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Abstract
High performance graph applications are crucial in a wide set of domains, but their
performance depends heavily on input graph structure, algorithm, and target hard-
ware. Programmers must develop a series of optimizations either on the compiler
level, implementing different load balancing or edge traversal strategies, or on the
architectural level, creating novel domain-specific accelerators optimized for graphs.
In recent years, there has been rapid growth on the architectural end, with each novel
architecture contributing new potential optimizations.

To help compiler development scale with the growth of the architecture domain, we
develop the Unified Graph Framework (UGF) to achieve portability for easy integration
of novel backend architectures into a high-level hardware-independent compiler. UGF
builds on the GraphIt domain-specific language, which divides algorithm specification
from scheduling optimizations, and separates hardware-independent from hardware-
specific scheduling parameters and compiler passes. As part of UGF, we introduce
GraphIR, a graph-specific, hardware-independent intermediate representation; an
extensible scheduling language API that enables hardware-independent optimizations
and programmer-defined hardware-specific optimizations; and the GraphVM, the
compiler backend implemented for each hardware architecture.

Lastly, we evaluate UGF by implementing a GraphVM for Swarm, a recently devel-
oped multicore architecture. We integrate several scheduling optimizations built around
Swarm’s ability to speculate on fine-grained tasks in future loop iterations. When
evaluated on five applications and 10 input graphs, UGF successfully generates highly
optimized Swarm code and achieves up to 8x speedup over baseline implementations.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments
I’d like to thank my thesis advisor Professor Saman Amarasinghe for guiding me

through the research process, starting as a senior in the SuperUROP program to an

MEng student this year. He taught me the importance of asking good questions, and

his excitement about all sorts of research problems always inspired me.

I would like to thank everyone on the GraphIt project for advising me over the

years - Yunming Zhang, Ajay Brahmakshatriya, Changwan Hong, Shoaib Kamil, and

Professor Julian Shun. Special thanks to Yunming, one of my mentors for the past two

years, who introduced me to the GraphIt project and patiently taught me so much

about performance engineering and benchmarking. I’d also like to especially thank

Ajay for his incredible mentorship and guidance during my MEng year, from helping

me with presentations to thesis writing, to helping me structure my MEng project

and debug code. Finally, thank you to the entire COMMIT group for your wisdom

and enthusiasm. I have learned an incredible amount over the past two years, and am

extremely grateful for the opportunity to collaborate with and learn from you all.

Thank you to our collaborators on our ISCA 2021 paper - I’d like to express my

gratitude to Victor Ying for helping me with the Swarm architecture and my thesis

project, and to Emily Furst for guidance on the Hammerblade architecture.

Thank you to my family - mom, dad, and grandparents - for believing in me since

day 1 and encouraging me to pursue my interests. I am so grateful for everything

you’ve done for me, and for teaching me to dream big and never give up. Lastly, thank

you to my good friends, Karunya, Yara, and Afeefah, for your unwavering support

during my time at MIT.

5



6



Contents

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Background 19

2.1 GraphIt DSL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Algorithm Language . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Scheduling Language . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Midend and Code Generation . . . . . . . . . . . . . . . . . . 21

2.2 Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 T4 Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Comparison Against CPU . . . . . . . . . . . . . . . . . . . . 25

3 UGF Design and Implementation 27

3.1 GraphIR Representation . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Scheduling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Scheduling Language Interface . . . . . . . . . . . . . . . . . . 31

3.2.2 Scheduling Language API . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Scheduling for Swarm . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Metadata API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7



3.4 GraphVM Compiler Backend . . . . . . . . . . . . . . . . . . . . . . . 35

4 Swarm GraphVM 37

4.1 Frontier Task Division . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Frontier Consolidation . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Swarm Queue Analysis . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 Frontier Loop Body Reduction . . . . . . . . . . . . . . . . . . 41

4.2 Privatization of Shared Variables . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Variable and State Privatization Pass . . . . . . . . . . . . . . 44

4.2.2 Global Variable Finder Analysis . . . . . . . . . . . . . . . . . 45

4.3 Frontier Deduplication . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Swarm Optimizations 47

5.1 Manual Swarm API Optimizations . . . . . . . . . . . . . . . . . . . 47

5.1.1 Spatial Hint Assignment . . . . . . . . . . . . . . . . . . . . . 48

5.1.2 Dynamic Task Partitioning . . . . . . . . . . . . . . . . . . . . 49

5.2 Integration into Swarm GraphVM . . . . . . . . . . . . . . . . . . . . 49

6 Evaluation 53

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1.3 Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Performance of Optimized versus Baseline Swarm Code . . . . . . . . 55

6.3 Scalability and Efficiency of Swarm GraphVM . . . . . . . . . . . . . 56

6.4 Performance of Hand-Tuned Low-Level Swarm Optimizations . . . . 58

6.4.1 Spatial Hint Assignment . . . . . . . . . . . . . . . . . . . . . 58

6.4.2 Task Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Performance of Swarm GraphVM Optimizations . . . . . . . . . . . . 60

6.5.1 Spatial Hint Assignment and Task Boundaries . . . . . . . . . 60

6.5.2 Task Coarsening and Reordering . . . . . . . . . . . . . . . . 61

8



6.5.3 Comparison to Hand-Tuned Swarm Implementations . . . . . 62

7 Conclusion 65

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Baseline and Optimized Schedules 67

B GraphIR Nodes 71

9



10



List of Figures

2-1 Algorithm Specification for Breadth-First Search (BFS) in GraphIt . 21

2-2 Example of Swarm C++ Code for the Swarm T4 Compiler . . . . . . 25

2-3 Speedup of Optimized Swarm vs. CPU Code . . . . . . . . . . . . . . 26

3-1 Components of the UGF Compiler . . . . . . . . . . . . . . . . . . . 28

3-2 Optimized GraphIR for the BFS Algorithm . . . . . . . . . . . . . . 29

3-3 Hierarchy of Scheduling Language Objects . . . . . . . . . . . . . . . 32

3-4 Interactions with Scheduling Language API . . . . . . . . . . . . . . 32

3-5 Examples of Optimized Swarm Schedules for BFS . . . . . . . . . . . 34

4-1 Compiler Passes in the Swarm GraphVM . . . . . . . . . . . . . . . . 38

4-2 GraphIR Transformation after Frontier Consolidation . . . . . . . . . 39

4-3 Multi-Statement Frontier Loop Transformation . . . . . . . . . . . . 41

4-4 Generated Swarm Code for Betweenness Centrality (BC) . . . . . . . 42

4-5 Shared to Private State Conversion. . . . . . . . . . . . . . . . . . . . 43

5-1 Example of Hand-Tuned Low-Level Swarm Code . . . . . . . . . . . . 48

5-2 Optimized Swarm Code with SCC_OPT_* Annotations for BFS . . . . 51

6-1 Speedup of Baseline vs. Optimized Code Generated by Swarm GraphVM 55

6-2 Scalability of Generated Swarm Code for BFS and PageRank . . . . . 56

6-3 Percentage of Task Cycles Committed in Generated Swarm Code . . 57

6-4 Speedup of Hand-Tuned Swarm Code with Coarsening for BFS and SSSP 59

11



12



List of Tables

3.1 Description of WhileLoopStmt and EdgeSetIterator GraphIR Nodes 30

3.2 Description of SimpleScheduleObject and SimpleSwarmSchedule-

Object Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Description of Metadata API . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Graph Inputs for Evaluation . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Speedup of Swarm GraphVM Generated and Manually Implemented

Code with Spatial Hint for BFS and SSSP . . . . . . . . . . . . . . . 58

6.3 Effect of Spatial Hint on Write Task Runtime in BFS and SSSP . . . 58

6.4 Speedup of Swarm GraphVM Generated Code with Coarsening for BFS

and SSSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5 Speedup of Swarm GraphVM Generated Code with Spatial Hints for PR 61

6.6 Speedup in Swarm GraphVM Generated Code with Coarsening for PR

and CC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.7 Speedup and Reduction in Aborted Cycles in Swarm GraphVM Gener-

ated Code with Task Reshuffling for CC . . . . . . . . . . . . . . . . 62

6.8 Performance of Swarm GraphVM Generated vs. Hand-Tuned Swarm

Code for BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 Baseline Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.2 Optimized Schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1 Description of All GraphIR Nodes . . . . . . . . . . . . . . . . . . . . 72

13



14



Chapter 1

Introduction

Graph applications have long been essential in a broad range of domains, such as

machine learning algorithms, social media network analytics [25, 17], and protein

structure modeling [36, 16]. These applications also operate on huge datasets, often

involving graphs with millions or billions of nodes and edges. Consequently, optimizing

graph applications has become necessary to accommodate the increasingly large

quantities of data operated on within such domains. However, the performance of

graph programs depends heavily on the input graph structure, underlying algorithm,

and utilized hardware, which has caused the optimization of graph programs to be

time-consuming and difficult [41, 24].

1.1 Motivation
To address these issues, existing work within the realm of optimizing graph programs

targets root issues faced by graph applications, like poor data locality. However, the

feasibility and methodology to implement scheduling optimizations that target these

issues greatly depend on the backend architecture for which code is being written. For

instance, load-balancing techniques on the software-level generally exploit parallelism

across machine cores, and can improve cache utilization to reduce the number of slow

memory accesses. Despite being software-level, these techniques ultimately manifest

themselves as vastly different optimizations within CPU, GPU, and other multicore

architectures.
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In addition to software-level optimizations, optimizations can leverage features

of the specific computer architecture for which code is being written. For a given

optimization technique, actual implementation on different architectures can look

extremely different. For example, to achieve load balancing, CPU’s can enable cache

and NUMA partitioning schemes [38, 40], while GPU’s can divide active vertices

across threads, warps, and CTA’s [7]. Furthermore, advances in novel architectures,

such as manycore systems and domain-specific accelerators, pose a potential space for

new optimizations for graph applications. For instance, Swarm is a domain-specific

multicore system that exploits ordered parallelism in graph applications [19].

Several efficient graph analytics frameworks now simplify writing optimized graph

applications by leveraging these kinds of compiler and hardware-specific optimizations.

Projects like Ligra, Gunrock, and Galois optimize for different situations - Ligra

optimizes for shared-memory systems [32], Gunrock optimizes graph applications for

GPU’s [35], and Galois is highly optimized for road networks [26]. Some frameworks

like GraphBLAS [22] and Abelian [12] generate code for both CPU and GPU platforms,

but only support a limited set of optimizations or applications. GraphIt, a graph-

specific DSL that targets CPU’s and GPU’s, includes several hardware-independent

and dependent optimizations [41, 7, 39], but generalizing it to other architectures

remains non-trivial.

Recently, novel manycore architectures - systems composed of hundreds or thou-

sands of cores to leverage thread-level parallelism - have been proposed [2, 8, 13, 34, 29].

These systems include the HammerBlade manycore [8], which leverages software-

managed scratchpad memory on its hundreds of small cores to enable parallelism.

