
Format Abstractions for the Compilation of Sparse
Tensor Algebra

by

Stephen Chou
BASc, University of Waterloo (2015)

SM, Massachusetts Institute of Technology (2018)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial ful�llment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certi�ed by .
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Format Abstractions for the Compilation of Sparse Tensor Algebra

by

Stephen Chou

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract
Tensors are commonly used to represent data in many domains, including data analytics,
machine learning, science, and engineering. Many highly-optimized libraries and compilers
have been developed for e�ciently computing on dense tensors. However, existing libraries
and compilers are limited in their ability to support real-world applications that work with
sparse tensors, which contain mostly zeros. In particular, there exist countless specialized
formats for storing sparse tensors in memory, each suited to speci�c types of applications
and data. Since di�erent formats often use very di�erent data structures to store nonzeros
though, computing with sparse tensors that are stored in di�erent formats can require
vastly dissimilar code that are all di�cult to implement by hand and non-trivial to generate
automatically. Existing libraries and compilers must therefore limit the set of computations
and formats that they directly support, sacri�cing usability and performance as a result.

In this dissertation, I describe how to build a compiler that supports e�ciently comput-
ing on sparse tensors that may be stored in a wide variety of formats. I �rst show how
many commonly-used sparse tensor formats—from array-based formats like CSR, COO,
and DIA to formats that store nonzeros using pointer-based data structures like linked
lists, BSTs, and C-trees—can all be expressed as compositions of per-dimension formats. I
further show how such per-dimension formats can be precisely de�ned by implementing a
common set of abstractions that capture how their underlying data structures store nonze-
ros in memory and that capture how these data structures can be e�ciently accessed or
constructed. I then demonstrate how, with such speci�cations of per-dimension formats at
hand, a compiler can generate code to e�ciently compute on tensors that are stored in any
of the aforementioned—and countless other—formats. We have implemented our technique
in the TACO sparse tensor algebra compiler, which is the �rst compiler to generate code
that computes any basic tensor algebra expression with sparse tensors that may be stored
in arbitrary formats. Our technique generates code that has performance competitive with,
if not better than, equivalent code in hand-optimized libraries and frameworks.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank Saman Amarasinghe, who advised and mentored me over the past

seven years. Throughout this time, he has provided me with much invaluable advice, both

regarding research and regarding life more generally. He always encouraged me to think

big and constantly pushed me to improve myself. At the same time, he was always very

understanding and supportive, never hesitating whenever I needed help with anything.

I would also like to thank Julian Shun and Alan Edelman, who served on my thesis

committee and provided me with valuable feedback on my thesis. Additionally, I would

like to thank Michael Carbin and Martin Rinard, who o�ered me the opportunity to serve

as teaching assistant for the Dynamic Computer Language Engineering course and helped

me gain invaluable insight into how academia works.

This dissertation incorporates work that was originally published (or was conditionally

accepted) in [26, 27, 25, 54, 42, 33] and that was also described in part in [24]. Special

thanks goes to Fredrik Kjolstad, who initiated the TACO project and was a co-author of

many of these publications. I have been working with him almost as soon as I started my

graduate studies, and over the past seven years I have learned much from him regarding

how to do great research. I would like to further acknowledge Saman, Shoaib Kamil, David

Lugato, Daniel Donenfeld, Rawn Henry, Olivia Hsu, Rohan Yadav, and Kunle Olukotun,

who were also fellow co-authors of the aforementioned publications. Additionally, I would

like to acknowledge Suzanne Mueller, Willow Ahrens, Ryan Senanayake, Changwan Hong,

Ziheng Wang, Amalee Wilson, and Jessica Shi, who I have had the pleasure of working

with on other publications not cited above.

Furthermore, I would like to thank everyone in the COMMIT group for having made my

experience at MIT as enjoyable as it was. In particular, I am grateful for all the interesting

discussions I had with Fred, Willow, Charith Mendis, Yunming Zhang, Riyadh Baghdadi,

Tom Chen, and Ajay Brahmakshatriya. I also enjoyed all the exciting pool games that Fred,

Willow, Charith, Tom, and I got to play together. Additionally, I am grateful for all the help

and advice Yunming gave me about life after graduate school. Finally, I would like to thank

Mary McDavitt for all her help with administrative matters over the past seven years.

5

Most of all, I would like to thank my parents, Hui Fen Chou-Wu and C. Perry Chou, and

my wife, Yaqing Xu, for their unconditional love and support. My parents have sacri�ced

much to provide me with everything I ever needed, and without them I could not possibly

be here. I am also eternally grateful to have been able to meet and marry Yaqing, whose

constant encouragement and support helped me get to where I am today.

6

Contents

1 Introduction 17

1.1 Diversity of Sparsity . 18

1.2 Exploiting Sparsity for Performance . 20

1.3 Our Approach and Contributions . 26

1.4 Dissertation Outline . 29

2 Sparse Tensor Formats Survey 31

2.1 Array-Based Tensor Formats . 31

2.2 Pointer-Based Tensor Formats . 36

2.3 Chapter Summary . 39

3 Tensor Storage Decomposition 41

3.1 Coordinate Hierarchies . 42

3.2 Coordinate Remapping . 48

3.3 Pointer-Based Formats . 52

3.4 Supporting Non-Zero Fill Values . 53

3.5 Chapter Summary . 54

4 Supporting Array-Based Formats 55

4.1 Abstract Interface for Array-Based Level Formats 55

4.1.1 Level Format Capabilities . 56

4.1.2 Level Format Properties . 60

4.2 Code Generation . 63

7

4.2.1 Background . 63

4.2.2 Property-Based Merge Lattice Optimizations 65

4.2.3 Merging Coordinate Hierarchy Levels 65

4.2.4 Iterator Conversion . 68

4.2.5 Code Generation Algorithm . 70

4.3 Chapter Summary . 73

5 Supporting Pointer-Based Formats 75

5.1 Node Schema Language . 76

5.2 Code Generation . 80

5.2.1 Generating Node Type Declarations 81

5.2.2 Generating Map Functions . 82

5.2.3 Generating Iterators . 86

5.3 Chapter Summary . 89

6 Supporting Sparse Tensor Assembly 91

6.1 In-Order Assembly . 91

6.1.1 Array-Based Formats . 92

6.1.2 Pointer-Based Formats . 94

6.2 Out-of-Order Assembly . 98

6.2.1 Overview . 99

6.2.2 Remapping Phase . 101

6.2.3 Analysis Phase . 103

6.2.3.1 Attribute Query Language 104

6.2.3.2 Code Generation . 105

6.2.4 Assembly Phase . 109

6.2.4.1 Out-of-Order Assembly Capability 109

6.2.4.2 Code Generation . 113

6.3 Chapter Summary . 114

8

7 Evaluation 115

7.1 Computing with Array-Based Formats . 115

7.1.1 Experiment Setup . 115

7.1.2 Sparse Matrix Computations . 116

7.1.3 Sparse Higher-Dimensional Tensor Computations 122

7.1.4 Bene�ts of Supporting Disparate Formats 123

7.2 Assembling Results in Array-Based Formats 127

7.2.1 Experiment Setup . 127

7.2.2 Sparse Tensor Format Conversion 128

7.2.3 Parallel Computation with Sparse Output 132

7.3 Computing with Pointer-Based Formats . 134

7.3.1 Experiment Setup . 134

7.3.2 Support for Disparate Formats . 135

7.3.3 Support for Disparate Computations 138

7.3.4 Analysis of Generated Code . 141

7.3.5 Bene�ts of Supporting Disparate Formats 141

7.4 Chapter Summary . 143

8 Related Works 145

8.1 Sparse Programming Systems and Libraries 145

8.2 Sparse Linear and Tensor Algebra Compilation 146

8.3 Dense Linear and Tensor Algebra Compilation 149

8.4 Data Structure Operation Synthesis . 149

8.5 Query Language Compilation . 150

9 Conclusion and Future Work 151

Bibliography 155

9

10

List of Figures

1-1 Examples of di�erent types of sparsity structure 19

1-2 Performance of matrix-vector multiplication with matrix stored in dense

storage and in sparse storage . 20

1-3 Examples demonstrating how a nonzero can be inserted into a CSR matrix

and a matrix stored as BSTs . 23

1-4 Examples of code for computing element-wise multiplication on matrices

stored in di�erent combinations of array-based formats 24

1-5 Examples of di�erent sparse tensor algebra computations with operands

stored in disparate pointer-based formats 25

2-1 Examples of vector stored in di�erent array-based formats 32

2-2 Examples of matrix stored in di�erent array-based formats 33

2-3 Examples of three-dimensional tensor stored in di�erent array-based formats 34

2-4 Examples of matrix stored in di�erent pointer-based formats 37

3-1 Coordinate hierarchy representations of vector stored in di�erent formats 42

3-2 Coordinate hierarchy representations of matrix stored in di�erent formats 43

3-3 Common tensor formats expressed as compositions of level formats 47

3-4 Result of applying coordinate remapping (i, j) -> (j-i, i, j) to a matrix 49

3-5 Syntax of coordinate remapping notation 50

3-6 Result of applying coordinate remapping (i, j) -> (#i, i, j) to a matrix 51

4-1 Coordinate value iteration and coordinate position iteration 59

4-2 Optimized merge lattices for sparse matrix addition 64

11

4-3 Most e�cient strategies for computing the intersection merge of two

vectors depending on their supported capabilities and properties 66

4-4 Iterator chaining . 69

4-5 Algorithm for generating code that compute on tensors stored in array-

based formats . 71

4-6 Code that our technique generates for adding CSR and COO matrices . . . 72

5-1 Syntax of the node schema language . 77

5-2 Node schemas for a BST . 77

5-3 Node schemas for a wide range of pointer-based data structures 79

5-4 Node schemas for di�erent variants of block linked lists 80

5-5 Structs that our technique emits for storing pointer-based data structures . 81

5-6 Algorithm for generating map functions that compute on tensors stored

using pointer-based data structures . 84

5-7 Examples of map functions that our technique emits 85

5-8 Algorithm for generating iterators that enumerate nonzeros stored in

pointer-based data structures . 87

5-9 Steps involved in generating an optimized iterator for BSTs 88

6-1 Examples of in-order assembly level functions for pointer-based level formats 95

6-2 Code generated by our technique that deeply copies a BST 97

6-3 Code generated by our technique that appends nonzeros to a block linked list 97

6-4 Code that convert sparse tensors between di�erent combinations of formats 100

6-5 Examples of attribute queries . 104

6-6 Examples of how out-of-order assembly capability can be implemented for

di�erent level formats . 111

6-7 Out-of-order assembly capability expressed in terms of calls of level functions 112

7-1 Performance of SpMV on matrices stored in disparate array-based formats 118

7-2 Performance of COO SpMM . 119

7-3 Performance of COO matrix addition . 120

12

7-4 Performance of CSR matrix addition . 121

7-5 Performance of CSR SpMV relative to COO SpMV 125

7-6 Performance of DIA SpMV relative to CSR SpMV 126

7-7 Performance of CSR SpMV with inputs of varying density and input vectors

stored in di�erent formats . 127

7-8 Performance of compute and in-place modi�cation on sparse matrices

stored in di�erent formats . 143

13

14

List of Tables

4.1 Supported capabilities and properties of each level format 56

4.2 Level functions that implement the supported capabilities of various array-

based level formats . 57

5.1 Translation of �elds in a node schema to �elds in the emitted struct 82

6.1 Examples of in-order assembly level functions for array-based level formats 93

6.2 Transformations that our technique applies to optimize attribute queries . 108

7.1 Statistics about tensors used to evaluate our technique’s support for array-

based formats . 117

7.2 Performance of sparse higher-dimensional tensor algebra kernels 123

7.3 Support for di�erent array-based sparse tensor formats 124

7.4 Statistics about matrices used to evaluate our technique’s support for out-

of-order sparse tensor assembly . 129

7.5 Performance of sparse tensor conversion routines that are directly imple-

mented in other libraries . 130

7.6 Performance of sparse tensor conversion routines that are not directly

implemented in other libraries . 131

7.7 Performance of parallel sparse matrix multiplication 133

7.8 Statistics about matrices used to evaluate our technique’s support for

pointer-based formats . 135

7.9 Performance of PageRank kernel on sparse matrices stored in disparate

pointer-based formats . 137

15

7.10 Performance of SpMM on matrices stored in disparate pointer-based formats 138

7.11 Performance of disparate sparse linear algebra computations on matrices

stored using BSTs . 140

7.12 Performance of code that map over input nonzeros in di�erent orderings . 142

7.13 Performance of PageRank kernels that rely on generated iterators and

generated recursive map functions . 142

16

Chapter 1

Introduction

Tensors (i.e., multidimensional arrays) are commonly used to represent data in many

domains, including data analytics [9], machine learning [88, 80], science [35, 37, 51], and

engineering [57]. As far back as 1957, Fortran [8] has provided �rst-class support for dense

arrays, and since then countless more systems have been developed that let users easily

and e�ciently compute on dense tensors. Array programming languages such as APL [45],

MATLAB [69], and modern variants of Fortran provide the ability to operate on dense

tensors using scalar operators. Meanwhile, linear algebra libraries like Intel MKL [44] and

Eigen [39] as well as domain-speci�c compilers like Halide [87] and the Tensor Contraction

Engine [7] provide similar capabilities for other programming languages. These systems

support a wide range of computations, and they can also optimize the running times of

these computations by employing a myriad of sophisticated techniques, such as cache

blocking, parallel execution, and even fusion of sub-operations.

However, many real-world applications actually work with sparse tensors, which are

tensors that contain mostly zero elements. A graph that encodes friendship relations in

a social network, for instance, can be represented by a tensor (i.e., its adjacency matrix),

and such a tensor would likely be sparse since most people only have a limited number

of friends. As we will see, sparse tensors like this can be stored in formats (i.e., data

layouts) that compress out the zero elements. This not only reduces the amount of memory

needed to store sparse tensors but also reduces the cost of computing on sparse tensors by

asymptotic factors, since applications can avoid computing with the zero elements.

17

Unfortunately, existing systems for computing on sparse tensors are much more limited

in their capabilities. Some of these systems signi�cantly restrict the set of computations

that are supported, thereby limiting the set of applications that can be implemented with

those systems. Other systems, meanwhile, support a richer set of computations but incur

signi�cant performance penalties when performing these computations, which waste

computing resources and limit the sizes of problems that can be solved with those systems.

As it turns out, such limitations exist because applications in di�erent domains often have

to work with data that exhibit di�erent types of sparsity, but it is challenging to build

systems that can fully support and optimize for all these di�erent types of sparse data.

In this dissertation, I demonstrate it is possible to build systems that do not have to

sacri�ce generality or performance in order to compute on sparse tensors. In particular,

I show how a compiler can generate e�cient code to compute arbitrary tensor algebra

operations on sparse tensors that are stored in disparate formats optimized for di�erent

types of sparsity. As we will see, our compiler-based approach e�ectively amortizes the

programmer e�ort needed to support e�ciently working with many types of sparse data,

thereby making it possible to avoid trade-o�s that are required by hand-optimized systems.

1.1 Diversity of Sparsity

What makes dense tensors easier to work with is that tensors with the same dimensions

must share the same set of elements that are non-zero, since all elements are non-zero by

de�nition. This means the same optimized code can be used to e�ciently compute on all

dense tensors with the same dimensions. The same is not true of sparse tensors, however,

since sparse tensors from di�erent domains often di�er signi�cantly in how sparse they

are, how nonzeros are distributed, and how the set of nonzeros evolves over time.

Degree of sparsity Sparse tensors that represent data from di�erent domains often

contain signi�cantly di�erent proportions of elements that are non-zero. Tensors that

encode weights in a pruned neural network layer, for instance, typically have densities

(i.e., the ratio of nonzeros to all elements in a tensor) that are on the order of 10–50%. By

18

(a) Band structured (b) Block structured

(c) Bounded-degree structured (d) Power-law structured

Figure 1-1: Examples of sparse tensors that exhibit di�erent types of sparsity structure.

contrast, tensors that arise from �nite element simulations are typically several orders of

magnitude sparser, having densities that are on the order of 0.01–0.1%. Meanwhile, tensors

that encode interactions on social networks or hyperlinks between web pages tend to be

even sparser, with densities that can be as low as on the order of 10−8%.

Sparsity structure Sparse tensors that represent data from di�erent domains often also

have very di�erent sparsity structures. Tensors that encode stencils applied to regular grids,

for instance, typically have their nonzeros clustered along a few densely-�lled diagonals, as

illustrated in Figure 1-1a. Tensors that encode sparse attention mechanisms in transformer

models for natural language processing, meanwhile, often have their nonzeros clustered

in densely-�lled blocks, as illustrated in Figure 1-1b. By contrast, tensors that represent

real-world social networks, road networks, or web graphs generally do not exhibit any

regular structure, though even such unstructured sparse tensors can di�er signi�cantly

in how nonzeros are distributed. Tensors that represent road networks, for example,

19

Dense storage

Sparse storage (CSR)

1.0 0.8 0.6 0.4 0.2 0.0
0

100

200

300

Matrix density

E
xe

cu
tio

n
tim

e
(m

s)

Figure 1-2: Performance of matrix-vector multiplication with the matrix stored in dense
storage and in sparse storage.

typically contain similar numbers of nonzeros in every row (since intersections are typically

connected to similar numbers of roads), as illustrated in Figure 1-1c. Meanwhile, tensors

that represent social networks or web graphs are often power-law distributed, with a small

number of rows (which might represent celebrities or popular websites) containing many

nonzeros and a large number of rows (representing average users or websites) containing

few nonzeros, as illustrated in Figure 1-1d.

Dynamism Applications that work with sparse tensors can further di�er in how fre-

quently they modify the tensors’ sparsity structures during program execution. Finite

element simulations, for instance, generally assemble sparse tensors in one shot and do

not modify them afterwards. By contrast, applications that continuously analyze social

networks in real time typically have to modify the sparse tensor representations of those

social networks periodically in order to re�ect updates (e.g., inserting new nonzeros to

re�ect new interactions between users).

1.2 Exploiting Sparsity for Performance

One can e�ciently work with all these di�erent types of sparse data by storing them in

formats that are optimized for speci�c characteristics of the data. As an example, one of the

most commonly used formats for storing sparse matrices (i.e., two-dimensional tensors) is

20

the compressed sparse row (CSR) format, which explicitly stores the column coordinates

and values of nonzeros while using an auxiliary array to track which nonzeros belong to

each row. The CSR format actually requires more memory to store each nonzero than

dense arrays, since dense arrays do not need to explicit store the coordinates of nonzeros.

However, since CSR only has to store nonzeros while dense arrays must also explicitly

store zeros, CSR can exploit the fact that tensors from many domains are often extremely

sparse in order to reduce the total amount of memory needed to store the tensors. This, in

turn, improves the performance of computations on those same sparse tensors by reducing

memory tra�c at run time. In fact, as Figure 1-2 illustrates, improvements in performance

that come from exploiting sparsity is typically asymptotic and becomes more signi�cant

as the sparsity of the tensor increases.

However, there also exist many other sparse tensor formats that are further optimized

for storing tensors with speci�c sparsity structures. The diagonal (DIA) format, for instance,

is optimized for sparse matrices that have nonzeros clustered along densely-�lled diagonals.

The block compressed sparse row (BCSR) format, on the other hand, is optimized for sparse

matrices that have nonzeros clustered in densely-�lled blocks of a �xed size. The ELLPACK

(ELL) format, meanwhile, is optimized for sparse matrices that contain similar numbers

of nonzeros in each row. Such structured sparse tensor formats exploit patterns in how

nonzeros are distributed within a tensor in order to minimize the amount of auxiliary

data (e.g., coordinates of nonzeros) that need to be explicitly stored as well as reduce

the amount of indirection needed to access stored nonzeros. This can further improve

compute performance relative to storing the matrix in CSR. That said, this potential

for improvements in compute performance comes with two major caveats. First, such

performance improvements can only be realized if a tensor actually exhibits the same

type of sparsity structure as what the format used to store the tensor is designed for.

In fact, as we will see, using a sparse tensor format that is designed for a certain type

of sparsity structure to store a tensor that exhibits a di�erent type of sparsity structure

(e.g., storing an power-law structured sparse matrix in DIA) can actually signi�cantly

degrade compute performance. Second, whether storing a tensor in a structured sparse

tensor format can yield performance improvements also depends on the operation being

21

performed. For instance, while storing a matrix in DIA instead of CSR can potentially

improve the performance of matrix-vector multiplication, it can also potentially degrade

the performance of matrix addition with that same DIA matrix and another CSR matrix as

inputs by reducing cache spatial locality.

Countless more sparse tensor formats have been developed that are optimized for

storing dynamic sparse tensors with sparsity structures that evolve over time. Array-

based sparse tensor formats like CSR, DIA, BCSR, and ELL, which store nonzeros using

a �xed number of arrays, provide good cache spatial locality and are ideal for storing

static sparse tensors with �xed sparsity structures. However, inserting new nonzeros

into a tensor that is stored in an array-based sparse tensor format is generally a costly

operation, since this may require already-stored nonzeros to be moved around in memory.

As Figure 1-3e illustrates, for instance, to insert a new nonzero into a CSR tensor, all

subsequent nonzeros must be shifted back so that space can be made for the new nonzero,

which incurs signi�cant performance overhead. Formats that are optimized for storing

dynamic sparse tensors, by contrast, typically use pointers to link together stored nonzeros,

which makes it possible to insert new nonzeros without having to move already-stored

nonzeros in memory. Figure 1-3c, for example, shows a pointer-based sparse tensor format

that stores nonzeros in each row of a tensor using a binary search tree (BST). Since nodes

in a BST do not have to be stored contiguously in memory, a new nonzero can be inserted

by simply allocating a new node and attaching it to the rest of the BST without moving any

existing node in memory, as Figure 1-3f illustrates. This support for e�cient modi�cation,

however, comes at the cost of reduced compute performance, since pointer-based data

structures like BSTs provide less spatial locality. Thus, to better support applications that

have more equal proportions of data modi�cation and compute, many other pointer-based

sparse tensor formats instead store nonzeros using blocked data structures like B-trees and

block linked lists. Such blocked data structures trade o� some modi�cation performance

for improved compute performance.

As we just saw, all of these di�erent sparse tensor formats can be ideal in speci�c

circumstances, though none is universally superior. Applications from di�erent domains

often have to work with data that bene�t from being stored in di�erent formats, and a

22

0 1 2 3

0

1

2

3

A B

EDC
F

(a) Original sparse matrix

0 2 2 5 6

0 1 2 3

pos

0 1 0 2 3crd 1

A B C D Evals F

pos

crd

vals

0 3 3 6 7

0 1 2 3

0 1 0 2 3 1

A B C D E F

2

I

0 1 2 3

vals

2: D1: B 1: F

0: A 0: C 3: E

0 1 2 3

vals

2: D1: B 1: F

0: C 3: E0: A 2: I

(a) CSR before insertion (b) CSR after insertion of I at (0,2)

(c) BST before insertion (d) BST after insertion of I at (0,2)

4N 4N

4N 4N

(b) Original matrix stored in CSR

0 2 2 5 6

0 1 2 3

pos

0 1 0 2 3crd 1

A B C D Evals F

pos

crd

vals

0 3 3 6 7

0 1 2 3

0 1 0 2 3 1

A B C D E F

2

I

0 1 2 3

vals

2: D1: B 1: F

0: A 0: C 3: E

0 1 2 3

vals

2: D1: B 1: F

0: C 3: E0: A 2: I

(a) CSR before insertion (b) CSR after insertion of I at (0,2)

(c) BST before insertion (d) BST after insertion of I at (0,2)

4N 4N

4N 4N

(c) Original matrix stored as BSTs

IA B

EDC

0 1 2 3

0

1

2

3 F

(d) Modi�ed sparse matrix

0 2 2 5 6

0 1 2 3

pos

0 1 0 2 3crd 1

A B C D Evals F

pos

crd

vals

0 3 3 6 7

0 1 2 3

0 1 0 2 3 1

A B C D E F

2

I

0 1 2 3

vals

2: D1: B 1: F

0: A 0: C 3: E

0 1 2 3

vals

2: D1: B 1: F

0: C 3: E0: A 2: I

(a) CSR before insertion (b) CSR after insertion of I at (0,2)

(c) BST before insertion (d) BST after insertion of I at (0,2)

4N 4N

4N 4N

(e) Modi�ed matrix stored in CSR

0 2 2 5 6

0 1 2 3

pos

0 1 0 2 3crd 1

A B C D Evals F

pos

crd

vals

0 3 3 6 7

0 1 2 3

0 1 0 2 3 1

A B C D E F

2

I

0 1 2 3

vals

2: D1: B 1: F

0: A 0: C 3: E

0 1 2 3

vals

2: D1: B 1: F

0: C 3: E0: A 2: I

(a) CSR before insertion (b) CSR after insertion of I at (0,2)

(c) BST before insertion (d) BST after insertion of I at (0,2)

4N 4N

4N 4N

(f) Modi�ed matrix stored as BSTs

Figure 1-3: Examples of the same matrix stored in CSR and as BSTs. Inserting a new
nonzero I into CSR at coordinates (0, 2) requires shifting stored nonzeros in memory and
may require reallocating the crd and vals arrays, whereas inserting the same nonzero into
a BST only requires allocating a new node.

single application might also need to use multiple formats to store di�erent data sets or

even the same data set for di�erent computations. So to be able to e�ectively support a

wide range of applications, a general-purpose sparse tensor algebra system must be able

to e�ciently compute on sparse tensors that may be stored in a wide variety of formats.

However, the sheer number of di�erent sparse tensor formats makes it challenging to

support e�ciently computing with all of them. This is because di�erent formats often

use vastly dissimilar data structures to store nonzeros, and so computing with sparse

tensors that are stored in di�erent formats often require dissimilar code. For example,

iterating over a CSR matrix to element-wise multiply it by a dense matrix requires a set of

two nested loops that each iterate along a dimension of the CSR matrix (Figure 1-4b). By

contrast, performing the same computation with the CSR matrix replaced by a coordinate

(COO) format matrix, which explicitly stores the row and column coordinates of every

nonzero, only requires a single loop that iterates over both the row and column dimension

together (Figure 1-4a). But not only that, as Figure 1-4c shows, e�ciently computing on

multiple operands that are stored in di�erent sparse tensor formats typically requires code

that is more than just a straightforward combination of code that iterate over the operand

23

for (int pB = B1_pos[0];
pB < B1_pos[1];
pB++) {

int i = B1_crd[pB];
int j = B2_crd[pB];
int pC = i * N + j;
int pA = i * N + j;
A[pA] = B[pB] * C[pC];

}

(a) B is COO,C is dense array

for (int i = 0; i < M; i++) {
for (int pB = B2_pos[i];

pB < B2_pos[i+1];
pB++) {

int j = B2_crd[pB];
int pC = i * N + j;
int pA = i * N + j;
A[pA] = B[pB] * C[pC];

}
}

(b) B is CSR, C is dense array

int pC1 = C1_pos[0];
while (pC1 < C1_pos[1]) {
int i = C1_crd[pC1];
int C1_segend = pC1 + 1;
while (C1_segend < C1_pos[1] &&

C1_crd[C1_segend] == i)
C1_segend++;

int pB2 = B2_pos[i];
int pC2 = pC1;
while (pB2 < B2_pos[i+1] &&

pC2 < C1_segend) {
int jB2 = B2_crd[pB2];
int jC2 = C2_crd[pC2];
int j = min(jB2, jC2);
int pA = i * N + j;
if (jB2 == j && jC2 == j)
A[pA] = B[pB2] * C[pC2];

if (jB2 == j) pB2++;
if (jC2 == j) pC2++;

}
pC1 = C1_segend;

}

(c) B is CSR, C is COO

Figure 1-4: Examples of code for computing the element-wise multiplication of two matrices
that are stored in di�erent combinations of array-based formats. As these examples
demonstrate, e�ciently computing with sparse tensors can require very dissimilar code
depending on what formats are used to store the sparse tensors. The technique I describe
in the rest of this dissertation is able to automatically generate all these kernels.

formats individually. And, as Figure 1-5 shows, e�ciently computing with tensors that

are stored in di�erent pointer-based sparse tensor formats can require even more varied

code. For instance, e�ciently computing sparse matrix-vector multiplication (SpMV) on

a sparse matrix that is stored using BSTs requires code that recursively invokes itself

in order to traverse the BSTs and compute on each nonzero (Figure 1-5b). By contrast,

performing the same computation on a sparse matrix that is stored using block linked

lists only requires a set of two nested loops to iterate over nodes in the linked lists and to

iterate over stored nonzeros in each node (Figure 1-5a). And again, as Figure 1-5c shows,

e�ciently computing on multiple operands stored in di�erent pointer-based sparse tensor

formats generally requires code that is very distinct from code that computes with just

any one of the operand formats individually.

Such diversity in code that is required to e�ciently compute with sparse tensors

in disparate formats makes it practically impossible for library developers to manually

implement all the kernels that would be needed to fully support a wide range of formats.

24

void map_b(blist* b, double* c, double& a) {
while (b) {

for (int32_t p = 0; p < b->B; p++) {
int32_t j = b->e[p].first;
a += b->e[p].second * c[j];

}
b = b->n;

}
}

void compute(...) {
for (int32_t i = 0; i < N; i++) {
double sum = 0.0;
map_b(b[i]->h, c, sum);
a[i] = sum;

}
}

(a) SpMV with matrix stored as block linked lists

void map_b(bst* b, double* c, double& a) {
if (b) {
if (b->l)
map_b(b->l, a, c);

int32_t j = b->e.first;
a += b->e.second * c[j];
if (b->r)
map_b(b->r, a, c);

}
}

void compute(...) {
for (int32_t i = 0; i < N; i++) {
double sum = 0.0;
map_b(b[i]->r, c, sum);
a[i] = sum;

}
}

(b) SpMV with matrix stored as BSTs

inline uint8_t
iter_bst(uint8_t state, bst*& n,

call_stack<uint8_t,bst*>& cs,
int32_t& c, double& v) {

if (state == 1)
goto iter_resume1;

cs.emplace(0, n);
while (!cs.empty()) {
n = get<1>(cs.top());
if (get<0>(cs.top()) == 1)
goto call_resume1;

while (n) {
if (n->l) {

get<0>(cs.top()) = 1;
get<1>(cs.top()) = n;
cs.emplace(0, n->l);
goto call_end;

call_resume1:;
}
c = n->e.first;
v = n->e.second;
return 1;

iter_resume1:
n = n->r;

}
cs.pop();

call_end:;
}
return 0;

}

inline uint8_t
iter_blist(uint8_t state, blist*& b,

int32_t& p, int32_t& c, double& v) {
if (state == 1)
goto iter_resume1;

while (b) {
for (p = 0; p < b->B; p++) {
c = b->e[p].first;
v = b->e[p].second;
return 1;

iter_resume1:;
}
b = b->n;

}
return 0;

}

void compute(...) {
...
for (int32_t i = 0; i < N; i++) {
bst* bn = b[i]->r;
blist* cn = c[i]->h;
uint8_t bs = iter_bst(0, bn, bstack, jb, bv);
uint8_t cs = iter_blist(0, cn, cp, jc, cv);
while (bs && cs) {
int32_t j = min(jb, jc);
if (j == jb && j == jc)
a[pa++] = bv * cv;

if (j == jb) bs = iter_bst(bs, ..., bv);
if (j == jc) cs = iter_blist(cs, ..., cv);

}
}

}

(c) Element-wise multiplication of a matrix stored as BSTs and a matrix stored as block linked lists

Figure 1-5: Examples of di�erent sparse tensor algebra computations with operands stored
in disparate pointer-based formats. As these examples again show, e�ciently computing
with sparse tensors can require very dissimilar code depending on the format used to store
the tensors ((a) vs. (b)) as well as the computation ((a)/(b) vs. (c)). The technique I describe
in the rest of this dissertation is also able to automatically generate all of these kernels.

25

Library developers are then forced to respond by leaving out support for some sparse

tensor formats and restricting the set of supported computations. For instance, tensor

algebra libraries such as SPLATT [103] and TensorFlow [1], as well as graph processing

frameworks such as Aspen [32] and STINGER [34], all support only a handful of formats

each. Meanwhile, Intel MKL provides at least partial support for many di�erent formats

but, as just one example, only supports computing the addition of CSR or BCSR matrices

and does not support directly computing the same operation on matrices in other formats

like COO. And even then, since MKL only supports directly computing the addition of two

matrices, to add three or more matrices together would actually require decomposing the

computation into multiple sub-operations, which signi�cantly reduces performance [53].

Moreover, while MKL supports more formats than many other libraries, ultimately it—and

any other hand-optimized library—can only support a �xed set of formats, meaning users

with data that do not neatly �t into any of these formats would be left with no good option.

Arti�cial limitations like these render hand-optimized libraries less generally useful, since

they can either signi�cantly increase the overhead of performing certain computations that

are needed by some applications or simply make it impossible to perform the computations.

This motivates a compiler-based technique that can instead automatically generate code

to e�ciently compute with sparse tensors that may be stored in arbitrary formats, which

would eliminate the need for such arti�cial limitations.

1.3 Our Approach and Contributions

This dissertation shows how to build a compiler that supports e�ciently computing

arbitrary tensor algebra operations on sparse tensors that may be stored in a wide variety

of formats. At a high level, our technique works by representing these di�erent tensor

formats as compositions of various level formats, each of which uses a distinct data structure

to store coordinates of nonzeros along a tensor dimension. To de�ne a level format that

uses a �xed set of arrays to store nonzeros, a user simply has to implement an abstract

interface we developed that captures how the underlying arrays can be e�ciently accessed.

Meanwhile, to de�ne a level format that uses a pointer-based data structure to store

26

nonzeros, a user can simply use a domain-speci�c language we developed to specify how

the data structure organizes stored nonzeros in memory. Additionally, to specify how the

results of sparse tensor computations can be stored in a particular level format, a user simply

has to implement an abstract interface we developed that captures how the underlying

data structure can be e�ciently constructed. Then, guided by implementations of these

various abstractions for di�erent level formats, the compiler can straightforwardly generate

e�cient sparse tensor algebra code that are optimized for tensors stored in a wide range of

formats. Our abstractions can be implemented for each format independently of all other

formats, which makes it practical to add support for a large number of formats. Furthermore,

by decoupling speci�cations of sparse tensor formats from the code generation mechanism,

our approach makes it possible to add support for new formats without having to modify

the code generator itself. This not only makes the compiler easier to maintain but also

makes it possible for users to add support for custom—and potentially novel—formats that

are optimized for specialized applications or even data sets.

More concretely, this dissertation makes the following contributions:

• A levelized abstraction for sparse tensor storage that models sparse tensor

formats as hierarchical compositions of level formats, each of which uses a distinct

array-based or pointer-based data structure to store a tensor dimension.

• Coordinate remapping notation, which generalizes the levelized abstraction for

sparse tensor storage to structured sparse tensor formats by casting them as formats

for storing tensors with added dimensions.

• An abstract interface for array-based level formats that exposes properties

about how stored nonzeros are organized in the underlying arrays and that captures

how those arrays can be e�ciently accessed.

• The node schema language, which can be used to de�ne pointer-based level for-

mats by precisely specifying how stored nonzeros are distributed amongst nodes in

the underlying data structure and how those nodes are linked together.

27

• The attribute query language, which can be used to precisely specify what statis-

tics need to be known about the result of a sparse tensor computation in order to be

able to reserve su�cient memory and coordinate the insertion of nonzeros when

constructing the output tensor.

• An assembly abstract interface that captures how the results of sparse tensor

computations can be e�ciently stored in disparate level formats. For array-based

formats, this interface captures how the results of attribute queries can actually be

used to preallocate memory and coordinate the insertion of nonzeros.

• Code generation techniques that, guided by the above abstractions, can emit

e�cient sparse tensor algebra code to compute on inputs and construct outputs that

may be stored in a wide variety of sparse tensor formats.

We have implemented our technique as prototype extensions to the TACO sparse tensor

algebra compiler [54]. Our evaluation shows that our technique supports a much wider

variety of sparse tensor formats than existing sparse linear and tensor algebra libraries and

frameworks. But not only that, sparse tensor algebra code that our technique generates

has performance that is competitive with, if not better than, equivalent hand-optimized

code that are implemented in the aforementioned libraries and frameworks. Our technique

can achieve such levels of performance for a wide range of computations, which enables

our technique to, in many cases, signi�cantly outperform hand-optimized libraries and

frameworks that have to arti�cially limit the set of supported operations. As an example,

Intel MKL and SPARSKIT [93] only provide hand-optimized code to directly convert sparse

matrices between the CSR format and other sparse matrix formats, so converting a matrix

from the COO format to the DIA format would require �rst converting the matrix to a

CSR temporary. By contrast, our technique can generate e�cient code to directly convert

sparse matrices between arbitrary formats, so the same conversion from COO to DIA can

be performed 3.96–4.01× faster on average relative to MKL and SPARSKIT. As another

example, our technique can generate e�cient code to directly compute the sum of a CSR

matrix and a dynamic sparse matrix that is stored in a pointer-based format, with the result

also stored in CSR. By contrast, such a computation—with the dynamic sparse matrix stored

28

in any pointer-based format—is simply not readily supported by most sparse linear algebra

libraries like MKL or dynamic graph processing frameworks like Terrace [79]. Meanwhile,

lower-level libraries such as PAM [109] can be used to implement the operation, though

with performance overheads of 6.98× on average relative to our technique due to the need

to convert data between di�erent formats.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows:

• Chapter 2 – Sparse Tensor Formats Survey surveys a selection of sparse tensor

formats that have been proposed in the literature and that are supported by existing

sparse linear/tensor algebra libraries as well as graph processing frameworks.

• Chapter 3 – Tensor Storage Decomposition describes how sparse tensor storage

can be modeled as hierarchies of coordinates and how sparse tensor formats can be

viewed as compositions of per-dimension level formats that each stores a coordinate

hierarchy level, which corresponds to a dimension of a tensor. This chapter also de-

scribes how, using coordinate remapping notation, structured sparse tensor formats

can be modeled as formats for tensors with added dimensions.

• Chapter 4 – Supporting Array-Based Formats presents an abstract interface for

array-based level formats and describes how, guided by implementations of this

interface, a compiler can generate e�cient code to compute on static sparse tensors

that are stored in arbitrary array-based sparse tensor formats.

• Chapter 5 – Supporting Pointer-Based Formats presents a language for de�ning

pointer-based level formats and describes how, guided by de�nitions of level formats

in this language, a compiler can generate e�cient code to compute on dynamic

sparse tensors that are stored in arbitrary pointer-based sparse tensor formats.

