All You Need Is Superword-Level Parallelism:

via_~

Systematic Control-Flow Vectorization with SLP

Yishen Chen
Massachusetts Institute of Technology
Cambridge, MA, USA
ychen306@mit.edu

Charith Mendis
University of Illinois at
Urbana-Chamaign
Urbana, IL, USA

Saman Amarasinghe
Massachusetts Institute of Technology
Cambridge, MA, USA
saman(@csail.mit.edu

charithm@illinois.edu

Abstract

Superword-level parallelism (SLP) vectorization is a proven
technique for vectorizing straight-line code. It works by re-
placing independent, isomorphic instructions with equiva-
lent vector instructions. Larsen and Amarasinghe originally
proposed using SLP vectorization (together with loop un-
rolling) as a simpler, more flexible alternative to traditional
loop vectorization. However, this vision of replacing tradi-
tional loop vectorization has not been realized because SLP
vectorization cannot directly reason with control flow.

In this work, we introduce SuperVectorization, a new vec-
torization framework that generalizes SLP vectorization to
uncover parallelism that spans different basic blocks and
loop nests. With the capability to systematically vectorize
instructions across control-flow regions such as basic blocks
and loops, our framework simultaneously subsumes the roles
of inner-loop, outer-loop, and straight-line vectorizer while
retaining the flexibility of SLP vectorization (e.g., partial
vectorization).

Our evaluation shows that a single instance of our vec-
torizer is competitive with and, in many cases, significantly
better than LLVM’s vectorization pipeline, which includes
both loop and SLP vectorizers. For example, on an unopti-
mized, sequential volume renderer from Pharr and Mark,
our vectorizer gains a 3.28X speedup, whereas none of the
production compilers that we tested vectorizes to its complex
control-flow constructs.

CCS Concepts: - Computing methodologies — Vector /
streaming algorithms; « Software and its engineering —
Compilers; - Computer systems organization — Single
instruction, multiple data.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

PLDI 22, June 13-17, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9265-5/22/06.
https://doi.org/10.1145/3519939.3523701

301

ACM Reference Format:

Yishen Chen, Charith Mendis, and Saman Amarasinghe. 2022. All
You Need Is Superword-Level Parallelism: Systematic Control-Flow
Vectorization with SLP. In Proceedings of the 43rd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation (PLDI °22), June 13—17, 2022, San Diego, CA, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3519939.
3523701

1 Introduction

Allen and Kennedy [4] pioneered loop vectorization with
their seminal work in the 1980s. The basic idea of loop vector-
ization is to widen instructions in the loop body from scalar
to vector instructions. This technique was originally moti-
vated by the long vector architectures that were common at
the time (e.g., the Cray machines).

In the early 2000s, Larsen and Amarasinghe [14] developed
superword-level parallelism (SLP) vectorization to target the
multimedia extensions that were emerging. SLP vectoriza-
tion works by searching for independent, isomorphic instruc-
tions in straight-line code and replacing them with vector
instructions. Because SLP vectorization targets straight-line
code, it requires much simpler dependence analyses (as op-
posed to the more complex loop-dependence analyses re-
quired by loop vectorization).

Larsen and Amarasinghe initially intended SLP vector-
ization as a simpler and more flexible alternative to tradi-
tional loop vectorization. Indeed, when combined with loop
unrolling, SLP vectorization can also exploit loop-level par-
allelism [14, 29]. However, because it was not designed to
directly reason with control flow, SLP vectorization cannot
exploit parallelism that spans control-flow regions such as
different basic blocks or loops. Meanwhile, multiple works
have extended traditional loop vectorization to handle com-
plicated control-flow constructs such as divergent branches
and outer loops [4, 12, 20]. Today, with neither vectorization
technique being superior to the other across all applications,
production compilers such as GCC and LLVM implement
both loop and SLP vectorizers [1, 2].

In this work, we introduce SuperVectorization, a new vec-
torization framework that generalizes SLP vectorization to
pack independent instructions across different basic blocks
and loop nests—such loops can be imperfectly nested and
have different trip counts or multiple side exits. Because our

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523701
https://doi.org/10.1145/3519939.3523701
https://doi.org/10.1145/3519939.3523701

PLDI °22, June 13-17, 2022, San Diego, CA, USA

framework can pack instructions across control-flow regions
such as basic blocks and loops, it simultaneously subsumes
the roles of inner-loop, outer-loop, and straight-line vector-
izers while retaining the flexibility of SLP vectorization (e.g.,
partial vectorization). For example, outer-loop vectorization
in our framework involves unrolling an outer loop and then
packing the instructions from the inner loops duplicated by
the unroller. Our evaluation shows that a single instance of
our vectorizer is competitive with and, in many cases, sig-
nificantly better than LLVM’s vectorization pipeline, which
includes both loop and SLP vectorizers.

Central to our framework is Predicated SSA, a new inter-
mediate representation (IR) that we developed to simplify the
pervasive inter-basic block code motion required to target
SLP that spans different basic blocks or loops. Rather than
using a control-flow graph (CFG), this IR represents the input
program as a flat list of instructions and loops and tracks
the control dependence of each instruction explicitly with
a boolean formula that expresses whether the instruction
should execute. We refer to such formulas as control predi-
cates.! Using Predicated SSA, inter-basic block code motion
is straightforward: We just move an instruction (or loop)
together with its control predicate, and no information is
lost because we can recover control flow from equivalent
control predicates.

We make the following contributions in this paper:

e We introduce Predicated SSA, an IR that we developed
to simplifying the pervasive code motion required to
uncover arbitrary SLP that spans different basic blocks
and loops.

e We present SuperVectorization, our generalization of
SLP vectorization to vectorize (pack) instructions from
different basic blocks and loops. Together with loop
unrolling, SuperVectorization effectively subsumes the
roles of inner-loop, outer-loop, and straight-line vec-
torizers.

e We show that our single prototype implementation,
written from scratch, is competitive with and, in many
cases, significantly outperforms LLVM’s vectorization
pipeline, which includes both a loop and SLP vector-
izer.

2 Background

Our goal is to develop a vectorization strategy that retains
the simplicity and flexibility of SLP vectorization while gen-
eralizing it to systematically handle control flow. To this
end, we review the background on loop and SLP vectoriza-
tion and motivate the technical challenge of extending SLP
vectorization to handle control flow.

!Predicated SSA does not perform predicated execution and executes in-
structions conditionally similar to a traditional IR with CFG.

302

Yishen Chen, Charith Mendis, and Saman Amarasinghe

Loop Vectorization. Loop vectorization targets loop-level
parallelism by mapping successive loop iterations to succes-
sive vector lanes. While traditional loop vectorization fo-
cuses on inner loops by executing the inner-loop iterations
in parallel, outer-loop vectorization instead transforms the
program to execute the outer-loop iterations in parallel [20].

