
Domain-Specific Language Abstractions for Compression

Jessica Ray∗, Ajay Brahmakshatriya∗, Richard Wang∗, Shoaib Kamil†,
Albert Reuther‡, Vivienne Sze∗, Saman Amarasinghe∗

∗MIT CSAIL †Adobe Research ‡MIT Lincoln Laboratory
jray@csail.mit.edu, kamil@adobe.com reuther@ll.mit.edu

{ajaybr,rwang99}@mit.edu

{sze,samana}@mit.edu

Abstract
While block-based data compression is a critical component of many compression algo-
rithms, little attention has been given towards language support for compression. Com-
pression algorithms share many high-level patterns related to data representation, data
partitioning, and data traversals, but these features are not easily captured in popular low-
level languages used for compression, such as C. While higher-level libraries and languages
such as NumPy, Julia, and MATLAB can provide more intuitive support for parts like array-
based data access, they lack native support for expressing the intricate spatial/temporal
data dependencies, partitions, and traversals that come with compression.

This paper introduces a set of appropriate high-level abstractions for block-based com-
pression that supports data representation, data partitioning, and data traversals. We
demonstrate the power and flexibility of these constructs using a prototype implementation
in Python. We believe these abstractions will simplify the implementation complexity of
compression algorithms, allowing researchers to focus on the algorithms rather than the
implementation details. Additionally, these abstractions can enable the development of a
domain-specific language and optimizing compiler that can automatically generate high-
performance compression code.

Introduction

Data compression is a fundamental component in much of today’s technology driven
world, and new algorithms are constantly being developed to keep up with the ever
increasing amount of data being generated. Block-based compression has prevailed
as a major component of many of the algorithms and forms the core of many pop-
ular compression standards. Despite the prevalence and longevity of block-based
compression, implementing such algorithms remains an arduous task.

C and C++ are popular languages for implementing compression algorithms due
to their superior performance, but their low-level imperative design is a mismatch
for the design of compression algorithms, leading to overly complex software sys-
tems. This complexity can be seen in the recently released VTM [1] software for
the VVC/H.266 standard, where the 134,000 lines of code in the reference software
more than doubles the amount of code in the HM [2] software of its predecessor,
HEVC/H.265. This is largely due to the data representations, complex spatial/tem-
poral data accesses, and intricate data traversals common to many compression al-
gorithms, none of which are easily captured by the primitives in a language like C.
Nor does there exist any high-level language or even library of compression primitives
that is able to succinctly capture these components.

Current hand-crafted systems are exceedingly complex, non-malleable, and non-
portable. Implementing these systems often requires the efforts of many people fo-
cusing on specific areas, making it challenging for any single person to get a global



understanding of the system. It also presents a high barrier of entry for academic
researchers wanting to try out new compression techniques, where their implemen-
tation options are two equally unappealing choices: implement from scratch or hack
into one of the existing systems.

The structure of block-based compression algorithms lends itself well to the design
methodology behind domain-specific languages (DSLs). As their name implies, a DSL
is designed with a specific domain in mind, providing programming abstractions that
capture the high-level characteristics of that domain. For example, while a language
such as C would provide low-level data types like int and generic data structures
like arrays, a DSL for compression would provide a block type that can capture not
just the data, but also useful high-level information such as the rectangular layout
and spatial dependencies between different pieces of data. DSLs provide a more
intuitive programming interface, making it easier to implement existing algorithms
and explore new ones, as evidenced by the success of DSLs such as MATLAB for
matrix operations, TensorFlow and TACO [3] for tensor operations, Halide [4] for
image processing, and StreamIt [5] for stream programs. With a DSL, domain experts
can focus their efforts on developing algorithms, rather than having to deal with low-
level implementation details.

Developing the appropriate abstractions for compression opens the door for fur-
ther research into language support for compression. Not only do these abstrac-
tions enable DSL creation, but they also enable the development of compression-
specific compiler techniques that can automatically generate high-performance code.
In this paper, we present a set of abstractions that we believe capture the high-
level structure of block-based compression and are appropriate for development of a
high-performance DSL. We have implemented our abstractions in Python1 as part
of a small run-time system which allows us to demonstrate the efficacy of our ab-
stractions on real-world compression algorithms. We refer the reader to https:

//jray.mit.edu/block-based-compression where we provide more in-depth de-
scriptions of the run-time system, as well as explicit comparisons to existing com-
pression implementations.