• Chapter 6 – Supporting Sparse Tensor Assembly presents an abstract interface

that captures how to e�ciently construct sparse tensor data structures and describes

29

how, guided by implementations of this interface, a compiler can generate code to

store the results of sparse tensor computations in arbitrary sparse tensor formats.

• Chapter 7 – Evaluation details the results of experiments that demonstrate our

technique generates e�cient sparse tensor algebra code, as well as shows how

di�erent sparse tensor formats are suited to di�erent kinds of operations and data.

• Chapter 8 – Related Works compares and contrasts our technique with existing

sparse linear/tensor algebra programming systems and compilers, as well as surveys

related works on data structure operation synthesis and query language compilation.

• Chapter 9 – Conclusion and Future Work summarizes the main takeaways of

the dissertation and discusses potential directions for future work.

30

Chapter 2

Sparse Tensor Formats Survey

Countless formats for storing sparse tensors have been proposed in the literature. No

format is universally superior; each format can be ideal for storing a particular sparse tensor

depending on characteristics of the data being stored, the operations being performed, and

the available hardware. As a result, many of these formats have been utilized to store data

for real-world applications and are supported by commonly-used libraries and frameworks.

This chapter surveys some of these di�erent sparse tensor formats. In particular,

Section 2.1 focuses on array-based tensor formats, which use �xed sets of arrays to store

nonzeros and are ideal for storing static sparse tensors (i.e., tensors with sparsity structures

that remain static during program execution). Meanwhile, Section 2.2 focuses on pointer-

based tensor formats, which use pointer-based data structures such as binary trees to

store nonzeros and are ideal for storing dynamic sparse tensors (i.e., tensors with sparsity

structures that evolve during program execution).

2.1 Array-Based Tensor Formats

Figures 2-1, 2-2, and 2-3 show some examples of tensor formats that use �xed sets of arrays

to store elements of tensors. A straightforward way to store any tensor is to simply use a

dense array to explicitly store all elements of the tensor, including the zeros. Figure 2-1b

shows an example dense storage for a one-dimensional tensor (i.e., a vector). A desirable

feature of dense arrays is that the value at any coordinate can be accessed in constant

31

5

Columns (J)

3210 54

21

76

8

(a) An 8-vector

8N

5 1 0 0 2 0 8 0vals

(b) Dense array

vals

pos 0 4

crd 0 1 64

5 1 82

(c) Sparse array

vals

W 6
crd 0 1 46

5 1 28

-1

0

-1

0

(d) Hash map

mask

5 1 0 0 2 0 8 0vals

N 8
1 10 001 1 0

(e) Byte map

Figure 2-1: Examples of the same vector stored in di�erent array-based formats. The array
elements that are shaded blue all encode the same nonzero.

time. Storing a sparse tensor in a dense array, however, is ine�cient as a lot of memory is

wasted to store zeros. Furthermore, performance is lost computing with these zeros even

though they do not meaningfully contribute to the result. For tensors that possess many

large dimensions, it may even be impossible to use dense arrays due to lack of available

memory. A data set of Amazon product reviews [71], for instance, can be represented by a

4.8 million × 1.8 million × 1.8 million tensor, which would require 107 exabytes of storage

if elements are stored as double-precision �oats in a dense array.

The simplest way to e�ciently store a sparse tensor is as a list of its nonzeros, with

the full coordinates and value of every nonzero being explicitly stored (Figures 2-1c, 2-2b,

and 2-3b). This is typically known as the coordinate (COO) format [10]. In contrast to dense

arrays, COO tensors consume only Θ(nnz) memory, so using the COO format instead of

dense arrays to store sparse tensors can reduce memory usage by orders of magnitude.

In addition, many common �le formats for storing tensors, such as the Matrix Market

exchange format [75] and the FROSTT sparse tensor format [100], closely mirror the COO

format. This minimizes the cost of loading a tensor from �le since each nonzero can be

inserted into a COO tensor by simply appending its coordinates and value to the crd and

vals arrays, as long as those arrays have already been pre-allocated with su�cient space.

Unlike dense arrays though, the COO format does not provide e�cient random access,

which can limit the performance of multiplicative operations. Hash maps eliminate this

drawback by storing tensor coordinates in a randomly accessible hash table (Figure 2-1d).

However, hash maps do not support e�ciently iterating over stored nonzeros in order,

32

5

Columns (J)
R

o
w

s
(I)

3210

2

1

0

3 8

54

4 9

37

1

(a) A 4×6 matrix

pos 0 7

crd 0 0

crd

vals

1 33 31

0 1 0 30 41

5 1 7 48 93

(b) COO

4N

vals

pos 0 2 44
crd 0 1 10 0

7

3 4

5 1 37 8 4 9

(c) CSR

6N

vals

pos 0 3 55

crd 0 1 03 1

6

3 3

5 7 18 3 4 9

7 7

(d) CSC

vals

pos 0 2 74

crd 0 1 10 0 3 4

5 1 37 8 4 9

3

pos 0 3

crd 0 1

(e) DCSR

4N

vals

pos 0 2 44 9

5 1 37 8 0 0 4 9

(f) Ragged array

6N
mask

vals

4N

5 1 0 0 0 0 7 3 0 0 0 0 0 0 0 0 0 0 8 0 0 4 9 0
1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

(g) Byte map

4N

0crd

5 7 0 8 1 3vals 0 4 0 0 0 9

3W

0 0 0 1 1 1 3 2 2 2 4

(h) ELL

6N

0vals 0 8 00 7 0 0 35 4 10 0 0 9

4M

4K

perm -3 0 1-1

(i) DIA

2N

vals

pos 0 1 3

crd 0 0 1

5 1 0 7 3 0 0 0 0 8 0 0

2B

3B

0 0 0 4 9 0

(j) BCSR

Figure 2-2: Examples of the same matrix stored in di�erent array-based formats. The array
elements that are shaded blue all encode the same nonzero.

33

9
34

2 8

Columns (J)

3210

0

1

R
o
w

s
(I)

1

0

2

Tu
b

es
 (K

)

7 5
1

(a) A 3×4×2 tensor

pos 0 8

crd 0 0

crd

0 22 22

0 0 2 22 30

2

crd

vals

0 1 1 10 01

1 7 5 84 32

3

1

9

(b) COO

crd 0 0 2 220

crd

vals

0 1 1 101

1 7 5 84 32 9

N 3

pos 3 8

3

0

3

1

0 3

(c) CSR

pos 0 2 5

crd 0 2 20 3

pos 0 2

crd 0 2

vals

pos 0 2 43

crd 0 1 11 0 1 0

1 7 25 4 8 3

86

1

9

(d) CSF

pos 0 5

crd 0 0

crd

2 22

0 2 0 32

N

vals

2

1 7 0 20 45 8 3 9

(e) Mode-generic format

Figure 2-3: Examples of the same three-dimensional tensor stored in di�erent array-based
formats. The array elements that are shaded blue all encode the same nonzero.

which in turn limits the performance of additive operations. Alternatively, dense arrays

can be extended with a byte map that records whether each stored value is non-zero

(Figure 2-1e). Such a byte map can e�ectively guard accesses into the dense array by only

loading an element from the dense array if the byte map indicates that it is non-zero. If the

stored tensor is su�ciently sparse, then this can reduce total memory tra�c at run-time

when computing on the tensor, which can increase performance as a result.

Another drawback of the COO format is that it redundantly stores row coordinates. In

Figure 2-2b, for instance, the row coordinates of the last three nonzeros are all explicitly

stored even though those nonzeros belong in the same row of the matrix. The compressed

sparse row (CSR) format for sparse matrices (Figure 2-2c) compresses out such redundant

row coordinates by using an auxiliary array (pos in Figure 2-2c) to keep track of which

nonzeros belong to each row of a matrix. This can improve the runtime performance of

computations that are typically memory bandwidth-bound, such as SpMV. The compressed

sparse column (CSC) format (Figure 2-2d) follows the same basic principle but instead

compresses out redundant column coordinates. The doubly compressed sparse row (DCSR)

34

format [20] achieves additional compression for hypersparse matrices by only storing the

rows that contain nonzeros (Figure 2-2e). The CSR format can also generalized to support

storing n-dimensional tensors by using an additional crd array to store each additional

dimension (Figure 2-3c), e�ectively storing each (n − 1)-dimensional subtensor in COO.

Smith and Karypis [102] further describe another generalization of the CSR format, called

compressed sparse �ber (CSF), that fully compresses every dimension by using additional

pos arrays to avoid storing redundant coordinates (Figure 2-3d). Sparse tensors stored in

any of these compressed formats, however, are particularly costly to assemble or modify,

since inserting any new nonzero can require all the other already-stored nonzeros to have

to be moved around in memory.

Many applications work with tensors that have non-zero elements distributed in regular

patterns. For instance, a matrix that encodes vertex-edge connectivity of a well-formed

unstructured mesh typically contain similar numbers of nonzeros in all rows of the matrix.

The ELLPACK (ELL) format [52] exploits this by storing the same number of elements

for every row of a matrix (Figure 2-2h). This enables the ELL format to only store the

column coordinates and values of nonzeros, with the row coordinate of each nonzero being

implicitly encoded by its position in the crd and vals arrays. Additionally, the ELL format

stores nonzeros that belong to adjacent rows of a matrix (but that share the same relative

position within their respective rows) contiguously in the crd and vals arrays, and this

enables certain computations like SpMV to be e�ciently vectorized [31]. If nonzeros in

a matrix are further known to be clustered within a few densely-�lled diagonals, as is

generally the case with matrices that encode stencils applied to regular grids for instance,

then the diagonal (DIA) format [94] can exploit this by only storing the o�sets of those

diagonals from the matrix’s main diagonal (Figure 2-2i). This enables the DIA format to

forgo explicitly storing the column coordinates of nonzeros altogether (since they can

be simply computed from the o�sets of the diagonals), further reducing memory usage.

On the other hand, if nonzeros in a matrix are clustered along the start of each row, then

ragged arrays [110] can exploit this by storing all elements (including zeros) up to the last

nonzero in each row (Figure 2-2f). This again makes it possible to forgo storing column

coordinates, since the column coordinate of any nonzero is simply its o�set from the start

35

of its containing row’s segment in the ragged array. However, for matrices that do not

exhibit speci�c types of sparsity structure, storing them in formats like DIA and ELL may

actually increase memory usage and degrade compute performance. The DIA format,

for instance, cannot store only parts of a diagonal. As a result, using DIA to store an

unstructured sparse matrix that has nonzeros distributed amongst many sparsely-�lled

diagonals would require all the zero elements within those diagonals to be explicitly stored

as well. Computing on the matrix would then require redundantly computing with many

zero elements, which degrades performance.

The block compressed sparse row (BCSR) format [43], meanwhile, generalizes CSR by

replacing each nonzero in the vals array with a dense block of nonzeros instead (Figure 2-

2j). This e�ectively amortizes the overhead of storing the coordinates of nonzeros as well

as exposes opportunities for vectorization, which makes BCSR ideal for storing inherently

blocked matrices such as those arising from �nite element analysis. The mode-generic

sparse tensor format, proposed by Baskaran et al. [12], generalizes the idea of BCSR to

higher-dimensional tensors (Figure 2-3e). It stores a tensor as a sparse collection of dense

blocks that may have any number of dimensions, with the coordinates of the blocks

e�ectively stored in the COO format (i.e., the crd arrays).

2.2 Pointer-Based Tensor Formats

The formats described in the previous section are ideal for storing static sparse tensors,

since the use of arrays to compactly store nonzeros ensures good cache spatial locality

and improves compute performance as a result. For the same reason though, array-based

sparse tensor formats are generally not well-suited for storing dynamic sparse tensors,

since modifying them (e.g., by inserting nonzeros) requires already-stored nonzeros to be

moved around in memory and incurs signi�cant overhead.1 To address this, many di�erent

pointer-based sparse tensor formats have been developed, each with distinct trade-o�s.

1Dense arrays do support e�cient in-place modi�cation by e�ectively pre-allocating storage for all
potential new nonzeros. As mentioned in the previous section though, they cannot be used to store large
data sets that are common in many real-world applications.

36

A

Columns (J)

R
ow

s
(I)

3210

2

1

0

3

54

CB

K NM

4

5

F H J
D E
G

L

(a) A 6×6 matrix

0

1

2

3

4

5

0: A 1: B 2: C

1: D 2: E

4: J0: F 1: G 3: H

0: K 2: L 4: M 5: N

6N:

(b) Adjacency list

0

1

2

3

4

5

0: A 1: B 2: C

1: D 2: E

0: F 1: G 3: H

0: K 2: L 4: M

4: J

5: N

N: 6

(c) Block linked list

0: A

1: B

2: C

0 1: D

2: E

2

4: J0: F

1: G

3: H

3

0: K

2: L

4: M

5: N

5

(d) Binary search tree

1: B

0

1: D

2

1: G

4: J

3

4: M

50: F

3: H

0: A 2: E

2: C

0: K 2: L

5: N

(e) C-tree

0

1

2

3

4

5

0: A 2: C 1: B

1: D 2: E

0: F 1: G 4: J

2: L 0: K 5: N

3: H

4: M

6N:

(f) Variable block linked list

0 1 2 3 4 5

3: H 4: M0: A 1: B 2: C 1: D 2: E

0: F 1: G 4: J 0: K 2: L 5: N

6N:

(g) B-tree

Figure 2-4: Examples of the same matrix stored in di�erent pointer-based formats.

Figure 2-4 shows several representative examples of pointer-based formats for storing

dynamic sparse matrices (or adjacency matrices that represent dynamic graphs). A standard

way of storing a dynamic sparse matrix is as a collection of adjacency lists, each of which

stores the nonzeros in a single row of a matrix. Each adjacency list can be stored as a

37

linked list [28], with each node in the linked list storing the column coordinate and value

of one nonzero (Figure 2-4b). This representation enables new nonzeros to be e�ciently

added to a matrix by simply appending them to the appropriate adjacency lists, which can

be done without moving any existing nonzero in memory. Additionally, the collection of

adjacency lists may itself be stored as a linked list, forming the list of lists representation;

this enables new rows to be e�ciently added to a matrix as well.

One drawback with linked lists though is that, when iterating over stored nonzeros,

each access can potentially incur a cache miss since nodes in a linked list are typically not

stored contiguously in memory. This increases the overhead of accessing nonzeros and

thereby reduces performance when computing with tensors that are stored as linked lists.

To address this, some high-performance graph processing frameworks like STINGER [34]

instead use block linked lists to store multiple nonzeros in each node (Figure 2-4c), e�ec-

tively amortizing the overhead of each node access. In a typical block linked list, every

node contains an array of the same size and is able to store the same maximum number

of nonzeros. However, some frameworks like GraphOne [61] use variable block linked

lists that allow di�erent nodes to contain arrays of di�erent sizes, thus enabling nodes to

store di�erent maximum numbers of nonzeros (Figure 2-4f). This allows updates to be

e�ciently batched, with each batch of new nonzeros inserted as just a single new node.

Another way of representing a dynamic sparse matrix is to use (balanced) binary search

trees (BSTs) to store the set of nonzeros within each row as well as the set of non-empty

rows (Figure 2-4d) [32]. Using BSTs to store nonzeros enable new nonzeros to be e�ciently

inserted while also keeping the data structure sorted, which is useful for computations that

must access nonzeros in order. Again though, to amortize the overhead of accessing nodes

in a tree, many high-performance graph processing frameworks instead use block tree data

structures that store multiple nonzeros in each node. For instance, Aspen [32] represents

each row of a dynamic graph’s adjacency matrix using a C-tree, which stores only a

subset of nonzeros (i.e., heads) directly in a BST (Figure 2-4e). The remaining nonzeros,

meanwhile, are stored in either a pre�x (which contains all nonzeros that have smaller

coordinates than any head element) or in chunks (i.e., tails) that are each associated with a

distinct head element. Similarly, Terrace [79] supports storing each row of an adjacency

38

matrix using B-trees, which generalize BSTs in a di�erent way by allowing each node to

store more than two children in addition to storing multiple nonzeros (Figure 2-4g).

2.3 Chapter Summary

In this chapter, we took a closer look at some of the many sparse tensor formats that

have been proposed in the literature and that are supported by widely-used libraries

and frameworks. We also saw that all of these formats possess distinct advantages and

disadvantages, and so to e�ectively support a wide range of real-world applications, a

general-purpose system must be able to e�ciently compute with tensors that are stored

a wide range of formats. In the next four chapters, we will see how our technique can

abstractly represent disparate formats—including all the ones we saw in this chapter—and

we will see how this lets our technique generate code that e�ciently compute on sparse

tensors stored in these formats.

39

40

Chapter 3

Tensor Storage Decomposition

As we saw in Section 1.2, to be able to e�ciently compute with sparse tensors that may be

stored in arbitrary combinations of formats, a compiler must be able to generate specialized

code for any combination of input (and output) tensor formats. Since the number of possible

combinations of distinct tensor formats is exponential in the number of supported formats

though, it is infeasible for a compiler to exhaustively hard-code support for every format.

In the rest of this dissertation, I show how a compiler can represent disparate tensor

formats using a common set of abstractions, which lets the compiler reason about how

to e�ciently work with tensors in di�erent formats without having to hard-code for any

particular format. This chapter, in particular, shows how a wide range of sparse tensor

formats, including all those described in Chapter 2, can be expressed as compositions

of per-dimension formats. The same per-dimension formats can be straightforwardly

recombined in many di�erent ways to express distinct tensor formats, which is one way

by which our technique can generalize to a wide variety of tensor formats. And, as we

will see later, decomposing tensor formats into per-dimension formats lets a compiler

generate sparse tensor algebra code in a dimension-by-dimension fashion, which enables

our technique to support tensors that have arbitrary numbers of dimensions.

41

0 2 5

5 1 0 0 2 0 8

1 3 4 6

B

7

0

J

vals

(a) Dense array

0 4

5 1 2 8

1 6

B

(b) Sparse array

0 6

5 1 8 0 2 0

1 3

B

J

vals

(c) Hash map

0

5 1 0 0 2 0 8

1 4 6

B

0

J

vals

(d) Byte map

Figure 3-1: Coordinate hierarchy representations of the same vector (shown in Figure 2-1a)
stored in di�erent formats. A coordinate hierarchy’s structure re�ects how the underlying
storage format encodes a tensor’s nonzeros.

3.1 Coordinate Hierarchies

The idea of per-dimension formats can be understood by viewing tensor storage as a hier-

archy of coordinates, where each level in the coordinate hierarchy encodes the coordinates

of nonzeros along a particular tensor dimension. Figures 3-1 and 3-2 show example of

coordinate hierarchies that represent tensors stored in distinct formats. Each path from

the root to a leaf in a coordinate hierarchy encodes the full coordinates of a tensor element,

with the corresponding value of the tensor element shown below. In Figure 3-2b, for

instance, the rightmost path represents the tensor element B(3, 4), which has a value of 9.

A coordinate hierarchy has one level (shaded light gray in Figure 3-2) for each dimension

of a tensor. Each position (corresponding to a node) in a level may encode some coordinate

(the label in the node) along the tensor dimension that the level represents. Alternatively, a

position may contain an unlabeled node, which encodes no coordinate and re�ects padding

in the underlying physical storage. The unlabeled nodes in Figure 3-2e, for instance,

represent parts of each diagonal that exceed the bounds of the matrix, and these unlabeled

nodes correspond to padding in the matrix’s DIA representation (Figure 2-2i). Each node

in a level may also be connected to a parent node in the previous level. Coordinates that

share the same parent are referred to as siblings; the coordinates highlighted in dark gray

in Figure 3-2b, for instance, are siblings that share the parent row coordinate 3. Meanwhile,

42

I

J

vals

0

0

1

0

3

3

5 1 7 3 8 4 9

1

0

1

1

0

3

4

3

B

(a) COO

0 0 3

5 1 7 3 8 4 9

1

0

1 0

1

4

2

B

3I

J

vals

(b) CSR

0 0 1

5 1 7 3 8 0 0

1

0

1 0

1

2

2

B

3I

J

vals

3 4

4 9

(c) Ragged array

0 2 11

0

3 0 2

B

3

1

10 2 3

2

0 0 1

5 7 0 8 1 3 0

0 0 1 1 3 22 2 4

4 0 0 0 9

I

J

vals

#I

(d) ELL

1

-3

3 2

B

3

-1

1 00 2 3 1 2 3

0 1

0

0 0 0 8 0 7 0

0 1 2 1 10 2 3 2 3 4

0 5 3 0 4 1 0 0 9

I

J

vals

J-I

(e) DIA

0 2 21 0 1 0 1 02 1 2

0 2 2

5 1 0 7 3 0 0

1 0 1 3 4 35 4 5

0 0 8 0 0

J

vals

I

0 2 21 0 1

3 5 5

0 0 0 4 9 0

4 3 4

0

0

B

0

1

0 1 0 1

J/3

I%2

I/2

1

0 1

J%3

0 0 10 1 1 2 2 32 3 3 2 2 32 3 3

(f) BCSR

Figure 3-2: Coordinate hierarchy representations of the same matrix (shown in Figure 2-2a)
stored in di�erent formats.

a coordinate’s ancestors refer to the set of coordinates that are encoded along the path

from its parent to the root.

By representing tensor storage in this manner, we can then view any tensor format

as a composition of level formats that each stores a single level of a coordinate hierarchy

(including all nodes in the level along with edges that connect them to their parents).

Di�erent level formats can store coordinate hierarchy levels in very di�erent ways; some

level formats may implicitly encode coordinates (e.g., as intervals between store bounds),

while others might instead explicitly store coordinates (e.g., in segmented vectors or

43

binary search trees). Below I show examples of level formats that can be composed to

express all the tensor formats that were described in Section 2.1. In particular, given a

parent coordinate in the (i − 1)-th level of a coordinate hierarchy (and potentially also a

grandparent coordinate in the (i − 2)-th level as well as other ancestor coordinates), these

level formats encode its child coordinates in the i-th level as follows:

Dense levels store the size of the corresponding tensor dimension (N) and encode

coordinates in the interval [0,N). The value of N is part of the shape of the tensor and

is known statically. Figure 3-2b shows the row (I) dimension of a CSR matrix encoded

as a dense level using a scalar variable as shown below.

4N

Masked levels similarly encode coordinates in the interval [0,N) (where N represents

the size of the corresponding tensor dimension), but potentially with holes in this

interval (corresponding to zero elements) stored in the Boolean mask array. Figure 3-1d

shows the column (J) dimension of a byte map row vector encoded as a masked level in

the scalar variable and array shown below.

mask
N 8

1 10 001 1 0

Sliced levels similarly store an upper boundW and encode coordinates in the interval

[0,W). Unlike with dense levels though, the value ofW is not known statically and, at

run-time, can assume any value between 0 and the size of the corresponding tensor

dimension. Figure 3-2d shows the relative positions of nonzeros within rows of an

ELL matrix (represented by the #I dimension) encoded as a sliced level using a scalar

variable as shown below.

3W

Compressed levels store coordinates in a segment of the crd array, with the segment

bounds stored in the pos array. Figure 3-2b shows the column dimension of a CSR

44

matrix encoded as a compressed level in the arrays shown below. Given a parent

coordinate 1, for instance, the level encodes two child coordinates 0 and 1, stored in

the crd array between positions pos[1] = 2 (inclusive) and pos[2] = 4 (exclusive).

pos 0 2 44

crd 0 1 10 0

7

3 4

Singleton levels store a single coordinate with no sibling in the crd array. Figure 3-2a

shows the column dimension of a COO matrix encoded as a singleton level in the

array shown below.

crd 0 1 0 30 41

Squeezed levels storeK coordinates in the perm array. Unlike compressed levels, which

can encode distinct child coordinates for di�erent parent coordinates, squeezed levels

encode the same child coordinates for all parent coordinates. Figure 3-2e shows the J −I

dimension representing non-empty diagonals of a DIA matrix encoded as a squeezed

level in the scalar variable and array shown below.

perm -3 0 1-1
4K

Range levels encode the coordinates in an interval with bounds being functions of the

parent coordinate and dimension sizes N and M . Figure 3-2e shows the row dimension

of a DIA matrix encoded as a range level using the scalar variables shown below. Given a

parent coordinate 1, for instance, the level encodes coordinates between max(0,−1) = 0

(inclusive) and min(4, 6 − 1) = 4 (exclusive).

4N

6M

O�set levels encode a single coordinate with no sibling that is computed as the sum of

the parent coordinate and the grandparent coordinate. Figure 3-2e shows the column

dimension of a DIA matrix encoded as an offset level. Given a parent coordinate 3 and

a grandparent coordinate 1, for instance, the level encodes the coordinate 3 + 1 = 4.

45

Block levels encode a single coordinate with no sibling that is computed as the sum of

the grandparent coordinate and the product of the coordinate in the (i − 4)-th level and

a block size B. Figure 3-2f shows the column dimension of a BCSR matrix encoded as a

block level using the scalar variable shown below. Given a grandparent coordinate 2

and coordinate 1 in the (i − 4)-th level with block size 3, for instance, the level encodes

the coordinate 2 + 1 × 3 = 5.

3B

Ragged levels encode coordinates in the interval [0, S), which are stored contiguously

in a segment of the level. The value of S for each parent coordinate at position p is

encoded as the di�erence between pos[p] and pos[p+1], which store the start and end

of the segment that correspond to the parent coordinate’s children. Figure 3-2c shows

the column dimension of a ragged array matrix encoded as a ragged level in the array

shown below. Given a parent coordinate 1, for instance, the level encodes coordinates

between 0 (inclusive) and pos[2] − pos[1] = 2 (exclusive).

pos 0 2 44 9

Hashed levels store coordinates in a segment of lengthW of a hash table (crd). Fig-

ure 3-1c shows the column dimension of a hash map row vector encoded as a hashed

level using the scalar variable and array shown below, with −1 marking empty buckets.

W 6
crd 0 1 46 -1-1

Figure 3-3 shows how these level formats can be composed in di�erent ways to express all

the tensor formats that were described in Section 2.1. The same level formats, however, can

also be combined in other ways to express additional sparse tensor formats. For instance,

the composition (compressed, dense) expresses a new sparse matrix format that e�ciently

stores matrices with mostly empty rows and a few additional rows that are densely �lled.

Furthermore, all these array-based level formats are formally de�ned by implementing a

46

Dense array
Dense

Sparse array
CompressedJ J

Hash map
HashedJ

Byte map
GuardedJ

(a) Vector formats

Dense array
Dense
Dense

COO
Compressed (¬U)

Singleton

DCSR
Compressed
Compressed

DIA
Squeezed

Range
Offset

BCSR

I
J

I
J

I
J

I
J

CSR
Dense

Compressed

ELL
Sliced
Dense

Singleton

I
J

I
J

Dense
Compressed

Dense
Dense

I/M
J/N

I%M
J%N

Block
BlockJ

#I J-I

CSC
Dense

Compressed
J
I

Ragged array
Dense

Ragged
I
J

Byte map
Dense

Masked
I
J

I

(b) Matrix formats

COO
Compressed (¬U)

Singleton (¬U)

Singleton

CSF
Compressed

Compressed

Compressed

I

J

K

I

J

K

Mode-generic format
Compressed (¬U)

Singleton

Dense

I

J

K

COO
Compressed (¬U)

Singleton (¬U)

Singleton

I

J

K

CSR
Dense

Compressed (¬U)

Singleton

I

J

K

(c) Three-dimensional tensor formats

Figure 3-3: Common tensor formats expressed as compositions of level formats. As
described in more depth in Section 3.2, we cast structured sparse matrix formats such as
DIA as formats for higher-dimensional remapped tensors. The label beside a level format
identi�es the tensor dimension it represents. Unless otherwise stated, all level formats
other than hashed are ordered and unique (described in more depth in Section 4.1.2); hashed
is unordered and unique. (¬O) denotes an unordered variant of a level format, and (¬U)
denotes a non-unique variant of a level format.

shared set of abstract interfaces, and users can de�ne new level formats on top of the ones

described above by simply implementing these same interfaces; Chapters 4 and 6 describe

these interfaces in depth. In these ways, the coordinate hierarchy abstraction is able to

support a wide variety of disparate sparse tensor formats.

The coordinate hierarchy abstraction assumes by default that di�erent levels are stored

using separate data structures in memory, though the abstraction also permits multiple

levels to be stored using the same shared data structures in memory. As an example, each

block level and its dense parent level in a BCSR matrix’s coordinate hierarchy representa-

tion have to store the same block dimension size, and so these levels can be con�gured to

share a single variable that contains the block dimension size. Allowing multiple levels to

share data structures in memory also enables array-of-structs (AoS) COO to be expressed

47

as a composition of level formats by de�ning variants of compressed and singleton that

use a shared array to store coordinates along multiple dimensions in an interleaved fashion.

As we will see in the next three chapters, the coordinate hierarchy abstraction simpli�es

sparse tensor algebra code generation in several ways. First, decomposing tensor formats

into per-dimension formats lets a compiler generate code in a dimension-by-dimension

fashion, which enables our technique to support tensors that have arbitrary numbers of

dimensions. Second, the structure of a coordinate hierarchy re�ects how nonzeros are

physically encoded in memory, and so a compiler can generate optimized code for speci�c

operand formats by only reasoning about possible structures of coordinate hierarchies

that represent tensors stored in those formats. As an example, the coordinate hierarchy

representation of a COO matrix (Figure 3-2a) consists of distinct chains of coordinates

that each encodes a single nonzero, re�ecting the fact that COO stores the full coordinates

of every nonzero. If a compiler knows an input tensor is stored in a format like COO

that enforces such a chain structure, then the compiler can generate code that optimizes

iteration over the tensor by omitting explicit loops over the tensor’s inner dimensions (as in

Figure 1-4a). By contrast, the coordinate hierarchy representation of a CSR matrix (Figure 3-

2b) is tree-structured, and elements that belong in the same row of the matrix share a row

coordinate parent. This tree structure re�ects the fact that the CSR format compresses

out redundant row coordinates (using the pos array) and prevents the aforementioned

optimization from being applied. Section 4.1.2 shows how a shared abstract interface for

level formats can statically expose such variations in the structure of a matrix’s coordinate

hierarchy representation to a compiler.

3.2 Coordinate Remapping

Level formats typically group tensor elements that share the same ancestor coordinates

(i.e., that belong in the same subtensor) together in memory. As a result, compositions of

level formats naturally store tensor elements in lexicographic order of their coordinates.

However, structured sparse tensor formats such as DIA and BCSR typically do not store

tensor elements lexicographically by their (original) coordinates; DIA, for instance, groups

48

R
o
w

s
(I)

3210

2

1

0

3

54

8

Slices (K = J - I)

-1-3

Columns (J)

3210 54

5

3

9

1

0 1

3210 54 3210 54

4

7

Figure 3-4: The matrix in Figure 2-2a can be transformed to a three-dimensional tensor
where each slice contains all nonzeros that lie on the same diagonal in the original matrix.
The lexicographic coordinate ordering of nonzeros in the resulting tensor matches the
order in which nonzeros are stored in DIA (Figure 2-2i). Such a transformation can be
formalized by the coordinate remapping (i, j) -> (j-i, i, j).

together elements that belong in the same diagonal, while BCSR groups together elements

that belong in the same block.

We can nevertheless express any structured sparse tensor format as a composition

of level formats by casting it as a format for storing tensors with added dimensions. For

example, a DIA matrix can be cast (or remapped) as a three-dimensional tensor where

each slice contains only nonzeros that lie on the same diagonal, as shown in Figure 3-4.

Comparing this remapped tensor to the original DIA matrix (Figure 2-2i), we can observe

that the lexicographic coordinate ordering of nonzeros in the remapped tensor accurately

re�ects how the DIA format groups together nonzeros. This lets us decompose DIA into

three level formats: one (squeezed) that stores the set of nonempty diagonals (or slices of

the remapped tensor) in a perm array of size K, another (range) that encodes the set of rows

in each diagonal (or slice of the remapped tensor), and a third (offset) that encodes the

column coordinates of nonzeros.

We formalize such remappings by developing a new language that we call coordinate

remapping notation. Figure 3-5 shows the syntax of coordinate remapping notation. State-

ments in coordinate remapping notation specify how elements in an input tensor map

to elements in an output tensor, which can potentially have additional dimensions. For

instance, given a matrix A as input, the statement

(i, j) -> (j-i, i, j)

49

〈remap_stmt〉 ::= 〈src_indices〉 ‘->’ 〈dst_indices〉

〈src_indices〉 ::= ‘(’ 〈ivar〉 (‘,’ 〈ivar〉)∗ ‘)’

〈dst_indices〉 ::= ‘(’ 〈ivar_let〉 (‘,’ 〈ivar_let〉)∗ ‘)’

〈ivar_let〉 ::= (〈var〉 ‘=’ 〈ivar_expr〉 ‘in’)∗ 〈ivar_expr〉

〈ivar_expr〉 ::= 〈ivar_xor〉 (‘|’ 〈ivar_xor〉)∗

〈ivar_xor〉 ::= 〈ivar_and〉 (‘^’ 〈ivar_and〉)∗

〈ivar_and〉 ::= 〈ivar_shift〉 (‘&’ 〈ivar_shift〉)∗

〈ivar_shift〉 ::= 〈ivar_add〉 ((‘<<’ | ‘>>’) 〈ivar_add〉)∗

〈ivar_add〉 ::= 〈ivar_mul〉 ((‘+’ | ‘-’) 〈ivar_mul〉)∗

〈ivar_mul〉 ::= 〈ivar_factor〉 ((‘*’ | ‘/’ | ‘%’) 〈ivar_factor〉)∗

〈ivar_factor〉 ::= ‘(’ 〈ivar_expr〉 ‘)’ | 〈ivar_counter〉 | 〈ivar〉 | 〈var〉 | 〈const〉

〈ivar_counter〉 ::= ‘#’ 〈ivar〉∗

Figure 3-5: Syntax of coordinate remapping notation.

maps every element Aij to the corresponding element in the (j − i)-th slice of the three-

dimensional remapped tensor. Applying this coordinate remapping to any matrix trans-

forms it to a three-dimensional tensor where each slice contains all nonzeros that lie on

the same diagonal in the original matrix. So rather than regarding DIA as a format for

storing matrices, we can instead interpret DIA as a format for storing three-dimensional

tensors obtained by applying the above coordinate remapping to the matrices.

Similarly, the BCSR format partitions a matrix into �xed-sized M ×N blocks and stores

elements of each block contiguously in memory [43]. Such grouping of nonzeros can be

obtained with the coordinate remapping

(i, j) -> (i/M, j/N, i%M, j%N, i, j),

which assigns components that lie within the same block to the same subtensor (identi�ed

by coordinates (i/M, j/N)) in the remapped tensor. We can then interpret BCSR as a

format for storing six-dimensional tensors obtained by applying the above remapping to

matrices. This, in turn, lets us express BCSR as a composition of six level formats as shown

in Figure 3-3b. And by using the dense level format in particular to encode coordinates

within blocks (i.e., the dimensions indexed by i%M and j%N), our speci�cation of BCSR

exposes the fact that each stored block can be expected to be densely �lled.

50

R
o
w

s
(I)

3210

2

1

0

3

54

9

Slices (K = #I)

10 2

Columns (J)

3210 54 3210 54

5

3

4

1

7

8

Figure 3-6: Result of applying the coordinate remapping (i, j) -> (#i, i, j) to the
matrix in Figure 2-2a, assuming nonzeros are iterated over during remapping in the same
order as they are stored in Figure 2-2c.

Coordinate remapping notation can express complex orderings of nonzeros. The

coordinate remapping below, for instance, groups together nonzeros that lie within the

same constant-sized N × N × N block and also orders the blocks as well as the nonzeros

within each block in Morton order [73]:

(i, j, k) ->

(r=i/N in s=j/N in t=k/N in (r&1)|((s&1)<<1)|((t&1)<<2)|..., i/N, j/N, k/N,

u=i%N in v=j%N in w=k%N in (u&1)|((v&1)<<1)|((w&1)<<2)|..., i, j, k).

This remapping exactly captures how the HiCOO tensor format orders stored nonzeros

in memory [66]. In particular, nested let expressions are used to �rst de�ne variables r,

s, and t as the coordinates of each block and variables u, v, and w as the coordinates of

each nonzero within a block. The remapping then computes the Morton code of each

block and each nonzero within a block by interleaving the bits of those previously de�ned

coordinates using bitwise operations.

Coordinate remapping notation also provides counters, which are denoted by the ‘#’

operator. Counters map nonzeros that share the same speci�ed coordinates to distinct slices

in the remapped tensor. For instance, as Figure 3-6 illustrates, the coordinate remapping

(i, j) -> (k=#i in k, i, j)

can assign the k-th nonzero in each row of a matrix to the k-th slice in the remapped

tensor, ensuring nonzeros with the same i coordinate are remapped to distinct slices. This

remapping e�ectively groups together up to one nonzero from each row of the original

matrix, accurately re�ecting how formats like ELL and JAD [92] store nonzeros in memory.

51

Finally, coordinate remapping can also be used to express non-row major orderings of

nonzeros. For instance, the coordinate remapping

(i, j) -> (j, i)

groups together nonzeros in a matrix by column, capturing how column-major formats

such as CSC store nonzeros in memory.

3.3 Pointer-Based Formats

So far, we have implicitly assumed that all nodes in a coordinate hierarchy level must

share the same logical address space, with each node being identi�ed by a unique position

in the level. This accurately re�ects how array-based level formats store (coordinates of)

nonzeros using �xed sets of arrays whose elements can be addressed by their positions.

However, the assumption does not accurately model level formats that store nonzeros using

pointer-based data structures, which store elements non-contiguously and typically at

arbitrary locations in memory. To be able to represent such pointer-based level formats, we

generalize the coordinate hierarchy abstraction so that nodes in a level—along with their

children—can exist in distinct address spaces. So, for instance, the coordinate hierarchy

representation of a matrix stored using binary search trees would have multiple address

spaces that each contains a distinct nonzero. Nonzeros in di�erent address spaces can

share the same position within their respective address spaces, which re�ects the fact that

the nonzeros are stored separately (i.e., in di�erent nodes of a binary search tree). The

address spaces themselves, though, do not have identifying positions, which re�ects the

fact that nodes of a binary search tree can be allocated anywhere in memory (i.e., there is

no constraint on how nodes must be placed relative to each other in memory).

We can then de�ne additional pointer-based level formats like bst, ctree, and blist

that use pointer-based data structures such as binary search trees, C-trees, and block linked

lists, respectively, to store coordinate hierarchy levels with multiple address spaces. This

enables us to, for instance, express Aspen’s adjacency matrix representation (Figure 2-4e)

as the composition (bst, ctree), indicating that the set of nonempty rows are stored using a

binary search tree while the set of nonzero columns for each row are stored using a C-tree.

