
VeGen: A Vectorizer Generator for SIMD and
Beyond

by

Yishen Chen
B.S., University of Illinois (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2021

© Massachusetts Institute of Technology 2021. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 28, 2021

Certified by. .
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

VeGen: A Vectorizer Generator for SIMD and Beyond

by

Yishen Chen

Submitted to the Department of Electrical Engineering and Computer Science
on August 28, 2021, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract
Vector instructions are ubiquitous in modern processors. Traditional compiler auto-
vectorization techniques have focused on targeting single instruction multiple data
(SIMD) instructions. However, these auto-vectorization techniques are not sufficiently
powerful to model non-SIMD vector instructions, which can accelerate applications in
domains such as image processing, digital signal processing, and machine learning. To
target non-SIMD instruction, compiler developers have resorted to complicated, ad
hoc peephole optimizations, expending significant development time while still coming
up short. As vector instruction sets continue to rapidly evolve, compilers cannot keep
up with these new hardware capabilities.

To facilitate the adaption of complex non-SIMD vector instructions, I propose a
new model of vector parallelism that captures the semantics of these instructions and
a new framework extracting this new model of vector parallelism automatically based
on the formal semantics of the non-SIMD instructions.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank my advisor Professor Saman Amarasinghe for his guidance,

giving me the freedom to work on problems with nothing to show (which I am getting

good at), and most importantly, showing more optimism to my research than I could

muster. Doing research is hard. Doing research in isolation, during a pandemic is

hard hard. This research would not have been possible without Saman’s constant

encouragement.

I would like to thank Professor Michael Carbin for the early discussions and framing

of VeGen and for showing me the ropes to thinking about and managing a research

project.

I would like to thank Charith Mendis for the initial discussions that led to VeGen

and his feedback during the project.

I would like to thank Ajay Brahmakshatriya for the long walks, discussions, and

support.

Finally, I would like to thank my parents for giving me unconditional love and

support.

5

6

Contents

1 Introduction 15

1.1 Teaser: Using a neural network instruction 18

2 Lane Level Parallelism 21

3 VeGen’s Workflow 23

3.1 An end-to-end example of VeGen using a non-SIMD instruction . . 24

3.2 Vector Instruction Description Language 28

3.3 Generating Pattern Matchers . 28

3.4 Pattern Matching . 29

3.5 Vectorization . 29

3.6 Code Generation . 33

4 Vector Pack Selection 35

4.1 Pack Selection Using the SLP heuristic 36

4.2 Improve the SLP heuristic with Deinterleaving and Transposition . . 39

4.3 Fine-tuning with Vector Combination 40

5 Implementation 43

5.1 Supporting x86 Vector Instructions 43

5.2 Target Instruction Specification . 43

5.3 Cost Model . 46

5.4 Supporting Arm Neon Instructions 47

7

6 Experimental Results 49

6.1 Synthetic Benchmarks . 50

6.2 Optimizing Image and Signal Processing Kernels 51

6.2.1 Discussion . 51

6.3 Optimizing OpenCV’s Dot-Product Kernels 54

6.4 Optimizing Complex Multiplication 55

7 Related Work 59

7.1 Auto-vectorization . 59

7.2 Instruction Selection . 60

7.3 Superoptimization . 61

8 Conclusions 63

8

List of Figures

1-1 Examples of SIMD and non-SIMD instruction in the AVX2 instruction

set. We use different colors to indicate how the input values flow to

different output lanes. 16

1-2 One of the dot-product kernels used by TVM’s 2D convolution layer

(Figure 1-2(a)). Compiler generated assembly and statistics for Intel’s

compiler ICC (Figure 1-2(b)), GCC (Figure 1-2(c)), LLVM (Figure 1-

2(d)), and VeGen (Figure 1-2(e)) . 19

3-1 VeGen’s workflow. Bolded boxes represent artifacts such as manuals

and programs. 24

3-2 Semantics of pmaddwd formalized in VeGen’s vector instruction de-

scription language . 25

3-3 The instruction DAG corresponding to the example scalar program.

The regions enclosed by the dotted curves represent matched integer

multiply-add operations. The rectangles represent vector packs. . . . 27

3-4 Generated vector code . 27

3-5 Syntax of the Vector Instruction Description Language (VIDL). ↦→

denotes function abstraction. 28

3-6 Semantics of vpmuldq (sign-extended integer multiplication). White

cells represent lanes unused by the instruction. 31

9

4-1 The SLP heuristic uses this recurrence to decide whether to produce

a vector operand 𝑣 directly via a vector pack or by vector insertions.

costscalar(𝑥) is the cost of producing the (scalar) value 𝑥 and its depen-

dences using only scalar instructions. 36

4-2 Improved recurrence for choosing a vector producer for a given vector

operand. This is essentially of the algorithm in Figure 4-1 with extra

rules for deinterleaving and transposing vectors before looking for the

vectors’ producers. Note that deinterleaving and transposing are not

free. For detinerleaving, we need to use 𝑚−1 vector shuffles to combine

the deinterleaved vectors to produce the final vector. For transposition,

we need to use a vector shuffle to permute the transposed vector to

produce the final vector. 40

6-1 Speedup (over LLVM, higher is better) on instruction selection tests

ported from LLVM’s x86 backend. These tests were originally written

to exercise the pass that lowers LLVM’s vector IR into their desired

target instructions. We ported the tests by manually transforming them

into their scalar equivalents. 50

6-2 Speedup (over LLVM, higher is better) on kernels we selected from x265

(idct4 and idct8) and FFmpeg. VeGen/SLP is the baseline SLP heuristic

used by VeGen. VeGen/SLP’ is the SLP heuristic augmented with the

deinterleaving and transposition heuristics. VeGen/SLP’+Tuning refers

to running the augmented SLP heuristic and then fine-tuning with the

combination heuristic, which iteratively finds pairs of vector operands

that are more profitable to be produced jointly. 52

6-3 idct4 kernels vectorized by VeGen. VeGen fully vectorizes this kernel

with 20 vector instructions. In contrast, Clang partially vectorizes this

kernel using 84 instructions (not shown here). 53

6-4 OpenCV’s dot-product kernels specialized for AVX2 and AVX-512

(VNNI) and different kernel sizes. 56

10

6-5 Vector code that VeGen generated for the int32 ×8 dot-product kernel

in OpenCV. vpmuldq multiplies (with sign-extension) the odd elements

of its two vector operands. 56

6-6 Complex multiplication kernel, generated by VeGen (Figure 6-6(a))

and LLVM (Figure 6-6(b)). VeGen’s version is 1.27× faster. 56

11

12

List of Tables

5.1 Summary of the non-SIMD Neon instructions that VeGen supports . 47

6.1 Evaluation Benchmarks . 53

13

14

Chapter 1

Introduction

Vector instructions are ubiquitous in modern processors. Previous work on auto-

vectorization has focused on single instruction multiple data (SIMD) instructions,

but there is little research on systematically targeting non-SIMD vector instructions,

which has applications in domains such as digital signal processing, image processing,

and machine learning (e.g., Intel’s VNNI extension and the dot-product instructions in

ARMv8 [Holdings, 2011]). In contrast with the SIMD instruction shown in Figure 1-

1(a), Figures 1-1(b)–1-1(d) show three examples of the non-SIMD instructions from

the AVX2 instruction set. Figure 1-1(b) shows a single instruction, multiple operations,

multiple data (SIMOMD) instruction [Bachega et al., 2004] that performs additions

and subtractions on alternating lanes (vaddsubpd); Figure 1-1(c) shows a horizontal

addition with lane interleaving (vhaddpd); and Figure 1-1(d) shows an instruction

computing dot-products (vpmaddwd). To date, there is no unified model of parallelism

that captures the capabilities of these instructions.

Automatic Vectorization. There are two mainstream techniques for extracting

SIMD parallelism: loop vectorization [Allen and Kennedy, 1987, Nuzman et al., 2006,

Nuzman and Zaks, 2008] and superword level parallelism (SLP) based vectoriza-

tion [Larsen and Amarasinghe, 2000, Liu et al., 2012, Porpodas et al., 2015]. Both

techniques make two fundamental assumptions about vector instructions: a SIMD

instruction performs isomorphic operations across all lanes, and the instruction ap-

15

A1 A2 A3 A4

B1 B2 B3 B4

A1+B1 A2+B2 A3+B3 A4+B4

(a) vaddpd

A1 A2 A3 A4

B1 B2 B3 B4

A1+B1 A2-B2 A3+B3 A4-B4

(b) vaddsubpd

A1 A2

B1 B2

A1+A2 B1+B2

A3 A4

B3 B4

A3+A4 B3+B4

(c) vhaddpd

A1 A2 A3 A4

B1 B2 B3 B4

 A1*B1+
A2*B2

 A3*B3+
A4*B4

A5 A6 A7 A8

B5 B6 B7 B8

 A5*B5+
A6*B6

 A7*B8+
A7*B8

(d) vpmaddwd

Figure 1-1: Examples of SIMD and non-SIMD instruction in the AVX2 instruction set.
We use different colors to indicate how the input values flow to different output lanes.

plies the operations elementwise (i.e., there is no cross-lane operation). Relying on

these two assumptions, these algorithms enable compiler developers to support SIMD

instructions across a variety of architectures with relatively little incremental effort.

