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Abstract

While loop reordering and fusion can make big impacts on
the constant-factor performance of dense tensor programs,
the effects on sparse tensor programs are asymptotic, of-
ten leading to orders of magnitude performance differences
in practice. Sparse tensors also introduce a choice of com-
pressed storage formats that can have asymptotic effects.
Research into sparse tensor compilers has led to simplified
languages that express these tradeoffs, but the user is ex-
pected to provide a schedule that makes the decisions. This
is challenging because schedulers must anticipate the in-
teraction between sparse formats, loop structure, potential
sparsity patterns, and the compiler itself. Automating this
decision making process stands to finally make sparse tensor
compilers accessible to end users.

We present, to the best of our knowledge, the first auto-
matic asymptotic scheduler for sparse tensor programs. We
provide an approach to abstractly represent the asymptotic
cost of schedules and to choose between them. We narrow
down the search space to a manageably small Pareto fron-
tier of asymptotically non-dominating kernels. We test our
approach by compiling these kernels with the TACO sparse
tensor compiler and comparing them with those generated
with the default TACO schedules. Our results show that our
approach reduces the scheduling space by orders of magni-
tude and that the generated kernels perform asymptotically
better than those generated using the default schedules.
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1 Introduction

Transformations like loop fusion or loop reordering can have
large constant factor effects on the runtime of dense tensor
programs [3]. However, the same transformations can have
much larger asymptotic effects when tensors are sparse.

To see the effects of loop fusion, consider the sampled
matrix multiply A;; = >4 Bix - Cx; - D;j where B and C are
dense and A and D are sparse (SDDMM). When we multiply
B and C first, then multiply by D, our runtime is O(IJK),
where I, J, and K are the dimensions of i, j, and k. If we fuse
the two multiplications into one nested loop, our runtime
is reduced to O(nnz(D)K), where nnz(D) is the number of
nonzeros in D. Loop reordering matters too. As we illustrate
in Section 3, loop reordering constitutes the main asymptotic
difference between the three main algorithms for sparse-
sparse matrix multiply (Sp GEMM) [15, 29, 43]. Complicating
matters, sparse tensors may be stored in different compressed
formats with varied asymptotic behaviors. Making n random
updates to a list of nonzero coordinates might take O(n?)
time, but would only take O(n) time if we used a hash table.

Research into sparse tensor compilers has led to simplified
languages to express these tradeoffs and generate efficient
implementations [5, 12, 14, 21, 22, 31, 33, 34, 37-39, 48, 51, 53,
54, 56]. These sparse tensor compilers separate mechanism
(how code is generated from the high-level description) from
policy (deciding what high-level description is best) [49].

Sparse tensor compilers leave policy to the user, which
may be a burden for domain experts who are not perfor-
mance engineers. Writing a good schedule takes time, espe-
cially when there are many kernels or the tensor compiler
is unfamiliar to the user. Sparse systems must follow dense
systems in moving towards automatic scheduling [2, 3, 45].
Automatic scheduling promises a realistic path towards in-
tegration into high-level systems like SciPy [58] or Tensor-
Flow [1]. Whereas sparse tensor compilers have made perfor-
mance engineers more productive, our automatic scheduler
will make domain experts more productive.
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We present, to the best of our knowledge, the first auto-
matic scheduler for asymptotic decision making in sparse
tensor programs. At its core is an asymptotic cost model that
can automatically analyze and rank the complexity of sparse
tensor schedules over all possible inputs to the program.
Autoschedulers often make high-level decisions before con-
sidering fine-grained implementation details [3]. We ignore
constant-factor optimizations such as sparse format imple-
mentations, cache blocking, or parallelization. We focus only
on novel asymptotic concerns, such as loop fusion, loop re-
ordering, and protocols. We introduce a precise intermediate
representation, the Protocolized Concrete Index Notation
(abbreviated CIN-P). Our method can detect cases where one
program performs strictly more work than another across all
input patterns, up to constant factors. The result is a frontier
of asymptotically non-dominating programs, one of which
being the best choice for any given input, up to constant
factors. Programs in the (manageably small) frontier may be
later embellished with constant-factor optimizations.

Tensor kernels are usually static from run to run. Thus, we
design for an offline use case, where the autoscheduler runs
only once per kernel and is given no information about the
sparsity patterns of the inputs. In contrast, online autosched-
ulers execute at runtime, running once per input pattern
and using the pattern to specialize the implementation just-
in-time. Both regimes are important. While the runtime of
online autoschedulers competes with the optimizations they
deliver, the runtime of offline autoschedulers only competes
with the equivalent developer effort required to write a sched-
ule. Offline autoschedulers might run on a dedicated server
as new schedules for kernels are requested by users, and new
schedules could ship with each update to the tensor com-
piler. The TACO web scheduling tool has recorded only 2758
distinct tensor programs since 2017. These distinct sched-
ules had a median of 3 indices and 6 tensors, and a mean of
3.17 and 6.63 tensors. Because sparse tensor programs are
often small (only a few indices and tensors) and the offline
scheduling use case affords an extensive amount of time to
produce schedules, exponential-time solutions to difficult
offline scheduling problems are within reach.

This paper makes the following contributions:

e We define a language (CIN-P) for the implementation
of sparse tensor programs at a high level, specifying
the loop structure, temporary tensors, and tensor for-
mats. Our language separates the storage formats from
how they should be accessed (the protocol).

We model asymptotic complexity using abstract set
expressions. We describe algorithms to derive the mod-
eled complexity cost of CIN-P schedules and determine
when one complexity dominates another.

We use our cost model to write an asymptotic au-
toscheduler for CIN-P sparse programs. We enumerate
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equivalent programs of minimal loop nesting depth, fil-
ter these programs to the asymptotic frontier, and use
a novel algorithm to automatically insert workspaces
for transpositions and reformatting. We demonstrate
that our asymptotic frontier is often several orders of
magnitude smaller than the minimum depth frontier.

e We evaluate our approach on the subset of CIN-P pro-
grams supported by the TACO tensor compiler, demon-
strating performance improvements of several orders
of magnitude over TACO’s default schedules.

2 Background

Tensor compilers provide a mechanism to automatically gen-
erate efficient code for simple loop programs that operate
on tensors, or multidimensional arrays [5, 12, 14, 21, 22, 31,
33, 34, 37-39, 48, 53, 54, 56]. Sparse tensor compilers are
specialized for the case where tensors are mostly zero and
only nonzero elements are stored, making the problem espe-
cially complex. In addition to loop ordering problems of the
dense case, the sparse code must also iterate over compressed
representations of the input during the kernel computation.
Sparse matrix representations have a long history of study,
and are typically specialized to the kernel to be executed. We
build on our previous work on the TACO sparse tensor com-
piler [21, 22, 31, 33, 34], though our work certainly applies
to similar compilers such as COMET [54] or the MLIR sparse
tensor dialect [11]. TACO simplifies compilation of sparse
tensor programs by considering each dimension separately.
A type system is used to specify whether each dimension is
to be compressed (and therefore iterated over), or dense (and
accessed with direct memory references). Workspaces, or
temporary tensors, may be introduced to hold intermediate
results. The loop ordering, workspaces, and sparse formats
of the inputs together form the high-level description, a
schedule, from which TACO generates code.