Characteristics of Block-Based Compression

Even with the diversity of compression techniques, many share common characteris-
tics related to data representation, data partitioning, and data traversals. Capturing
these characteristics with the right abstractions makes implementation simpler and
provides the necessary building blocks for a DSL. We summarize each characteristic
below.

Data Representation
Operations in block-based compression are typically applied to multidimensional rect-
angular regions of data that have many spatial relationships between regions (we will
refer to these regions as blocks). An appropriate abstraction must capture both the
data and these spatial components. For example, a 4:2:0 subsampled block will have
half the rows and columns of its unsampled counterpart, with each row and column

1Some examples include a pseudo-Python syntax which we preprocess to convert to legal syntax.



in the subsampled version corresponding to every other row and column of the un-
sampled one. While an array in C might be fine for storing the underlying data here,
it does not provide any intuitive description of the subsampled block’s layout, nor
the spatial mapping between the subsampled and unsampled block. We will often
refer to the location of one block relative to another block, which means that we can
compute a mapping from the elements of one block to another.

Data Partitioning
The spatial relationships previously mentioned are commonly induced by data par-
titioning. Here, blocks of data are decomposed into smaller sub-blocks, which may
in turn be decomposed into even smaller sub-blocks, and so on. For example, in
AVC/H.264, a frame is split into macroblocks, and in HEVC/H.265, a CTU can be
split into CUs, and CUs into PUs. This decomposition creates a data hierarchy, where
sub-blocks can be mapped back to their location in containing blocks. Some of these
hierarchies can be very large and specify hundreds or possibly thousands of different
ways to decompose a single block. An appropriate abstraction must be able to pro-
vide a compact and intuitive notation for specifying the possible decompositions, as
well as capture the hierarchical structure of the blocks after partitioning.

Data Traversals
Many compression algorithms specify explicit orderings for traversing both blocks
and values within blocks, such as the z-scan and zigzag ordering. Implementing new
and existing traversals is not straightforward as they do not tend to fit easily into
loop nests, so many systems will manually enumerate the points of the traversal,
which is both tedious and inflexible. However, many of the traversals exhibit highly
recursive patterns that can be built from simple linear traversals and rotations. These
patterns can be used to form the basis of a more compact and flexible representation
for traversals, making it easier to explore different orderings.

Compression Abstractions

The abstractions we developed fit into three categories: data representation, data par-
titioning, and data traversals. To demonstrate our abstractions, we include several
code examples selected from our encoder implementations of JPEG, AVC/H.264, and
HEVC/H.265. The examples show our abstractions in the context of data initializa-
tion, subsampling, entropy coding, intra-prediction, and traversals. We believe these
examples provide a good variety of contexts and use cases where our abstractions can
make implementation easier and more intuitive.

Data Representation
We introduce five different data representations for use in compression: Streams,
BitStreams, Blocks, Views, and Units. Each of these representations was created
to better capture the inherent structure of compression data, such as the layout of
blocks and the spatial relationships between blocks.

Streams and BitStreams: A Stream models the input data for compression
and represents it as a finite (or infinite) sequence of data items. The Stream itself
can represent a structure such as an image or a video sequence, and individual data



items of the stream would typically represent values like pixels. A BitStream is used
for representing arbitrary length sequences of bits, such as individual code words or
the compressed output of an encoder.

Blocks: A Block represents a location that has its own underlying data buffer,
which allows multiple blocks of data to exist at the same location. Reads and writes
to a Block access only the data in that Block, even if other Blocks at the same
location exist. Blocks are useful for maintaining independent representations of a
region, such as storing different predictions for a single block of data.

Views and Units: Views represent a lightweight version of a Block and do not
have their own data buffers. Rather, they contain a reference to an existing buffer
within another Block (or Stream). A Unit is a special case of a View and represents
a View of size 1. Views are useful for defining specific blocks of data without having
to copy any data, as reads and writes to a View propagate through to the underlying
buffer that the View references.