Existing Support for Non-SIMD Instructions. Because non-SIMD instructions

violate the two fundamental assumptions of existing vectorization algorithms, compiler

developers support non-SIMD instructions using ad hoc approaches that are cum-

bersome and often ineffective. For most non-SIMD instructions, compiler developers

support them with backend peephole rewrites. However, because these peephole

rewrites do not generate vector instructions by themselves—they fuse sequences of

SIMD instructions and vector shuffles into more non-SIMD instructions—relying on

peephole rewrites alone is ineffective. A relatively more effective but more labor-

intensive strategy involves coordinating with the compiler’s vectorizers to generate

SIMD vector patterns that are tailored for those rewrite rules. For instance, the

initial support in LLVM [Lattner and Adve, 2004] for the addsub instruction family

(Figure 1-1(b)) required three coordinated changes to LLVM: refactoring LLVM’s

16

SLP vectorizer to support alternating opcodes, changing LLVM’s cost model to rec-

ognize a special case of vector shuffle (blending odd and even lanes), and modifying

LLVM’s backend lowering logic to detect the special patterns generated by the SLP

vectorizer. As processor vendors continue to add more complex non-SIMD instruc-

tions, this methodology is not sustainable. Compilers are falling behind in identifying

the complex code sequences that can be mapped to these instructions, and these

multibillion-dollar investments by the processor vendors in enhancing the vector in-

struction sets go underutilized without expert developers manually writing assembly

or compiler intrinsics.

VeGen. In this thesis, I describe an extensible framework for systematically targeting

non-SIMD vector instructions. We define a new model of vector parallelism more

general than SIMD parallelism, and we present a vectorizer generator that can

effectively extract this new model of parallelism using non-SIMD instructions.

To broaden the parallelism modeled by existing vectorizers, we introduce Lane Level

Parallelism (LLP), which generalizes superword level parallelism (SLP) [Larsen and

Amarasinghe, 2000] beyond SIMD in two ways: (1) An instruction can execute multiple

non-isomorphic operations, and (2) the operation on each output lane can use values

from arbitrary input lanes. These two properties of LLP depend on the semantics

of a given target vector instruction. Consequently, our framework encapsulates the

two LLP properties (i.e., which operation executes on a given lane and which values

the operation uses) in a couple of target-dependent vectorization utility functions.

By interfacing with these utilities, the core vectorization algorithm in our framework

remains target-independent, as traditional vectorization algorithms do.

We realize this framework with VeGen, a system that automatically generates

target-architecture-aware vectorizers to uncover LLP in straight-line code sequences

while using only instruction semantics as input. From these instruction semantics,

VeGen automatically generates the implementation of the aforementioned vector-

ization utilities as a compiler library to describe the specific kind of LLP supported

by the target architecture. With this automatically generated target-description

library, VeGen’s vectorizer can automatically use non-SIMD vector instructions. We

17

added support for newer classes of non-SIMD vector instructions (e.g., those found

in AVX512-VNNI, which are not fully supported by LLVM) by providing only their

semantics.

We make the following contributions in this thesis:

• We introduce Lane Level Parallelism, which captures the type of parallelism

implemented by both SIMD and non-SIMD vector instructions.

• We describe a code-generation framework that jointly performs vectorization

and vector instruction selection while maintaining the modularity of traditional

target-independent vectorizers designed for SIMD instructions.

• We present VeGen, a vectorizer generator that automatically uses complex

non-SIMD instructions using only their documented semantics as input.

• We integrated VeGen into LLVM. VeGen can use non-SIMD vector instructions

effectively, e.g., getting speedup 3× (compared to Clang’s vectorizer) on x265’s

idct4 kernel.

1.1 Teaser: Using a neural network instruction

In Figure 1-2, we compare VeGen with three production compilers on a kernel used by

TVM’s [Chen et al., 2018] 2D convolutional layers. Figure 1-2(a) shows the naive scalar

implementation of this kernel. Figures 1-2(b)–1-2(e) show the assembly output of ICC

19.0.1, GCC 10.2, LLVM 10.0, and the VeGen-generated vectorizer, respectively. All

code generators were configured to target AVX512-VNNI.

VeGen’s vectorizer generates by far the shortest assembly code sequence, 15.25×

shorter than the next shortest code generator, LLVM, and the generated code runs

5× faster than LLVM’s. VeGen’s vectorizer uses a new AVX512-VNNI instruction

(vpdpbusd); GCC uses some of the integer vector instructions introduced in SSE4

(vpaddd and vpmullw); LLVM uses a mix of SSE and AVX512 instructions (vpaddd

and vpmulld operating on the 512-bit zmm registers); and ICC, Intel’s own compiler,

18

(a) Reference Implementation
void
dot_16x1x16_uint8_int8_int32 (

uint8_t data[restrict 4],
int8_t kernel [restrict 16][4] ,
int32_t output [restrict 16]) {

for (int i = 0; i < 16; i++)
for (int k = 0; k < 4; k++)

output [i] +=
data[k] * kernel [i][k];

}

(b) ICC
movzx r11d , [rdi]
movsx eax , [rsi]
imul r11d , eax
...
add r11d , r10d
add r11d , ecx
mov [rdx], r11d

(c) GCC
vmovdqa xmm0 , [rip]
vmovdqu xmm1 , [rsi]
...
vpmovsxbw xmm7 , xmm6
vpbroadcastw xmm5 , xmm5
vpmullw xmm7 , xmm7 , xmm9
vpsrldq xmm2 , xmm6 , 8
...

Number of Instructions 273 106
Speedup Relative to ICC 1.0× 1.5×

Vector Extensions Used Not Vectorized SSE4

(d) LLVM
vmovdqu xmm6 , [rsi + 32]
vmovdqu xmm7 , [rsi + 48]
...
vpmulld zmm1 , zmm11 , zmm1
vpaddd zmm1 , zmm1 , [rdx]
vpmovsxbd zmm3 , xmm3
vpmulld zmm3 , zmm10 , zmm3
...

(e) VeGen
vmovdqu64 zmm0 , [rdx]
vpbroadcastd zmm1 , [rdi]
vpdpbusd zmm0 , zmm0 , [rsi]
vmovdqu64 [rdx], zmm0

Number of Instructions 61 4
Speedup Relative to ICC 2.2× 11.0×

Vector Extensions Used SSE4 & AVX-512 AVX512-VNNI

Figure 1-2: One of the dot-product kernels used by TVM’s 2D convolution layer
(Figure 1-2(a)). Compiler generated assembly and statistics for Intel’s compiler ICC
(Figure 1-2(b)), GCC (Figure 1-2(c)), LLVM (Figure 1-2(d)), and VeGen (Figure 1-
2(e))

does not vectorize the code. This is in spite of many man-hours spent on these

compilers to support Intel’s multibillion-dollar investment in these vector extensions.

In contrast to these manual engineering efforts to target new vector extensions, the

target-specific components of VeGen are automatically generated from semantics.

In this example, VeGen’s vectorizer uses a new dot-product instruction (vpdpbusd)

introduced in the AVX512-VNNI instruction set. No other evaluated compilers were

able to use this instruction. It is important to note that VeGen’s output (Figure 1-

2(e)) cannot be generated simply by pattern matching because of the extra data

movement using the instruction vbroadcastw, which reorders the inputs of vpdpbusd.

VeGen allows compilers to target new vector instructions with less development

effort. Thus, we believe this new capability will enable the creation of more robust

vectorizers in production compilers.

19

20

Chapter 2

Lane Level Parallelism

Lane Level Parallelism (LLP) is our relaxation of superword level parallelism (SLP) [Larsen

and Amarasinghe, 2000], which models short-vector parallelism (in which an instruction

executes multiple scalar operations in parallel) with the following restrictions:

• The operations execute in lock-step.

• The inputs and outputs of the operations reside in packed storage (usually

implemented as vector registers). We refer to an element of such packed storage

as a lane.

• The operations are isomorphic.

• The operations are applied elementwise (i.e., there is no cross-lane communica-

tion).

LLP relaxes SLP by removing the last two restrictions: (1) The operations can be

non-isomorphic, and (2) an operation executing on one lane can use values from

another input lane.

Non-isomorphism. LLP allows different operations to execute in parallel, whereas

SLP applies only one operation across all vector lanes. An example of an instruction

that uses such a parallel pattern is the x86 instruction vaddsubpd (Figure 1-1(b)),

which does addition on the odd lanes and subtraction on the even lanes.

21

Cross-lane communication. LLP allows an operation executing on one lane to

access values from another input lane (as long as the lane is selected statically). In

contrast, SLP restricts an operation to use values from its own input lane. This

flexibility is useful for computations that require communication between lanes (e.g.,

parallel reduction). For example, vhaddpd horizontally combines pairs of lanes using

addition and then interleaves the results (Figure 1-1(c)).

These properties of LLP depend on the semantics of individual instructions.

Different instructions can use different combinations of operations or apply different

cross-lane communication patterns.

22

Chapter 3

VeGen’s Workflow

The key idea of VeGen is to encapsulate the details of the two LLP properties

(non-isomorphism and cross-lane communication) behind two interfaces. VeGen

views a given vector instruction as a list of operations, each of which associated

with a pattern matcher (interface 1). Each vector instruction has a lane-binding

function that tells VeGen how the input lanes bind to the operations (interface 2).

VeGen generates the implementations of these two interfaces offline. At compile time,

VeGen’s target-independent vectorization algorithm works by first using the pattern

matcher to find independent IR fragments that can be packed into the available vector

instructions, then using the lane binding rule to identify the vector operands used by

the packed vector instructions, and then recursively finding other IR fragments that

can be packed to produce those vector operands.

Figure 3-1 shows the workflow of VeGen. VeGen targets non-SIMD (and SIMD)

vector instructions in two phases. In the offline phase, VeGen takes instruction se-

mantics (encoded in its vector instruction description language) as input and generates

the target-dependent utility functions, such as the pattern matchers. At compile time,

VeGen’s target-independent heuristic uses the generated utility functions to combine

independent streams of scalar instructions into vector instructions.

To target a new vector instruction set, VeGen only requires the compiler writers

to describe the semantics of each instruction in VeGen’s vector instruction description

language. If the vendor has provided instruction semantics in a machine-readable

23

Architecture Manual

Instruction Descriptions (Chapter 3.2)

Pattern Generator (Chapter 3.3)

Pattern Matcher (Chapter 3.4)

Vector Pack Selection (Chapter 3.5 & 4)

Code Generation (Chapter 3.6)

Scalar Program

Vector Program

Offline
Compile

Time

Figure 3-1: VeGen’s workflow. Bolded boxes represent artifacts such as manuals and
programs.

format such as Intel’s Intrinsics Guide [Corporation, 2012], this process can be

automated. In Chapter 5, we describe how VeGen automatically translates semantics

from the Intrinsics Guide.