52

A tensor format may also be composed of both array-based level formats and pointer-based

level formats. For example, the composition (dense, blist) describes a tensor format that

stores a matrix as a dense array of block linked lists, each of which stores a row of the

matrix (Figure 2-4c); this format is akin to STINGER’s adjacency matrix representation.

Chapter 5 describes how all the aforementioned pointer-based level formats—and many

more—can be precisely de�ned using a shared language.

3.4 Supporting Non-Zero Fill Values

While we have thus far assumed that sparse tensor storage always compresses out zero

elements, many real-world applications actually work with tensors that mostly contain

elements of another value. For example, consider a tensor that encodes distances between

directly-connected points in a road network, with two points having a distance of ∞ if

they are not directly connected by a road. Most elements in such a tensor would likely be

∞ instead of zero, since most pairs of points in the road network are unlikely to be directly

connected. To support applications like these, we can generalize the idea of sparsity so

that any tensor is sparse as long as most of its elements have the same (possibly non-zero)

value, which we refer to as the tensor’s �ll value. As it turns out, such a sparse tensor can

still be stored using any of the formats we have seen previously by simply assuming that

compressed-out elements contain the tensor’s �ll value. In a similar way, the coordinate

hierarchy abstraction can represent sparse tensor formats that compress out non-zero

�ll values, with any element simply assumed to contain the tensor’s �ll value if it is not

explicitly encoded by a path in the coordinate hierarchy. This generalization is explored in

more depth in the work by Henry et al. [42].

The generalized notion of sparsity described above can be further extended by allowing

di�erent subtensors within the same tensor to have di�erent �ll values (i.e., dynamic �ll

values). As it turns out, this enables tensor formats that compress out repeated elements

using lossless compression schemes (such as run-length encoding) to be expressed in terms

of level formats that encode dynamic �ll values. This generalization is explored in more

depth in the work by Donenfeld et al. [33].

53

3.5 Chapter Summary

In this chapter, we saw how a wide range of sparse tensor formats can be expressed as

compositions of level formats that store coordinates of nonzeros using distinct array-based

or pointer-based data structures. In the next two chapters, we will see how array-based and

pointer-based level formats can be precisely de�ned, and we will see how speci�cations of

level formats can be used to generate e�cient code that compute on tensors stored using

the level formats. Furthermore, in Chapter 6, we will see how our technique can generate

e�cient code for storing the results of sparse tensor operations in disparate level formats.

54

Chapter 4

Supporting Array-Based Formats

As we have just seen, a wide range of disparate sparse tensor formats can all be expressed

as compositions of per-dimension level formats. In this chapter, I �rst show how array-

based level formats, which use �xed sets of arrays to store coordinates of nonzeros, can be

precisely de�ned by implementing a common abstract interface that exposes properties of

the stored data and that captures how the stored data can be e�ciently accessed (Section 4.1).

I then describe how, guided only by implementations of this abstract interface, a compiler

can generate e�cient code to compute tensor algebra operations on operands that may be

stored in arbitrary combinations of array-based sparse tensor formats (Section 4.2). Our

abstract interface can be implemented for each format completely independently of other

formats, which makes it practical to add support for a large number of formats. And by

utilizing an abstract interface that decouples speci�cations of sparse tensor formats from

the code generation mechanism, our approach makes it possible to add support for new

formats without requiring modi�cations to the compiler itself. The result is a compiler

that can support a wide range of formats while still being easy to use and maintain.

4.1 Abstract Interface for Array-Based Level Formats

Our abstract interface for array-based level formats exposes capabilities and properties of

coordinate hierarchy levels that are stored using di�erent level formats. Capabilities of level

formats, which are explained in more depth in Section 4.1.1, capture how stored coordinates

55

Table 4.1: Supported capabilities and properties of each level format. V and P indicate
that a level format supports coordinate value iteration and coordinate position iteration,
respectively. (X) indicates that a level format can optionally possess or not possess a
particular property.

Level Format Capabilities Properties

Iteration Locate Full Ordered Unique Zeroless Branchless Compact

dense V X X (X) (X) (X) X
masked V X (X) (X) (X)
sliced V (X) (X) (X) X
compressed P (X) (X) (X) (X) X
singleton P (X) (X) (X) (X) X X
squeezed P (X) (X) (X) X
range V X (X) (X) (X)
offset P (X) (X) (X) X X
block P (X) (X) (X) X X
ragged V X (X) (X) (X) X
hashed P X (X) (X)

of tensor elements can be e�ciently accessed by iterating over or randomly accessing

the underlying arrays. Meanwhile, properties of level formats, which are explained in

more depth in Section 4.1.2, expose relevant characteristics of the data structures used

to store coordinates of tensor elements. Table 4.1 identi�es the properties and supported

capabilities of each level format that was described in Section 3.1.

4.1.1 Level Format Capabilities

Every level format is expected to support a set of capabilities that can be invoked to access

stored coordinates in a coordinate hierarchy level. Each capability is exposed as a set of

level functions with a �xed interface, which a level format must implement in order to

support the capability. Table 4.1 identi�es the capabilities that are supported by each level

format described in Section 3.1, and Table 4.2 shows how each level format implements

the level functions that expose those capabilities.

Level format capabilities provide an abstraction for accessing sparse tensor storage

in a format-agnostic manner. As an example, the column dimension of a CSR matrix

is represented by a compressed level, which provides the coordinate position iteration

capability. This capability is exposed as two level functions, pos_bounds and pos_access,

56

Table 4.2: De�nitions of level functions that implement the supported capabilities of all
the level formats described in Section 3.1.

Level Format Level Function De�nitions

dense

coord_bounds(. . ., pk−1, . . ., ik−1):
return {0, Nk}

coord_access(. . ., pk−1, . . ., ik):
return {pk−1 * Nk + ik, true}

locate(. . ., pk−1, . . ., ik):
return {pk−1 * Nk + ik, true}

masked

coord_bounds(. . ., pk−1, . . ., ik−1):
return {0, Nk}

coord_access(. . ., pk−1, . . ., ik):
int pk = pk−1 * Nk + ik
return {pk, mask[pk]}

locate(. . ., pk−1, . . ., ik):
int pk = pk−1 * Nk + ik
return {pk, mask[pk]}

sliced coord_bounds(. . ., pk−1, . . ., ik−1):
return {0, Wk}

coord_access(. . ., pk−1, . . ., ik):
return {pk−1 * Wk + ik, true}

compressed pos_bounds(. . ., pk−1, . . ., ik−1):
return {pos[pk−1], pos[pk−1 + 1]}

pos_access(. . ., pk, . . ., ik−1):
return {crd[pk], true}

singleton pos_bounds(. . ., pk−1, . . ., ik−1):
return {pk−1, pk−1 + 1}

pos_access(. . ., pk, . . ., ik−1):
return {crd[pk], true}

squeezed pos_bounds(. . ., pk−1, . . ., ik−1):
return {pk−1 * Kk, (pk−1 + 1) * Kk}

pos_access(. . ., pk, . . ., ik−1):
return {perm[pk - pk−1 * Kk], true}

range
coord_bounds(. . ., pk−1, . . ., ik−1):
return {max(0, -ik−1),

min(Nk, Mk - ik−1)}

coord_access(. . ., pk−1, . . ., ik):
return {pk−1 * Nk + ik, true}

offset pos_bounds(. . ., pk−1, . . ., ik−1):
return {pk−1, pk−1 + 1}

pos_access(. . ., pk, . . ., ik−1):
return {ik−1 + ik−2, true}

block pos_bounds(. . ., pk−1, . . ., ik−1):
return {pk−1, pk−1 + 1}

pos_access(. . ., pk, . . ., ik−1):
return {ik−2 + ik−4 * Bk, true}

ragged

coord_bounds(. . ., pk−1, . . ., ik−1):
return {0, pos[pk−1 + 1] - pos[pk−1]}

coord_access(. . ., pk−1, . . ., ik):
return {pos[pk−1] + ik, true}

locate(. . ., pk−1, . . ., ik):
return {pos[pk−1] + ik, 0 <= ik && ik < (pos[pk−1 + 1] - pos[pk−1])}

hashed

pos_bounds(. . ., pk−1, . . ., ik−1):
return {pk−1 * Wk, (pk−1 + 1) * Wk}

pos_access(. . ., pk, . . ., ik−1):
return {crd[pk], crd[pk] != -1}

locate(. . ., pk−1, . . ., ik):
int pk = ik % Wk + pk−1 * Wk
if (crd[pk] != ik && crd[pk] != -1) {
int end = pk
do {
pk = (pk + 1) % Wk + pk−1 * Wk

} while (crd[pk] != ik && crd[pk] != -1 && pk != end)
}
return {pk, crd[pk] == ik}

57

which compressed levels implement as shown in Table 4.2. To access the column coordinates

that are highlighted in dark gray in Figure 3-2b, one can �rst determine the range of

their positions by invoking pos_bounds with the position of row coordinate 3 as input.

One then invoke pos_access for each position in this range to get the corresponding

column coordinate. Under the hood, pos_bounds indexes the pos array to locate the crd

array segment that stores the column coordinates, while pos_access retrieves each of

the coordinates from crd. These level functions fully describe how to access CSR arrays

e�ciently while abstracting out the speci�cs from the caller. This, as we will see in

Section 4.2, makes it possible for a compiler to reason about how to e�ciently access and

compute on tensors in di�erent formats without having to hard-code for any format.

The abstract interface for array-based level formats exposes three distinct capabilities

that capture how sparse tensor storage can be e�ciently accessed: coordinate value iteration,

coordinate position iteration, and locate. Every level format must support coordinate value

iteration or coordinate position iteration, and a level format may optionally also support

the locate capability. The rest of this subsection describes these capabilities in more detail.

Coordinate Value Iteration

The coordinate value iteration capability directly iterates over coordinates in a coordinate

hierarchy level. It generalizes the method in Figure 4-1a for iterating over a dense array.

The capability is exposed as two level functions; the �rst e�ectively returns an iterator

over coordinates that are stored in a coordinate hierarchy level (coord_bounds), while the

second computes each coordinate’s position in the level (coord_access):

coord_bounds(p1, . . ., pk−1, i1, . . ., ik−1) -> {ibegink, iendk}

coord_access(p1, . . ., pk−1, i1, . . ., ik) -> {pk, found}

More precisely, given ancestor coordinates i1 to ik−1 encoded at positions p1 (in the �rst

level of the coordinate hierarchy) to pk−1 (in the (i − 1)-th level), coord_bounds returns

the bounds of an iterator over coordinates that may have those ancestors. For each

coordinate ik within those bounds, coord_access either returns the position of a child of

ik−1 that encodes ik and returns found as true, or alternatively it returns found as false if

the coordinate does not actually exist. In the general case, these functions can be invoked

58

for (int i = 0; i < size; ++i) {

3210 54

E JH

6 7 8 9

C IFBA GDvals

component value

coordinate position
coordinate value

(a) Iterating over a dense array

for (int p = pos[0]; p < pos[1]; ++p) {

3210 54

7 1411

6 7 8 9

3 12820 105

3210 54

E JH

6 7 8 9

C IFBA GD

component value

crd

vals

coordinate value

coordinate position

(b) z Iterating over a sparse array

ibegink, iendk = coord_bounds(...);
for (ik = ibegink; ik < iendk; ++ik) {
pk, found = coord_access(..., pk−1, ..., ik);
if (found) {
// coords and values dominated by ik
// at position pk encode subtensor
// B(i1, ..., ik , :, ..., :)

}
}

(c) Coordinate value iteration

pbegink, pendk = pos_bounds(...);
for (pk = pbegink; pk < pendk; ++pk) {
ik, found = pos_access(..., pk, ..., ik−1);
if (found) {
// coords and values dominated by ik
// at position pk encode subtensor
// B(i1, ..., ik , :, ..., :)

}
}

(d) Coordinate position iteration

Figure 4-1: To iterate over a dense vector, we loop over its coordinates and use them to
index into the vals array. To iterate over a sparse vector, we loop over coordinate positions
and use them to access the crd and vals arrays. Coordinate value iteration and coordinate
position iteration generalize these patterns to other array-based data structures.

to iterate over coordinates of tensor elements as demonstrated in Figure 4-1c. In practice

though, the code in Figure 4-1c can be optimized by omitting the conditional if we statically

analyze the de�nition of coord_access and determine that it always returns found as true.

Coordinate Position Iteration

The coordinate position iteration capability, on the other hand, iterates over positions of

coordinates in a coordinate hierarchy level. It generalizes the method in Figure 4-1b for

iterating over a sparse array. Again, the capability is exposed as two level functions; the �rst

e�ectively returns an iterator over positions in a coordinate hierarchy level (pos_bounds)

and the second accesses the coordinate encoded at each position (pos_access):

pos_bounds(p1, . . ., pk−1, i1, . . ., ik−1) -> {pbegink, pendk}

pos_access(p1, . . ., pk, i1, . . ., ik−1) -> {ik, found}

More precisely, given ancestor coordinates i1 to ik−1 encoded at positions p1 (in the �rst

level of the coordinate hierarchy) to pk−1 (in the (i − 1)-th level), pos_bounds returns the

59

bounds of an iterator over positions that may have a coordinate with parent at position

pk−1. For each position pk within those bounds, pos_access either returns the coordinate

encoded at that position and returns found as true, or alternatively it returns found as false

if there is no valid coordinate encoded at pk or if the coordinate at pk is not actually a child

of the coordinate at pk−1. These functions can be invoked to iterate over coordinates of

tensor elements as shown in Figure 4-1d; this code shares a similar structure as code for

coordinate value iteration, though with the roles of ik and pk reversed.

Locate

The locate capability provides constant-time random access into a coordinate hierarchy

level through a function that computes the position of a coordinate:

locate(p1, . . ., pk−1, i1, . . ., ik) -> {pk, found}

The locate function has similar semantics as coord_access. In particular, given a coordi-

nate ik−1 encoded at positionpk−1, locate attempts to �nd among its children the coordinate

ik . If locate �nds ik , then it returns the coordinate’s position pk and returns found as true;

otherwise, it returns found as false. Traversing a path in a coordinate hierarchy in order to

access a single tensor element can be done by successively invoking locate at every level.

As we will see in Section 4.2, having operands with e�cient implementations of the locate

capability leads to code that avoids having to iterate over every stored element in those

operands, which can improve compute performance.

4.1.2 Level Format Properties

Coordinate hierarchy levels may also possess up to six distinct properties: full, ordered,

unique, zeroless, branchless, and compact. These properties describe characteristics of

coordinates that are encoded in a level, such as whether or not the coordinates are arranged

in order. The column dimension of a sorted CSR matrix, for instance, is both ordered

and unique (Figure 3-3), which means that it stores each column coordinate in a row

at most once and that it stores those coordinates in increasing order. As we will see in

60

Section 4.2, our technique can generate code that exploit such level properties of sparse

tensor operands in order to improve compute performance.

Properties of coordinate hierarchy levels are invariants that are either explicitly en-

forced or implicitly assumed by the data structures storing the levels. Table 4.1 identi�es

the properties that are enforced or assumed by each level format described in Section 3.1.

Some level formats may optionally declare certain properties depending on the application;

such optional properties re�ect invariants that are not tied to how the underlying data

structures store coordinates. For example, the crd array in compressed levels typically

store coordinates in order when used in the CSR format, but the same data structure can

also store coordinates out of order. Figure 3-3 shows several examples of how level formats

with optional properties can be con�gured to represent distinct tensor formats.

The rest of this subsection describes the six level properties in more detail.

Full

A coordinate hierarchy level is full if every collection of coordinates that share the same

ancestors encompasses all valid coordinates along the corresponding tensor dimension.

For example, a level that represents a CSR matrix’s row dimension (Figure 3-2b) encodes

every row coordinate and is thus full. By contrast, a level that represents the same CSR

matrix’s column dimension is not full, since it only stores the coordinates of nonzeros.

Unique

A coordinate hierarchy level is unique if no collection of coordinates that share the same

ancestors contains duplicates. For example, a level that represents a CSR matrix’s row

dimension necessarily encodes every coordinate just once and is thus unique. By contrast,

a level that represents a COO matrix’s row dimension (Figure 3-2a) can store the same

coordinate more than once and is thus not unique.

Ordered

A coordinate hierarchy level is ordered if coordinates that share the same ancestors are

ordered in increasing value, coordinates with di�erent ancestors are ordered lexicographi-

61

cally by their ancestors, and duplicates are ordered by their parents’ positions. For example,

a level that represents a sorted CSR matrix’s column dimension is ordered, since it stores

column coordinates in the same row in increasing order. By contrast, a level that repre-

sents the column dimension of a hash map row vector (Figure 3-1c) is not ordered, since

coordinates are stored in hash order instead.

Zeroless

A coordinate hierarchy level is zeroless if every coordinate corresponds to a nonzero

or a non-empty slice of the tensor (i.e., if the coordinate is the ancestor of at least one

leaf coordinate that corresponds to a nonzero). For example, a level that represents a

fully-compressed CSR matrix’s column dimension is zeroless, since it only stores column

coordinates that correspond to nonzeros in the matrix. By contrast, a level that represents a

DIA matrix’s column dimension (Figure 3-2e) would not be zeroless if some of the column

coordinates correspond to zero padding.

Branchless

A coordinate hierarchy level is branchless if every coordinate in the parent level has exactly

one child node and each such child node encodes a coordinate. For example, the coordinate

hierarchy representation of a COO matrix consists strictly of chains of coordinates, making

the lower level branchless. By contrast, a level that represents a CSR matrix’s column

dimension can have multiple coordinates with the same parent and is thus not branchless.

Compact

A coordinate hierarchy level is compact if no two coordinates are separated by an unlabeled

node that does not encode a coordinate. For instance, a level that represents a CSR matrix’s

column dimension encodes coordinates in one contiguous range of positions and is thus

compact. By contrast, a level that represents the column dimension of a hash map row

vector is not compact, since it can have unlabeled positions that re�ect empty buckets.

62

4.2 Code Generation

I now describe how, guided only by the abstract interface described in the previous section, a

compiler can generate e�cient sparse tensor algebra code to compute on operands that may

be stored in arbitrary combinations of array-based sparse tensor formats. Our technique

generalizes that of Kjolstad et al. [54, 53], which only supported sparse tensor formats that

store nonzeros using the same arrays as CSR, to handle many more disparate formats by

only reasoning about their properties and supported capabilities. This approach decouples

a compiler’s complexity from the number of supported formats, which makes it possible

for the compiler to support many disparate formats without sacri�cing maintainability or

the performance of generated code.

4.2.1 Background

The code generation algorithm of Kjolstad et al. [54, 53] takes as input a tensor algebra

computation that is expressed in concrete index notation, which speci�es how each element

in the output tensor should be computed in terms of elements in the input tensors. Matrix

addition, for example, can be expressed in concrete index notation as ∀i∀j Aij = Bij +Cij ,

which speci�es that each element in the result is the sum of the corresponding elements in

the input tensors. Similarly, matrix multiplication can be expressed as ∀i∀j∀k Aij += BikCkj ,

which makes explicit that each element Aij in the result is the inner product of the i-th

row of B and the j-th column of C .

Computing an expression in concrete index notation requires merging its operands—

that is to say, iterating over the joint iteration space of the operands—dimension by

dimension. For instance, code to add sparse matrices must iterate over rows that have

nonzeros in either matrix and, for each such row, iterate over elements that are non-zero in

either matrix. Additive computations must iterate over the union of the operand nonzeros

(i.e., a union merge), while multiplicative computations must iterate over the intersection

of the operand nonzeros (i.e., an intersection merge). The code generation algorithm of

Kjolstad el al. generates code to merge operands by recursively emitting one or more

loops to iterate over each dimension in the joint iteration space. So to generate code that

63

;

Aij = Bij + Cij

Bi ^ Ci

CiBi

(a) Merge lattice for i dimension

Cj

;

Bj ^ Cj

Aij = Bij + Cij

CjBj

Bj

Aij = Cij Aij = Bij

BjCj

(b) Merge lattice for j dimension

Figure 4-2: Optimized merge lattices for sparse matrix addition (∀i∀j Aij = Bij +Cij), where
B is a CSR matrix and C can either be a CSR matrix or a COO matrix that is guaranteed to
contain no empty row.

computes matrix addition, for instance, the code generator �rst emits one or more loops to

iterate over the union of non-empty rows in B and C (i.e., dimension i). Then, within each

emitted loop over the non-empty rows in B andC , the code generator further emits one or

more loops to iterate over the union of nonzeros within corresponding rows in B and C

(i.e., dimension j) in order to compute the desired summation.

For each dimension—indexed by some index variable v—in the joint iteration space, its

corresponding merge lattice describes what loops are actually needed in order to merge all

input tensor dimensions that are indexed by v . Each point in the merge lattice encodes a

set of input tensor dimensions indexed by v that may contain nonzeros and that need to

be simultaneously merged in one loop. Each lattice point also encodes a sub-expression

that needs to be computed in the corresponding loop. Every path from the top lattice point

to the bottom lattice point represents a sequence of loops that might have to be executed

at runtime in order to fully merge the input tensors. Figures 4-2a and 4-2b, for instance,

show merge lattices that describe the addition of two CSR matrices. To fully merge B and

C’s column dimensions, we would start by running the loop that corresponds to the top

lattice point in Figure 4-2b, computing Aij = Bij +Cij in each iteration. This incrementally

merges the two operands until one (e.g., B) has been fully merged into the output. Then,

to also fully merge the other operand (i.e., C) into the output, we would only have to run

the loop that corresponds to the middle-left lattice point in Figure 4-2b, which computes

Aij = Cij in each iteration in order to copy the remaining nonzeros from C to the output.

64

4.2.2 Property-Based Merge Lattice Optimizations

Kjolstad et al. [54] describe how merge lattices can be simpli�ed in order to yield optimized

code. However, these optimizations were all hard-coded to dense and compressed level

formats. To generalize the optimizations so that they can be applied to any level format,

we reformulate the optimizations with respect to properties and supported capabilities of

coordinate hierarchy levels. In particular, given a merge lattice for index variable v , our

algorithm removes any lattice point that does not merge every full tensor dimension (i.e.,

a dimension represented by a full coordinate hierarchy level) that v indexes into. This

optimization is valid since full tensor dimensions are supersets of any sparse dimension, so

once we �nish iterating over and merging a full dimension we must have also visited every

coordinate in the joint iteration space. Applying this optimization gives us the optimized

merge lattice shown in Figure 4-2a, which contains just a single lattice point even though

the operation being computed requires a union merge.

Our technique also optimizes merging of any number of full tensor dimensions by

emitting code to simultaneously iterate (i.e., co-iterate) over only those that do not support

the locate capability, with the rest accessed via calls to locate. Depending on whether the

operands are unordered, this can reduce the complexity of the co-iteration and thus the

merge, assuming locate runs in constant time.

4.2.3 Merging Coordinate Hierarchy Levels

Merging dimensions of tensor operands can be equivalently viewed as merging the coor-

dinate hierarchy levels that represent those dimensions. The most e�cient method for

merging levels depends on the properties and supported capabilities of the merged levels.

Consider, for instance, the element-wise multiplication of two vectors x and y, which

requires iterating over the intersection of coordinate hierarchy levels that encode their

nonzeros. Figure 4-3 shows the asymptotically most e�cient strategies for computing the

intersection merge depending on whether the input tensors are ordered or unique and

whether they support the locate capability. These are the same strategies that our code

generation algorithm, which I describe in depth in Section 4.2.5, selects.

65

x supports
locate?

y supports
locate?

y supports
locate?

x unordered and
y ordered?

co-iterate over x
and y

iterate over x and
locate into y

iterate over y and
locate into x

no yes

no

yes yes

no

no

yes

x/y ordered
or accessed with

locate?

output
ordered and

supports position
iteration?

x/y unique?

reorder x/y

aggregate
duplicates in x/y

no

yes

no

yes

no
converted iterator

over x/y

iterator over x/y

co-iterating over x
and y?

yes

x/y unique?

no

yes

no

yes

Figure 4-3: The most e�cient strategies for computing the intersection merge of two
vectors x and y, depending on whether they support the locate capability and whether
they are ordered and unique. The sparsity structure of y is assumed to not be a strict subset
of the sparsity structure of x . The �owchart on the right describes, for each operand, what
iterator conversions are needed at runtime to compute the merge.

If neither input vector supports the locate capability, we can simultaneously iterate

(i.e., co-iterate) over the coordinate hierarchy levels that represent those vectors and

compute a new output element whenever we encounter nonzeros in both inputs that

share the same coordinate. Lines 8–20 in Figure 1-4c shows another example of this

method applied to merge the column dimensions of a CSR matrix and a COO matrix. Co-

iterating over multiple coordinate hierarchy levels does require the ability to enumerate

stored coordinates uniquely and in order. Even so, this method can be used to merge

66

coordinate hierarchy levels that are non-unique or unordered as well by applying run-

time transformations (as speci�ed in Figure 4-3) to obtain iterators that nevertheless

enumerate stored coordinates uniquely and in order. Section 4.2.4 describes these run-time

transformations (i.e., iterator conversions) in depth.

If one of the input vectors, say y, supports the locate capability (e.g., it is stored in a

dense array) however, we can instead just iterate over the non-zero elements of x and,

for each nonzero, locate the corresponding element with the same coordinate in y. Lines

2–9 in Figure 1-4b shows another example of this method applied to merge the column

dimensions of a CSR matrix and a dense matrix. This alternative method reduces the

asymptotic complexity of the merge from O(nnz(x) + nnz(y)) to O(nnz(x)) assuming

locate runs in constant time. In addition, this method does not require enumerating the

coordinates of y in order. Moreover, we do not even need to enumerate the coordinates of

x in order if there are no duplicates and we do not need to compute elements of the result

in order (i.e., if elements of the output tensor are not stored in order, or if the output tensor

supports coordinate value iteration). This method is thus ideal for computing intersection

merges of unordered coordinate hierarchy levels.

We can generalize and combine the two methods described above to compute arbitrarily

complex merges involving unions and intersections of any number of tensor operands.

At a high level, any merge can be computed by co-iterating over some subset of its

operands and, for every enumerated coordinate, locating that same coordinate in all the

remaining operands with calls to locate. Which operands need to be co-iterated can be

identi�ed recursively from the expression expr that we want to compute. In particular,

for each subexpression e = e1 op e2 in expr , let Coiter (e) denote the set of operands that

need to be co-iterated in order to compute e . If op is an operation that requires a union

merge (e.g., addition), then computing e requires co-iterating over all the operands that

would have to be co-iterated in order to separately compute e1 and e2; in other words,

Coiter (e) = Coiter (e1) ∪Coiter (e2). On the other hand, if op is an operation that requires

an intersection merge (e.g., multiplication), then the set of non-zero elements in the result

e must be a subset of non-zero elements in either e1 or e2. Thus, in order to enumerate the

coordinates of all nonzeros in the result, it su�ces to just co-iterate over the operands that

67

must be merged by e1 or e2. Without loss of generality, this lets us compute e without having

to co-iterate over operands merged by e2 that can instead be accessed with locate; in other

words,Coiter (e) = Coiter (e1)∪(Coiter (e2) \LocateCapable(e2)), where LocateCapable(e2)

denotes the set of operands merged by e2 that support the locate capability.

4.2.4 Iterator Conversion

As we saw in the previous subsection, e�cient algorithms exist for merging ordered and

unique coordinate hierarchy levels as well as for computing intersection merges involving

unordered levels that provide the locate capability. To also support computing arbitrary

merges of unordered or non-unique coordinate hierarchy levels though, we need to be able

to obtain iterators that enumerate stored coordinates in such levels uniquely and in order.

Iterator conversion refers to a set of run-time transformations that on-the-�y convert it-

erators over unordered or non-unique coordinate hierarchy levels to new iterators with the

desired properties. The rest of this subsection describes two types of iterator conversion—

deduplication and reordering—that can be composed as needed to support arbitrary merges

of any coordinate hierarchy levels. In particular, the �owchart on the right in Figure 4-3

identi�es, for each operand in an intersection merge, the speci�c iterator conversions that

are needed to merge the operand. In the next subsection, I show how our code generation

algorithm can emit code to perform these necessary iterator conversions at run time.

Deduplication

Duplicate coordinates complicate merging because it can result in the same points in

the iteration space being repeatedly visited. Iterator deduplication removes duplicate

coordinates from iterators over ordered and non-unique coordinate hierarchy levels using

a deduplication loop. Lines 5–7 in Figure 1-4c shows an example of a deduplication loop

that scans ahead and aggregates nonzeros with duplicate coordinates, resulting in an

iterator that enumerates coordinates uniquely.

When non-unique levels are at the bottom of coordinate hierarchies, our technique

emits deduplication loops that sum the values corresponding to the duplicate coordinates.

68

20 1

2

3

2

5

2

76 8 9

(a) Separate iterators over the children of dupli-
cate coordinates

20 1

2

3

2

5

2

76 8 9

(b) Chained iterator over the children of dupli-
cate coordinates

Figure 4-4: Iterator chaining chains the iterators over the children of duplicate coordi-
nates (a) into a single iterator over all the children (b). The arrows represent iterators with
start and end bounds as green and red edges.

Otherwise, the emitted deduplication loop combines iterators over the duplicate coordi-

nates’ children into a single iterator. In general, this requires assembling a scratch array to

store the child coordinates in order. Figure 4-4 shows, though, how one can avoid the need

for a scratch array by logically chaining together iterators over the children. With iterator

chaining, the starting bound of the �rst set of children and the ending bound of the last set

of children become the bounds of the chained iterator. The resulting iterator provides the

same interface as a regular coordinate position iterator and can thus participate in merging

without a scratch array. Figure 1-4c shows how iterator chaining can be used to iterate

over columns of a COO matrix. This optimization, however, requires the child and parent

coordinate hierarchy levels to both be ordered and compact. Additionally, the optimization

requires the child level to be stored in a format that supports coordinate position iteration,

and the level format’s implementation of pos_access cannot use the position of the parent

coordinate (i.e., pk−1) to access child coordinates.

Reordering

A necessary precondition for co-iterating over coordinate hierarchy levels is that it must be

possible to enumerate the stored coordinates in order. However, this might not be possible

if a coordinate hierarchy level is unordered and only supports coordinate position iteration.

Iterator reordering addresses this by assembling scratch arrays that store an ordered copy

of each unordered coordinate hierarchy level and by replacing iterators over the unordered

levels with iterators over their ordered copies. Unordered coordinate hierarchy levels can

then be merged by co-iterating over their ordered copies instead.

69

4.2.5 Code Generation Algorithm

Figure 4-5 shows our code generation algorithm, which utilizes all of the ideas described

in the previous subsections to generate e�cient sparse tensor algebra code. Each part of

the algorithm is labeled from 1 to 11; throughout the discussion of the algorithm in the

rest of this subsection, I identify relevant parts using these labels.

The algorithm shown in Figure 4-5 emits code that iterates over the proper intersections

and unions of the input tensors by invoking relevant level functions. Our technique then

specializes the emitted code to compute with tensors that are stored in speci�c formats

by mechanically inlining all level function calls. This approach bounds the complexity

of the code generation mechanism, since it only needs to account for a �nite and �xed

set of level format capabilities and properties. The result is an algorithm that naturally

supports many disparate sparse tensor formats and that can be extended to support even

more formats without requiring users to modify the compiler itself. Figure 4-6 shows an

example of code that our algorithm generates, with level function calls inlined.

Our algorithm takes as input a concrete index notation statement and, in the order

speci�ed by the ∀s, recursively invokes itself on index variables in the statement. At

each level of recursion, the algorithm generates code to iterate over the dimension that

is indexed by index-var in the joint iteration space. The algorithm begins by emitting

code that initializes iterators over the coordinate hierarchy levels representing input

tensors, which entails calling their appropriate coordinate value or position iteration level

functions (1). The algorithm also emits code to perform any necessary iterator conversion

as described in Section 4.2.4 (1, 2).

The algorithm additionally constructs a merge lattice at every level of recursion for the

dimension indexed by index-var. This is done by applying the merge lattice construction

algorithm proposed by Kjolstad et al. [54, Section 5.1] and simplifying the resulting lattice

with the �rst optimization described in Section 4.2.2. For every point Lp in the simpli�ed

merge lattice, the algorithm then emits a loop to merge the coordinate hierarchy levels

representing input tensor dimensions that need to be merged by Lp (4). The subset of

merged levels that must be co-iterated by each loop (i.e., coiter-dims(Lp)) is determined

70

lower(iv, expr):
 L := merge-lattice(iv, expr)

 for Dj in coord-value-iteration-dims(L):
 emit "int ivDj, int Dj_end = coord_iter_Dj(ivD1,...,ivDj-1);"
 for Dj in coord-pos-iteration-dims(L):
 if Dj-1 is unique or iterator for Dj is fused:
 emit "int pDj, int Dj_end = pos_iter_Dj(pDj-1);"
 else:
 emit "int pDj, _ = pos_iter_Dj(pDj-1);"
 emit "_, int Dj_end = pos_iter_Dj(Dj-1_segend - 1);"
 for Dj in noncanonical-dims(L):
 emit-scratch-array-assembly(Dj)
 if Dj is unordered:
 emit "sort(Dj_scratch, 0, Dj_end);"
 emit "int itDj = 0;"

 if result dimension Dj indexed by iv, supports append, is branching:
 emit “int pbeginDj = pDj;”
 for Lp in L:
 if iterator for each Dj in coiter-dims(Lp) is unfused:
 cdims := coiter-dims(Lp) # co-iterated dimensions
 emit “while(all(["{p|it|iv}Dj < Dj_end" for Dj in cdims])) {”

 for Dj in coord-value-iteration-dims(Lp):
 emit “int pDj, bool fDj = coord_access_Dj(pDj-1,...,ivDj);”
 emit "while (!fDj && ivDj < Dj_end)"
 emit "pDj, fDj = coord_access_Dj(pDj-1,...,++ivDj);"
 for Dj in coord-pos-iteration-dims(Lp):
 emit “int ivDj, bool fDj = pos_access_Dj(pDj,...,ivDj-1);”
 emit "while (!fDj && pDj < Dj_end)"
 emit "ivDj, fDj = pos_access_Dj(++pDj,...,ivDj-1);"
 emit "if(all([“fDj” for Dj in canonical-coiter-dims(Lp)])) {"
 for Dj in noncanonical-dims(Lp):
 emit "int ivDj = Dj_scratch[itDj].i;"
 emit "int pDj = Dj_scratch[itDj].p;"

 emit “int iv = min([“ivDj” for Dj in coiter-dims(Lp)]);”
 for Dj in locate-dims(Lp): # dimensions accessed with locate
 emit "int pDj, bool fDj = locate_Dj(pDj-1,...,iv);"

 for Dj in noncanonical-dims(Lp) U coord-pos-iteration-dims(Lp):
 emit "int Dj_segend = {p|it}Dj + 1;"
 if Dj is not unique and iterator for Dj is unfused:
 emit-deduplication-loop(Dj)

 if result dimension Dj indexed by iv, supports insert:
 emit "int pDj, _ = locate_Dj(pDj-1,...,iv);"
 for Lq in sub-lattice(Lp): # a case per lattice point below Lp
 let cdims := coiter-dims(Lq) \ full-dims(Lq)
 let ldims := locate-dims(Lq) \ full-dims(Lq)
 emit “if (all([“ivDj == iv” for Dj in cdims]) &&
 all(["fDj" for Dj in ldims])) {”
 if expr is of form ∀jv expr’:
 lower(jv, expr’)
 else:
 emit-compute-code(expr)
 if result dimension Dj indexed by iv and Dj+1 not branchless:
 emit “{insert|append}_coord_Dj(pDj,iv);”
 if Dj supports append:
 emit "pDj++;”
 while Dj is branchless:
 if Dj supports append:
 emit “append_edges_Dj(pDj-1,pDj - 1,pDj);
 Dj := Dj-1 # parent dimension in output hierarchy
 emit “append_coord_Dj(pDj,iv);”
 emit "pDj++;”
 emit “}”

 for Dj in coiter-dims(Lp):
 if Dj is not full:
 emit "if (ivDj == iv) "
 if Dj in coord-value-iteration-dims(Lp):
 emit "ivDj++;"
 else:
 emit "{p|it}Dj = Dj_segend;"
 emit "}"
 if iterator for each Dj in coiter-dims(Lp) is unfused:
 emit "}"
 if result dimension Dj indexed by iv, supports append, is branching:
 emit “append_edges_Dj(pDj-1,pbeginDj,pDj);”

1

2

4

5

3

11

3

6

7

8
9

10

6
4

3

Figure 4-5: Algorithm for generating code that computes the concrete index notation state-
ment ∀iv expr on operands stored in array-based formats by invoking their level function
implementations. The sets coord-value-iteration-dims and coord-pos-iteration-dims

exclude dimensions in noncanonical-dims, which are those that require a scratch array (as
described in Section 4.2.4) in order to be co-iterated.

71

int pC1 = C1_pos[0];
int C1_end = C1_pos[1];
while (pC1 < C1_end) {
 int iC1 = C1_crd[pC1];
 int i = iC1;
 int pB1 = (0 * B1_N) + i;
 int C1_segend = pC1 + 1;
 while (C1_segend < C1_end &&
 C1_crd[C1_segend] == i)
 C1_segend++;
 int pA1 = (0 * A1_N) + i;
 int pB2 = B2_pos[pB1];
 int B2_end = B2_pos[pB1 + 1];
 int pC2 = pC1;
 int C2_end = C1_segend;
 while (pB2 < B2_end &&
 pC2 < C2_end) {
 int jB2 = B2_crd[pB2];
 int jC2 = C2_crd[pC2];
 int j = min(jB2, jC2);
 int B2_segend = pB2 + 1;
 int C2_segend = pC2 + 1;
 int pA2 = (pA1 * A2_N) + j;
 if (jB2 == j && jC2 == j) {
 A[pA2] = B[pB2] + C[pC2];
 } else if (jB == j) {
 A[pA2] = B[pB2];
 } else if (jC == j) {
 A[pA2] = C[pC2];
 }
 if (jB2 == j) pB2 = B2_segend;
 if (jC2 == j) pC2 = C2_segend;
 }
 while (pB2 < B2_end) {
 int jB2 = B2_crd[pB2];
 int j = jB2;
 int B2_segend = pB2 + 1;
 int pA2 = (pA1 * A2_N) + j;
 A[pA2] = B[pB2];
 pB2 = B2_segend;
 }
 while (pC2 < C2_end) {
 int jC2 = C2_crd[pC2];
 int j = jC2;
 int C2_segend = pC2 + 1;
 int pA2 = (pA1 * A2_N) + j;
 A[pA2] = C[pC2];
 pC2 = C2_segend;
 }
 pC1 = C1_segend;
}

1
4

9

1

4

5
8

11

4

4

5
8

11

5
8

11
4

11
4

8
5

10

3

3

10

10
3

10
3

Figure 4-6: Code that our technique generates—with level function calls inlined—for adding
a CSR matrix and a COO matrix with no empty row, with the result stored in a dense array.

by applying the recursive algorithm described in Section 4.2.3 (with the subexpression to be

computed by Lp as input) and applying the second optimization described in Section 4.2.2.

