
All You Need Is Superword-Level Parallelism:
Systematic Control-Flow Vectorization with SLP

Yishen Chen
Massachusetts Institute of Technology

Cambridge, MA, USA

ychen306@mit.edu

Charith Mendis
University of Illinois at

Urbana-Chamaign

Urbana, IL, USA

charithm@illinois.edu

Saman Amarasinghe
Massachusetts Institute of Technology

Cambridge, MA, USA

saman@csail.mit.edu

Abstract

Superword-level parallelism (SLP) vectorization is a proven

technique for vectorizing straight-line code. It works by re-

placing independent, isomorphic instructions with equiva-

lent vector instructions. Larsen and Amarasinghe originally

proposed using SLP vectorization (together with loop un-

rolling) as a simpler, more flexible alternative to traditional

loop vectorization. However, this vision of replacing tradi-

tional loop vectorization has not been realized because SLP

vectorization cannot directly reason with control flow.

In this work, we introduce SuperVectorization, a new vec-

torization framework that generalizes SLP vectorization to

uncover parallelism that spans different basic blocks and

loop nests. With the capability to systematically vectorize

instructions across control-flow regions such as basic blocks

and loops, our framework simultaneously subsumes the roles

of inner-loop, outer-loop, and straight-line vectorizer while

retaining the flexibility of SLP vectorization (e.g., partial

vectorization).

Our evaluation shows that a single instance of our vec-

torizer is competitive with and, in many cases, significantly

better than LLVM’s vectorization pipeline, which includes

both loop and SLP vectorizers. For example, on an unopti-

mized, sequential volume renderer from Pharr and Mark,

our vectorizer gains a 3.28× speedup, whereas none of the

production compilers that we tested vectorizes to its complex

control-flow constructs.

CCS Concepts: • Computing methodologies → Vector /

streaming algorithms; • Software and its engineering→

Compilers; •Computer systems organization→ Single

instruction, multiple data.

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523701

ACM Reference Format:

Yishen Chen, Charith Mendis, and Saman Amarasinghe. 2022. All

You Need Is Superword-Level Parallelism: Systematic Control-Flow

Vectorization with SLP. In Proceedings of the 43rd ACM SIGPLAN

International Conference on Programming Language Design and

Implementation (PLDI ’22), June 13ś17, 2022, San Diego, CA, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3519939.

3523701

1 Introduction

Allen and Kennedy [4] pioneered loop vectorization with

their seminal work in the 1980s. The basic idea of loop vector-

ization is to widen instructions in the loop body from scalar

to vector instructions. This technique was originally moti-

vated by the long vector architectures that were common at

the time (e.g., the Cray machines).

In the early 2000s, Larsen andAmarasinghe [14] developed

superword-level parallelism (SLP) vectorization to target the

multimedia extensions that were emerging. SLP vectoriza-

tion works by searching for independent, isomorphic instruc-

tions in straight-line code and replacing them with vector

instructions. Because SLP vectorization targets straight-line

code, it requires much simpler dependence analyses (as op-

posed to the more complex loop-dependence analyses re-

quired by loop vectorization).

Larsen and Amarasinghe initially intended SLP vector-

ization as a simpler and more flexible alternative to tradi-

tional loop vectorization. Indeed, when combined with loop

unrolling, SLP vectorization can also exploit loop-level par-

allelism [14, 29]. However, because it was not designed to

directly reason with control flow, SLP vectorization cannot

exploit parallelism that spans control-flow regions such as

different basic blocks or loops. Meanwhile, multiple works

have extended traditional loop vectorization to handle com-

plicated control-flow constructs such as divergent branches

and outer loops [4, 12, 20]. Today, with neither vectorization

technique being superior to the other across all applications,

production compilers such as GCC and LLVM implement

both loop and SLP vectorizers [1, 2].

In this work, we introduce SuperVectorization, a new vec-

torization framework that generalizes SLP vectorization to

pack independent instructions across different basic blocks

and loop nestsÐsuch loops can be imperfectly nested and

have different trip counts or multiple side exits. Because our

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

301

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523701
https://doi.org/10.1145/3519939.3523701
https://doi.org/10.1145/3519939.3523701

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

framework can pack instructions across control-flow regions

such as basic blocks and loops, it simultaneously subsumes

the roles of inner-loop, outer-loop, and straight-line vector-

izers while retaining the flexibility of SLP vectorization (e.g.,

partial vectorization). For example, outer-loop vectorization

in our framework involves unrolling an outer loop and then

packing the instructions from the inner loops duplicated by

the unroller. Our evaluation shows that a single instance of

our vectorizer is competitive with and, in many cases, sig-

nificantly better than LLVM’s vectorization pipeline, which

includes both loop and SLP vectorizers.

Central to our framework is Predicated SSA, a new inter-

mediate representation (IR) that we developed to simplify the

pervasive inter-basic block code motion required to target

SLP that spans different basic blocks or loops. Rather than

using a control-flow graph (CFG), this IR represents the input

program as a flat list of instructions and loops and tracks

the control dependence of each instruction explicitly with

a boolean formula that expresses whether the instruction

should execute. We refer to such formulas as control predi-

cates.1 Using Predicated SSA, inter-basic block code motion

is straightforward: We just move an instruction (or loop)

together with its control predicate, and no information is

lost because we can recover control flow from equivalent

control predicates.

We make the following contributions in this paper:

• We introduce Predicated SSA, an IR that we developed

to simplifying the pervasive code motion required to

uncover arbitrary SLP that spans different basic blocks

and loops.

• We present SuperVectorization, our generalization of

SLP vectorization to vectorize (pack) instructions from

different basic blocks and loops. Together with loop

unrolling, SuperVectorization effectively subsumes the

roles of inner-loop, outer-loop, and straight-line vec-

torizers.

• We show that our single prototype implementation,

written from scratch, is competitive with and, in many

cases, significantly outperforms LLVM’s vectorization

pipeline, which includes both a loop and SLP vector-

izer.

2 Background

Our goal is to develop a vectorization strategy that retains

the simplicity and flexibility of SLP vectorization while gen-

eralizing it to systematically handle control flow. To this

end, we review the background on loop and SLP vectoriza-

tion and motivate the technical challenge of extending SLP

vectorization to handle control flow.

1Predicated SSA does not perform predicated execution and executes in-

structions conditionally similar to a traditional IR with CFG.

LoopVectorization. Loop vectorization targets loop-level

parallelism by mapping successive loop iterations to succes-

sive vector lanes. While traditional loop vectorization fo-

cuses on inner loops by executing the inner-loop iterations

in parallel, outer-loop vectorization instead transforms the

program to execute the outer-loop iterations in parallel [20].

SLP Vectorization. Larsen and Amarasinghe [14] pro-

posed superword-level parallelism (SLP) as a model of the

short-vector parallelism implemented by modern vector ex-

tensions. SLP vectorization works in three steps. First, the

vectorizer runs an SLP packing heuristic to select groups

of independent, isomorphic instructions to pack together.

Second, the vectorizer reorders the instructions so that the

dependences of any group of packed instructions appear

before the group. Finally, the vectorizer replaces each group

of packed instructions with an equivalent vector instruction.

SLP vectorization is relatively simpler and more flexible.

SLP vectorization is simpler because it does not target paral-

lelism that spans different loop iterations, thus not requiring

loop dependence analysis to reason with loop-carried depen-

dence. SLP vectorization can nonetheless exploit inner-loop

parallelism using loop unrolling [14, 29].

SLP vectorization is also more flexible at exploiting the

type of short-vector parallelism implemented by existing

multimedia architecture extensions. The SLP framework de-

fines a search space that specifies which instructions can be

packed togetherÐsubject to dependences and the capabil-

ity of the target architecture, leaving the SLP heuristic free

to vectorize however it sees fit [16, 17, 24ś27, 30]. In con-

trast, loop vectorization mechanically transforms each loop

instruction to a wider vector instruction. Adapting loop vec-

torization to handle cases that deviate from this assumption

requires research in itself.

Consider the loop in Figure 1a as an example of SLP vec-

torization’s flexibility. A naive loop vectorizer would emit in-

structions similar to those in Figure 1b, vectorizing the even

and odd accesses separately, losing performance because the

memory accesses are not contiguous and are less efficient. To

address this inefficiency, Nuzman et al. [19] extended loop

vectorization to support interleaving and generate instruc-

tions similar to the ones in Figure 1c. In contrast, an SLP

vectorizer (with unrolling) vectorizes such loops effectively

without any extensions because SLP is loop agnostic.