Terminology & Notation. We use two related but distinct terms: instructions

and operations. Instructions can refer to either IR instructions such as LLVM IR

or target instructions such as x86 instructions. Operations refer to (side-effect free)

bit-vector functions that can be implemented both by IR and target instructions.

For brevity, we overload common set operations for vectors. While doing so, we

implicitly convert a vector to a set before applying the set operator. For example, let

𝑥 be a vector and 𝑖 a scalar; when we say 𝑖 ∈ 𝑥 we mean that 𝑥 contains 𝑖.

3.1 An end-to-end example of VeGen using a non-

SIMD instruction

Before I discuss in more details the different components of VeGen, I will give a

short walkthrough of how VeGen uses pmaddwd, a complex non-SIMD instruction

24

opmadd = (𝑥1 : 16, 𝑥2 : 16, 𝑥3 : 16, 𝑥4 : 16) ↦→
add(mul(sext32(𝑥1), sext32(𝑥2)), mul(sext32(𝑥3), sext32(𝑥4)))

pmaddwd = (𝑎 : 4× 16, 𝑏 : 4× 16) ↦→
[opmadd(𝑎[0], 𝑏[0], 𝑎[1], 𝑏[1]), opmadd(𝑎[2], 𝑏[2], 𝑎[3], 𝑏[3])]

Figure 3-2: Semantics of pmaddwd formalized in VeGen’s vector instruction description
language

supported by x86. This walkthrough should illustrate on a high level what these

components of VeGen do and how they fit together.

We first start with the semantic description of the instructions. The following is

Intel’s pseudocode documentation of pmaddwd:

FOR j := 0 to 3

i := j*32

dst[i+31:i] :=

SignExtend32 (a[i+31:i+16]*b[i+31:i+16]) +

SignExtend32 (a[i+15:i]*b[i+15:i])

ENDFOR

In its offline phase, VeGen translates this semantic description into the following

representation: We call this internal representation Vector Instruction Description

Language (VIDL). The main purpose of VIDL is to abstract away the syntactic details

of instruction documentation that is irrelevant for code generation.

From this formal representation, VeGen then generates two utility functions that

VeGen’s vectorization heuristic will eventually use at compile time. The following is

the generated pattern-matching function that recognizes the type of operations that

pmaddwd applies for each of its output vector elements.

25

bool match_MADD_Op (llvm :: Value *V, Match &M) {

llvm :: Value *t0 , *t1 , *t2 , *t3;

if (m_c_Add (m_c_Mul (m_SExt (t0), m_SExt (t1)),

m_c_Mul (m_SExt (t2), m_SExt (t3))).match(V)) {

M. LiveIns = { t0 , t1 , t2 , t3 };

return true;

}

return false;

}

VeGen also generates a lane-binding function. The lane-binding function informs

VeGen’s vectorization heuristic that, if it combines multiple such operations (as

recognized by the above pattern-matching function) into a single instruction using

pmaddwd, how the live-ins of matched operations should bind to the input vector

lanes.

std :: vector <llvm :: Value *>

operand_1_pmaddwd (const std :: vector <Match > & Matches) {

return { Matches [0]. LiveIns [0], Matches [0]. LiveIns [2],

Matches [1]. LiveIns [0], Matches [1]. LiveIns [2] };

}

At compile time, VeGen then uses these automatically generated utilities to

vectorize its input program. Suppose we have the following input scalar program.

int16_t A[4], B[4];

int32_t C[2];

void dot_prod () {

C[0] = A[0] * B[0] + A[1] * B[1];

C[1] = A[2] * B[2] + A[3] * B[3];

}

At compile time, VeGen vectorizes its input program in three steps:

1. Apply the auto-generated pattern matchers for the target-specific operations.

26

VSTORE

PMADDWD

VLOAD

VLOAD

mul

add

sext sext

A[0]

B[0]

A[2]

B[2]

A[1] A[3]

B[3]B[1]

sext sext sext sext sext sext

mul mul mul

add

C[0] C[1]

Figure 3-3: The instruction DAG corresponding to the example scalar program.
The regions enclosed by the dotted curves represent matched integer multiply-add
operations. The rectangles represent vector packs.

vmovd xmm0 , [A]
vmovd xmm1 , [B]
pmaddwd xmm0 , xmm1 , xmm0
vmovd [C], xmm0

Figure 3-4: Generated vector code

2. Select a profitable subset of the matched scalar instructions that can be combined

into (potentially non-SIMD) vector instructions.

3. Combine the selected scalar instructions into vector instructions.

Figure 3-3 shows VeGen matching (step 1) and combining (step 2) the operations

of pmaddwd that occurs in the input program. Figure 3-3 shows the result of code

generation (step 3).

27

𝑥 ∈ variables 𝑖 ∈ integers
sz ∈ bit-widths vl ∈ vector-lengths

lane ::= 𝑥[𝑖]
expr ::= 𝑥 | lane | binop(expr1, expr2) |

unop(expr) | select(expr1, expr2, expr3)
opn ::= (𝑥1 : sz1, . . . , 𝑥𝑛 : sz𝑛) ↦→ expr
res ::= opn(lane1, . . . , lane𝑛)

inst ::= (𝑥1 : vl1 × sz1, . . . , 𝑥𝑛 : vl𝑛 × sz𝑛) ↦→ [res1, . . . , res𝑚]

Figure 3-5: Syntax of the Vector Instruction Description Language (VIDL). ↦→ denotes
function abstraction.

3.2 Vector Instruction Description Language

VeGen uses its vector instruction description language (VIDL) to model the semantics

of each target vector instruction as a list of scalar operations, with lane-binding rules

indicating how the input lanes bind to the operations. Figure 3-5 shows the syntax of

VIDL. VIDL assumes that target instructions read and write to registers but have

no other side-effects. VeGen models memory instructions such as vector load as a

separate, special class of instructions. VIDL only allows selecting the input lanes using

constant indices: This restriction allows VeGen to statically determine the vector

operands used by each vector instruction.

Figure 3-2 shows the semantics of the SSE instruction pmaddwd specified in VIDL.

The instruction pmaddwd takes two vector registers as input, sign-extends the values

from 16-bit to 32-bit temporaries, multiplies the sign-extended values element-wise,

and finally adds together every adjacent pair of the multiplication results.

3.3 Generating Pattern Matchers

In the offline phase, VeGen collects the set of operations used by the target vector

instructions, and for each operation, VeGen generates pattern matching rules to

recognize IR sequences that implement the operation. Figure ?? shows an example of

the pattern matching code generated by VeGen.

We designed VIDL to mirror the scalar IR that its vectorizer takes as input.

28

Thus, generating pattern matching code from VIDL is generally straightforward. In

Chapter 5 we discuss how to generate pattern matchers that are more robust.

3.4 Pattern Matching

At compile time, VeGen applies the generated pattern matchers on the input scalar

program. We call the result of pattern matching a match, an IR instruction DAG

with (possibly) multiple live-ins and a single live-out. VeGen represents each match

as a tuple consisting of its live-ins, live-out, and operation. In the running example

(Figure 3-3), the integer multiply-add operation has two matches (the sub-graphs

enclosed in dotted curves): one rooted at the instruction 𝑡1, and another rooted at 𝑡2.

Unlike other common applications of pattern matching such as term rewriting,

VeGen does not directly use the result of pattern matching to rewrite the program.

Instead, VeGen records the matched patterns in a match table, which records the

mapping ⟨live-out(𝑚), operation(𝑚)⟩ ↦→ 𝑚, for each match 𝑚. The match table allows

VeGen’s target-independent vectorization algorithm (Chapter 3.5) to efficiently

enumerate the set of candidate vector instructions that can produce a given vector

(Algorithm 1).

3.5 Vectorization

After running the generated pattern matchers (at compile time), VeGen (1) uses a

target-independent heuristic to find profitable groups of matched IR instructions that

can be packed into (possibly non-SIMD) vector instructions—we call such a group of

instructions a vector pack—and then (2) lowers the vector packs into target vector

instructions.

Vector Pack. A pack is a tuple ⟨𝑣, [𝑚1, . . . , 𝑚𝑘]⟩, where 𝑣 is a vector instruction with

𝑘 output lanes, and 𝑚1, . . . , 𝑚𝑘 are a list of matches whose live-outs are independent.

For example, let 𝑚1 and 𝑚2 be the two matched integer multiply-add operations

rooted at the instructions 𝑡1 and 𝑡2 in Figure 3-3, we can use the instruction pmaddwd

29

to combine them into a single vector pack:

𝑝ex = ⟨pmaddwd, [𝑚1, 𝑚2]⟩

VeGen models vector loads and stores as two special kinds of packs, whose memory

addresses must be contiguous.

We define two notations for vector packs. Let 𝑝 = ⟨𝑣, [𝑚1, . . . , 𝑚𝑘]⟩ be a vector

pack, then then values(𝑝) is the list of IR values produced by pack 𝑝 (i.e., values(𝑝)𝑖 =

live-out(𝑚𝑖)) and opcode(𝑝) = 𝑣. In the running example,

values(𝑝ex) = [𝑡1, 𝑡2]

opcode(𝑝ex) = pmaddwd

Vector Operand. Vector packs have vector operands, represented as lists of IR

values. In the running example, 𝑝ex has two vector operands (We overload the [.]

operator here; e.g., 𝐴[0] denotes a load of the first element of 𝐴):

operand1(𝑝ex) = [𝐴[0], 𝐴[1], 𝐴[2], 𝐴[3]]

operand2(𝑝ex) = [𝐵[0], 𝐵[1], 𝐵[2], 𝐵[3]]

More specifically, let 𝑝 = ⟨𝑣, [𝑚1, . . . , 𝑚𝑘]⟩ be a vector pack, then operand 𝑖(𝑝) =

[𝑥1, . . . , 𝑥𝑛]; where 𝑥𝑗 ∈
⋃︀

𝑘 live-ins(𝑚𝑘) is one of the live-ins of the matches that

should bind to the 𝑗’th lane of the 𝑖’th operand of the vector instruction 𝑣. VeGen

generates the implementation of operand 𝑖(.) automatically from instruction semantics;

operand 𝑖(.) is known statically because the VIDL only allows selecting input vector

lanes using constant indices.