1 rgb_data = Block(...) # external data
2 rgb_stream = Stream((width,height,3)) # (x,y,z)
3 rgb_stream[:,:,0] = rgb_data[::3] # R values
4 rgb_stream[:,:,1] = rgb_data[1::3] # G values
5 rgb_stream[:,:,2] = rgb_data[2::3] # B values
6 R = rgb_stream[:,:,0].elide(2) # WxH View
7 G = rgb_stream[:,:,1].elide(2) # WxH View
8 B = rgb_stream[:,:,2].elide(2) # WxH View
9 Y = Block(R) # WxH Block

10 Cb = Block(G) # WxH Block
11 Cr = Block(B) # WxH Block
12 Y[:,:] = 0.299*R[:,:]+0.587*G[:,:]+0.114*B[:,:]
13 Cb[:,:] = -0.169*R[:,:]+0.331*G[:,:]+0.500*B[:,:]
14 Cr[:,:] = 0.500*R[:,:]-0.419*G[:,:]-0.081*B[:,:]

Listing 1: Converting interleaved RGB to
planar YCbCr format.

Listing 1 gives a simple example from
our JPEG implementation and demon-
strates reading in interleaved RGB data,
representing it in a planar format, and
then converting to the YCbCr color
space. Line 2 creates a three-dimensional
finite Stream, rgb stream, with dimen-
sions width×height×3. Lines 3, 4, and
5 read from the Block rgb data contain-
ing interleaved RGB data, and write to
rgb stream in planar format. Here, we

utilize Python’s slice syntax to provide our data access abstraction. Each line reads
every third element, starting from indices 0, 1, and 2, which corresponds to grouping
every R value together, then every G value, and then every B value. Then, all the R

values are written into stream at locations with indices (x,y,0). Similarly, G values
are written to (x,y,1) and B to (x,y,2).

A View is created whenever a Stream, Block, or another View is sliced, as can be
seen on Lines 6, 7, and 8. Here, we slice out three Views of size width×height×12

with origins (0,0,0), (0,0,1), and (0,0,2) relative to stream. These represent
the R, G, and B planes, respectively. Since these are Views on stream, any reads and
writes to them propagate through to stream.

Blocks are created by copying size and location information from another Stream,
Block, or View. For example, Lines 9, 10, and 11 create new Blocks with empty
buffers covering the same locations as R, G, and B, respectively. These Blocks hold
the result of doing the color space conversion shown on Lines 12, 13, and 14.

Views can also map to non-contiguous spaces by specifying non-unit strides.
This makes it very simple to represent operations like subsampling in software,
such as that used with the chroma components for image and video compression.

2Technically the regions are of size width×height because we use the elide function to drop the
last dimension. A dimension with size 1 can be elided so that it does not need to be written.



1 # chroma can be a Block, View, or Stream
2 chroma_420 = chroma[::2,::2] # W/2xH/2 View
3 chroma_411 = chroma[::4,:] # W/4xH View
4 chroma_410 = chroma[::4,::2] # W/4xH/2 View

Listing 2: Subsampling using Views.

Line 2 in Listing 2 performs 4:2:0 subsam-
pling on chroma by specifying a stride of two
over the columns and rows. This means that
every row of chroma 420 maps to every other
row of chroma, as well as every column map-

ping to every other column. Lines 3 and 4 show 4:1:1 and 4:1:0 subsampling, respec-
tively.

Listing 3 gives a look at using BitStreams and Units in the context of encoding
AC coefficients for JPEG. We start by creating BitStream encoded on line 1 to hold
our result, as well as two BitStreams on Lines 2 and 3 representing the special run-
length encoding symbols EOB and ZRL. Here, Line 13 iterates through each 8x8 block
of Y (where blocked represents the collection of 8x8 blocks), and Line 19 iterates
through each AC coefficient of the 8x8 block in zigzag order (we will discuss iteration
and the scan construct in more detail later).