2.1 Handling Control Flow in SLP Vectorization

SLP vectorization has so far been limited to target paral-

lelism within individual basic blocks, despite SLP captures a

more general form of parallelism. Consider, for example, the

sequential program in Figure 2, which performs two inde-

pendent linear searches over the same array for two different

elements. No existing vectorizers can exploit the available

(superword-level) parallelism among the loops.

302

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

for (i = 0; i < n; i+=2) {

a[i] = b[i] + c[i];

a[i+1] = b[i+1] + c[i+1];

}

(a) An example loop with inter-

leaved accesses

for (i = 0; i < n; i+=8) {

t = b[i:i+8];

t2 = c[i:i+8];

b_even = shfl -even t;

c_even = shfl -even t2;

e = b_even + c_even;

b_odd = shfl -odd t;

c_odd = shfl -odd t2;

o = b_odd + c_odd;

a[i:i+8] =

interleave e, o;

}

(b) Result of applying loop vector-

ization naively

for (i = 0; i < n; i+=4) {

/*

After unrolling ,

before SLP vectorization:

a[i] = b[i] + c[i];

a[i+1] = b[i+1] + c[i+1];

a[i+2] = b[i+2] + c[i+2];

a[i+3] = b[i+3] + c[i+3];

After SLP vectorization:

*/

a[i:i+4] = b[i:i+4]

+ c[i:i+4];

}

(c) Result of interleave-aware loop

vectorization. SLP vectorization can

discover the same vectorization

scheme natively.

Figure 1. An example of vectorizing a loop with interleaved

accesses. Nuzman et al. [19] proposed an extension to loop

vectorization to vectorize such an example. SLP vectorization

can discover the equivalent vectorization scheme from the

first principle.

Code Motion. The key challenge to targeting SLP that

spans arbitrary control-flow regions is inter-basic block code

motion. Exploiting the SLP available in Figure 2, for example,

requires moving instructions from one loop to another. Code

motion in a traditional IR with CFG is challenging because it

requires restructuring the CFG and the complexity of doing

so increases with the complexity of control dependences.

Consider the task of hoisting a store to an earlier location in

the CFG as an example. Because relaxing the condition under

which the store executes may lead to segfault, we need to

preserve the condition of the store. Consequently, hoisting a

store in general entails 1) finding a basic block that is control-

flow equivalent to the original basic blockÐand, if such a

basic block does not exist, restructuring the CFG to create

the blockÐand 2) recursively hoisting the dependences of

the store to preserve data dependences, which may require

further changes to the CFG.

If-conversion. If-conversion [5] converts control depen-

dences to data dependences by transforming the program

to unconditionally execute both sides of every conditional

branch and replaces control-flow joins (i.e., the 𝜙-nodes in

SSA) with select instructions (which chooses two alternative

values based on a boolean condition, similar to the ternary op-

erator in C/C++). Because if-conversion unconditionally ex-

ecutes instructions that may not otherwise execute, naively

applying if-conversion can decrease performance [18, 31].

Nonetheless, if-conversion is necessary for vectorizing diver-

gent control flow (i.e., branches with different conditions).

int haystack [];

int needles [2];

int needle_idxs [2];

for (int i = 0; i < n; i++)

if (haystack[i] != needles [0]) {

needle_idxs [0] = i;

break;

}

for (int i = 0; i < n; i++)

if (haystack[i] != needles [1]) {

needle_idxs [1] = i;

break;

}

Figure 2. Running example of a sequential C code that we

will vectorize. The program performs two linear searches

over the same array twice to find the indices of two different

elements (needles[0] and needles[1]). The two loops are

independent, and we will exploit the parallelism between

the two loops by packing their instructions together.

Prior Work. Shin et al. [31] proposed handling control

flow in SLP vectorization with if-conversion. After applying

if-conversion to eliminate all (forward) control flow, they

use SLP vectorization as a black box to vectorize instruc-

tions within the relatively few large basic blocks. However,

without directly addressing the code motion problem, their

approach cannot target parallelism that spans different loops

nests (e.g., the program in Figure 2).

Our Approach. The key to our approach is Predicated

SSA, an IR that we developed to simplify the pervasive code

motion required to target SLP that spans different basic

blocks (and loops). Instead of using a CFG, which complicates

code motion, Predicated SSA represents the input program

as a flat list of instructions and loops while tracking the

control dependences of each instruction separately with a

symbolic boolean formula that expresses whether the in-

struction should execute. Code motion in Predicated SSA

only entails reordering an instruction and its dependences as

one would for intra-basic block code motion; such reorder-

ing in Predicated SSA is safe because we always reorder an

instruction together with its control predicate, and no infor-

mation is lost. Predicated SSA does not commit to any code

layout decision (e.g., assigning an instruction to a particular

basic block). Only after vectorization and deciding an overall

execution schedule for the instructions, do we revert back

to a traditional IR with CFG.

2.2 Vector Instruction Sets

Our approach targets vector instruction sets with fixed vector

width. This covers Intel’s vector extensions (SSE, AVX2, and

AVX-512) and Arm’s Neon instruction set. In the rest of this

section, we discuss the hardware features that our approach

either relies on or benefits from.

303

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

Selection/Blending. Depending on their control depen-

dences, our approach may independent control-flow joins

into data-flow joins in the form of vector selects (blending).

Intel’s vector extensions support this operation with their

blend family of instructions (e.g., blendvps for blending

two packed vectors of single-precision floats). Arm’s Neon

extension supports this operation with the bsl instruction

(bitwise select).

Gather/Scatter. Traditional vector instruction sets only

support loading/storing contiguous memory locations, and

vector gather/scatter allows loading/storing a vector of ar-

bitrary pointers. Although not a required feature for our

technique, vector gathers improve performance for appli-

cations with irregular memory access patterns. When the

target hardware does not support vector gather/scatter, our

approach emits equivalent (but less efficient) scalar loads/s-

tores and vector insertion instructions.

Predication. While vectorizing conditional load/store in-

structions (with distinct conditions), we require the ability

to dynamically suppress the effect of vector lanes whose

conditions evaluate to false. If a target architecture does

not support predicated vector load/store instructions, our

approach will emit sequential scalar stores with branches

instead. AVX-512 supports predicated (masked) loads and

stores.

2.3 Definitions

In this section, we review the compiler terminologies that

we will use in Section 3.

Let 𝑏1 and 𝑏2 be two basic blocks in a given CFG. 𝑏1 domi-

nates 𝑏2 if every path from the entry basic block to 𝑏2 must

go through 𝑏1. Relatedly, 𝑏1 post-dominates 𝑏2 if every path

from 𝑏1 to the exit node goes through 𝑏2.

The post-dominance frontier of a basic block 𝑏 is the set of

all basic blocks 𝑏 ′ such that 𝑏 ′ is not post-dominated by 𝑏

but has a predecessor post-dominated by 𝑏.

Let 𝑏 be a basic block. The set of basic blocks that 𝑏 is

control-dependent on is exactly the post-dominance frontier

of 𝑏 [9].

Gated SSA. Our vectorizer uses Predicated SSA, an IR

that borrows many ingredients from gated SSA [21]. Gated

SSA extends SSA [9] by differentiating its 𝜙-nodes into two

categories.

• For𝜙-nodes placed at loop headers, gated SSA renames

them as 𝜇-nodes (which have the same semantics as

the loop-header 𝜙-nodes in SSA).

• For each 𝑛-nary 𝜙-nodes used for forward control-flow

join, gated SSA replaces it with 𝑛 − 1 gating operators

called 𝛾-nodes. A 𝛾 node selects two alternative in-

coming values (of the original 𝜙-node) depending on

a branch condition (similar to C’s ternary operator).

Converting to Predicated SSA (Section 3.1)

Packing (Section 3.2)

Loop Fusion & Co-iteration (Section 3.3)

Generating Vector Instruction (Section 3.4)

Converting Predicated SSA to SSA (Section 3.5)

Figure 3. Vectorization workflow in our framework

3 SuperVectorization

SuperVectorization is our generalization of SLP vectorization

to pack arbitrary, independent instructions from different

basic blocks and loops. Such loops can be imperfectly nested,

have different trip counts, or have multiple side exits.

Workflow. Figure 3 shows our workflow. We begin by

transforming an input sequential program from SSA to Pred-

icated SSA, an IR that we developed to simplify the perva-

sive code motion that is required for vectorizing instructions

across basic blocks and loops. Once the input is in Predicated

SSA, we find profitable vector packs as one does in tradi-

tional SLP vectorization (Section 3.2). The precise algorithm

for finding the vector packs is orthogonal to our work; in our

implementation, we use the bottom-up SLP algorithm [30].