Within each loop, the generated code dereferences (potentially converted) iterators over

the levels that must be co-iterated (5, 7, 10), making sure to not inadvertently dereference

any iterator that has exceeded its ending bound (6). The next coordinate to be visited in

72

the joint iteration space, iv , is then computed (8) and used to index into the levels that can

instead be accessed with the locate capability (9). At the end of each loop iteration, the

generated code advances every iterator that referenced the merged coordinate iv (11), so

that subsequent iterations of the loop will not visit the same coordinate again.

Within each loop, the generated code must also actually compute the value of the result

tensor at each coordinate as well as assemble the output data structures for storing those

values (3). The algorithm emits specialized compute and assembly code for each merge

lattice point that is dominated by Lp , which handles the case where the corresponding

subset of inputs contain nonzeros at the same coordinate. Chapter 6 describes how our

technique emits assembly code in more depth.

Fusing Iterators By default, at every level of recursion, our algorithm emits loops

that iterate over a single coordinate hierarchy level of each input tensor. However, an

optimization that improves performance when computing with formats like COO entails

emitting code that simultaneously iterates over multiple coordinate hierarchy levels of one

tensor. Our algorithm implements this optimization by fusing iterators over branchless

levels with iterators over their preceding levels. This is legal as long as the fused iterators

do not need to participate in co-iteration (i.e., if the other levels to be merged can be

accessed with the locate capability). The algorithm then avoids emitting loops for levels

accessed by fused iterators (4), which eliminates unnecessary branching overhead. For

some computations, however, this optimization transforms the emitted kernel from gather

code that enumerates each result nonzero once to scatter code that accumulates into the

output. In such cases, our algorithm ensures that the output also supports the locate

capability. Figure 1-4a gives an example of code that our technique generates with this

optimization, which iterates over two tensor dimensions with a single loop.

4.3 Chapter Summary

In this chapter, we saw how array-based level formats can be precisely de�ned by imple-

menting an abstract interface that exposes properties of the stored data and that captures

73

how the stored data can be e�ciently accessed. We further saw how a compiler can use

implementations of this abstract interface to generate e�cient code for computing on

sparse tensors that are stored in array-based level formats. As we will see, however, such

an approach does not readily generalize to pointer-based level formats. In the next chapter,

we will see how pointer-based level formats can be precisely de�ned by instead specifying

how the underlying pointer-based data structures organize stored elements in memory.

Meanwhile, in Chapter 6, we will see how our technique can also generate e�cient code

for storing the results of sparse tensor operations in array-based level formats.

74

Chapter 5

Supporting Pointer-Based Formats

In the previous chapter, we saw how, by utilizing implementations of level functions that

de�ne how tensors stored in di�erent array-based formats can be e�ciently accessed,

a compiler can generate e�cient code to compute on tensors stored in those formats.

Unfortunately, while such an approach su�ces for supporting array-based tensor formats,

the same approach falls short in supporting pointer-based tensor formats for several rea-

sons. For one thing, as the example in Figure 1-5c demonstrates, iterators that e�ciently

enumerate the stored elements of pointer-based data structures like BSTs are often much

more sophisticated than equivalent iterators for array-based data structures. Thus, requir-

ing users to correctly implement level functions that describe how to e�ciently iterate

over pointer-based formats would make the compiler much more di�cult for non-expert

users to use. For another, even if users can manually implement e�cient iterators for

pointer-based formats, as the example in Figure 1-5b illustrates, such iterators alone would

not be enough to support e�ciently computing all possible sparse tensor computations.

In this chapter, I describe how we generalize our technique to support pointer-based

level formats, which store coordinates of nonzeros using pointer-based data structures

such as linked lists and BSTs. In particular, I �rst show how pointer-based level formats

can be precisely de�ned using a language we developed that we call the node schema

language, which lets users specify exactly how the underlying data structures organize

stored elements in memory (Section 5.1). I then describe how, guided by such speci�cations

of pointer-based level formats, a compiler can generate e�cient code to compute tensor

75

algebra operations on operands that may be stored in arbitrary combinations of pointer-

based sparse tensor formats (Section 5.2). Again, each pointer-based level format can

be de�ned completely independently of other formats, which makes it practical to add

support for a large number of formats. And by again decoupling speci�cations of formats

from the code generation mechanism, our approach makes it possible to add support for

new pointer-based formats without modifying the compiler itself. Furthermore, by relying

on speci�cations that do not implement speci�c algorithms for accessing pointer-based

data structures, a compiler can use the same speci�cations to generate code that access

the same sparse tensors in very di�erent ways depending on what computation needs to

be performed. The result is a compiler that, without sacri�cing ease of use, can achieve

good performance across a wide range of computations on sparse tensors that are stored

in a wide range of formats.

5.1 Node Schema Language

A wide range of pointer-based data structures, including all those described in Section 2.2,

can be modeled as collections of nodes that are stored non-contiguously in memory, with

each node storing a subset of elements. To precisely de�ne a pointer-based level format

that uses any one of the aforementioned data structures to store coordinates of nonzeros,

our technique requires a user to provide schemas of the data structure’s nodes, which

specify how stored coordinates are distributed amongst nodes and how nodes are linked

together. These schemas can be expressed using the node schema language, the syntax for

which is provided in Figure 5-1.

The node schema language allows users to de�ne nodes that can contain an arbitrary

number of �elds, each of which may store coordinates of nonzeros or store references to

other nodes. As an example, Figure 5-2 shows how binary search trees can be precisely

de�ned using the node schema language. In particular, a binary search tree consists of two

types of nodes: a bst_root node, which simply stores a reference to the root of the tree, and

bst nodes, which actually contain the nonzeros. The schema for bst nodes speci�es that

each node stores a coordinate e (and its corresponding nonzero or non-empty subtensor)

76

〈node_schema〉 ::= 〈supertype_def 〉∗ 〈node_def 〉+

〈supertype_def 〉 ::= ‘def’ ‘supertype’ 〈name〉

〈node_def 〉 ::= ‘def’ 〈name〉 [‘:’ 〈name〉] ‘{’ 〈�eld_def 〉+ [〈sequence_def 〉] ‘}’

〈�eld_def 〉 ::= 〈name〉 ‘:’ 〈type〉

〈type〉 ::= 〈elem_type〉 | 〈child_type〉 | 〈size_type〉 | 〈metadata_type〉 | ‘parent’

〈elem_type〉 ::= ‘elem’ [〈array_type〉] [‘nonempty’]

〈child_type〉 ::= 〈name〉 [〈array_type〉] [‘nonempty’]

〈array_type〉 ::= ‘[’ (〈name〉 | 〈const〉) ‘]’

〈size_type〉 ::= ‘size’ [‘in’ 〈array_size〉]

〈array_size〉 ::= ‘[’ 〈const〉 ‘,’ (〈const〉 | ‘*’) ‘]’

〈metadata_type〉 ::= ‘bool’ | ‘int8’ | ‘uint8’ | ‘int16’ | ‘uint16’ ...

〈sequence_def 〉 ::= ‘seq’ ‘=’ 〈seq_entry〉 (‘,’ 〈seq_entry〉)∗

〈seq_entry〉 ::= 〈name〉 | ‘{’ 〈name〉 (‘,’ 〈name〉)∗ ‘}’

Figure 5-1: Syntax of the node schema language.

def bst_root {
 r : bst
}

def bst {
 e : elem nonempty
 l : bst
 r : bst
 seq = l, e, r
}

6: N1: F

3: H

Figure 5-2: The node schemas for a BST precisely speci�es how the coordinates (and
values) of nonzeros are stored in nodes of a BST and how these nodes are linked together.

as well as stores references to up to two child nodes l and r, both of which are of the

same type. (The nonempty annotation speci�es that each node must store exactly one

coordinate and cannot be empty.) Furthermore, the schema contains a sequence attribute

(seq) that speci�es the ordering of coordinates stored by all reachable nodes; in particular,

all coordinates reachable from l must be smaller than e, which in turns must be smaller

than all coordinates reachable from r. Meanwhile, the schema for the bst_root node

speci�es that it stores a reference to the root node r, which may be null if the tree is empty.

The node schema language assumes, by default, that any data structure being de�ned is

acyclic. This means that, for instance, while a bst node may store references to child nodes

77

of the same type, it cannot store a reference to an ancestor node as its child. (That said,

as Figure 5-3e demonstrates, one can de�ne a variant of BSTs that stores a reference to

each node’s parent in a parent �eld. As the example also shows though, a node’s sequence

attribute cannot constrain the ordering of coordinates that are stored in a parent node.)

Nodes in a pointer-based data structure may be de�ned to store more than one nonzero.

Figure 5-3d, for instance, shows how T-trees [63], which generalize BSTs by having each

node store a bounded-size block of elements, can be precisely de�ned. In particular, the

schema for ttree nodes speci�es that each node can store multiple coordinates (and their

corresponding nonzeros or non-empty subtensors) contiguously in an array e, with the

exact number of nonzeros that e contains being stored in a separate �eld B. Di�erent nodes

may store di�erent numbers of nonzeros, but the in clause (in the declaration of the B �eld)

constrains each node to contain at least one and at most four nonzeros. Like with BSTs,

the sequence attribute speci�es that all coordinates stored in a node (in array e) are larger

than all coordinates that are stored in the left subtree l but smaller than all coordinates

that are stored in the right subtree r. Additionally though, the {e} term in the sequence

attribute indicates that coordinates are stored within e in increasing order. This means

that e[0] stores the smallest coordinate, e[1] stores the second-smallest coordinate, and so

on. More generally, a sequence attribute term that is enclosed within braces may reference

multiple arrays, which speci�es that the array elements are ordered in interleaving order.

So, for instance, the term {e, cr} in the sequence attribute for internal nodes of B-trees

(Figure 5-3g) denotes that e[0] is smaller than all coordinates that are stored in the subtree

cr[0], which in turn are all smaller than e[1], and so on.

Annotations to node schemas and their �elds, including nonempty annotations as well

as sequence attributes, are strictly optional, making it possible to de�ne many practical

variants of a pointer-based data structure. Figures 5-3b and 5-4, for instance, show how

the node schema language can be used to de�ne four variants of block linked lists, each of

which pads blocks and orders stored coordinates in a di�erent way. Similarly, Figure 5-3f

shows how a declaration of a size �eld can omit the in clause, indicating that the size of

an array �eld is unconstrained. This makes it possible to precisely de�ne a C-tree, which,

unlike T-trees, does not strictly limit the number of coordinates stored in each node.

78

def list {
e : elem nonempty
n : list
seq = {e}, n

}

def list_head {
h : list

}

(a) Linked list

def blist {
e : elem[B] nonempty
n : blist
B : size in [0, 3]
seq = {e}, n

}

def blist_head {
h : blist

}

(b) Block linked list

def vblist {
e : elem[B] nonempty
n : vblist
B : size
seq = {e}, n

}

def vblist_head {
h : vblist

}

(c) Variable block linked list

def ttree {
e : elem[B] nonempty
l : ttree
r : ttree
B : size in [1, 5]
seq = l, {e}, r

}

def ttree_root {
r : ttree

}

(d) T-tree

def rbtree {
e : elem nonempty
l : rbtree
r : rbtree
p : parent
c : bool
seq = l, e, r

}

def rbtree_root {
r : rbtree

}

(e) Red-black tree

def tree {
h : elem nonempty
t : chunk
l : tree
r : tree
seq = l, h, t, r

}

def chunk {
e : elem[N] nonempty
N : size
seq = {e}

}

def ctree {
p : chunk
r : tree
seq = p, r

}

(f) C-tree

def supertype btree

def btree_internal : btree {
e : elem[B] nonempty
cf : btree nonempty
cr : btree[B] nonempty
B : size in [1, 3]
seq = cf, {e, cr}

}

def btree_leaf : btree {
e : elem[B] nonempty
B : size in [1, 3]
seq = {e}

}

def btree_root {
r : btree

}

(g) B-tree

def hybrid {
e : elem[B] nonempty
r : btree
B : size in [0, 5]
seq = {e}, r

}

(h) Fixed-size array/B-tree hybrid

Figure 5-3: Node schemas for a wide range of pointer-based data structures, including all
those shown in Figure 2-4.

A pointer-based data structure may further be de�ned to consist of multiple types of

nodes that store coordinates of nonzeros in di�erent ways. Figure 5-3f demonstrates, for

instance, how C-trees can be expressed in the node schema language by de�ning two types

of nodes—tree and chunk—for storing coordinates. In particular, tree nodes organize all

of the head elements into a BST, with each node storing a single head element in its h �eld.

Meanwhile, each chunk node uses a single array e to store either the C-tree’s pre�x or all

tail elements that correspond to a particular head element.

79

def blist {
e : elem[B]
n : blist
B : size in [0, 3]
seq = {e}, n

}

0: C

-1 4: D

(a) With possibly empty slots
up to position B in each block

def blist {
e : elem[3]
n : blist
seq = {e}, n

}

0: C -1 -1

-1 4: D -1

(b) With possibly empty slots
anywhere in each block

def blist {
e : elem[3]
n : blist

}

4: D 3: A -1

0: C -1 1: E

(c) With stored coordi-
nates unsorted

Figure 5-4: The node schema language can describe many variants of block linked lists.
In the sub�gures above, unlabeled slots are those that, at run time, can automatically be
assumed to not store any nonzero (i.e., must be empty) and can therefore be skipped when
iterated over. Slots labeled "-1", on the other hand, might store nonzeros (i.e., are only
possibly empty) and must therefore be explicitly checked when iterated over.

While di�erent types of nodes may possess di�erent sets of �elds, they can nevertheless

share a common supertype, which allows a single reference to point to a node that is of

one of several di�erent types. For instance, B-trees consist of two types of nodes: internal

nodes, which need to store references to child nodes, and child nodes, which can omit

those references to reduce space usage. As Figure 5-3g shows, by de�ning internal nodes

(btree_internal) and leaf nodes (btree_leaf) to be of the same supertype btree, a user

can specify that each child of an internal node may itself be another internal node or,

alternatively, be a leaf node.

Finally, the node schema language allows users to specify that nodes store additional

metadata, which may not be strictly needed to store coordinates of nonzeros but are useful

for other purposes. For instance, Figure 5-3e shows how a node in a red-black tree can be

de�ned to store a reference to its parent (in �eld p) as well as another �eld c that represents

the node’s color; these �elds are needed to support e�cient insertions into a red-black tree

while keeping the tree balanced.

5.2 Code Generation

I now describe how we generalize the technique that was presented in Section 4.2 so

that it also generates e�cient code to compute on sparse tensors stored in pointer-based

80

struct bst {
pair<int32_t,double> e;
bst* r;
bst* l;

};

(a) BST

struct blist {
pair<int32_t,double> e[3];
blist* n;
int32_t B;

};

(b) Block linked list

struct btree {
enum type { btree_internal, btree_leaf };
type tp;

};

struct btree_internal : public btree {
pair<int32_t,double> e[3];
btree* cf;
btree* cr[3];
int32_t B;

};

struct btree_leaf : public btree {
pair<int32_t,double> e[3];
int32_t B;

};

(c) B-tree

Figure 5-5: Examples of structs that our technique emits for storing di�erent pointer-based
data structures.

formats. As before, our technique takes as input a a tensor algebra computation expressed

in concrete index notation and recursively emits imperative (C++) code to iterate (or map)

over each dimension of the operand tensors. The remainder of this section will thus focus

on how our technique generates code to e�ciently compute on nonzeros along just one

dimension. In particular, I show how speci�cations of pointer-based level formats that

are implemented in the node schema language may be used to generate code that can be

optimized in very di�erent ways for di�erent computations and operand formats. The

result is a compiler that reduces the e�ort needed to e�ciently work with sparse tensors

stored in pointer-based formats.

5.2.1 Generating Node Type Declarations

Before generating code to compute on sparse tensors that are stored in pointer-based

formats, our technique �rst emits code to declare structs that represent nodes of the

underlying data structures and that the generated code can actually work with. These

structs are directly generated from node schemas, with one struct generated for each node

schema. Figure 5-5 shows representative examples of structs that our technique generates

for storing some of the pointer-based data structures de�ned in Section 5.1.

Table 5.1 shows how our technique translates scalar �elds in a node schema to �elds in

the corresponding struct. Array �elds are translated in a similar same way, except each

81

Table 5.1: Translation of (scalar) �elds in a node schema to �elds in the corresponding
emitted struct. Array �elds in a node schema can be similarly translated, except with the
corresponding �elds in the emitted struct being arrays as well.

Field in Schema Field in Emitted Struct Notes

f : elem pair<int32_t,V> f
First element of emitted pair stores coordinate of nonzero (or -1
if no nonzero is stored). Second element of emitted pair stores
value of nonzero or pointer to data structure storing a subtensor.

f : node_type node_type* f
f : size int32_t f
f : parent T* f T is struct type being emitted (or its supertype, if applicable).
f : bool bool f
f : [u]intN [u]intN_t f N ∈ {8, 16, 32, 64}

emitted �eld is either an array member (e.g., int32_t f[4]) or a pointer into an array

(e.g., int32_t* f). By default, array �elds are translated to pointers to arrays that can be

allocated separately from their containing struct. However, if an array �eld’s size is either

a constant N or upper-bounded by an in clause to be N, then the �eld is instead translated to

an array member of size N; this speeds up accesses to the array at run-time by eliminating

an indirection. Additionally, if a node only has one array �eld with an unbounded size,

then our technique similarly translates the �eld to a zero-length array member1 that stores

its elements contiguously with the other �elds of the node.

Finally, to support having di�erent types of nodes share a common supertype, our

technique emits a struct for each supertype T, and all other emitted structs that correspond

to T’s subtypes inherit from T’s corresponding struct. T’s corresponding struct contains

a single member tp, which stores an enumeration that is intended for keeping track of a

node’s concrete type at run-time.

5.2.2 Generating Map Functions

As pointed out in Section 4.2.3, when the non-zero elements of a tensor algebra computa-

tion’s result is known to be a subset of an operandT ’s non-zero elements, the computation

can always be performed by simply mapping over and computing with each of T ’s nonze-

ros. In particular, this is the case for all multiplicative computations such as element-wise

1Zero-length array members are not technically permitted in standard C++, though they are supported
in practice by most C++ compilers (including GCC and LLVM for instance) as extensions.

82

vector multiplication (∀i ai = bici), since multiplication produces a non-zero result only if

all operands are also non-zero. Thus, when one operand of such a computation is stored in

a pointer-based level format while the rest are stored in (array-based) formats that support

e�cient random access of stored elements (i.e., the locate capability), our technique emits

code that maps over the pointer-based data structure to perform the computation. More

precisely, our technique does this when Coiter (e) (i.e., the set of operands that needs to be

co-iterated in order to compute an expression e , as described in Section 4.2.3) consists of

only a single operand and that operand is stored in a pointer-based level format.

Let T represent a sparse tensor stored using pointer-based level formats. To generate

sequential code that maps over a dimension of T and performs some speci�c computation

at each stored coordinate, our technique applies the algorithm shown in Figure 5-6. Our

technique emits a map function for every type of node in the underlying pointer-based

data structure. Figure 5-7a shows an example map function that our technique generates

for mapping over nodes in a binary search tree in order to compute element-wise vector

multiplication on a vector that is stored using the bst level format. Each emitted function

processes all elem �elds in the input node. At each coordinate stored in an elem �eld, the

emitted function performs the speci�ed computation with the corresponding nonzero

(or non-empty subtensor) of T , which is also stored as part of the elem �eld (lines 6–7

in Figure 5-7a). If the computation involves other operands, then the emitted function

random accesses those other operands (by invoking their implementations of locate) in

order to load their corresponding elements before performing the computation (line 7 in

Figure 5-7a). Additionally, in the general case, the emitted function maps over nonzeros

that are stored in descendants of the input node by (recursively) invoking the appropriate

map function to process each child of the input node (lines 4–5 and 8–9 in Figure 5-7a). By

default, as shown in Figure 5-7a, our technique emits code that computes on T ’s stored

nonzeros in coordinate order as speci�ed by the input node’s sequence attribute. However,

if the input node does not provide a sequence attribute, then our technique simply emits

code to process the input node’s �elds in the order they are declared in the node schema.

The above approach generates correct code for any pointer-based data structure that

can be expressed using the node schema language. However, for data structures such as

83

emit_map(iv, expr, b):
 body := lower(expr, b) # emit code to compute expr

 V := ... # data type of elements in tensor b
 vars = ... # variables referenced by body
 params := [", typeof(v) v" foreach v in vars].join()
 args := [", v" foreach v in vars].join()

 foreach schema in tensor b’s node schemas:
 T := ... # node type declared by schema
 emit "void map_b(T* b params) {"
 emit "if (b) {"
 if schema is a supertype:
 foreach aschema in tensor b’s node schemas:
 S := ... # node type declared by aschema
 if S is subtype of T:
 emit "if (b->tp == T::S)”
 emit "map_b((S*)b args);"
 else:
 foreach term in schema’s sequence attribute:
 if term is a field:
 if term is an elem field:
 emit "{"
 emit "int32_t iv = b->term.first;"
 emit "V v = b->term.second;"
 if term is not nonempty:
 emit "if (iv != -1) {"
 emit "body"
 if term is not nonempty:
 emit "}"
 emit "}"
 else: # term is a child field
 if term is not nonempty:
 emit "if (b->term)"
 emit "map_b(b->term args);"
 else: # term is a set of array fields
 if size of array fields is constant N:
 bnd := N
 else:
 sz := ... # field storing size of arrays
 bnd := "b->sz"
 emit "for (int32_t p = 0; p < bnd; p++) {"
 foreach entry in term:
 if entry is an elem field:
 emit "{"
 emit "int32_t iv = b->term[p].first;"
 emit "V v = b->term[p].second;"
 if term is not nonempty:
 emit "if (iv != -1) {"
 emit "body"
 if term is not nonempty:
 emit "}"
 emit "}"
 else: # entry is a child field
 if term is not nonempty:
 emit "if (b->term[p])"
 emit "map_b(b->term[p] args);"
 emit "}"
 emit "}"
 emit "}"

Figure 5-6: Algorithm for generating sequential code that maps over nonzeros in operand
tensorb in order to compute the concrete index notation statement ∀iv expr . The algorithm
assumes that each node schema contains a sequence attribute; if there is not one, the
algorithm emits code for each �eld in the order they are declared in the node schema. The
algorithm also does not show tail call optimization applied.

84

1 void map_b(bst* b, double* a,
2 double* c) {
3 if (b) {
4 if (b->l)
5 map_b(b->l, a, c);
6 int32_t i = b->e.first;
7 a[i] = b->e.second * c[i];
8 if (b->r)
9 map_b(b->r, a, c);

10 }
11 }

(a) Sequential map over BST

1 void map_b(blist* b, double* a, double* c) {
2 while (b) {
3 for (int32_t p = 0; p < b->B; p++) {
4 int32_t i = b->e[p].first;
5 a[i] = b->e[p].second * c[i];
6 }
7 b = b->n;
8 }
9 }

(b) Sequential map over block linked list

1 void map_b(bst* b, double* a,
2 double* c, uint8_t d) {
3 if (b) {
4 if (d != 0) {
5 if (b->l)
6 #pragma omp task
7 map_b(b->l, a, c, d - 1);
8 if (b->r)
9 #pragma omp task

10 map_b(b->r, a, c, d - 1);
11 int32_t i = b->e.first;
12 a[i] = b->e.second * c[i];
13 } else {
14 map_b(b, a, c);
15 }
16 }
17 }

(c) Parallel map over BST

1 void map_b(blist* b, double* a, double* c) {
2 while (b) {
3 #pragma omp task
4 for (int32_t p = 0; p < b->B; p++) {
5 int32_t i = b->e[p].first;
6 a[i] = b->e[p].second * c[i];
7 }
8 b = b->n;
9 }

10 }

(d) Parallel map over block linked list

Figure 5-7: Examples of map functions that our technique emits. Note that Cilk-parallelized
code can be similarly generated by replacing OpenMP pragmas with Cilk keywords.

linked lists that do not exhibit any fanout (i.e., those comprised of nodes that each has

exactly one child), this approach can cause stack over�ows at run time if the input data

structure contains too many nodes. Thus, for any type of node that has exactly one child of

the same type, our technique applies tail call optimization to instead emit a map function

that uses a loop to iterate over all of the input node’s descendants. (Our technique can

trivially determine if a type of node has exactly one child of the same type by inspecting

its schema.) Figure 5-7b shows an example of code that our technique emits for mapping

over a block linked list using this approach.

Our technique also generates parallelized map functions in a similar way as sequential

map functions. For any input node that has exactly one child of the same type (e.g., block

linked list nodes), our technique parallelizes the processing of its descendants by emitting

code that spawns a new task to compute on nonzeros stored in each node (lines 3–7 in

85

Figure 5-7d). Meanwhile, for all other types of nodes, our technique emits code that spawns

new parallel tasks to process each child of the input node (lines 5–10 in Figure 5-7c). To

avoid spawning too many �ne-grained tasks, the emitted code keeps track of the depth of

recursion (parameter d in Figure 5-7c) and, once a certain depth has been reached, switches

back to a sequential version of the map function (lines 13–14 in Figure 5-7c).

Finally, to support mapping over nodes that are subtypes of some supertype, our tech-

nique emits a map function for each supertype that simply checks the input node’s concrete

type and invokes the concrete type’s map function in order to actually compute on the

input node. So to map over a child of a B-tree node, for instance, the generated code would

invoke a map function that takes any instance of btree as argument. This function would,

in turn, simply invoke a second map function (which performs the actual computation) that

only takes an instance of either btree_internal or btree_leaf as argument, depending

on if the child is an internal node (i.e., if tp == btree::btree_internal) or a leaf node.

5.2.3 Generating Iterators

In general though, computing a sparse tensor algebra operation may require co-iterating

over multiple operands that are all stored in pointer-based level formats, which cannot

be done using map functions like those described in the previous subsection. To support

such computations, our technique emits code that uses a set of loops to co-iterate over the

operands and compute with the intersections or unions of their nonzeros, as Figure 1-5c

demonstrates for instance. A compiler can apply the same algorithm that was described

in Section 4.2.5 in order to generate loops that co-iterate over operands stored in pointer-

based level formats. Unlike with array-based level formats though, our technique does

not require users to implement level functions that describe how to iterate over stored

coordinates in pointer-based level formats. Thus, the compiler has to also automatically

generate e�cient iterators for operands that are stored in pointer-based level formats,

given only node schemas that de�ne those formats.

To generate an iterator that enumerates stored coordinates (and corresponding values)

in a pointer-based level format, our technique �rst mechanically emits a (recursive) corou-

tine for every type of node that may be contained in the underlying data structure. This

86

emit_iterator(b):
 V := ... # data type of elements in tensor b

 foreach schema in tensor b’s node schemas:
 T := ... # node type declared by schema
 emit "pair<int32_t,V> iter_T(T* b) {"
 emit "if (b) {"
 if schema is a supertype:
 foreach aschema in tensor b’s node schemas:
 S := ... # node type declared by aschema
 if S is subtype of T:
 emit "if (b->tp == T::S)”
 emit “yield iter_S((S*)b);”
 else:
 foreach term in schema’s sequence attribute:
 if term is a field:
 if term is an elem field:
 if term is not nonempty:
 emit "{"
 emit "int32_t i = b->term.first;"
 emit "if (i != -1)"
 emit "yield b->term;"
 if term is not nonempty:
 emit "}"
 else: # term is a child field
 if term is not nonempty:
 emit "if (b->term)"
 S := ... # node type of term
 emit "yield iter_S(b->term);"
 else: # term is a set of array fields
 if size of array fields is constant N:
 bnd := N
 else:
 sz := ... # field storing size of arrays
 bnd := "b->sz"
 emit "for (int32_t p = 0; p < bnd; p++) {"
 foreach entry in term:
 if entry is an elem field:
 if term is not nonempty:
 emit "{"
 emit "int32_t i = b->term[p].first;"
 emit "if (i != -1)"
 emit "yield b->term;"
 if term is not nonempty:
 emit "}"
 else: # entry is a child field
 if term is not nonempty:
 emit "if (b->term[p])"
 S := ... # node type of term
 emit "yield iter_S(b->term[p]);"
 emit "}"
 emit "}"
 emit "}"

Figure 5-8: Algorithm for generating unoptimized iterators that enumerate nonzeros of
any tensor stored in the same format as tensor b.

is done by applying the algorithm shown in Figure 5-8. Figure 5-9a shows an example

coroutine that our technique generates for iterating over a binary search tree. Each emitted

coroutine accesses all of the input node’s stored nonzeros (or, more generally, non-empty

subtensors) and child nodes in the order speci�ed by the input node’s sequence attribute.

For each nonzero, the emitted code simply yields the coordinate and value of that nonzero

87

1 pair<int32_t,double> iter_bst(bst* n) {
2 if (n) {
3 if (n->l)
4 yield iter_bst(n->l);
5 yield n->e;
6 if (n->r)
7 yield iter_bst(n->r);
8 }
9 }

(a) Unoptimized iterator

1 pair<int32_t,double> iter_bst(bst* n) {
2 while (n) {
3 if (n->l)
4 yield iter_bst(n->l);
5 yield n->e;
6 n = n->r;
7 }
8 }

(b) After tail call optimization

1 pair<int32_t,double> iter_bst(bst* n) {
2 call_stack<uint8_t,bst*> cs;
3 cs.emplace(0, n);
4 while (!cs.empty()) {
5 n = get<1>(cs.top());
6 if (get<0>(cs.top()) == 1)
7 goto call_resume1;
8 while (n) {
9 if (n->l) {

10 get<0>(cs.top()) = 1;
11 get<1>(cs.top()) = n;
12 cs.emplace(0, n->l);
13 goto call_end;
14 call_resume1:;
15 }
16 yield n->e;
17 n = n->r;
18 }
19 cs.pop();
20 call_end:;
21 }
22 }

(c) After recursion elimination

Figure 5-9: Steps involved in generating an optimized iterator for BSTs. The �nal code is
shown in Figure 1-5c.

(line 5 in Figure 5-9a). For each child node, on the other hand, the emitted code (recursively)

invokes the appropriate coroutine to yield all nonzeros that are stored in the child node

and its descendants (lines 3–4 and 6–7 in Figure 5-9a). The same technique applies if

the input node stores non-empty subtensors as opposed to (scalar) nonzeros, except the

emitted coroutine yields references to the stored non-empty subtensors instead.

Our technique then applies a set of optimizations to each emitted coroutine in order

to obtain a signi�cantly more optimized iterator. First our technique applies tail call

optimization in order to reduce the number of recursive calls. Additionally, if the input

node has child nodes of other types, all invocations of iterators for those nodes are inlined,

yielding a coroutine that only has recursive calls to itself. Then, to eliminate the overhead

of recursive calls to a coroutine, our technique rewrites the coroutine so that it emulates

recursion using a loop with an explicit call stack, which stores the local variables and

state of each recursive call. Finally, to obtain code that does not rely on language support

for coroutines (and that can thus be compiled with pre-C++20 compilers or even trivially

translated to C), our technique rewrites the coroutine to a function that, when invoked,

yields the next stored coordinate and value as output parameters. Figure 5-9 show how

88

our technique applies these optimizations to the unoptimized code in Figure 5-9a in order

to generate an e�cient iterator for the bst level format, which is shown in Figure 1-5c (i.e.,

the function iter_bst). Then, by applying a straightforward extension of the algorithm

described in Section 4.2.5, a compiler can emit code that uses the generated iterator to

co-iterate over tensors that are stored using BSTs and tensors that may be stored in any

other format, including block linked lists (Figure 1-5c) or sparse arrays (Figure 6-3).

The iterators that our technique generates, unlike the recursive map functions de-

scribed in the previous subsection, can be used for any sparse tensor algebra computation.

This includes all computations that are readily supported by recursive map functions. Nev-

ertheless, such computations can generally still be more e�ciently performed with map

functions that our technique generates. For one thing, our technique can often generate

e�cient parallelized map functions to perform these computations, whereas iterators that

our technique generates are inherently sequential. For another, as I will demonstrate in

Section 7.3.4, iterators that our technique generates may incur non-negligible performance

overhead even when compared to sequential map functions. Thus, only for computations

that cannot be readily implemented using recursive map functions (i.e., those that have to

co-iterate over multiple sparse operands) does our technique default to generating code

that relies on iterators.

5.3 Chapter Summary

In this chapter, we saw how pointer-based level formats can be precisely de�ned by

specifying how the underlying data structures organize stored elements in memory. We

further saw how a compiler can use such speci�cations of pointer-based data structures to

generate e�cient code for computing on sparse tensors that are stored in pointer-based

level formats. In the next chapter, we will see how our technique can also generate e�cient

code for storing the results of sparse tensor operations in pointer-based level formats.

89

90

Chapter 6

Supporting Sparse Tensor Assembly

In the previous two chapters, we focused on how a compiler can generate e�cient code

to compute on sparse tensor operands that may be stored in arbitrary combinations of

array-based and pointer-based formats. However, the results of sparse tensor algebra

computations are often themselves sparse, and these result tensors can also be potentially

stored in any of the same formats that are used to store the operands.

In this chapter, I present an abstract interface that captures the distinct ways in which

sparse tensors can be e�ciently assembled in order (Section 6.1) or out of order (Section 6.2)

in disparate array-based and pointer-based formats. As before, our abstract interface can

be implemented for each format completely independently of other formats, which makes

it practical to add support for a large number of formats. I further describe how, guided by

implementations of this abstract interface, a compiler can generate e�cient code to store

the results of sparse tensor computations in the aforementioned formats.

6.1 In-Order Assembly

A sparse tensor is assembled in order if nonzeros that are grouped together in the underlying

data structure (e.g., stored in the same segment of an array or in the same pointer-based

data structure) are always stored into the data structure consecutively. Our assembly

abstract interface exposes a set of capabilities that capture the di�erent ways in which

sparse tensors stored in array-based (Section 6.1.1) or pointer-based formats (Section 6.1.2)

91

can be assembled in order. In this section, I describe these capabilities in more detail and

discuss how a compiler can generate e�cient code to assemble the results of sparse tensor

computations in order by utilizing implementations of our assembly abstract interface.

6.1.1 Array-Based Formats

Array-based level formats can support one of two capabilities—insert and (array-based)

append—that provide the ability to add new coordinates to coordinate hierarchy levels in

order. Table 6.1 shows examples of how di�erent level formats can implement the level

functions that expose these capabilities. As shown in Figure 4-5, our code generation

algorithm emits sparse tensor algebra code that invokes the aforementioned level functions

to store the coordinates of result nonzeros. In particular, the algorithm emits code that

adds new a coordinate to the result tensor’s coordinate hierarchy representation as soon

as each result nonzero is computed. Additionally, if necessary, the algorithm emits code

that, at the end of co-iteration, inserts edges into the result tensor’s coordinate hierarchy

representation in order to associate stored coordinates with their parents. Then, as de-

scribed in Section 4.2.5, our technique can specialize the emitted code to store the result

tensor in a speci�c format by inlining the level function calls.

The insert capability inserts coordinates into a coordinate hierarchy level at any position

and is exposed as three level functions:

• insert_coord(pk, ik) -> void

• insert_init(pbk, pek) -> void

• segment_size() -> szk

The insert capability requires the locate capability to also be supported, and the level

function insert_coord inserts a coordinate ik into a coordinate hierarchy level at positionpk

as computed by locate. The level function insert_init initializes the data structures that

encode a coordinate hierarchy level between positions pbk and pek , and the level function

can be invoked whenever a parent coordinate is inserted in order to preallocate space for

storing its child coordinates. Finally, segment_size returns the amount of additional space

to preallocate for storing each new parent coordinate’s children.

92

Table 6.1: De�nitions of level functions that implement in-order assembly capabilities for
various array-based level formats.

Level Format Level Function De�nitions

dense
insert_coord(pk, ik):
// do nothing

segment_size():
return Nk

insert_init(pbk, pek):
// do nothing

masked

insert_coord(pk, ik):
mask[pk] = 1

segment_size():
return Nk

insert_init(pbk, pek):
// do nothing

compressed

append_coord(pk, ik):
crd[pk] = ik

append_init(szk−1, szk):
for (int pk−1 = 0; pk−1 <= szk−1; ++pk−1) {

pos[pk−1] = 0
}

append_edges(pk−1, pbk, pek):
pos[pk−1 + 1] = pek - pbk

append_finalize(szk−1, szk):
int cumsum = pos[0]
for (int pk−1 = 1; pk−1 <= szk−1; ++pk−1) {

cumsum += pos[pk−1]
pos[pk−1] = cumsum

}

singleton

append_coord(pk, ik):
crd[pk] = ik

append_init(szk−1, szk):
// do nothing

append_edges(pk−1, pbk, pek):
// do nothing

append_finalize(szk−1, szk):
// do nothing

hashed

insert_coord(pk, ik):
crd[pk] = ik

segment_size():
return Wk

insert_init(pbk, pek):
for (int pk = pbk; pk < pek; ++pk) {

crd[pk] = -1
}

The append capability for array-based level formats appends coordinates to a coordinate

hierarchy level and is also exposed as four level functions:

• append_coord(pk, ik) -> void

• append_edges(pk−1, pbk, pek) -> void

• append_init(szk−1, szk) -> void

• append_finalize(szk−1, szk) -> void

The level function append_coord appends a coordinate ik to the end of a coordinate hier-

archy level (at position pk). The level function append_edges, meanwhile, inserts edges

that connect all coordinates between positions pbk (inclusive) and pek (exclusive) to the

93

coordinate at position pk−1 in the parent level. Additionally, append_init initializes the

data structures that encode a coordinate hierarchy level, while append_finalize performs

any post-processing that might be required after all coordinates have been append. Both

level functions take, as inputs, the size of the level being initialized or �nalized (szk) as

well as the size of its parent level (szk−1). For a level that provides the insert capability, its

size is computed as the size of its parent level multiplied by the amount of space allocated

for storing each parent coordinate’s children (i.e., the amount returned by segment_size).

For a level that supports the append capability, on the other hand, its size is the number of

coordinates that have been appended to the level. Following the semantics of the append

capability, one can, for instance, assemble the crd array of a CSR output matrix by repeat-

edly calling append_coord—as de�ned for the compressed level format (see Table 6.1)—with

the coordinates of every result nonzero as arguments. Similarly, the pos array can be

assembled with calls to append_init at the start of the computation, append_edges after

the nonzeros of each row have been appended, and append_finalize at the very end.