Different schedules may have different asymptotic effects
that depend on the sparsity patterns of the input. TACO gen-
erates code using the properties that a-0 = 0 and a+0 = a, so
only nonzero values need to be processed, and when tensors
are multiplied, only their shared nonzero values need to be
recorded. In the first case, we can avoid computing a in its
entirety. Workspaces may be inserted to cache intermediate
results to avoid redundant computation, provide an effec-
tive buffer to avoid asymptotically expensive operations on
sparse tensor formats, or perform filtering steps by exposing
intermediate zero values early in a computation. The order
in which sparse loops are evaluated can have asymptotic
effects as well, since sparse outer loops may act as filters
over their corresponding inner loops.

3 Motivating Examples

Three nested loops are required to compute a sparse matrix-
matrix multiply (Sp GEMM). The three main algorithms for
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SpGEMM are distinguished by the order in which these loops
are nested. We write SpGEMM as

Aij = ZBik . ij.
k

The “Inner Products” approach processes this expression as a
set of loops nested in i, j, k order, with the inner loop perform-
ing sparse inner products, merging nonzeros in rows of B
and columns of C [43]. Even though we only need to multiply
the shared nonzeros, merging the lists has a runtime propor-
tional to their length, regardless of how many nonzeros they
share. The improved “Outer Products” algorithm loops in
k,i, j order, scattering (writing in no particular order) into A
and only iterating through shared nonzeros[15]. Setting k to
be the outer loop ensures that the nonzero i and j in inner
loops share a value of k and correspond to necessary work.
Gustavson’s algorithm iterates in i, k, j order, representing
a compromise between the two approaches that avoids the
need to scatter into a two-dimensional output [29]. It should
be noted that scattering operations incur asymptotic costs
as well depending on the format used to store the output.

Loop fusion can be critical for sparse programs like sam-
pled dense-dense matrix multiplication, written as

Ajj = ZBik - Crj - Dij
3

where B and C are dense, but D is a sparse matrix. If we
process this kernel with a dense matrix multiply followed by
a sparse mask, like A;; = w;; - D;j where w;; = 3¢ By - Cyj,
then the runtime is O(I - J - K). If we instead process all three
matrices at once, the runtime is O(nnz(D) - K).

On the other hand, inserting temporaries and avoiding
loop fusion can be critical for kernels like the three-way
pointwise sparse matrix product,

Aij = Bij . Cij . D,’j.
Inserting a temporary like
Aij = Wij - D,’j wherewl-j = Bij . Cij

will avoid reading rows of D when the product B;;
produces empty rows.

- Gy

4 Protocolized Concrete Index Notation

In order to make our descriptions of sparse tensor algebra im-
plementations more precise, we introduce the protocolized
concrete index notation, an extension to concrete index nota-
tion [33]. Our notation starts with the tensors themselves. A
more detailed description of TACO-style formats is given by
Chou et. al. [21]. A rank-r tensor A of dimension I, ..., I,
maps r-tuples of integers (iy,....,iy) € 1: ;1 X...X1: I to
values v. We often express this as A;,_; = v. Each position
in the tuple is referred to as a mode. We represent sparse
tensors using trees where each node (i1, ..., i;) at level [ in the
tree represents a slice T;,_;,. ... of the tensor that contains
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at least one nonzero. Each level is stored in a particular for-
mat. If the format is uncompressed (u), then for each node
(i1, ..., ij—1) stored by the previous level, we store an array
of all possible children 1 : I;. If the format is compressed
(c), then we only store a list of nonzero children (and their
locations). If the format is a hash table (h), we store the
same information as the list format, but we use a hash table,
enabling random access and insertion. We abbreviate our for-
mats with their first letter and specify them as superscripts,
read from left to right corresponding to the top down to the
bottom of the compressed tensor tree. A matrix stored in the
popular CSR format (rows are stored at the top level in an
array, and columns as a list in the bottom level), would be
written as A"C. If the modes are to be stored in a different
order, we write the permutation next to the format, so CSC
format (where columns are stored in the top) would be writ-
ten as A*(?¢(1) Another popular format, DCSR, stores both
the rows and columns in compressed levels, written as A®.
DCSR is similar to a list of lists, which is useful when many
of the rows are sparse.

The following paragraph formalizes concrete index nota-
tion, described in earlier work [33]. Examples are given in
Figure 1. We use index variables to specify a particular ele-
ment of a tensor. Tensors may be accessed by index variables
i...as A; . We can combine accesses into index expressions
with function calls, such as the calls to + and - in B;; + 2 - Cy.
An assignment statement writes to an element of a tensor,
and takes the form A; = expr, where expr is an index ex-
pression. An increment statement updates an element of a
tensor, taking the form A; = ®= expr where & is a binary op-
erator such as + or - and roughly meaning A; = A;_ ®expr,
although we disallow the left hand side tensor from appear-
ing on the right hand side of assignment or increment state-
ments. The assignment statement “returns” the tensor on
its left hand side, which can be used by a where statement.
The statement consumer where producer first initializes the
tensor to be returned by producer, then evaluates the state-
ment producer, then makes the tensor it returns available for
use in the scope of consumer, returning the tensor returned
by consumer. Thus, workspace tensors are initialized just
before the innermost where statement that contains them
on the right hand side. The forall statement V; _body evalu-
ates body over all assignments to the indices i... and returns
the tensor returned by body. However, when operands are
sparse, we can skip some evaluations.

Adding to the existing concrete index notation, we intro-
duce the notion of a protocol, used to describe how an index
variable should interact with an access when that variable
is quantified. The step (s) protocol indicates that the forall
should coiterate over a list of nonzeros of the corresponding
tensor, and substitute the default tensor value 0 into the body
for the other values. The locate (1) protocol indicates that
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/CC

al s(s(k)) where

(VijkAa(i)a(j) += B -
(VikCiChrice) = Cotiys(iy)

for i € K(B) do
for j € K(C’) do
for k € K(B;) UK(C’;) do
if Bijx # 0 A C'ji # 0 then
Aij — Aij + Bji - C,jk
(a) Inner Products compilation (CIN-P — Pseudocode)
(ViAo =
hh
((VkijA/i(in(j) += Bt 'Cgfk)s(j)) where

(YxiB'{(hyici) = B:fi)s(k)))

l
for k € K(B') UK(C) do
if B’ # 0 A Ci # 0 then
for i € K(B,) do
for j € K(Cy) do
Aij — Aij +B;ﬂ. . ij

hh
A/s(i)s(j)) where

(b) Outer Products compilation (CIN-P — Pseudocode)
_..h
vi((VjAzc(i)a(j) = ws(j)) where

. CCC

— CcC
+=B s(k)s(j)))

h
(ijwi(j) s(i)s(k)
!

for i € K(B) do

w0

for k € K(B;) UK(C) do

if Bjx # 0 A Cr # 0 then
for j € K(Cy) do
Wj — wj + Bjx - ij
for j € K(w) do

Ajj = wj

> Initialize w

(c) Gustavson’s compilation (CIN-P — Pseudocode)

Figure 1. Input — output compilation examples various ma-
trix multiply approaches. We compile CIN-P expressions to
pseudocode. For feasibility of analysis, pseudocode is slightly
simplified from what TACO would generate, see Section 5.2.

the forall should ignore this access for the purposes of deter-
mining which values to coiterate over. The list format only
supports the step protocol, and the array format only sup-
ports the locate protocol, but the hash format supports both.
We use separate protocols for writes. We say that a write is
an append (a) protocol when we can guarantee that writes
to that mode and all modes above it in the tensor tree will
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occur in lexicographic order. We say that a write is an insert
(i) protocol otherwise. In effect, append and insert mirror the
flavor of step and locate. We abbreviate our protocols with
their first letter and specify them like functions surrounding
indices in our access expressions, meant to specify how each
mode of the tensor should be accessed. If we mean to read
the mode indexed by i using step protocol and the mode
indexed by j using locate protocol, we would write Ag(;)i(j)-

It helps to have some examples of protocolized concrete
index notation and the kind of code it might generate. For
this purpose, we introduce the notation

K(Ai.) = {13k A jk.. #0}

as a way to refer to the indices of nonzero slices within some
slice of the tensor. These indices are usually stored in a list
by the sparse level format.