The flexible core and memory structure expose great optimization potential for graph

applications. In addition, many domain-specific accelerators (DSA’s) [19, 35, 3, 21] also

implement their own specialized compilers to generate code, but this process can be

repetitive and complex. To reach the full potential of graph application performance on

a variety of graph inputs, a framework must be able to generate code for a diverse set of

architectures and easily extend itself to accommodate hardware-specific optimizations.

The Swarm architecture [19, 20] is an example of an architecture that targets
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specific applications - it exploits ordered irregular parallelism (parallel workload that

is constrained to an order), a feature of many graph applications. However, writing

applications for Swarm can be challenging without having extensive knowledge on the

patterns of parallelism in the target algorithm and the optimal way to leverage different

features exposed in the Swarm model, as shown in hand-tuned implementations of BFS

and SSSP in prior work [18]. Extending an existing framework (like GraphIt) to support

Swarm could greatly simplify code generation without having to implement a completely

new compiler, but doing so would require an existing hardware-agnostic compiler or

representation to lower into Swarm-specific transformations and optimizations.

1.2 Contribution
In this thesis, we develop the Universal Graph Framework (UGF) to generate high-

performance graph application code for multiple hardware architectures. UGF separates

hardware-independent from hardware-dependent components of the compiler to reuse

transformations applicable to any backend hardware and support the simple addition of

new backends. We introduce a novel hardware-independent intermediate representation

(GraphIR), from which programmers can derive and implement their own architecture-

specific GraphVM’s (compiler backends) for their hardware’s optimizations. Because of

this portability, UGF can generate highly optimized code for several different backends,

including CPU, GPU, the Swarm multicore architecture, and the HammerBlade

manycore architecture.

We also present a new extensible scheduling language that supports scheduling

options for hardware-independent optimizations, such as edge traversal and paral-

lelization, and can be extended to support programmer-defined scheduling options

for architecture-specific optimizations. Scheduling options can support generating

performant code for different applications and input graphs, which may have different

performance bottlenecks. For example, the nodes in road network graphs usually have

lower degrees than nodes in social network graphs, so specifying a push traversal

direction (rather than pull) may improve performance in some applications [4, 6].

Next, we implement the Swarm GraphVM, a backend targeting the Swarm mul-
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ticore architecture, to demonstrate the feasibility of the UGF design. We generate

Swarm C++ code that utilizes Swarm primitives and data structures to speculatively

execute tasks using programmer-defined timestamps. To generate correct code from the

hardware-independent GraphIR, the Swarm GraphVM performs a series of compiler

transformations, including the lowering of shared variable accesses to private accesses

and the conversion of frontier-level iterations to vertex-level tasks.

Building off the UGF scheduling language, the Swarm GraphVM also introduces

several Swarm-specific optimization parameters, including Swarm task coarsening and

Swarm data structure configuration. We motivate these optimizations with results from

manually tuned low-level Swarm code, where we explore the optimization space for

the Swarm architecture. These optimizations are benchmarked against un-optimized

Swarm code generated by the GraphVM to demonstrate UGF’s ability to produce not

only correct code, but also highly optimized code for different architectures.

1.3 Thesis Organization
In Chapter 2, we discuss the GraphIt DSL compiler, from which UGF derives much of

its compiler frontend, and its existing infrastructure for scheduling optimizations and

compiler transformations for CPU and GPU architectures. We also discuss Swarm,

the target architecture for the Swarm GraphVM.

In Chapter 3, we present the main contributions of UGF, including the GraphIR

and novel extensible scheduling language. In Chapter 4, we detail the Swarm GraphVM

structure, including several compiler passes required for correct code generation, and

how the GraphVM builds off the UGF design. In Chapter 5, we describe efforts to

manually optimize Swarm code using low-level Swarm primitives, and how we integrate

these findings into an optimization pass in the Swarm GraphVM.

In Chapter 6, we evaluate the performance of code generated by the Swarm

GraphVM and analyze the performance of individual optimizations described in

Chapter 5. In Chapter 7, we summarize our contributions and provide possible future

directions.
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Chapter 2

Background

2.1 GraphIt DSL Compiler
The main contribution of this work is the Universal Graph Framework (UGF), built

on the existing GraphIt DSL (domain-specific language) compiler for graph analytics.

GraphIt is a high-performance graph-specific compiler that enables programmers to

convert graph algorithm code into highly optimized architecture-specific code. The

GraphIt DSL decouples algorithm code from scheduling optimizations, such as edge

traversal direction, vertex deduplication, load-balancing options, and data layout

schemes. This separation enables programmers to write optimized graph applications

quickly and easily without having to manually explore the entire optimization space

for the best implementation.

The compiler consists of three components: the frontend, which parses high-level

graph abstractions, graph operators, and user-configured scheduling optimizations; the

midend, which consists of multiple lowering passes that use the schedule to transform

the program and assert correctness; and the backend, which generates architecture-

specific output code. Currently, the GraphIt DSL compiler can generate code for CPU

and GPU architectures.

Currently, while the midend includes passes that are necessary for both CPU’s and

GPU’s, it also contains hardware-specific transformations. With the increasing number

of multicore and manycore architectures that target graph applications [19, 2, 33, 28],
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there has been interest in extending the GraphIt compiler to support more architectures.

However, each new architecture introduces novel architecture-specific complexities

and optimizations, which GraphIt must also support. UGF seeks to bridge this gap

by centralizing the hardware-independent parts of the GraphIt compiler to help

programmers easily build highly optimized compiler backends for their own hardware.

2.1.1 Algorithm Language

The first part of the GraphDSL is the algorithm language, which is the set of operators

and object abstractions that programmers can use to write GraphIt code. These ab-

stractions are specific to graph applications - for instance, the language uses VertexSet

and EdgeSet to define sets of vertices and edges to process, and applyModified and

apply operators to apply user-defined functions across these sets. Because it is part

of the frontend, the algorithm language is hardware-independent, so programmers can

use the same algorithm language to generate code for multiple hardware backends.

UGF utilizes the same algorithm language as the original GraphIt compiler.

Figure 2-1 shows an example of the algorithm language for BFS. Of note, the edges

in the frontier edgeset are each updated with the updateEdge function using the

applyModified operator on Line 19. Two schedules, s0 and s1 are attached to the

WhileLoopStmt on Line 18 and the EdgeSetIterator on Line 19, respectively.

2.1.2 Scheduling Language

One of the key features of the GraphIt DSL is the separation of the algorithm language

from the scheduling language, which allows programmers to fine tune optimization

parameters, such as vertex deduplication in vertexsets or edge traversal direction, for

their use case. Different input graphs, applications, and target hardware may require

vastly different scheduling parameters, so having a separate scheduling language greatly

simplifies the optimization process for programmers. For instance, road graphs typically

consist of nodes with low in/outdegrees. Consequently, running iterative applications,

such as BFS or SSSP, on road graphs feature small frontiers to traverse each round. For

applications with small frontiers, it is more optimal to use a push traversal direction,

as opposed to a pull direction [4, 6].
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1 element Vertex end
2 element Edge end
3 const edges : edgeset{Edge}(Vertex,Vertex) = load (argv[1]);
4 const vertices : vertexset{Vertex} = edges.getVertices();
5 const parent : vector{Vertex}(int) = -1;
6
7 func toFilter(v : Vertex) -> output : bool
8 output = (parent[v] == -1);
9 end

10 func updateEdge(src : Vertex, dst : Vertex)
11 parent[dst] = src;
12 end
13 func main()
14 var frontier : vertexset{Vertex} = new vertexset{Vertex}(0);
15 var start_vertex : int = atoi(argv[2]);
16 frontier.addVertex(start_vertex);
17 parent[start_vertex] = start_vertex;
18 #s0# while(frontier.getVertexSetSize() != 0)
19 #s1# var output : vertexset{Vertex} =
20 edges.from(frontier).to(toFilter).
21 applyModified(updateEdge, parent, true);
22 delete frontier;
23 frontier = output;
24 end
25 delete frontier;
26 end

Figure 2-1: Algorithm specification for breadth-first search (BFS) in GraphIt.

Programmers can also define architecture-specific scheduling optimizations to use in

the scheduling language. For instance, GPU architectures perform best on applications

with loops that experience large amounts of parallelism on each iteration, but falter on

cases where the work of each iteration is outweighed by the cost of launching a GPU

kernel for each iteration [7, 35, 31]. As a result, the GraphDSL scheduling language

includes a GPU-specific scheduling function for fusing these iterations together to be

launched from a single GPU kernel, improving work-efficiency. In the example with

road graphs, small frontiers limit the amount of parallelism and work one can achieve

in each round, so GPU programmers would opt to enable kernel fusion.

Figure 3-5 shows an example of the Swarm scheduling language used to optimize

BFS.

2.1.3 Midend and Code Generation
The existing GraphIt compiler lowers the input program into an AST (abstract

syntax tree) representation, and the compiler midend performs a series of analyses
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and transformations to optimize the intermediate representation. Currently, it consists

of both hardware-independent passes, such as edge traversal direction and data layout

transformations, and hardware-dependent passes, like load balancing schemes on GPU’s

or NUMA on CPU’s. To fully optimize for any backend architecture, UGF includes

both sets of midend passes, as to fully leverage hardware-independent optimizations

while enabling programmers to write hardware-specific optimizations. To illustrate

the distinction between the two sets of midend passes, we briefly discuss examples of

hardware-independent and dependent optimizations.

Hardware-Independent Passes

Graph applications have a huge optimization space, but implementing every possible

combination of optimizations for every application and input graph can be time-

consuming. Several of these optimizations can be used irrespective of the underlying

hardware. For instance, the hardware-independent portion of the GraphIt midend

implements compiler passes for configuring edge traversal direction (push or pull),

specifying the layout of vertexset data in memory (bitvector or boolmap array repre-

sentations), and deduplicating vertices in vertexset frontiers. While the effect of these

compiler passes may differ greatly among different hardware backends, they can be

utilized by all hardware.

Hardware-Dependent Passes

The GraphIt midend also contains several hardware-dependent passes for CPU and

GPU architectures. These passes are specific to just one architecture - every target

architecture has a distinct execution model, programming model, and memory layout,

so each will also have a distinct set of transformations necessary for optimal and

correct code generation. For instance, CPU architectures consist of larger memories,

including a large LLC, so they can afford to spread workload across multiple cores and

create thread-local priority queues for priority-based graph applications [39, 5, 11]. On

the other hand, GPU cores do not have as large of memories, but have significantly

more compute power and memory bandwidth [15, 7]. As a result, optimizing edge

blocking for data locality and improving data parallelism is crucial to performance on
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GPU’s [14, 27]. Additionally, the midend includes a GPU-specific pass for identifying

reusable vertexset memory, as to reduce unnecessary memory allocations.

These hardware differences lead to different optimizations in the GraphIt midend.

UGF reuses these passes, and ultimately ports these hardware-specific optimizations

to respective GraphVM’s (compiler backends specific to a target architecture).