SLP Vectorization. Larsen and Amarasinghe [14] pro-
posed superword-level parallelism (SLP) as a model of the
short-vector parallelism implemented by modern vector ex-
tensions. SLP vectorization works in three steps. First, the
vectorizer runs an SLP packing heuristic to select groups
of independent, isomorphic instructions to pack together.
Second, the vectorizer reorders the instructions so that the
dependences of any group of packed instructions appear
before the group. Finally, the vectorizer replaces each group
of packed instructions with an equivalent vector instruction.

SLP vectorization is relatively simpler and more flexible.
SLP vectorization is simpler because it does not target paral-
lelism that spans different loop iterations, thus not requiring
loop dependence analysis to reason with loop-carried depen-
dence. SLP vectorization can nonetheless exploit inner-loop
parallelism using loop unrolling [14, 29].

SLP vectorization is also more flexible at exploiting the
type of short-vector parallelism implemented by existing
multimedia architecture extensions. The SLP framework de-
fines a search space that specifies which instructions can be
packed together—subject to dependences and the capabil-
ity of the target architecture, leaving the SLP heuristic free
to vectorize however it sees fit [16, 17, 24-27, 30]. In con-
trast, loop vectorization mechanically transforms each loop
instruction to a wider vector instruction. Adapting loop vec-
torization to handle cases that deviate from this assumption
requires research in itself.

Consider the loop in Figure 1a as an example of SLP vec-
torization’s flexibility. A naive loop vectorizer would emit in-
structions similar to those in Figure 1b, vectorizing the even
and odd accesses separately, losing performance because the
memory accesses are not contiguous and are less efficient. To
address this inefficiency, Nuzman et al. [19] extended loop
vectorization to support interleaving and generate instruc-
tions similar to the ones in Figure 1c. In contrast, an SLP
vectorizer (with unrolling) vectorizes such loops effectively
without any extensions because SLP is loop agnostic.

2.1 Handling Control Flow in SLP Vectorization

SLP vectorization has so far been limited to target paral-
lelism within individual basic blocks, despite SLP captures a
more general form of parallelism. Consider, for example, the
sequential program in Figure 2, which performs two inde-
pendent linear searches over the same array for two different
elements. No existing vectorizers can exploit the available
(superword-level) parallelism among the loops.

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP

for (i = 0; i < n; i+=2) { for (i = 0; i < n; i+=4) {
alil] = b[i]l + c[il; /%
ali+1] = b[i+1] + c[i+1]; After unrolling,
} before SLP vectorization:
s ali] = b[i]l + cl[il;
(a) An example loop with inter- alit1] = bLis1] + c[i+17;
leaved accesses ali+2] = bLi+2] + cli+21.
ali+3] = b[i+3] + c[i+3];
for (i = 0; i < n; i+=8) {
t = b[i:i+8]; After SLP vectorization:
t2 = c[i:i+81; */
b_even = shfl-even t; ali:i+4] = b[i:i+4]
c_even = shfl-even t2; + cli:i+4];
e = b_even + c_even; }
b-odd = shfl-odd t; (c) Result of interleave-aware loop
c_odd = shfl-odd t2; .. N
o = b_odd + c_odd: vectorization. SLP vectorization can
ali:i+8] = discover the same vectorization

interleave e, o; scheme natively.

}

(b) Result of applying loop vector-
ization naively

Figure 1. An example of vectorizing a loop with interleaved
accesses. Nuzman et al. [19] proposed an extension to loop
vectorization to vectorize such an example. SLP vectorization
can discover the equivalent vectorization scheme from the
first principle.

Code Motion. The key challenge to targeting SLP that
spans arbitrary control-flow regions is inter-basic block code
motion. Exploiting the SLP available in Figure 2, for example,
requires moving instructions from one loop to another. Code
motion in a traditional IR with CFG is challenging because it
requires restructuring the CFG and the complexity of doing
so increases with the complexity of control dependences.
Consider the task of hoisting a store to an earlier location in
the CFG as an example. Because relaxing the condition under
which the store executes may lead to segfault, we need to
preserve the condition of the store. Consequently, hoisting a
store in general entails 1) finding a basic block that is control-
flow equivalent to the original basic block—and, if such a
basic block does not exist, restructuring the CFG to create
the block—and 2) recursively hoisting the dependences of
the store to preserve data dependences, which may require
further changes to the CFG.

If-conversion. If-conversion [5] converts control depen-
dences to data dependences by transforming the program
to unconditionally execute both sides of every conditional
branch and replaces control-flow joins (i.e., the ¢-nodes in
SSA) with select instructions (which chooses two alternative
values based on a boolean condition, similar to the ternary op-
erator in C/C++). Because if-conversion unconditionally ex-
ecutes instructions that may not otherwise execute, naively
applying if-conversion can decrease performance [18, 31].
Nonetheless, if-conversion is necessary for vectorizing diver-
gent control flow (i.e., branches with different conditions).

303

PLDI °22, June 13-17, 2022, San Diego, CA, USA

int haystack[];
int needles[2];
int needle_idxs[2];

for (int i = 0; 1 < n; i++)
if (haystack[i] != needles[0]) {
needle_idxs[0] i;
break;
3}

for (int i = 0; i < n; i++)
if (haystack[i] != needles[1]) {
needle_idxs[1]

break;

}

i;

Figure 2. Running example of a sequential C code that we
will vectorize. The program performs two linear searches
over the same array twice to find the indices of two different
elements (needles[@] and needles[1]). The two loops are
independent, and we will exploit the parallelism between
the two loops by packing their instructions together.

Prior Work. Shin et al. [31] proposed handling control
flow in SLP vectorization with if-conversion. After applying
if-conversion to eliminate all (forward) control flow, they
use SLP vectorization as a black box to vectorize instruc-
tions within the relatively few large basic blocks. However,
without directly addressing the code motion problem, their
approach cannot target parallelism that spans different loops
nests (e.g., the program in Figure 2).

Our Approach. The key to our approach is Predicated
SSA, an IR that we developed to simplify the pervasive code
motion required to target SLP that spans different basic
blocks (and loops). Instead of using a CFG, which complicates
code motion, Predicated SSA represents the input program
as a flat list of instructions and loops while tracking the
control dependences of each instruction separately with a
symbolic boolean formula that expresses whether the in-
struction should execute. Code motion in Predicated SSA
only entails reordering an instruction and its dependences as
one would for intra-basic block code motion; such reorder-
ing in Predicated SSA is safe because we always reorder an
instruction together with its control predicate, and no infor-
mation is lost. Predicated SSA does not commit to any code
layout decision (e.g., assigning an instruction to a particular
basic block). Only after vectorization and deciding an overall
execution schedule for the instructions, do we revert back
to a traditional IR with CFG.

2.2 Vector Instruction Sets

Our approach targets vector instruction sets with fixed vector
width. This covers Intel’s vector extensions (SSE, AVX2, and
AVX-512) and Arm’s Neon instruction set. In the rest of this
section, we discuss the hardware features that our approach
either relies on or benefits from.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Selection/Blending. Depending on their control depen-
dences, our approach may independent control-flow joins
into data-flow joins in the form of vector selects (blending).
Intel’s vector extensions support this operation with their
blend family of instructions (e.g., blendvps for blending
two packed vectors of single-precision floats). Arm’s Neon
extension supports this operation with the bsl instruction
(bitwise select).