1 encoded = BitStream()
2 luma_EOB = BitStream(0b1010, 4)
3 luma_ZRL = BitStream(0b11111111001, 11)
4 blocked = PTree()
5 pt_root(Y,blocked):
6 pt_and:
7 for i in range(0, Y.size[1],8):
8 row = Y[:,i:(i+8)] # Wx8 View
9 for j in range(0, Y.size[0],8):

10 col = row[j:(j+8),0:8] # 8x8 View
11 pt_leaf(col)
12 # blk_8x8: 8x8 View
13 for blk_8x8 in scan(blocked):
14 prev_blk = scan_offset(-1) # 8x8 View
15 DC_coeff = blk_8x8[0,0] # Unit
16 ... encode DC coefficient ...
17 nzeros = 0
18 # AC_coeff: Unit
19 for AC_coeff in scan(zigzag(blk_8x8))[1:]:
20 if AC_coeff == 0:
21 nzeros += 1
22 else:
23 for i in range(nzeros//16):
24 encoded.append_bits(luma_ZRL)
25 cat = floor(log2(abs(AC_coeff)))+1
26 # AC_codes: lookup table
27 # cat_code: BitStream
28 cat_code = AC_codes[nzero_rem%16][cat-1]
29 encoded.append_bits(cat_code)
30 if coeff > 0:
31 code = BitStream(AC_coeff,cat)
32 encoded.append_bits(code)
33 else:
34 code = BitStream(~abs(AC_coeff),cat)
35 encoded.append_bits(code)
36 nzeros = 0
37 if nzeros > 0:
38 encoded.append_bits(luma_EOB)

Listing 3: Encoding luma AC coefficients in
JPEG.

Each AC coefficient is a Unit, and if
it is non-zero, the appropriate Huffman
codes are computed (Lines 25, 28, 31, and
34) and appended to encoded on Lines 29,
32, and 35. Runs of 16 or more zeros, or
trailing zeros, are appended to encoded on
Lines 24 and 38 using the BitStreams that
represent the ZRL and EOB codes.

In each example above, our abstraction
makes it easy to read and write arbitrary
sub-blocks of data and hides the low-level
tasks of manually computing access indices
and mappings between blocks. While slic-
ing itself is not a new concept, the ability
to map between block locations is a unique
feature of our abstraction.

Data Partitioning
Data partitioning represents the decompo-
sition of a block of data into smaller sub-
blocks, typically of many different sizes.
For example, in AVC/H.264 we decompose
a frame into macroblocks, and then decom-

pose the macroblocks into sub-macroblocks for inter-prediction and intra-prediction.
In HEVC/H.265, CTUs are decomposed into CUs, and CUs into PUs. Additionally,
these sub-blocks often have specific coding orders, such as coding CUs in depth-first
order. Our partitioning abstraction provides a compact way to specify all the different
possible decompositions of a block, specify the traversal order across the sub-blocks,
and maintain spatial mappings between sub-blocks and their containing blocks.

To express possible partitions, we use a tree representation called a PTree which
is inspired by and-or trees [6]. Consider the PTree shown in Figure 1 which represents
a quad-tree decomposition of a 32x32 CTU in HEVC/H.265 down into CUs of size



32x32, 16x16, or 8x8. Each AND defines a set of sub-blocks that must occur together
in a decomposition. For example, if we split a 32x32 CTU, it must contain four
16x16 CUs. An OR defines options for a decomposition. That same 32x32 CTU has
two options: do not split, or split into the four 16x16 CUs. Each intermediate and
leaf CU is also annotated with its origin (@(x,y)) relative to the immediate contain-
ing block. For example, the four 16x16 interior nodes have origins (0,0), (16,0),
(0,16), and (16,16) with respect to the root, and the 8x8 leaves have origins (0,0),
(8,0), (0,8), and (8,8), respectively, with respect to their parent 16x16 node.

32x32

OR

32x32
@(0,0) AND

16X16
@(0,0)

OR

AND16X16
@(0,0)

8X8
@(0,0)

8X8
@(8,0)

8X8
@(0,8)

8X8
@(8,8)

16X16
@(0,16)

OR

AND16X16
@(0,0)

8X8
@(0,0)

8X8
@(8,0)

8X8
@(0,8)

8X8
@(8,8)

16X16
@(16,16)

OR

AND16X16
@(0,0)

8X8
@(0,0)

8X8
@(8,0)

8X8
@(0,8)

8X8
@(8,8)

16X16
@(16,0)

OR

AND16X16
@(0,0)

8X8
@(0,0)

8X8
@(8,0)

8X8
@(0,8)

8X8
@(8,8)

Figure 1: PTree for partitioning a 32x32 CTU
into CUs in HEVC/H.265.