2.2 Swarm
Parallel graph processing frameworks are often limited by the parallelism that the

underlying hardware can feasibly expose. To improve this bottleneck, novel graph-

specific accelerators explore novel techniques for better load balancing and work-

efficiency from added task parallelism. New manycore architectures add hundreds

and thousands of cores to produce additional parallel compute power [2, 8, 29]. Even

within these architectures, there is a diverse set of models. Some follow a SPMD

(Single Program, Multiple Data) model, where all cores in a group execute the same

program (e.g. HammerBlade), but others may follow different models (e.g. SIMT,

Single Instruction, Multiple Threads). Each parallel framework also implements its own

memory structure, programming model, and execution model. In this work, we focus

on the Swarm architecture as one of the new hardware backends that UGF targets,

as it introduces yet another layer of parallelism by utilizing speculative execution of

tasks.

2.2.1 Architecture
Swarm [19, 20] is a novel multicore architecture that leverages ordered parallelism

in programs to speculatively execute fine-grained tasks with assigned timestamps. It

uses a task queue unit implemented in hardware to keep track of tasks to execute

and a commit queue to hold the speculative state of tasks that are yet to commit.

Ideally, tasks are fine-grained enough such that tasks can speculatively spawn multiple

rounds into the future and distribute across hundreds of simple cores, thus increasing

parallelism more than on conventional CPU’s.

Swarm’s programming model includes the concept of timestamps, which can be

configured by programmers. Users may configure the same timestamp for multiple
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tasks, which may run in any order, or they can configure ordered timestamps for

tasks which must run in some particular order. For example, tasks processing multiple

vertices in a frontier may run with the same programmer-defined timestamp, but

tasks across frontier iterations will run with different programmer timestamps. Finally,

Swarm converts these timestamps into global timestamps, where it assigns each task

a unique timestamp and conveys these order constraints to its hardware. Tasks then

run atomically and in timestamp order, and in the case where speculation is incorrect

or memory accesses produce an order violation, tasks abort and may re-execute.

2.2.2 Optimizations

To fully take advantage of the parallelism Swarm offers, tasks should be as small

and simple as possible to reduce the cost of aborts and to improve load balancing

across hundreds of cores. Moreover, small tasks can be optimally distributed to certain

cores according to the limited memory they read and write from, improving cache

utilization and performance on individual cores. To do this, Swarm can assign spatial

hints to tasks to guide task distribution across cores [18]. Hints are often an address

of memory that are read or written by tasks - tasks that access the same memory

should be assigned to the same cores, as to maximize cache efficiency.

Swarm’s model fits well with priority-based algorithms, where order constraints

between iteration rounds can prevent other architectures from utilizing all possible

parallelism. Non-speculative architectures may explore parallelism within rounds but

fail to parallelize across rounds. Because Swarm can speculatively queue vertices

multiple rounds into the future, we can now parallelize across rounds, as vertices from

multiple frontiers can be processed concurrently while appearing to commit in order.

2.2.3 T4 Compiler

Swarm currently offers a manual low-level Swarm API, where programmers can

configure individual tasks, spatial hints, and low-level timestamp options. Additionally,

however, the Swarm T4 compiler [37] builds on this low-level API to provide a more

high-level method for writing Swarm code. The T4 compiler compiles C++ application

code with Swarm extensions - it automatically converts loops to Swarm tasks, attaches
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1 swarm::PrioQueue swarm_frontier;
2 swarm_frontier.for_each_prio([&](unsigned level, int src, auto push) {
3 src.visited = true;
4 process_vertex(src);
5 for (int dst : src.neighbors()) {
6 if (!dst.visited) {
7 push(level + 1, dst);
8 }
9 }

10 }

Figure 2-2: Example of Swarm C++ code for the Swarm T4 Compiler. Vertices are
dequeued from the PrioQueue, processed on Line 4, and unvisited neighbors are pushed
to the PrioQueue with an incremented timestamp on Line 7.

spatial hints to qualifying tasks, and assigns timestamps to tasks. UGF targets this

version of Swarm C++ for code generation in the Swarm compiler backend.

An example of the Swarm C++ extensions is described in Figure 2-2, where we

present an example of how this API may be used to represent a graph application. Here,

the “swarm_frontier” is a Swarm priority queue that stores tasks to be executed

- in this case, the queue stores vertices to process. The “for_each_prio” lambda

body stores operations to be executed on each vertex, with the target vertex of each

task indicated by the “int src” parameter. The push function on Line 7 enqueues

vertices with a programmer-assigned timestamp of “level + 1”, which, in this case,

assigns the next round of vertices to the next round of tasks. Multiple vertices can

(and often, will) be assigned the same programmer-assigned timestamp, but the T4

compiler ultimately converts this to a unique virtual timestamp to simplify inter-task

conflict detection [19].

2.2.4 Comparison Against CPU

Swarm’s ability to speculate across rounds gives it a huge advantage in priority-based

algorithms when frontiers tend to be small. If frontiers are small, as in the case of road

graphs, parallelism within rounds can be limited. When compared to a normal CPU

architecture that cannot speculate, optimized Swarm code achieves nearly 3x speedup

on road graphs (Figure 2-3). On the other hand, CPU’s tend to be faster in the case

of power-law degree distribution graphs. From this comparison, we can conclude that

a graph framework should be able to generate code for both architectures, since both
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Figure 2-3: Performance comparison of Swarm vs. CPU optimized code on BFS and
SSSP Δ-Stepping. Green indicates Swarm code speedups over CPU code, while red
indicates slowdown. Columns correspond to abbreviated graph inputs (full names
listed in Table 6.1), and rows correspond to algorithms.

clearly have strengths in certain situations. This example motivates the design of

UGF, which enables generating code for novel architectures that each bring unique

optimizations, all from the same input algorithm code. In this work, it specifically

motivates the development of the Swarm GraphVM, as to explore the optimization

potential of fine-grained, speculative task scheduling with Swarm.
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Chapter 3

UGF Design and Implementation

UGF aims to make the existing GraphIt DSL compiler more extensible to new backend

architectures while retaining much of its existing hardware-independent optimization

space. To make UGF portable, as to support not only a few, but a diverse set of backend

architectures, UGF must first separate the hardware-independent from hardware-

dependent aspects of the compiler. We accomplish this through the design of the

GraphIR representation, a new scheduling language and API, and a novel metadata API

that builds on GraphIR to support optimizations or hardware-dependent attributes.

The design of UGF is summarized in Figure 3-1.

3.1 GraphIR Representation
To simplify the process of adding new backends to UGF, we design a novel intermediate

representation (GraphIR) that is a hardware-independent representation of the input

algorithm code. This allows the compiler to support numerous GraphVM’s (hardware-

dependent compiler backends) that utilize the same GraphIR. GraphIR is now defined

in the hardware-independent compiler midend, and is consumed in the hardware-specific

GraphVM’s.

The GraphIR is an AST representation of the program used in the compiler

midend, denoting components of the program as nodes. For example, there are generic

nodes such as WhileLoopStmt and VarDecl (representing while loops and variable

declarations, respectively) and graph-specific nodes, such as EdgeSetIterator (an
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Figure 3-1: An overarching view of the UGF compiler, which includes an algorithm
and scheduling specification, hardware-independent transformations and GraphIR,
and architecture-specific GraphVM’s and output code. An example of the hardware-
specific pipeline is included for Swarm, where the scheduling language also contributes
Swarm-specific programmer-configured optimizations to the Swarm GraphVM. The
GraphVM also includes Swarm-specific code generation and runtime library to support
producing Swarm C++.
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1 Function updateEdge (int32_t src, int32_t dst,
2 VertexSet output_frontier, {
3 bool enqueue = CompareAndSwap<is_atomic=true>(parent[dst], -1, src),
4 If (enqueue, {
5 EnqueueVertex(output_frontier, dst)
6 }, {})
7 })
8 Function main (int32_t argc, char* argv[], {
9 ...

10 WhileLoopStmt<swarm_frontier_convert=true>(VertexSetSize(frontier), {
11 EdgeSetIterator<requires_output=true,
12 frontier_reusable=true,
13 direction=PUSH,
14 is_edge_parallel=true>(
15 edges, frontier, output, updateEdge, toFilter),
16 AssignStmt(frontier, output)
17 }),
18 })

Figure 3-2: Optimized GraphIR generated by the compiler for the BFS algorithm with
Swarm-specific metadata (e.g. swarm_frontier_convert for WhileLoopStmt). This
text representation is generated by pretty printing the GraphIR, which is an in-memory
data structure. Note that the Swarm GraphVM ignores the atomic CompareAndSwap
specification on Line 3 because Swarm operations always commit atomically.

expression operating on sets of edges in the graph) or EnqueueVertex (an expression

for enqueuing vertices into a VertexSet). We select sufficiently specific abstractions to

represent graph applications, but high-level enough to support representation on any

hardware. For instance, the two main operators in the GraphIR - EdgeSetIterator

and VertexSetIterator both represent graph-specific loop instructions, and will

manifest differently for different architectures in individual GraphVM backends. CPU

and GPU backends may explicitly implement edge blocking for the EdgeSetIterator

instruction to optimize for cache utilization, but the Swarm architecture may opt to

simply use a built-in Swarm priority queue structure to iterate over edges.

Initially, these nodes contained both hardware-independent and dependent infor-

mation. To make the GraphIR truly hardware-independent, we identify each node’s

"arguments” as parameters independent of architecture and required for correctness.

We then leave scheduling options and hardware-specific parameters in the node’s

"metadata", a flexible container for custom specification described in Section 3.3. An

example of this distinction is shown in Figure 3-2, which depicts an example of the

GraphIR and usage of the mentioned GraphIR nodes for BFS. Here, the arguments for
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WhileLoopStmt GraphIR Instruction
Arguments Metadata used in Swarm GraphVM
bool condition
StmtBlock body

bool swarm_frontier_convert: if the while loop can be con-
verted to use a Swarm queue.
Variable swarm_frontier_var: holds type and name of
Swarm queue variable if while loop can be converted.
StmtBlock vertex_level_stmts: block of statements that
represent vertex-level operations.
StmtBlock frontier_level_stmts: block of statements that
represent frontier-level operations.
List<Variable> global_vars: global variables to pass as
parameters into the Swarm queue lambda.

EdgeSetIterator GraphIR Instruction
Arguments Metadata used in Swarm GraphVM
EdgeSet input_graph
VertexSet input_vset
VertexSet output_vset
Function apply_function

bool apply_deduplication: whether to deduplicate vertices
in output vertexset.
bool can_reuse_frontier: whether frontier variable and mem-
ory can be reused (and can be converted to Swarm queue).
Expr swarm_coarsening_expr: the numeric expression for
the loop coarsening factor if coarsening is enabled.
Expr spatial_hint: the tensor expression used for the spatial
hint for the edge-level applied function if hints are enabled.

Table 3.1: Description of WhileLoopStmt and EdgeSetIterator GraphIR nodes, sep-
arating arguments (left) and hardware-independent scheduling metadata and Swarm-
specific metadata (right). A full list of GraphIR nodes and their arguments is located
in Appendix B.

the WhileLoopStmt contain the condition (checking vertexset size of frontier) and

the loop’s body (Line 10-17), two parameters that are derived from the input algorithm

code and must exist regardless of target hardware. EdgeSetIterator, likewise, takes

in required arguments like the edgeset to be iterated on and the applied function

(Lines 11-15).