Don’t-Care Lanes. Some instructions don’t use all of their input lanes. For

example, the SSE4 instruction vpmuldq (Figure 3-6) sign-extends and multiplies only

the odd input lanes. To handle a case, we introduce a special don’t-care value. Each

element of a vector operand (i.e., operand 𝑖(.)) therefore takes the value of either a

30

A1 A3

B1 B3

A1*B1 A3*B3

A5 A7

B5 B7

A5*B5 A7*B7

Figure 3-6: Semantics of vpmuldq (sign-extended integer multiplication). White cells
represent lanes unused by the instruction.

scalar IR value (from the input program) or don’t-care.

Producing a Vector Operand. A pack 𝑝 produces a vector operand 𝑥 if they

have the same size (i.e., |values(𝑝)| = |𝑥|) and, for every lane 𝑖, 𝑥𝑖 is either values(𝑝)𝑖

or don’t-care. Algorithm 1 shows the algorithm for finding the set of feasible producer

packs for a given vector operand 𝑥. VeGen uses a separate routine to enumerate

producer packs that are vector loads, which can be done efficiently because only

contiguous loads can be packed together.

Dependence and Legality. A pack 𝑝1 depends on another pack 𝑝2 if there exists

an instruction 𝑖 ∈ values(𝑝1) that depends on another instruction 𝑗 ∈ values(𝑝2). We

define the dependencies among scalar IR instructions and vector packs similarly. A

set of packs are legal when there are no cycles in the dependence graph.

Vector Pack Selection. Because lowering a given set of vector packs to target

vector instructions is relatively straightforward, vectorization reduces to finding a

subset of the matches and combining them into legal vector packs. The choice of packs

determines the performance of the generated code by affecting the level of parallelism

and the level of data-movement overhead (e.g., if a vector operand is not produced

directly, VeGen needs to use vector shuffles to gather the elements of the operand).

Given a scalar program, VeGen selects a set of profitable vector packs using two

alternative heuristics that we will discuss in Chapter 4.

31

Algorithm 1: Find the set of (non-load) packs that produce a given vector
operand 𝑥. Load packs are found separately by enumeration.

Input :
x : The vector operand that we need to produce
M : The match table, which contains the mapping
⟨live-out(𝑚), operation(𝑚)⟩ ↦→ 𝑚 for each match 𝑚.
I : A list of instruction descriptions.

Output : A (potentially empty) set of producer packs of 𝑥.
1 if there are dependent values in 𝑥 then
2 return {}
3 end
4 producers ← {}
5 for vinst ∈ 𝐼 do
6 matches ← []
7 for 𝑖← 1 to number of lanes of vinst do
8 𝑓 ← the 𝑖’th operation of vinst
9 𝑚←𝑀 [⟨𝑥𝑖, 𝑓⟩]

10 if 𝑥𝑖 is don’t-care or 𝑚 is not null then
11 append 𝑚 to matches
12 end
13 end
14 if |matches| = number of lanes of vinst then
15 producers ← producers ∪ pack(vinst, matches)
16 end
17 end
18 return producers

32

3.6 Code Generation

Given a set of vector packs (and the input program), VeGen’s code generator emits

a vector program as a combination of (1) the scalar instructions not covered by the

packs, (2) the compute vector instructions corresponding to the packs, and (3) the

data-movement vector instructions that follow from the dependence among the packs

and scalars.

Given a pack set 𝑃 , we generate vector code as follows. The code generation

algorithm uses the target-specific functions operand 𝑖(.) generated from instruction

semantics.

Scheduling. The code generator first schedules the scalar instructions (regardless

of whether an instruction is replaced by vector instructions) according to their depen-

dencies and the following constraint: For any pack 𝑝 ∈ 𝑃 , all instructions in values(𝑝)

are grouped together in the final schedule. Such a schedule exists when the set of

packs are legal.

Lowering. After scheduling, the code generator lowers the packs in 𝑃 in topological

order. The previous scheduling step ensures that all of the values in operand 𝑖(𝑝) are

ready by the time we lower any 𝑝 ∈ 𝑃 . The code generator also emits any required

swizzle instructions to gather a vector operand if the operand is not produced directly

by another pack and to extract an element of a vector pack if the pack has a scalar

user.

33

34

Chapter 4

Vector Pack Selection

VeGen uses a target-independent heuristic to select a set of profitable vector packs.

The goal of the heuristic is to select a set of packs to maximize the total saving

from vectorization while minimizing the overhead of explicit data-movement that is

necessary when an instruction (whether vector or scalar) operand is not produced

exactly by any other instruction—such as when a scalar instruction uses a vector

element and therefore requires a vector extraction.

Optimization Objective and Cost Model. Let 𝑃 be the set of selected vector

packs, and let us focus on one of the packs 𝑝 ∈ 𝑃 . If the results of 𝑝 are used by some

scalar instructions, we need to extract those values and pay the following cost:

𝐶extract · |values(𝑝) ∩ scalarUses|

Let 𝑣 be a vector operand of 𝑝. When a subset of 𝑣 is produced by some other pack

𝑝′ ̸= 𝑝, we need to use vector shuffles to move those values into 𝑣 and pay the following

cost:

𝐶shuffle · |{𝑝′ ∈ 𝑃 ∖ {𝑝} | 𝑣 ∩ values(𝑝′) ̸= ∅}|

When some elements of 𝑣 are produced by scalar instructions, we need to use vector

35

costSLP(𝑣) = min

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
𝑝∈producers(𝑣)

costop(opcode(𝑝)) Produce a vector directly.

+
∑︀

𝑖 costSLP(operand𝑖(𝑝))
𝐶broadcast + costscalar(𝑣0) If ∀𝑖.𝑣𝑖 = 𝑣0, try broadcast
𝐶insert · |𝑣|+

∑︀
𝑥∈𝑣 costscalar(𝑥) Produce each element as scalar

Figure 4-1: The SLP heuristic uses this recurrence to decide whether to produce
a vector operand 𝑣 directly via a vector pack or by vector insertions. costscalar(𝑥)
is the cost of producing the (scalar) value 𝑥 and its dependences using only scalar
instructions.

insertions to insert those values into 𝑣 and pay the following cost:

𝐶insert · |𝑣 ∖ [
⋃︁

𝑝′∈𝑃

values(𝑝′)]|

𝐶extract , 𝐶, and 𝐶insert are cost-model parameters.

Recall that VIDL doesn’t model vector shuffles (Chapter 3.2). VeGen’s code

generator therefore emits a mix of target vector instructions and virtual (target-

independent) vector shuffles and relies on LLVM’s backend to lower the shuffles.

4.1 Pack Selection Using the SLP heuristic

The SLP heuristic builds a set of vector packs by traversing the instruction DAG

bottom-up (uses before definitions). Initially, the set of packs are seeded with seed

packs such as chains of contiguous stores. The heuristic then recursively introduces

vector packs to produce the vector operands—VeGen uses Algorithm 1 to find such

producers—in the current set of packs.

There are often multiple vector packs that can produce a given operand. For a

given operand, VeGen uses the dynamic programming algorithm shown in Figure 4-1

to choose a producer. This is the main modification we added to the original SLP

algorithm—in SLP-based vectorization, there is at most one pack that can produce

any given operand.

Limitations. A major limitation of the SLP heuristic is that it only considers a

36

vector pack 𝑝 if 𝑝 directly produces the operands of another pack. And there are

real-world cases where it’s more profitable to include a vector pack even when it’s

result is not directly used by any other vector packs. Consider the following code that

swaps the first two elements of an array.

b[0] = a[1];

b[1] = a[0];

Notice that we can vectorize this program (manually) by first loading the 𝑎 elements

with two-wide vector load, swap the first and second elements with a vector shuffle,

and finally store the shuffled two-wide vector to 𝑏. However, we could never generate

this code sequence with the SLP heuristic because the vector load of 𝑎 (which produces

the vector [𝑎0, 𝑎1]) doesn’t produce the vector operand used by the vector store to 𝑎

(which requires the vector [𝑎1, 𝑎0]).

Another limitation of the SLP heuristic it assumes that each program value only

has one user. Consequently, it is optimistic when there are external scalar users of a

vector pack and fails to account for the vector extraction cost. On the other hand,

the SLP heuristic is also pessimistic when there are multiple uses of non-vectorizable

vector operands and fails to recognize that the multiple uses lower the cost of vector

shuffle/insertion (by amortization).

Consider the following code snippet, where there are two seed packs: the two pairs

of stores to the arrays a and b.

a[0] = x[0] + t1; a[1] = x[1] + t2;

b[0] = y[0] + t1; b[1] = y[0] + t2;

Suppose the temporaries t1 and t2 are not vectorizable. To vectorize the rest of the

code snippet, the vectorizer would need to emit extra vector insertion instructions

to create the vector [𝑡1, 𝑡2]. On a machine where vector insertions are expensive,

it is plausible that this code is profitable to vectorize only when the instruction

(sub-)DAG rooted at both seed packs are vectorized to amortize the cost of creating

[𝑡1, 𝑡2]. Unfortunately, because the SLP heuristic processes each seed pack separately,

37

it would (correctly) conclude that none of the seed packs are individually profitable

and (incorrectly) decide that the whole basic block is not worth vectorizing.