Figure 1a compiles an example CIN-P expression for the
inner products approach to matrix multiplication. The pro-
ducer side of the where statement transposes C into a work-
space C’ so that the tree order in the consumer side agrees
with the quantification order. The resulting pseudocode will
iterate over K(B;) U K(C’;), even though it only needs to
iterate over K'(B;) N K(C’;). To improve the situation, we
might choose to use the outer products algorithm, shown in
Figure 1b where we have used a temporary hash format to
handle the random accesses to A and a transposition of B to
access k first. In this version, we have avoided repeating the
filtering step for every i and j. Unfortunately, this version in-
troduces a two-dimensional scatter, which can be expensive.
Instead, we may choose to use Gustavson’s algorithm, shown
in Figure 1c. Gustavson’s algorithm is our first example with
a quantified where statement. This form of the algorithm is a
practical improvement over the outer products formulation
because the workspace is one dimensional, meaning that
it can be implemented with a dense vector rather than a
hash table. Note that workspaces are initialized just before
executing the where statement that returns them.

5 Cost Modeling

In this section, we formalize the intuitions we gave in prior
sections by describing a language for sparse asymptotic com-
plexity. At a high level, we characterize the complexity of a
kernel as the cardinality of the set of points in its iteration
space, and reason about asymptotic domination by showing
containment among iteration spaces as sets.

5.1 The Task Set Model

More precisely, we define our expressions of complexity as
sets of tasks, where a task represents some constant-time
unit of work associated with a point in the iteration space.
We distinguish different tasks by the sets of indices that are in
scope when they execute. For example, when i = 3, j = 7, and
k = 2, and we execute the addition in V;jxa; += B;j - Cj - di,
we incur a cost represented by the task [3,7, 2].
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We represent a set of tasks over the indices (i, ...I,) with
set builder notation

{[il,..., ir] eh x..xI, | P}

where P is a Boolean predicate expression over the indices.
Our predicates will consist of clauses representing nonzero
entries A;  # 0 joined by logical conjunction (A), logical
disjunction (V), and the existential quantifier (3). These can
be read as “and”, “or”, and “there exists”, respectively. We
may combine these set expressions with union (U) and inter-
section (N) operators. We will sometimes leave out the “# 0”
for brevity. We use i € I as a shorthand for i € 1 : I, but may
omit the range of the index entirely for brevity.

The complexity of sparse kernels comes from two sources:
computation tasks incurred in the numerical body of the
loop, and coiteration tasks incurred due to iterating over
multiple sparse tensor levels, since not all iterations lead to
compute. Consider the sparse dot product a += b¢

s(i)
for i € K(b) UK(c) do
if b; # 0 A ¢; # 0 then
a—a+b;-c

cg(i).

This code iterates over all the nonzeros in either b or c, but
only multiplies the shared nonzeros. Thus, our dot product
coiteration complexity is

{[i] € I'| b; V ¢},
and the computation complexity is
{lil e I'|bi Aci},

Notice that the computation tasks are a subset of the itera-
tion tasks. A sparse loop can function as a filter, considering
many iterations but only executing the few relevant loop
bodies. In our dot product example, the loop body is constant
time. In other examples, such as SDDMM, the body of one
loop might be another asymptotically significant loop. The
same filtering effect seen in the dot product helps explain
the difference between fused and unfused SDDMM, shown
in Figure 2. By fusing the multiplications together, we can
filter out irrelevant loops over k.

Existential quantifiers (3) are useful when we need to
reason about whether loops contained in the body of another
loop might be nontrivial. For example, the outermost loop
of our fused SDDMM only processes a row i of D if there
exists a nonzero in any column j (if the row is nonempty).

Indices for dense loops do not appear in the predicate. For
example, the index variable k in SDDMM does not participate
in the predicates of the task sets, and is unconstrained. This is
because the loops over k are dense, and iterate over all values
of k. Adding an unconstrained k index is like multiplying
the cardinality of the task set by K.

Our notation can also precisely characterize the differ-
ences between our example approaches to sparse matrix
multiplication in Figure 3. Notice that the coiteration cost of
the k loop in the inner products algorithm is the largest task
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Vi {lil | 35, Dy, 3V

vj {li, j] | Dy v

vk {[i, j, k] | Dij}u

Ajj += Bj - Ckj - Dij {[i,j, k] | Dij}

(a) Fused SDDMM

Vi {[i] | 3;,Dsj, }u

A {[i.j11 Dij}u

Ajj += wij - Dij {[i. j1 | Dij}
where

Vi {[i}v

vj {[i, j1v

Vk {[i, j, k] U

wij += Bik - Cy; {[i j. K1}

(b) Non-Fused SDDMM

Figure 2. Some example implementations of SDDMM and
the corresponding asymptotic costs for a DCSR matrices A
and D and dense matrices B and C. Again, we have split the
concrete index notation onto multiple lines to associate each
statement with its corresponding task set. Notice that the
triply nested loop is restricted to only the nonzero values of
D in the unfused computation.

set (it contains all the others). This is because it computes
a sparse dot product for each row-column pair of A and B.
This incurs a lot of filtering to determine which k values
are shared. Gustavson’s algorithm and the Outer Products
algorithm are better choices because they move k to an outer
loop, performing this filtering at a higher level of the loop
nest. Compare the difference in coiteration and compute
in our dot product example to that of the k loop and the
compute in Inner Products.

5.2 Accuracy of the Model

Any cost model is a balance between accuracy and complex-
ity. Simple models may make unrealistic assumptions about
the inputs and how they interact (such as nonzeros being
uniformly distributed). More complex models might not lead
to useful insights without extensive runtime information.
We chose our model because the cardinality of a task set
is proportional, within constant factors, to the runtime of
our pseudocode. Each operation takes constant time and is
associated with one task. The number of different operations
associated with each task is also bounded, since there are a
finite number of operations at each level of each loop nest.
This allows us to abstract over the various costs of different
operations and the different times, or places, they may occur.
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Vi
vj
Vk
Ajj += B - Cy;j

{lil | 3, Bk, YU
{4, j1 | Fnp ke, Biky A Cryj YU
{[Lj; k] | Bik N Ck]}U
{[i’j’ k] | Bik A Ck]}

(a) Inner Products SpGEMM
{[i] | 3k, Bix, YV
{li.k] | 3j,Bix V Cj, }U
{[i’j’ k] | Bik A Ck]}u
{[l’.]’k] | Bik /\ij}

Vi
Vk
vj
Ajj += Bk - Cy;j
(b) Gustavson’s SpGEMM
Vk
Vi
vj
Ajj += Bk - Cy;j

{lk] | 3, Biyk V Cijy YU
{li. k] | 3, Bix A Cyj, }U
{Li. j. k] | Bix A Cj}u
{[i. j. k] | Bik A Ci;}

(c) Outer Products SpGEMM

Figure 3. Some example implementations of SpGEMM and
the corresponding asymptotic costs for DCSR matrices with
step protocol. We split the concrete index notation across
lines to associate each statement with its corresponding task
set. Each loop iterates over a set of possible nonzero index
locations, and only executes its body when the body might
be nontrivial. For example, in the “Outer Products Sp)GEMM”
kernel, the loop over k iterates over values of k that might be
nonzero in either B or C, but only executes the body when
the value of k is shared. Thus, the loop over nonzero i in B
is also constrained to these shared values of k.