Metadata, on the other hand, includes several Swarm-specific fields, such as in-

dications of if and how to convert loops to Swarm priority queues (e.g. swarm_-

frontier_convert in Line 10 of Figure 3-2). Table 3.1 details the breakdown between

arguments and metadata for two operators in this example, the WhileLoopStmt and

the EdgeSetIterator. Metadata for the EdgeSetIterator also includes optional

hardware-independent scheduling parameters, such as frontier deduplication (the op-

tion to deduplicate vertices in frontier VertexSets) and low-level Swarm optimization

parameters.
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3.2 Scheduling Language
We also design a new extensible scheduling language for UGF that separates hardware-

independent scheduling features, such as edge traversal direction or parallelization,

from dependent features, such as NUMA configuration (CPU) or kernel fusion (GPU).

We also present a scheduling language API that enables hardware-independent midend

passes to utilize hardware-independent scheduling options, but also enables passes

in each GraphVM to use hardware-specific scheduling parameters. This contribu-

tion enables the creation of the GraphIR, and simplifies the implementation of new

GraphVM’s.

3.2.1 Scheduling Language Interface
The scheduling language is built using object-oriented design, presenting a hierarchy of

ScheduleObject classes. The base class (SimpleScheduleObject) implements the

hardware-independent schedule, consisting of scheduling parameters that are later

used for hardware-independent optimizations. From this base class, we extend several

hardware-specific schedule object classes that include scheduling parameters relevant

to each individual architecture. For example, SimpleCPUScheduleObject contains

scheduling options specific to the CPU architecture, and SimpleGPUScheduleObject

contains options specific to the GPU architecture (as shown in Figure 3-3).

The interface also supports the creation and extension of composite schedules,

which are schedules that are dependent on some input criteria (e.g. input graph size).

These composite schedule objects consist of multiple normal schedule objects, which

can then be specific to any hardware backend. This design enables portability of

UGF for multiple backends, where each backend can now configure its own scheduling

optimizations and inherit from the given hardware-independent schedule objects.

3.2.2 Scheduling Language API
To enable the retrieval of these parameters from the scheduling language objects, we

create a novel API that can be used by both hardware-independent and dependent com-

piler passes. The base ScheduleObject class contains hardware-independent configu-

ration and getter functions, such as configDelta and getDelta, which can be called by
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Figure 3-3: Hierarchy of hardware-independent base classes and hardware-specific
scheduling classes. Hardware-specific classes are highlighted.

Figure 3-4: Example of Scheduling Language API, interacting with hardware-
independent and hardware-dependent aspects of UGF.
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Hardware-Independent SimpleScheduleObject Options
Function Options Description

configLoadBalance VERTEX_BASED,
EDGE_BASED

Configure the load balance scheme to be based on
either edges or vertices.

configDirection PUSH,
PULL

Specify either a push or pull traversal for updating
vertex data.

config-
Deduplication

ENABLED,
DISABLED

Enable or disable deduplication of vertices in inter-
mediate or output frontiers.

configDelta int32_t or string
arg

For priority-based algorithms, configure a delta
value for priority buckets.

Swarm-Specific SimpleSwarmScheduleObject Options
Function Options Description

configQueueType UNORDEREDQUEUE,
PRIOQUEUE,
BUCKETQUEUE

Configure the queue type to represent vertex set
iteration in Swarm.

configLoop-
Coarsening

ENABLED,
DISABLED

Enable or disable loop coarsening for Swarm
loop unrolling, using the SCC_OPT_LOOP_COARSEN_-
FACTOR annotation.

configSpatialHint ENABLED,
DISABLED

Enable or disable the use of spatial hints in a loop
iterating on sets of edges or vertices by using the
SCC_OPT_TASK and SCC_OPT_CACHELINEHINT an-
notations.

Table 3.2: Description of SimpleScheduleObject and SimpleSwarmScheduleObject
functions and options.

hardware-independent passes. Every derived schedule class (SimpleCPUScheduleObject,

SimpleGPUScheduleObject ...) must implement these base functions, which could

involve target-agnostic scheduling options to target-specific options. For instance,

SimpleCPUScheduleObject must support the hardware-independent representation

of traversal direction (PUSH, PULL), so it internally converts its CPU-specific traver-

sal direction options (SPARSE_PUSH, DENSE_PUSH, SPARSE_PULL) to PUSH and PULL

accordingly.

Programmers can then create config* functions specific to their target architecture

that configure architecture-specific scheduling options, and can create matching getter

functions to use in their GraphVM backend. Table 3.2 depicts the delineation between

base scheduling functions and Swarm-specific scheduling functions.
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1 schedule:
2 SimpleSwarmSchedule sched1;
3 sched1.configDeduplication(DISABLED);
4 sched1.configLoopCoarsening(DISABLED);
5 sched1.configSpatialHint(ENABLED);
6 program->applySwarmSchedule("s0:s1", sched1);

7 SimpleSwarmSchedule sched0;
8 sched0->configQueueType(PRIOQUEUE);
9 program->applySwarmSchedule("s0", sched0);

(a) Optimal Swarm schedule for BFS on high-
diameter graphs, such as road networks.

1 schedule:
2 SimpleSwarmSchedule sched1;
3 sched1.configDeduplication(DISABLED);
4 sched1.configLoopCoarsening(ENABLED);
5 sched1.configSpatialHint(ENABLED);
6 program->applySwarmSchedule("s0:s1", sched1);

7 SimpleSwarmSchedule sched0;
8 sched0->configQueueType(PRIOQUEUE);
9 program->applySwarmSchedule("s0", sched0);

(b) Optimal Swarm schedule for BFS on
power-law degree distribution graphs, such
as social graphs.

Figure 3-5: Examples of optimized Swarm schedules for BFS.

3.2.3 Scheduling for Swarm
The Swarm GraphVM supports the use of multiple Swarm API queues, including a built-

in priority queue (PrioQueue), its extension (BucketQueue), and an unordered queue

(UnorderedQueue), to store and process vertices. In priority-based applications, such

as BFS, using either PrioQueue or BucketQueue will likely yield better performance.

However, other more complex applications may incur extraneous overhead from these

queues, and will perform better when using a simple unordered queue to represent

sets of vertices. This scheduling option allows the user to try multiple queue options

and easily accommodate new queue types from the Swarm API.

The scheduling language also supports additional Swarm optimizations that leverage

its unique execution model, including the ability to control how workload is divided into

tasks and how those tasks are distributed to Swarm cores. Figure 3-5 demonstrates how

the SimpleSwarmSchedule can leverage hardware-independent scheduling parameters

(like deduplication) and Swarm-specific options to optimize BFS. These optimizations

are described in-depth in Chapter 5.

3.3 Metadata API
To store optional scheduling parameters or hardware-specific parameters in IR nodes,

we develop a metadata map. Programmers building a new UGF backend for their

architecture can add their own attributes to metadata maps attached to GraphIR nodes

in order to support architecture-specific transformations and code generation. This

contrasts with node arguments, which are required for correctness and are hardware-
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Function Description

getMetadata<T>(str field_name) Return the metadata field of type T and specified
name from the metadata map.

setMetadata<T>(str field_name, T
field)

Set a metadata field of type T and specified name
by storing the field in the metadata map.

hasMetadata<T>(str field_name) Returns true if the metadata map has a field of type
T and specified name. Otherwise, returns false.

Table 3.3: Description of the Metadata API and its functions.

independent. As a result, the metadata map prevents programmers from having to

modify the underlying GraphIR nodes themselves for hardware-specific additions.

Examples of use are presented in Chapter 4 for the Swarm backend, where various

metadata fields are set in the Swarm-specific compiler passes to indicate how certain

portions of code should be generated during code generation.

We then present a simple API for programmers to use to interact with metadata

in Table 3.3. Notably, the map is implemented as a flexible container that can support

fields of various types. Consequently, the three API functions are also implemented as

template functions.

3.4 GraphVM Compiler Backend
UGF includes a series of hardware-independent or reusable passes that can be shared

across architectures with commonalities (e.g. Swarm and GPU’s, where both can enable

the identification of reusable frontiers), derived from the original GraphIt compiler. As

seen in Figure 3-1, hardware-specific compiler components are now located in individual

GraphVM’s, or compiler backends. The GraphVM consumes the hardware-independent

GraphIR from Section 3.1 to apply hardware-specific scheduling optimizations and,

ultimately, generate architecture-specific code. To support simple development of

GraphVM’s, UGF includes the metadata API to retrieve parameters from GraphIR

nodes and the scheduling API to read the attached scheduling options.

From this framework, programmers can define target-specific compiler passes and

code generation to utilize metadata, as mentioned previously, by storing and retrieving

hardware-specific parameters and features from GraphIR nodes. Programmers should

also include a runtime library in their GraphVM, where optimized, hardware-specific
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versions of various graph utility functions are implemented. Code generation in the

GraphVM is generally built to call runtime library functions, as to reduce the complexity

of the code generation step.

In all, UGF supports a GraphVM for CPU, GPU, Swarm, and the HammerBlade

manycore, demonstrating the flexibility of the framework. In the next section, we

describe the implementation of the Swarm GraphVM.
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Chapter 4

Swarm GraphVM

To demonstrate the extensibility of the UGF model, we develop a novel backend

(the Swarm GraphVM) for the Swarm architecture that leverages newly implemented

Swarm-specific compiler transformations. The Swarm GraphVM consumes input

GraphIR and generates C++ with Swarm extensions, which can be compiled by the

Swarm T4 compiler to produce tasks for the Swarm hardware. In this section, we

focus on the set of Swarm-specific transformations, as hardware-independent passes

have been discussed in previous sections and works [41].

As mentioned, the Swarm execution model relies on small tasks operating on

individual vertices, while minimizing dependencies between tasks to avoid large, costly

aborts. As such, the Swarm-specific compiler transformations implemented for the

Swarm backend fall into two main categories: the division of vertex frontier iterations

into individual vertex-level tasks, and the conversion of shared variables to task-local,

private ones. We also present a transformation pass for the deduplication of vertices

in frontiers, which is often required for correctness. The flow of compiler passes is

detailed in Figure 4-1.

4.1 Frontier Task Division
The frontier pattern is common in graph applications, where algorithms such as BFS

or BC process sets of vertices in the current frontier, store their neighbors in the

next frontier, and then traverse the next frontier’s vertices in the next iteration. An
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Figure 4-1: Flowchart of compiler transformations and optimizations in the Swarm
GraphVM. Frontier Consolidation, Swarm Queue Analysis, and Loop Reduction are
described in Section 4.1. Variable Privatization and Global Variable Finder are de-
scribed in Section 4.2. Frontier Deduplication is described in Section 4.3. Low-Level
Swarm Optimizations are described in Section 5.2.
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1 while (frontier.getVertexSetSize() != 0)
2 var output : vertexset{Vertex} = edges.from(frontier).applyModified(

updateEdge);
3 delete frontier;
4 frontier = output;
5 end

(a) Input GraphIt code for frontier iteration, applying the updateEdge function onto each
frontier.