Improving the SLP heuristic. Let’s rephrase the problem—that the SLP heuristic

only consdier vector packs taht are direct producers of existing vector operands—in

another way helps with understanding our new heuristic. Let 𝑣 be some vector operand

that we need to produce. We want to find some profitable vector pack 𝑝 so that 𝑝

produces 𝑣 partially (values(𝑝) ∩ 𝑣 ≠ ∅). Note that in the original SLP heuristic, we

insist that values(𝑝) = 𝑣, which is a stricter condition. For such vector pack 𝑝, we can

break it down to three cases that we will address separately.

Here are the three possible (disjoint) cases that can happen when we have a vector

pack 𝑝 that produces a subset of 𝑣’s elements.

1. 𝑝 produces a proper subset of 𝑣.

2. 𝑝 produces exactly the 𝑣’s elements but with the elements permuted.

3. 𝑝 produces some values that are not in 𝑣. One might wonder why is such pack 𝑝

desirable: why would anyone want to produce more than that’s required? The

answer is that sometimes it’s more efficient produce multiple vectors jointly as a

single vector and then use vector shuffles to extract the sub-vectors out.

The first case requires us to decompose 𝑣 into smaller vectors and find a producer

packs for those vectors separately. Because there are combinatorially many ways to

decompose a given vector, we instead use a limited family of vector decomposition

operator that we call deinterleaving.

The second case requires us to find a way to permute 𝑣 and then a producer

pack for the permuted vector. Similarly, because there are factorially many ways to

permute any given vector, we instead use a limited set of permutations that we call

transposition.

For the third case, we apply a heuristic that we call combination, in which we look

at all possible pairs of vector operands in an existing set of packs and check whether

it’s more profitable to produce the elements of the two vectors simultaneously with a

38

single instruction (note that we still have much freedom in choosing how to combine

those vectors, and different combination methods can give different performance).

Deinterleaving and transposition are non-intrusive in the sense that they still follow

the high-level idea of the original SLP heuristic; that is, at each step, we inspect the

vector operand 𝑥 of some existing vector pack 𝑝, and we try to find another vector

pack 𝑝′ to produce 𝑥. This allows us to reuse the general struture of the dynamic

programming algorithm shown in Figure 4-1 with some modifications.

The combination heuristic is more intrusive and requires a separate, more expensive

optimization algorithm.

4.2 Improve the SLP heuristic with Deinterleaving

and Transposition

The idea of deinterleaving is that for a given vector 𝑥, we decompose 𝑥 into multiple

sub-vectors by a constant stride, and then we attempt to find a producer pack 𝑝′ that

produces one of the sub-vectors exactly. For example, for a four-wide vector 𝑥, we can

deinterleave its even and odd elements as follows.

𝑥′ = [𝑥0, 𝑥2, 𝑥4, 𝑥6]

𝑥′′ = [𝑥1, 𝑥3, 𝑥5, 𝑥7]

And then we recursively find vector packs that can produce 𝑥′ and 𝑥′′. In general,

we define deinterleave(𝑚, 𝑛, 𝑥) as a function that takes integers 𝑚 (the stride) and 𝑛

(the start position and 1 ≤ 𝑛 ≤ 𝑚), an input x 𝑥, and returns another vector 𝑦 whose

individual elements are 𝑦𝑖 = 𝑥𝑚+𝑖·𝑛.

With transposition, we first transform the an input vector 𝑥 by interpreting it

as an 𝑚× |𝑥|
𝑚

matrix (assuming |𝑥| is divisible by 𝑚), transposing that matrix, and

re-interpreting it as the transformed vector 𝑥′. We then attempt to find a producer

pack 𝑝′ that produces 𝑥′.

Figure 4-2 shows the improved version of the SLP heuristic once we apply both

39

costSLP(𝑣) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
𝑝∈producers(𝑣)

costop(opcode(𝑝)) Produce a vector directly.

+
∑︀

𝑖 costSLP(operand𝑖(𝑝))

min
𝑚∈{2,4,8,...}

min
𝑝∈producers(transpose𝑚(𝑣))

costop(opcode(𝑝)) Transposition

+
∑︀

𝑖 costSLP(operand𝑖(𝑝))
+𝐶shuffle

min
𝑚∈{2,4,8,...}

∑︀
𝑛≤𝑚 costSLP(deinterleave(𝑚, 𝑛, 𝑣)) Deinterleaving

+(𝑚− 1) · 𝐶shuffle

𝐶broadcast + costscalar(𝑣0) If ∀𝑖.𝑣𝑖 = 𝑣0, try broadcast

𝐶insert · |𝑣|+
∑︀

𝑥∈𝑣 costscalar(𝑥) Scalar insertions

Figure 4-2: Improved recurrence for choosing a vector producer for a given vector
operand. This is essentially of the algorithm in Figure 4-1 with extra rules for
deinterleaving and transposing vectors before looking for the vectors’ producers. Note
that deinterleaving and transposing are not free. For detinerleaving, we need to use
𝑚− 1 vector shuffles to combine the deinterleaved vectors to produce the final vector.
For transposition, we need to use a vector shuffle to permute the transposed vector to
produce the final vector.

deinterleaving and transposition.

4.3 Fine-tuning with Vector Combination

Combination is an improvement heuristic that we can apply to improve an existing

set of vector packs (but doesn’t directly give us a set of vector packs directly in the

first case). It can give better performance in some cases (by trading off more compile

time). The idea is to look at all of the vector operands used in an existing set of vector

packs, and find some pair of vector operands that are more profitable to be produced

jointly. This leaves two problem: 1) Which pair of vector operands? 2) And how to

produce them jointly?

For the first problem, the combination heuristic simply checks all pairs of vector

40

operands by following steps iteratively until it reaches an fixed-point:

1. Enumerate all possible pairs of vector operands (𝑣, 𝑣′) s.t. elements of 𝑣 and 𝑣′

are independent and |𝑣| = |𝑣′|, in some arbitrary order

2. Combine each pair of vectors 𝑣 and 𝑣′ into a larger vector combine(𝑣, 𝑣′) (I will

discuss what the combine function is).

3. Apply the SLP heuristic to find a new set of vector packs that produces the

vector combine(𝑣, 𝑣′) and its transitive dependences; if any of the new vector

packs overlap with an existing one, discard the existing one.

4. If the new set of vector packs are more profitable, accept and go back to step 1.

We need some way to comebine two vectors into a larger vectors. For this, we use

two alternative combination functions—concat and interleave—and pick whichever

that gives better performance. The function concat(., .) concatenates its two input

vectors. The function interleave(., .) combines into two input vectors so that the odd

elements of the final vector come from the first vector and the even elements come

from the second.

41

42

Chapter 5

Implementation

5.1 Supporting x86 Vector Instructions

We implemented the offline part of VeGen (the part involved with semantics and

pattern generation) in Python. We implemented the rest of VeGen, the part that

performs compile time vectorization, as an LLVM pass in C++. The LLVM pass takes

scalar LLVM IR as input and emits a mix of scalar IR and target-specific intrinsics1

that in most cases, gets lowered to their corresponding instructions (e.g., the LLVM

intrinsic @llvm.x86.sse2.pmadd.wd maps to the instruction pmaddwd).

5.2 Target Instruction Specification

VeGen generates SMT formulas from the XML file that Intel uses to render the

Intrinsics Guide [Corporation, 2012], which contains pseudocode documentations of

the intrinsics. VeGen then lifts the SMT formulas to VIDL (vector instruction

description language). Lifting the SMT formulas to VIDL is straightforward because

we designed VIDL to closely match the semantics of SMT bit-vector operations (which

are also closely related to LLVM’s integer instructions).

1There is a straightforward mapping from Intel intrinsics to small sequences of LLVM intrinsics.
We find out the mapping from Intel intrinsics to the equivalent LLVM intrinsics by wrapping an intel
intrinsic in a standalone function whose signature matches that of the intrinsic. We run Clang on
this function, and record the instructions produced by Clang

43

Translating Semantics from the Intrinsic Guide. To document instruction

semantics, Intel uses an imperative language that operates on fixed-length bit-vectors.

All values in the language are bit-vectors and have one of four types: signed integer,

unsigned integer, float, and double. There are no implicit integer overflows in this

language; instead, if an operation can overflow its result (such addition and multipli-

cation), the operation first converts its input bit-vectors to a wider width—using zero-

or sign-extensions, depending on the signedness—before execution.

We implemented a symbolic evaluator for the language using z3 [De Moura and

Bjørner, 2008] and translated Intel’s pseudocode documentation into formal SMT

formulas. We chose z3 mostly for its expression simplifier. The evaluator maps

expression-level constructs such as ALU operators and bit-vector slicing to their SMT

equivalents; for instance, additions become SMT bit-vector additions. We treat the

following high-level program constructs specially:

• Assignment. We model each assignment to (sub-)bit-vector as a pure expression

that takes the original bit-vector value and outputs the post-update value. The

output of the expression is a concatenation of the unaffected sub-vector(s) and

the updated sub-vector.

Consider, for example, the statement x[7:0] = 0, which zeros the lower eight

bits of a 32-bit variable x, we emit the following formula:

Concat (Extract (31,8,x), 0 b00000000)

• Function calls. We inline all function calls.

• Loops. We unroll all for-loop (All for-loops have constant trip-counts in the

documentation language).

• If-statements. We apply if-conversion to the sub-vector being mutated—bit-

vector assignment is the only construct with side-effects. In the if-converted

expression, we set the predicate to the condition of the original if-statement, the

true-branch to the right-hand side of the assignment, and the false-branch to

the original value of the sub-vector.

44

For example, for the following statement, which conditionally zeros the lower

eight bits of a 32-bit variable x,

IF ctrl [1:0]

x[7:0] = 0

FI

we emit the following formula:

Concat (Extract (31,8,x),

If(Extract (0,0, ctrl) == 1,

Extract (7,0,x),

0 b00000000))

Our symbolic evaluator returns SMT formulas that are unnecessarily complicated

in some cases because of the naive implementation of partial bit-vector updates and

predicated updates. We use z3’s simplifier to reduce the formula complexity. For most

instructions, z3’s simplifier simplifies their symbolic results into representations that

reflect the high-level intent of the original documentation.