A depth-first scan of this tree produces
a z-scan coding order due to the relative
positions of each leaf sub-block in the
tree. The order can easily be changed
by rearranging the subtrees and leaves.

Listing 4 shows an implementation of
the PTree in Figure 1. Each component
of the tree in the figure has a direct coun-
terpart in the code: the root is created
with pt root, ORs with pt or, ANDs with
pt and, and leaves with pt leaf. This
function recursively creates PTree sub-
trees, where each subtree either splits the
current block into four equal sized quad-
rants (lines 9-12), or keeps the current sub-block as is (line 6). pt subtree on Lines
13 through 16 adds the root of the subtree as the child of the pt and node on Line 7.
Splitting continues until the size of block is 8x8, which can no longer be split. This
is captured by the condition M>8 on the pt and.

1 def CTU_to_CUs(ctu): # ctu: MxM View
2 M = ctu.size[0]
3 ptree = PTree()
4 pt_root(ctu,ptree):
5 pt_or:
6 pt_leaf(ctu)
7 pt_and(M>8):
8 # q0, q1, q2, q3: M/2xM/2 Views
9 q0 = ctu[:M/2,:M/2]

10 q1 = ctu[M/2:,:M/2]
11 q2 = ctu[:M/2,M/2:]
12 q3 = ctu[M/2:,M/2:]
13 pt_subtree(CTU_to_CUs(q0))
14 pt_subtree(CTU_to_CUs(q1))
15 pt_subtree(CTU_to_CUs(q2))
16 pt_subtree(CTU_to_CUs(q3))
17 return ptree
18 ctu = View(...) # MxM
19 # The partition separates into 3 PTrees:
20 # no split, 16x16 split, or 8x8 split
21 for ptree in separate(CTU_to_CUs(ctu)):
22 for cu in scan(ptree):
23 # cu is either a 32x32, 16x16, or 8x8

View, depending on ptree

Listing 4: PTree for partitioning CTUs
into CUs in HEVC/H.265.

PTrees provide a compact representation
for all the possible decompositions of a block
and are most commonly applied in conjunc-
tion with scan constructs to iterate over the
sub-blocks in the decomposition. We present
the scan in the next section on data traver-
sals, but the important point for now is that a
scan gathers all the leaf nodes and returns a
single leaf per iteration. The leaves of an AND-
only PTree (no OR nodes) can be collected with
a simple pre-order depth-first traversal (DFS)
since this tree would express only a single de-
composition. A tree with OR nodes represents
multiple decompositions, so it first needs to be
separated into individual AND-only PTrees rep-
resenting each unique decomposition. Once it

is separated, the individual PTrees can be iterated over. Listing 4 shows an example
of separating a PTree on Line 21, iterating through each resulting PTree, and then
iterating through the individual CUs for each unique PTree on Line 22.



Data Traversals
Traversals define ordered iterations over both blocks (block traversals) and individual
values of the blocks (unit traversals), adding another layer of complexity to our set
of spatial relationships. We have seen examples of block traversals already with our
PTree abstraction: the ordering of the leaves defines the iteration order of the blocks.
However, unit traversals are more complex and require a different abstraction for
specifying orderings

We introduce a recursive notation for unit traversals inspired by parametric Lin-
denmayer Systems [7] (L-systems) used to model plant growth in biology. Concep-
tually, L-systems operate over a grid and generate an ordered enumeration of all the
points to be visited in the grid.

1 zz = ScanOrder(blk)
2 size = 8
3 ST = Step()
4 i = Var()
5 A,B = NTerm([i]), NTerm([i])
6 zz.axiom([A(1)])
7 zz.rule(A(i),[ST,135,ST*i,315,B(i+1),45,ST*i,225,ST],i<size-1)
8 zz.rule(B(i),[ST,225,ST*i,45,A(i+1),315,ST*i,135,ST],i<size-1)
9 zz.rule(A(i),[ST,135,ST*(size-1),225,ST],i==size-1)

10 zz.rule(B(i),[ST,225,ST*(size-1),135,ST],i==size-1)

Listing 5: A zigzag unit traversal.