Once we have a set of vector packs, we identify loops that

share common vector packs and transform the loops so that

all instructions from any given pack reside in a single new

loop (Section 3.3). Having ensured that all instructions from

the same packs will be in the same loops, we replace the

packed instructions with equivalent vector instructions (Sec-

tion 3.4). So far, we have done everything in Predicated SSA

(i.e., packing, fusion, and vectorization). Once we replace

scalar instructions with vector instructions, we finish by

lowering Predicated SSA back to a traditional IR with CFG

(Section 3.5).

We will use the program in Figure 2 as a running example.

This example contains two disjoint, independent loops. We

will pack instructions from the loops together into vector

instructions.

3.1 Predicated SSA

Figure 4 shows the syntax of Predicated SSA, and Figure 5

shows the first loop in the running example (Figure 2) trans-

lated to Predicated SSA.

Control Predicate. Predicated SSA forgoes the use of

CFG entirely and instead represents the input program as

a flat list of instructions and loops while tracking the con-

trol dependence of individual instructions and loops with

first-class constructs that we refer to as control predicates.

Figure 6 shows the definition of control predicates. A control

304

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

fn ::= item1 : 𝑝1, . . . , item𝑛 : 𝑝𝑛

p ::= control predicate

item ::= instruction | loop

loop ::= with 𝑣1 = 𝜇1, . . . , 𝑣𝑚 = 𝜇𝑚 do

item1 : 𝑝1, . . . , item𝑛 : 𝑝𝑛

while 𝑝cont

𝜇 ::= mu(𝑣init, 𝑣rec)

𝜙 ::= phi(𝑣1 : 𝑝1, . . . , 𝑣𝑛 : 𝑝𝑛)

𝑣 ::= 𝜇 | instructions | constant | argument

Figure 4.Definition of Predicated SSA. The root of the gram-

mar is fn, representing a given input function. Similar to

gated SSA, Predicated SSA represents IR values defined re-

cursively in loops with 𝜇-nodes, where 𝑣init represents the

value flowing from the loop pre-header, and 𝑣rec represents

the value flowing from the back edge.

with i = mu(0, i') do

t = load haystack[i] : true

needle = load needles [0] : true

found = cmp eq, t, needle : true

i' = add i, 1 : true

not_found = not found : true

lt_n = cmp lt i', n : true

while not_found and lt_n : true

store i, needle_idxs [0] : found

Figure 5. The first loop in Figure 2 translated to Predicated

SSA. The true control predicates indicate that the items exe-

cute unconditionally. For items inside the loop, the predicate

indicates that they should execute as long as the loop is not

terminated. Observant readers may notice that the load of

needles[0] is loop-invariant and can be hoisted; we do not

hoist the load here because loop-invariant code motion is

not part of the IR conversion process.

predicate is a symbolic boolean expression that indicates

whether an instruction (or loop) should execute. Predicated

SSA represents each function as a list of items. Each item is

either an instruction or a loop, and each loop also contains

a list of items. Each item has its own control predicate that

indicates whether that item should execute. With this repre-

sentation, code motion is straightforward: We can reorder

an instruction (or loop) together with its control predicate

without losing information.

Although our use of control predicates is inspired by predi-

cated execution [22], Predicated SSA does not perform predi-

cated execution. In Predicated SSA, instructions and loops ex-

ecute conditionally, depending on their control predicates. In

contrast, in predicated executions, predicated instructions ex-

ecute unconditionally but with their side-effects suppressed

conditionally.

𝑐 ::= branch-conditions (IR values used for branching)

𝑝 ::= true | 𝑐 | 𝑐 | 𝑝1 ∧ 𝑝2 | 𝑝1 ∨ 𝑝2

Figure 6. Definition of Control Predicates.

Similar to gated SSA, Predicated SSA uses 𝜇-nodes to rep-

resent control-flow joins placed at loop headers. For forward

control-flow joins, Predicated SSA uses gated 𝜙-nodes (rather

than the 𝛾-nodes from gated SSA); our gated 𝜙-nodes are

similar to the 𝜙 nodes in classical SSA, except that the incom-

ing basic block labels are replaced with control predicates.

The gated 𝜙-nodes provide us with a simple way to vectorize

𝜙-nodes. While packing multiple 𝜙-nodes, if the incoming

values of the 𝜙-nodes have the same predicates, then we re-

tain control flow and replace them with a single vector 𝜙 ; if

the incoming values of the 𝜙-nodes have different predicates,

then we lower them into vector selects, emitting the select

conditions according to the control predicates.

Converting from SSA to Predicated SSA. We begin by

converting the input IR into a canonical form. We assume

that the CFG of the input program is reducible and that we

can transform each loop into a canonical form, with each

loop having:

• a single incoming edge

• a single back edge

• a dedicated loop header

• a dedicated loop pre-header (i.e., the unique predeces-

sor of the loop pre-header)

• a dedicated loop latch (i.e., the unique source of the

back edge)

We also normalize each loop in a rotated form where all

loops execute at least once (i.e., similar to do-while loops in

C).

Once we transform the input into this canonical form, we

convert it into Predicated SSA by visiting the input loops

recursively. We convert the forward 𝜙-nodes into gated 𝜙-

nodes by replacing the incoming basic block labels with the

control predicates of the basic blocks. (We will discuss how

to compute control predicates next.) Because all loops are

in the canonical form that we just discussed, we translate

the 𝜙-nodes in the loop headers into 𝜇-nodes by labeling

the values flowing from the loop pre-headers as the initial

values (𝑣init in Figure 4) and the values flowing from the loop

latches as the recursive values (𝑣rec).

ComputingControl Predicates. One tempting approach

to computing the control predicates would be to perform

symbolic execution over the branch instructions of the input

program, namely, emitting conjunctionwhen taking a branch

and emitting disjunction when encountering a control-flow

join. However, this approach can introduce unnecessarily

complicated predicates that require further simplification.

305

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

entry:

br c, if_true , if_false

if_true:

br join

if_false:

br join

join:

...

Figure 7. An example of control-flow equivalent basic blocks.

The blocks entry and join are control-flow equivalent

because entry dominates join and because join post-

dominates entry. Consequently, the control predicate of

the join block is the same as entry’s predicate (true).

Consider the example in Figure 7 where there is a branch

on the condition 𝑐 . When we join both sides of the branch,

we would get the predicate 𝑐 ∨ 𝑐 , but we want the more con-

cise predicate true. To achieve this aim, we use an algorithm

that uses control dependence to directly produce simplified

predicates.

Figure 8 shows the algorithm for computing the control

predicate of a given basic block. The control predicate of an

instruction is simply the predicate of its basic block. The idea

of the algorithm follows from the observation that whether

a basic block 𝑏 executes depends exactly on two conditions:

(1) whether any of its control-dependent basic blocks 𝑏 ′

executes, and (2) whether 𝑏 ′ takes the branch that leads to 𝑏.

For condition (1), we simply compute the post-dominance

frontier of 𝑏, which is equivalent to the control-dependent

blocks of 𝑏 [9]. For condition (2), we observe that because

𝑏 ′ is in the post-dominance frontier of 𝑏, the branch that

leads from 𝑏 ′ to 𝑏 must be the branch 𝑏 ′ → 𝑏 ′′, such that

𝑏 ′′ is a successor of 𝑏 ′ and 𝑏 post-dominates 𝑏 ′′ (i.e., any

control flow leaving 𝑏 ′′ must end at 𝑏); such successor 𝑏 ′′

must exist uniquely because 𝑏 ′ (the predecessor of 𝑏 ′′) is in

the post-dominance frontier of 𝑏. For the example program

in Figure 7, our algorithm directly computes a true predicate

for the join block because it post-dominates all preceding

blocks and, therefore, has no control dependences.

When computing control predicates, we use the concept

of control-flow equivalence. Control-flow equivalence is a

relation over basic blocks that holds when the execution

of one basic block implies that of the other and vice versa.

This relation can be difficult to establish for arbitrary pairs of

basic blocks. Instead, we will use an incomplete heuristic and

say two basic blocks 𝑏1 and 𝑏2 are control-flow equivalent if

𝑏1 dominates 𝑏2 and 𝑏2 post-dominates 𝑏1. Figure 7 shows

an example of control-flow equivalent basic blocks.