We validated the SMT formulas by random testing. Testing revealed incorrect

semantics resulting from ambiguous or simply incorrect documentation. For instance,

the signedness of saturation arithmetic is particularly ambiguously documented for

instructions from the psubus family (subtract packed unsigned integers with satu-

ration). It turns out the result of an unsigned subtraction should be saturated as a

signed integer.

Pattern Generation. We use LLVM’s pattern-matching library to implement

VeGen’s pattern matching logic. VeGen canonicalizes the patterns before emitting

the pattern matchers. The canonicalizer takes a pattern and generates an LLVM

function that has the same signature as the operation. We then run LLVM’s instcom-

bine pass on this function and generate pattern matching code according to the final

canonicalized IR sequences. This canonicalization biases the patterns toward patterns

that LLVM prefers. The most notable rewrite is canonicalizing all comparisons to strict

inequalities (such as rewriting 𝑥 ≤ 1 to 𝑥 < 2) and is crucial for recognizing integer

45

saturations. Additionally, for (sub-)patterns of the form select(cmp(𝑎, 𝑏), 𝑥, 𝑦), we

generate additional code to also match the inverted case of the comparison.

5.3 Cost Model

For 𝐶insert and 𝐶extract , we use LLVM’s cost model. We set 𝐶shuffle = 2. VeGen

additionally detects several special-case vector shuffle and insertion patterns, such as

vector broadcast and permutation, and overrides the default cost model.

To estimate the cost of vector instructions, we use the instruction throughput

statistics from Intrinsics Guide. To remain compatible with the rest of LLVM’s cost

model, we set the cost of each intrinsic to be its inverse throughput scaled by a factor

of two.

One of VeGen’s goals is reducing developer effort. It is important for us to account

for the engineering effort as well as which LLVM components VeGen depends on.

We implemented the semantics components of VeGen — parsing, symbolic execution,

pattern generation, etc. — in 5.5k lines of Python. We implemented the pack selection

heuristic with 489 lines of C++. We implemented the rest of the infrastructure with

2.6k lines of C++.

For reference, the closest analog of our vectorizer is LLVM’s SLP vectorizer, which

takes 7.5k lines of C++. The hand-written backend peephole rule of the SSE4

instruction pmaddwd alone takes 129 lines of C++.

VeGen uses the LLVM’s target-specific selection DAG builder to lower virtual

vector shuffles into hardware instructions, the backend to lower vector intrinsics into

hardware instructions, and its cost model to determine the cost of scalar arithmetic

instructions and vector shuffles.

x86 Specific Engineering. Most of the aforementioned implementation is target-

independent. The only target-specific component is the semantics translator from

Intel’s documentation to our description language. This translator automatically

translated the semantics of 1164 vector instrinsics and is written in 1.1k lines of

Python. To target a new vector instruction set, one would only need to supply the

46

Table 5.1: Summary of the non-SIMD Neon instructions that VeGen supports
Category Semantics Summary Number of Instructions

Pairwise addition Adding every pair of lanes 41
Folding min/max Take the maximum of every pair of lanes 14
Dot product - 4

semantic description of the instruction set. The main dependence is LLVM’s shuffle

lowering machinery, since (in general) there’s a straightforward mapping from vector

intrinsic to hardware instructions.2

5.4 Supporting Arm Neon Instructions

VeGen also has support for a limited subset of Arm’s Neon instructions. Rather than

using an automatic translator of Arm’s instructions (i.e., following what we did for

x86), we translated the semantics of these Neon instructions with a semi-automatic

approach. Most Neon instructions come from a small family of instructions (e.g.,

vector add) but parametrized with different vector-length and bit-width (e.g., 4-wide

32-bit vector add), we implemented a semantics generator for various families of vector

instructions and instantiating them with the vector-lengths and bit-widths that Arm

supports.

We emit SMT formulas with this semantics generator. We then reused the same

code-generation pipeline as we do for x86 vector instructions to process the generated

SMT formulas.

All told, we added support for 152 Neon instructions. Table 5.1 lists the non-

SIMD instructions in this subset of supported instructions. There are more Neon

instructions whose semantics we could generate but not included here because we

could not find available Arm machines that can execute those instructions (e.g., matrix

multiplications).

Because Arm doesn’t have a publicly available, machine-readable file detailing the
2Our implementation actually emits target-independent virtual instructions for common arithmetic

operations such as addition, which do not have dedicated LLVM intrinsic. For instance, Clang directly
emits virtual vector addition for the compiler intrinsic _mm_add_epi32.

47

throughput and latencies of their instructions (unlike Intel), VeGen assigns a uniform

cost of two for all the Neon instructions that it supports.

48

Chapter 6

Experimental Results

We evaluated VeGen on a subset of LLVM’s vector instruction selection tests, some

reference DSP kernels chosen from FFmpeg and x265, and fixed-size dot-product

kernels from OpenCV. We also evaluated VeGen’s generated Arm Neon backend on

the aforementioned DSP kernels. We show that in most cases, VeGen outperforms

LLVM’s vectorizer, and we explain how VeGen fails to vectorize in the other cases.

Additionally, we present a case study of VeGen vectorizing the scalar complex-

multiplication kernel.

Experimental Platforms. For experiments requiring only AVX2, we run the

benchmarks on a server with the Intel®Xeon®CPU E5-2680 v3 CPU and 128 GB

of memory. For experiments requiring AVX512-VNNI, we use a server with the

Intel®Xeon®Platinum 8275CL CPU and 4 GB of memory. For experiments requiring

Arm Neon instructions, we used an AWS Graviton2 processor (based on the Arm

Neoverse N1 microarchitecture). We use LLVM 12.0.0. In all cases, we invoke clang

with -O3 -ffast-math -march=native.

Note on cost model. During development, we discovered that LLVM’s backend

code-generator for LLVM vectorshuffle (LLVM’s target-independent construct to

represent arbitrary vector shuffles) are incomplete and crashes lowering the vector

shuffles emitted by VeGen while targeting Icelake (the microarchitecture of our

AVX512 machine). We got around the bug by configuring LLVM to target Haswell

49

(a) Tests LLVM able to vectorize

Test Speedup
max_pd 1.0
min_pd 1.0
max_ps 1.0
min_ps 1.0
mul_addsub_pd 1.0
mul_addsub_ps 1.0
abs_pd 0.8
abs_ps 0.4
abs_i8 1.0
abs_i16 1.0
abs_i32 1.0

(b) Tests LLVM unable to vectorize

Test Speedup
hadd_pd 1.4
hadd_ps 1.2
hsub_pd 1.4
hsub_ps 1.2
hadd_i16 2.9
hsub_i16 4.9
hadd_i32 1.3
hsub_i32 1.3
pmaddubs 16.8
pmaddwd 4.2

Figure 6-1: Speedup (over LLVM, higher is better) on instruction selection tests ported
from LLVM’s x86 backend. These tests were originally written to exercise the pass
that lowers LLVM’s vector IR into their desired target instructions. We ported the
tests by manually transforming them into their scalar equivalents.

instead but with extra flags informing LLVM that the (purely hypothetical) Haswell is

also equipped with AVX512 features. This allows us to get emit AVX512 instructions

but has unfortunately also caused LLVM to use its Haswell cost model even while

targeting the Icelake machine. As we analyze the experimental results, we can see

evidence that this has an adverse performance effect.

6.1 Synthetic Benchmarks

For our first set of experiments, we ported some of LLVM’s backend instruction selection

tests for non-SIMD instructions and SIMD instructions with complex semantics (e.g.,

min). These tests were originally written to exercise the pass that lowers LLVM vector

IR into target vector instructions. Because LLVM’s vector IR only models isomorphic

vector instructions, the tests for non-SIMD instructions (e.g., haddpd) are written

as combinations of LLVM vector instructions and vector shuffles. We translated the

test cases (written in LLVM IR) to their equivalent scalar version by expanding IR

vector instructions into multiple scalar instructions and by converting vector function

arguments to non-aliased pointer arguments. Clang/LLVM is not able to vectorize 10

50

out of 21 of the tests. Aside from the tests abs_ps and abs_pd, our system performs

equally or better to Clang.

Figure 6-1 shows the test results. VeGen vectorizes 19 out of 21 of the tests.

LLVM fails to vectorize 10 out of 21 of the tests, all of which are non-SIMD instructions

and are vectorized by VeGen. Interestingly, the only non-SIMD tests that LLVM

can vectorize are mul_addsub_pd and mul_addsub_ps, for which LLVM does have

special-case support.

Both of the two tests that VeGen failed to vectorize compute floating-point

absolute values, and for which LLVM uses the fact that the absolute value of a

floating-point can be computed by masking-off the sign-bit (i.e., the most significant

bit) to vectorize; VeGen does not have this knowledge and does not vectorize in these

two cases.

6.2 Optimizing Image and Signal Processing Ker-

nels

Table 6.1 shows our benchmarks. To demonstrate that VeGen can effectively use

non-SIMD instructions on real-world kernels, we evaluated VeGen’s pack selection

heuristic on six kernels from x265 We chose these kernels because DSP and image

processing are the motivating domains for non-SIMD instructions such as pmaddwd.

These benchmarks are challenging to vectorize because they require intermediate

shuffles and partial reductions. We ported the idct4 and idct8 kernels from x265’s

reference implementation. The rest are from FFmpeg.

Figure 6-2 shows the benchmarking results on AVX2, AVX512, and (Arm) Neon.

VeGen outperforms LLVM in all cases.

6.2.1 Discussion

When considering the best-performing heuristics used by VeGen, VeGen outperforms

Clang in all cases; in the best case, VeGen is able to reach more than 5× speedup.