Our cost model does not consider hardware components
like caches, vector units, and multicore or GPU processors.
We consider these factors to be orthogonal to the decisions
our asymptotic model empowers us to make. Our model rep-
resents the total amount of work done by a schedule. The
total work is unchanged by cache blocking, loop unrolling,
or parallelization and load balancing strategies, which only
affect constant factors, and can likely be applied regardless
of loop ordering. For example, all three variants of Sp GEMM
in Figure 3 can be parallelized. Thus, we leave tuning of hard-
ware features as future work, but observe that the schedules
produced by our work provide an excellent starting point.

Ignoring constant factors has consequences, of course, but
they are limited. Even though one schedule might be asymp-
totically superior, it could be empirically outperformed by
another on small inputs, by a limited constant factor. On
the other hand, there may be a class of inputs on which our
asymptotically superior schedule outperforms the other by
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an arbitrarily large factor as input grows, overcoming any
constant-factor differences. Choosing an asymptotically in-
ferior schedule could be a big mistake, while choosing the
asymptotically superior schedule would at worst be a small
mistake. In this sense, an asymptotically superior sched-
ule can be considered to be safe. We leave the question of
whether and when to consider asymptotically dominating
schedules as future work.

In some cases, sparse tensor compilers use heuristic opti-
mizations to avoid iterating over the full union of nonzero
indices in a loop. For example, TACO stops a sparse dot
product after the last nonzero in either vector is reached,
regardless of whether the other vector has nonzeros [34].
Future tensor compilers might perform other heuristic im-
provements on intersections, for instance using a binary
search to skip over several contiguous nonzeros when possi-
ble [9]. In these cases, our cost model should be considered
an upper bound on the total work, which is sufficiently accu-
rate in most practical cases [15]. We believe that accounting
for these cases precisely would make our model too com-
plicated to be useful, with little benefit. In fact, it might be
impossible to choose between any of the costs. Optimizing
for best case behavior under heuristic optimizations might
result in a schedule which is vulnerable to worst-case inputs.

6 Asymptotic Domination

We use several algorithms for autoscheduling with our as-
ymptotic cost model. First, we formalize what it means for
one complexity to asymptotically dominate another. Then,
Section 6.1 describes an algorithm to automatically check
for domination. Section 6.2 describes ways to make our anal-
ysis more reflective of real world inputs and use cases, and
Section 6.3 describes a way to filter out only the best complex-
ities. Finally, Section 6.4 describes an algorithm to automati-
cally determine the asymptotic complexity of a schedule, so
that we might filter possible schedules by their complexity.

We say that a runtime f asymptotically dominates a run-
time g with respect to a sequence of inputs x,, if for every
constant ¢ > 0, there exists m such that f(x,) > ¢ g(x,)
for all n > m. This definition relies on the choice of inputs
for the two algorithms whose runtimes we consider. For in-
stance, when computing the expression a;; = b;;-c;;-d;;, one
might compute b;; - ¢;; first, avoiding the need to traverse
d when b and c are disjoint. However, a similar argument
could be made for grouping ¢ and d first.

We say that a task set f is asymptotically dominated by
another task set g when f is contained in g but g is not
contained in f, across all possible inputs.

We determine containment by converting our task sets to
the standard “union of conjunctive queries” form [16, 35, 36],
then using known approaches to check for set containment.
In the language of the query containment literature, a con-
junctive query is defined as the set of satisfying variable
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assignments (expressed as a tuple of values) to an existen-
tially quantified conjunction of Boolean functions on the
variables. We write conjunctive queries as

{(i1,12..) | jjo.. Ak ko, A Biypy, oo}

By i,....
selves are predicates. In our clauses, the predicates may be
indexed by any combination of quantified or head variables.

As a running example, consider the inner products matrix
multiply in Figure 3a. The techniques in this section will
show how to prove that the coiteration on the k loop is the
most frequently executed operation in the kernel, as its task
set {[i,j,k] | Bix V Ck;} contains the other sets such as
{li. 1 | 3k, Biky A Cryjit-

While tasks may be defined by different numbers of in-
dex variables in different orders, we would like a task set
like {[i, j, k]} to contain the task set {[j, i]}. We therefore
interpret each task [i...] as a shorthand for all tuples (j...)
where the variables j... are a subset of the variables i..., ar-
ranged in any order. We also add existential quantifiers to
any variables that are not present. Thus, we expand {[4, j] |
3k, ko, Bik, A Cr,j} into

{( 7)) | 3y ky Bik, A Cryj YU
{0, 1) | Fxk, Biky A Ciyj }U
{G) | Fiky ke, Bik, A Crypj }U
{() | 3jkik,Bik, A Cryj3U
{O | 3ijikik,Bik, A Cryj}

Similarly, {(i, j) | FkBix V Ck;} € {[i, j. k] | Bix V Ci;}-

Our interpretation of tasks as queries must also respect the
sizes of dimensions. Formally, we constrain the dimensions
of head variables by interpreting each dimension itself as a
Boolean function which is true when the index is in range.
Thus, our query {(i, j) | xBix V Ci;} is further expanded
to {(i,7) | (3xBix Vv Ck;) AI[i] A J[j]}. This is especially
important when an index is unconstrained, or when we have
more than one index of the same dimension (usually a result
of symmetry). For instance, the task set {[i € I, j € I} would
imply the query {(i, j)|I[i] AI[j]}, of size I2. For brevity, we
will leave these dimension clauses out of subsequent query
expressions. Notice that we do not need to worry about the
dimension of existentially quantified variables since they do
not contribute to the size of our task sets.

We can normalize to the union-of-conjunctive-queries
form because our tasks have been defined as sets of tuples
with Boolean predicates that contain only existential quanti-
fiers, conjunctions, and disjunctions. Using De Morgan’s law,
we can convert conjunctions of disjunctions into disjunctions
of conjunctions, and we can convert set expressions over
disjunctions into unions of set expressions. We can move con-
junctions and disjunctions inside of existential quantifiers
by renaming the quantified variables.
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While {(i, j) | 3k, k,Bix, A Ck,j} is already in the appro-
priate form, we would rephrase {(i, j) | 3xBi V Ci;} as
{G 1) | FBi} VAL ) | FnCiji}-

6.1 Domination Checking Algorithm

A conjunctive query P is contained in another query Q if and
only if there exists a homomorphism A from the variables
of Q to those of P [16]. A variable mapping h: Q — Pisa
homomorphism if applying h to the head of Q gives the head
of P and if every clause Ay, , . in Q has a corresponding
clause Ap(k,),n(k,),... in P.

Furthermore, a union of conjunctive queries Py, P, ... is
contained in a union of conjunctive queries Q1, Qs, ... if each
P; is contained in at least one Q;. This implies a straightfor-
ward algorithm for checking containment. For each conjunc-
tive query in P, we attempt to find a conjunctive query in Q
that contains it. We determine this containment by perform-
ing a backtracking search for homomorphisms, maintaining
the partial homomorphism as we process each clause in turn.
At each clause P;, we make a choice of which clause Q; will
cover it. If we run into a variable conflict in the homomor-
phism, we backtrack and try a different Q;. This algorithm
might take exponential time, which is to be expected as query
containment is an NP-hard problem. However, since our ten-
sor programs are of small constant size and we are designing
for an offline use case, the cost is often justified.

In our example queries, we can show {(i, j) | Tk, x,Bik, A
Cryj} € {(i, j) | 3Cx;} by mapping i to i, j to j, and k to k.