1 WhileLoopStmt<swarm_frontier_convert=true>(VertexSetSize(frontier), {
2 EdgeSetIterator<frontier_reusable=true>(edges, frontier, output,

updateEdge),
3 AssignStmt(frontier, output)
4 });

(b) GraphIR representation of above GraphIt code.

1 WhileLoopStmt<swarm_frontier_convert=true>(VertexSetSize(frontier), {
2 EdgeSetIterator<frontier_reusable=true>(edges, frontier, frontier,

updateEdge),
3 });

(c) Lowered GraphIR following frontier reuse and consolidation.

Figure 4-2: GraphIR example and transformation following frontier reuse and consoli-
dation pass.

example of this is depicted in Figure 4-2. Many architectures can parallelize the

processing of vertices within each frontier, but Swarm provides a unique opportunity

to also parallelize across frontier rounds, given that tasks can execute speculatively

across these rounds. To achieve this speculation, we implement a series of analysis and

transformation passes that convert loops that operate on entire frontiers to Swarm

timestamp-ordered tasks that operate on a single vertex.

4.1.1 Frontier Consolidation

First, we implement a pass to remove intermediate frontier variables and consoli-

date frontier usage to remove unnecessary dependences between rounds. Eliminating

extraneous frontiers also simplifies the remaining steps to convert frontier-based loops

to vertex tasks. UGF supports reusing passes across different backends, so to identify

these frontier patterns, we reuse the FrontierReuseAnalysis pass also used in the GPU

GraphVM. This pass is a liveness analysis used to check if the memory allocated to a
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vertex frontier is reusable between rounds. Having a reusable frontier implies that we

can eliminate redundant, intermediate frontiers, leaving just one active frontier within

the loop and making it safe to convert to a Swarm queue.

Once a reusable frontier is identified by a metadata flag set in the FrontierReuse-

Analysis pass, we can safely transform the program to modify the frontier in-place

without an intermediate output variable. For instance, in Figure 4-2a, we find an inter-

mediate output frontier, but since frontier was marked as reusable when lowered

to GraphIR, we consolidate the two frontiers, as in Figure 4-2c. Importantly, this

transformation also removes the dependence that the output variable would enforce

between tasks of different iterations, and thus allows Swarm to efficiently speculate

across rounds.

4.1.2 Swarm Queue Analysis

The previous transformation also leads into the next analysis pass, which checks for

while loops with the frontier pattern that can be transformed into Swarm priority

queues. When a loop iterates and operates only on one frontier, the compiler can

safely convert this to a Swarm queue loop that reduces each frontier iteration to a

series of per-vertex operations. Once this frontier pattern is detected, the analysis

generates code according to the Swarm C++ API from Section 2.2.3 to transform

while loops to utilize a Swarm priority queue. We find that the UGF and GraphIR

design succeeds at presenting the WhileLoopStmt and EdgeSetIterator abstractions,

which easily map to a Swarm queue loop. Moreover, these abstract nodes can flexibly

hold the frontier_reusable metadata field to help this Swarm-specific pass identify

a convertible loop.

In this pass, the Swarm GraphVM converts the enqueuing of vertices into the

spawning of tasks that handle these operations. For correctness, however, these tasks

still must be assigned timestamps that enforce order across frontier rounds. Assigned

timestamps consequently correspond to the round that the vertex would have been

dequeued. In a frontier pattern, tasks will be assigned incremented timestamps, will

execute speculatively, but still appear to commit in-order, thus preserving correctness.
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1 while (frontier.getVertexSetSize() != 0)
2 (0) frontier = edges.from(frontier).

applyModified(updateEdge);
3 (1) frontier.apply(mark_visited);
4 end

(a) Input GraphIt code with two loop body
operations.

1 swarm::PrioQueue swarm_frontier;
2 swarm_frontier.for_each_prio([](unsigned

level, int src, auto push) {
3 switch (case % 2) {
4 case 0:
5 for (dst : src.neighbors):
6 updateEdge(src, dst);
7 push(level + 1, dst);
8 break;
9 case 1:

10 mark_visited(src);
11 push(level+1, src);
12 break;
13 }
14 });

(b) Generated Swarm code with two switch
cases for the two loop body operations.

Figure 4-3: Input GraphIt and output Swarm C++ code for a frontier loop body with
multiple operations. EdgeSetIterator step 0 in (a) matches the generated switch
case for case 0 in (b), and the VertexSetIterator step 1 in (a) matches the generated
switch case for case 1 in (b).

4.1.3 Frontier Loop Body Reduction

Reduction of Vertex Operations to Individual Tasks

The first two compiler passes convert frontier iterations into vertex level tasks.

However, if the loop body specifies several ordered operations to be performed on each

vertex, these tasks can be further reduced into smaller tasks. After this transformation,

each task will execute a single operation on an individual vertex, as demonstrated in

Figure 4-3, where the two operations to be performed on a vertex are divided into two

separate tasks.

To achieve this structure, the Swarm GraphVM transforms the loop body into

individual switch statements. Each individual step is then assigned an incremented

timestamp, as to enforce the order of these operations. Consequently, tasks representing

each operation of the loop body will still commit in order, which is crucial for correctness.

For instance, in Figure 4-3, the EdgeSetIterator operation in step 0 transforms into

tasks with level 0. The tasks in switch case 0 then enqueue tasks with level 1 for

the VertexSetIterator from step 1. These tasks enqueue tasks with level 2, which

execute the EdgeSetIterator operation on the next frontier, thus preserving order

both within the loop body and across loop iterations.
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Figure 4-4: (a) Input GraphIt and (b) generated Swarm C++ code for betweenness
centrality (BC). (c) Flow of tasks for both per-vertex tasks (left, in blue) and per-
frontier tasks (right, in gray), separated by corresponding step in GraphIt code (or
corresponding case in generated code).

Identification of Vertex and Frontier Level Tasks

Swarm enqueues tasks for each vertex operation - however, programmers may also

want to define operations that execute once per frontier iteration, rather than once

per vertex. Examples of such operations include global variable increments that only

occur once per round (Figure 4-4a, Step 0). To accommodate this pattern, the Swarm

C++ API provides a BucketQueue with two lambda bodies that separate per-vertex

and per-frontier tasks. Operations defined in the second, per-frontier body execute

only after all the tasks in the first, per-vertex body with the matching case number

are executed.

In this half of this transformation, the Swarm GraphVM identifies operations

within loops that are per-vertex and per-frontier and stores each group in separate

metadata fields. These two buckets are stored as metadata in the WhileLoopStmt
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Figure 4-5: Shared to private state conversion when inserting vertices into a frontier list
(Step 3 for betweenness centrality (BC) in Figure 4-4a). Index of frontier where vertex
should be inserted is converted from shared access (frontier_list.current_round)
to task-private functional parameter (task.round). Corresponding code transforma-
tion is shown in bottom half of figure.
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node (as shown in Table 3.1), which can be accessed during Swarm code generation to

organize statements into the correct lambda bodies (Figure 4-4b).

4.2 Privatization of Shared Variables
When accessing shared variables or state, Swarm must be careful to not introduce

unnecessary dependences between tasks. Tasks that operate with private variables

will minimize shared reads and writes and generally perform better, as they are more

independent from other tasks. However, in graph applications, current loop iterations

may depend on previous iterations to run correctly, which will require special handling

to prevent unnecessary task ordering and aborts. Additionally, many applications

will involve accessing shared data structures to store and update data, introducing

new inter-task dependences. For instance, inserting a vertex into a growing list of

frontiers requires each task to know which frontier to insert a vertex. The naive

implementation inserts vertices into the last frontier in the frontier list, but because

tasks run speculatively, tasks from different rounds will compete for the next position

in the list to insert a frontier. This conflict creates a false dependence between tasks

and prevents speculation across rounds.

The Swarm GraphVM addresses shared inter-task dependencies in two passes. First,

the GraphVM lowers inter-task dependences to task-local private state arguments

to prevent false data dependences between tasks. Second, the GraphVM analyzes

each frontier-iterating loop to identify global variables to pass into the Swarm queue

lambda body.

4.2.1 Variable and State Privatization Pass
First, the Swarm GraphVM detects dependences that occur between tasks, such as

frontier list size increments, where all tasks insert or modify data within the same data

structure. We opt for a functional approach, converting inter-task dependent parameters

to function arguments to spawned tasks. This conversion converts previously shared

dependences to task-local state variables.

Figure 4-5 presents an example of this pattern in frontier list insertions, where each

task depends on previous tasks to determine where to insert a vertex into the data
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structure. To prevent this conflict from affecting speculation across rounds, we lower

this shared task-to-task dependence to a local, private task variable that stores the

frontier list index to insert the vertex into. As seen in Figure 4-5, we demonstrate this

conversion in the Task argument, round. This local incremented variable is passed

from task to task as a function parameter, which removes the need for any global

accesses. In the general case, the Swarm GraphVM detects these accesses to shared

state and easily lowers them to private copies by adding functional parameters passed

from task to task.

To insert vertices into a single frontier, tasks from the same round may conflict

on the pointer to the next empty space in the frontier. This enforces an unnecessary

ordering of tasks that reduces Swarm’s ability to parallelize tasks in a single round. The

Swarm GraphVM solves this problem by simply using the UnorderedQueue structure

from the Swarm API inside the Swarm GraphVM runtime library to represent each

frontier. This queue allows tasks to append vertices without enforcing an order.

4.2.2 Global Variable Finder Analysis
Additionally, we implement a global variable analysis pass to detect other global

variables in frontier-iterating loops. Global variables that do not pose a dependence

between tasks, such as the round variable on Step 0 in Figure 4-4a, must be specially

passed as a parameter into the lambda body of the Swarm queue (Figure 4-4b).

Both shared variables and global variables are detected in this compiler pass and

stored as metadata in the corresponding WhileLoopStmt node. Code generation reads

these metadata fields to build struct objects for tasks, and locally modify task-private

parameters before generating push statements that functionally pass these parameters

to the next tasks.

4.3 Frontier Deduplication
Finally, we address passes that deal with correctness. Here, we develop a novel compiler

transformation that deduplicates vertices in frontiers. Deduplication is required in some

applications, such as betweenness centrality, to prevent the reprocessing of vertices, but

it can also be used in applications such as BFS or SSSP as an optional optimization.
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Case 1 in Figure 4-4b depicts an example of deduplication for BC, which requires

deduplication for correctness when pushing vertices into the next frontier.
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Chapter 5

Swarm Optimizations

Following the Swarm GraphVM transformations presented in the previous section, we

now discuss the Low-Level Swarm Optimizations pass (the last pass in Figure 4-1),

which reads Swarm scheduling options to enable various low-level optimizations for

Swarm and more finely configure the behavior of the generated Swarm C++ code. These

options were motivated by hand-tuned implementation experiments which explore

potential optimizations that leverage Swarm’s architecture (Section 5.1). Because

Swarm can benefit greatly from small tasks and optimal load distribution for cache

efficiency, we mainly explore (1) optimal task division and assignment of spatial hints

to tasks and (2) the optimal granularity to split a loop iterating across vertices or edges.