Gather/Scatter. Traditional vector instruction sets only
support loading/storing contiguous memory locations, and
vector gather/scatter allows loading/storing a vector of ar-
bitrary pointers. Although not a required feature for our
technique, vector gathers improve performance for appli-
cations with irregular memory access patterns. When the
target hardware does not support vector gather/scatter, our
approach emits equivalent (but less efficient) scalar loads/s-
tores and vector insertion instructions.

Predication. While vectorizing conditional load/store in-
structions (with distinct conditions), we require the ability
to dynamically suppress the effect of vector lanes whose
conditions evaluate to false. If a target architecture does
not support predicated vector load/store instructions, our
approach will emit sequential scalar stores with branches
instead. AVX-512 supports predicated (masked) loads and
stores.

2.3 Definitions

In this section, we review the compiler terminologies that
we will use in Section 3.

Let by and b; be two basic blocks in a given CFG. b; domi-
nates by if every path from the entry basic block to b, must
go through b;. Relatedly, by post-dominates b, if every path
from b; to the exit node goes through b,.

The post-dominance frontier of a basic block b is the set of
all basic blocks b” such that b’ is not post-dominated by b
but has a predecessor post-dominated by b.

Let b be a basic block. The set of basic blocks that b is
control-dependent on is exactly the post-dominance frontier

of b [9].

Gated SSA. Our vectorizer uses Predicated SSA, an IR
that borrows many ingredients from gated SSA [21]. Gated
SSA extends SSA [9] by differentiating its ¢-nodes into two
categories.

e For ¢-nodes placed at loop headers, gated SSA renames
them as p-nodes (which have the same semantics as
the loop-header ¢-nodes in SSA).

e For each n-nary ¢-nodes used for forward control-flow
join, gated SSA replaces it with n — 1 gating operators
called y-nodes. A y node selects two alternative in-
coming values (of the original ¢-node) depending on
a branch condition (similar to C’s ternary operator).

304

Yishen Chen, Charith Mendis, and Saman Amarasinghe

’ Converting to Predicated SSA (Section 3.1) ‘

¥

’ Packing (Section 3.2) ‘

¥

’ Loop Fusion & Co-iteration (Section 3.3) ‘

¥

’ Generating Vector Instruction (Section 3.4) ‘

¥

’ Converting Predicated SSA to SSA (Section 3.5) ‘

Figure 3. Vectorization workflow in our framework

3 SuperVectorization

SuperVectorization is our generalization of SLP vectorization
to pack arbitrary, independent instructions from different
basic blocks and loops. Such loops can be imperfectly nested,
have different trip counts, or have multiple side exits.

Workflow. Figure 3 shows our workflow. We begin by
transforming an input sequential program from SSA to Pred-
icated SSA, an IR that we developed to simplify the perva-
sive code motion that is required for vectorizing instructions
across basic blocks and loops. Once the input is in Predicated
SSA, we find profitable vector packs as one does in tradi-
tional SLP vectorization (Section 3.2). The precise algorithm
for finding the vector packs is orthogonal to our work; in our
implementation, we use the bottom-up SLP algorithm [30].
Once we have a set of vector packs, we identify loops that
share common vector packs and transform the loops so that
all instructions from any given pack reside in a single new
loop (Section 3.3). Having ensured that all instructions from
the same packs will be in the same loops, we replace the
packed instructions with equivalent vector instructions (Sec-
tion 3.4). So far, we have done everything in Predicated SSA
(i.e., packing, fusion, and vectorization). Once we replace
scalar instructions with vector instructions, we finish by
lowering Predicated SSA back to a traditional IR with CFG
(Section 3.5).

We will use the program in Figure 2 as a running example.
This example contains two disjoint, independent loops. We
will pack instructions from the loops together into vector
instructions.

3.1 Predicated SSA

Figure 4 shows the syntax of Predicated SSA, and Figure 5
shows the first loop in the running example (Figure 2) trans-
lated to Predicated SSA.

Control Predicate. Predicated SSA forgoes the use of
CFG entirely and instead represents the input program as
a flat list of instructions and loops while tracking the con-
trol dependence of individual instructions and loops with
first-class constructs that we refer to as control predicates.
Figure 6 shows the definition of control predicates. A control

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP

fno=itemy : py,..

p = control predicate

., itemy : pp

item ::= instruction | loop

loop ==with vy =y, ..., 0, = pty, do

itemy : p1,...,itemy : py
while pon:
U= mu(Vinit, Urec)
¢ ==phi(vr : p1,...,04 : pn)

v =y | instructions | constant | argument

Figure 4. Definition of Predicated SSA. The root of the gram-
mar is fn, representing a given input function. Similar to
gated SSA, Predicated SSA represents IR values defined re-
cursively in loops with p-nodes, where v;,;; represents the
value flowing from the loop pre-header, and v, represents
the value flowing from the back edge.

with i = mu(0, i') do
t = load haystack[i] : true
needle = load needles[0] : true
found = cmp eq, t, needle : true
i' = add i, 1 : true
not_found = not found : true
1t_n =cmp 1t i', n : true

while not_found and 1lt_n : true

store i, needle_idxs[0] : found

Figure 5. The first loop in Figure 2 translated to Predicated
SSA. The true control predicates indicate that the items exe-
cute unconditionally. For items inside the loop, the predicate
indicates that they should execute as long as the loop is not
terminated. Observant readers may notice that the load of
needles[0] is loop-invariant and can be hoisted; we do not
hoist the load here because loop-invariant code motion is
not part of the IR conversion process.

predicate is a symbolic boolean expression that indicates
whether an instruction (or loop) should execute. Predicated
SSA represents each function as a list of items. Each item is
either an instruction or a loop, and each loop also contains
a list of items. Each item has its own control predicate that
indicates whether that item should execute. With this repre-
sentation, code motion is straightforward: We can reorder
an instruction (or loop) together with its control predicate
without losing information.

Although our use of control predicates is inspired by predi-
cated execution [22], Predicated SSA does not perform predi-
cated execution. In Predicated SSA, instructions and loops ex-
ecute conditionally, depending on their control predicates. In
contrast, in predicated executions, predicated instructions ex-
ecute unconditionally but with their side-effects suppressed
conditionally.

305

PLDI °22, June 13-17, 2022, San Diego, CA, USA

¢ = branch-conditions (IR values used for branching)

pu=true | c | ¢ | prAp: | p1Vpe

Figure 6. Definition of Control Predicates.