Listing 5 defines a zigzag
traversal over an 8x8 block
using our recursive notation.
It is characterized by three
main components: terminals,
non-terminals, and production
rules. A Step terminal (Line
3) defines moving in a straight

line, and a rotation terminal (the integers on Lines 7 through 10) changes the orien-
tation of that line. Non-terminals (A and B) represent symbols that can be replaced
with a production rule.

At a high level, the points of the zigzag are enumerated starting from the axiom
on Line 6. A(1) is expanded into a string using a matching rule, which is the rule
on Line 7 in this case. A rule can only be applied if its condition is met, which is
i<size-1 here. The expanded string now contains the other non-terminal B, which
is expanded using the rule for B on Line 8. This process of expanding continues until
no more production rules can be applied.

Traversals over Streams, Blocks, and Views are realized using the scan construct,
which is our abstraction of an iterator with knowledge of block and unit traversals. If
a block or unit traversal is specified, a scan returns each sub-block/unit according to
the order of the traversal. Line 13 in Listing 3 splits Y into 8x8 sub-blocks according
to the partition defined on Lines 4 to 11 and then iterates through the 8x8 sub-
blocks. The scan on Line 19 performs a unit traversal through the AC coefficients of
one of the 8x8 blocks in zigzag order (defined in Listing 5), skipping the first value
of the block which is the DC coefficient. scans also support temporal accesses, e.g.
accessing other blocks or units with respect to the current iteration. This is shown
on line 14 of Listing 3 with scan offset(-1), which returns the 8x8 block from the
prior iteration (if it exists). This is necessary for computing the differences between
DC coefficients.

This notation is much more flexible than the alternative options of implementing
the ordering as a loop nest or manually enumerating the individual points yourself.
It can easily represent other complex traversals, like the ones shown in Figure 2.



0 2 4 6
0

2

4

6

order=3
hilbert = ScanOrder(blk)
hilbert.axiom([A(0)])
hilbert.rule(A(i),[90,B(i+1),ST,270,A(i+1),ST,A(i+1),270,ST,B(i+1),90],i<order)
hilbert.rule(B(i),[270,A(i+1),ST,90,B(i+1),ST,B(i+1),90,ST,A(i+1),270],i<order)

0 2 4 6
0

2

4

6

perimeter = ScanOrder(blk)
perimeter.axiom([A(N-1)])
perimeter.rule(A(i),[ST,270,ST,270,ST],i==1)
perimeter.rule(A(i),[ST*i,270,ST*i,270,ST*i,270,ST*(i-1),270,ST,A(i-2)],i>1)

0 2 4 6
0

2

4

6

diagonal = ScanOrder(blk)
diagonal.axiom([90,ST,A(1,N-1),135,ST])
diagonal.rule(A(i,j),[225,ST*i,B(i+1,j)],i<N)
diagonal.rule(B(i,j),[225,SK*(i-1),270,SK*i,A(i,j)],i<N)
diagonal.rule(A(i,j),[225,ST*(j-1),B(i,j-1)],(i==N)&(j>1))
diagonal.rule(B(i,j),[225,SK*(j-1),270,SK*j,A(i,j)],(i==N)&(j>1))

Figure 2: Hilbert and perimeter traversals from [8], and a diagonal traversal from
HEVC/H.265. SK is a Skip and behaves like a Step, but the points it moves
between are excluded from the final enumeration.

Complex Spatial Dependencies

Figure 3: Block order and spatial ref-
erences for two luma intra-prediction
modes in AVC/H.264.

So far, we have seen various code snippets
that show our abstractions in different con-
texts. However, the spatial accesses have been
straightforward, accessing only data within
one’s own block. Here, we provide a more com-
plete example modeled after 4x4 luma intra-
prediction in the AVC/H.264 encoder. This
particular example requires accessing data in
another block relative to one’s own block,
which is a subtle, yet important difference from
the accesses we have seen. We begin by exam-
ining the parts of the algorithm that lead up
to the accesses.