Guided by results from hand-tuned implementation experiments, we then discuss the

integration of these optimizations into the GraphVM (Section 5.2).

5.1 Manual Swarm API Optimizations
To explore the optimization space of Swarm applications, we manually implement and

tune graph applications written for the Swarm architecture, using low-level Swarm

data structures and primitives. While the Swarm GraphVM generates code for the T4

compiler, we found it initially difficult to experiment with Swarm optimizations using

T4 compiled code, as its design trades increased simplicity for less customizability in

defining task boundaries and hint assignment. Consequently, this section focuses on

code written with the low-level Swarm API, which allows us to define fine-grained
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1 void writeTask(int level, int ngh, int src) {
2 if (parent[ngh] == -1) {
3 parent[ngh] = src;
4 swarm::enqueue(readTask, level+1, EnqFlags::SAMEHINT, ngh);
5 }
6 }
7
8 void readTask(int level, int src) {
9 ...

10 swarm::enqueue(writeTask, level, Hint(&(parent[ngh])), ngh, src);
11 }

Figure 5-1: Example of manually implemented, hand-tuned Swarm code that utilizes
the low-level Swarm API. Two tasks (write operation on top, read operation on bottom)
are shown.

tasks, explicitly enqueue children tasks with specific timestamps, and assess the effect

of different spatial hint schemes. In the example presented in Figure 5-1, tasks are

defined as functions in writeTask and readTask, children tasks are enqueued with

the swarm::enqueue function, and spatial hints are assigned with Hint or propagated

with EnqFlags::SAMEHINT. We implement hand-tuned programs using this API that

explore each of the target optimizations individually, and performance results are

reported in Section 6.4.

5.1.1 Spatial Hint Assignment
We first manually implement programs with spatial hints assigned to every task,

as to optimally distribute tasks to maximize task data locality. These manual imple-

mentations also explicitly define the boundaries between distinct, fine-grained tasks in

the program. After all, dividing tasks into more fine-grained tasks allows programmers

to assign spatial hints more strategically to small tasks.

Many graph applications follow a read-write-enqueue pattern: information on a

source vertex is read, a resulting value is written to some memory address, and the

neighbors are enqueued for the next application iteration. For instance, in BFS, we

read each outgoing edge from a source vertex, write the updated distance to each

destination vertex, and enqueue updated destination vertices for the next iteration.

To optimize for locality in this pattern, the source vertex read section of an iteration

should be isolated into one task, as all read tasks for this vertex will read the same

memory; the write section follows similarly. Thus, a natural task boundary arises
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between the read and write step of each loop iteration. In the manually implemented

example from Figure 5-1, we explicitly define the boundaries between these tasks by

assigning each of these steps to one task.

With fine-grained tasks, we may now assign spatial hints, which often match a

memory address that the task reads from or writes to. Hints for the read task should

be related to the source vertex, and hints for the write task should be related to the

destination vertex. In Figure 5-1, the write task for vertex ngh is assigned a hint of

parent[ngh], the location that the task writes to. The hint is then propagated to

the next read task, which reads information from vertex ngh.

5.1.2 Dynamic Task Partitioning
Next, we manually implement programs with loops that process a specified number

of edges to maximize task data locality across cores while accounting for the degree

distribution of the input graph. As mentioned, Swarm benefits from fine-grained tasks

because of reduced cost of aborts and more efficient task distribution across cores due

to spatial hint assignment and cache utilization. At the same time, however, making

the assigned work for each task too fine-grained can remove potential benefits from

bundling similar tasks together. Tasks that access consecutive memory addresses might

benefit from bundling to improve cache utilization because consecutive values will

be stored in the same cache line. Without coarsening, these tasks would have been

distributed to the same core in the fine-grained model anyways. Directly bundling

tasks into one task would remove the overhead of enqueuing several tasks while still

benefiting from optimal cache retrieval. To manually implement this behavior, the

low-level Swarm API enables us to process a specified number of edges together in

one loop, where the number of edges is conditional on the degree of the source vertex.

5.2 Integration into Swarm GraphVM
Guided by the results from these manual optimizations, the Swarm API now exposes

several code annotations (SCC_OPT_* Swarm annotations mentioned in Table 3.2)

that allow the Swarm GraphVM to easily leverage these key features of the hardware,

including explicit task boundary annotations to separate tasks, spatial hint annota-

49



tions to specify hint addresses, and loop coarsening annotations to specify Swarm’s

granularity when splitting loops into tasks.

We thus present the Low-Level Swarm Optimizations pass in the Swarm GraphVM,

which consumes the configured Swarm scheduling options to generate these anno-

tations in the output code. As mentioned in Section 3.2.3, we extend the Swarm

scheduling language to support the insertion of these annotations by introducing

various configuration functions, which are applicable to EdgeSetIterator expressions.

One configuration function is defined for each of the described optimizations.

The EdgeSetIterator expression is the target GraphIR node for these optimiza-

tions because it naturally follows the read-write-enqueue pattern described in the

previous section, where source information is read and destination vertices are written

to by the applied function. These expressions also loop over sets of edges. Consequently,

the hand-tuned implementations from the previous section clearly define where task

boundary, spatial hint, and loop coarsening annotations should be inserted into the

generated code, if the respective scheduling options are enabled.

First, enabling SPATIAL_HINT on an EdgeSetIterator expression allows the

GraphVM pass to insert Swarm task boundary and spatial hint annotations in between

the target function’s source read and destination write sections. Spatial hints are

assigned by searching for a tensor value modified in the applied function to pass into

the generated hint annotation. If no potential value is found, then the spatial hint

option simply inserts a task boundary, which automatically decreases the size of tasks

in the application code. This boundary matches the boundary between read and write

tasks in the manually implemented code from Section 5.1.1.

Second, enabling LOOP_COARSENING on an EdgeSetIterator expression indicates

to the GraphVM to insert a loop coarsening annotation prior to iterating across the

edges in the edgeset. By default, the loop coarsening option bundles the maximum

number of tasks by calculating the number of values that can reside on one cache

line (SWARM_CACHE_LINE / sizeof(type)). This annotation enables the Swarm

GraphVM to mirror the behavior described in Section 5.1.2, such that groups of

edges are now processed together in one task, as opposed to individual tasks.
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1 frontier.for_each_prio([](int level, int src) {
2 SCC_OPT_LOOP_COARSEN_FACTOR(SWARM_CACHE_LINE/sizeof(int))
3 for (int edgeID : neighbors(src)) {
4 int dst = edgeDst[edgeID];
5 SCC_OPT_TASK();
6 SCC_OPT_CACHELINEHINT(&(parent[dst]));
7 if (parent[dst] == -1) {
8 parent[dst] = src;
9 push(level + 1, dst);

10 }
11 }
12 });

Figure 5-2: Optimized Swarm code with SCC_OPT_* annotations for BFS.

Notably, because the hardware-independent scheduling parameters are now sepa-

rated from the Swarm-specific parameters in UGF, adding and using new parameters

does not affect the rest of the compiler. In the Low-Level Swarm Optimizations

pass, we check whether either of these Swarm-specific options were enabled, and we

simply store annotation argument expressions in the metadata of the corresponding

EdgeSetIterator node. Thus, the portable design of UGF from Chapter 3 success-

fully allows for the integration of Swarm-specific optimizations without modifying the

underlying hardware-independent compiler.

Figure 5-2 presents a Swarm GraphVM generated example of a transformed

EdgeSetIterator loop from BFS, where the edge iterating loop is coarsened and the

read and write steps are separated by a task boundary on Line 5. A hint is added on

Line 6 according to a value (parent[dst]) that is read and modified in the separated

task.
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Chapter 6

Evaluation

We evaluate the performance of the UGF Swarm GraphVM by demonstrating its

ability to produce highly optimized Swarm code. We compare the performance of

fully optimized generated Swarm code with baseline, unoptimized generated code on 5

graph algorithms and 10 different graph inputs. We also analyze the effect of individual

optimizations on performance, and how different combinations of optimizations may

benefit different sets of graphs or applications. Baseline code is generated using the

default schedule for the Swarm GraphVM (listed in Appendix A.1). For the optimized

code, we tune optimal schedules for each application or graph input (listed in Appendix

A.2), but we generate code using the same input algorithm code.

6.1 Methodology
We evaluate the Swarm GraphVM by running generated code on the Swarm architec-

tural simulator [37], utilizing a 64-core Swarm CPU configuration, as in prior work

[37, 1], with 32KB/core of L1 cache, 1MB/tile of L2 cache and a shared 64MB L3

cache, each with a 64 byte cache line size.

6.1.1 Datasets
Table 6.1 lists the input graphs used in the evaluation experiments, along with graph

sizes and download sources. We evaluate the Swarm GraphVM on a variety of graphs,

including social networks, road networks, and web graphs. Out of the 10 graphs, Orkut

(OK), Twitter (TW), LiveJournal (LJ), Sinaweibo (SW), Hollywood (HW), Pokec
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Graph Vertex count Edge count
RN [23] 1,971,281 5,533,214
RC [10] 14,081,816 33,866,826
RU [10] 23,947,347 57,708,624
PK [23] 1,632,803 30,622,564
HW [9] 1,139,905 112,751,422
LJ [23] 4,847,571 85,702,474
OK [30] 2,997,166 212,698,418
IC [9] 7,414,865 301,969,638
TW [30] 21,297,772 530,051,090
SW [30] 58,655,849 522,642,066

Table 6.1: Graph inputs used for evaluation. Each undirected edge is counted twice,
once per direction.

(PK), and Indochina (IC) have power-law degree distributions, while RoadNet-CA

(RN), RoadCentral (RC), and RoadUSA (RU) are road networks with bounded degree

distributions and high diameter.

6.1.2 Algorithms

We evaluate the Swarm GraphVM on five applications: PageRank (PR), Connected

Components (CC), Breadth First Search (BFS), SSSP with Delta Stepping (SSSP), and

Betweenness Centrality (BC). PR and CC are topology-driven algorithms (all edges

are traversed during each iteration). BFS, SSSP, and BC are data-driven algorithms

(only a subset of active vertices is visited each iteration). SSSP is also a priority-based

algorithm, where vertices are processed and tasks are committed in priority order.

Each experiment uses the same algorithm code for the above applications, and each

uses the same experiment parameters (start node, delta value).

6.1.3 Schedules

Baseline (default) schedules are defined in Appendix A.1. Optimized schedules for

each application and graph combination are also listed in Appendix A.2, and were

motivated heavily by findings in Chapter 5 and manual tuning.
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Figure 6-1: Heatmap of speedups of generated code from the Swarm GraphVM. Each
cell reports the speedup of the optimized code over the Swarm baseline unoptimized
version, with larger speedups in darker green. Columns correspond to graph inputs,
and rows correspond to algorithms.