51

100

Sp
ee

du
p

 1
.1

1

 1
.2

1

 1
.0

8

 0
.9

8

 0
.8

2 0
.9

3

 3
.0

2

 1
.4

6

 1
.2

1

 1
.0

8

 0
.9

5

 3
.6

2 4
.2

3

 3
.0

3

 1
.5

2

 1
.2

1 1
.4

3

 2
.3

1

 4
.1

0

 4
.5

0

 5
.9

2 Vector Extension = AVX2
Pack Selection Heuristic

VeGen/SLP
VeGen/SLP'
VeGen/SLP'+Tuning

100

Sp
ee

du
p

 1
.4

2

 0
.9

9 1
.1

0

 1
.9

3

 0
.6

9

 0
.5

8

 2
.7

4

 1
.2

3

 0
.9

9 1
.1

1

 1
.9

9

 3
.2

3 4
.1

4

 2
.7

3

 1
.0

2

 1
.0

0

 1
.0

9

 1
.7

6

 4
.5

0

 4
.3

9 5
.3

3 Vector Extension = AVX512-VNNI

g722-qmf fft4 fft8 sbc idct8 idct4 chroma
Benchmarks

100

Sp
ee

du
p

 1
.3

7

 1
.0

0

 1
.0

0

 1
.4

5

 0
.4

8

 0
.8

5

 1
.5

0

 1
.1

7

 1
.0

0

 1
.0

0

 1
.4

6

 0
.8

0

 1
.3

2 1
.5

1

 1
.5

0

 1
.0

0

 1
.0

0

 1
.8

4

 1
.0

0

 1
.3

4

 2
.0

0

Vector Extension = Arm Neon

Figure 6-2: Speedup (over LLVM, higher is better) on kernels we selected from x265
(idct4 and idct8) and FFmpeg. VeGen/SLP is the baseline SLP heuristic used by
VeGen. VeGen/SLP’ is the SLP heuristic augmented with the deinterleaving and
transposition heuristics. VeGen/SLP’+Tuning refers to running the augmented SLP
heuristic and then fine-tuning with the combination heuristic, which iteratively finds
pairs of vector operands that are more profitable to be produced jointly.

52

Table 6.1: Evaluation Benchmarks
Benchmark Description
g722-qmf Quadrature Mirror Filters for G.722 codec
fft4 4-point Fast Fourier Transform
fft8 8-point Fast Fourier Transform
sbc Audio subband codec
chroma Chroma subsampling
idct4 4-point Inverse Discrete Cosine Transform
idct8 8-point Inverse Discrete Cosine Transform
imdct36 36-point Modified Discrete Cosine Trasform

vmovdqu ymm0 , ymmword ptr [rdi]
vpermq ymm1 , ymm0 , 119
vmovdqa ymm2 , ymmword ptr [rip + LCPI7_0]
vpshufb ymm1 , ymm1 , ymm2
vpmaddwd ymm1 , ymm1 , ymmword ptr [rip + LCPI7_1]
vpermq ymm0 , ymm0 , 34
vpshufb ymm0 , ymm0 , ymm2
vpmaddwd ymm0 , ymm0 , ymmword ptr [rip + LCPI7_2]
vpaddd ymm2 , ymm0 , ymm1
vpbroadcastd ymm3 , dword ptr [rip + LCPI7_3]
vpaddd ymm2 , ymm2 , ymm3
vpsrad ymm2 , ymm2 , 7
vpshufd ymm2 , ymm2 , 78
vpsubd ymm0 , ymm0 , ymm1
vpaddd ymm0 , ymm0 , ymm3
vpsrad ymm0 , ymm0 , 7
vpackssdw ymm0 , ymm2 , ymm0
vpshufb ymm0 , ymm0 , ymmword ptr [rip + LCPI7_4]
vpermq ymm0 , ymm0 , 216
vmovdqu ymmword ptr [rsi], ymm0

Figure 6-3: idct4 kernels vectorized by VeGen. VeGen fully vectorizes this kernel
with 20 vector instructions. In contrast, Clang partially vectorizes this kernel using 84
instructions (not shown here).

53

The baseline SLP heuristic is in general inferior to the SLP heuristic augmented

with the deinterleaving and transposition heuristic, incurring slowdowns on idct4 and

idct8 on all three (micro)architectures.

Aside from the g722-qmf benchmark, the SLP heuristic augmented with deinter-

leaving and transposition out-performs the baseline SLP heuristic. For the g722-qmf

benchmark, the augmented SLP heuristic and finetuning found vectorization strategies

that are actually more profitable according to LLVM’s cost model, but the actual

generated to runs slower, indicating inaccuracy in the cost model. The main benefit

deinterleaving and transposition show up in the idct4 and idct8 benchmarks, both of

which require shuffling the memory inputs before vector computations and require

shuffling the computed value before storing back to the memory.

Fine-tuning with the combination heuristic (VeGen/SLP’+Tuning in Figure ??)

improves the initial vectorization strategy discovered by the augmented SLP heuristic

on idct4, idct8, and the chroma benchmarks It improves augmented heuristic by more

than 20%.

Vectorizing idct4. We highlight some instructions that VeGen generated for the

idct4 kernel (targeting AVX512-VNNI). Figure 6-3 shows the generated code, which

is more than 4× faster than LLVM’s code. VeGen uses the non-IMSD instructions

vpmaddwd (the motivating dot-product instruction) and vpackssdw (saturate two

vectors of 32-bit integers to 16-bit integers and concatenate the result). Of note are

the vpshufb and permq instructions preceding the vector stores. VeGen uses these

shuffle instructions—without which it is not profitable to vectorize this kernel—to

form vector operands that are not directly produced by compute instructions such as

vpmaddwd.

6.3 Optimizing OpenCV’s Dot-Product Kernels

For our next set of experiments, we evaluated VeGen on OpenCV’s reference dot-

product kernel implementations. OpenCV’s reference implementation is a C++

template parameterized with different data types and kernel sizes. These kernels are

54

challenging to auto-vectorize because they have interleaved memory accesses as well

as reduction.

Figure 6-4 shows the benchmarking results. VeGen found non-trivial vectorization

schemes for three of the four kernels. VeGen vectorizes the first benchmark naively—

essentially vectorizing across the unrolled iterations and paying the shuffle cost for the

interleaved accesses—and only yielded a 10% speedup. We investigated the slowdown

VeGen incurred on AVX512 (VNNI). It turned out that for the first kernel, VeGen

actually emitted identical vector IR/intrinsics for both AVX2 and AVX-512. The

performance difference comes down to how LLVM’s backend lowered the shuffles

emitted by VeGen. For the AVX2, LLVM emitted the vpshufb instruction, whose

latency and inverse throughput are both one cycle. For the AVX-512, LLVM instead

emitted the vpmovdb instruction, whose inverse throughput is two cycles (and latency

four cycles) and slower than vpshufb.

Of note is the vector code VeGen generated for the int32 × 8 kernel (Figure 6-5),

which matches OpenCV’s expert-optimized code. We inspected the machine code and

confirmed that VeGen used the same high-level algorithm used by OpenCV’s expert

developer. The reference (naive) implementation of the int32 × 8 kernel sign-extends

the input elements from 32-bit to 64-bit, multiplies the two input arrays elementwise,

and then reduces every adjacent pair of elements by addition. There is no single

instruction that can implement this kernel by itself, and the high-level strategy of

VeGen (and OpenCV) is to perform the odd multiplications separate from the even

ones and finally add the odd and even entries together. To multiply the odd (and even)

entries, VeGen uses the instruction vpmuldq, which is deceivingly complicated and

performs sign-extended multiplications only on the odd input elements (Figure 3-6).

The multiplications of the odd elements therefore map naturally to vpmuldq.

6.4 Optimizing Complex Multiplication

Complex arithmetic is a motivating application for SIMOMD instructions. In fact, (to

the best knowledge of our knowledge) the first SIMOMD instructions were designed

55

(a) Results on AVX2

Kernel Size Speedup
int8 × 32 1.1
uint8 × 32 2.0
int32 × 8 1.5
int16 × 16 1.6

(b) Results on AVX-512 (VNNI)

Kernel Size Speedup
int8 × 32 0.7
uint8 × 32 2.2
int32 × 8 1.7
int16 × 16 2.5

Figure 6-4: OpenCV’s dot-product kernels specialized for AVX2 and AVX-512 (VNNI)
and different kernel sizes.

vmovdqu ymm0 , [rdi]
vmovdqu ymm1 , [rsi]
vpmuldq ymm2 , ymm1 , ymm0
vpshufd ymm0 , ymm0 , 245 ## ymm0 = ymm0 [1 ,1 ,3 ,3 ,5 ,5 ,7 ,7]
vpshufd ymm1 , ymm1 , 245 ## ymm1 = ymm1 [1 ,1 ,3 ,3 ,5 ,5 ,7 ,7]
vpmuldq ymm0 , ymm1 , ymm0
vpaddq ymm0 , ymm0 , ymm2
vmovdqu [rdx], ymm0

Figure 6-5: Vector code that VeGen generated for the int32 ×8 dot-product kernel in
OpenCV. vpmuldq multiplies (with sign-extension) the odd elements of its two vector
operands.

vmovupd xmm0 , rsi
vpermilpd xmm1 , xmm0 , 1
vmovddup xmm2 , [rdi +8]
vmulpd xmm1 , xmm1 , xmm2
vmovddup xmm2 , [rdi]
vfmaddsub213pd xmm2 , xmm0 , xmm1
vmovupd [rdx], xmm2

(a) Instructions generated by VeGen
(vfmaddsub213pd does multiply-add on the
odd lanes and multiply-sub on the even lanes)

vmovsd xmm0 , [rdi]
vmovsd xmm1 , [rdi + 8]
vmovsd xmm2 , [rsi]
vmovsd xmm3 , [rsi + 8]
vmulsd xmm4 , xmm2 , xmm1
vfmadd231sd xmm4 , xmm3 , xmm0
vmulsd xmm1 , xmm3 , xmm1
vfmsub231sd xmm1 , xmm2 , xmm0
vmovsd [rdx], xmm1
vmovsd [rdx + 8], xmm4

(b) Instructions generated by LLVM

Figure 6-6: Complex multiplication kernel, generated by VeGen (Figure 6-6(a)) and
LLVM (Figure 6-6(b)). VeGen’s version is 1.27× faster.