Recall that each task is semantically expanded into tuples
of all subsets of its indices, and all permutations thereof. In
order to avoid exponential increases in the input size of what
is already an exponential time containment algorithm, we
represent this expansion lazily. Thus, given two task sets P =
{[i1, iz, ...] | A}and Q = {[ 1, j2, ---] | B}, we can say that P C
Q if our algorithm can find a homomorphism A from Q to P
where {iy, iz, ...} € {h(j1), h(j2),...}. It would be sufficient to
perform a separate homomorphism search for each mapping
of the head of P to a subset of the head of Q. However, since
our homomorphisms must respect the dimension of head
variables, we need only consider head variable mappings that
preserve dimensions (e.g. mapping i; € I; to j; € I;, and not
Jj2 € I, for instance). To make this computation easier, our
algorithms store the representation of dimension in the head
of the query itself. This also helps to avoid cluttering the
predicates with such extra clauses. These optimizations do
not change our definitions of containment in any way. Rather,
they make our algorithms practical by losslessly compressing
the query representation and avoiding enumeration of an
exponential number of invalid head variable mappings.

yeen

6.2 Sunk Costs and Assumptions

As presented so far, set containment analysis is more strict
than what we would like. For example, in Figure 3, the set
containment metric prefers the outer products algorithm
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over Gustavson’s algorithm when all matrices are DCSR,
even though both algorithms are quite practical and Gus-
tavson’s requires less intermediate memory as it stores a
temporary row or column instead of a temporary matrix.
The reason is that when C is all zero, Gustavson’s algorithm
still iterates over the entirety of B whereas the outer prod-
ucts algorithm does not. After simplification, observe that
substituting a zero C into the Gustavson’s complexity gives
{[i, k] | Bix}, whereas substituting a zero C into the outer
products complexity gives {[k] | 3; B;,k}, a smaller set. Prac-
titioners would say that this observation is not useful, since
we should not expect operands to be all-zero, and even if
this case did occur, simply iterating over the nonzeros of B is
not a significant issue, as the user has likely already iterated
over B at least once to store it in memory.

To account for these observations, we extend our analysis
to reflect common sunk costs and assumptions. We use the
term sunk cost, from the field of economics, to refer to a
cost that has already been paid. Assume we are to compare
two costs P and Q. If there are any sunk costs S (such as
the linear-time costs of reading all the inputs), we add those
costs to our queries and instead compare PU S to Q U S. If
there are any assumptions A, we add those assumptions to
the predicates of our queries and compare {P | A} to {Q | A}.
Throughout the rest of the paper, we will take the time to
read sparse (not dense) inputs and the time to iterate over
any single dimension as sunk costs. We will also assume
sparse inputs are nonempty.

6.3 Building a Frontier

Some schedules might be asymptotically better on some in-
puts, but not others. Our definition of asymptotic domination
detects when one schedule is always better than another. We
compare several different candidate kernels based on their
asymptotic complexities, and use reciprocal containment
checks to identify a frontier of non-dominating implemen-
tations. All kernels with the best complexity for any class
of inputs are guaranteed to be in the frontier, which can
be much smaller than the full universe of schedules. The
asymptotic frontier for Sp)GEMM contains the outer product
and Gustavson’s algorithms, but not inner products since its
complexity dominates the former two.

Our algorithm builds a frontier starting from empty and
processing each kernel in turn. If the current kernel domi-
nates any kernel in the frontier, then we discard it. Other-
wise, we add the current kernel to the frontier and remove
any other kernels that dominate it. This algorithm avoids
a strictly quadratic number of containment checks by only
comparing programs to the current frontier instead of the
universe, but we cannot guarantee any bounds on the in-
termediate size of the frontier so this improvement is only
heuristic. The algorithm is displayed in Figure 4.

Our algorithm performs asymptotically more pairwise
complexity comparisons than the number of input programs.
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frontier « []
for (S, P) € universe do
for (T,Q) € frontier do
if P € Q and not Q C P then
Add (S, P) to frontier if not added already
Remove (T, Q) from frontier

Figure 4. Our algorithm for producing an asymptotic fron-
tier. In practice, the size of the frontier does not grow too
large, and the algorithm performs much less than the worst
case quadratic number of asymptotic comparisons.

Therefore, it makes sense to simplify the complexity expres-
sions to help improve the speed of the comparisons.

We add our sunk costs and assumptions to each runtime
and normalize the resulting terms before running our frontier
algorithm. This avoids renormalization during each com-
parison. Then, we reduce the size of our query through
query minimization [16]. Assuming we have some union
of conjunctive queries Q; U Q, U ..., we consider each Q;.
If it happens that Q; C Qj, then we can leave Q; out. Let
Qi = {(k...) | C1 A C3 A ...}. We iteratively try to leave each
clause C; out in turn. If leaving C; out does not change the
query (recall that mutual containment is equality), we can
safely ignore it. The overall process leaves us with a query
of minimal size.

6.4 Automatic Asymptotic Analysis

With the goal of using our asymptotic analysis as part of an
automated scheduler, we describe an algorithm to compute
the asymptotic complexity of an input tensor program in
protocolized sparse concrete index notation.

Our algorithm performs an abstract interpretation over
each node of the program, using a Boolean predicate to de-
scribe the set of iterations currently being executed (referred
to in our pseudocode as the “guard”). We also construct
Boolean predicates that represent the nonzero locations writ-
ten to during the course of executing the program (referred to
as the “state”). When we write state(A;) <« state(A;)V3;B;;,
we mean to update our state of A; to add any nonzero loca-
tions in the pattern 3;B;;. Because tensors may be written
and read by index variables of different names, we rename
head variables of states by mode number.

We start our traversal at the topmost node with no bound
variables, a guard set to true, and a state filled with default
inputs (state(A;. ) = A;... for all sparse inputs A).

The input sparse format usually does not add any infor-
mation about the sparsity pattern. Regardless of first few
level formats of a tensor, if the last level format is sparse,
the whole tensor might have any possible sparsity pattern.
The particular format would only clarify situations involving
tensors with a dense final dimension, a rare case where rows
are either entirely dense or entirely sparse. Therefore, we
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only track the sparsity patterns for sparse inputs, knowing
fully uncompressed inputs are always nonzero.

When we encounter a forall node over an index i, we col-
lect all of the accesses in the body that access i with step
protocol. Since our sparse program will coiterate through
these tensors, we output the task set {[j...] | Jx..A;. } for
each access A;_, where j is the set of bound variables and
k « I\ j. Each access might be zero or nonzero. As it coit-
erates over all nonzeros in each of the tensors, our sparse
code will only execute the body in cases where there are
nonzero operands that need processing. Thus, our abstract
interpretation iterates over every combination of zero or
nonzero for each tensor, substituting the zeros into the body
and simplifying before recursing. When we recurse, we use
prior assumptions about zeroness as a guard on the set of
iterations that each recursive call corresponds to. If no ten-
sors access i with step protocol, then we can simply recurse
on the body after adding i to the set of bound variables.

When we encounter a where node, we add a zero-initialized
workspace to the state of the producer before processing the
producer side, and we make that new tensor state available
when we process the consumer side.

When we encounter an assignment statement A;  += ...,
we output {[bound...] | guard} to reflect the work performed
by this statement. We also update the state of A; _ to add in
the writes represented by guard.

Our algorithm is summarized in Figure 5. A benefit of
our algorithm to analyze complexity is that it will extend
to alternate fill values and operators which are not + or -,
extensions to the TACO compiler explored in earlier work
[31]. Nothing in our algorithm is specific to the choice of 0
or the operators we have chosen in our examples.