Listing 6 implements prediction on 4x4

sub-macroblocks using the horizontal and
diagonal-down-left modes of AVC/H.264. In Listing 6 on Lines 1 through 12, we
specify a PTree that partitions a macroblock into 4x4 sub-macroblocks, producing
the z-scan ordering annotated on the sub-macroblocks in Figure 3. Lines 13 through
18 define a raster unit traversal through a 4x4 View.

We assume there is a View on a frame of pixels, frame, and create a reconstructed
version of the frame, rframe, at the same location (Lines 19 and 20). On Line 22,
both frame and rframe are decomposed into macroblocks (mblk and rmblk), which
we iterate through with the scan. We assume to mblk is a PTree similar to that in
Listing 3, but creates 16x16 blocks rather than 8x8 blocks. Next, we decompose the
macroblocks into 4x4 sub-macroblocks, smblk and rsmblk, and iterate through them
on Line 24. Figure 3 also shows the relationship between the locations of macroblocks
and sub-macroblocks in frame and rframe.

On Lines 25 and 26, we create two Block copies of smblk to hold the result of



prediction and Lines 28 and 30 access the reference pixels that are needed for each
prediction mode, where the reference pixels are taken from rframe. Horizontal mode
needs the column of four pixels to the left of smblk, and diagonal-down-left mode
needs the row of eight pixels above, which is shown for smblks 8 and 11 in Figure
3. smblk 8 cannot be predicted with horizontal mode since it is on the left-edge
of the frame boundary, meaning there is no data available on the left. This is the
reason for the check on Line 31. smblk 11 is not on the edge, so it can perform
horizontal prediction shown on Lines 32 through 35 using values from rsmblk 10.

1 def zscan_grid(blk):
2 ptree = PTree()
3 M = blk.size[0]
4 pt_root(mblk,ptree):
5 pt_and(M>4):
6 pt_subtree(zscan_grid(blk[0:M/2,0:M/2]))
7 pt_subtree(zscan_grid(blk[M/2:,0:M/2]))
8 pt_subtree(zscan_grid(blk[0:M/2,M/2:]))
9 pt_subtree(zscan_grid(blk[M/2:,M/2:]))

10 pt_and(M==4):
11 pt_leaf(blk)
12 return ptree
13 def raster_unit(blk): # blk: 4x4 View
14 raster = ScanOrder(blk)
15 raster.axiom([A(0)])
16 raster.rule(A(i),[ST*3,90,SK,90,SK*3,180,
17 A(i+1)],i<4)
18 return raster
19 frame = View(...) # a frame of raw pixels
20 rframe = Block(frame) # reconstructed version
21 # mblk,rmblk: 16x16 Views
22 for mblk,rmblk in scan(to_mblk(mblk), to_mblk(

rmblk)):
23 # smblk,rsmblk: 4x4 Views
24 for smblk,rsmblk in scan(zscan_grid(mblk),

zscan_grid(rmblk)):
25 hor_pred = Block(smblk) # 4x4 Block
26 ddl_pred = Block(smblk) # 4x4 Block
27 # hor_ref: 1x4 View
28 hor_ref = rframe[smblk[-1,:]]
29 # ddl_ref: 8x1 View
30 ddl_ref = rframe[smblk[0:8,-1]].wrt_scan()
31 if hor_ref != None:
32 hor_pred[0,:] = hor_ref[:,:]
33 hor_pred[1,:] = hor_ref[:,:]
34 hor_pred[2,:] = hor_ref[:,:]
35 hor_pred[3,:] = hor_ref[:,:]
36 if ddl_ref != None:
37 ... do prediction ...
38 ... select a final prediction ...
39 recons = ... reconstruct rsmblk ...
40 # r,p: Units
41 for r,p in scan(raster_unit(rsmblk),

raster_unit(recons)):
42 r.write(p)

Listing 6: Modified AVC/H.264 4x4 intra-
prediction.

Diagonal-down-left mode for smblk 8 is
straightforward and uses values from rsmblk

2 and 3. However, assume we are predict-
ing smblk 11, which means rsmblks 12-15

are not available yet. smblk 11 needs val-
ues from rsmblk 12, which does not exist,
so we cannot do the prediction in this case.
To enforce this, we provide wrt scan() on
Line 30 which indicates that values should
not be returned if they violate the innermost
scan order (which is the z-scan across sub-
macroblocks in this case). Since we track lo-
cation information in our data abstraction,
we can automatically determine invalid ac-
cesses like this rather than the user having
to manually check where smblk is relative to
the other blocks.