Similar to gated SSA, Predicated SSA uses p-nodes to rep-
resent control-flow joins placed at loop headers. For forward
control-flow joins, Predicated SSA uses gated ¢-nodes (rather
than the y-nodes from gated SSA); our gated ¢-nodes are
similar to the ¢ nodes in classical SSA, except that the incom-
ing basic block labels are replaced with control predicates.
The gated ¢-nodes provide us with a simple way to vectorize
¢-nodes. While packing multiple ¢-nodes, if the incoming
values of the ¢-nodes have the same predicates, then we re-
tain control flow and replace them with a single vector ¢; if
the incoming values of the ¢-nodes have different predicates,
then we lower them into vector selects, emitting the select
conditions according to the control predicates.

Converting from SSA to Predicated SSA. We begin by
converting the input IR into a canonical form. We assume
that the CFG of the input program is reducible and that we
can transform each loop into a canonical form, with each
loop having:

a single incoming edge

a single back edge

a dedicated loop header

a dedicated loop pre-header (i.e., the unique predeces-
sor of the loop pre-header)

a dedicated loop latch (i.e., the unique source of the

back edge)

We also normalize each loop in a rotated form where all
loops execute at least once (i.e., similar to do-while loops in
Q).

Once we transform the input into this canonical form, we
convert it into Predicated SSA by visiting the input loops
recursively. We convert the forward ¢-nodes into gated ¢-
nodes by replacing the incoming basic block labels with the
control predicates of the basic blocks. (We will discuss how
to compute control predicates next.) Because all loops are
in the canonical form that we just discussed, we translate
the ¢-nodes in the loop headers into y-nodes by labeling
the values flowing from the loop pre-headers as the initial
values (vin;; in Figure 4) and the values flowing from the loop
latches as the recursive values (vyec).

Computing Control Predicates. One tempting approach
to computing the control predicates would be to perform
symbolic execution over the branch instructions of the input
program, namely, emitting conjunction when taking a branch
and emitting disjunction when encountering a control-flow
join. However, this approach can introduce unnecessarily
complicated predicates that require further simplification.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

entry:
br c,
if_true:
br join
if_false:
br join
join:

if_true, if_false

Figure 7. An example of control-flow equivalent basic blocks.
The blocks entry and join are control-flow equivalent
because entry dominates join and because join post-
dominates entry. Consequently, the control predicate of
the join block is the same as entry’s predicate (true).

Consider the example in Figure 7 where there is a branch
on the condition c. When we join both sides of the branch,
we would get the predicate ¢ V ¢, but we want the more con-
cise predicate true. To achieve this aim, we use an algorithm
that uses control dependence to directly produce simplified
predicates.

Figure 8 shows the algorithm for computing the control
predicate of a given basic block. The control predicate of an
instruction is simply the predicate of its basic block. The idea
of the algorithm follows from the observation that whether
a basic block b executes depends exactly on two conditions:
(1) whether any of its control-dependent basic blocks b’
executes, and (2) whether b’ takes the branch that leads to b.
For condition (1), we simply compute the post-dominance
frontier of b, which is equivalent to the control-dependent
blocks of b [9]. For condition (2), we observe that because
b’ is in the post-dominance frontier of b, the branch that
leads from b’ to b must be the branch b’ — b”, such that
b” is a successor of b’ and b post-dominates b”’ (i.e., any
control flow leaving b must end at b); such successor b”’
must exist uniquely because b’ (the predecessor of b”) is in
the post-dominance frontier of b. For the example program
in Figure 7, our algorithm directly computes a true predicate
for the join block because it post-dominates all preceding
blocks and, therefore, has no control dependences.

When computing control predicates, we use the concept
of control-flow equivalence. Control-flow equivalence is a
relation over basic blocks that holds when the execution
of one basic block implies that of the other and vice versa.
This relation can be difficult to establish for arbitrary pairs of
basic blocks. Instead, we will use an incomplete heuristic and
say two basic blocks by and b; are control-flow equivalent if
by dominates b, and b, post-dominates b;. Figure 7 shows
an example of control-flow equivalent basic blocks.

We ignore backward control flows when we compute the
control predicates, and we assign a true predicate to basic
blocks that are known to be control-flow equivalent to the
loop header. Consequently, if a predicate is used within a
loop, the truthness of the predicate is conditioned on whether
the execution reaches a given loop iteration. We track the

306

Yishen Chen, Charith Mendis, and Saman Amarasinghe

true If ctrl-flow-equivalent(b, header(b))
Phlock (P) = V CPedge (b, suce-pdom(b’, b)) Otherwise
b’ €PDF(b)
true If by — by is back edge
CPplock (b1) If preds(by) = {b1}
CPplock (preheader(by)) If by — by loop-exiting
CPedge (b1,b2) = Acpploci(b1)
Acond(by, b2)
CPplock (b1) Otherwise
Acond(by, by)

Figure 8. Algorithm for computing the control predicate
of a basic block b, where PDF(b) is the post-dominance
frontier of b; succ-pdom(b’,b) is the successor of b’ that
is post-dominated by b (there uniquely exists such a ba-
sic block because b’ is in the post-dominance frontier of b);
and cond(by, by) denotes the branch condition for when the
control-flow edge by — b, is taken.

continue predicate (i.e., whether the back edge is taken)
as a special case (pcons in Figure 4) in Predicated SSA. We
compute the continue predicate of a loop as the conjunction
of the control predicate of the loop latch (i.e., whether we
reach the latch) and the branch condition of the back edge.

We compute the control predicate of a loop exit—a loop
may have multiple exits—with the intuition that the execu-
tion only reaches the exit all of the following is true: (1) if
we enter the loop in the first place, (2) if we reach the pre-
decessor of the exit, and finally (3) if the conditional branch
preceding the exit is taken. Therefore, the control predicate
of a loop exit is the conjunction of (1) the control predicate
of the pre-header of the loop from which it is exiting, (2)
the control predicate of the predecessor of the basic block
(which is inside the loop), and (3) the branch condition of
the edge leading to the loop exit.

3.2 Vector Packing

Once we convert the input program into Predicated SSA, we
run a packing heuristic to decide which instructions should
be packed together. Deciding which instructions to pack is
orthogonal to our work. SuperVectorization is compatible
with arbitrary packing heuristics as long as program depen-
dence is not violated [16, 17, 24-27, 30]. For this paper, we
adapt the bottom-up SLP heuristic [30] for its simplicity.
Both GCC and Clang use variants of the same heuristic.
The bottom-up SLP heuristic works as follows. First, it
identifies groups of instructions that are known to be vector-
izable, which are termed seed instructions; common seeds are
stores to contiguous memory locations and reductions. Next,
the algorithm attempts to find more vectorizable instructions
by traversing the use-def chains of the seed instructions pack-
ing the operands of the instructions that it encounters along

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP

the way. This process stops when it encounters operands
that cannot be directly produced by vector instructions (e.g.,
a group of instructions with different opcodes). At this point,
to ensure that the final vectorization decision does not vio-
late program dependence, the heuristic checks that the set of
selected vector packs do not have any circular dependences.
Finally, the algorithm uses a cost model to estimate the cost
benefit of vectorizing the candidate instructions, with the
benefit coming from replacing scalar instructions with more
efficient vector instructions, and the cost coming from using
vector data-movement instructions (e.g., vector shuffle) to
produce the operands that are not vectorized.