6.2 Performance of Optimized versus Baseline Swarm

Code

The Swarm baseline code utilizes default settings without additional task or spatial hint

annotations. When compiling this code, however, the Swarm T4 compiler automatically

applies several optimizations to generate more work-efficiency and task distribution to

this default implementation. Despite this, the Swarm GraphVM is still able to generate

code that, when compiled by the T4 compiler, performs significantly faster than the

baseline code across all applications, when using an optimally tuned schedule.

In Figure 6-1, we observe consistent speedups in performance, especially in the

topology-driven algorithms (PR) and (CC). Because these two applications visit all

edges in each iteration, schedules can opt to coarsen each task to process multiple,

consecutive edges in one task, which can yield huge cache utilization benefits. For

applications that can experience highly contested memory accesses from high in-degree

nodes (CC), schedules can also opt to traverse edges in non-consecutive order, as to
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Figure 6-2: Scalability of Swarm GraphVM generated code on 4 core configurations
for BFS and PageRank.

trade off worse locality for less competing memory accesses and task aborts.

Data-driven algorithms also exhibit speedups across the map. These applications

feature several iterations across frontiers of vertices, where each round must be processed

and committed before the next round begins. Swarm achieves speedup in these

applications by leveraging fine-grained tasks - tasks can process individual vertices

instead of entire sets of vertices from a frontier, which improves work efficiency.

Additionally, Swarm removes the data dependence and synchronization requirement

across frontier rounds, so tasks can now speculatively execute across rounds. Utilizing

spatial hints in these applications to specify cores to execute certain tasks also reduces

cache line ping-ponging, thus improving cache utilization on individual cores. The

Swarm GraphVM successfully handles these transformations and achieves up to 36%

speedup in BFS, BC, and SSSP (as seen in Figure 6-1).

6.3 Scalability and Efficiency of Swarm GraphVM
The Swarm GraphVM not only generates optimized code that is faster than default

scheduled Swarm code, but also generates code that utilizes the Swarm architecture

well. We evaluate utilization by analyzing the scalability and work-efficiency of the

generated code.

First, we evaluate the scalability of code generated by the Swarm GraphVM by

running experiments using 1, 4, 16, and 64 core configurations, with appropriately
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Figure 6-3: Percentage of task execution cycles spent on work that is eventually
committed by Swarm cores during execution of generated Swarm code.

scaled cache quantities. In Figure 6-2, we find that code scales linearly with additional

cores, which suggests that the GraphVM successfully generates code with the fine-

grained parallelism required to fully utilize the multicore structure of the Swarm

architecture. Generally, with more cores, multicore architectures may begin to trade

off load balancing and synchronization overheads with increased parallelism benefits,

but the continuous linear growth in performance strongly supports the scalability of

Swarm and the generated code.

We also study the efficiency of individual programs by determining the percentage

of task execution cycles that are eventually committed in the five applications, as

opposed to cycles spent on work that is eventually aborted. With the optimized

schedules, cores consistently spend more than 80% of their time executing cycles that

are eventually committed, as shown in Figure 6-3. This suggests that the Swarm

GraphVM generates optimized code that saturates all available cores with useful work,

across all applications and graph types.
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Graph Application Manual Code Speedup GraphVM Code Speedup

RN BFS 1.45 1.17
SSSP 1.69 1.06

PK BFS 3.11 1.09
SSSP 3.41 0.99

LJ BFS 2.43 1.08
SSSP 3.30 1.03

Table 6.2: Speedup in manually implemented and GraphVM generated BFS and SSSP
with spatial hints added, when compared to code without any explicitly defined hints.
Manual code uses SSSP Bellman-Ford and GraphVM code uses SSSP Δ-Stepping.

Graph Application Cycles/Write Task (with hints) Cycles/Write Task (without hints)

RN BFS 28 71
SSSP 24 65

PK BFS 18 42
SSSP 18 41

LJ BFS 24 44
SSSP 20 41

Table 6.3: Average cycles spent on write task in manually implemented Swarm BFS
and SSSP Bellman-Ford, with and without spatial hint attached to write task.

6.4 Performance of Hand-Tuned Low-Level Swarm

Optimizations
To explore the effect of individual optimizations, we first evaluate the performance of

manually implemented low-level Swarm application code for BFS and SSSP (Bellman-

Ford), as described in Section 5.1. We utilize a subset of the same input graphs and a

similar 64 core configuration.

6.4.1 Spatial Hint Assignment

As shown in Table 6.2, assigning spatial hints to both read and write tasks dramatically

improved performance by up to 3.4x. We break down the effect of spatial hints further

in Table 6.3, where we compare the average cycles spent on tasks that perform writes

in BFS and SSSP. In both applications, a single task updates some in-memory value

for a vertex - for example, in BFS, a vertex’s parent may be updated, and in SSSP, a

vertex’s shortest distance is updated. Assigning spatial hints to these tasks clearly

improves their performance in both applications, with up to nearly 3x faster writes,
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Figure 6-4: Speedup of manually implemented BFS and SSSP Bellman-Ford Swarm
code using a loop coarsening factor of 4, 8, and 16 edges.

Graph SSSP BFS

RN 1.01 1.00
RC 1.01 0.94
PK 1.09 1.09
HW 1.06 1.05
LJ 1.06 1.06

Table 6.4: Speedup of Swarm GraphVM generated BFS and SSSP Δ-Stepping code
with loop coarsening enabled (coarsened by 16 edges).

as sending tasks that modify close or same vertices to the same core incurs benefits

from data locality.

6.4.2 Task Coarsening

With the manual implementations of BFS and SSSP, we also evaluated the effects

of coarsening tasks to process multiple edges. In both cases, we find that coarsening

generally produces speedup, especially on higher degree graphs, such as Pokec and

LiveJournal. Vertices in these higher-degree graphs generally have many more edges to

process, so bundling these edges together to be processed in coarser tasks can improve

cache utilization. As demonstrated in Figure 6-4, application performance improves

as the coarsening factor increases from 4 to 16 because the configuration cache line

(64 bytes) can fit up to 16 integer values (4 bytes). Road networks have little to no

improvement, as vertices in these graphs are of lower degree. Coarsening does trade

off fine-grained execution for locality, so lower-degree graphs may not benefit as much

from coarsening.
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Clearly, specification of coarsening factor can dramatically improve performance.

When enforcing this specificity in the code generated by the UGF Swarm GraphVM

using scheduling options, we find similar speedups, as described in the next section.

6.5 Performance of Swarm GraphVM Optimiza-

tions
We next perform a similar evaluation of individual optimizations for code generated

by the Swarm GraphVM, specifically the effect of spatial hints and coarsening, as

discussed in the previous section. We compare speedups from manually implemented

optimizations and GraphVM generated optimizations specified by the input schedule.

Because T4 already automatically performs several optimizations during compilation,

we evaluate the effect of spatial hint task boundaries and loop coarsening annotations

explicitly added by the Swarm GraphVM (not automatically added by T4).

6.5.1 Spatial Hint Assignment and Task Boundaries

Spatial hints send fine-grained tasks to specific cores for execution, and explicitly

added task boundaries make tasks more fine-grained, such that tasks work with more

restricted sets of memory accesses. This optimization is enabled on EdgeSetIterator

expressions by the configLoopCoarsening function in the Swarm scheduling language.

Table 6.2 demonstrates the effect of enabling this optimization on BFS and SSSP -

here, task annotations are explicitly added between reading source edge information

and writing to destination vertex. As a note, T4 already automatically attaches hints

to several tasks, so speedups appear less prominent when compared to the manual code

speedup. Despite this, the single added task annotation still improved performance

across multiple graph types by up to 17%.

We also evaluate the effect of this optimization on PageRank, where vertex update

tasks are explicitly separated from vertex read tasks using the Swarm GraphVM runtime

implementation of sum_reduce. In Table 6.5, we observe a much larger speedup, up to

5x, because update tasks in PR can be efficiently divided into extremely fine-grained

read and write sections. Notably, these update tasks are also generally independent
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Graph Speedup

RN 5.37
RC 1.44
RU 2.49
PK 1.77
HW 2.99
LJ 2.50
OK 1.90
IC 1.61
TW 2.21
SW 1.21

Table 6.5: Speedup of Swarm GraphVM generated PageRank (PR) code with spatial
hint option enabled.

Graph PR CC

PK 1.27 1.17
HW 0.92 1.71
LJ 1.05 1.22
OK 1.27 2.41
SW 1.10 1.72

Table 6.6: Speedup in Swarm GraphVM generated PageRank and CC code with loop
coarsening enabled (coarsened by 16 edges).

of each other, so they may experience less aborts than in the data-driven algorithms

like BFS or SSSP, which can experience more data dependences between vertex tasks.

This optimization is automatically applied in the Swarm GraphVM runtime library.

6.5.2 Task Coarsening and Reordering

Tasks that iterate over edgesets can be coarsened using the scheduling option in the

Swarm scheduling language. We evaluate the effect of coarsening in Table 6.6. Here,

we enable the coarsening option for PR and CC, two topology-driven applications,

on high-degree graphs, using the default coarsening factor of SWARM_CACHELINE /

sizeof(int), which is 16. As explained in Section 5.1.2, these graphs stand to benefit

the most from coarsening, so we observe speedups of up to 2.4x after applying this

scheduling option.

For data-driven algorithms, we also observe speedups from coarsening in power-

law degree distribution graphs, as shown in Table 6.4. While less pronounced, these

speedups match those produced in low-level Swarm implementation experiments, with
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Graph Speedup Δ % Cycles Aborted

RN 8.00 -12.03%
RC 2.71 -65.67%
RU 4.95 -24.24%
HW 0.98 -608.78%
IC 1.24 -209.31%

Table 6.7: Speedup and reduction in aborted cycles in Swarm GraphVM generated
CC code with task reshuffling enabled.

road networks experiencing little to no improvement and social graphs producing

non-trivial speedups. Performance improvements are generally smaller than in the

case of PR and CC - the Swarm priority queues utilized in BFS and SSSP are already

well-built for these data-driven applications, as to delineate and execute fine-grained

tasks across frontier rounds. Despite this, the Swarm GraphVM is still able to define the

exact granularity of these tasks to find the optimal tradeoff between cache utilization

and task size.

Another type of task coarsening that we evaluate in the Swarm GraphVM is the

reordering of edges during an edgeset iteration. Applications that repeatedly access

graphs with nodes that have high in-degrees, like Indochina or Hollywood, may experi-

ence high contention, and thus high abort costs, while processing all edges. Additionally,

applications like CC, which may contest on accesses to just a few vertices, will struggle

on low-degree networks like road graphs. Defining an alternative shuffling of edges

prevents extremely high abort costs and yields overall performance improvements noted

in Table 6.7. In the case of road graphs, we see a speedup of up to 8x, and a decrease

in aborted cycles by over 65%. Both task reordering and coarsening optimizations are

exposed as scheduling language options in the GraphVM, which allows programmers

to easily switch between options when handling different graphs or applications.