6.1.2 Pointer-Based Formats

Pointer-based level formats can similarly support capabilities—namely (pointer-based)

append and bulk assembly—that provide the ability to store nonzeros into the underlying

pointer-based data structures. The append capability for pointer-based level formats

captures how nonzeros (or, more generally, non-empty subtensors) can be individually

appended to the underlying data structures and is exposed as two level functions:

• append_first(elem, st, ret) -> void

• append_rest(elem, st) -> void

append_first exposes how the �rst nonzero can be appended to a pointer-based data

structure, while append_rest exposes how all subsequent nonzeros can be appended (in

order of their coordinates, if the data structure is speci�ed by sequence attributes to

be sorted). Both functions take as inputs the nonzero (or non-empty subtensor) to be

appended (elem) as well as a reference to a user-de�ned object (st) that can be utilized

to keep track of where exactly a nonzero was last appended in the data structure being

94

1 st = {
2 node : blist
3 };
4
5 append_first(elem, st, ret):
6 blist* node = new blist;
7 node->e[0] = elem;
8 node->B = 1;
9 node->n = null;

10 ret->h = node;
11 st->node = node;
12
13 append_rest(elem, st):
14 blist* node = st->node;
15 if (node->B == 4) {
16 node = new blist;
17 node->B = 0;
18 node->n = null;
19 st->node->n = node;
20 st->node = node;
21 }
22 node->e[node->B] = elem;
23 node->B += 1;

(a) Append for blist level format

1 build_rbt(elems, s, e):
2 if (s > e)
3 return null;
4 rbtree* node = new rbtree;
5 uint64 m = (s + e) / 2;
6 node->e = elems[m];
7 node->p = null;
8 node->c = (s + 1 == e);
9 if (s == e) {

10 node->l = node->r = null;
11 } else if (s + 1 == e) {
12 node->l = build_rbt(elems, s, s);
13 node->r = null;
14 node->l->p = node;
15 } else {
16 node->l = build_rbt(elems, s, m - 1);
17 node->r = build_rbt(elems, m + 1, e);
18 node->l->p = node;
19 node->r->p = node;
20 }
21 return node;
22
23 build(ret, elems, sz):
24 ret->r = build_rbt(elems, 0, sz - 1);

(b) Bulk assembly for rbtree level format

Figure 6-1: Examples of how the level functions that expose the pointer-based append and
bulk assembly capabilities can be implemented for speci�c pointer-based level formats.

assembled. Additionally, append_first takes as input a reference to a preallocated node

(ret) that is intended to serve as a handle to the data structure being assembled. As an

example, Figure 6-1a demonstrates how the append capability can be implemented for the

blist level format, which stores elements using block linked lists. To append the �rst new

nonzero, the blist level format’s implementation of append_first allocates a block, stores

the nonzero at the beginning of the block, and initializes the root pointer (ret->h) to point

to the block. For each subsequent new nonzero, the blist level format’s implementation

of append_rest then simply appends the new nonzero to the end of the last allocated block

(which is cached in st) unless the block is already full, in which case a new block is �rst

allocated and attached to the rest of the list.

The bulk assembly capability, on the other hand, captures how a pointer-based data

structure can be constructed in one shot from a set of nonzeros (or, more generally, non-

empty subtensors) and is exposed as a single level function:

• build(elems, sz, ret) -> void

95

where elems represents the sequence of nonzeros (or, more generally, non-empty subten-

sors) to be inserted, sz stores the size of elems, and ret is again a reference to a preallocated

node that is intended to serve as a handle to the data structure being assembled. The

argument elems implements an array interface, so any nonzero can be accessed by their

position in the sequence. Additionally, if the data structure being assembled is speci�ed to

be sorted (i.e., if stored nonzeros are ordered by a sequence attribute), then the nonzeros

in elems are guaranteed to be ordered by their coordinates. As an example, Figure 6-

1b shows how the bulk assembly capability can be implemented for a level format that

stores elements using red-black trees (rbtree). The bulk assembly capability can often be

implemented more e�ciently than the append capability. In the case of red-black trees,

for instance, bulk assembly can be performed without needing to rebalance the tree for

each inserted nonzero, which by contrast is needed when appending to red-black trees.

Furthermore, bulk assembly is typically more amenable to parallelization; for example, the

implementation of build in Figure 6-1b can be trivially parallelized by having recursive

calls to build_rbt be spawned in parallel. However, bulk assembly requires the set of

inserted nonzeros (elems) to be fully precomputed, which for some computations may

incur additional overhead.

Similar to how our technique generates code that store the results of sparse tensor

computations in array-based formats, a compiler can utilize implementations of the level

functions described above in order to generate sparse tensor algebra code that store

results using pointer-based data structures. Speci�cally, the compiler �rst emits code

that invokes build or append_first and append_rest to store the result nonzeros. Then,

the emitted code can be specialized to a speci�c type of pointer-based data structure by

inlining its implementation of the aforementioned level functions. So to generate code

that stores the result of a sparse tensor computation in a block linked list, for instance, the

compiler �rst emits code like what is shown in Figure 6-3, which stores result nonzeros by

invoking append_first and append_rest. The compiler can then inline implementations

of append_first and append_rest for the blist level format (as shown in Figure 6-1a) into

the emitted code, yielding code that is specialized for block linked list outputs. On the

other hand, if a computation simply assigns an input tensor to the output and if the input

96

1 bst* map_b(bst* b, double* c) {
2 if (b) {
3 bst* ret = new bst;
4 ret->l = NULL;
5 if (b->l)
6 ret->l = map_b(b->l, c);
7 int32_t i = b->e.first;
8 ret->e.first = i;
9 ret->e.second = b->e.second * c[i];

10 ret->r = NULL;
11 if (b->r)
12 ret->r = map_b(b->r, c);
13 return ret;
14 }
15 return NULL;
16 }

Figure 6-2: Example emitted code that
element-wise multiplies a dense vector by a
sparse vector stored in a BST and that stores
the result in another BST by deeply copying
the sparse input vector.

1 blist_head* aret;
2 bool afirst = true;
3 uint8_t bs = iter_bst(0, ..., ib, bv);
4 int32_t pc = c_pos[0];
5 while (bs && pc < c_pos[1]) {
6 int32_t ic = c_crd[pc];
7 int32_t i = min(ib, ic);
8 if (i == ib && i == ic) {
9 double av = bv * c[pc];

10 if (afirst) {
11 aret = new blist_head;
12 append_first({i, av}, ast, aret);
13 afirst = false;
14 } else {
15 append_rest({i, av}, ast);
16 }
17 }
18 if (i == ib)
19 bs = iter_bst(bs, ..., ib, bv);
20 pc += (i == ic);
21 }

Figure 6-3: Example emitted code that mul-
tiplies a sparse vector stored in a BST by an
array-based sparse vector and that invokes
append_first and append_rest to store re-
sult nonzeros. Our technique can further
specialize this code for block linked list out-
puts by inlining implementations of the ap-
pend functions for block linked lists.

is stored in an array-based format, the compiler can instead emit code that invokes the

build function (with a reference to the input as the argument elems) to bulk assemble the

output tensor. The compiler can then inline any format’s implementation of build into the

emitted code to obtain code that bulk assembles the output tensor in that speci�c format.

As an optimization though, if a computation can be performed with a map function (as

described in Section 5.2.2) and if the result is stored in the same format as the input tensor

being mapped over, then our technique instead emits a map function that assembles the

output by essentially deeply copying the input data structure. This approach is valid since

each element in the result is computed from one distinct element in the input tensor being

mapped over, so the compiler can infer that the output data structure must have the same

structure as the input data structure. Figure 6-2 shows an example map function that our

technique generates, which computes on an input tensor that is stored using a BST and

which stores the result using another BST. Such map functions can be generated in largely

the same way as described in Section 5.2.2. To make a deep copy the input data structure

97

though, each emitted map function additionally allocates and returns a new node that is of

the same type as the input node (lines 3 and 13 in Figure 6-2). This new node is initialized

by copying over the coordinates of all elements that are stored in the input node (line 8 in

Figure 6-2), with the corresponding values initialized to be the results of the computation

(line 9 in Figure 6-2). Furthermore, new output child nodes are allocated by invoking the

augmented map function(s) on the input node’s children (lines 6 and 12 in Figure 6-2).

6.2 Out-of-Order Assembly

While many sparse tensor computations can assemble their outputs in order, there also

exist many other examples of sparse tensor operations that must instead assemble their

outputs out of order (i.e., with nonzeros stored into the output data structures in arbitrary

orders). An important representative class of such operations is sparse tensor format

conversion, which can be viewed as an operation that simply takes a tensor stored in some

source format and assigns it to an output tensor in a target format that typically stores

nonzeros in a di�erent order. Additionally, parallelized sparse tensor algebra computations

generally do not produce result nonzeros in any �xed order, and so these result nonzeros

would have to be inserted into the output tensors out of order. Unfortunately, out-of-order

assembly of a sparse tensor is particularly challenging when the tensor needs to be stored

in an array-based format. This is because, as shown in Figures 2-1, 2-2, and 2-3, array-

based formats typically store nonzeros compactly in memory. The result is that naively

inserting nonzeros one by one can incur signi�cant performance overhead by requiring

most already-stored nonzeros to be moved around in memory after each insertion.1

In this section, I describe how a compiler can generate e�cient code to assemble the

outputs of sparse tensor operations out of order, with those outputs potentially being

stored in disparate array-based formats. In particular, I show how out-of-order assembly

of sparse tensors in a wide range of array-based formats can be decomposed into three

logical phases. I describe how our technique can generate e�cient code for each of the �rst

1By contrast, out-of-order assembly of sparse tensors in pointer-based formats does not su�er from
this problem (or at least experiences it to a much lesser degree), since nonzeros do not have to be stored
contiguously in memory.

98

two logical phases. I then describe another capability exposed by our assembly abstract

interface that captures how, by utilizing the outputs of the �rst two logical phases, nonzeros

can be e�ciently inserted out of order into array-based level formats. Finally, I discuss

how a compiler can use implementations of this capability for disparate level formats to

generate e�cient code for the third logical phase of out-of-order assembly.

6.2.1 Overview

Figure 6-4 shows three examples of sparse tensor conversion routines that convert tensors

between di�erent combinations of source and target formats. As we saw in previous

chapters, di�erent sparse tensor formats often store nonzeros in di�erent orderings, and

so e�ciently converting tensors between di�erent formats often requires assembling the

output tensor out of order. As the examples illustrate, e�ciently assembling a sparse tensor

out of order in di�erent formats can require vastly dissimilar code. It turns out, however,

that e�cient algorithms for assembling a sparse tensor out of order in a wide range of

disparate formats can all be decomposed into (up to) three logical phases: remapping,

analysis, and assembly. Figure 6-4 highlights these phases in di�erent colors.

The remapping phase computes additional coordinates for each nonzero to be stored as

functions of its original coordinates. These additional coordinates can then be used in the

other phases to orchestrate the assembly of tensors in structured sparse tensor formats like

DIA and ELL. What additional coordinates are computed depends on the output format.

For instance, the code in Figure 6-4a, which converts a matrix to DIA, computes a new

coordinate k for each nonzero as the di�erence between its column coordinate and its row

coordinate (lines 2–6 and 20–24). By contrast, the code in Figure 6-4b, which converts

a matrix to ELL, assigns a distinct value to the new coordinate k for every nonzero that

belongs in the same row of the matrix.

The analysis phase computes statistics about the tensor being assembled, which are

later used to determine the amount of memory to pre-allocate for storing nonzeros in the

output format. The exact statistics that are computed also depend on the output format.

Figure 6-4a, for instance, computes the set of all non-empty diagonals in the matrix being

assembled (lines 1–8), with distinct diagonals identi�ed by o�sets (k) computed in the

99

 1 bool nz[2 * N - 1] = {0};
 2 for (int i = 0; i < N; i++) {
 3 for (int pA2 = A_pos[i];
 4 pA2 < A_pos[i+1]; pA2++) {
 5 int j = A_crd[pA2];
 6 int k = j - i;
 7 nz[k + N - 1] = true;
 8 }}
 9 int* B_perm = new int[2 * N - 1];
10 int K = 0;
11 for (int i = -N + 1; i < N; i++) {
12 if (nz[i + N - 1])
13 B_perm[K++] = i;
14 }
15 double* B_vals = new double[K * N]();
16 int* B_rperm = new int[2 * N - 1];
17 for (int i = 0; i < K; i++) {
18 B_rperm[B_perm[i] + N - 1] = i;
19 }
20 for (int i = 0; i < N; i++) {
21 for (int pA2 = A_pos[i];
22 pA2 < A_pos[i+1]; pA2++) {
23 int j = A_crd[pA2];
24 int k = j - i;
25 int pB1 = B_rperm[k + N - 1];
26 int pB2 = pB1 * N + i;
27 B_vals[pB2] = A_vals[pA2];
28 }}

(a) CSR to DIA

 1 int K = 0;
 2 for (int i = 0; i < N; i++) {
 3 int ncols = A_pos[i+1] - A_pos[i];
 4 K = max(K, ncols);
 5 }
 6 int* B_crd = new int[K * N]();
 7 double* B_vals = new double[K * N]();
 8 for (int i = 0; i < N; i++) {
 9 int count = 0;
10 for (int pA2 = A_pos[i];
11 pA2 < A_pos[i+1]; pA2++) {
12 int j = A_crd[pA2];
13 int k = count++;
14 int pB2 = k * N + i;
15 B_crd[pB2] = j;
16 B_vals[pB2] = A_vals[pA2];
17 }}

(b) CSR to ELL

 1 int count[N] = {0};
 2 for (int pA1 = A_pos[0];
 3 pA1 < A_pos[1]; pA1++) {
 4 int i = A1_crd[pA1];
 5 count[i]++;
 6 }
 7 int* B_pos = new int[N + 1];
 8 B_pos[0] = 0;
 9 for (int i = 0; i < N; i++) {
10 B_pos[i + 1] = B_pos[i] + count[i];
11 }
12 int* B_crd = new int[pos[N]];
13 double* B_vals = new double[pos[N]];
14 for (int pA1 = A_pos[0];
15 pA1 < A_pos[1]; pA1++) {
16 int i = A1_crd[pA1];
17 int j = A2_crd[pA1];
18 int pB2 = pos[i]++;
19 B_crd[pB2] = j;
20 B_vals[pB2] = A_vals[pA2];
21 }
22 for (int i = 0; i < N; i++) {
23 B_pos[N - i] = B_pos[N - i - 1];
24 }
25 B_pos[0] = 0;

(c) (Unsorted) COO to CSR

Figure 6-4: Code (in C++) that convert sparse tensors between di�erent combinations of
formats. The background colors identify distinct logical phases of out-of-order output
tensor assembly (green for remapping, yellow for analysis, and blue for assembly).

100

remapping phase. By contrast, Figure 6-4b computes the maximum number of nonzeros in

any row of the matrix being assembled (lines 1–5), while Figure 6-4c computes the number

of nonzeros in each row of the matrix (lines 1–6).

Finally, the assembly phase iterates over the tensor to be assembled and inserts each

nonzero into the output data structures. Where each nonzero is inserted (pB2) again

depends on the output format. Figure 6-4a computes pB2 as a function of each nonzero’s

row coordinate and its o�set k (as computed in the remapping phase), in such a way that

nonzeros with the same o�set are grouped together in the output (lines 25–26). By contrast,

Figure 6-4c simply appends each nonzero to its row’s corresponding segment in the crd

array (line 19), with the segments being pre-allocated based on the statistics that were

computed in the analysis phase (lines 8–11).

In the next three subsections, I describe how our technique generates e�cient code to

perform each of the three logical phases described above. While each phase is logically

distinct, our technique can emit code that fuses di�erent phases if it is bene�cial to do so.

This enables a compiler to generate code like Figure 6-4a, for instance, which duplicates

and fuses remapping with the analysis and assembly phases in order to avoid materializing

the o�sets of nonzeros. At the same time, for assembling sparse tensors in formats that

store nonzeros in more complex orderings (e.g., Morton order), the compiler can emit

code to perform remapping separately and materialize the additional coordinates. This

eliminates the need to recompute complex remappings.

6.2.2 Remapping Phase

As we saw in Section 3.2, any structured sparse tensor format can be cast as a format for

storing remapped tensors obtained by applying a coordinate remapping that captures how

the format groups together stored nonzeros in memory. So to assemble tensors in any

particular structured sparse tensor format, our technique emits code that, as it enumerates

the nonzeros to be stored, computes additional coordinates as functions of each nonzero’s

original coordinates by applying the output format’s coordinate remapping. This, as we will

see in the next two subsections, enables our technique to—in a dimension-by-dimension

101

fashion—generate code that assembles the output of a sparse tensor operation in any

arbitrary format, including structured sparse tensor formats.

To compute additional coordinates that are de�ned purely as arithmetic or bitwise

expressions of a nonzero’s original coordinates, our technique simply inlines those expres-

sions directly into the emitted code (e.g., lines 6 and 24 in Figure 6-4a, which compute the

�rst coordinate in the output of the remapping (i,j) -> (j-i,i,j)). Remappings that

contain let expressions are lowered by �rst emitting code to initialize the local variables

and then inlining the expressions that use those local variables. For example, a remapped

coordinate r=i/N in (r&1)|((r&2)<<2) would be lowered to

int r = i/N;

int m = (r&1)|((r&2)<<2;

Coordinate remappings that contain counters are lowered by emitting a counter array

for each distinct counter in the remapping. Each element in the counter array corresponds

to a distinct set of coordinates (i1, . . . , ik) that can be used to index into the counter, and

the counter array element tracks how many input nonzeros with coordinates (i1, . . . , ik)

have been iterated over so far. Our technique additionally emits code that, for each nonzero

having coordinates that correspond to counter array element c , �rst assigns the nonzero

to the slice of the remapped tensor that is indexed by c and then increments c . So to apply

the remapping (i,j) -> (#i,i,j) to nonzeros that are originally stored in an unsorted

COO matrix, for instance, our technique emits the following code:

int counter[N] = {0}; // counter array for #i

for (int p = pos[0]; p < pos[1]; p++) {

int i = A1_crd[p];

int j = A2_crd[p];

int k = counter[i]++; // k == #i

// map A(i,j) to coordinates (k,i,j) ...

If the coordinates used to index into a counter are enumerated in sequence though, our

technique reduces the size of the counter array in the generated code by having the counter

array be reused across iterations of loops that enumerate the coordinates. Speci�cally,

assume the sparse tensor operation being compiled is expressed in concrete index notation

in the form ∀i1 · · · ∀ip · · · ∀in expr , where the coordinates i1, . . . , ip are all used to index into

102

a counter. If the operands are stored using level formats that possess the ordered (or unique)

property, then our technique emits a counter array that does not need to be indexed by the

coordinates i1, . . . , ip and that can be shared across iterations of loops iterating over those

same coordinates. So, for instance, to apply the same coordinate remapping as before to

nonzeros that are originally stored in a CSR matrix, our technique emits optimized code as

shown on lines 8–13 in Figure 6-4b, which uses the same scalar count variable to remap

nonzeros in every row. Such an optimization can signi�cantly improve performance by

reducing memory tra�c at run time.

6.2.3 Analysis Phase

As we also saw in Section 6.2.1, to avoid having to constantly reallocate and shu�e around

already-stored nonzeros, code that e�ciently assembles the output of a sparse tensor

operation out of order typically allocates memory in one shot based on some statistics

about the output tensor. E�ciently computing these statistics, however, can require very

di�erent code depending on the sparse tensor operation itself. For instance, code to convert

a matrix to ELL (without dynamically resizing the crd and vals arrays) must �rst determine

the maximum number of nonzeros K stored in any row. If the matrix is originally stored

in COO, then computing K requires constructing a histogram that records the number of

nonzeros in each row, which in turn requires examining all the nonzeros in the matrix.

On the other hand, if the matrix is originally stored in CSR, then the number of nonzeros

in each row can instead be directly computed from the pos array. Optimized code for

converting a CSR matrix to ELL thus does not need to make multiple passes over the

matrix’s nonzeros, thereby reducing memory tra�c.

We develop a new language called the attribute query language, which describes statis-

tics of sparse tensors as aggregations over the coordinates of their nonzeros. The attribute

query language is declarative, and attribute queries are speci�ed independently of how

a tensor is actually stored. This lets our technique lower attribute queries to equivalent

sparse tensor computations and then simply leverage the techniques described in the

previous two chapters in order to generate optimized code for computing tensor statistics.

As we will see in Section 6.2.4, our technique can thus generate e�cient code to perform

103

select [j] ->
 count(i) as nic

select [j] ->
 min(i) as minic,
 max(i) as maxic

select [j] ->
 id() as nec

j nic
0
1
2
3

3
2
0
1

j minic
0
1
2
3

0
0
-1
3

maxic
3
1
4
3

j nec
0
1
2
3

1
1
0
1

4
5

1
0

4
5

4
5

1
0

3
-1

3
4

Figure 6-5: Examples of attribute queries computed on the tensor shown in Figure 2-2a.

any sparse tensor computation while only requiring users to provide simple-to-specify

attribute queries for each potential output format, as opposed to complicated loop nests

for every possible computation.

6.2.3.1 Attribute Query Language

The attribute query language lets users compute summaries of a tensor’s sparsity structure

by performing aggregations over the coordinates of the tensor’s nonzeros. All queries in

the attribute query language take the form

select [i1,...,im] -> <aggr1> as label1, ..., <aggrn> as labeln

where each ik is a coordinate into dimension Ik of some r -dimensional tensorA and <aggrk>

invokes the aggregation function count, max, min, or id. The result of an attribute query is

conceptually a map that, for every distinct set of coordinates (i1, . . . , im), stores computed

statistics about the Im+1× · · · × Ir subtensorA′ inA that those coordinates uniquely identify.

Figure 6-5 shows three examples of attribute queries computed on the same tensor.

The function count(im+1,...,il) computes the number of nonzero Il+1 × · · · × Ir sub-

tensors, each of which can be identi�ed by a distinct set of coordinates (i1, . . . , il), that are

contained in A′. For instance, if I , J , K represent the slice, row, and column dimensions of

a three-dimensional tensor B, then the query

select [i] -> count(j) as nnr_in_slice

computes the number of nonzero rows contained in each J × K slice of B, while the query

select [i] -> count(j,k) as nnz_in_slice

104

computes the number of nonzeros in each J × K slice. Figure 6-5 (left) shows how count

queries can be used to compute the number of nonzeros in each column of a matrix, which

is required when assembling a sparse matrix out of order in CSC for instance.

The max(im+1) and min(im+1) functions compute, for each subtensorA′, the largest and

smallest coordinates im+1 such that the im+1-th slice of A′ along dimension Im+1 contains

nonzeros. For instance, if Q denotes the result of the query in Figure 6-5 (middle), then

Q[1].minic == 0 and Q[1].maxic == 1 since all nonzeros in column 1 of the tensor in Fig-

ure 2-2a lie between rows 0 and 1. As the example in Figure 6-5 (middle) also demonstrates,

max and min return results that are outside of the domain of valid coordinates (e.g., for

columns 2 and 5) if a subtensor is empty.

Finally, the id function simply returns 1 if a subtensor A′ contains nonzeros and 0

otherwise. So if R denotes the result of the query in Figure 6-5 (right), then R[1].nec == 1

since column 1 contains a nonzero while R[2].ne == 0 since column 2 is empty.

The attribute query language can be used with coordinate remapping notation to

compute even more complex attributes of structured sparse tensors. For example, let A be

a K × I × J tensor obtained by applying the remapping (i,j) -> (j-i,i,j) to a matrix B.

Since each slice of A along dimension K corresponds to a unique diagonal in B, computing

select [k] -> id() as ne

onA results in a bit set that encodes the set of all nonzero diagonals in B. This, as mentioned

in Section 6.2.1, is precisely the information required to assemble B out of order in DIA.

Furthermore, since the coordinate of each slice of A is de�ned to be the o�set of the

corresponding diagonal in B from the main diagonal, applying the query

select [] -> min(k) as lb, max(k) as ub

to A computes the lower and upper bandwidths of matrix B.

6.2.3.2 Code Generation

To generate e�cient code that computes an attribute query, our technique reformulates

the query as sparse tensor algebra computation. The query is �rst lowered to a canonical

form in concrete index notation, which we extend with the ability to index into the output

105

tensor using coordinates that are computed as arbitrary functions of index variables. The

canonical form of the query is subsequently optimized by applying a set of prede�ned

transformations to simplify the computation. Finally, the optimized query in concrete

index notation is compiled to imperative code by directly leveraging the techniques that

were described in the previous two chapters. This approach works as long as the results of

attribute queries are stored in a format, such as dense arrays, that can itself be e�ciently

assembled without needing attribute queries.

More precisely, let A be an I1 × · · · × Ir tensor obtained by applying some remapping

to a J1 × · · · × Jn tensor B. (To simplify the explanation of our technique, we may assume

that the elements of B are physically stored in memory. However, our technique does not

rely on this assumption and works even if B is the result of some arbitrary sparse tensor

algebra computation, as long as the computation enumerates each nonzero of B at most

once and does not scatter into B.) Then, to compute an attribute query of the form

select [i1,...,im] -> id() as Q

on A for instance, our technique lowers the query to its canonical form in concrete index

notation as

∀j1 · · · ∀jn Qi1···im |= map(Bj1···jn , 1),

where |= denotes Boolean OR reduction. The computation above logically iterates over

every element of B, computes the coordinates (i1, . . . , im) of each element Bj1···jn in the

remapped tensor A, and sets the corresponding element in the Boolean result tensor Q to

true (1). (All elements ofQ are assumed to be initialized to false.) The map operator returns

the second argument if the �rst argument is non-zero (or true) and zero otherwise, which

ensures only the coordinates of nonzeros in B are aggregated. So if, for instance,C is a K ×

I × J tensor obtained by applying the remapping (i,j) -> (j-i,i,j) to a matrix D, then to

compute the query select [k] -> id() as Q on C , our technique lowers the query to the

computation ∀i∀j Qj−i |= map(Dij , 1). For each nonzero of D, this computation computes

the nonzero’s o�set from the main diagonal and sets the corresponding component in Q

to true. The query result Q thus strictly encodes the set of non-diagonals in D.

In a similar way, our technique lowers count queries

106

select [i1,...,im] -> count(im+1,...,il) as Q

on A to their canonical form

(∀i1 · · · ∀il Qi1···im += map(Wi1···il , 1)
)
where

(∀j1 · · · ∀jn Wi1···il |= map(Bj1···jn , 1)
)
.

The computation above �rst iterates over the nonzeros of B to compute the intermediate

resultW , which encodes whether each subtensor ofA identi�ed by coordinates (i1, . . . , il) is

non-empty. The computation then sums over dimensions Im+1 through Il ofW to compute

the number of aforementioned subtensors that are non-empty and that are contained in

each (higher-dimensional) subtensor identi�ed by coordinates (i1, . . . , im).

Our technique also generates code for max queries

select [i1,...,im] -> max(im+1) as Q

by lowering them to their canonical form

∀j1 · · · ∀jn Q
′
i1···im

max= map(Bj1···jn , im+1 − s + 1),

where s denotes the smallest possible coordinate along dimension Im+1. Q′ is assumed to

be initialized to the zero tensor, so by mapping each input tensor element to its remapped

coordinate im+1 plus the constant (1 − s), we ensure that only the coordinates of nonzeros

are actually aggregated. Q′ can thus be interpreted as the actual result of the original query

(i.e., Q) but shifted by (1− s); in other words, Qi1···im ≡ Q
′
i1···im

+ s − 1. Similarly, min queries

select [i1,...,im] -> min(im+1) as Q

are lowered to their canonical form

∀j1 · · · ∀jn Q
′
i1···im

max= map(Bj1···jn ,−im+1 + t + 1),

where t denotes the largest possible coordinate along dimension Im+1 and Q′ is the query

result but negated and shifted by (t + 1); in other words, Qi1···im ≡ −Q
′
i1···im

+ t + 1.

After an attribute query is lowered to its canonical form, our technique eagerly applies

a set of prede�ned transformations on the query computation. Table 6.2 describes trans-

107

Table 6.2: Transformations that our technique applies to optimize attribute queries.

Transformation De�nition Preconditions/Postconditions

reduction-to-assign
(∀j1 · · · ∀jn Ai1 · · ·im ⊕= expr

)
=⇒

(∀j1 · · · ∀jn Ai1 · · ·im = expr
) For each jk , there exists an il such

that jk ≡ il . ⊕ is any reduction opera-
tor. A is initialized to the zero tensor.

inline-temporary
(∀i1 · · · ∀im Ai1 · · ·il ⊕= f (Wi1 · · ·im)

)
where

(∀j1 · · · ∀jn Wi1 · · ·im = expr
)

=⇒
(∀j1 · · · ∀jn Ai1 · · ·il ⊕= f (expr)

) f is any function that takes onlyW
as tensor operand. ⊕ is any reduction
operator or a simple assignment.

simplify-width-count
(∀j1 · · · ∀jn Ai1 · · ·im += map(Bj1 · · ·jn , c)

)
=⇒

(∀j1 · · · ∀jn−1 Ai1 · · ·im += B′j1 · · ·jn−1 · c
) B possesses the zeroless property, and

jn is a reduction variable that indexes
into the innermost dimension of B
(i.e., Jn). c is any constant. B′ is a
tensor that encodes the number of
nonzeros in each slice of B indexed by
coordinates (j1, ..., jn−1); values of B′
are not materialized but computed on-
the-�y with calls to coord_bounds or
pos_bounds for dimension Jn of B.

counter-to-histogram
(∀j1 · · · ∀jn Ai1 · · ·im max= map(expr , #jk · · · jl + 1)

)
=⇒

(∀i1 · · · ∀il Ai1 · · ·im max=Wi1 · · ·il
)

where
(∀j1 · · · ∀jn Wi1 · · ·im jk · · ·jl += map(expr , 1)

)
formations that our technique uses. These transformations can optimize the performance

of query computations by, for instance, reducing the number of dimensions that have to

be iterated and eliminating redundant temporaries.

To see how our technique optimizes attribute queries, consider the example query

select [i] -> count(j) as Q applied to an I × J matrix B. As described before, our

technique �rst lowers this query to its canonical form

(∀i∀j Qi += map(Wij , 1)
)
where

(∀i∀j Wij |= map(Bij , 1)
)
.

Our technique then proceeds to iteratively and eagerly apply the transformations shown

in Table 6.2 on the computation above. In particular, each iteration variable bound to a ∀
is used to independently index into a dimension ofW , so the substatement that de�nesW

satis�es the preconditions of the reduction-to-assign transformation. Our technique thus

applies the aforementioned transformation on the substatement that de�nesW to obtain

(∀i∀j Qi += map(Wij , 1)
)
where

(∀i∀j Wij =map(Bij , 1)
)
.

108

Then, since the temporaryW is no longer the result of a reduction operation, our technique

eliminates it by applying the inline-temporary transformation to obtain

∀i∀j Qi += map(map(Bij , 1), 1),

which is then trivially rewritten to ∀i∀j Qi += map(Bij , 1) by applying constant folding. At

this point, if B is stored in memory in the (unsorted) COO format, then we can directly apply

the technique described in Chapter 4 to compile this rewritten statement to imperative code

that is shown on lines 1–6 in Figure 6-4c. However, if B is stored in CSR without explicit

zeros, then our technique can additionally apply the simplify-width-count transformation

(followed by the reduction-to-assign transformation again) to get the �nal query

∀i Qi = B′i ,

where each element of B′ is dynamically computed as pos[i+1] - pos[i]. This optimized

query avoids iterating over B’s nonzeros, thereby reducing memory tra�c at run time.

6.2.4 Assembly Phase

To conclude this section, I �rst show how our assembly abstract interface exposes out-of-

order assembly as a capability that utilizes the results of attribute queries to e�ciently

insert (remapped) nonzeros into array-based formats in any arbitrary order. I then discuss

how a compiler can utilize implementations of this capability to generate e�cient code

that assembles the results of arbitrary sparse tensor operations out of order, with output

tensors potentially being stored in disparate array-based formats.

6.2.4.1 Out-of-Order Assembly Capability

The out-of-order assembly capability captures how coordinates of nonzeros can be inserted

out of order into a coordinate hierarchy level, with each level being assembled assuming all

previous levels in the coordinate hierarchy have already been assembled. The assembly of

each level is decomposed into (up to) two logical subphases: edge insertion and coordinate

109

insertion. Each subphase is de�ned in terms of a set of level functions, and Figure 6-6 shows

how these level functions can be implemented for di�erent array-based level formats.

The edge insertion subphase, which is optional, logically bulk inserts edges into a

coordinate hierarchy to connect coordinates in adjacent levels. Edge insertion models the

assembly of data structures that map nonzeros to their containing subtensors. Depending

on whether positions in the preceding parent level can be iterated in sequence, edge

insertion can be done in a sequenced or unsequenced fashion.

Unsequenced edge insertion is de�ned in terms of three level functions that any array-

based level format may implement:

• unseq_init_edges(szk−1, Qk) -> void

• unseq_insert_edges(pk−1, i1, ..., ik−1, qk) -> void

• unseq_finalize_edges(szk−1) -> void

Qk denotes the (complete) results of attribute queries that a level format speci�es must be

precomputed, while qk denotes only the elements of Qk that are indexed by coordinates

(i1, . . . , ik−1). szk−1 is the size of the parent level and can be computed as a function of its

own parent level’s size by calling the level function

get_size(szk−1) -> szk,

which all level formats must also implement. unseq_init_edges initializes data structures

that a level format uses to logically store edges. Then, for each position pk−1 (which repre-

sents a subtensor with coordinates (i1, . . . , ik−1)) in the parent level, unseq_insert_edges

allocates some number of child coordinates to be connected to the coordinate at pk−1.

The number of child coordinates allocated can be computed as any arbitrary function

of qk . Finally, unseq_finalize_edges inserts edges into the coordinate hierarchy so that

each coordinate in the parent level is connected to as many children as it was previously

allocated. Figure 6-7a shows how these level functions can logically be invoked to bulk

insert edges into a coordinate hierarchy.

Sequenced edge insertion, by contrast, is de�ned in terms of just two level functions:

• seq_init_edges(szk−1, Qk) -> void

• seq_insert_edges(pk−1, i1, ..., ik−1, qk) -> void

110

get_size(szk-1):
 return szk-1 * W;

init_coords(szk-1, Qk):
 W = Qk[0][].w + 1;

get_pos(pk-1, i1, ..., ik):
 return pk-1 * W + ik;

Qk := [select [] -> max(ik) as w]

(a) sliced level format

get_size(szk-1):
 return pos[szk-1];

seq_init_edges(szk-1, Qk):
 pos = malloc(szk-1 + 1, int);
 pos[0] = 0;

seq_insert_edges(pk-1, i1, ..., ik-1, qk):
 pos[pk-1 + 1] = pos[pk-1] + qk[0].nir;

unseq_init_edges(szk-1, Qk):
 pos = calloc(szk-1 + 1, int);

unseq_insert_edges(pk-1, i1, ..., ik-1, qk):
 pos[pk-1 + 1] = qk[0].nir;

unseq_finalize_edges(szk-1):
 prefix_sum(pos, szk-1 + 1);

init_coords(szk-1, Qk):
 crd = malloc(pos[szk-1]], int);

yield_pos(pk-1, i1, ..., ik):
 return pos[pk-1]++;

insert_coord(pk-1, pk, i1, ..., ik):
 crd[pk] = ik;

finalize_yield_pos(szk-1):
 for (i = 0; i < szk-1; i++)
 pos[szk-1 - i] = pos[szk-1 - i - 1];
 pos[0] = 0;

Qk := [select [i1, ..., ik-1] -> count(ik) as nir]

(b) compressed level format

get_size(szk-1):
 return szk-1 * K;

init_coords(szk-1, Qk):
 perm = malloc(Nk - Mk, int);
 K = 0;
 for (i = Mk; i < Nk; i++) {
 if (Qk[0][i].nz)
 perm[K++] = i;
 }

init_get_pos(szk-1):
 rperm = malloc(Nk - Mk, int);
 for (i = 0; i < K; i++)
 rperm[perm[i] - Mk] = i;

get_pos(pk-1, i1, ..., ik):
 return pk-1 * K + rperm[ik - Mk];

finalize_get_pos(szk-1):
 free(rperm);

Qk := [select [ik] -> id() as nz]

(c) squeezed level format

get_size(szk-1):
 return pos[szk-1];

seq_init_edges(szk-1, Qk):
 pos = malloc(szk-1 + 1, int);
 pos[0] = 0;

seq_insert_edges(pk-1, i1, ..., ik-1, qk):
 pos[pk-1 + 1] = pos[pk-1] + qk[0].w + 1;

unseq_init_edges(szk-1, Qk):
 pos = calloc(szk-1 + 1, int);

unseq_insert_edges(pk-1, i1, ..., ik-1, qk):
 pos[pk-1 + 1] = qk[0].w + 1;

unseq_finalize_edges(szk-1):
 prefix_sum(pos, szk-1 + 1);

get_pos(pk-1, i1, ..., ik):
 return pos[pk-1] + ik;

Qk := [select [i1, ..., ik-1] -> max(ik) as w]

(d) ragged level format

Figure 6-6: Examples of how the out-of-order assembly capability, including level function
de�nitions and the required attribute queries, can be implemented for four level formats.

111

szk−1 = get_sizek−1(get_sizek−2(· · ·(1)· · ·));
unseq_init_edges(szk−1, Qk);
for (position pk−1 in parent level |

∃ coordinates i1, ..., ik−2 connecting
coordinate at pk−1 to root) {

qk[:] = Qk[:][i1, ..., ik−1];
unseq_insert_edges(pk−1, i1, ..., ik−1, qk);

}
unseq_finalize_edges(szk−1);

(a) Unsequenced edge insertion

szk−1 = get_sizek−1(get_sizek−2(· · ·(1)· · ·));
seq_init_edges(szk−1, Qk);
for (position pk−1 in parent level |

∃ coordinates i1, ..., ik−2 connecting
coordinate at pk−1 to root) {

qk[:] = Qk[:][i1, ..., ik−1];
seq_insert_edges(pk−1, i1, ..., ik−1, qk);

}

(b) Sequenced edge insertion

init_coords(szk−1, Qk);
init_{get|yield}_pos(szk−1);
for (nonzero with coords i1, ..., ik) {
for (j = 1; j <= k; j++) // can be unrolled
pj = {get|yield}_posj(pj−1, i1, ..., ij);

insert_coord(pk−1, pk, i1, ..., ik);
}
finalize_{get|yield}_pos(szk−1);

(c) Coordinate insertion

Figure 6-7: Out-of-order assembly capability expressed in terms of calls of level functions.