The remaining parts of the code assume
one of the modes is selected and eventually
reconstructed. Lines 41 and 42 write the re-
constructed values into rmsblk unit-by-unit.

Related Work

Countless implementations of individual
compression algorithms exist, but we have
not seen any explicit language support for

compression, whether it be through the use of DSLs or libraries of compression prim-
itives. We focused primarily on the reference software for standards, such as JM [9],
HM [2], and VTM [1] for the AVC/H.264, HEVC/H.265, and VVC/H.266 standards,
respectively, as well as IJG’s JPEG software [10]. While the structure of each is highly
intertwined with the individual algorithms, these pieces of software provided us with
several insights into the common features in compression implementations.

Our abstractions were initially modeled after those in streaming languages such
as [5]. However, the one-dimensional nature of those streams was not able to capture
the hierarchical block structure of compression data. Array-OL [11] is a dataflow
specification language for expressing data dependencies in infinite multidimensional



streams. They present a tile object that can be moved around a grid, similar to
our blocks and traversals. However, Array-OL is a specification language, so it does
not provide any of the control-flow that we rely on to express our abstractions (e.g.
conditionals within PTrees and traversals). It does provide an interesting look at
non-rectangular shapes, which could be useful for providing language support for
compression algorithms that fall outside of the scope of block-based compression.

Conceptually, our approach to compression abstractions are similar to Scanner
[12] and Halide [4], which provide abstractions for video analysis and image process-
ing, respectively. Both provide abstractions focusing on efficient and intuitive storage
representations, pixel-level spatial access, and high-performance pixel-level optimiza-
tions. While they lack the abstractions needed for compression, such as partitioning
and traversals, the design and implementation of their high-performance compilers
may provide useful insights for developing such a compiler for our abstractions.

Conclusion

Imperative languages like C are poorly suited to the implementation of block-based
compression algorithms as their low-level design cannot easily model the structure
of these algorithms. In this paper, we presented a set of language abstractions that
capture the main characteristics of these algorithms, namely data representation, par-
titioning, and traversals. These abstractions provide a much more intuitive frame-
work for implementing compression algorithms, allowing researchers to focus on the
actual algorithm rather than implementation details. We believe these abstractions
are well-suited for a high-performance domain-specific compression language.

References
[1] Joint Video Experts Team, “VTM software (v10.2),” 2020.
[2] Joint Collaborative Team on Video Coding, “HM software (v16.22),” 2016.
[3] Fredrik Kjolstad et al., “Taco: A tool to generate tensor algebra kernels,” in 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2017, pp. 943–948.

[4] Jonathan Ragan-Kelley et al., “Halide: a language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines,” Acm Sigplan
Notices, vol. 48, no. 6, pp. 519–530, 2013.

[5] William Thies et al., “StreamIt: A language for streaming applications,” in
International Conference on Compiler Construction. Springer, 2002, pp. 179–196.

[6] Brigitte Chauvin et al., “And/or trees revisited,” Combinatorics Probability and
Computing, vol. 13, no. 4-5, pp. 475–497, 2004.

[7] Przemyslaw Prusinkiewicz and James Hanan, Lindenmayer systems, fractals, and
plants, vol. 79, Springer Science & Business Media, 2013.

[8] Erdoğan Aldemir et al., “Binary medical image compression using the volumetric
run-length approach,” The Imaging Science Journal, vol. 67, no. 3, pp. 123–135, 2019.

[9] Joint Video Team of ISO/IEC MPEG & ITU-T VCEG, “JM software (v19.0),” 2015.
[10] Independent JPEG Group, “jpeg software (v9d),” .
[11] Pierre Boulet, Array-OL revisited, multidimensional intensive signal processing specification,

Ph.D. thesis, INRIA, 2007.
[12] Alex Poms et al., “Scanner: Efficient video analysis at scale,” ACM Transactions on

Graphics (TOG), vol. 37, no. 4, pp. 1–13, 2018.