Once we have decided which instructions to pack, we
lower the selected packs into vector instructions as follows.
First, if we are packing instructions from different loops, we
transform the loops so that the instructions of any given
vector pack belong to the same loops. Then, we lower the
packed instructions into vector instructions (e.g., a pack of
additions becomes a single vector addition). At this point, we
have done everything in Predicated SSA. Finally, we lower
the IR back to a traditional IR with CFG (e.g., LLVM IR).

A Note on Pattern Matching. Many SLP vectorizers use
pattern matching. For example, LLVM’s SLP vectorizer em-
ploys pattern matching to (among other use cases) identify
and vectorize reductions. Doing pattern matching in Predi-
cated SSA is the same as that in a traditional SSA-based IR
(e.g., LLVM) because the former maintains the same use-def
information that SSA tracks.

3.3 Loop Fusion and Co-iteration

Our framework supports packing instructions from differ-
ent loop nests. This capability allows, for example, vector-
izing the two independent search loops in the running ex-
ample from Figure 2. More importantly, when coupled with
a vectorization-aware loop unroller to unroll outer loops,
packing instructions across loops is equivalent to outer-loop
vectorization. This approach is similar to how Nuzman and
Zaks [20] applied unroll-and-jam to achieve outer-loop vec-
torization. One major difference here is that in our frame-
work, a packing heuristic need not be aware of the loop
structures.

While packing instructions from different loops, we must
generate a new loop so that the instructions execute in
the same loop. To accomplish this, we either fuse or co-
iterate the loops, depending on whether the loops are control-
flow equivalent (i.e., have the same control predicates) and
whether they have the same trip counts.

307

PLDI °22, June 13-17, 2022, San Diego, CA, USA

Loop Fusion. We apply loop fusion if we can prove that
loops are independent,? they have the same iterations, they
execute under the same condition (i.e., they have identical
control predicates), and their parent loops can also be fused
Fusing loops in Predicated SSA requires only creating a new
loop whose p-nodes and loop items are the concatenations
of those of the original loops.

Predicated SSA also increases the applicability of loop fu-
sion, despite the latter being a well-studied optimization. Tra-
ditionally, compilers only fuse loops that are adjacent [7, 13].
Predicated SSA removes this restriction by making it straight-
forward to hoist (or sink) any intervening instructions and
control flow.

Loop Co-iteration. When we cannot fuse some loops be-
cause they execute under different control predicates or be-
cause they have different trip counts, we apply a transfor-
mation that we call loop co-iteration. The intuition behind
co-iteration is to interleave the iterations of multiple loops
in a single new loop while preserving the execution condi-
tion of the original instructions. It is safe to co-iterate when
the loops are independent and when their parent loops are
also safe to co-iterate. Although we use co-iteration to en-
able packing instructions from different loops, co-iteration
(similar to fusion) is a standalone scalar optimization that is
applicable independent of vectorization.

Figure 9 shows the algorithm for co-iterating multiple
loops. Similar to loop fusion, co-iteration entails moving the
p-nodes and the loop items of the original loops into a new
loop and the following additional steps:

e For each loop, introduce a boolean p-node to track
whether the loop still has remaining iterations (lines 19-
27).

e For each loop item, strengthen its control predicate
so that the item only executes when its original loop
is active and its original predicate evaluates to true
(lines 44-48).

e For each loop live-out (i.e., an instruction with users
outside of the loop), introduce a new p-node to keep
the value alive across the iterations even when the
loop is no longer active (lines 51-65).

o Set the continue predicate of the new loop to be the
disjunction of the active conditions of the co-iterating
loops.

Figure 10 shows the result of co-iterating the loops in
the running example. In the example, we use the booleans
active and active?2 to indicate whether the original loops
are still active. We also insert the new p-nodes i_out and
i2_out to keep the values i and i2 alive across the iterations
where their original loops would have exited already.

2While this is not necessary for fusion in general, it simplifies our
implementation.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

1 def coiterate(loops: the loop to coiterate):
2 if identical(loops):

3 return

4

5 parents = {1l.parent for 1 in loops}

6 parent = coiterate(parents)

7 mus = concat(l.mus for 1 in loops)

8 items = concat(l.items for 1 in loops)
9 # A map of IR values that tells

10 # if a given loop is active

11 active_mus = {}

12 # Create a boolean Mu node to indicate
13 # whether a co-iterating loop is active
14 for 1 in loops:

15 active = Mu()

16 mus.append(active)

17 active_mus[1l] = active

18

19 pred = parent.control_pred_of (1)

20 active_init = GatedPhi(

21 {pred: true, negate(pred): false})
22 active_next = GatedPhi ({

23 And(active, l.cont_pred): true,

24 negate(active): false,

25 negate(l.cont_pred): false})

26 active.set_init(active_init)

27 active.set_rec(active_next)

28

29 items.append(active_next)

30 parent.items.append(active_init)

31 parent.remove_loop(l)

32

33 # We continue iterating

34 # as long as there is an active loop

35 cont_pred = Or(

36 [And(active_mus[1], 1l.cont_pred) for 1 in loops]
37)

38 new_loop = Loop(

39 mus=mus, items=items,

40 cont_pred=0r(cont_pred, parent=parent)
41

42 # Strengthen the predicates so that

43 # an item only executes when the parent
44 for 1 in loops:

45 for item in l.items:

46 new_loop.set_control_pred(item,

47 And(active_mus[1],

48 l.control_pred_of(item)))

49

50 # Introduce mu nodes to guard loop live-outs
51 for 1 in loops:

52 active = active_mus[1]

53 for x in 1l.live_outs():

54 x_out = Mu()

55 x_pred = l.control_pred_of(x)

56 x_out_next = GatedPhi ({

57 And(active, x_pred): x,

58 negate(active): x_out,

59 negate(x_pred): x_out

60 »

61 x_out.set_init (undef)

62 x_out.set_rec(x_out_next)

63 for user in x.users():

64 if user not in new_loop.items:

65 user.replaceUsesOfWith(x, x_out)
66

67 return new_loop

Figure 9. Algorithm to co-iterate multiple loops

308

Yishen Chen, Charith Mendis, and Saman Amarasinghe

with i = mu(o, i'),
i2 = mu(o, i2'),
i_out = mu(undef, i_out'),
i2_out = mu(undef, i2_out'),
found_out = mu(undef, found_out'),
found2_out = mu(undef, found2_out'),
active = mu(true, active'),
active2 = mu(true, active2')

do

t = load haystack[i] : active
needle = load needles[0] : active
found = cmp eq, t, needle : active
not_found = not found : active

i = add i, 1 : active
1t_n = cmp 1t, i', n : active

t2 = load haystack[i2] : active2
needle?2 = load needles[1] : active2
found2 = cmp eq, t2, needle2 : active2
not_found2 = not found2 : active2
i2! = add i2, 1 : active2
1t_n2 = cmp 1t i2', n : active2
active' = phi(

active and not_found and 1lt_n . true,

_ : false) : true
active2' = phi(

active2 and not_found2 and 1t_n2 : true,

_ : false) : true
found_out' = phi(active: found, _: found_out) : true
found2_out' = phi(active2: found2,_: found2_out): true
i_out' = phi(active: i', _: i_out) : true
i2_out' = phi(active2: i2', _: i2_out) : true
cont = or active', active2' : true

while cont : true
store i_out, needle_idxs[@] : found_out
store i2_out, needle_idxs[1] : found2_out

Figure 10. The two loops in Figure 2 after co-iteration.