These level functions are analogous to unseq_init_edges and unseq_insert_edges and can

be invoked in similar ways. Sequenced edge insertion, however, assumes that all positions

in the parent level are iterated over in order. Thus, seq_insert_edges is responsible for

both allocating the appropriate number of child coordinates to each parent and actually

inserting the edges, and so a separate finalize function is not necessary.

The coordinate insertion subphase logically inserts coordinates of nonzeros into a

coordinate hierarchy. This subphase models the assembly of data structures that store the

coordinates and values of nonzeros, and it is de�ned in terms of �ve level functions:

• init_coords(szk−1, Qk) -> void

• init_{get|yield}_pos(szk−1) -> void

• {get|yield}_pos(pk−1, i1, ..., ik) -> pk

• insert_coord(pk−1, pk, i1, ..., ik) -> void

• finalize_{get|yield}_pos(szk−1) -> void

init_coords allocates and initializes data structures for storing coordinates in a coordinate

hierarchy level. If a level format implicitly encodes coordinates (e.g., as a �xed range)

using some �xed set of parameters, then init_coords also compute those parameters as

112

functions of the attribute query results Qk . On the other hand, if a level format explicitly

stores coordinates in memory, then the coordinates of nonzeros are inserted by invoking

insert_coord for each nonzero. The position pk at which each nonzero should be inserted

is computed by invoking either get_pos or yield_pos. The former guarantees that nonzeros

with the same coordinates are inserted at the same position. The latter allows duplicate

coordinates to be inserted at di�erent positions. Both functions, however, may rely on

auxiliary data structures to track where to insert coordinates; init_{get|yield}_pos and

finalize_{get|yield}_pos initializes and cleans up those data structures. Figure 6-7c

shows how these level functions can logically be invoked to perform coordinate insertion.

6.2.4.2 Code Generation

Again, similar to how our technique generates code that assembles the results of sparse

tensor operations in order, a compiler can utilize implementations of the level functions

described above in order to emit code that assembles the results of sparse tensor operations

out of order. Speci�cally, a compiler can use the techniques described in the previous two

chapters and in Section 6.2.2 to emit loops (or map functions) that perform the desired

sparse tensor operation and that apply the output format’s coordinate remapping to

each result nonzero. Then, within each loop nest (or map function) that enumerates the

result nonzeros, the compiler can emit code that invokes the level functions described

in Section 6.2.4.1 to store each nonzero into the coordinate hierarchy representation of

the output tensor. The emitted code is �nally specialized to the desired output format

by inlining its implementations of the aforementioned level functions (e.g., as shown in

Figure 6-1). Again, this approach enables the compiler to support a wide range of disparate

output tensor formats without having to hard-code support for any of those formats.

While the out-of-order assembly capability assumes that levels in a coordinate hierarchy

are assembled separately, in order to minimize redundant computation and memory tra�c

at run time, our technique emits code that fuses the assembly of adjacent levels in the

output coordinate hierarchy wherever possible. Adjacent coordinate hierarchy levels can

always be assembled together as long as only the parent level requires a separate edge

insertion phase (or if none do). As an example, none of the level formats that compose to

113

express the DIA format requires edge insertion. Thus, our technique can emit code to store

the result of any sparse tensor operation in DIA by enumerating the result nonzeros just

once (excluding the attribute query computation) and assembling all levels of the output’s

coordinate hierarchy representation (i.e., all dimensions of the output matrix) together.

For each set of output coordinate hierarchy levels (i.e., output tensor dimensions) that

can be assembled together, our technique then simply has to emit code like what is shown

in Figure 6-7 to perform edge insertion (if required) followed by coordinate insertion. If an

output level format implements both variants of edge insertion, then our technique selects

one based on whether the parent level format can be iterated in order (i.e., if it possesses

the ordered property or if it supports coordinate value iteration). If an output level format

implements yield_pos but does not permit storing duplicates of the same coordinate (i.e.,

if it possesses the unique property), a compiler would also need to emit logic to perform

deduplication on the �y by keeping track of inserted coordinates.

To see how our technique works more concretely, suppose we are generating code to

convert COO matrices to CSR. To obtain code that assembles the column dimension of the

output, the compiler �rst emits sequenced edge insertion code that has the same structure

as Figure 6-7b. The emitted code is then specialized to CSR by replacing the level function

calls with the compressed level format’s implementations of those functions (Figure 6-6b).

The result is lines 7–11 in Figure 6-4c, which reserves memory for each row to store its

nonzeros. In a similar way, the compiler emits coordinate insertion code that has the same

structure as Figure 6-7c and then specializes it to CSR, yielding lines 12–25 in Figure 6-4c.

6.3 Chapter Summary

In this chapter, we saw how a compiler can generate e�cient code to store the results

of sparse tensor computations in disparate array-based and pointer-based sparse tensor

formats. This can be done either in order or out of order depending on the computation.

We evaluate code that our technique generates in the next chapter. In particular, as we

will see, code generated by our technique has performance comparable to, if not better

than, equivalent hand-optimized code implemented in existing libraries and frameworks.

114

Chapter 7

Evaluation

To evaluate our technique, we implemented it as extensions to the TACO sparse tensor

algebra compiler. In this chapter, I show that our technique supports a wide range of sparse

tensor computations, and I show that code generated by our technique has performance

comparable to, if not better than, equivalent hand-optimized code implemented in existing

libraries and frameworks. Additionally, for computations that are not directly implemented

in existing libraries and that can only be expressed as compositions of multiple kernels,

our technique typically generates code that signi�cantly outperform the libraries. I further

show that our technique supports all these computations for inputs and outputs that may

be stored in a wide variety of formats, and I show how using formats that are optimized

for the application and the input data can improve run-time performance.

7.1 Computing with Array-Based Formats

In this section, I demonstrate our technique’s ability to generate e�cient code for computing

on sparse tensors that are stored in array-based formats.

7.1.1 Experiment Setup

We evaluated code that our technique generates against �ve hand-optimized sparse linear

and tensor algebra libraries: Intel MKL [44], SciPy [47], MTL4 [38], the MATLAB Tensor

115

Toolbox [10], and TensorFlow [1]. Intel MKL is a C and Fortran math processing library

that is heavily optimized for Intel processors. SciPy is a popular Python scienti�c com-

puting library. MTL4 is a C++ library that specializes linear algebra operations for fast

execution using template metaprogramming. The Tensor Toolbox is a MATLAB library

that implements many kernels and factorization algorithms for dense and sparse tensors

with any numbers of dimensions. TensorFlow is a machine learning library that supports

some basic sparse tensor operations (in addition to dense tensor operations).

All experiments were run on a two-socket, 2.4 GHz Intel Xeon E5-2695 v2 machine

with 30 MB of L3 cache per socket and 128 GB of main memory. We compiled all C++

benchmarks using GCC 5.4.0 with -O3 -march=native -mtune=native -ffast-math opti-

mizations enabled, and we ran all MATLAB benchmarks using MATLAB 2016b. We ran

each experiment between 10 (for longer-running benchmarks) to 100 times (for shorter-

running benchmarks) under cold cache conditions and report average serial execution

times. We restrict execution to a single socket using numactl.

We ran our experiments with real-world and synthetic tensors of varying sizes and

sparsity structures as input, inspired by similar collections of test matrices and tensors from

related works [13, 102]. Table 7.1 describes these tensors in more detail. The real-world

tensors come from applications in many disparate domains and were obtained from the

SuiteSparse Matrix Collection [30] and the FROSTT Tensor Collection [101]. We stored

tensor coordinates as integers and component values as double-precision �oats, except for

the Tensor Toolbox’s TTM and INNERPROD kernels. Those two kernels do not support

integer coordinates, so we evaluate them with double-precision �oating-point coordinates.

7.1.2 Sparse Matrix Computations

Our technique generates e�cient sparse tensor algebra code that are specialized to the

layouts and attributes (e.g., sortedness) of the operands. To demonstrate this, we �rst

evaluated code that our technique generates for computing operations on COO, CSR, DIA,

and ELL matrices against equivalent code in MKL, SciPy, MTL4, and TensorFlow.

Figure 7-1 shows performance results for sparse matrix-vector multiplication (SpMV),

an important operation in many iterative methods for solving large-scale linear systems

116

Table 7.1: Statistics about tensors used to evaluate code that our technique generates for
computing on operands stored in array-based formats.

Tensor Domain Dimensions NNZ Density Diagonals

pdb1HYS Protein database 36K × 36K 4,344,765 3 × 10−3 25,577
jnlbrng1 Optimization 40K × 40K 199,200 1 × 10−4 5
obstclae Optimization 40K × 40K 197,608 1 × 10−4 5
chem Chemical master equation 40K × 40K 201,201 1 × 10−4 5
rma10 3D CFD 46K × 46K 2,329,092 1 × 10−3 17,367
dixmaanl Optimization 60K × 60K 299,998 8 × 10−5 7
cant FEM/Cantilever 62K × 62K 4,007,383 1 × 10−3 99
consph FEM/Spheres 83K × 83K 6,010,480 9 × 10−4 13,497
denormal Counter-example problem 89K × 89K 1,156,224 1 × 10−4 13
Baumann Chemical master equation 112K × 112K 748,331 6 × 10−5 7
cop20k_A FEM/Accelerator 121K × 121K 2,624,331 2 × 10−4 221,205
shipsec1 FEM 141K × 141K 3,568,176 2 × 10−4 10,475
scircuit Circuit 171K × 171K 958,936 3 × 10−5 159,419
mac_econ Economics 207K × 207K 1,273,389 9 × 10−5 511
pwtk Wind tunnel 218K × 218K 11,524,432 2 × 10−4 19,929
Lin Structural problem 256K × 256K 1,766,400 3 × 10−5 7
synth1 Synthetic matrix 500K × 500K 1,999,996 8 × 10−6 4
synth2 Synthetic matrix 1M × 1M 1,999,999 2 × 10−6 2
ecology1 Animal movement 1M × 1M 4,996,000 5 × 10−6 5
webbase Web connectivity 1M × 1M 3,105,536 3 × 10−6 564,259
atmosmodd Atmospheric model 1.3M × 1.3M 8,814,880 5 × 10−6 7

Facebook Social media 1.6K × 64K × 64K 737,934 1 × 10−7
NELL-2 Machine learning 12K × 9.2K × 29K 76,879,419 2 × 10−5
NELL-1 Machine learning 2.9M × 2.1M × 25M 143,599,552 9 × 10−13

from scienti�c and engineering applications [13]. Our technique is the only one that

supports all the formats we survey; MTL4 does not support DIA, neither MKL nor SciPy

supports ELL, and TensorFlow only supports COO. MKL and SciPy also only support the

struct-of-arrays (SoA) variant of the COO format, which is the variant shown in Figure 2-2b.

TensorFlow, on the other hand, only supports array-of-structs (AoS) COO, which uses a

single crd array to store the full coordinates of each nonzero contiguously in memory. By

contrast, our technique supports both variants; as mentioned in Section 3.1, supporting

AoS COO only requires de�ning variants of the compressed and singleton level formats.

Figures 7-2 and 7-3 show performance results for sparse matrix-dense matrix multipli-

cation (SpMM), another important operation in many data analytics and machine learning

applications [56], and sparse matrix addition with COO matrices. Meanwhile, Figure 7-4

shows results for CSR matrix addition. Our technique is again the only one that supports

all operations. In particular, SciPy does not support COO SpMM, while MTL4 only sup-

117

COO-S COO-A CSR

cant
consph

cop20k A
mac econ
pdb1HYS

pwtk
rma10
scircuit

shipsec1
webbase

Geomean

1 1 1.17
1 1 1.18
1 1 1.05
1 1 1
1 1 1.11

1.01 1 1.16
1 1 1.23

1.02 1 1
1 1 1.16
1 1 1
1 1 1.1

COO-S COO-A CSR

1 1
1 1
1 1
1 1.08
1 1

1.02 1
1.02 1

1 1.08
1.01 1
1.02 1.05
1.01 1.02

COO-S COO-A CSR

1 1.21
1 1.21
1 1.07

1.01 1.08
1 1.13
1 1.23

1.01 1.31
1 1.06
1 1.21
1 1.07
1 1.15

COO-S COO-A CSR

1.01 1.2
1.01 1.2
1.09 1
1.31 1.05
1.01 1.11
1.04 1.23
1.02 1.27
1.32 1.04
1.02 1.2
1.64 1.05
1.13 1.13

COO-S COO-A CSR

1.24
1.22
1.66
2.09
1.17
1.28
1.28
2.21
1.26
1.59
1.46

DIA ELL
taco

dixmaanl

obstclae

jnlbrng1

chem

atmosmodd

Baumann

ecology1

denormal

Lin

synth2

synth1

cant

Geomean

1.1 1.01
1.23 1.02
1.23 1.02
1.23 1.01
1.06 1.23
1.27 1.1
1.14 1.13
1.33 1.12
1.22 1.08
1.08 1
1.19 1.1
1.48 1
1.21 1.07

DIA ELL
MKL

1
1
1
1
1
1
1
1
1
1
1
1
1

DIA ELL
SciPy

1.1
1.23
1.24
1.23
1.06
1.28
1.15
1.34
1.23
1.09
1.19
1.49
1.21

DIA ELL
MTL4

1
1
1
1
1
1
1
1
1

1.03
1

3.44
1.11

DIA ELL
TensorFlow

Figure 7-1: Normalized execution times of SpMV (y = Ax) with matrix A stored in dis-
parate array-based formats, using code that our technique generates (taco) and that are
implemented in other existing libraries. Results are normalized to that of the fastest library
for each matrix and format, and the geometric means of the results are shown in bold.
Unlabeled cells in gray indicate a library does not support that format; our technique
the only library that supports SpMV for all the formats we evaluate. COO-S and COO-A
denote the struct-of-arrays and array-of-structs variants of COO respectively.

ports SpMM with sorted COO matrices. Furthermore, only TensorFlow and our technique

support computing COO matrix addition with a COO output, and TensorFlow does not

support CSR matrix addition. These omissions highlight the advantage of a compiler

approach such as ours that does not require every kernel to be manually implemented.

Overall, the results show that our technique generates code that has performance

competitive with existing libraries. For SpMM and sparse matrix addition, code that our

technique generates consistently has performance equal to or better than other libraries.

For SpMV, code that our technique generates outperform TensorFlow, perform similar to

SciPy and MTL4, and are competitive with MKL on the whole. Even for DIA, code that

our technique generates is only about 21% slower than MKL on average. These results are

explained in more depth below.

118

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

2.0

ca
nt

co
ns

ph

co
p2

0k
_A

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sc
irc

uit

sh
ips

ec
1

web
ba

se

Geo
mea

n

taco (SoA) taco (AoS) MKL TensorFlow

Figure 7-2: Normalized execution times of COO SpMM (A = BC , where B is in COO andA
and C are dense matrices) with code that our technique generates (taco) and with other
libraries that support the operation. Results are normalized to that of our technique (with
SoA COO) for each matrix.

COO Kernels

Code that our technique generates to compute COO SpMV implements the same algorithm

as SciPy and MKL, and they therefore have the same performance. MTL4 also implements

this algorithm but stores the result of the computation in a temporary that is subsequently

copied to the output. This incurs additional cache misses for matrices with larger dimen-

sions, such as webbase. TensorFlow, on the other hand, does not implement a specialized

COO SpMV kernel and the operation must be cast as SpMM with a single-column matrix.

It therefore incurs some performance overhead because every input vector access requires

a loop over its trivial column dimension.

COO matrix addition code that our technique generates is specialized to the number of

dimensions that the operands possess. By contrast, TensorFlow has loops that iterate over

the coordinates of each nonzero. These loops let TensorFlow support tensors with any

number of dimensions using a single sparse tensor addition kernel, but again the loops

introduce some overhead. TensorFlow’s sparse tensor addition kernel is also hard-coded

to compute with 64-bit coordinates, whereas our technique can generate code that work

with narrower-width coordinates, which reduces memory tra�c.

119

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

1.0

2.0

3.0

4.0

5.0

ca
nt

co
ns

ph

co
p2

0k
_A

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sc
irc

uit

sh
ips

ec
1

web
ba

se

Geo
mea

n

taco (AoS) TensorFlow

Figure 7-3: Normalized execution times of COO matrix addition (A = B + C , where all
matrices are stored in the AoS COO format) with code that our technique generate (taco)
and with TensorFlow. Results are normalized to that of our technique for each matrix.

CSR Kernels

Code that our technique generates for CSR SpMV iterates over the rows of the input

matrix and, for each row, computes its dot product with the input vector. SciPy and

MTL4 implement the same algorithm and thus have similar performance as code that our

technique generates, while MKL also vectorizes the dot product. This, however, requires

vectorizing the input vector gathers, which many SIMD architectures cannot handle very

e�ciently. Thus, while SIMD vectorization is bene�cial for many of our test matrices (e.g.,

rma10), it is not always so (e.g., mac_econ).

Code that our technique generates for CSR matrix addition also uses the same algorithm

as SciPy and MKL and thus has similar performance. The generated code exploits the

sortedness of the input matrices to enumerate result nonzeros in order. This lets it cheaply

assemble the output crd array by appending nonzeros to it. By contrast, MTL4 �rst assigns

one operand to a sparse temporary and then increments it by the other operand. The

latter step can require signi�cant data shu�ing to keep nonzeros stored in coordinate

order within the sparse temporary, since MTL4 does not reserve memory in advance to

store nonzeros. Finally, converting the temporary back to CSR incurs yet more overhead,

resulting in MTL4’s poor performance.

120

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

2.0

ca
nt

co
ns

ph

co
p2

0k
_A

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sc
irc

uit

sh
ips

ec
1

web
ba

se

Geo
mea

n

9.020.06.28.86.46.17.424.111.46.66.4

taco MKL SciPy MTL4

Figure 7-4: Normalized execution times of CSR matrix addition with code that our technique
generates (taco) and with other libraries that support the operation. Results are normalized
to that of our technique for each matrix.

DIA and ELL SpMV

Code that our technique generates for DIA SpMV iterates over each non-empty matrix

diagonal and, for each diagonal, accumulates the element-wise product of the diagonal and

the input vector into the result. SciPy implements the same algorithm that our technique

generates and thus has the same performance. MKL, by contrast, tiles the computation to

maximize cache utilization and thus outperform both our technique and SciPy, particularly

for large matrices with many non-empty diagonals. Senanayake et al. [96] show how TACO

can be extended with a scheduling language that supports optimizations such as iteration

space tiling, though their implementation only supported the dense and compressed level

formats. Future work includes extending the scheduling language to support arbitrary

level formats, which would enable our technique to apply the same tiling optimization

that MKL employs for DIA SpMV.

Similarly, our technique generates code for ELL SpMV that iterates over stored nonzeros

in the order they are laid out in memory. MTL4, on the other hand, iterates over nonzeros

row by row to maximize the cache hits for vector accesses. For matrices with few nonzeros

per row, this lets MTL4 marginally outperform code that our technique generates. Again,

extending TACO’s scheduling language to support arbitrary level formats would enable

our technique to apply iteration space tiling in order to generate code that iterates over

121

nonzeros in the same way as MTL4. That said, when the number of nonzeros in each

row is large, the approach that MTL4 takes actually reduces the cache hit rate for matrix

accesses, since nonzeros that are close in memory are not accessed consecutively. The

performance impact of this can be signi�cant, as the results for the cant matrix show.

7.1.3 Sparse Higher-Dimensional Tensor Computations

We also evaluated code that our technique generates against equivalent hand-implemented

code in the Tensor Toolbox (TTB) and TensorFlow (TF) for the following sparse higher-

dimensional tensor algebra computations:

TTV Aij =
∑

k Bijkck

TTM Aijk =
∑

l BijlCkl

MTTKRP Aij =
∑

k,l BiklCkjDl j

PLUS Aijk = Bijk +Cijk

INNERPROD α =
∑

i,j,k BijkCijk

where all three-dimensional tensors and the outputs of TTV, TTM, and PLUS are stored

in the COO format with nonzeros stored in coordinate order, while all other operands

are dense. All these operations have real-world applications. TTM and MTTKRP, for

example, are building blocks of widely used algorithms for computing Tucker and CP

decompositions [67, 103]. These same operations were also evaluated in Kjolstad et al. [54,

Section 8.4], though that work measured the performance of TACO-generated code that

compute with the more e�cient CSF format.

Table 7.2 shows the results of our experiments, with Intel MKL, SciPy, and MTL4

omitted as they do not support sparse higher-dimensional tensors. The Tensor Toolbox

and TensorFlow are on opposite sides of the trade-o� space for hand-written sparse tensor

algebra libraries. The Tensor Toolbox supports all the operations in our benchmark but has

poor performance, while TensorFlow supports only one operation but is more e�cient than

the Tensor Toolbox Our technique, by contrast, emits e�cient code for all �ve operations,

demonstrating that generality and performance are not mutually exclusive.

122

Table 7.2: Execution times (in milliseconds) of sparse higher-dimensional tensor algebra
kernels with operands stored in COO. Figures in parentheses show speedups that our
technique achieves relative to the other libraries. A missing entry means a library does
not support an operation, while OOM means the kernel runs out of memory. NELL-2
and NELL-1 are too large for TensorFlow’s protocol bu�ers, and so we omit results for
TensorFlow with those tensors.

Kernel Facebook NELL-2 NELL-1

TACO TTB TF TACO TTB TACO TTB

TTV 13 55 (4.1×) 337 4797 (14.3×) 2253 11239 (5.0×)
TTM 444 18063 (40.7×) 5350 48806 (9.1×) 56478 OOM
PLUS 37 539 (14.6×) 60 (1.6×) 3085 73380 (23.8×) 6289 123387 (19.6×)
MTTKRP 44 364 (8.4×) 3819 43102 (11.3×) 21042 110502 (5.3×)
INNERPROD 12 670 (57.1×) 416 82748 (199.0×) 985 148592 (150.9×)

As with sparse matrix addition, code that our technique generates for adding three-

dimensional COO tensors has better performance than TensorFlow’s generic sparse tensor

addition kernel. Furthermore, code that our technique generates signi�cantly outperform

equivalent code that are implemented in the Tensor Toolbox, often by more than an order

of magnitude. This is because the Tensor Toolbox relies on MATLAB primitives that

cannot always directly operate on arrays storing the input tensors or exploit properties

of how the input tensors are stored in order to optimize the computation. To add two

sparse tensors, for instance, the Tensor Toolbox computes the set of output nonzeros by

calling a MATLAB built-in function that computes the union of the input tensors’ nonzeros.

MATLAB’s implementation of set union, however, cannot exploit the fact that the input

tensors are already individually sorted and must sort the concatenation of their nonzeros.

By contrast, our technique generates code that directly iterates over and merges the two

input tensors without �rst re-sorting them, reducing the asymptotic complexity of the

computation. Additionally, code that our technique generates directly assembles sparse

output tensors, whereas, for computations such as TTM, the Tensor Toolbox stores the

results in intermediate dense structures.

7.1.4 Bene�ts of Supporting Disparate Formats

Table 7.3 shows, for a wide variety of array-based sparse tensor formats, which formats are

supported by our technique and the other existing sparse linear and tensor algebra libraries

123

Table 7.3: Support for various (array-based) sparse tensor formats by our technique (TACO)
as well as by other existing sparse linear and tensor algebra libraries. (X) identi�es tensor
formats that our technique can support by de�ning additional level formats on top of those
described in Section 3.1.

Tensor Type Format TACO MKL SciPy MTL4 TTB TF

Vector
Sparse array X X X X X X
Hash map X X
Byte map X

Matrix

COO X X X X X X
CSR X X X X X
DCSR X
CSC X X X X X
Ragged array X
Byte map X
ELL X X
DIA X X X
BCSR X X X X
DOK (X) X
LIL (X) X
SKY (X) X
Banded format (X) X

Three-dimensional tensor

COO X X X
CSR X
CSF X
Mode-generic format X

we evaluate. In addition to the formats described in Section 2.1, we also considered all

other formats for storing unfactorized, non-symmetric sparse tensors that are supported

by at least one existing library. This includes DOK [111], which stores nonzeros using a

hash map that is indexed by both the row and column coordinates of nonzeros, LIL [112],

which stores each row of a matrix using a separate (array-based) list, and the skyline (SKY)

format [90], which is designed for storing variably-banded triangular matrices. Meanwhile,

the (sparse) banded matrix format is similar to DIA but instead stores elements in each

row contiguously. As Table 7.3 shows, each of the other existing libraries only supports a

subset of the tensor formats we consider. By contrast, our technique supports all of the

tensor formats we consider, either as shown in Figure 3-3 or by de�ning additional level

formats on top of those described in Section 3.1.

Our technique’s support for a wider range of formats can enable it to achieve better

performance in practical use, depending on characteristics of the application. The COO

124

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

1.0

2.0

3.0

4.0

ca
nt

co
ns

ph

co
p2

0k
_A

mac
_e

co
n

pd
b1

HYS
pw

tk

rm
a1

0

sc
irc

uit

sh
ips

ec
1

web
ba

se

CSR Compute CSR Assembly

Figure 7-5: Normalized execution times of CSR SpMV relative to COO SpMV, taking into
account the cost of converting the input matrix (assumed to be in COO originally) to CSR.
These results show that computing with CSR is faster than with COO (black line) only if
the cost of converting the input matrix to CSR can be amortized over multiple iterations.

format, for instance, is the intuitive way to represent sparse tensors and is used by many

�le formats to encode sparse tensors. Thus, it is a natural format for importing and

exporting sparse tensors into and out of an application. As the blue bars in Figure 7-5 show,

computing matrix-vector products directly on COO matrices can take up to twice as much

time as with CSR matrices due to higher memory tra�c. If a matrix is imported into the

application in the COO format though, then it must be converted to a CSR matrix before

the more e�cient CSR SpMV kernel can be used. This preprocessing step incurs signi�cant

overhead that, as the red bars in Figure 7-5 show, exceeds the cost of computing on the

original COO matrix. For non-iterative applications that cannot amortize this conversion

overhead, our technique can optimize end-to-end performance by enabling SpMV to be

computed directly on the COO matrix, thereby eliminating the overhead.

Supporting a wider range of formats also enables our technique to better exploit char-

acteristics of the input data for performance. To show this, we compared the performance

of SpMV computed on CSR and DIA matrices using code that our technique generates.

For matrices like Lin and synth1 whose nonzeros are all contained in a few densely-�lled

diagonals, storing them in DIA exposes opportunities for vectorization. As Figure 7-6

shows, our technique can exploit this to improve the performance of SpMV by up to 22%

125

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.0

0.5

1.0

1.5

dix
maa

nl

ch
em

Bau
man

n Lin

sy
nth

1

sy
nth

2

pd
b1

HYS
rm

a1
0

sh
ips

ec
1

186x 251x 143x

Figure 7-6: Normalized execution times of DIA SpMV code that our technique generates
relative to CSR SpMV. Storing the input matrix in the DIA format can accelerate SpMV
if all the nonzeros in the matrix are con�ned to a few densely-�lled diagonals, but can
drastically degrade performance if that is not the case.

relative to computing the same operation on CSR matrices. On the other hand, DIA SpMV

performs signi�cantly worse for matrices like rma10 whose nonzeros are spread amongst

many sparsely-�lled diagonals, since the kernel has to redundantly compute with all the

zeros in the non-empty diagonals.

We further compared the performance of CSR SpMV with input vectors stored as dense

arrays, sparse arrays, and hash maps, for operands of varying density. Figure 7-7 shows the

results of our experiments. When the input vector contains mostly nonzeros, dense arrays

are suitable for SpMV as they provide e�cient random access without needing to explicitly

store coordinates of nonzeros. Conversely, when the input vector contains mostly zeros

and the matrix is much denser, sparse arrays o�er better performance for SpMV as it can

be computed without accessing all matrix nonzeros. However, when the input vector is

large and sparse but still denser than the matrix, computing SpMV with hash map vectors

reduces the number of accesses that go out of cache. At the same time, the hash map

format’s random access capability makes it possible to compute SpMV without accessing

the full input vector. By supporting all these di�erent formats for storing vectors, our

technique can e�ciently compute SpMV regardless of how sparse the operands are.

126

Figure 7-7: Normalized execution times of CSR SpMV with inputs of varying density
and input vectors stored in di�erent formats. Results are normalized to that of the most
performant format for each con�guration. Each cell shows results for dense arrays (top),
sparse vectors (middle), and hash maps (bottom). Cells are highlighted based on which
vector format is most performant (blue for dense arrays, green for sparse vectors, red for
hash maps), with darker shades indicating more signi�cant performance di�erences.

7.2 Assembling Results in Array-Based Formats

All of the kernels we evaluated in the previous section either have dense outputs or have

sparse outputs that can be assembled in order. In this section, I demonstrate our technique’s

ability to generate e�cient code for performing operations with outputs that are sparse

and that must also be assembled out of order in array-based formats. In particular, we

�rst evaluated the performance of code that our technique generates for converting sparse

tensors between arbitrary combinations of disparate source and target formats. We then

evaluated our technique’s ability to generate e�cient parallel sparse tensor algebra kernels

with sparse outputs, which typically must store result nonzeros out of order.

7.2.1 Experiment Setup

To evaluate sparse tensor conversion routines that our technique generates, we compared

against equivalent hand-implemented versions in SPARSKIT [93], a widely used [81, 46]

Fortran sparse linear algebra library, and Intel MKL. Additionally, to evaluate parallel code

that our technique generates for computing sparse tensor algebra operations with sparse

127

outputs, we compared against SuiteSparse:GraphBLAS [29], a highly-optimized library

that can be used to implement graph algorithms in the language of linear algebra.

All experiments were run on a two-socket, 12-core/24-thread 2.5 GHz Intel Xeon E5-

2680 v3 machine with 30 MB of L3 cache and 128 GB of main memory. The machine runs

Ubuntu 18.04.3 LTS. For our evaluation of sparse tensor format conversion, we compiled

code that our technique generates using GCC 7.5.0 with -O3 -march=native -mtune=native

optimizations enabled and built SPARSKIT from source using GFortran 7.5.0 with the same

optimizations. We ran each experiment 50 times under cold cache conditions report median

serial execution times. For our evaluation of parallel sparse algebra tensor computations

with sparse outputs, we compiled code that our technique generates using GCC 7.5.0 with

-O3 optimizations enabled. We ran each experiment 100 times under warm cache conditions

and report average execution times when run using 12 threads, with execution restricted

to a single socket using numactl.

We ran our experiments with real-world matrices of varying sizes and sparsity struc-

tures as inputs. Table 7.4 shows the matrices we used to evaluate sparse tensor format

conversion, while Table 7.8 shows the matrices we used to evaluate parallel sparse tensor

algebra computations with sparse outputs. These matrices come from applications in

disparate domains and were obtained from the SuiteSparse Matrix Collection.

7.2.2 Sparse Tensor Format Conversion

We measured the performance of sparse tensor conversion routines that our technique

generates for seven distinct combinations of source and target formats:

• COO to CSR (coo_csr)

• COO to DIA (coo_dia)

• CSR to CSC (csr_csc)

• CSR to DIA (csr_dia)

• CSR to ELL (csr_ell)

• CSC to DIA (csc_dia)

• CSC to ELL (csc_ell)

128

Table 7.4: Statistics about matrices used to evaluate code that our technique generates for
assembling sparse outputs out of order. Non-symmetric matrices are highlighted in gray.

Matrix Dimensions NNZ Non-Empty
Diagonals

Max. NNZ
in Row

1 pdb1HYS 36.4K × 36.4K 4.34M 26K 204
2 jnlbrng1 40.0K × 40.0K 199K 5 5
3 obstclae 40.0K × 40.0K 199K 5 5
4 chem_master1 40.4K × 40.4K 201K 5 5
5 rma10 46.8K × 46.8K 2.37M 17K 145
6 dixmaanl 60.0K × 60.0K 300K 7 5
7 cant 62.5K × 62.5K 4.01M 99 78
8 shyy161 76.5K × 76.5K 330K 7 6
9 consph 83.3K × 83.3K 6.01M 13K 81
10 denormal 89.4K × 89.4K 1.16M 13 13
11 Baumann 112K × 112K 748K 7 7
12 cop20k_A 121K × 121K 2.62M 221K 81
13 shipsec1 141K × 141K 3.57M 10K 102
14 majorbasis 160K × 160K 1.75M 22 11
15 scircuit 171K × 171K 959K 159K 353
16 mac_econ_fwd500 207K × 207K 1.27M 511 44
17 pwtk 218K × 218K 11.5M 20K 180
18 Lin 256K × 256K 1.77M 7 7
19 ecology1 1.00M × 1.00M 5.00M 5 5
20 webbase-1M 1.00M × 1.00M 3.11M 564K 4700
21 atmosmodd 1.27M × 1.27M 8.81M 7 7

where inputs and outputs in COO, CSR, or CSC are not assumed to be sorted (though

nonzeros are still necessarily grouped by row/column in CSR/CSC). For all these combina-

tions of formats, our technique generates code that performs the conversion by assembling

the output matrix out of order in the desired target format.

For each combination of formats, we also measured the performance of conversion

between those formats using SPARSKIT and MKL. Both libraries implement routines that

directly convert matrices from COO to CSR, CSR to CSC, and CSR to DIA. Additionally,

SPARSKIT supports directly converting matrices from CSR to ELL. However, neither

SPARSKIT nor MKL implements routines that directly convert matrices between the

remaining combinations of formats. Thus, to perform those conversions using either

library, we had to �rst convert the input matrix from its source format to a CSR temporary

and then convert the CSR temporary to the intended target format. (If the input matrix is

symmetric though, then conversions from CSC to DIA/ELL are cast as conversions from

CSR to DIA/ELL, since CSR and CSC are equivalent in that case.)

129

Table 7.5: Performance of sparse tensor format conversion routines that our technique
generates (TACO) and that are directly implemented in SPARSKIT or MKL. For each
combination of source and target formats, we show absolute execution times of code
generated by our technique and speedups that our technique achieves over the other
libraries. For CSR to CSC conversion, we only show results for nonsymmetric matrices
(rows highlighted in gray) since CSR and CSC are equivalent for symmetric matrices. For
conversions to DIA/ELL, we also omit results for matrices that would have to be stored
with more than 75% of values being zeros, since having to compute with so many zeros
would likely eliminate any performance bene�t of DIA/ELL.

Matrix
coo_csr csr_csc csr_dia csr_ell

TACO
(ms)

SPARSKIT
TACO

MKL
TACO

TACO
(ms)

SPARSKIT
TACO

MKL
TACO

TACO
(ms)

SPARSKIT
TACO

MKL
TACO

TACO
(ms)

SPARSKIT
TACO

1 57.5 1.02 1.11 79.1 1.68
2 0.96 0.97 1.56 0.91 1.85 1.56 0.92 0.95
3 0.93 1.00 1.60 0.91 1.84 1.54 0.82 1.04
4 1.06 1.04 1.44 1.10 0.98 2.14 0.93 1.83 1.54 0.91 0.91
5 34.0 1.01 0.96 29.1 1.17 1.16 49.2 1.84
6 1.61 1.02 1.42 1.54 1.88 1.57 1.35 0.97
7 27.4 1.00 1.35 44.5 3.61 3.63 59.8 1.78
8 1.69 1.00 1.50 1.64 1.07 2.36 1.86 1.85 1.54 1.77 0.94
9 64.8 1.01 1.21 88.9 1.45
10 5.61 1.01 1.51 4.83 2.21 2.26 5.17 1.02
11 4.70 0.99 1.49 4.71 1.03 1.89 3.56 1.95 1.70 3.33 1.01
12 63.6 0.89 0.96 34.8 3.60
13 81.6 1.02 1.28 112 1.93
14 12.3 1.00 1.33 12.1 0.99 1.78 9.91 2.43 2.42 8.17 1.03
15 15.8 1.00 1.10 16.4 0.95 1.09
16 11.1 0.99 1.29 11.6 1.00 1.38
17 121 1.00 1.29 123 4.09
18 9.88 0.98 1.36 8.14 1.92 1.70 10.1 0.98
19 42.3 0.99 1.41 35.8 1.64 1.44 37.5 1.08
20 57.9 1.01 0.99 59.3 1.00 1.14
21 113 0.96 1.21 113 0.97 1.04 62.2 1.72 1.58 74.1 1.17

Geomean 1.00 1.29 1.02 1.48 2.01 1.80 1.36

Tables 7.5 and 7.6 show the results of our experiments. As these results demonstrate,

code that our technique generates outperform or are comparable to SPARSKIT and Intel

MKL on average for all combinations of source and target formats that we evaluate. On

the whole, code that our technique generates for converting matrices from COO to CSR

(coo_csr) and from CSR to CSC (csr_csc) exhibit similar performance as hand-implemented

routines in SPARSKIT and exhibit somewhat better performance than Intel MKL. This

is unsurprising since our technique generates code that implement the same algorithms

(i.e., variations of Gustavson’s HALFPERM algorithm [40]) as SPARSKIT. Our technique

130

Table 7.6: Performance of sparse tensor format conversion routines that our technique
generates (TACO) but that are not directly implemented in SPARSKIT or MKL. To perform
these conversions using the other libraries, we �rst convert each matrix to a CSR temporary
and then convert the temporary to the intended target format. For each combination of
source and target formats, we show absolute execution times of code generated by our
technique and speedups that our technique achieves over the other libraries. For symmetric
matrices, we cast CSC to DIA/ELL conversion as CSR to DIA/ELL conversion and report
the same results shown in Table 7.5. We also omit results for matrices that would have
to be stored with more than 75% of values being zeros, since having to compute with so
many zeros would likely eliminate any performance bene�t of DIA/ELL.

Matrix
coo_dia csc_dia csc_ell

TACO
(ms)

SPARSKIT
TACO

MKL
TACO

TACO
(ms)

SPARSKIT
TACO

MKL
TACO

TACO
(ms)

SPARSKIT
TACO

1 79.1 1.68
2 0.86 3.07 3.38 0.91 1.85 1.56 0.92 0.95
3 0.86 3.02 3.36 0.91 1.84 1.54 0.82 1.04
4 0.88 4.60 4.94 0.96 4.24 3.85 1.24 3.11
5 62.8 2.09
6 1.50 5.03 3.11 1.54 1.88 1.57 1.35 0.97
7 45.3 4.16 4.39 44.5 3.61 3.63 59.8 1.78
8 1.76 4.98 3.05 1.89 4.68 3.44 2.36 3.00
9 88.9 1.45
10 5.14 5.10 5.78 4.83 2.21 2.26 5.17 1.02
11 3.48 5.23 5.48 3.60 5.07 4.10 4.74 3.16
12 34.8 3.60
13 112 1.93
14 10.9 3.34 3.70 10.4 3.47 4.37 20.1 1.88
14 123 4.09
18 8.40 4.87 5.12 8.14 1.92 1.70 10.1 0.98
19 36.8 2.74 3.00 35.8 1.64 1.44 37.5 1.08
21 64.9 3.26 3.49 62.9 3.40 3.39 88.7 2.20

Geomean 4.01 3.96 2.75 2.51 1.78

also generates code for performing CSR to DIA conversion (csr_dia) that is 2.01× faster

than SPARSKIT and 1.80× faster than Intel MKL on average. SPARSKIT’s implementation

of csr_dia supports extracting a bounded number of nonzero diagonals from the input

matrix and storing them in the output. However, it implements this capability using

an ine�cient algorithm to identify the densest diagonals, resulting in the slowdown. In

addition, csr_ell code that our technique generates is 1.36× faster than SPARSKIT on

average. This is because our technique generates code that invokes calloc to both allocate

and zero-initialize the output arrays. SPARSKIT, by contrast, takes user-allocated output

arrays as arguments and separately initializes those arrays.