56

for complex arithmetic [Bachega et al., 2004].

Figure 6-6 shows the complex multiplication kernel compiled by VeGen and by

LLVM. VeGen uses the instruction vfmaddsub213pd (which performs fused multiply-

add on the odd lanes and multiply-sub on the even lanes). LLVM does not vectorize in

this case, even though (as noted earlier) LLVM’s SLP vectorizer has been specifically

modified to support such a pattern. We stepped through the LLVM’s optimization

decisions and discovered that the root cause is an error in its cost-benefit analysis.

Since LLVM’s SLP vectorizer is target-independent, it models such an alternating

pattern as two vector arithmetic instructions followed by a vector blending instruction

that combines the results. The error occurs when the LLVM’s vectorizer includes

the cost of the blending instruction into its analysis and overestimates the total

vectorization overhead. VeGen does not suffer from such issues because VeGen has

direct knowledge of which target instructions are available.

57

58

Chapter 7

Related Work

VeGen is related two long lines of work on compiler research—automatic vectorization

and automatic backend-generation from ISA semantics. VeGen is also more broadly

related to recent work on program superoptimization and synthesis, both of which

seek to automatically generate target programs while relying only on a declarative

description of instruction semantics.

7.1 Auto-vectorization

Loop vectorization and SLP vectorization are the two dominant vectorization tech-

niques used by modern compilers. Both types of vectorization techniques do not model

non-SIMD vector instruction in principle, but their implementations in mainstream

compilers such as LLVM have some special case non-SIMD support.

Nuzman and Zaks [Nuzman et al., 2006] proposed a technique for vectorizing

interleaved memory accesses within a loop-based vectorizer. Eichenberger et al.

proposed a technique for vectorizing misaligned memory accesses [Eichenberger et al.,

2004], and FlexVec [Baghsorkhi et al., 2016] extends loop vectorizers to support

vectorizing irregular programs with manually written rules. In contrast, VeGen

systematically adds support to generate non-SIMD instructions automatically and is

not limited to a particular class of non-SIMD instructions.

The vectorizer generated by VeGen is more similar to SLP vectorization introduced

59

by Larsen and Amarasinghe [Larsen and Amarasinghe, 2000]. However, VeGen

supports a more general type of parallelism (LLP) and can therefore target non-SIMD

instructions. Almost all published SLP vectorization techniques propose algorithmic

improvements to capture more parallelism within the SLP framework. Some examples

are Holistic SLP vectorization [Liu et al., 2012], Super-node SLP [Porpodas et al., 2019],

TSLP [Porpodas and Jones, 2015], PSLP [Porpodas et al., 2015], VW-SLP [Porpodas

et al., 2018], and ILP solver-aided goSLP [Mendis and Amarasinghe, 2018].

There are domain-specific vectorizers that exploit architecture-specific vector

instructions as well as application-specific patterns. The SPIRAL project [Puschel

et al., 2005] proposes several auto-vectorization schemes specific to DSP algorithms.

More specifically, they propose a target-independent search-based vectorizing compiler

targeting DSP algorithms [Franchetti and Püschel, 2002] and show how to use the

vector swizzle instructions supported by the AVX and Larrabee ISAs to implement the

matrix transpositions found in FFTs [McFarlin et al., 2011]. Compared to SPIRAL

and its extensions, VeGen is a general-purpose vectorizer and not designed to target

any specific vector instruction sets.

7.2 Instruction Selection

VeGen closely related to the research on building retargetable compilers. VeGen is

different from this line of work in that it focuses on extracting fine-grained parallelism

(as a vectorizer) while simultaneously being aware of the detailed operations supported

by these target instructions (similar to an instruction selector). Instruction selection—

regardless of the quality of the code generator—alone is insufficient for automatically

targeting non-SIMD vector instructions because traditional instruction selectors only

lowers IR vector instructions—thus requiring cooperation with the vectorizer.

Ganapathi et al. [1982] presented a survey on retargetable code generation. Cattell

[1980] investigated automatically generating code generators from machine descrip-

tions. Ramsey and Fernández [1997] proposed a specification language for describing

instruction encoding. Buchwald et al. [2018] synthesized instruction selection rules for

60

32-bit x86 integer instructions from their bit-vector specification.

7.3 Superoptimization

VeGen is more broadly related to superoptimization, which uses search techniques

to directly generate optimized programs based on instruction semantics. In princi-

ple, a superoptimizer can accomplish what VeGen does, but in practice, existing

superoptimizers are orders of magnitude slower than auto-vectorizers such as VeGen.

Bansal and Aiken [2006] constructed a peephole superoptimizer by exhaustively

enumerating short sequences of x86 instructions. Schkufza et al. [2013] proposed a

stochastic superoptimizer that trades completeness for scalability via a Markov Chain

Monte Carlo sampler. Barthe et al. [2013] proposed a synthesizing vectorizer that

works by first unrolling the scalar code and then using an enumerative synthesizer

to find more an efficient vector program that implements the unrolled loop body.

Phothilimthana et al. [2016] build on previous work on enumerative [Barthe et al.,

2013], stochastic [Schkufza et al., 2013], and solver-based synthesis to scale up super-

optimization. Sasnauskas et al. [2017] described a superoptimizer for straight-line

scalar LLVM IR.

61

62

Chapter 8

Conclusions

I have described a framework for building target-aware vectorizers that can use non-

SIMD instructions. We introduce Lane Level Parallelism, a new model of short

vector parallelism that captures the kind of parallelism implemented by non-SIMD

instructions. We realize this framework with VeGen, a system that takes vector

instruction semantics as input and generates a target-aware vectorizer that uncovers

LLP found in straight-line code sequences. VeGen is flexible: to target a new vector

instruction set, the developers only need to describe the semantics of the new vector

instructions. VeGen allows compilers to target new vector instructions with less

development effort and thus enable the creation of more robust vectorizers in future

compilers.

63

64

Bibliography

Randy Allen and Ken Kennedy. Automatic translation of FORTRAN programs to
vector form. ACM Transactions on Programming Languages and Systems, 1987.

Leonardo Bachega, Siddhartha Chatterjee, Kenneth A. Dockser, John A. Gunnels,
Manish Gupta, Fred G. Gustavson, Christopher A. Lapkowski, Gary K. Liu, Mark P.
Mendell, Charles D. Wait, and T. J. Chris Ward. A high-performance SIMD
floating point unit for BlueGene/L: Architecture, compilation, and algorithm design.
In International Conference on Parallel Architecture and Compilation Techniques,
2004.

Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. Flexvec: Auto-vectorization
for irregular loops. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2016.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2006.

Gilles Barthe, Juan Manuel Crespo, Sumit Gulwani, Cesar Kunz, and Mark Marron.
From relational verification to SIMD loop synthesis. In Symposium on Principles
and Practice of Parallel Programming, 2013.

Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing an instruction
selection rule library from semantic specifications. In International Symposium on
Code Generation and Optimization, 2018.

R. G. Cattell. Automatic derivation of code generators from machine descriptions.
ACM Transaction on Programming Languages and Systems, 1980.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. TVM: An automated end-to-end optimizing compiler for
deep learning. In Symposium on Operating Systems Design and Implementation,
2018.

Intel Corporation. Intel Intrinsics Guide, 2012. URL
https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

65

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
2008.

Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. Vectorization for SIMD
architectures with alignment constraints. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2004.

Franz Franchetti and Markus Püschel. A SIMD vectorizing compiler for digital
signal processing algorithms. In International Parallel and Distributed Processing
Symposium, 2002.

Mahadevan Ganapathi, Charles N. Fischer, and John L. Hennessy. Retargetable
compiler code generation. ACM Computing Surveys, 1982.

ARM Holdings. Arm architecture reference manual Armv8, 2011. URL
https://developer.arm.com/documentation/ddi0487/latest/.

Samuel Larsen and Saman Amarasinghe. Exploiting superword level parallelism
with multimedia instruction sets. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2000.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization, 2004.

Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kandemir. A
compiler framework for extracting superword level parallelism. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2012.

Daniel McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus Püschel. Au-
tomatic SIMD vectorization of fast Fourier transforms for the Larrabee and AVX
instruction sets. In International Conference on Supercomputing, 2011.

Charith Mendis and Saman Amarasinghe. goSLP: Globally optimized superword level
parallelism framework. Proceedings of the ACM on Programming Languages, 2018.

Dorit Nuzman and Ayal Zaks. Outer-loop vectorization: Revisited for short SIMD
architectures. In International Conference on Parallel Architectures and Compilation
Techniques, 2008.

Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of interleaved data
for SIMD. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2006.

Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar
Dhurjati. Scaling up superoptimization. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2016.

66

Vasileios Porpodas and Timothy M. Jones. Throttling automatic vectorization: When
less is more. In Conference on Parallel Architecture and Compilation, 2015.

Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. PSLP: Padded SLP
automatic vectorization. In International Symposium on Code Generation and
Optimization, 2015.

Vasileios Porpodas, Rodrigo CO Rocha, and Luís FW Góes. VW-SLP: auto-
vectorization with adaptive vector width. In International Conference on Parallel
Architectures and Compilation Techniques, 2018.

Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luís F. W. Góes, and
Timothy Mattson. Super-Node SLP: Optimized vectorization for code sequences
containing operators and their inverse elements. In International Symposium on
Code Generation and Optimization, 2019.

Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M Veloso,
Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, 2005.

Norman Ramsey and Mary F. Fernández. Specifying representations of machine
instructions. ACM Transaction on Programming Languages and Systems, 1997.

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi
Taneja, and John Regehr. Souper: A synthesizing superoptimizer. arXiv preprint
arXiv:1711.04422, 2017.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2013.

67