3.4 Generating Vector Instructions from Packs

After selecting a profitable set of vector packs, we gener-
ate an optimized vector program, according to the packing
decision, as follows:

1. Schedule (reorder) the instructions and loops to satisfy
the dependences of the packed instructions.

2. Replace vector packs with vector instructions.

3. Assign control predicates to the vector instructions.

Scheduling. We first schedule the instructions and loops
so that for any given vector pack, the dependences of the
packed instructions precede the packed instructions (while
also satisfying the dependences of the other scalar instruc-
tions). We find such schedules by doing topological sort on
the dependence graph formed by the instructions and loops.

Scheduling in our framework is relatively straightforward
because we are using Predicated SSA, which enables us to
freely reorder instructions and loops. Scheduling instructions
and loops with arbitrary control dependences directly on an
IR with CFG requires multiple coordinated changes to the
CFG and is more complicated.

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP

with i = vmu({o, 0}, i'),
i_out = vmu({undef, undef}, i_out'),
found_out = vmu({undef, undef}, found_out'),
active = vmu({true, true}, active'),
do
addrs = vadd haystack, i . true
t = vgather addrs with mask=active : true
needle = vload needles with mask=active : true
found = vcmp eq, t, needle : true
not_found = vnot found : true
i' = vadd i, {1, 1} : true
1t_n = vemp 1t, i', {n, n} : true
active' = vand active, not_found, 1lt_n : true
i_out' = vselect active, i, i_out : true
found_out' = vselect active,
found,
found_out : true
cont = vreduce or, active' : true
while cont : true
vstore needle_idxs, i_out with mask=found_out : true

Figure 11. Result of packing and vectorizing the loops in
Figure 2. vmu denotes vector p-node. For vector load/store
instructions that require masking, we use their original con-
trol predicates (e.g., active and active2 in Figure 10) to
compute the masks.

Emitting Vector Instructions. After scheduling, we re-
place the packed instructions with their corresponding vec-
tor instructions. For most packs, lowering into vector instruc-
tions is straightforward. For example, a pack of additions
becomes a single vector addition. We need to take special care
of packs of ¢-nodes and packs of loads or stores. Figure 11
shows the result of packing the instructions in Figure 10 and
translating them into vector instructions.

Within a pack of ¢-nodes, if the control predicate of i’th ¢
operand is different from the control predicate of i’th operand
of a different ¢-node, we lower the pack of ¢-nodes into a
vector select; otherwise, we lower the pack ¢-nodes into a
single vector ¢-node. To lower a pack of n-ary ¢-nodes into
vector select, we emit a chain of n — 1 selects and emit the
select conditions according to the incoming control predi-
cates of the ¢-nodes. If we pack loads (or stores) that have
different control predicates, we emit masked vector loads
(instead of ordinary vector loads or stores).

Assigning Control Predicate. Because we support pack-
ing instructions with different control predicates, we need a
mechanism to assign a new control predicate for each new
vector instruction. For a pack of instructions with identical
control predicates, we simply assign the same control predi-
cate. For a pack of instructions that have different control
predicates, we set the new control predicate to the strongest
control predicate which is also the necessary condition of
(i.e., implied by) the original predicates. For example, if a
pack contains two instructions with the predicates ¢ A ¢, and
¢ A c3, we set the new control predicate to c.

309

PLDI °22, June 13-17, 2022, San Diego, CA, USA

3.5 Lowering to IR with control flow

Figure 12 shows the algorithm for converting Predicated SSA
to a lower-level IR with control flow. We first convert the
gated ¢-nodes into move instructions, whereby we temporar-
ily destroy the single-definition invariant of SSA (which we
will restore later). Once we remove all ¢-nodes, we proceed
to reconstruct the CFG level by level, from the top-level func-
tion to the deepest nested loop. For each item, we first create
(or reuse) a basic block whose control predicate is equivalent
to that of the item’s (line 16). If the item is a loop, we lower
the loop recursively and use the basic block as the loop’s
pre-header (line 18). If the item is an instruction, we simply
move the instruction to the basic block (line 20).

Finally, we generate the back edge and exits of the loop
as follows. We first allocate a special variable that indicates
whether the loop should continue (line 35). We initialize this
variable to false in the loop header (i.e., the loop exits by
default). Next, we create a basic block based on the control
predicate of the loop continue condition (pcon: in Figure 4),
and in this basic block, we set the variable to true. Finally, in
the loop latch, we create a conditional branch that goes to
the header if the variable is true and otherwise to the loop
exit (line 45).

We use a utility data structure that we call block builder
(line 6) to encapsulate the operation of recreating basic blocks
from control predicates. While lowering the predicates into
basic blocks, the builder maintains a hash table that maps the
source predicate of every block to the block itself. We refer to
this hash table as the predicate table. For each conjunction of
the form p A c, the builder queries the predicate table for an
existing block equivalent to the predicate p (and recursively
creates such a block if it does not exist) and creates a con-
ditional branch (based on the condition c) to the new basic
block. For each disjunction, the builder similarly queries the
predicate table for basic blocks equivalent to the sub-terms
of the disjunctions and joins those basic blocks.

4 Implementation

We implemented our vectorization framework within the
LLVM compiler infrastructure [15].> We implemented our
prototype with 7,831 lines of C++. All components of the pro-
totype (i.e., the new IR infrastructure, dependence analysis,
and transformation) are implemented from scratch, indepen-
dent of LLVM’s existing vectorization infrastructure.

4.1 Loop Unrolling

Our vectorizer exposes loop-level parallelism with unrolling.
Because SuperVectorization can pack instructions from dif-
ferent loop nests, it achieves outer-loop vectorization by
unrolling outer loops and then packing the instructions from
the duplicated inner loops. We unroll loops following an
approach similar to Rocha et al. [29]’s. We traverse a given

3LLVM 12.0.0.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

loop nest top-down (parents before children), unrolling each
loop virtually and running an SLP packing algorithm (with-
out actually lowering the packs into vector instructions) to
determine whether unrolling exposes more parallelism.

4.2 Dependence Analysis

Unlike a loop vectorizer, our framework does not need to
reason with loop-carried dependence because it does not
pack an instruction with a different instance of itself (from
a different iteration). Similar to a traditional SLP vectorizer,
we only need to check for loop-independent dependence.
Nonetheless, our framework requires testing whether any
two given loops are independent. To prove that two loops
are independent, we first check that there are no use-def
dependences (through registers). We then prove that there
are no read-write memory dependences between the loops.