We ignore backward control flows when we compute the

control predicates, and we assign a true predicate to basic

blocks that are known to be control-flow equivalent to the

loop header. Consequently, if a predicate is used within a

loop, the truthness of the predicate is conditioned onwhether

the execution reaches a given loop iteration. We track the

cpblock (𝑏) =





true If ctrl-flow-equivalent(𝑏, header(𝑏))
∨

𝑏′∈PDF(𝑏)
cpedge (𝑏

′, succ-pdom(𝑏 ′, 𝑏)) Otherwise

cpedge (𝑏1, 𝑏2) =





true If 𝑏1 → 𝑏2 is back edge

cpblock (𝑏1) If preds(𝑏2) = {𝑏1}

cpblock (preheader(𝑏1)) If 𝑏1 → 𝑏2 loop-exiting

∧cpblock (𝑏1)

∧cond(𝑏1, 𝑏2)

cpblock (𝑏1) Otherwise

∧cond(𝑏1, 𝑏2)

Figure 8. Algorithm for computing the control predicate

of a basic block 𝑏, where PDF(𝑏) is the post-dominance

frontier of 𝑏; succ-pdom(𝑏 ′, 𝑏) is the successor of 𝑏 ′ that

is post-dominated by 𝑏 (there uniquely exists such a ba-

sic block because 𝑏 ′ is in the post-dominance frontier of 𝑏);

and cond(𝑏1, 𝑏2) denotes the branch condition for when the

control-flow edge 𝑏1 → 𝑏2 is taken.

continue predicate (i.e., whether the back edge is taken)

as a special case (𝑝cont in Figure 4) in Predicated SSA. We

compute the continue predicate of a loop as the conjunction

of the control predicate of the loop latch (i.e., whether we

reach the latch) and the branch condition of the back edge.

We compute the control predicate of a loop exitÐa loop

may have multiple exitsÐwith the intuition that the execu-

tion only reaches the exit all of the following is true: (1) if

we enter the loop in the first place, (2) if we reach the pre-

decessor of the exit, and finally (3) if the conditional branch

preceding the exit is taken. Therefore, the control predicate

of a loop exit is the conjunction of (1) the control predicate

of the pre-header of the loop from which it is exiting, (2)

the control predicate of the predecessor of the basic block

(which is inside the loop), and (3) the branch condition of

the edge leading to the loop exit.

3.2 Vector Packing

Once we convert the input program into Predicated SSA, we

run a packing heuristic to decide which instructions should

be packed together. Deciding which instructions to pack is

orthogonal to our work. SuperVectorization is compatible

with arbitrary packing heuristics as long as program depen-

dence is not violated [16, 17, 24ś27, 30]. For this paper, we

adapt the bottom-up SLP heuristic [30] for its simplicity.

Both GCC and Clang use variants of the same heuristic.

The bottom-up SLP heuristic works as follows. First, it

identifies groups of instructions that are known to be vector-

izable, which are termed seed instructions; common seeds are

stores to contiguous memory locations and reductions. Next,

the algorithm attempts to find more vectorizable instructions

by traversing the use-def chains of the seed instructions pack-

ing the operands of the instructions that it encounters along

306

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

the way. This process stops when it encounters operands

that cannot be directly produced by vector instructions (e.g.,

a group of instructions with different opcodes). At this point,

to ensure that the final vectorization decision does not vio-

late program dependence, the heuristic checks that the set of

selected vector packs do not have any circular dependences.

Finally, the algorithm uses a cost model to estimate the cost

benefit of vectorizing the candidate instructions, with the

benefit coming from replacing scalar instructions with more

efficient vector instructions, and the cost coming from using

vector data-movement instructions (e.g., vector shuffle) to

produce the operands that are not vectorized.

Once we have decided which instructions to pack, we

lower the selected packs into vector instructions as follows.

First, if we are packing instructions from different loops, we

transform the loops so that the instructions of any given

vector pack belong to the same loops. Then, we lower the

packed instructions into vector instructions (e.g., a pack of

additions becomes a single vector addition). At this point, we

have done everything in Predicated SSA. Finally, we lower

the IR back to a traditional IR with CFG (e.g., LLVM IR).

A Note on Pattern Matching. Many SLP vectorizers use

pattern matching. For example, LLVM’s SLP vectorizer em-

ploys pattern matching to (among other use cases) identify

and vectorize reductions. Doing pattern matching in Predi-

cated SSA is the same as that in a traditional SSA-based IR

(e.g., LLVM) because the former maintains the same use-def

information that SSA tracks.

3.3 Loop Fusion and Co-iteration

Our framework supports packing instructions from differ-

ent loop nests. This capability allows, for example, vector-

izing the two independent search loops in the running ex-

ample from Figure 2. More importantly, when coupled with

a vectorization-aware loop unroller to unroll outer loops,

packing instructions across loops is equivalent to outer-loop

vectorization. This approach is similar to how Nuzman and

Zaks [20] applied unroll-and-jam to achieve outer-loop vec-

torization. One major difference here is that in our frame-

work, a packing heuristic need not be aware of the loop

structures.

While packing instructions from different loops, we must

generate a new loop so that the instructions execute in

the same loop. To accomplish this, we either fuse or co-

iterate the loops, depending on whether the loops are control-

flow equivalent (i.e., have the same control predicates) and

whether they have the same trip counts.

Loop Fusion. We apply loop fusion if we can prove that

loops are independent,2 they have the same iterations, they

execute under the same condition (i.e., they have identical

control predicates), and their parent loops can also be fused

Fusing loops in Predicated SSA requires only creating a new

loop whose 𝜇-nodes and loop items are the concatenations

of those of the original loops.

Predicated SSA also increases the applicability of loop fu-

sion, despite the latter being a well-studied optimization. Tra-

ditionally, compilers only fuse loops that are adjacent [7, 13].

Predicated SSA removes this restriction bymaking it straight-

forward to hoist (or sink) any intervening instructions and

control flow.

Loop Co-iteration. When we cannot fuse some loops be-

cause they execute under different control predicates or be-

cause they have different trip counts, we apply a transfor-

mation that we call loop co-iteration. The intuition behind

co-iteration is to interleave the iterations of multiple loops

in a single new loop while preserving the execution condi-

tion of the original instructions. It is safe to co-iterate when

the loops are independent and when their parent loops are

also safe to co-iterate. Although we use co-iteration to en-

able packing instructions from different loops, co-iteration

(similar to fusion) is a standalone scalar optimization that is

applicable independent of vectorization.

Figure 9 shows the algorithm for co-iterating multiple

loops. Similar to loop fusion, co-iteration entails moving the

𝜇-nodes and the loop items of the original loops into a new

loop and the following additional steps:

• For each loop, introduce a boolean 𝜇-node to track

whether the loop still has remaining iterations (lines 19-

27).

• For each loop item, strengthen its control predicate

so that the item only executes when its original loop

is active and its original predicate evaluates to true

(lines 44-48).

• For each loop live-out (i.e., an instruction with users

outside of the loop), introduce a new 𝜇-node to keep

the value alive across the iterations even when the

loop is no longer active (lines 51-65).

• Set the continue predicate of the new loop to be the

disjunction of the active conditions of the co-iterating

loops.

Figure 10 shows the result of co-iterating the loops in

the running example. In the example, we use the booleans

active and active2 to indicate whether the original loops

are still active. We also insert the new 𝜇-nodes i_out and

i2_out to keep the values i and i2 alive across the iterations

where their original loops would have exited already.

2While this is not necessary for fusion in general, it simplifies our

implementation.

307

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

1 def coiterate(loops: the loop to coiterate):

2 if identical(loops):

3 return

4

5 parents = {l.parent for l in loops}

6 parent = coiterate(parents)

7 mus = concat(l.mus for l in loops)

8 items = concat(l.items for l in loops)

9 # A map of IR values that tells

10 # if a given loop is active

11 active_mus = {}

12 # Create a boolean Mu node to indicate

13 # whether a co-iterating loop is active

14 for l in loops:

15 active = Mu()

16 mus.append(active)

17 active_mus[l] = active

18

19 pred = parent.control_pred_of(l)

20 active_init = GatedPhi(

21 {pred: true , negate(pred): false})

22 active_next = GatedPhi ({

23 And(active , l.cont_pred): true ,

24 negate(active): false ,

25 negate(l.cont_pred): false})

26 active.set_init(active_init)

27 active.set_rec(active_next)

28

29 items.append(active_next)

30 parent.items.append(active_init)

31 parent.remove_loop(l)

32

33 # We continue iterating

34 # as long as there is an active loop

35 cont_pred = Or(

36 [And(active_mus[l], l.cont_pred) for l in loops]

37)

38 new_loop = Loop(

39 mus=mus , items=items ,

40 cont_pred=Or(cont_pred , parent=parent)

41

42 # Strengthen the predicates so that

43 # an item only executes when the parent is active

44 for l in loops:

45 for item in l.items:

46 new_loop.set_control_pred(item ,

47 And(active_mus[l],

48 l.control_pred_of(item)))

49

50 # Introduce mu nodes to guard loop live -outs

51 for l in loops:

52 active = active_mus[l]

53 for x in l.live_outs ():

