few values for some split schedules, i.e.

the magenta, blue, green, purple and red ones. This suggests that despite our careful

procedure at weeding out redundant schedules in the partition stage and trimming

passes, there are still many redundant schedule templates left in the search space.

Future work involves examining these clusters and introducing new trimming passes

to remove these redundant schedule templates.

However, we note that the trimming passes have already severely cut the number

of viable schedule templates for other split schedules, including sometimes the split

schedule that results in the best performance. For both Si41Ge41H72 and Cage15,

we see that the split schedule that resulted in the best performance generated very

few schedules in the end. Introducing trimming passes that will impact every split

schedule risks eliminating these few schedules altogether. Indeed, for both SpMM

on CPU and MTTKRP on GPU, the handtuned schedule is outside of the search
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Figure 3-11: Distributions of runtimes for SpMM for Si41Ge41H72 matrix on CPU.
Different colors correspond to different split schedules.

space due to the restrictive concordant iteration trimming pass. However, if that

trimming pass is eliminated, the schedule space would be roughly five times the size.

We have thus stumbled upon the fundamental compromise in autoscheduling: how

do we eliminate schedules such that we don’t toss out the baby with the bathwater.

Different use cases could call for different solutions. If you are going to spend millions

of CPU-hours repeatedly executing a single sparse tensor algebra expression (e.g.

SpMV in iterative solvers), then it might be worth generating a massive search space

and spend a lot of time finding the best schedule. If you just want to quickly find a

schedule for an expression that you will execute once or twice, then you might want

a much more constrained search space so picking a single schedule is a lot easier.

I’d like to make the observation that in both cases shown here (and in most other

cases), it is quite difficult to find the best schedule in terms of performance, but it’s

relatively easy to find a schedule that performs reasonably well. This suggests that
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the search space has plenty of local minima with a few global minima. The exhaustive

search procedure is able to recover the global minimum, but the plots would suggest

that even a random search would find a reasonably good schedule in just a few tries

(the best brown bar in both plots). This suggests that if the user does not have

much time to do tuning, he/she can just select a random schedule. Most likely it

will perform decently. This in part points to the success at our trimming passes in

removing inefficient schedule templates.
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Chapter 4

Discussion and Related Work

Thinking about transforming the iteration space of a program through scheduling

commands assumes a particular view of the iteration space of the program. Schedul-

ing APIs transform the abstract syntax tree (AST) of the program, which often

manifests itself as a loop nest. Put more plainly, this perspective treats the program

as a sequence of for loops. Scheduling commands strip-mine, tile, reorder, unroll or

parallelize those loops [18, 10]. The autoscheduler in this case tries to find the best

“tags" for the different loop nests in the program. Thinking about the program in this

way usually leads to studying ASTs. For example, [6] builds tree GRUs to find good

schedules and [1] focuses on strategies to perform tree search on the AST. Certain

information, such as iteration order, is conveyed straightforwardly by the AST. Other

information, such as how the iteration space is partitioned, can be hard to glean from

the AST. In particular, it is difficult to tell that two sets of for loops effect equivalent

partitions of the iteration space by just looking at loop structure.

When examining the partitioning strategies of the iteration space, I believe that

we should adopt a geometric perspective, one that is championed by the Polyhedral

Model [26, 4, 27]. This model treats the work to be done inside the for loops as an

execution instance, and visualizes a polytope of execution instances corresponding

to the iteration space. The polyhedral approach champions another style of au-

toscheduling. The autoscheduler is formulated as the best affine transformation of

the polytope under some chosen cost function. Typical cost functions balance data
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reuse and parallelism, depending on the hardware target [27]. This takes the form of

a linear program or an integer linear program and the best schedule can be solved

for analytically. There are DSLs that adopt this approach, for example PCCG and

Tensor Comprehension [27, 24]. There have been recent works attempting to extend

this framework to support sparsity as well [22, 23, 25].

Here, the only thing I take from the Polyhedral Model is treating the iteration

space like a grid of points. We can easily tell if two ASTs effect the same partition of

the iteration space by looking at their geometrical effects on this grid. Indeed, we were

able to derive equivalence relations of AST transformations from this perspective.

Instead of using affine transformations to determine the iteration order of the

execution instances after the partitioning, we revert back to the AST view. Although

we are able to describe iteration order in the Polyhedral Model using directed edges

between execution instances, I find it much easier to construct heuristics governing

iteration order in terms of the order of for loops. Perhaps, this is because it is easier

to reason at a higher level about relations between index variables, instead of the

execution instances.

Of course, one does not have to switch perspectives. One could specify equiva-

lence relations of AST transformations purely through reasoning about loops, and the

Polyhedral Model is rich enough to fully describe any heuristics governing iteration

order of the execution instances. I just find switching perspectives more convenient.

This work is not the first in attempting to explore the synergy between polyhedral

and AST based approaches. For example, the Tiramisu compiler is an interesting case.

The DSL itself exposes certain affine transformations of the polytope as scheduling

commands. However, it does not try to optimize for the best polytope transformation.

Instead, the programmer is expected to supply the optimal schedule, in the AST

scheduling style [3]. Recent efforts are underway in using machine learning in the

AST style to build an autoscheduler, similar to the Halide effort. The underlying

assumption here is that the polyhedral model expresses sensible transformations of

the schedule, but explicit-cost-model based optimization is not optimal.
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Chapter 5

Conclusion

This thesis provides an approach to reason about optimizing dense and sparse ten-

sor algebra programs. We show that by reasoning about the computation and the

hardware backend, we can introduce heuristics that greatly reduce the search space of

viable optimization strategies. This approach is complementary with machine learn-

ing techniques to search over those strategies. While the implementation is centered

around TACO’s scheduling API, the approach could be generalized to other DSLs

with scheduling APIs, such as Halide and Tiramisu, a promising direction of future

work.
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