For any two memory instructions (with at least one be-
ing a write) from the two loops, we overapproximate the
ranges of memory locations that could be accessed by the
instructions and verify that the ranges do not overlap (us-
ing LLVM’s ScalarEvolution analysis). In the cases where
the memory accesses are unpredictable and, therefore, have
compile-time uncomputable bounds, LLVM’s alias analy-
sis framework also allows checking whether two memory
regions with unknown sizes overlap. Finally, to improve anal-
ysis precision, we have special-case support to distinguish
memory accesses that may have overlapping ranges but are
nonetheless separated by a sufficient offset in their access
strides (e.g., two loops may write to the same buffer but with
one writing to the odd indices and the other writing to the
even indices).

4.3 Cost Model

Our implementation models the cost-saving of vectorization
similar to existing SLP vectorizers and only vectorizes when
the saving outweighs the cost.

The saving of vectorization comes from replacing the
scalar instructions with fewer, more efficient vector instruc-
tions, and its cost comes from the overhead of data-movement
instructions such as vector shuffles, which are necessary
when the vectorizer is unable to directly produce the vector
operands for some of the vector instructions. Consider the
following example, where the vectorizer is able to vectorize
everything except for the two function calls.

t1 = call f();

t2 = call g(Q);
add1 = add t1, 1
add2 = add t2, 1
store addl, x[0]
store add2, x[1]

=>

t1 = call f();
t2 = call g();

t = pack {t1, t2}
vaddo = vadd t, {1, 1}

vstore vaddo, x

310

Yishen Chen, Charith Mendis, and Saman Amarasinghe

def lower (func_or_loop, entry):
eliminate_phis(func_or_loop)

Utility structure to create basic blocks

from control predicates

block_builder = BlockBuilder(entry)

if func_or_loop.is_loop():
Allocate dedicated latch and exit blocks
latch = BasicBlock()
exit = BasicBlock()
the header executes unconditionally
header = block_builder.get_block(true)

for item in func_or_loop.items:

pred = func_or_loop.control_pred_of(item)
b = block_builder.get_block(pred)
if item.is_loop():
loop_exit = lower(item.as_loop(), entry=b)
else:

item.as_inst().move_to(b)

if func_or_loop.is_loop():

loop = func_or_loop.as_loop()
finally convert the mu-nodes back to phi-nodes
for mu in loop.mus:
phi = Phi(
incoming_blocks=[entry, latchl],
incoming_values=[mu.init, mu.rec],
insert_at=header)
replaceAllUsesWith(mu, phi)
Allocate a dedicate, flag variable,
indicating if we should continue
should_continue = Alloca(type=bool, insert_at=header)
Set the flag to false

assign_false(should_continue, insert_at=header)

Create a block that

has the same predicate as the continue predicate
temp_block = block_builder.get_block(loop.cont_pred)
and set the continue flag there

assign_true(should_continue, insert_at=temp_block)

Create a
pre_latch =
and load the continue

block that executes unconditionally
block_builder.get_block(true)
flag

cont = create_load(should_continue,
insert_at=pre_latch)
Then exit or continue depending on the flag

create_branch(cond=cont,
if_true=latch, if_false=exit,
insert_at=pre_latch)

restore_ssa()
return None

Figure 12. Algorithm for lowering Predicated SSA to a tra-
ditional IR with CFG (e.g., LLVM IR)

Because the vectorizer cannot directly vectorize the calls to
f and g, it then needs to emit an additional instruction to
explicitly pack the result of the calls into a vector using the
highlighted instruction.

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP

For each input function, we evaluate the cost saving from
vectorization as follows and only vectorize when the saving
is greater than zero.

Cscalar — Cvector — cshujﬂe

where the terms cyalar, Cvector» and cspufe are the total cost
of the packed scalar instructions, the cost of vector instruc-
tions, and the cost of vector shuffling (and other vector data-
movement instructions), respectively. For all three terms, we
use LLVM’s target-specific cost model [3], which estimates
the expected cost of individual IR instructions after instruc-
tion selection. Our implementation does not currently model
the change of cost from restructuring the input CFG (e.g.,
co-iterating loops).

5 Evaluation

We evaluated our framework on three benchmark suits:
TSVC [8], PolyBench [28], and a collection of sequential
C++ programs that Pharr and Mark [23] used as baselines
to evaluate ispc, a data-parallel language they designed to
target SIMD extensions.

For all the experiments, we used a machine with an In-
tel® Core™ Platinum 8180 CPU with AVX-512 support and
32 GB of memory and with hyperthreading disabled. Unless
otherwise noted, we use the same optimization pipeline as
the LLVM -03 optimizations, except that we run our vector-
izer instead of LLVM’s loop and SLP vectorizers (which are
disabled in our pipeline). Although the experiment machine
comes with AVX-512 support, LLVM 12, by default, sets the
maximum vector width to 256-bit (less than the full 512-bit)
to avoid performance scaling.

5.1 TSVC

Figure 13 shows the results on TSVC, a comprehensive bench-
mark suite for evaluating automatic vectorizers [8]. Our vec-
torizer is on par with LLVM and yields an average (geomean)
speedup of 1.04x over LLVM’s vectorizers on TSVC. Our vec-
torizer gets significant speedups (more than 1.5 and up to
4.3X) on 17 benchmarks and significant slowdowns (more
than 20%) on 18 benchmarks. For the 17 benchmarks with
significant speedup, the speedups come from partial vector-
ization and outer-loop vectorization with complex control
dependences. Partial vectorization comes naturally for SLP
vectorization because the packing heuristic is not required
to pack all instructions and can selectively pack any instruc-
tions that it finds profitable and legal. In contrast, a tradi-
tional vectorizer only vectorizes if all of the loop iterations
are independent. Figure 16 shows an example benchmark
where we obtain a 2.91X speedup by vectorizing an outer
loop that also contains data-dependent control flow.

The slowdowns mainly come from benchmarks that have
potential data dependences that prevent vectorization. In
such a case, LLVM’s vectorizer versions the loop into two
duplicates, with one of the duplicated loops vectorized and

311

PLDI °22, June 13-17, 2022, San Diego, CA, USA

guarded with a run-time check to ensure that there are no
unsafe dependences. We have not yet implemented code
versioning and do not vectorize in these cases.

5.2 PolyBench

PolyBench [28] is a benchmark for polyhedral optimizations,
and we use it here as a vectorization benchmark because
its applications also benefit from vectorization and because
they have data-access patterns that benefit from outer-loop
vectorization, and we want to validate that we can effectively
perform outer-loop vectorization with unrolling plus SLP.

Figure 14 shows the PolyBench results. PolyBench comes
with a configurable dataset size; for our experiments, we use
the large dataset size. Our vectorizer yields a 1.46X average
speedup over LLVM’s vectorizers (Loop + SLP) and a 1.80%
average speedup over LLVM’s scalar baseline (-03 without
vectorization).