54 x_out = Mu()

55 x_pred = l.control_pred_of(x)

56 x_out_next = GatedPhi ({

57 And(active , x_pred): x,

58 negate(active): x_out ,

59 negate(x_pred): x_out

60 })

61 x_out.set_init(undef)

62 x_out.set_rec(x_out_next)

63 for user in x.users ():

64 if user not in new_loop.items:

65 user.replaceUsesOfWith(x, x_out)

66

67 return new_loop

Figure 9. Algorithm to co-iterate multiple loops

with i = mu(0, i'),

i2 = mu(0, i2 '),

i_out = mu(undef , i_out '),

i2_out = mu(undef , i2_out '),

found_out = mu(undef , found_out '),

found2_out = mu(undef , found2_out '),

active = mu(true , active '),

active2 = mu(true , active2 ')

do

t = load haystack[i] : active

needle = load needles [0] : active

found = cmp eq , t, needle : active

not_found = not found : active

i' = add i, 1 : active

lt_n = cmp lt, i', n : active

t2 = load haystack[i2] : active2

needle2 = load needles [1] : active2

found2 = cmp eq , t2, needle2 : active2

not_found2 = not found2 : active2

i2 ' = add i2, 1 : active2

lt_n2 = cmp lt i2 ', n : active2

active ' = phi(

active and not_found and lt_n : true ,

_ : false) : true

active2 ' = phi(

active2 and not_found2 and lt_n2 : true ,

_ : false) : true

found_out ' = phi(active: found , _: found_out) : true

found2_out ' = phi(active2: found2 ,_: found2_out): true

i_out ' = phi(active: i', _: i_out) : true

i2_out ' = phi(active2: i2 ', _: i2_out) : true

cont = or active ', active2 ' : true

while cont : true

store i_out , needle_idxs [0] : found_out

store i2_out , needle_idxs [1] : found2_out

Figure 10. The two loops in Figure 2 after co-iteration.

3.4 Generating Vector Instructions from Packs

After selecting a profitable set of vector packs, we gener-

ate an optimized vector program, according to the packing

decision, as follows:

1. Schedule (reorder) the instructions and loops to satisfy

the dependences of the packed instructions.

2. Replace vector packs with vector instructions.

3. Assign control predicates to the vector instructions.

Scheduling. We first schedule the instructions and loops

so that for any given vector pack, the dependences of the

packed instructions precede the packed instructions (while

also satisfying the dependences of the other scalar instruc-

tions). We find such schedules by doing topological sort on

the dependence graph formed by the instructions and loops.

Scheduling in our framework is relatively straightforward

because we are using Predicated SSA, which enables us to

freely reorder instructions and loops. Scheduling instructions

and loops with arbitrary control dependences directly on an

IR with CFG requires multiple coordinated changes to the

CFG and is more complicated.

308

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

with i = vmu({0, 0}, i'),

i_out = vmu({undef , undef}, i_out '),

found_out = vmu({undef , undef}, found_out '),

active = vmu({true , true}, active '),

do

addrs = vadd haystack , i : true

t = vgather addrs with mask=active : true

needle = vload needles with mask=active : true

found = vcmp eq , t, needle : true

not_found = vnot found : true

i' = vadd i, {1, 1} : true

lt_n = vcmp lt, i', {n, n} : true

active ' = vand active , not_found , lt_n : true

i_out ' = vselect active , i, i_out : true

found_out ' = vselect active ,

found ,

found_out : true

cont = vreduce or, active ' : true

while cont : true

vstore needle_idxs , i_out with mask=found_out : true

Figure 11. Result of packing and vectorizing the loops in

Figure 2. vmu denotes vector 𝜇-node. For vector load/store

instructions that require masking, we use their original con-

trol predicates (e.g., active and active2 in Figure 10) to

compute the masks.

Emitting Vector Instructions. After scheduling, we re-

place the packed instructions with their corresponding vec-

tor instructions. For most packs, lowering into vector instruc-

tions is straightforward. For example, a pack of additions

becomes a single vector addition.We need to take special care

of packs of 𝜙-nodes and packs of loads or stores. Figure 11

shows the result of packing the instructions in Figure 10 and

translating them into vector instructions.

Within a pack of 𝜙-nodes, if the control predicate of 𝑖’th 𝜙

operand is different from the control predicate of 𝑖’th operand

of a different 𝜙-node, we lower the pack of 𝜙-nodes into a

vector select; otherwise, we lower the pack 𝜙-nodes into a

single vector 𝜙-node. To lower a pack of 𝑛-ary 𝜙-nodes into

vector select, we emit a chain of 𝑛 − 1 selects and emit the

select conditions according to the incoming control predi-

cates of the 𝜙-nodes. If we pack loads (or stores) that have

different control predicates, we emit masked vector loads

(instead of ordinary vector loads or stores).

Assigning Control Predicate. Because we support pack-

ing instructions with different control predicates, we need a

mechanism to assign a new control predicate for each new

vector instruction. For a pack of instructions with identical

control predicates, we simply assign the same control predi-

cate. For a pack of instructions that have different control

predicates, we set the new control predicate to the strongest

control predicate which is also the necessary condition of

(i.e., implied by) the original predicates. For example, if a

pack contains two instructions with the predicates 𝑐 ∧𝑐2 and

𝑐 ∧ 𝑐3, we set the new control predicate to 𝑐 .

3.5 Lowering to IR with control flow

Figure 12 shows the algorithm for converting Predicated SSA

to a lower-level IR with control flow. We first convert the

gated𝜙-nodes into move instructions, whereby we temporar-

ily destroy the single-definition invariant of SSA (which we

will restore later). Once we remove all 𝜙-nodes, we proceed

to reconstruct the CFG level by level, from the top-level func-

tion to the deepest nested loop. For each item, we first create

(or reuse) a basic block whose control predicate is equivalent

to that of the item’s (line 16). If the item is a loop, we lower

the loop recursively and use the basic block as the loop’s

pre-header (line 18). If the item is an instruction, we simply

move the instruction to the basic block (line 20).

Finally, we generate the back edge and exits of the loop

as follows. We first allocate a special variable that indicates

whether the loop should continue (line 35). We initialize this

variable to false in the loop header (i.e., the loop exits by

default). Next, we create a basic block based on the control

predicate of the loop continue condition (𝑝cont in Figure 4),

and in this basic block, we set the variable to true. Finally, in

the loop latch, we create a conditional branch that goes to

the header if the variable is true and otherwise to the loop

exit (line 45).

We use a utility data structure that we call block builder

(line 6) to encapsulate the operation of recreating basic blocks

from control predicates. While lowering the predicates into

basic blocks, the builder maintains a hash table that maps the

source predicate of every block to the block itself. We refer to

this hash table as the predicate table. For each conjunction of

the form 𝑝 ∧ 𝑐 , the builder queries the predicate table for an

existing block equivalent to the predicate 𝑝 (and recursively

creates such a block if it does not exist) and creates a con-

ditional branch (based on the condition 𝑐) to the new basic

block. For each disjunction, the builder similarly queries the

predicate table for basic blocks equivalent to the sub-terms

of the disjunctions and joins those basic blocks.

4 Implementation

We implemented our vectorization framework within the

LLVM compiler infrastructure [15].3 We implemented our

prototype with 7,831 lines of C++. All components of the pro-

totype (i.e., the new IR infrastructure, dependence analysis,

and transformation) are implemented from scratch, indepen-

dent of LLVM’s existing vectorization infrastructure.

4.1 Loop Unrolling

Our vectorizer exposes loop-level parallelism with unrolling.

Because SuperVectorization can pack instructions from dif-

ferent loop nests, it achieves outer-loop vectorization by

unrolling outer loops and then packing the instructions from

the duplicated inner loops. We unroll loops following an

approach similar to Rocha et al. [29]’s. We traverse a given

3LLVM 12.0.0.

309

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

loop nest top-down (parents before children), unrolling each

loop virtually and running an SLP packing algorithm (with-

out actually lowering the packs into vector instructions) to

determine whether unrolling exposes more parallelism.

4.2 Dependence Analysis

Unlike a loop vectorizer, our framework does not need to

reason with loop-carried dependence because it does not

pack an instruction with a different instance of itself (from

a different iteration). Similar to a traditional SLP vectorizer,

we only need to check for loop-independent dependence.

Nonetheless, our framework requires testing whether any

two given loops are independent. To prove that two loops

are independent, we first check that there are no use-def

dependences (through registers). We then prove that there

are no read-write memory dependences between the loops.