7 Autoscheduling

We use our asymptotic cost model to build an enumerative au-
tomatic scheduler. Our scheduler makes more coarse-grained
decisions first, such as the structure of forall and where state-
ments, working towards more fine-grained decisions such
as the formats and protocols of the tensors and workspaces.
Sections 7.1-7.9 each describe a stage in our autoscheduling
pipeline. Our scheduler stops once we have asymptotically
optimized sequential programs, but a more complete au-
totuner would make decisions regarding constant factors
such as register or cache blocking and/or parallelization. Be-
cause we enumerate all possible choices at each stage of the
pipeline, it is important to limit the number of choices we
make at each stage, and filter candidate programs between
stages so that the number of candidate programs does not
grow too large. We will use the SpMV2 kernel (a repeated
SpMV) on CSR matrices and a dense vector for the running
example in this section. We write our CSR SpMV2 as

u _ _ puc ~uc ju
Vijkai += Bij Cjk dk'
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tasks < 0
state « predicates initialized with input tensors
procedure CompLEXITY(node, bound, guard)
if node matches V;body then
steppers « all step protocol accesses of i in body
bound’ < (bound..., i)
cases «— {body}
for A; € steppers do
expand cases by substituting A;  — 0
k < (j\ bound’)
iters < {[bound’...]|guard A 3j_state(A; )}
tasks « tasks U iters
for body’ € cases do
simplify body’ using zero-annihilation
guard’ «— guard
for A; € steppers do
if A;  isin body’ then
k < (j\ bound")
guard’ « guard’ A Ji_state(A; )

ComprexiTy(body’, bound’, guard”)

else if node matches cons where prod then
state[result(prod)] « 0
ComprexiTY(prod, bound, guard)
CompLExITY(cons, bound, guard)

else if node matches A; += ... then
computes < {[bound...] | guard}
tasks « tasks U computes
state(A;.) « state(A;..) V guard

end procedure

Figure 5. Our algorithm for analyzing the complexity of
programs in protocolized concrete index notation. The tasks
variable is a global that records the total complexity, and
the state variable is a global dictionary that we use to hold
the nonzero pattern of each tensor over the course of the
program.

7.1 Enumerate Expression Rewrites

Our pipeline begins with a single pointwise index expres-
sion. We then consider associative and commutative rewrit-
ing transformations. These are rewriting rules of the form
(a+b)+c—a+(b+c)or (a+b) — (b+a). If the expres-
sion contains + and -, we might also consider distributive
properties (a+b) - ¢ — a- ¢+ b - c as well. The purpose of
all this rewriting is to expose all grouping opportunities for
the next stage. For example, we might first reassociate,

u — uc uc u u — uc uc u
Vijka; += (Bij 'Cjk) ~dg > Vija; += B - (Cjk “dy),
then recommute,

u , _ nuc uc _ jgu u , _ puc u uc
Vijkai += Bij . (Cjk . dk) e \/ijkal- += Bij . (dk . Cjk .
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7.2 Enumerate Where Groupings

Once we have a set of possible expression trees, we enumer-
ate nontrivial ways that where statements might be added
to the expressions. These are transformations of the form

a; ®=b; ©¢c; ©d; — a; ®=b; © wwherew &= ¢; © d,,
where & distributes over ©. We can also perform

a; ®=b; 0¢c; ©d; — a; +=b; © wwherew =¢; © d;,

regardless of distributivity.
In our example, since + distributes over -, we transform

u , _ puc u
Vijka; += Bj; - (d}

u ,__ Rpuc _ Ju uc
Vijk(a} += Bjj - w wherew +=di! - C}y).

Note that we do not add workspaces for single tensors,
and only consider workspaces that record the result of a
nontrivial operation between more than one tensor. When
inserting workspaces at this stage, we do not yet need to
consider the indices that the workspace access needs, as this
will be derived later from the structure of foralls. We name
the workspaces at this stage using De Bruijn indexing. After
inserting where statements, our naming scheme allows us
to normalize the pointwise expressions in each where and
deduplicate our programs somewhat.

7.3 Enumerate Forall Nestings

Here, we consider all the different ways to move foralls from
the outermost level into the pointwise expressions at the
leaves of our program.

When we move an index into a where statement, it may
need to move into the producer side, the consumer side, or
both, depending on which side uses it and whether there is
a reduction operator in the producer. If the producer has a
reduction, then we move the loop into any side of the where
that uses that index in an access. Otherwise, we move the
loop into the consumer side always and into the producer
side only if the producer uses that index in an access.

For instance, since the right hand side includes a reduction,
we can move the k loop into just the producer side,

u ,__ puc __ uc u
Vijk(a; += Bjj + wwherew += Cjr +dp) —

Vij((aj += Bj +w) where(Yiw += Cip +dy)).

Then, since the i loop only occurs in the consumer side,
we do not need to move it into the producer side,

Vij((a} += B} +w) where(Vxw += Cjf + d})) —

V;((Yiaj += Bjj + w) where(¥Viw += C}’,ﬁ +d))).
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We could also move j into the where statement. We would
have to move it into both sides since it is used on both.

V;((Yiai += Bjj + w) where(¥,w += Cf,g +d))) —

((Vjia} += Bjj + w) where(V jxw += C}‘;S +dy))-

After grouping the foralls, we enumerate all the different
orderings of contiguous foralls (swapping V j; for V;; in our
above example, for instance).

7.4 Filter by Maximum Nesting Depth

It is possible that our asymptotic cost model will not always
recognize a triply-nested loop as dominating a double nested
loop, because the triply-nested loop may perform better on
specific sparsity patterns. However, we believe that most
practitioners will want a program which performs well on
relatively dense uniformly random inputs, so we restrict our
focus to programs with minimum maximum nesting depth.
We perform this filtering step as early in the pipeline as pos-
sible to reduce the burden on subsequent stages. There has
been extensive research on heuristics to restrict the mini-
mum maximum depth in tensor network contraction orders,
but our focus is somewhat different [19, 27, 30]. We are in-
terested in enumerating every program of minimum depth,
and our programs are quite small. Most prior work focuses
on finding a single minimum depth schedule for a very large
network. Thus, we chose an enumerative approach.
At this step, we filter out depth-3 schedules such as

Vijka; += B} - C}l,‘; -dy,
in favor of depth-2 schedules like

V;((Yia} += Bjj + w) where(Vyw += C;‘,S +d))).

7.5 Name Workspaces and Indices

At this point, we can give our workspaces fresh names and
compute the indices we need in their accesses. In the pro-
grams we have enumerated, a workspace linking the pro-
ducer and consumer sides of a where statement needs to be
indexed by the index variables shared by both the producer
and consumer that are not quantified at the top of the where
statement. If we are scheduling for TACO, we can remove
workspaces with more than one dimension, since TACO does
not support multidimensional sparse workspaces and dense
multidimensional workspaces would be unacceptably large.
Notice that the workspace can be scalar in

V;((Yia += Bj + w) where(Viw += Cj{ + d}))),
but it needs to be a vector in
((Vjia} += B;‘jc +w;) where(Vjw; += C;‘Z +d}))),

since the j is shared there.
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7.6 Enumerate Protocols

At this stage, we normally enumerate all combinations of
protocols for each mode for each access. However, since
TACO does not support hash formats, almost any protocol-
ization with more than two locates would require at least two
uncompressed level formats, resulting in an unacceptable
densification of the input. Thus, when we schedule for TACO,
we protocolize with all step protocol or a single locate pro-
tocol at the first index to be quantified, the only two options
that would not densify inputs. If we wanted to consider den-
sification, we could add the induced storage overhead to the
asymptotic runtime, but we reasoned that most practitioners
would view these densifications as unacceptable.
One possible protocolization might look like

((Vjiai += Bif + w;) where (¥ jxw; += C}‘,ﬁ +dy))) —

((Yjiaj;) += Bj()s(;) + Wi(j)) where

uc

(Vikwa() += Gsk) + Air)))

7.7 Filter by Asymptotic Complexity

Finally, we can use our asymptotic cost model to filter the
protocolized programs. Note that we assume that tensors will
eventually be permuted to match the order in which index
variables are quantified (concordant order). We also ignore
storage formats at this stage, as we will add those in the next
stage, and adding reformatting workspaces would needlessly
complicate (but not change) the asymptotic complexity.