131

Furthermore, for conversions from COO or CSC to DIA or ELL, code that our technique

generates achieve even greater speedups—between 1.78 and 4.01×—over SPARSKIT and

Intel MKL . This is because when the input matrix is nonsymmetric or stored in COO, both

libraries incur additional memory accesses in order to �rst construct CSR temporaries and

then iterate over those temporaries to convert them to the intended target formats. This

show the bene�t of a compiler technique such as ours that can generate code to directly

construct the outputs of sparse tensor conversion in their desired target formats.

7.2.3 Parallel Computation with Sparse Output

To evaluate our technique’s ability to generate parallel sparse tensor algebra code that

produce sparse outputs, we measured the performance of code that our technique generates

for computing two variants of sparse matrix multiplication, namely

• sparse Boolean matrix multiplication (∀i∀j∀k Aik ∨= Bij ∧Cjk) and

• sparse min-plus matrix multiplication (∀i∀j∀k Dik min= (Fij +Gjk))

where A, B, and C store Boolean elements, D, F , and G store �oating-point elements with

in�nities (instead of zeros) being compressed out, and all matrices are stored in CSR. These

kernels can be used to implement many graph algorithms, such as those for performing

(multiple-source) breadth-�rst search and for solving the all-pairs shortest paths problem,

in the language of linear algebra [50].

To be able to compute sparse matrix multiplication in parallel and produce a sparse

output, our technique generates code that performs the computation in two passes. In

the �rst pass, the generated code performs the computation symbolically in order to

compute the number of de�ned elements1 in each row of the result and preallocate the

output arrays accordingly. Then, in the second pass, the generated code performs the

computation again numerically and appends each de�ned element in the result to the

end of its corresponding segment in the output arrays. This approach enables multiple

1De�ned elements generalize the notion of nonzeros in cases where non-zero �ll values are compressed out,
as described in Section 3.4. In the case of Boolean matrix multiplication, false elements are the compressed-
out �ll values while true elements are considered de�ned. Meanwhile, in the case of min-plus matrix
multiplication, the in�nite elements are �ll values while �nite elements are considered de�ned.

132

Table 7.7: Performance of parallel sparse matrix multiplication code that our technique
generates (TACO) and that are implemented in SuiteSparse:GraphBLAS. For each kernel,
we show absolute execution times of code generated by our technique and speedups
that our technique achieves over SuiteSparse:GraphBLAS. For SuiteSparse:GraphBLAS,
we report results for whichever algorithm the library chooses (A) as well as for their
implementation of Gustavson’s algorithm (G), which uses dense arrays to store partial
results. We use each matrix as both inputs to each kernel.

Matrix

Boolean Matrix Multiplication Min-Plus Matrix Multiplication

TACO
(ms)

SuiteSparse (A)
TACO

SuiteSparse (G)
TACO

TACO
(ms)

SuiteSparse (A)
TACO

SuiteSparse (G)
TACO

1 35.7 0.896 3.50 67.5 0.599 2.46
2 815 0.804 1.59 1414 0.577 1.28
3 55.1 1.40 1.37 104 1.14 1.23
4 2203 1.12 1.12 4510 0.946 0.946
6 1897 1.05 1.09 2607 0.955 1.02
7 120754 0.997 0.997 276389 0.748 0.748
8 6336 1.23 1.02 9595 1.13 1.01
9 76.6 0.836 0.998 121 0.687 0.825
10 1105 0.852 1.29 1678 0.661 1.05
11 1127 0.689 0.987 1733 0.558 0.819
12 109 1.28 1.06 180 1.31 1.10
13 17184 1.32 1.11 36121 1.17 1.07

Geomean 1.02 1.25 0.836 1.07

threads to simultaneously compute di�erent rows of the output matrix without interfering

with each other. The generated code has similar high-level structure as code shown in

Figure 6-4c for converting a matrix to CSR, except that instead of simply copying over

elements from the input matrix, the elements that are inserted into the output are computed

on-the-�y. SuiteSparse:GraphBLAS, which we compared our generated code against, also

parallelizes sparse matrix multiplication in a similar way.

Table 7.7 show the results of our experiments. Code that our technique generates is

1.02× faster than SuiteSparse:GraphBLAS on average for sparse Boolean matrix multipli-

cation and has performance 0.836× that of SuiteSparse:GraphBLAS on average for sparse

min-plus matrix multiplication. The similarities in performance can be explained by the

fact that our generated code and SuiteSparse:GraphBLAS both use a linear combination

of rows algorithm to compute the kernels. However, when the output matrix contains

relatively few de�ned elements per row, SuiteSparse:GraphBLAS is able to use hash tables

to store partial results. By contrast, our technique currently can only generate code that

133

stores partial results using dense arrays, which reduces cache e�ciency. Table 7.7 also

shows, though, that code our technique generates has similar or better performance on

average than SuiteSparse when the latter also uses dense arrays to store partial results

(which is preferable when the output is relatively dense).

7.3 Computing with Pointer-Based Formats

To conclude this chapter, I demonstrate our technique’s ability to also generate e�cient

code for computing on sparse tensors that are stored in pointer-based formats.

7.3.1 Experiment Setup

We evaluated code that our technique generates against four state-of-the-art libraries and

frameworks: Aspen [32], Terrace [79], STINGER [34], and PAM [109]. Aspen and Terrace

are graph processing frameworks that let users compute on dynamic graphs by invoking

a �xed set of hand-optimized primitives for mapping over and applying user-de�ned

functions on edges and vertices. Internally, Aspen stores graphs as adjacency matrices

using C-trees, while Terrace uses a combination of �xed-size arrays, packed-memory arrays,

and B-trees. STINGER is another graph processing framework that supports computations

on dynamic graphs; STINGER stores graphs using block linked lists and provides a set of

macros that programmers can use to iterate over (and compute on) edges in a graph. PAM,

by contrast, is a lower-level, parallel C++ library that implements a �xed set of primitives

for operating on ordered key-value maps stored as self-balancing BSTs. While PAM does

not directly implement any tensor algebra kernel, the primitives that PAM exposes can be

utilized to perform computations on sparse tensors that are stored using BSTs.

All experiments were run on a two-socket, 12-core/24-thread 2.5 GHz Intel Xeon

E5-2680 v3 machine with 30 MB of L3 cache per socket and 128 GB of main memory.

The machine runs Ubuntu 18.04.3 LTS. We compiled all code using GCC 7.5.0 with

-O3 -march=native -mtune=native -ffast-math optimizations enabled. To ensure apples-

to-apples comparisons of the actual algorithms that are implemented by the (generated and

hand-optimized) kernels, we modi�ed code generated by our technique so that they operate

134

Table 7.8: Statistics about matrices used to evaluate code that our technique generates for
computing on operands stored in pointer-based formats.

Matrix Dimensions NNZ

1 belgium_osm 1.44M × 1.44M 3.10M
2 cit-Patents 3.77M × 3.77M 16.5M
3 coAuthorsCiteseer 227K × 227K 1.63M
4 coPapersDBLP 540K × 540K 30.5M
5 com-Orkut 3.07M × 3.07M 234M
6 delaunay_n24 16.8M × 16.8M 101M
7 indochina-2004 7.41M × 7.41M 194M
8 rgg_n_2_24_s0 16.8M × 16.8M 265M
9 roadNet-CA 1.97M × 1.97M 5.53M
10 road_central 14.1M × 14.1M 33.9M
11 road_usa 23.9M × 23.9M 57.7M
12 ship_003 122K × 122K 3.78M
13 soc-LiveJournal1 4.85M × 4.85M 69.0M
14 webbase-1M 1.00M × 1.00M 3.11M

on the exact same data structures in memory as the libraries we compare against. This only

required minor changes to how the �elds of input data structures are accessed and did not

entail any algorithmic change. Additionally, we used the same parallel programming APIs

as the libraries we compare against (i.e., OpenMP for STINGER and Cilk for the others),

and all memory allocations were done using jemalloc. We ran each experiment 100 times

under cold cache conditions and report median execution times. Each experiment was run

using 24 threads, with execution restricted to a single socket using numactl.

We ran our experiments with real-world sparse matrices of varying sizes from the

SuiteSparse Matrix Collection. These matrices, which Table 7.8 describes in more detail,

represent graphs and other data that arise in disparate application domains.

7.3.2 Support for Disparate Formats

Our technique generates e�cient code for computing on sparse tensors that are stored in

a wide range of disparate pointer-based formats. To demonstrate this, we evaluated the

performance of code that our technique generates for performing

• the PageRank kernel (∀i∀j yi += Aijxjdj
−1) and

• sparse matrix-dense matrix multiplication (∀i∀j∀k Cik ∨= Aij ∧Bjk , or SpMM)

135

where A is a sparse Boolean matrix (representing a graph’s adjacency matrix), B and C are

dense Boolean matrices, x and y are dense �oating-point vectors, and d is a dense integer

vector. In particular, the �rst kernel corresponds to the main kernel in each iteration of the

PageRank algorithm [78], while the second kernel can be used to implement algorithms

such as multi-source breadth-�rst search [3]. For each kernel, we measured the performance

of code that our technique generates for A stored in various pointer-based tensor formats

(speci�ed in terms of level formats that are de�ned in Figures 5-2 and 5-3), including

• using only BSTs in the (bst, bst) format,

• using C-trees in the (bst, ctree) format,

• using block linked lists (BLLs) in the (dense, blist) format, and

• using a hybrid of �xed-size arrays and B-trees in the (dense, hybrid) format;

these correspond to formats that are supported by PAM, Aspen,2 STINGER, and Terrace3

respectively. We then compare the generated code against the aforementioned frameworks

and library. In particular, Aspen and Terrace both implement an edgeMap primitive that

can compute the PageRank and SpMM kernels by iterating over edges in the input graph

(i.e., de�ned elements in A) and performing some (user-de�ned) computation on each

edge/nonzero. Similarly, STINGER provides macros that can be used to e�ciently iterate

over incident edges of each vertex (i.e., de�ned elements in each row of A) in order to

perform the same computations. Additionally, PAM can compute the same kernels in

similar ways by mapping over the rows ofA (using the map_void primitive) and performing

either a map-reduce operation (for PageRank, using the semi_map_reduce primitive) or

another map operation (for SpMM) over the de�ned elements in each row.

Tables 7.9 and 7.10 show the results of our experiments. Our technique is the only one

that supports all of the formats we consider; the other frameworks and library we evaluate

each only supports a single format. Nevertheless, as Tables 7.9 and 7.10 demonstrate,

our technique is able to achieve comparable, if not better, performance than all the hand-

2While Aspen also supports C-trees that use di�erence encoding to compress the coordinates stored in
each block, we only evaluate our technique and Aspen on C-trees that do not use di�erence encoding, since
di�erence encoding is not supported by our technique as we have described it.

3Terrace supports packed-memory arrays (PMAs) in addition to �xed-size arrays and B-trees, though we
omit PMAs from our evaluation since they are not supported by our technique.

136

Table 7.9: Performance of code implemented using existing libraries and generated by
our technique (TACO) for computing the PageRank kernel on sparse matrices that are
stored in disparate pointer-based formats. For each format, we show execution times of
code implemented using an existing library that supports the format, execution times of
code generated by our technique, and speedups achieved by the generated code. Each test
matrix is identi�ed by its label as shown in Table 7.1.

Matrix
BSTs C-trees BLLs Array/B-tree Hybrid

PAM
(ms)

TACO
(ms)

PAM
TACO

Aspen
(ms)

TACO
(ms)

Aspen
TACO

STINGER
(ms)

TACO
(ms)

STINGER
TACO

Terrace
(ms)

TACO
(ms)

Terrace
TACO

1 9.876 5.508 1.793 6.970 6.310 1.105 15.05 14.18 1.061 3.080 2.783 1.107
2 61.51 43.53 1.413 49.23 36.96 1.332 63.77 56.96 1.120 40.46 32.28 1.253
3 3.142 2.506 1.254 1.712 2.018 0.848 3.314 2.951 1.123 1.766 1.100 1.605
4 31.80 27.70 1.148 14.99 12.30 1.219 34.87 28.89 1.207 26.96 14.36 1.877
5 504.0 449.7 1.121 378.7 276.4 1.370 494.3 403.3 1.226 471.5 288.0 1.637
6 143.8 111.6 1.288 85.48 76.36 1.119 218.4 199.0 1.098 46.12 42.40 1.088
7 188.7 181.6 1.040 90.45 70.85 1.277 195.6 171.5 1.141 529.9 164.6 3.220
8 378.9 265.8 1.426 163.0 147.1 1.108 435.5 355.5 1.225 306.7 148.1 2.071
9 12.54 7.817 1.604 8.852 8.089 1.094 24.19 20.35 1.189 3.920 3.582 1.094
10 172.9 98.67 1.752 117.5 96.22 1.221 192.5 184.7 1.042 71.48 62.27 1.148
11 166.1 95.12 1.746 118.1 106.5 1.109 269.1 258.7 1.040 58.86 52.32 1.125
12 7.044 6.734 1.046 3.613 3.046 1.186 6.076 5.751 1.056 6.868 3.638 1.888
13 156.2 124.1 1.259 103.2 80.12 1.288 176.7 149.7 1.180 157.3 79.48 1.979
14 6.715 4.811 1.396 5.220 4.005 1.303 9.224 8.707 1.059 4.879 2.738 1.782

Geomean 1.355 1.177 1.124 1.551

optimized frameworks and library. In particular, code that our technique generates for

computing on C-trees and block linked lists have similar performance as Aspen and

STINGER, with the generated code being 1.144–1.177× faster than Aspen and 1.002–1.124×

faster than STINGER on average. Additionally though, code that our technique generates

for computing on B-trees outperform Terrace by 1.214–1.551× on average, while code that

our technique generates for computing on BSTs outperforms PAM by 1.202–1.355× on

average. It is not surprising that our technique achieves similar performance as Aspen and

STINGER, since code our technique generates essentially implement the same high-level

algorithms as Aspen and STINGER. Meanwhile, Terrace is slower than our technique since

its implementation of edgeMap traverses B-trees using a sequential iterator that has more

complicated control �ow, which increases the cost of accessing each nonzero. By contrast,

for both PageRank and SpMM, our technique can generate code that instead recursively

traverses the B-trees, which reduces the overhead of accessing nonzeros.

137

Table 7.10: Performance of code implemented using existing libraries and generated by our
technique (TACO) for computing SpMM on matrices that are stored in disparate pointer-
based formats. For each format, we show execution times of code implemented using
an existing library that supports the format, execution times of code generated by our
technique, and speedups achieved by the generated code. Each test matrix is identi�ed by
its label as shown in Table 7.1.

Matrix
BSTs C-trees BLLs Array/B-tree Hybrid

PAM
(ms)

TACO
(ms)

PAM
TACO

Aspen
(ms)

TACO
(ms)

Aspen
TACO

STINGER
(ms)

TACO
(ms)

STINGER
TACO

Terrace
(ms)

TACO
(ms)

Terrace
TACO

1 23.40 16.95 1.380 20.19 17.06 1.184 27.19 29.33 0.927 16.23 14.60 1.112
2 163.4 153.3 1.066 138.3 126.2 1.095 147.9 150.2 0.985 146.8 124.6 1.178
3 11.21 9.839 1.140 8.825 8.374 1.054 11.85 11.47 1.033 9.378 8.408 1.115
4 122.5 99.96 1.225 87.24 78.24 1.115 108.4 102.0 1.062 109.8 90.58 1.213
5 1056 910.1 1.161 769.0 676.8 1.136 947.3 928.2 1.021 900.0 759.1 1.186
6 846.6 704.8 1.201 721.3 660.1 1.093 759.3 753.6 1.008 703.0 652.7 1.077
7 771.8 691.4 1.116 585.1 559.9 1.045 674.6 627.3 1.075 2295 963.1 2.383
8 1823 1634 1.115 1425 1346 1.058 1601 1558 1.028 1620 1388 1.167
9 43.82 33.83 1.295 37.20 32.73 1.136 48.09 51.74 0.930 33.53 30.65 1.094
10 344.4 282.0 1.222 302.4 269.9 1.121 337.8 368.4 0.917 252.1 227.9 1.106
11 457.1 338.3 1.351 391.8 329.5 1.189 477.9 516.1 0.926 333.5 300.4 1.110
12 30.13 25.35 1.189 21.68 20.40 1.063 28.93 26.61 1.087 28.24 22.62 1.248
13 413.6 366.0 1.130 320.3 288.9 1.109 374.0 370.8 1.009 401.2 307.1 1.307
14 17.55 13.70 1.281 20.21 11.46 1.764 17.92 17.29 1.037 18.70 17.07 1.096

Geomean 1.202 1.144 1.002 1.214

7.3.3 Support for Disparate Computations

Not only does our technique support many disparate formats though, our technique

generates e�cient code to compute a wide range of di�erent operations (in addition to

those evaluated in Section 7.3.2) on tensors that are stored in those formats. To demonstrate

this, we evaluated the performance of code that our technique generates for performing

• sparse matrix-vector multiplication (∀i∀j yi += Aijxj , or SpMV)

where A is a sparse matrix stored in the (bst, bst) format, x is a dense vector, and y is a

sparse vector stored as a BST, as well as

• sparse matrix addition (∀i∀j Dij = Aij +Cij , or SpAdd),

• sparsematrix element-wisemultiplication (∀i∀j Dij = AijCij , or SpElMul), and

• row-wise inner product (∀i∀j zi += AijBij , or RowInnerProd)

138

where A and B are dynamic sparse matrices stored in the (dense, bst) format, C and D are

static sparse matrices stored in CSR, and z is a dense vector.

None of the kernels above are readily supported by Aspen, STINGER, or Terrace,

regardless of what format is used to store A and B. (More generally, the three frameworks

do not readily support computations that store results in pointer-based formats, that

simultaneously work with sparse operands in pointer-based and array-based formats, or

that perform non-element wise operations on multiple sparse operands.) By contrast, PAM,

which is a lower-level library, implements a number of primitives that can be utilized to

compute all of the kernels above. In particular, PAM can be used to compute sparse matrix-

vector multiplication in a similar way as the PageRank kernel, except that the map operation

(map) over A’s rows also constructs a new BST to store the nonzeros of the output vector.4

Meanwhile, sparse matrix addition and element-wise multiplication can be computed row

by row by having PAM convert each row of A to a BST, compute the union/intersection

of the BST with the corresponding row in C (using map_union/map_intersect), and map

over the result (which is also stored in a BST) to copy each result nonzero to D (using

foreach_index). Additionally, row-wise inner product can be computed by having PAM

�rst compute the intersection of each row of A with its corresponding row in B and then

perform a map-reduce over the result in order to compute the corresponding entry in z.

We therefore limited our comparisons to PAM and do not consider the other frameworks.

Table 7.11 shows the results of our experiments. As these results demonstrate, our

technique generates code that signi�cantly outperforms PAM for all of the kernels we

evaluate. In particular, code that our technique generates for adding a matrix stored using

BSTs to a matrix stored in CSR outperforms PAM by 6.975× on average. Meanwhile,

code that our technique generates for element-wise multiplying a matrix stored using

BSTs to a matrix stored in CSR outperforms PAM by 7.224× on average. Performing

these computations using PAM incurs signi�cant overhead since the library only supports

computing unions and intersections of BSTs. Thus, to compute each row of the result,

many additional memory operations are needed in order to allocate new nodes when

4While PAM uses a custom pool allocator to allocate new BST nodes by default, we modify PAM for our
experiments so that it simply uses malloc to allocate new nodes. We �nd that, for our benchmarks, this
slightly improves PAM’s performance and also yields more repeatable performance results.

139

Table 7.11: Performance of code implemented using PAM and generated by our technique
(TACO) for computing disparate sparse linear algebra operations on matrices that are
stored using BSTs. For each operation, we show execution times of code implemented
using PAM, execution times of code generated by our technique, and speedups achieved
by the generated code. Each test matrix is identi�ed by its label as shown in Table 7.1.

Matrix
SpMV SpAdd SpElMul RowInnerProd

PAM
(ms)

TACO
(ms)

PAM
TACO

PAM
(ms)

TACO
(ms)

PAM
TACO

PAM
(ms)

TACO
(ms)

PAM
TACO

PAM
(ms)

TACO
(ms)

PAM
TACO

1 8.78 7.411 1.185 94.65 11.50 8.233 79.46 8.642 9.195 20.95 5.929 3.533
2 54.29 44.30 1.225 390.6 60.65 6.440 304.2 43.62 6.974 113.1 28.82 3.925
3 3.101 2.734 1.134 39.11 5.302 7.377 34.29 4.278 8.016 12.68 3.048 4.161
4 29.73 27.58 1.078 606.5 79.46 7.633 534.1 70.08 7.622 233.0 51.73 4.503
5 375.4 344.9 1.088 5097 653.1 7.805 3516 443.9 7.920 1547 385.1 4.017
6 156.1 132.0 1.182 2162 322.1 6.712 1761 261.6 6.733 614.1 169.1 3.633
7 193.9 188.4 1.029 4262 827.1 5.153 4018 790.5 5.083 1540 497.1 3.098
8 355.1 271.0 1.310 5057 769.2 6.574 3732 511.6 7.294 1592 428.8 3.713
9 11.86 10.48 1.132 148.9 22.55 6.601 123.2 18.24 6.754 35.02 10.13 3.457
10 169.9 115.4 1.473 964.8 144.0 6.698 804.6 111.2 7.234 220.1 61.95 3.553
11 180.8 132.5 1.365 1629 240.5 6.774 1364 192.9 7.073 371.4 105.3 3.528
12 7.040 6.944 1.014 174.4 19.19 9.092 169.1 18.38 9.201 71.26 13.38 5.327
13 132.0 110.9 1.190 1501 207.5 7.233 1137 154.9 7.345 463.4 115.5 4.012
14 6.256 5.511 1.135 100.6 16.28 6.180 81.95 14.06 5.829 25.07 8.645 2.900

Geomean 1.175 6.975 7.224 3.770

converting a row ofC (which is stored in CSR) to a BST and also when actually performing

the union/intersection operation. Moreover, PAM incurs additional overhead in order to

copy nonzeros that are computed by the union/intersection operation over to the output

matrix D, which is also stored in CSR. By contrast, our technique generates code that

merges the two input matrices by simultaneously iterating over their nonzeros and that

directly stores the result nonzeros into the CSR output without needing a BST temporary.

This shows the bene�ts of a compiler technique like ours that can generate e�cient code

to directly compute with sparse tensors stored in pointer-based and array-based formats.

Furthermore, code that our technique generates for computing the row-wise inner

product of two matrices stored using BSTs outperforms PAM by 3.770× on average. PAM

again incurs signi�cant overhead since it does not support directly performing a map-

reduce operation over the result of an intersection operation, and so computing an inner

product requires performing the intersection and map-reduce operations separately. By

contrast, our technique is able to generate more e�cient code that e�ectively fuses the

140

intersection and map-reduce operations. This demonstrates the bene�ts of a system that

does not rely on hand-optimized code to perform a bounded set of operations.

7.3.4 Analysis of Generated Code

We ran several additional experiments—focusing on PageRank with input matrices stored

using BSTs as an example—to evaluate the e�ectiveness of optimizations that our technique

applies to generated code. In particular, we compared code that our technique generates,

which maps over nonzeros in each row of the input matrix in coordinate order, against

code that instead pre-order traverses the BSTs to perform the computation. As Table 7.12

shows, generating map functions that compute on stored nonzeros in coordinate order can

yield speedups of 1.063× on average. Furthermore, we compared code that our technique

generates, which computes on input matrices using only recursive map functions, against

code that instead iterates over input matrices using iterators like those shown in Figure 1-5c.

As Table 7.13 shows, by generating recursive map functions to perform the computation

where possible, our technique can yield speedups of 1.058× on average. This emphasizes

the need for a compiler to be able to generate code that access a sparse tensor’s nonzeros

in di�erent ways depending on the computation.

7.3.5 Bene�ts of Supporting Disparate Formats

Again, our technique’s ability to work with many disparate formats—including pointer-

based as well as array-based formats—can enable it to more e�ectively support a wider

variety of applications with di�erent characteristics. To demonstrate this, we compared

the cost of computing on and modifying sparse tensors that are stored using BSTs in the

(bst, bst) format, using C-trees in the (bst, ctree) format, and in the CSR format. To

measure the cost of computing on sparse tensors stored in the aforementioned formats,

we measured the performance of code that our technique generates for computing the

PageRank kernel. To measure the cost of modifying sparse tensors stored in the same

formats, we adapted the method used by Dhulipala et al. [32] and randomly sample 1% of

nonzeros in each test matrix to treat as new nonzeros that need to be inserted. We then

141

Table 7.12: Performance of PageRank ker-
nels that map over input nonzeros out of or-
der (by performing pre-order traversals) and
in order. We show execution times of both
kernels and show the speedups achieved by
the in-order approach. Each test matrix is
identi�ed by its label as shown in Table 7.1.

Matrix Unordered
(ms)

Ordered
(ms)

Unordered
Ordered

1 6.233 5.508 1.132
2 44.48 43.53 1.022
3 2.735 2.506 1.092
4 29.03 27.70 1.048
5 441.5 449.7 0.982
6 119.8 111.6 1.073
7 186.2 181.6 1.026
8 332.2 265.8 1.250
9 8.605 7.817 1.101
10 104.3 98.67 1.057
11 106.0 95.12 1.114
12 6.774 6.734 1.006
13 127.6 124.1 1.028
14 4.698 4.811 0.977

Geomean 1.063

Table 7.13: Performance of PageRank ker-
nels that rely on generated iterators and gen-
erated recursive map functions. We show
execution times of both kernels and show
the speedups achieved by the map function
approach. Each test matrix is identi�ed by
its label as shown in Table 7.1.

Matrix w/ Iterator
(ms)

w/ Map Func.
(ms)

w/ Iterator
w/ Map Func.

1 6.688 5.508 1.214
2 48.35 43.53 1.111
3 2.727 2.506 1.088
4 27.87 27.70 1.006
5 449.5 449.7 1.000
6 112.7 111.6 1.010
7 181.8 181.6 1.001
8 266.9 265.8 1.004
9 8.491 7.817 1.086
10 113.4 98.67 1.149
11 105.6 95.12 1.110
12 6.850 6.734 1.017
13 129.0 124.1 1.040
14 4.833 4.811 1.005

Geomean 1.058

measured the performance of optimized routines that are implemented in PAM, Aspen,

and Eigen (a widely-used sparse linear algebra library that supports CSR [39]) for inserting

the sampled nonzeros individually into the tensor.

Figure 7-8 shows the results of our experiments. As these results illustrate, the per-

formance of compute with sparse tensors that are stored in a particular format is often

anti-correlated with the performance of modi�cation on sparse tensors that are stored in

the same format. In particular, as Figure 7-8a shows, computing the PageRank kernel on

CSR matrices is 1.788× faster on average than computing the same kernel on matrices

stored using C-trees, which in turn is 1.404× faster on average than computing on matrices

stored using BSTs. On the other hand, as Figure 7-8b shows, inserting new nonzeros into

matrices stored using BSTs is 6.893× faster on average than inserting new nonzeros into

matrices stored using C-trees, which in turn is orders of magnitudes faster than inserting

new nonzeros into CSR matrices. These results show how, depending on the relative

proportion of data modi�cation and compute, di�erent applications can bene�t from using

142

E
xe

c
u
tio

n
 t

im
e
 (
μs

)

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CSR C-trees BSTs

(a) Compute performance

E
xe

c
u
tio

n
 t

im
e
 (
μs

)

1

10

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CSR C-trees BSTs

(b) Insert performance

Figure 7-8: Time required to (a) compute the PageRank kernel on sparse matrices stored
in various formats and (b) insert a new nonzero into matrices stored in the same formats.
Labels along the horizontal axis identify the input matrices as listed in Table 7.1.

di�erent (pointer-based or array-based) formats to store sparse tensors. This means a

system intended to be general-purpose needs to support a wide range of disparate formats.

7.4 Chapter Summary

In this chapter, we saw that sparse tensor algebra code our technique generates has perfor-

mance comparable to, if not better than, equivalent hand-optimized code implemented

in existing libraries and frameworks. In particular, we saw that being able to generate

code that directly performs an operation can yield signi�cant performance improvements

over approaches that instead require decomposing the operation into multiple kernels.

Additionally, we saw that our technique supports a wider range of sparse tensor formats

143

than existing libraries and frameworks. This makes it possible for our technique to more ef-

fectively optimize the performance of sparse tensor computations based on characteristics

of the application and the input data.

144

Chapter 8

Related Works

In this chapter, I review libraries and systems that rely on hand-optimized kernels to per-

form sparse linear and tensor algebra computations, as well as survey other compiler-based

techniques for generating sparse and dense linear and tensor algebra code. Additionally, I

survey related works on synthesizing data structure operations from declarative speci�ca-

tions and on compiling declarative query languages, both of which share similarities with

various aspects of our technique.

8.1 Sparse Programming Systems and Libraries

State-of-the-art sparse linear and tensor algebra libraries and frameworks [102, 119, 47,

1, 23, 44, 39, 11, 65, 19, 49, 108, 67, 21] typically expose a �xed set of tensor operations

that are each implemented as manually-optimized code. This reliance on hand-optimized

code, which can be di�cult and time-consuming to implement, limits the number of sparse

tensor formats that these libraries can support, with most libraries only being able to

work with data in one or two formats. In addition, some programming languages such as

MATLAB [69] and Julia [14] provide �rst-class support for sparse linear algebra operations.

Again though, these languages typically implement support for sparse linear algebra

operations using hand-optimized kernels and su�er from the same limitations as a result.

There also exist sparse tensor algebra libraries and frameworks that, instead of imple-

menting bespoke code for every tensor operation, reduces each operation to a sequence of

145

lower-level operations and performs each sub-operation by invoking hand-optimized code.

As an example, the MATLAB Tensor Toolbox [10] maps sparse tensor operations to MAT-

LAB intrinsics. In particular, to compute sparse tensor-matrix multiplication for instance,

the Tensor Toolbox �rst matricizes the sparse tensor input—storing it as a CSC matrix—and

then exploits MATLAB’s native support for sparse matrices to perform the computation

as a sparse matrix-dense matrix multiplication. Similarly, the Cyclops Tensor Framework

(CTF) [104] and libtensor [36] are able to support sparse tensor contractions by transposing

tensor operands and performing the tensor contractions as matrix multiplications. Finally,

Sparso [91] is a framework that can discover and exploit invariant properties of matrices in

a sparse linear algebra program in order to optimize the program as a whole by invoking

hand-optimized Intel MKL kernels. However, decomposing a sparse tensor computation

into multiple sub-operations typically requires constructing—and then iterating over—large

temporaries, which generally incurs signi�cant performance overhead.

Additionally, there exist many libraries and frameworks [34, 61, 98, 32, 79, 68, 97, 121] for

implementing graph algorithms. Many real-world computations on graphs can actually be

viewed as linear algebra computations that operate on adjacency matrix representations of

graphs [50]. As a result, many primitives that are commonly provided by graph processing

frameworks resemble sparse linear algebra kernels under the hood. (GraphBLAS libraries

such as SuiteSparse:GraphBLAS [29], meanwhile, make this connection explicit by instead

simply providing linear algebra operators as primitives in their API.) Again though, all these

libraries generally rely on hand-optimized kernels to perform the actual computations.

8.2 Sparse Linear and Tensor Algebra Compilation

Our technique builds on the TACO sparse tensor algebra compiler theory, which was

�rst proposed by Kjolstad et al. [54] and subsequently extended by Kjolstad et al. [53],

Senanayake et al. [96], and Henry et al. [42]. Our technique generalizes TACO by enabling

it to support sparse tensors that are stored in data structures other than just those used by

the CSR format. Donenfeld et al. [33] further generalized our technique to support tensor

formats that losslessly compress stored elements.

146

In addition to TACO though, a number of other researchers have also proposed tech-

niques for generating or optimizing sparse linear and tensor algebra programs. We review

these works below.

psi [113] As part of the psi compiler project, Thibault et al. proposed a technique that

describes regular geometric partitions in arrays and automatically generates corresponding

indexing functions. This technique enables a compiler to generate code that operate on

compressed matrices with regular structures, but the technique does not generalize to

unstructured sparse matrices.

MT1 [17, 18, 15] Developed by Bik and Wijsho�, the MT1 compiler takes dense linear

algebra code as input and transforms it to equivalent sparse code by applying a set of

prede�ned analyses and loop transformations. However, MT1 only supports generating

code to compute with a �xed set of standard sparse matrix formats; notably, MT1 does not

support higher-dimensional tensor formats or pointer-based formats. Additionally, MT1

does not support computations that require co-iterating over multiple sparse operands.

Bernoulli [59, 107, 58] Developed by Stodghill, Kotlyar, and Pingali, among others, the

Bernoulli compiler similarly takes dense code as input and transforms it to equivalent

sparse code. Bernoulli achieves this by �rst lifting dense code to relational algebra, which

is then lowered to sparse code by applying a set of prede�ned rules. To represent di�erent

possible sparse matrix formats, Bernoulli uses a black-box protocol that, similar to our

abstract interface for array-based level formats, hides the details of physical storage behind

a �xed interface, which guides the code generation process. In contrast to our technique

though, Bernoulli does not support generating e�cient code to assemble sparse matrix

results from scratch, which is essential for many real-world sparse linear and tensor algebra

applications. In addition, Bernoulli does not e�ectively support most pointer-based sparse

tensor formats. While Kotlyar [58] shows how the black-box protocol supports array-based

linked lists, they do not consider tree-based data structures like BSTs, for which e�cient

sequential iterators (which the black-box protocol requires users to de�ne) are not only

di�cult to implement by hand but also inadequate for generating e�cient parallel code.

147

SIPR [85] Developed by Pugh and Shpeisman, SIPR is another framework that trans-

forms dense linear algebra code to equivalent sparse code. SIPR represents sparse vectors

and matrices using hard-coded element stores that provide enumerators and accessors,

which are analogous to capabilities of level formats in our technique. However, SIPR cur-

rently only supports a �xed set of element stores; notably, it does not support structured

sparse tensor formats (such as DIA and ELL) or pointer-based sparse tensor formats.

LL [5, 6] Developed by Arnold et al., LL is a veri�able functional language for specify-

ing sparse matrix programs. LL supports various commonly-used sparse matrix formats

like CSR and COO, though again it does not pointer-based sparse tensor formats. More-

over, speci�cations of sparse matrix programs in LL are hard-coded for the formats of

the operands and result, so the same sparse matrix operation can require very di�erent

speci�cations for di�erent input/output matrix formats.

CHiLL-I/E [117, 125, 118, 116, 74] Developed by Venkat et al., CHiLL uses polyhedral

compilation with uninterpreted functions to generate optimized inspector/executor code

for sparse linear algebra computations. CHiLL supports a variety of sparse matrix formats,

including structured matrix formats like DIA and BCSR, though again it does not support

pointer-based sparse tensor formats. Nandy et al. [74] later extended CHiLL to support au-

tomatically generating (without the need for manually-implemented templates) inspectors

that can convert input matrices to di�erent sparse matrix formats. However, their approach

requires speci�cations that hard code the speci�c data structures that are used to store the

input matrix in its original format. Thus, their approach cannot support assembling sparse

tensor results for computations that take multiple sparse tensor operands as inputs (e.g.,

sparse matrix multiplication).

MLIR [16] Developed by Bik et al., MLIR’s SparseTensor dialect is an intermediate

representation that provides �rst-class support for sparse tensor operations. Under the

hood, the MLIR compiler uses an implementation of the TACO sparse tensor algebra

compiler theory to compile programs that are expressed in the SparseTensor dialect to

148

lower-level code. However, the SparseTensor dialect currently only supports sparse tensor

formats that can be expressed as compositions of the dense and compressed level formats.

COMET [114] Developed by Tian et al., COMET is another sparse tensor algebra com-

piler that is built on top of MLIR. The COMET compiler generates optimized sparse tensor

algebra code by progressively lowering the input program to lower-level MLIR dialects.

However, COMET only supports sparse tensor formats that can be expressed as composi-

tions of the dense, compressed, and singleton level formats.

8.3 Dense Linear and Tensor Algebra Compilation

Much work has also been done on compilers [105, 76, 120] and loop transformation

techniques [123, 122, 72] for dense linear algebra. Array programming languages like

Fortran, APL, MATLAB, and Julia provide the ability to operate on dense arrays as a whole

using scalar operators. Meanwhile, the Tensor Contraction Engine [7], GETT [106], and

libtensor are examples of systems and techniques that transform (higher-dimensional)

tensor contractions into dense matrix multiplications by transposing tensor operands.

TBLIS [70] and InTensLi [64], by contrast, avoid explicit transpositions by computing tensor

contractions in-place. Many dense tensor compilers have been developed for deep learning

as well, including Tensor Comprehensions [115] and TVM [23]. Furthermore, Halide [87]

showed how image processing pipelines can be optimized by having their semantics (i.e.,

algorithms) and optimization strategies (i.e., schedules) be separately speci�ed. However,

other than those that are also mentioned in Section 8.1, all of these systems and techniques

work exclusively with data stored as dense arrays.

8.4 Data Structure Operation Synthesis

There exists a separate line of works on synthesizing data structure operations from

declarative speci�cations, which is reminiscent of our approach for supporting pointer-

based sparse tensor formats. Many techniques have been proposed for synthesizing

149

imperative programs that modify pointer-based data structures like AVL trees and linked

lists, given either user-speci�ed invariants [62, 86] or graphical speci�cations of the

desired programs’ inputs and outputs [99]. Other techniques have also been proposed for

synthesizing functional programs from declarative speci�cations, including programs that

process and manipulate pointer-based data structures [55, 84]. None of these techniques

consider block data structures like C-trees that store chunks of elements in each node,

and they do not generate parallel code. In addition, Rayside et al. [89] show how Java

iterators can be synthesized for pointer-based data structures given speci�cations written

in relational logic, though their technique does not generate map functions or any other

code to actually compute with elements stored in these data structures.