For any two memory instructions (with at least one be-

ing a write) from the two loops, we overapproximate the

ranges of memory locations that could be accessed by the

instructions and verify that the ranges do not overlap (us-

ing LLVM’s ScalarEvolution analysis). In the cases where

the memory accesses are unpredictable and, therefore, have

compile-time uncomputable bounds, LLVM’s alias analy-

sis framework also allows checking whether two memory

regions with unknown sizes overlap. Finally, to improve anal-

ysis precision, we have special-case support to distinguish

memory accesses that may have overlapping ranges but are

nonetheless separated by a sufficient offset in their access

strides (e.g., two loops may write to the same buffer but with

one writing to the odd indices and the other writing to the

even indices).

4.3 Cost Model

Our implementation models the cost-saving of vectorization

similar to existing SLP vectorizers and only vectorizes when

the saving outweighs the cost.

The saving of vectorization comes from replacing the

scalar instructions with fewer, more efficient vector instruc-

tions, and its cost comes from the overhead of data-movement

instructions such as vector shuffles, which are necessary

when the vectorizer is unable to directly produce the vector

operands for some of the vector instructions. Consider the

following example, where the vectorizer is able to vectorize

everything except for the two function calls.

t1 = call f();

t2 = call g();

add1 = add t1, 1

add2 = add t2, 1

store add1 , x[0]

store add2 , x[1]

=>

t1 = call f();

t2 = call g();

t = pack {t1, t2}

vadd0 = vadd t, {1, 1}

vstore vadd0 , x

1 def lower(func_or_loop , entry):

2 eliminate_phis(func_or_loop)

3

4 # Utility structure to create basic blocks

5 # from control predicates

6 block_builder = BlockBuilder(entry)

7 if func_or_loop.is_loop ():

8 # Allocate dedicated latch and exit blocks

9 latch = BasicBlock ()

10 exit = BasicBlock ()

11 # the header executes unconditionally

12 header = block_builder.get_block(true)

13

14 for item in func_or_loop.items:

15 pred = func_or_loop.control_pred_of(item)

16 b = block_builder.get_block(pred)

17 if item.is_loop ():

18 loop_exit = lower(item.as_loop(), entry=b)

19 else:

20 item.as_inst (). move_to(b)

21

22 if func_or_loop.is_loop ():

23 loop = func_or_loop.as_loop ()

24

25 # finally convert the mu-nodes back to phi -nodes

26 for mu in loop.mus:

27 phi = Phi(

28 incoming_blocks =[entry , latch],

29 incoming_values =[mu.init , mu.rec],

30 insert_at=header)

31 replaceAllUsesWith(mu, phi)

32

33 # Allocate a dedicate , flag variable ,

34 # indicating if we should continue

35 should_continue = Alloca(type=bool , insert_at=header)

36 # Set the flag to false

37 assign_false(should_continue , insert_at=header)

38

39 # Create a block that

40 # has the same predicate as the continue predicate

41 temp_block = block_builder.get_block(loop.cont_pred)

42 # and set the continue flag there

43 assign_true(should_continue , insert_at=temp_block)

44

45 # Create a block that executes unconditionally

46 pre_latch = block_builder.get_block(true)

47 # and load the continue flag

48 cont = create_load(should_continue ,

49 insert_at=pre_latch)

50 # Then exit or continue depending on the flag

51 create_branch(cond=cont ,

52 if_true=latch , if_false=exit ,

53 insert_at=pre_latch)

54

55 restore_ssa ()

56 return None

Figure 12. Algorithm for lowering Predicated SSA to a tra-

ditional IR with CFG (e.g., LLVM IR)

Because the vectorizer cannot directly vectorize the calls to

f and g, it then needs to emit an additional instruction to

explicitly pack the result of the calls into a vector using the

highlighted instruction.

310

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

For each input function, we evaluate the cost saving from

vectorization as follows and only vectorize when the saving

is greater than zero.

cscalar − cvector − cshuffle

where the terms cscalar , cvector , and cshuffle are the total cost

of the packed scalar instructions, the cost of vector instruc-

tions, and the cost of vector shuffling (and other vector data-

movement instructions), respectively. For all three terms, we

use LLVM’s target-specific cost model [3], which estimates

the expected cost of individual IR instructions after instruc-

tion selection. Our implementation does not currently model

the change of cost from restructuring the input CFG (e.g.,

co-iterating loops).

5 Evaluation

We evaluated our framework on three benchmark suits:

TSVC [8], PolyBench [28], and a collection of sequential

C++ programs that Pharr and Mark [23] used as baselines

to evaluate ispc, a data-parallel language they designed to

target SIMD extensions.

For all the experiments, we used a machine with an In-

tel® Core™ Platinum 8180 CPU with AVX-512 support and

32 GB of memory and with hyperthreading disabled. Unless

otherwise noted, we use the same optimization pipeline as

the LLVM -O3 optimizations, except that we run our vector-

izer instead of LLVM’s loop and SLP vectorizers (which are

disabled in our pipeline). Although the experiment machine

comes with AVX-512 support, LLVM 12, by default, sets the

maximum vector width to 256-bit (less than the full 512-bit)

to avoid performance scaling.

5.1 TSVC

Figure 13 shows the results on TSVC, a comprehensive bench-

mark suite for evaluating automatic vectorizers [8]. Our vec-

torizer is on par with LLVM and yields an average (geomean)

speedup of 1.04× over LLVM’s vectorizers on TSVC. Our vec-

torizer gets significant speedups (more than 1.5× and up to

4.3×) on 17 benchmarks and significant slowdowns (more

than 20%) on 18 benchmarks. For the 17 benchmarks with

significant speedup, the speedups come from partial vector-

ization and outer-loop vectorization with complex control

dependences. Partial vectorization comes naturally for SLP

vectorization because the packing heuristic is not required

to pack all instructions and can selectively pack any instruc-

tions that it finds profitable and legal. In contrast, a tradi-

tional vectorizer only vectorizes if all of the loop iterations

are independent. Figure 16 shows an example benchmark

where we obtain a 2.91× speedup by vectorizing an outer

loop that also contains data-dependent control flow.

The slowdowns mainly come from benchmarks that have

potential data dependences that prevent vectorization. In

such a case, LLVM’s vectorizer versions the loop into two

duplicates, with one of the duplicated loops vectorized and

guarded with a run-time check to ensure that there are no

unsafe dependences. We have not yet implemented code

versioning and do not vectorize in these cases.

5.2 PolyBench

PolyBench [28] is a benchmark for polyhedral optimizations,

and we use it here as a vectorization benchmark because

its applications also benefit from vectorization and because

they have data-access patterns that benefit from outer-loop

vectorization, and we want to validate that we can effectively

perform outer-loop vectorization with unrolling plus SLP.

Figure 14 shows the PolyBench results. PolyBench comes

with a configurable dataset size; for our experiments, we use

the large dataset size. Our vectorizer yields a 1.46× average

speedup over LLVM’s vectorizers (Loop + SLP) and a 1.80×

average speedup over LLVM’s scalar baseline (-O3 without

vectorization).

Because PolyBench is a benchmark for polyhedral opti-

mizers, we also compared our approach with Polly [10], a

polyhedral optimizer for LLVM IR. Polly performs aggressive

cache optimizations and vectorization, achieving significant

speedup over LLVM (-O3). To separate the effects of Polly’s

cache optimization from its vectorization, we run Polly in

three settings: Polly with LLVM vectorization, Polly with

its own vectorization, and Polly with our vectorization. Fig-

ure 15 shows the comparison against Polly. Compared to

LLVM’s full optimizations (-O3 with vectorization), Polly’s

cache optimizations gets a 1.41× average speedup; Polly’s

vectorization gains a 1.49× average speedup (1.06× over

Polly’s cache optimization); and Polly combinedwith our vec-

torizer obtains a 1.82× average speedup (1.22× over Polly’s

cache optimization).

5.3 ISPC

Pharr and Mark [23] originally developed their benchmarks

to motivate the need for ispc, a data-parallel programming

model and language that they proposed to target applications

with complex data and control dependences (e.g., graphics

simulations) unsuitable for auto-vectorization. For all the

ISPC benchmarks, we use their baseline, scalar implementa-

tions; in other words, the benchmarks have sequential seman-

tics, and the vectorizers must uncover the parallelism from

scratch. Figure 17 shows some code snippets from Volum

Rendering, one of the benchmarks. Volume Rendering con-

sists of five imperfectly nested loops with early exits.

Figure 18 shows the results on the ispc benchmarks [23].

Our vectorizer yields a 1.88× average speedup over LLVM’s

vectorizers (Loop + SLP) and a 2.43× average speedup over

LLVM’s scalar baseline (-O3 without vectorization).