At this stage, our algorithm would choose for w to have
locate protocol rather than step protocol in the kernel

((Yijay;) += Bj)s(j) + Wi(j)) Where
(Yiwa(i) += Ci(hysce) + i) )

since the stepping over w involves merging nonzeros in w
and each row of B, whereas locating over w means we only
need to iterate over each nonzero in B.

7.8 Add Workspaces to Transpose and Reformat

At this stage, we can reformat tensors and add formats to
workspaces so that the tensor access order is concordant
(the level order of the sparsity tree matches the order in
which indices are quantified). This step helps us realize the
asymptotic complexity we assumed our kernels had in previ-
ous steps. Reformatting operations are achieved by inserting
workspaces that have the proper format. Since reformatting
takes linear time in the size of the tensor, we do not need
to consider reformatting in our asymptotic complexity. We
choose formats for workspaces based on the set of protocols
they must support. For instance, a workspace that is written
to via append protocol and read via step protocol can be
stored in uncompressed format, but a workspace that is writ-
ten with insert protocol and read via step protocol must be
stored in hash format. In our above example, we can choose
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uncompressed format for our workspace since it is written
with append and read with locate.

((\/ija:(l.) += Bil(ci)s(j) +wy(j)) where

(Yjkwai) += Gek) + digr)))-

As an empirical optimization to save memory, notice that
if there is a set of index variables i... that are quantified at
the top of the expression consuming a tensor, all accesses
to that tensor begin with i..., and the corresponding modes
do not need reformatting or transposing, we can insert a
workspace to reformat just the bottom modes of the tensor.
We can do the same for expressions which produce a tensor.

Because TACO only supports uncompressed vector work-
spaces, we compile outermost reformatting workspaces as
explicit transposition and reformatting calls, separate from
the kernel. When compiling for TACO, we only perform our
workspace-simplifying optimization when it results in a one-
dimensional workspace. TACO also only supports a single
internal workspace, so we filter kernels at this step with
more than one workspace. TACO workspaces are accessed
with step protocol when they are the only tensor being read,
and with locate protocol otherwise.

7.9 Extensions and Empirical filtering

At this point, one could employ additional cost models and
transformations to enhance and choose between the asymp-
totically good skeleton programs produced by the pipeline.
Transformations like parallelization, cache blocking, or regis-
ter blocking might be employed. One might imagine runtime
autotuning approaches that use sparsity patterns to make
better informed choices between the remaining programs.
Since these transformations are out of scope, we simply run
all programs in the frontier on uniformly sparse square in-
puts and pick the best-performing one.

8 Evaluation

We implemented our autoscheduler'” using the Julia pro-
gramming language [10] and the SymbolicUtils library [25].
We evaluate our approach using the TACO tensor com-
piler to run the generated schedules. We evaluated our ap-
proach on the kernels SpMV, SpMV2, SpMTTKRP, SpGEMM,
SpGEMM2, and SpGEMMH, described in Figure 6. TACO
does not implement protocolized concrete index notation in
its full generality, so we also ran a separate autoscheduling
algorithm on the subset of schedules supported by TACO.
After running a warmup sample to load matrices into cache
and JIT-compile relevant Julia code, all timings are the mini-
mum of 10000 executions, or enough executions to exceed 5
seconds of sample time, whichever happens first. We ran our
experiments on an 12-core Intel®Xeon®E5-2680 v3 running
at 2.50GHz. Turboboost was turned off. The generated TACO

Ihttps://github.com/peterahrens/Pigeon.jl/releases/tag/pldi2022
Zhttps://zenodo.org/record/6366296
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o Min-Depth  Non-Dominating Min-Depth Non-Dominating .Asymptot.ic

Kernel Description Schedules Schedules Schedules Schedules Filter Runtime
(TACO) (TACO) (Seconds)

SPMV a; = ZBij *Cj 8 4 4 4 0.0211
SpMV? a; =Y, Bij - Cjx - di 144 28 24 24 0.211
SPMTTKRP  A;j = ¥, Bixs - Cjx - Dji 3631104 timed out 384 23 0.29
SpGEMM  A;j = Y By - Cji 96 12 16 4 0.0517
SpGEMM?  A;j = 3 Byt - Cxi - Dj 20736 292 32 4 0104
SpGEMMH ~ A;j = 3, By - Cji. - Djx 102272 204 144 4 0.107

Figure 6. Our test kernels, along with their descriptions and several statistics about our autotuning process. The “Min-Depth
Schedules” column describes the number of schedules (with protocols and loop ordering for all tensors) of minimum maximum
loop nesting depth. The “Non-Dominating Schedules” column describes the size of the frontier after asymptotic filtering of
min-loop-depth schedules. The “Min-Depth Schedules (TACO)” and “Non-Dominated Schedules (TACO)” columns are the
same, but restrict schedules to what the TACO tensor compiler can generate. The asymptotic filter runtime is the average time
(in seconds) to filter a single TACO-compatible min-loop-depth kernel. Filtering the full universe for Sp)MTTKRP timed out

after a few days.

kernels were executed serially. We do not measure the time
to transpose or reformat inputs or outputs.

Kernel inputs used Compressed Sparse Fiber (CSF) format,
meaning the first mode was dense and all subsequent modes
were sparse. Vectors were therefore dense. All dimensions
were the same size. Sparsity patterns were uniformly ran-
dom. We benchmarked the asymptotic frontier on the same
random sparse inputs (p = 0.01). We chose the dimensions
by trying increasingly large powers of two, stopping when
the default kernel exceeded 0.1 seconds of runtime.

Figure 6 contains statistics describing the size of the fron-
tier before and after asymptotic filtering. As we can see,
our asymptotic cost model was usually able to reduce the
cardinality of the universe of min-loop-depth schedules by
several orders of magnitude, even after restricting to TACO-
compatible schedules. Our asymptotic filtering was able to
process each candidate schedule in less than half a second
(this number accounts for comparison between the candidate
program and all other programs in the frontier, as well as the
time required to simplify the asymptote during preprocess-
ing). This time is independent of the size of the input to the
program. To give a sense of scale for the runtime, running a
single sparse matrix-vector multiply with TACO on a popular
sparse matrix like “Boeing/ct20stif” of size 52,329 X 52,329
with 2,600, 295 nonzeros takes 9ms. When comparing so
many schedules using empirical runtimes, it is important to
ensure that results are statistically significant to avoid type
1 errors (false rejections of the null hypothesis that kernels
perform identically). As the number of kernels grows, so too
does the requisite number of samples required to compare
them. If we wanted to run 100 trials on our single matrix, this
would also take roughly a second per schedule. However,
our method theoretically guarantees asymptotic domination
across all inputs, whereas empirical evaluation is specific
to the particular input matrix (or distribution of input ma-
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trices) under consideration. Furthermore, we can evaluate
asymptotic domination before making choices about things
like parallelization or cache blocking.