6.5.3 Comparison to Hand-Tuned Swarm Implementations

When compared to the low-level Swarm implementations for BFS, T4-compiled code

from the GraphVM is generally 1-2x slower, as seen in Table 6.8. We expect this

slowdown, as T4 trades off high-level abstraction and code simplicity for less cus-

tomizability, as opposed to the low-level API, which gives programmers the control
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Graph Optimized GraphVM BFS Cycles Hand-tuned BFS Cycles (Relative Speedup)

RN 9,051,216 4,208,216 (2.15)
RC 63,665,217 27,540,217 (2.31)
PK 24,833,617 16,659,216 (1.49)
LJ 80,695,216 62,313,618 (1.29)
OK 143,978,217 106,539,017 (1.35)

Table 6.8: Performance of optimized Swarm GraphVM generated BFS versus manually
hand-tuned Swarm BFS code, measured in runtime cycles. Relative speedup is listed
in parantheses.

to write extremely optimized implementations. However, optimized generated code

from the Swarm GraphVM still competes extremely well with the manually imple-

mented version on social graphs. Given that the speedup of optimized over baseline

GraphVM-generated BFS code already often reaches 10-20% (Figure 6-1), it’s highly

likely that with future optimizations, Swarm GraphVM generated code will reach the

performance of manually hand-tuned code, if not exceed it. In other cases with larger

performance gaps, there is clearly lots of potential for uncovering and exposing more

optimizations, motivating future work in this domain.
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Chapter 7

Conclusion

7.1 Summary
We develop UGF, a framework for generating highly optimized code for graph applica-

tions on multiple, diverse architectures. UGF achieves portability across hardware by

separating hardware-independent from hardware-dependent optimizations and trans-

formations. Using the novel GraphIR, UGF reuses hardware-agnostic compiler passes

to generate a hardware-independent representation, which is lowered into hardware-

specific GraphVM’s. UGF also presents a new extensible scheduling language, which

new hardware backends can use to configure their own scheduling optimizations.

We demonstrate the feasibility and effectiveness of UGF by developing the Swarm

GraphVM, a compiler backend for the Swarm architecture. The Swarm GraphVM

implements several Swarm-specific optimizations - it converts loops to fine-grained,

vertex-level tasks and privatizes shared variable accesses to task-local parameters.

We also expose customizable scheduling options, including spatial hint and loop

coarsening configuration. Using these optimizations, we evaluate the Swarm GraphVM

on 5 applications and 10 graphs, and we find that applications with fully optimized

schedules achieve up to 8x speedup when compared to code generated using the same

algorithm code with default schedules. Both loop coarsening and task boundaries with

spatial hint assignment individually produce speedups in GraphVM generated code.

In all, UGF currently supports GraphVM’s for CPU, GPU, Swarm, and the Ham-
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merBlade manycore, demonstrating its ability to generate optimized code for a diverse

set of hardware. UGF provides a flexible framework to leverage each architecture’s

unique feature set and easily support the creation of new GraphVM’s.

7.2 Future Directions
In this work, we provide an example of UGF supporting a diverse set of architectures

by implementing the Swarm GraphVM. Specifically with the Swarm GraphVM, we

will continue to add optimizations and transformations as the Swarm architecture and

programming model evolve. For instance, there is still room to explore what a “pull”

traversal on Swarm may look like and how that might be optimized. In this work,

only simple, single schedules were considered for Swarm, but in the future, composite

(hybrid) schedules may be explored. Additionally, with the rise of other manycore

and multicore architectures targeting graph applications, other GraphVM’s may be

proposed to support these backends. In developing these, we may find reusable passes

that can help explore new optimizations for other architectures.
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Appendix A

Baseline and Optimized Schedules
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Algo Baseline Schedule

PR SimpleSwarmSchedule sched1;
program->applySwarmSchedule("s1", sched1);
Spatial hints disabled on sum_reduce operation.

CC SimpleSwarmSchedule sched1;
sched1.configStride(STRIDE_OFF);
program->applySwarmSchedule("s0:s1", sched1);

SSSP SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(DISABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(PRIOQUEUE);
program->applySwarmSchedule("s0", sched0);

BFS SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(DISABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(UNORDEREDQUEUE);
program->applySwarmSchedule("s0", sched0);

BC SimpleSwarmSchedule sched1;
sched1.configDeduplication(ENABLED);
sched1.configLoopCoarsening(DISABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(UNORDEREDQUEUE);
program->applySwarmSchedule("s0", sched0);
SimpleSwarmSchedule sched2;
sched2.configDeduplication(DISABLED);
sched2.configLoopCoarsening(DISABLED);
sched2.configSpatialHint(DISABLED);
program->applySwarmSchedule("s2", sched2);
Spatial hints disabled on sum_reduce operation.

Table A.1: Baseline schedules for experiments described in this thesis.
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Optimal PR Schedules

Graphs with Highly Contested Nodes (HW, IC) Other Graphs (RN, RC, RU, LJ, PK, OK, SW, TW)
SimpleSwarmSchedule sched1;
sched1->configLoopCoarsening(DISABLED);
program->applySwarmSchedule("s1", sched1);
Spatial hints enabled on sum_reduce operation.

SimpleSwarmSchedule sched1;
sched1->configLoopCoarsening(ENABLED);
program->applySwarmSchedule("s1", sched1);
Spatial hints enabled on sum_reduce operation.

Optimal CC Schedules

Road Graphs (RN, RC, RU), TW, IC Other Power Law Graphs (LJ, PK, HW, OK, SW)
SimpleSwarmSchedule sched1;
sched1.configStride(STRIDE_ON);
sched1.configLoopCoarsening(DISABLED);
program->applySwarmSchedule("s0:s1", sched1);

SimpleSwarmSchedule sched1;
sched1.configStride(STRIDE_OFF);
sched1.configLoopCoarsening(ENABLED);
program->applySwarmSchedule("s0:s1", sched1);

Optimal SSSP Schedules

Large Social Graphs (TW, SW, IC), HW Other Power Law, Road Graphs (LJ, PK, OK, RN,
RC, RU)

SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(DISABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s1", sched1);

SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(ENABLED);
program->applySwarmSchedule("s1", sched1);

Optimal BFS Schedules

Graphs with Highly Contested Nodes (HW, IC) Other Large Graphs (TW, SW)
SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(UNORDEREDQUEUE);
program->applySwarmSchedule("s0", sched0);

SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(ENABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(UNORDEREDQUEUE);
program->applySwarmSchedule("s0", sched0);

Road Graphs (RN, RC, RU) Other Power Law Graphs (LJ, PK, OK)
SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(DISABLED);
sched1.configSpatialHint(ENABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(PRIOQUEUE);
program->applySwarmSchedule("s0", sched0);

SimpleSwarmSchedule sched1;
sched1.configDeduplication(DISABLED);
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(ENABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched0;
sched0->configQueueType(PRIOQUEUE);
program->applySwarmSchedule("s0", sched0);

Optimal BC Schedules

Graphs with Highly Contested Nodes (HW, IC) Other Graphs (RN, RC, RU, LJ, PK, OK, SW, TW)
SimpleSwarmSchedule sched1;
sched1.configDeduplication(ENABLED);
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched2;
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(DISABLED);
program->applySwarmSchedule("s2", sched2);
SimpleSwarmSchedule sched0;
sched0->configQueueType(UNORDEREDQUEUE);
program->applySwarmSchedule("s0", sched0);
Spatial hints enabled on sum_reduce operation.

SimpleSwarmSchedule sched1;
sched1.configDeduplication(ENABLED);
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(ENABLED);
program->applySwarmSchedule("s0:s1", sched1);
SimpleSwarmSchedule sched2;
sched1.configLoopCoarsening(ENABLED);
sched1.configSpatialHint(ENABLED);
program->applySwarmSchedule("s2", sched2);
SimpleSwarmSchedule sched0;
sched0->configQueueType(UNORDEREDQUEUE);
program->applySwarmSchedule("s0", sched0);
Spatial hints enabled on sum_reduce operation.

Table A.2: Optimized schedules for experiments described in this thesis.
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Appendix B

GraphIR Nodes

Base Classes:
Class Description

Expr Representation for each expression in input algorithm code.

Stmt Representation for each statement in input algorithm code.

Type Representation for types of variables.

Main GraphIR nodes, with arguments listed:
Node Arguments

StringLiteral, IntLiteral,

BoolLiteral, FloatLiteral

val

StmtBlock stmts

ScalarType type

ElementType ident

VectorType vector_element_type, range_indexset

VertexSetType element

ListType element_type

EdgeSetType element, weight_type, vertex_element_type

ForLoopDomain lower, upper

NameNode body

ForLoopStmt loop_var, domain, body

EdgeSetIterator target, from_func, to_func, input_function_name,

tracking_field

VertexSetIterator target, input_function_name, tracking_field

WhileLoopStmt cond, body

AssignStmt left_hand_side, right_hand_expr

ReduceStmt reduce_op, right_hand_expr, left_hand_side

CompareAndSwapStmt compare_val_expr, right_hand_expr, left_hand_side,

tracking_var
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PrintStmt expr

IdentDecl name, type

StructTypeDecl name, fields

VarDecl modifer, name, type, init_val, needs_allocation

VarExpr var

FuncDecl name, args, type, result, body

TensorStructReadExpr,

TensorArrayReadExpr

index, target

Call name, args

VertexSetAllocExpr size_expr, element_type

PriorityUpdateOperatorMin,

PriorityUpdateOperatorSum

new_val, old_val

LoadExpr name

EdgeSetLoadExpr file_name, is_weighted

VertexSetWhereExpr,

EdgeSetWhereExpr

target, is_constant_set, input_func

VertexSetAllocExpr size_expr, element_type

VectorAllocExpr size_expr, scalar_type, vector_type

ListAllocExpr size_expr, element_type

AndExpr, OrExpr, XorExpr,

AddExpr, SubExpr, MulExpr,

DivExpr

left_hand_side, right_hand_side

EqExpr ops, operands

NotExpr operand

NegExpr negate, operand

IfStmt cond, if_body, else_body

BreakStmt

PriorityQueueType element, priority_type

PriorityQueueAllocExpr element_type, dup_within_bucket, dup_across_bucket,

vector_function, bucket_ordering, priority_ordering,

init_bucket, starting_node

UpdatePriorityUpdate-

BucketsCall

priority_queue_name, lambda_name, modified_-

vertexsubset_name, nodes_init_in_bucket

UpdatePriorityExternCall input_set, priority_queue_name, lambda_name, output_-

set_name, apply_function_name

UpdatePriorityEdgeCount-

EdgeSetIterator

lambda_name, moved_object_name, priority_queue_-

name, target, from_func, to_func, input_function_name,

tracking_field

OrderedProcessingOperator while_cond_expr, edge_update_func, priority_queue_-

name, optional_source_node, graph_name

EnqueueVertex vertex_id, vertex_frontier

Table B.1: Description of all GraphIR nodes and their arguments.
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