311

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

S1
74

S1
75

S4
21

S4
52

S3
19

S1
71

S2
52

S2
76

S4
41

S4
53

S3
42 va

s
S1

27
S1

61
S1

22
S1

72
S4

91
S1

18
S2

79
S2

78
S1

25
S4

82
S1

31
S4

51
S3

17
S2

72
S2

74
S4

71
S1

13
S2

57
S1

32
S2

43
S2

73
S4

42
S3

11
S3

12
vs

um
r

S0
00

S1
15

S1
19

S1
21

S1
23

S1
24

S1
41

S1
51

S1
73

S1
76

S2
22

S2
32

S2
42

S2
51

S2
53

S2
56

S2
58

S2
77

S3
13

S3
14

S3
16

S1
31

10
S3

21
S3

22
S3

23
S3

31
S3

32
S3

41
S4

23
S4

31 va va
g vi
f

vp
v

vt
v

vp
vt

v
vp

vt
s

vp
vp

v
vt

vt
v

vd
ot

r
vb

or
S3

15
S3

18
S1

14
S1

26
S2

71
S2

54
S3

43
S3

11
11

S1
28

S4
43

S3
52

S4
22

S1
16

S2
81

S2
33

S1
11

S1
52

S3
53

S2
92

S4
81

S2
55

S2
21

S2
35

S4
24

S2
75

S3
51

S2
11

S2
91

S2
41

S2
93

S2
61

S2
12

S1
62

S2
44

S1
12

S2
31

Ge
oM

ea
n

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

Optimizer
SuperVectorization
LLVM Vectorization (Loop + SLP)

Figure 13. Speedup over LLVM scalar optimizations (-O3) on TSVC. The benchmarks are sorted (in increasing order) according

to speedup from SuperVectorization over LLVM’s scalar optimizations.

2m
m

3m
m

at
ax bic
g

do
itg

en mvt

ge
mm

ge
mve

r
ge

su
mmv

sy
mm

sy
r2

k

sy
rk

trm
m

ch
ole

sk
y

du
rb

in
gr

am
sc

hm
idt lu

lud
cm

p

tri
so

lv

co
rre

lat
ion

co
va

ria
nc

e
de

ric
he

flo
yd

-w
ar

sh
all

nu
ss

ino
v ad
i

fd
td

-2
d

he
at

-3
d

jac
ob

i-1
d

jac
ob

i-2
d

se
ide

l-2
d

Ge
oM

ea
n

Benchmark

0

1

2

3

4

Sp
ee

du
p

 7
.0

6

Optimizer
LLVM Vectorization (Loop + SLP)
SuperVectorization
LLVM Scalar -O3

Figure 14. Speedup over LLVM scalar optimizations (-O3) on PolyBench

2m
m

3m
m

at
ax bic
g

do
itg

en mvt

ge
mm

ge
mve

r
ge

su
mmv

sy
mm

sy
r2

k

sy
rk

trm
m

ch
ole

sk
y

du
rb

in
gr

am
sc

hm
idt lu

lud
cm

p

tri
so

lv

co
rre

lat
ion

co
va

ria
nc

e
de

ric
he

flo
yd

-w
ar

sh
all

nu
ss

ino
v ad
i

fd
td

-2
d

he
at

-3
d

jac
ob

i-1
d

jac
ob

i-2
d

se
ide

l-2
d

Ge
oM

ea
n

Benchmark

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Sp
ee

du
p

 1
6.

80

 1
6.

25

 1
6.

94

 3
8.

94

 3
7.

86

Optimizer
Polly + LLVM Vectorization
Polly + Polly Vectorization
Polly + SuperVectorization
LLVM -O3

Figure 15. Speedup over full LLVM optimizations (-O3 + vectorization) on PolyBench using Polly

for (int i = 0; i < LEN2; i++)

if (aa[0][i] > (float)0.)

for (int j = 1; j < LEN2; j++)

aa[j][i] = aa[j-1][i] + bb[j][i] * cc[j][i];

Figure 16. An example benchmark from TSVC where our vectorizer gains a 2.91× speedup over LLVM’s vectorizers by

unrolling the outer 𝑖-loop and packing instructions across the inner 𝑗-loops and their loop guards.

312

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

...

static float transmittance (...) {

...

if (! IntersectP(ray , pMin , pMax , &rayT0 , &rayT1))

return 1.;

...

while (t < rayT1) {

tau += ...

pos = pos + dirStep;

t += stepT;

}

...

return expf(-tau);

}

static float raymarch (...) {

...

if (! IntersectP(ray , pMin , pMax , &rayT0 , &rayT1))

return 0.;

...

while (t < rayT1) {

...

// terminate once attenuation is high

float atten = expf(-tau);

if (atten < .005f)

break;

// direct lighting

float Li = ... / transmittance (...)

...

}

// Gamma correction

return powf(L, 1.f / 2.2f);

}

void volume_serial (...) {

int offset = 0;

for (int y = 0; y < height; ++y) {

for (int x = 0; x < width; ++x, ++ offset) {

Ray ray;

generateRay (..., ray);

image[offset] = raymarch(density , nVoxels , ray);

}

}

}

Figure 17. Code snippets from Volume Rendering, which

contains five imperfectly nested loops with early exits and

multiple live-outs. Our vectorizer achieves a 3.28× speedup

by vectorizing the outer x-loop. No production compiler

vectorized this program.

.

For the ISPC benchmarks, we extended SuperVectorization

to recognize and vectorize the random number generator

drand48 (used by aobench). Without the modification, the

vectorizer cannot reorder different calls to drand48 and does

not vectorize aobench. Nonetheless, drand48 is not the sole

reason that LLVM does not vectorize. In a separate exper-

iment, we modify aobench to use a compile-time constant

instead of calling drand48. Even in this setting, LLVM’s vec-

torizer does not vectorize, whereas our vectorizer reproduces

the speedup.

aobench

Ray Tracer

Binomial Options

Black-Scholes
Stencil

Mandelbrot Set
Volume

GeoMean

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sp
ee

du
p

*

 9
.8

8

*

Optimizer
LLVM Vectorization (Loop + SLP)
SuperVectorization
LLVM Scalar

Figure 18. Speedup over LLVM vectorization (Loop + SLP)

on the ISPC benchmarks. aobench (marked with *) uses the

random number generator drand48; We modified SuperVec-

torization to recognize drand48 and to assume that it is safe

to reorder different calls to drand48. Without this modifica-

tion, aobench is not vectorizable, and the geomean speedup

becomes 2.09× (instead of 2.43×).

aobench

Ray Tracer

Binomial Options

Black-Scholes
Stencil

Mandelbrot Set
Volume

Benchmark

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f D
yn

am
ic

In
st

ru
ct

io
ns

 R
ed

uc
ed

LLVM Vectorization (Loop + SLP)
SuperVectorization

Figure 19. Reduction in dynamic instruction counts in the

ISPC benchmarks

The only ISPC benchmarks that our vectorizer does not

vectorize is Ray Tracer. Ray Tracer reuses a single array

across computations that are otherwise logically indepen-

dent. Consequently, our dependence analysis concludes that

all reads and writes to the array are dependent, thus prevent-

ing vectorization.

To analyze the source of the speedups, we collected hard-

ware performance counters. Figure 19 shows the reduction of

dynamically executed instructions for the ISPC benchmarks.

The speedups correlate with the reduction in the number

of instructions executed at runtime. We observed similar

correlations in TSVC and PolyBench. In some PolyBench

benchmarks such as 2mm, not only did our vectorizer reduce

the number of instructions executed but also reduced L1 data

cache miss rates from 60% to 40%.

313

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

6 Related Work

There has been extensivework on compiler auto-vectorization.

We list some of the key developments here.

Loop Vectorization. Allen and Kennedy [4] pioneered

loop vectorization. Their seminal paper also introduced ap-

plying if-conversion to vectorize control flow. Nuzman et al.

[19] extended the traditional loop-based vectorization algo-

rithm to support interleaved data accesses. Baghsorkhi et al.

[6] proposed an architectural extension and a joint vector-

ization for algorithm detecting and speculating over data

dependences at runtime. Nuzman and Zaks [20] proposed an

outer-loop vectorization approach based on unroll-and-jam.

SLP Vectorization. Larsen and Amarasinghe [14] devel-

oped SLP vectorization as an alternative to traditional loop-

based vectorization. SLP vectorization targets short-vector

parallelism and requires a much simpler dependence analysis

in comparison to traditional loop vectorizers. Almost all sub-

sequent work following Larsen and Amarasinghe [14] pro-

posed algorithmic improvements to the original algorithm to

uncover more parallelism. Examples include Holistic SLP vec-

torization [16], Super-node SLP [27], TSLP [24], PSLP [25],

VW-SLP [26], and applying integer linear programming (ILP)

solver to select vector packs [17]. Shin et al. [31] extended

SLP to vectorize control flow with if-conversion.