Figure 7 compares the autotuned schedules to the default
schedules (created by nesting loops in alphabetical order
of the indices). Figure 8 displays the autotuned schedules
themselves. Since the default kernel for SpMV is already
asymptotically optimal, we see no improvement. Our other
autotuned kernels often improved on the defaults by several
orders of magnitude, and we saw increasing speedups as the
dimension increased. Speedups for SpMV? or SpGEMM? are
likely due to a reduced loop nesting depth. These kernels
saw speedups that increased with density, as the effects of
loop depth become more obvious when more of the com-
putation is dense. Speedups for S GEMM, SpGEMMH and
SpMTTKRP are likely due to improved loop ordering, mov-
ing filtering to an earlier step (the chosen algorithms are
Gustavson-style). In these cases, speedups increased with
sparsity, as the tuned kernels begin to asymptotically match
the default when inputs become dense.

9 Related Work

Many autotuned libraries use runtime data to choose among
a small set of possible programs [8]. Our approach is comple-
mentary, as it can automatically generate and prune this set
of possible programs. The seminal ATLAS [23] and FFTW [24]
libraries used empirical benchmarks to automatically choose
between different kernels and to set parameters such as cache
block or register block sizes in dense matrix algebra and
Fourier transforms. The OSKI library [59] applied similar
techniques to sparse matrix kernels, using sampling algo-
rithms and affine cost models to set parameters. Runtime
autotuning techniques subsequently enjoyed widespread
adoption, allowing software developers to effectively special-
ize to new sparsity patterns [13, 41] and architectures [20, 62].
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Figure 7. A comparison between the default schedule (nesting the loops in alphabetical order, without inserting any workspaces),
and the schedule chosen by our autoscheduler on sparse inputs with uniformly random sparsity.
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Figure 8. The schedules chosen by our autoscheduler on sparse inputs with uniformly random sparsity.

Although runtime autotuning adds overhead to tuned ker-
nels, these techniques are efficient enough to be employed in
production libraries such as Cray LibSci, NVIDIA CuFFT or
Intel MKL [8]. Recently, sparse autotuning approaches have
investigated machine learning techniques as a way to predict
sparse format performance from the input patterns [47, 65],
or as a better way to explore the optimization search space
[2, 3, 45]. Libraries like OpenTuner [4], HyperMapper [46],
and ATF [50] provide user-friendly interfaces to generic au-
totuning functions like search and benchmarking.

Moving to tensors, the Tensor Contraction Engine [6]
compiled code for dense tensor contractions, using tensor
dimensions to calculate and minimize the operation count of
the implementation at runtime. This NP-hard minimization
problem is the subject of continued research [19, 27, 30]. Our
loop-depth minimization problem is similar and our brute
force approach might be accelerated by related algorithms.

The Halide image processing compiler supports a wider
variety of dense tensor expressions. Several machine learning
based automatic scheduling approaches were proposed for
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transformations like cache blocking or loop fusion, treating
tensor dimensions as constants [2, 3, 45, 49]. The TVM li-
brary applies Halide’s approach with additional architecture-
specific features, and provides a machine-learning cost model
for similar transformations [17]. Wang explored scheduling
approaches for the orthogonal problem of caching, tiling,
and loop reordering in TACO schedules [34, 61].

Set-based representations are often used to describe im-
plementations of general loop-based programs. The most
popular example is the polyhedral framework, which repre-
sents the iterations of dense loops with affine loop bounds as
abstract geometric polyhedra, and often uses integer linear
programming to optimize these representations based on the
dimension sizes [7, 28, 55]. The polyhedral model has been
extended to the sparse case by Strout et al. [52, 53]. Their
sparse polyhedral representations are used to describe the
schedule itself, and not the complexity of the schedule.

Moving beyond autotuning, some approaches more broadly
categorized under the Inspector-Executor model consider
transformations not easily categorized by a few categorical or
continuous parameters [52]. For example, some approaches
consider arbitrarily permuting the iteration order of indi-
vidual loops to promote cache reuse [32], even reorganizing
individual iterations within a linear solver to expose parallel
regions [18, 44, 57]. These approaches are highly specialized
to the runtime input patterns, but can access a finer-grained
space of implementation decisions.

Query optimizers for databases use related techniques.
[16, 26, 35, 36]. In queries, column stores would be anal-
ogous to sparse tensors, joins to multiplications, and our
insertion of temporaries as query planning. Query mini-
mization reduces the number of terms in conjunctive query
expressions, but is not used in practice since queries are not
always conjunctive and minimization can be too expensive
and database queries are likely to be compiled and executed
only once. Our solutions for sparse tensor applications can
use involved techniques like query minimization because
our kernels are small and are often reused several times.
Join reordering, a more widely used technique, considers the
database structure at runtime to determine the best places
to insert temporaries. We cannot use most query planning
techniques because they require runtime information.

Sparse tensor algebra and relational databases are closely
related. Kotlyar et al. implemented sparse tensor algebra
using relational databases [37-39]. More recently, Luo et al.
supported dense linear algebra using databases [42]. Kout-
soukos et. al. proposed the reverse, using TVM to support
database queries [40], and Yuan et. al. combined the repre-
sentation of relational queries and tensor algebra [64].

Database query optimization techniques have been used
to optimize some matrix programs. Yu et al. proposed in-
tegrating sparse matrix operations into relational queries,
and proposed a few techniques to optimize the resulting
join structures [63]. Wang et al. use conjunctive queries to
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minimize the number of terms in matrix linear algebra ex-
pressions, then assume a uniform sparsity distribution to
model and optimize the cost of the resulting expression with
integer linear programming [60]. Both techniques focus on
optimizing the composition of several matrix kernels, rather
than the implementation of the kernels themselves, so we
view them as solving a complementary higher-level problem
of chaining together the small kernels which we optimize. We
believe our work to be unique in using conjunctive queries
to express the cost of a sparse kernel, rather than the value
of the tensors in the kernel.

10 Conclusions and Future Work

Our cost model represents the first automatically derived
expression of asymptotic complexity for sparse tensor pro-
grams. We describe algorithms to determine when one pro-
gram asymptotically dominates another, and produce a fron-
tier of non-dominating programs.

In the future, our offline techniques could enhance on-
line techniques, using runtime data to choose among the
templates produced by the autoscheduler and further en-
hance them with constant-factor techniques such as cache
blocking or parallel load balancing strategies. When all the
choices are between constant improvements, a suboptimal
choice or even a bad choice can be tolerated, making heuris-
tic or machine-learning approaches possible. However, in
the sparse domain, selecting a asymptotically bad choice,
even rarely, is unacceptable. Our scheduler can provide an
asymptotically sound set of schedules for heuristic auto-
tuners to make constant-factor improvements upon, elimi-
nating worst-case scenarios. We believe that this symbiotic
relationship will be essential for a successful autoscheduling
solution in the sparse domain.

Future work might consider extensions to our cost model
and its applications. Our task set model could be applied
to memory usage. Similarly, one might model expensive
operations (such as hash table operations) separately from
cheaper operations, to obtain further stratification among
programs. Our model can also be used to evaluate or guide
heuristic or machine-learning sparse tensor autoschedulers.

Sparse tensor compilers cannot expect end users to sched-
ule their own programs. Automatic scheduling is necessary
to fully abstract the details of sparse tensor compilation. The
offline asymptotic decision making described in this paper is
the last piece of infrastructure needed to make sparse tensor
compilation accessible to the mainstream.
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