8.5 Query Language Compilation

There also exists a separate line of works [22, 77, 48, 60] on generating e�cient code for

query languages such as SQL, which our attribute query language resembles. (Attribute

queries are analogous to GROUP BY queries on a table that stores the coordinates of

a tensor’s nonzeros.) In particular, HorseIR [22] lowers SQL queries to an array-based

intermediate representation that is then optimized and compiled to e�cient code. Empty-

Headed [2] is a graph processing framework that generates e�cient code to compute graph

queries expressed in a Datalog-like language. Furthermore, our approach to optimizing

attribute queries is reminiscent of query rewriting systems in certain relational database

systems like Starburst [83, 82]. All these techniques are designed for queries that may

perform complex joins and aggregate data of arbitrary types. By contrast, our attribute

queries are limited to aggregating tensor coordinates, which are integers. This enables

our technique to lower and optimize attribute queries in ways that would be invalid for

aggregations over other arbitrary data types.

150

Chapter 9

Conclusion and Future Work

We have seen how to build a compiler that supports e�ciently computing on sparse tensors

stored in disparate formats. In particular, I have shown how a wide range of sparse tensor

formats can all be expressed as compositions of level formats that use di�erent array-based

or pointer-based data structures to store coordinates of nonzeros. I have also shown how

array-based level formats can be precisely de�ned by implementing a common set of

abstract interfaces that capture how their underlying arrays can be e�ciently accessed

or constructed. I have further shown how pointer-based level formats can be precisely

de�ned by specifying how stored nonzeros are distributed within nodes and by specifying

how those nodes are linked together. Finally, I have shown how a compiler can use these

speci�cations of level formats to generate e�cient code for computing on sparse tensors

that may be stored in arbitrary formats.

Our approach makes it possible to build a compiler that supports a wide range of formats

without sacri�cing the maintainability of the compiler. As we have seen, our abstractions

can be implemented for each format completely independently of other formats, which

makes it practical to add support for a large number of formats. Additionally, by decoupling

speci�cations of sparse tensor formats from the code generation mechanism, our technique

enables users to extend the compiler to support custom formats without having to modify

the code generator itself. In these ways, our technique makes it possible to build general-

purpose systems that can e�ectively support a broad range of real-world applications in

151

disparate domains, which may have to e�ciently perform dissimilar computations on

sparse data that possess distinct characteristics.

While our technique is a good �rst step towards democratizing sparse computing, I

believe there are still many ways in which our technique can be further improved:

Support for additional formats Though our technique supports a wide variety of

sparse tensor formats, our abstractions unfortunately do not fully capture many other

interesting formats that have been proposed. These include, for instance, formats for

storing block matrices with variably-sized blocks [4], formats for storing symmetric

sparse tensors [95], and hybrid formats that use di�erent data structures to store

subtensors with distinct sparsity structures [13, 108]. Extending our abstractions to

support such formats as well would make our technique more useful for an even wider

range of applications that work with di�erent types of sparse data.

Uni�ed abstraction for array-based and pointer-based formats Our technique

uses separate sets of abstractions to represent array-based formats and pointer-based

formats. This increases the compiler’s complexity since separate code paths are required

to emit code that operate on array-based and pointer-based formats, even when many

pointer-based formats actually use arrays to store blocks of nonzeros and thus share

similarities with array-based formats. Developing a uni�ed abstraction that is able to

represent both array-based and pointer-based formats can potentially alleviate this

issue, resulting in a more maintainable compiler.

Support for non-CPU hardware Our technique currently only fully supports gen-

erating code for CPUs. Senanayake et al. [96] show how our technique can be extended

to generate GPU code, but this extension only supports tensor formats that are ex-

pressed as compositions of the dense and compressed level formats. Further extending

our technique so that it generates e�cient code for computing on tensors in any format

using GPUs and other specialized hardware [41, 124] would let our technique better

exploit parallelism that is inherent in many real-world sparse tensor computations.

Improved support for sparse tensor assembly To support generating code that

store the results of sparse tensor algebra computations in sparse tensor formats, our

152

technique requires users to implement level functions that capture how tensors can

be e�ciently constructed in those formats. However, such level functions are often

signi�cantly more complex—and thus more cumbersome for users to implement—

than level functions that capture how the same formats can be e�ciently accessed.

Moreover, implementations of these level functions are targeted to CPUs and, again,

do not straightforwardly generalize to non-CPU hardware. One potential approach for

addressing these limitations, at least for array-based formats, is to instead have users

declaratively specify how each element in the underlying arrays are computed, in terms

of either the coordinates of nonzeros being stored or statistics about those nonzeros.

Such declarative speci�cations can potentially be more concise and thus simpler for

users to provide. At the same time, by not constraining the algorithm used to initialize

the arrays, such declarative speci�cations can potentially let a compiler generate sparse

tensor assembly code that use distinct algorithms on di�erent hardware.

Support for in-place modi�cation of sparse tensors While our technique gener-

ates code that assemble sparse tensors from scratch in disparate formats, our technique

does not support generating code to insert nonzeros into—or delete nonzeros from—

sparse tensors that have already been assembled. This is particularly important for

applications that work with dynamic sparse tensors. We believe that in-place modi�-

cation of tensors bene�ts less from a compiler-based approach, since a programmer

only needs to manually implement a bounded number of optimized routines (i.e., one

for inserting nonzeros and one for deleting nonzeros) in order to support e�ciently

in-place modifying tensors in any particular format. That said, generalizing our tech-

nique so that it can also generate e�cient code for in-place modifying sparse tensors

would further reduce the programmer e�ort needed to add support for new formats.

I believe addressing any of these limitations would constitute valuable future work.

Historically, developing and implementing support for novel sparse tensor formats have

required almost Herculean e�ort worthy of many PhD degrees. This unfortunate reality

has limited the ability of systems for sparse computing to support many formats, thus

requiring users to make their data �t with the available formats. In turn, this made it di�cult

153

to e�ectively apply sparse computing techniques to domains for which existing sparse

programming systems and libraries are not explicitly designed. I believe our approach has

the potential to �ip this script by enabling users to instead develop formats that are tailored

for—and that can optimize computations on—any data they might have. This can help

jump-start the development of novel applications that must work with sparse data but that

are not already well-supported by existing systems, including perhaps even applications

that have yet to be conceived.

154

Bibliography

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,
Matthieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine Learning.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA, 265–283. http:
//dl.acm.org/citation.cfm?id=3026877.3026899

[2] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun,
and Christopher Ré. 2017. EmptyHeaded: A Relational Engine for Graph Processing.
ACM Trans. Database Syst. 42, 4, Article 20 (Oct. 2017), 44 pages. https://doi.
org/10.1145/3129246

[3] Seher Acer, Oguz Selvitopi, and Cevdet Aykanat. 2016. Improving Performance of
Sparse Matrix Dense Matrix Multiplication on Large-Scale Parallel Systems. Parallel
Comput. 59, C (nov 2016), 71–96. https://doi.org/10.1016/j.parco.2016.10.
001

[4] Peter Ahrens and Erik G. Boman. 2020. On Optimal Partitioning For Sparse Matrices
In Variable Block Row Format. (2020). https://doi.org/10.48550/ARXIV.2005.
12414

[5] Gilad Arnold. 2011. Data-Parallel Language for Correct and E�cient Sparse Matrix
Codes. Ph.D. Dissertation. University of California, Berkeley.

[6] Gilad Arnold, Johannes Hölzl, Ali Sinan Köksal, Rastislav Bodík, and Mooly Sagiv.
2010. Specifying and Verifying Sparse Matrix Codes. In Proceedings of the 15th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’10). ACM, New
York, NY, USA, 249–260. https://doi.org/10.1145/1863543.1863581

[7] Alexander A. Auer, Gerald Baumgartner, David E. Bernholdt, Alina Bibireata,
Venkatesh Choppella, Daniel Cociorva, Xiaoyang Gao, Robert Harrison, Sriram
Krishnamoorthy, Sandhya Krishnan, Chi-Chung Lam, Qingda Lu, Marcel Nooijen,
Russell Pitzer, J. Ramanujam, P. Sadayappan, and Alexander Sibiryakov. 2006. Au-
tomatic code generation for many-body electronic structure methods: the tensor
contraction engine. Molecular Physics 104, 2 (2006), 211–228.

155

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/3129246
https://doi.org/10.1145/3129246
https://doi.org/10.1016/j.parco.2016.10.001
https://doi.org/10.1016/j.parco.2016.10.001
https://doi.org/10.48550/ARXIV.2005.12414
https://doi.org/10.48550/ARXIV.2005.12414
https://doi.org/10.1145/1863543.1863581

[8] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick, R. A. Nelson,
D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and R. Nutt. 1957. The
FORTRAN Automatic Coding System. In Papers Presented at the February 26-28, 1957,
Western Joint Computer Conference: Techniques for Reliability (IRE-AIEE-ACM ’57
(Western)). Association for Computing Machinery, New York, NY, USA, 188âĂŞ198.
https://doi.org/10.1145/1455567.1455599

[9] Brett W. Bader, Michael W. Berry, and Murray Browne. 2008. Discussion Tracking in
Enron Email Using PARAFAC. Springer London, 147–163.

[10] Brett W Bader and Tamara G Kolda. 2007. E�cient MATLAB computations with
sparse and factored tensors. SIAM Journal on Scienti�c Computing 30, 1 (2007),
205–231.

[11] Satish Balay, William D Gropp, Lois Curfman McInnes, and Barry F Smith. 1997.
E�cient management of parallelism in object-oriented numerical software libraries.
In Modern software tools for scienti�c computing. Springer, Birkhäuser Boston, 163–
202.

[12] M. Baskaran, B. Meister, N. Vasilache, and R. Lethin. 2012. E�cient and scalable
computations with sparse tensors. In 2012 IEEE Conference on High Performance
Extreme Computing. 1–6. https://doi.org/10.1109/HPEC.2012.6408676

[13] Nathan Bell and Michael Garland. 2008. E�cient Sparse Matrix-Vector Multiplication
on CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

[14] Je� Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. 2012. Julia: A Fast
Dynamic Language for Technical Computing. (2012).

[15] Aart JC Bik. 1996. Compiler Support for Sparse Matrix Computations. Ph.D. Disserta-
tion. Leiden University.

[16] Aart J.C. Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia
Zheng, and Fredrik Kjolstad. 2022. Compiler Support for Sparse Tensor Computations
in MLIR. ACM Trans. Archit. Code Optim. (jun 2022). https://doi.org/10.1145/
3544559 Just Accepted.

[17] Aart JC Bik and Harry AG Wijsho�. 1993. Compilation techniques for sparse matrix
computations. In Proceedings of the 7th international conference on Supercomputing.
ACM, 416–424.

[18] Aart JC Bik and Harry AG Wijsho�. 1994. On automatic data structure selection and
code generation for sparse computations. In Languages and Compilers for Parallel
Computing. Springer, 57–75.

[19] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E Leiser-
son. 2009. Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks. In Proceedings of the twenty-�rst annual symposium
on Parallelism in algorithms and architectures. ACM, 233–244.

156

https://doi.org/10.1145/1455567.1455599
https://doi.org/10.1109/HPEC.2012.6408676
https://doi.org/10.1145/3544559
https://doi.org/10.1145/3544559

[20] Aydin Buluç and John R. Gilbert. 2008. On the representation and multiplication of
hypersparse matrices. In IEEE International Symposium on Parallel and Distributed
Processing, (IPDPS). 1–11.

[21] Jong-Ho Byun, Richard Lin, Katherine A Yelick, and James Demmel. 2012. Autotun-
ing sparse matrix-vector multiplication for multicore. EECS, UC Berkeley, Tech. Rep
(2012).

[22] Hanfeng Chen, Joseph Vinish D’silva, Hongji Chen, Bettina Kemme, and Laurie
Hendren. 2018. HorseIR: Bringing Array Programming Languages Together with
Database Query Processing. In Proceedings of the 14th ACM SIGPLAN International
Symposium on Dynamic Languages (DLS 2018). ACM, New York, NY, USA, 37–49.
https://doi.org/10.1145/3276945.3276951

[23] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578–594. https:
//www.usenix.org/conference/osdi18/presentation/chen

[24] Stephen Chou. 2018. Uni�ed Sparse Formats for Tensor Algebra Compilers. S.M. Thesis.
Massachusetts Institute of Technology, Cambridge, MA. http://tensor-compiler.
org/files/chou-sm-thesis-taco-formats.pdf

[25] Stephen Chou and Saman Amarasinghe. 2022. Compilation of Dynamic Sparse
Tensor Algebra. Conditionally accepted in Proc. ACM Program. Lang. 6, OOPSLA
(Dec. 2022).

[26] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format Abstraction
for Sparse Tensor Algebra Compilers. Proc. ACM Program. Lang. 2, OOPSLA, Article
123 (Oct. 2018), 30 pages.

[27] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2020. Automatic Genera-
tion of E�cient Sparse Tensor Format Conversion Routines. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2020). Association for Computing Machinery, New York, NY, USA, 823–838.
https://doi.org/10.1145/3385412.3385963

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Cli�ord Stein. 2009.
Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[29] Timothy A. Davis. 2019. Algorithm 1000: SuiteSparse:GraphBLAS: Graph Algorithms
in the Language of Sparse Linear Algebra. ACM Trans. Math. Softw. 45, 4, Article 44
(Dec. 2019), 25 pages. https://doi.org/10.1145/3322125

[30] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011).

157

https://doi.org/10.1145/3276945.3276951
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
http://tensor-compiler.org/files/chou-sm-thesis-taco-formats.pdf
http://tensor-compiler.org/files/chou-sm-thesis-taco-formats.pdf
https://doi.org/10.1145/3385412.3385963
https://doi.org/10.1145/3322125

[31] Eduardo F. D’Azevedo, Mark R. Fahey, and Richard T. Mills. 2005. Vectorized Sparse
Matrix Multiply for Compressed Row Storage Format. In Proceedings of the 5th
International Conference on Computational Science - Volume Part I (ICCS’05). Springer-
Verlag, Berlin, Heidelberg, 99–106. https://doi.org/10.1007/11428831_13

[32] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-Latency Graph
Streaming Using Compressed Purely-Functional Trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2019). Association for Computing Machinery, New York, NY, USA, 918–934.
https://doi.org/10.1145/3314221.3314598

[33] Daniel Donenfeld, Stephen Chou, and Saman Amarasinghe. 2022. Uni�ed Compila-
tion for Lossless Compression and Sparse Computing. In 2022 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO).

[34] David Ediger, Rob McColl, Jason Riedy, and David A. Bader. 2012. STINGER: High per-
formance data structure for streaming graphs. In 2012 IEEE Conference on High Perfor-
mance Extreme Computing. 1–5. https://doi.org/10.1109/HPEC.2012.6408680

[35] Albert. Einstein. 1916. The Foundation of the General Theory of Relativity. Annalen
der Physik 354 (1916), 769–822.

[36] Evgeny Epifanovsky, Michael Wormit, Tomasz Kuś, Arie Landau, Dmitry Zuev, Kirill
Khistyaev, Prashant Manohar, Ilya Kaliman, Andreas Dreuw, and Anna I Krylov.
2013. New implementation of high-level correlated methods using a general block
tensor library for high-performance electronic structure calculations. Journal of
computational chemistry 34, 26 (2013), 2293–2309.

[37] Richard Feynman, Robert B. Leighton, and Matthew L. Sands. 1963. The Feynman
Lectures on Physics. Vol. 3. Addison-Wesley.

[38] Peter Gottschling, David S. Wise, and Michael D. Adams. 2007. Representation-
transparent Matrix Algorithms with Scalable Performance. In Proceedings of the 21st
Annual International Conference on Supercomputing (ICS ’07). ACM, New York, NY,
USA, 116–125. https://doi.org/10.1145/1274971.1274989

[39] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
(2010).

[40] Fred G. Gustavson. 1978. Two Fast Algorithms for Sparse Matrices: Multiplication
and Permuted Transposition. ACM Trans. Math. Softw. 4, 3 (Sept. 1978), 250–269.
https://doi.org/10.1145/355791.355796

[41] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTen-
sor: An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 319–333. https://doi.org/10.
1145/3352460.3358275

158

https://doi.org/10.1007/11428831_13
https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1109/HPEC.2012.6408680
https://doi.org/10.1145/1274971.1274989
https://doi.org/10.1145/355791.355796
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275

[42] Rawn Henry, Olivia Hsu, Rohan Yadav, Stephen Chou, Kunle Olukotun, Saman
Amarasinghe, and Fredrik Kjolstad. 2021. Compilation of Sparse Array Programming
Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 128 (Oct. 2021), 29 pages.
https://doi.org/10.1145/3485505

[43] Eun-jin Im and Katherine Yelick. 1998. Model-Based Memory Hierarchy Opti-
mizations for Sparse Matrices. In In Workshop on Pro�le and Feedback-Directed
Compilation.

[44] Intel. 2020. Intel oneAPI Math Kernel Library Developer Reference. (2020).

[45] Kenneth E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc., USA.

[46] Yuanlin Jiang. 2007. Techniques for Modeling Complex Reservoirs and Advanced Wells.
Ph.D. Dissertation. Stanford University.

[47] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001. SciPy: Open source scienti�c
tools for Python. (2001). http://www.scipy.org/

[48] Jun Rao, H. Pirahesh, C. Mohan, and G. Lohman. 2006. Compiled Query Execution
Engine using JVM. In 22nd International Conference on Data Engineering (ICDE’06).
23–23. https://doi.org/10.1109/ICDE.2006.40

[49] Oguz Kaya and Bora Uçar. 2015. Scalable sparse tensor decompositions in distributed
memory systems. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 77.

[50] Jeremy Kepner and John Gilbert. 2011. Graph Algorithms in the Language of Linear
Algebra. Society for Industrial and Applied Mathematics, USA.

[51] Venera Khoromskaia and Boris N. Khoromskij. 2015. Tensor numerical methods in
quantum chemistry: from Hartree-Fock to excitation energies. Phys. Chem. Chem.
Phys. 17 (2015), 31491–31509. Issue 47. https://doi.org/10.1039/C5CP01215E

[52] David R. Kincaid, Thomas C. Oppe, and David M. Young. 1989. ITPACKV 2D User’s
Guide.

[53] Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. 2019. Tensor
Algebra Compilation with Workspaces. (2019), 180–192. http://dl.acm.org/
citation.cfm?id=3314872.3314894

[54] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The Tensor Algebra Compiler. Proc. ACM Program. Lang. 1, OOPSLA,
Article 77 (Oct. 2017), 29 pages. https://doi.org/10.1145/3133901

[55] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Synthesis
modulo Recursive Functions. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and Applications
(OOPSLA ’13). Association for Computing Machinery, New York, NY, USA, 407–426.
https://doi.org/10.1145/2509136.2509555

159

https://doi.org/10.1145/3485505
http://www.scipy.org/
https://doi.org/10.1109/ICDE.2006.40
https://doi.org/10.1039/C5CP01215E
http://dl.acm.org/citation.cfm?id=3314872.3314894
http://dl.acm.org/citation.cfm?id=3314872.3314894
https://doi.org/10.1145/3133901
https://doi.org/10.1145/2509136.2509555

[56] Penporn Koanantakool, Ariful Azad, Aydin Buluç, Dmitriy Morozov, Sang-Yun
Oh, Leonid Oliker, and Katherine Yelick. 2016. Communication-Avoiding Parallel
Sparse-Dense Matrix-Matrix Multiplication. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 842–853. https://doi.org/10.1109/
IPDPS.2016.117

[57] Joseph C Kolecki. 2002. An Introduction to Tensors for Students of Physics and
Engineering. 7, September (2002), 29.

[58] Vladimir Kotlyar. 1999. Relational Algebraic Techniques for the Synthesis of Sparse
Matrix Programs. Ph.D. Dissertation. Cornell University.

[59] Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. 1997. A relational approach
to the compilation of sparse matrix programs. In Euro-Par’97 Parallel Processing.
Springer, 318–327.

[60] Konstantinos Krikellas, Stratis D. Viglas, and Marcelo Cintra. 2010. Generating
code for holistic query evaluation. In 2010 IEEE 26th International Conference on
Data Engineering (ICDE 2010). 613–624. https://doi.org/10.1109/ICDE.2010.
5447892

[61] Pradeep Kumar and H. Howie Huang. 2019. GraphOne: A Data Store for Real-
time Analytics on Evolving Graphs. In 17th USENIX Conference on File and Storage
Technologies (FAST 19). USENIX Association, Boston, MA, 249–263. https://www.
usenix.org/conference/fast19/presentation/kumar

[62] Darya Kurilova and Derek Rayside. 2013. On the Simplicity of Synthesizing Linked
Data Structure Operations. SIGPLAN Not. 49, 3 (oct 2013), 155–158. https://doi.
org/10.1145/2637365.2517225

[63] Tobin J. Lehman and Michael J. Carey. 1986. A Study of Index Structures for Main
Memory Database Management Systems. In Proceedings of the 12th International
Conference on Very Large Data Bases (VLDB ’86). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 294–303.

[64] Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, and Richard Vuduc. 2015. An
input-adaptive and in-place approach to dense tensor-times-matrix multiply. In Pro-
ceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 76.

[65] Jiajia Li, Yuchen Ma, and Richard Vuduc. 2018. ParTI! : A Parallel Tensor Infrastruc-
ture for multicore CPUs and GPUs. (Oct 2018). http://parti-project.org Last
updated: Jan 2020.

[66] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical Storage of
Sparse Tensors. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ,
USA, Article 19, 15 pages. https://doi.org/10.1109/SC.2018.00022

160

https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1109/IPDPS.2016.117
https://doi.org/10.1109/ICDE.2010.5447892
https://doi.org/10.1109/ICDE.2010.5447892
https://www.usenix.org/conference/fast19/presentation/kumar
https://www.usenix.org/conference/fast19/presentation/kumar
https://doi.org/10.1145/2637365.2517225
https://doi.org/10.1145/2637365.2517225
http://parti-project.org
https://doi.org/10.1109/SC.2018.00022

[67] Bangtian Liu, Chengyao Wen, Anand D. Sarwate, and Maryam Mehri Dehnavi.
2017. A Uni�ed Optimization Approach for Sparse Tensor Operations on GPUs. In
2017 IEEE International Conference on Cluster Computing (CLUSTER). 47–57. https:
//doi.org/10.1109/CLUSTER.2017.75

[68] Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer. 2015.
LLAMA: E�cient graph analytics using Large Multiversioned Arrays. In 2015 IEEE
31st International Conference on Data Engineering. 363–374. https://doi.org/10.
1109/ICDE.2015.7113298

[69] MATLAB. 2014. version 8.3.0 (R2014a). The MathWorks Inc., Natick, Massachusetts.

[70] Devin Matthews. 2017. High-Performance Tensor Contraction without Transposition.
Technical Report.

[71] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: under-
standing rating dimensions with review text. In Proceedings of the 7th ACM conference
on Recommender systems. ACM, 165–172.

[72] Kathryn S McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving data locality
with loop transformations. ACM Transactions on Programming Languages and
Systems (TOPLAS) 18, 4 (1996), 424–453.

[73] Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in
�le sequencing. Technical report.

[74] Payal Nandy, Mary Hall, Eddie C. Davis, Catherine Mills Olschanowsky,
Mahdi Soltan Mohammadi, Wei He, and Michelle Mills Strout. 2018. Abstractions
for Specifying Sparse Matrix Data Transformations. In Proceedings of Eighth Interna-
tionalWorkshop on Polyhedral Compilation Techniques (IMPACT 2018).

[75] National Institute of Standards and Technology. 2013. Matrix Market: File Formats.
(14 August 2013). http://math.nist.gov/MatrixMarket/formats.html

[76] Thomas Nelson, Geo�rey Belter, Jeremy G. Siek, Elizabeth Jessup, and Boyana Norris.
2015. Reliable Generation of High-Performance Matrix Algebra. ACM Trans. Math.
Softw. 41, 3, Article 18 (June 2015), 27 pages.

[77] Thomas Neumann. 2011. E�ciently Compiling E�cient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539–550. https://doi.org/10.
14778/2002938.2002940

[78] L. Page, S. Brin, R. Motwani, and T. Winograd. 1998. The PageRank citation ranking:
Bringing order to the Web. In Proceedings of the 7th International World Wide Web
Conference. Brisbane, Australia, 161–172. citeseer.nj.nec.com/page98pagerank.
html

161

https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/CLUSTER.2017.75
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
http://math.nist.gov/MatrixMarket/formats.html
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
citeseer.nj.nec.com/page98pagerank.html
citeseer.nj.nec.com/page98pagerank.html

[79] Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace: A
Hierarchical Graph Container for Skewed Dynamic Graphs. In Proceedings of the 2021
International Conference on Management of Data (SIGMOD/PODS ’21). Association
for Computing Machinery, New York, NY, USA, 1372–1385. https://doi.org/10.
1145/3448016.3457313

[80] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and
Pradeep Dubey. 2016. Faster CNNs with Direct Sparse Convolutions and Guided
Pruning. (2016). arXiv:cs.CV/1608.01409

[81] Andrés Peratta and Viktor Popov. 2006. A new scheme for numerical modelling
of �ow and transport processes in 3D fractured porous media. Advances in Water
Resources 29, 1 (2006), 42–61. https://doi.org/10.1016/j.advwatres.2005.05.
004

[82] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Extensible/Rule
Based Query Rewrite Optimization in Starburst. In Proceedings of the 1992 ACM
SIGMOD International Conference on Management of Data (SIGMOD ’92). ACM, New
York, NY, USA, 39–48. https://doi.org/10.1145/130283.130294

[83] Hamid Pirahesh, T. Y. Cli� Leung, and Waqar Hasan. 1997. A Rule Engine for Query
Transformation in Starburst and IBM DB2 C/S DBMS. In Proceedings of the Thirteenth
International Conference on Data Engineering (ICDE ’97). IEEE Computer Society,
Washington, DC, USA, 391–400. http://dl.acm.org/citation.cfm?id=645482.
653436

[84] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program Syn-
thesis from Polymorphic Re�nement Types. In Proceedings of the 37th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI ’16).
Association for Computing Machinery, New York, NY, USA, 522–538. https:
//doi.org/10.1145/2908080.2908093

[85] William Pugh and Tatiana Shpeisman. 1999. SIPR: A new framework for generating
e�cient code for sparse matrix computations. In Languages and Compilers for
Parallel Computing. Springer, 213–229.

[86] Xiaokang Qiu and Armando Solar-Lezama. 2017. Natural Synthesis of Provably-
Correct Data-Structure Manipulations. Proc. ACM Program. Lang. 1, OOPSLA, Article
65 (oct 2017), 28 pages. https://doi.org/10.1145/3133889

[87] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly Barnes, Sylvain
Paris, Marc Levoy, Saman Amarasinghe, and Frédo Durand. 2017. Halide: Decoupling
Algorithms from Schedules for High-Performance Image Processing. Commun. ACM
61, 1 (dec 2017), 106–115. https://doi.org/10.1145/3150211

[88] Samyam Rajbhandari, Yuxiong He, Olatunji Ruwase, Michael Carbin, and Trishul
Chilimbi. 2017. Optimizing CNNs on Multicores for Scalability, Performance and

162

https://doi.org/10.1145/3448016.3457313
https://doi.org/10.1145/3448016.3457313
https://doi.org/10.1016/j.advwatres.2005.05.004
https://doi.org/10.1016/j.advwatres.2005.05.004
https://doi.org/10.1145/130283.130294
http://dl.acm.org/citation.cfm?id=645482.653436
http://dl.acm.org/citation.cfm?id=645482.653436
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3133889
https://doi.org/10.1145/3150211

Goodput. In Proceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS ’17). ACM,
New York, NY, USA, 267–280. https://doi.org/10.1145/3037697.3037745

[89] Derek Rayside, Vajihollah Montaghami, Francesca Leung, Albert Yuen, Kevin Xu, and
Daniel Jackson. 2012. Synthesizing Iterators from Abstraction Functions. SIGPLAN
Not. 48, 3 (sep 2012), 31–40. https://doi.org/10.1145/2480361.2371407

[90] Karin Remington and Roldan Pozo. 1996. NIST Sparse BLAS User’s Guide. Technical
Report. Internal Report NISTIR 6744, National Institute of Standards and Technology.

[91] Hongbo Rong, Jongsoo Park, Lingxiang Xiang, Todd A. Anderson, and Mikhail
Smelyanskiy. 2016. Sparso: Context-driven Optimizations of Sparse Linear Algebra.
In Proceedings of the 2016 International Conference on Parallel Architectures and
Compilation. ACM, 247–259.

[92] Youcef Saad. 1989. Krylov Subspace Methods on Supercomputers. SIAM J. Sci. Stat.
Comput. 10, 6 (Nov. 1989), 1200–1232. https://doi.org/10.1137/0910073

[93] Youcef Saad. 1994. SPARSKIT: a basic tool kit for sparse matrix computations -
Version 2. (1994).

[94] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

[95] Martin D. Schatz, Tze Meng Low, Robert A. van de Geijn, and Tamara G. Kolda.
2014. Exploiting Symmetry in Tensors for High Performance: Multiplication with
Symmetric Tensors. SIAM Journal on Scienti�c Computing 36, 5 (2014), C453–C479.
https://doi.org/10.1137/130907215 arXiv:https://doi.org/10.1137/130907215

[96] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen Chou,
Shoaib Kamil, Saman Amarasinghe, and Fredrik Kjolstad. 2020. A Sparse Iteration
Space Transformation Framework for Sparse Tensor Algebra. Proc. ACM Program.
Lang. 4, OOPSLA, Article 158 (nov 2020), 30 pages. https://doi.org/10.1145/
3428226

[97] Dipanjan Sengupta and Shuaiwen Leon Song. 2017. EvoGraph: On-the-Fly E�cient
Mining of Evolving Graphs on GPU. In High Performance Computing, Julian M.
Kunkel, Rio Yokota, Pavan Balaji, and David Keyes (Eds.). Springer International
Publishing, Cham, 97–119.

[98] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. SIGPLAN Not. 48, 8 (feb 2013), 135–146. https:
//doi.org/10.1145/2517327.2442530

[99] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data Structure
Manipulations from Storyboards. In Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (ESEC/FSE
’11). Association for Computing Machinery, New York, NY, USA, 289–299. https:
//doi.org/10.1145/2025113.2025153

163

https://doi.org/10.1145/3037697.3037745
https://doi.org/10.1145/2480361.2371407
https://doi.org/10.1137/0910073
https://doi.org/10.1137/130907215
https://doi.org/10.1145/3428226
https://doi.org/10.1145/3428226
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1145/2025113.2025153
https://doi.org/10.1145/2025113.2025153

[100] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT �le formats. (2017). http://frostt.io/tensors/
file-formats.html

[101] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and
George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. (2017). http://frostt.io/

[102] Shaden Smith and George Karypis. 2015. Tensor-matrix products with a compressed
sparse tensor. In Proceedings of the 5th Workshop on Irregular Applications: Architec-
tures and Algorithms. ACM, 5.

[103] Shaden Smith, Niranjay Ravindran, Nicholas Sidiropoulos, and George Karypis. 2015.
SPLATT: E�cient and Parallel Sparse Tensor-Matrix Multiplication. In 2015 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 61–70.

[104] Edgar Solomonik, Devin Matthews, Je� R Hammond, John F Stanton, and James
Demmel. 2014. A massively parallel tensor contraction framework for coupled-
cluster computations. J. Parallel and Distrib. Comput. 74, 12 (2014), 3176–3190.

[105] Daniele G Spampinato and Markus Püschel. 2014. A basic linear algebra compiler.
In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization. ACM, 23.

[106] Paul Springer and Paolo Bientinesi. 2018. Design of a High-Performance GEMM-like
Tensor–Tensor Multiplication. ACM Trans. Math. Softw. 44, 3, Article 28 (jan 2018),
29 pages. https://doi.org/10.1145/3157733

[107] Paul Stodghill. 1997. A Relational Approach to the Automatic Generation of Sequential
Sparse Matrix Codes. Ph.D. Dissertation. Cornell University.

[108] Bor-Yiing Su and Kurt Keutzer. 2012. clSpMV: A Cross-Platform OpenCL SpMV
Framework on GPUs. In Proceedings of the 26th ACM International Conference on
Supercomputing (ICS ’12). ACM, New York, NY, USA, 353–364. https://doi.org/
10.1145/2304576.2304624

[109] Yihan Sun, Daniel Ferizovic, and Guy E. Belloch. 2018. PAM: Parallel Augmented
Maps. SIGPLAN Not. 53, 1 (feb 2018), 290–304. https://doi.org/10.1145/
3200691.3178509

[110] TensorFlow Developers. 2022. Ragged tensors. (8 June 2022). https://www.
tensorflow.org/guide/ragged_tensor

[111] The SciPy community. 2018. scipy.sparse.dok_matrix – SciPy v1.1.0 Ref-
erence Guide. https://docs.scipy.org/doc/scipy/reference/generated/
scipy.sparse.dok_matrix.html. (2018).

164

http://frostt.io/tensors/file-formats.html
http://frostt.io/tensors/file-formats.html
http://frostt.io/
https://doi.org/10.1145/3157733
https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1145/2304576.2304624
https://doi.org/10.1145/3200691.3178509
https://doi.org/10.1145/3200691.3178509
https://www.tensorflow.org/guide/ragged_tensor
https://www.tensorflow.org/guide/ragged_tensor
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.dok_matrix.html

[112] The SciPy community. 2018. scipy.sparse.lil_matrix – SciPy v1.1.0 Reference
Guide. https://docs.scipy.org/doc/scipy/reference/generated/scipy.
sparse.lil_matrix.html. (2018).

[113] Scott Thibault, Lenore Mullin, and Matt Insall. 1994. Generating Indexing Functions
of Regularly Sparse Arrays for Array Compilers. (1994).

[114] Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, and Gokcen Kestor. 2021. A
High Performance Sparse Tensor Algebra Compiler in MLIR. In 2021 IEEE/ACM
7th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC). 27–38.
https://doi.org/10.1109/LLVMHPC54804.2021.00009

[115] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen.
2018. Tensor Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions. (2018). arXiv:cs.PL/1802.04730

[116] Anand Venkat. 2016. An Integrated Compiler and Runtime Framework for Sparse
Matrix Codes. Ph.D. Dissertation. University of Utah.

[117] Anand Venkat, Mary Hall, and Michelle Strout. 2015. Loop and Data Transformations
for Sparse Matrix Code. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2015). 521–532.

[118] Anand Venkat, Mahdi Soltan Mohammadi, Jongsoo Park, Hongbo Rong, Rajkishore
Barik, Michelle Mills Strout, and Mary Hall. 2016. Automating Wavefront Paralleliza-
tion for Sparse Matrix Computations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’16). IEEE
Press, Article 41, 12 pages.

[119] Richard Vuduc, James W. Demmel, and Katherine A. Yelick. 2005. OSKI: A library of
automatically tuned sparse matrix kernels. Journal of Physics: Conference Series 16,
1 (2005), 521+.

[120] R. Clint Whaley and Jack Dongarra. 1998. Automatically Tuned Linear Algebra
Software. In SuperComputing 1998: High Performance Networking and Computing.

[121] Martin Winter, Rhaleb Zayer, and Markus Steinberger. 2017. Autonomous, inde-
pendent management of dynamic graphs on GPUs. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.
2017.8091058

[122] Michael E. Wolf and Monica S. Lam. 1991. A Data Locality Optimizing Algorithm.
SIGPLAN Not. 26, 6 (May 1991), 30–44.

[123] Michael Joseph Wolfe. 1982. Optimizing Supercompilers for Supercomputers. Ph.D.
Dissertation. University of Illinois at Urbana-Champaign, Champaign, IL, USA.
AAI8303027.

165

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
https://doi.org/10.1109/LLVMHPC54804.2021.00009
https://doi.org/10.1109/HPEC.2017.8091058
https://doi.org/10.1109/HPEC.2017.8091058

[124] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’21). Association for Com-
puting Machinery, New York, NY, USA, 687–701. https://doi.org/10.1145/
3445814.3446702

[125] Huihui Zhang, Anand Venkat, and Mary Hall. 2016. Compiler Transformation to Gen-
erate Hybrid Sparse Computations. In 2016 6thWorkshop on Irregular Applications: Ar-
chitecture and Algorithms (IA3). 34–41. https://doi.org/10.1109/IA3.2016.011

166

https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1109/IA3.2016.011

	Introduction
	Diversity of Sparsity
	Exploiting Sparsity for Performance
	Our Approach and Contributions
	Dissertation Outline

	Sparse Tensor Formats Survey
	Array-Based Tensor Formats
	Pointer-Based Tensor Formats
	Chapter Summary

	Tensor Storage Decomposition
	Coordinate Hierarchies
	Coordinate Remapping
	Pointer-Based Formats
	Supporting Non-Zero Fill Values
	Chapter Summary

	Supporting Array-Based Formats
	Abstract Interface for Array-Based Level Formats
	Level Format Capabilities
	Level Format Properties

	Code Generation
	Background
	Property-Based Merge Lattice Optimizations
	Merging Coordinate Hierarchy Levels
	Iterator Conversion
	Code Generation Algorithm

	Chapter Summary

	Supporting Pointer-Based Formats
	Node Schema Language
	Code Generation
	Generating Node Type Declarations
	Generating Map Functions
	Generating Iterators

	Chapter Summary

	Supporting Sparse Tensor Assembly
	In-Order Assembly
	Array-Based Formats
	Pointer-Based Formats

	Out-of-Order Assembly
	Overview
	Remapping Phase
	Analysis Phase
	Attribute Query Language
	Code Generation

	Assembly Phase
	Out-of-Order Assembly Capability
	Code Generation

	Chapter Summary

	Evaluation
	Computing with Array-Based Formats
	Experiment Setup
	Sparse Matrix Computations
	Sparse Higher-Dimensional Tensor Computations
	Benefits of Supporting Disparate Formats

	Assembling Results in Array-Based Formats
	Experiment Setup
	Sparse Tensor Format Conversion
	Parallel Computation with Sparse Output

	Computing with Pointer-Based Formats
	Experiment Setup
	Support for Disparate Formats
	Support for Disparate Computations
	Analysis of Generated Code
	Benefits of Supporting Disparate Formats

	Chapter Summary

	Related Works
	Sparse Programming Systems and Libraries
	Sparse Linear and Tensor Algebra Compilation
	Dense Linear and Tensor Algebra Compilation
	Data Structure Operation Synthesis
	Query Language Compilation

	Conclusion and Future Work
	Bibliography