Compilation for Data-Parallel Languages. There is a

related line of work on compiling data-parallel languages

for vector architectures. In contrast to auto-vectorization,

compilers for such language do not need to extract vector

parallelism or prove its safety because their source semantics

are already data-parallel. OpenCL provides a data-parallel

programming model that maps to SIMD extensions [11]. Kar-

renberg and Hack [12] proposed a set of techniques for vec-

torizing arbitrary reducible CFGs in a data-parallel language.

Moll and Hack [18] proposed techniques for recovering con-

trol flow from if-conversion, thereby reducing the amount

of speculative computation and improving utilization. Pharr

andMark [23] proposed ispc, a C-like data-parallel language

that targets SIMD extensions.

Compiler IntermediateRepresentation. There has been

extensive work towards developing IRs to simplify the down-

stream compiler optimizations. Cytron et al. [9] developed a

seminal algorithm for efficiently computing SSA form, which

is now used by production compilers such as GCC and LLVM.

Ottenstein et al. [21] originally proposed gated SSA as an

IR for their Fortran compiler that targets dynamic data-flow

architectures. Tu and Padua [33] developed an algorithm

for efficiently computing gated SSA. Tristan et al. [32] used

gated SSA for translation validation.

7 Conclusion

We have introduced a new vectorization framework that

targets arbitrary superword-level parallelism that spans dif-

ferent basic blocks and loops. With loop unrolling, our vec-

torizer matches and, in many cases, outperforms LLVM’s

vectorization pipeline, which uses both loop and SLP vector-

izers. For example, our vectorizer vectorizes and accelerates

several of the benchmarks that Pharr and Mark [23] argued

as being unsuitable for automatic vectorization due to their

complex control and data dependences. Our vision for the

future is that a single vectorizer based on our framework

would be sufficient for a vectorizing compiler.

Acknowledgments

We thank our shepherd Laure Gonnord and the anonymous

reviewers for their valuable suggestions. We thank Teodoro

Collin, Logan Weber, Jesse Michel, Alex Renda, Daniel Do-

nenfeld, and Changwan Hong for reading early drafts of this

paper and providing feedback. Our work is supported by the

DARPA/SRC JUMP ADA Center; the Toyota Research Insti-

tute; the U.S. Department of Energy, Office of Science, Office

of Advanced Scientific Computing Research under Award

Numbers DESC0008923 and DESC0018121; NSF Grant No.

CCF-1533753; and DARPA under Awards HR0011-18-3-0007

and HR0011-20-9-0017. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the aforementioned funding agencies.

References
[1] 2022. Auto-Vectorization in GCC. https://gcc.gnu.org/projects/tree-

ssa/vectorization.html.

[2] 2022. Auto-Vectorization in LLVM. https://llvm.org/docs/Vectorizers.

html.

[3] 2022. llvm::TargetTransformInfo Class Reference. https://llvm.org/

doxygen/classllvm_1_1TargetTransformInfo.html.

[4] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FOR-

TRAN Programs to Vector Form. ACM Transactions on Programming

Languages and Systems (1987).

[5] Randy Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983.

Conversion of Control Dependence to Data Dependence. In Symposium

on Principles of Programming Languages.

[6] Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec:

Auto-vectorization for Irregular Loops. In Programming Language

Design and Implementation.

[7] Bob Blainey, Christopher Barton, and José Nelson Amaral. 2002. Re-

moving impediments to loop fusion through code transformations.

In International Workshop on Languages and Compilers for Parallel

Computing.

[8] David Callahan, Jack J Dongarra, and David Levine. 1988. Vectoriz-

ing Compilers: A Test Suite and Results. In ACM/IEEE Conference on

Supercomputing.

[9] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-

ment Form and the Control Dependence Graph. ACM Transactions on

Programming Languages and Systems (1991).

[10] Tobias Grosser, Armin Größlinger, and Christian Lengauer. 2012. Polly

ś Performing polyhedral optimizations on a low-level intermediate

314

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

representation. Parallel Processing Letters (2012).

[11] Khronos Group. 2009. OpenCL 1.0 Specification. http://khronos.org/

registry/cl/specs/opencl-1.0.pdf.

[12] Ralf Karrenberg and Sebastian Hack. 2011. Whole Function Vectoriza-

tion. In International Symposium on Code Generation and Optimization.

[13] Ken Kennedy and Kathryn S McKinley. 1993. Maximizing loop par-

allelism and improving data locality via loop fusion and distribution.

In International Workshop on Languages and Compilers for Parallel

Computing. Springer, 301ś320.

[14] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword

Level Parallelism with Multimedia Instruction Sets. In Programming

Language Design and Implementation.

[15] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong ProgramAnalysis & Transformation. In International

Symposium on Code Generation and Optimization: Feedback-directed

and Runtime Optimization.

[16] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kan-

demir. 2012. A Compiler Framework for Extracting Superword Level

Parallelism. In Programming Language Design and Implementation.

[17] Charith Mendis and Saman Amarasinghe. 2018. goSLP: Globally Op-

timized Superword Level Parallelism Framework. Proceedings of the

ACM on Programming Languages (2018).

[18] Simon Moll and Sebastian Hack. 2018. Partial Control-Flow Lineariza-

tion. In Programming Language Design and Implementation.

[19] Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization

of Interleaved Data for SIMD. In Programming Language Design and

Implementation.

[20] Dorit Nuzman andAyal Zaks. 2008. Outer-loopVectorization: Revisited

for Short SIMD Architectures. In International Conference on Parallel

Architectures and Compilation Techniques.

[21] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990.

The Program DependenceWeb: A Representation Supporting Control-,

Data-, and Demand-Driven Interpretation of Imperative Languages.

In Programming Language Design and Implementation.

[22] Joseph CH Park and Mike Schlansker. 1991. On predicated execution.

[23] Matt Pharr and William R. Mark. 2012. ispc: A SPMD Compiler for

High-Performance CPU Programming. In Innovative Parallel Comput-

ing.

[24] Vasileios Porpodas and Timothy M. Jones. 2015. Throttling Automatic

Vectorization:When Less is More. InConference on Parallel Architecture

and Compilation.

[25] Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP:

Padded SLP Automatic Vectorization. In International Symposium on

Code Generation and Optimization.

[26] Vasileios Porpodas, Rodrigo CO Rocha, and Luís FW Góes. 2018. VW-

SLP: auto-vectorization with adaptive vector width. In International

Conference on Parallel Architectures and Compilation Techniques.

[27] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luís F. W.

Góes, and Timothy Mattson. 2019. Super-Node SLP: Optimized Vector-

ization for Code Sequences Containing Operators and Their Inverse

Elements. In International Symposium on Code Generation and Opti-

mization.

[28] Louis-Noël Pouchet. 2021. PolyBench/C: the polyhedral bench-

mark suite. https://web.cse.ohio-state.edu/~pouchet.2/software/

polybench/.

[29] Rodrigo C. O. Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luís

F. W. Góes, Zheng Wang, Murray Cole, and Hugh Leather. 2020.

Vectorization-Aware Loop Unrolling with Seed Forwarding. In In-

ternational Conference on Compiler Construction.

[30] Ira Rosen, Dorit Nuzman, and Ayal Zaks. 2007. Loop-aware SLP in

GCC. In GCC Developers Summit.

[31] Jaewook Shin, Mary Hall, and Jacqueline Chame. 2005. Superword-

Level Parallelism in the Presence of Control Flow. In International

Symposium on Code Generation and Optimization.
[32] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evalu-

ating Value-Graph Translation Validation for LLVM. In Programming

Language Design and Implementation.

[33] Peng Tu and David Padua. 1995. Efficient Building and Placing of Gat-

ing Functions. In Programming Language Design and Implementation.

315

http://khronos.org/registry/cl/specs/opencl-1.0.pdf
http://khronos.org/registry/cl/specs/opencl-1.0.pdf
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	Abstract
	1 Introduction
	2 Background
	2.1 Handling Control Flow in SLP Vectorization
	2.2 Vector Instruction Sets
	2.3 Definitions

	3 SuperVectorization
	3.1 Predicated SSA
	3.2 Vector Packing
	3.3 Loop Fusion and Co-iteration
	3.4 Generating Vector Instructions from Packs
	3.5 Lowering to IR with control flow

	4 Implementation
	4.1 Loop Unrolling
	4.2 Dependence Analysis
	4.3 Cost Model

	5 Evaluation
	5.1 TSVC
	5.2 PolyBench
	5.3 ISPC

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