Because PolyBench is a benchmark for polyhedral opti-
mizers, we also compared our approach with Polly [10], a
polyhedral optimizer for LLVM IR. Polly performs aggressive
cache optimizations and vectorization, achieving significant
speedup over LLVM (-03). To separate the effects of Polly’s
cache optimization from its vectorization, we run Polly in
three settings: Polly with LLVM vectorization, Polly with
its own vectorization, and Polly with our vectorization. Fig-
ure 15 shows the comparison against Polly. Compared to
LLVM’s full optimizations (-03 with vectorization), Polly’s
cache optimizations gets a 1.41X average speedup; Polly’s
vectorization gains a 1.49X average speedup (1.06X over
Polly’s cache optimization); and Polly combined with our vec-
torizer obtains a 1.82x average speedup (1.22X over Polly’s
cache optimization).

5.3 ISPC

Pharr and Mark [23] originally developed their benchmarks
to motivate the need for ispc, a data-parallel programming
model and language that they proposed to target applications
with complex data and control dependences (e.g., graphics
simulations) unsuitable for auto-vectorization. For all the
ISPC benchmarks, we use their baseline, scalar implementa-
tions; in other words, the benchmarks have sequential seman-
tics, and the vectorizers must uncover the parallelism from
scratch. Figure 17 shows some code snippets from Volum
Rendering, one of the benchmarks. Volume Rendering con-
sists of five imperfectly nested loops with early exits.
Figure 18 shows the results on the ispc benchmarks [23].
Our vectorizer yields a 1.88X average speedup over LLVM’s
vectorizers (Loop + SLP) and a 2.43X average speedup over
LLVM’s scalar baseline (-03 without vectorization).

PLDI °22, June 13-17, 2022, San Diego, CA, USA Yishen Chen, Charith Mendis, and Saman Amarasinghe

4.04
Optimizer
3.51 mmm SuperVectorization
---- LLVM Vectorization (Loop + SLP)
3.0
2.54
o
3
2204
2 2.0
o
w
1.5
10 o e
" ‘ ‘ ‘ |
0.0
SFLOANOHNOAMAN VIS NN LN N =M ANMNM AN OO =N MO NN MO M <HOO | NMHNHMHM >>>0 >> LNOO < Ot M—=0MANNO =M =M NN =N LN A= =M NN (N ©
PSSO SONS SIS '“N&DNI\G\HI\'\NCOMI!‘AHI\I\V\HIDMQ‘I\Q’HH EOHHNNNQ‘I!\I\V\ mvmmmml\ HHHNNN M > © >0 ‘;>Q‘;°°HH|—1NV\ < N LN 00 M HLNLN YO NM NSO ST OO Ot —iM ©
AN SO = A S NN S S NN S N NN MM = = = = = = O M mmm <t > >> D_Q.>UU> = OO M = = NS OO =M A OISO AN NN O
nunnnnNNNNNN mmmwwmmmmwmmmmwmmwmmwmmwvn.nuunuwnnwmmwmmmmwwmwmmwmmmmwmmwm >>§> mtnmv.nwmm-—<Lnuwnnmmmwmmmmwmmwmmwmmwmwmmwws
(/1 (h

Geol

Benchmark

Figure 13. Speedup over LLVM scalar optimizations (-O3) on TSVC. The benchmarks are sorted (in increasing order) according
to speedup from SuperVectorization over LLVM’s scalar optimizations.

©
<
~

Optimizer

4 LLVM Vectorization (Loop + SLP)
== SuperVectorization

===- LLVM Scalar -03

x S N 5 N ~ & NS & 9 N N N @ o NS > > > > > N
S & & & & FSE S &S S FEY &L LEE e Fog gL TS
v § § & 5§ & 9 ¢ ¥ Y g § & & & ¢ § & s & &5 & £ 5
§ § & & $ N & ¢ F £ & D N S
S 475‘ K S §\, -8 2 9 (&
§ $
Benchmark
Figure 14. Speedup over LLVM scalar optimizations (-O3) on PolyBench
gnz .
243 ER
©o o o ~
15 e ol o
14 Optimizer
13 Polly + LLVM Vectorization
12 Polly + Polly Vectorization
11 W Polly + SuperVectorization
10 ---- LLVM -03
2
H
L7
v 6
5
4
3
2
1
0

Benchmark

Figure 15. Speedup over full LLVM optimizations (-O3 + vectorization) on PolyBench using Polly

for (int i = @; 1 < LEN2; i++)
if (aal0][i] > (float)o.)
for (int j = 1; j < LEN2; j++)
aal[jI[i] = aalj-11[i] + bb[jI[i] * cc[jI[il;

Figure 16. An example benchmark from TSVC where our vectorizer gains a 2.91x speedup over LLVM’s vectorizers by
unrolling the outer i-loop and packing instructions across the inner j-loops and their loop guards.

312

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP

static float transmittance(...) {

if (!IntersectP(ray,
return 1.;

pMin, pMax, &rayTe, &rayT1))

while (t < rayT1) {
tau +=
pos = pos + dirStep;
t += stepT;

}

return expf(-tau);
3}

static float raymarch(...) {

if (!IntersectP(ray,
return 0.;

pMin, pMax, &rayTe, &rayT1))

while (t < rayT1) {

// terminate once attenuation is high

float atten = expf(-tau);
if (atten < .005f)
break;
// direct lighting
float Li = / transmittance(...)

// Gamma correction
return powf (L, 1.f / 2.2f);
3

void volume_serial(...) {

int offset = 0;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x, ++offset) {

Ray ray;
generateRay (...,
image[offset] =

ray);

raymarch(density, nVoxels,

ray);

Figure 17. Code snippets from Volume Rendering, which
contains five imperfectly nested loops with early exits and
multiple live-outs. Our vectorizer achieves a 3.28%x speedup
by vectorizing the outer x-loop. No production compiler
vectorized this program.

For the ISPC benchmarks, we extended SuperVectorization
to recognize and vectorize the random number generator
drand48 (used by aobench). Without the modification, the
vectorizer cannot reorder different calls to drand48 and does
not vectorize aobench. Nonetheless, drand48 is not the sole
reason that LLVM does not vectorize. In a separate exper-
iment, we modify aobench to use a compile-time constant
instead of calling drand48. Even in this setting, LLVM’s vec-
torizer does not vectorize, whereas our vectorizer reproduces
the speedup.

313

PLDI °22, June 13-17, 2022, San Diego, CA, USA

9.88

Optimizer
LLVM Vectorization (Loop + SLP)
Im SuperVectorization
--=- LLVM Scalar
*

eﬁ“°\e

&

N\
s@&\

Benchmark

Figure 18. Speedup over LLVM vectorization (Loop + SLP)
on the ISPC benchmarks. aobench (marked with *) uses the
random number generator drand48; We modified SuperVec-
torization to recognize drand48 and to assume that it is safe
to reorder different calls to drand48. Without this modifica-
tion, aobench is not vectorizable, and the geomean speedup
becomes 2.09% (instead of 2.43x).

g
o

LLVM Vectorization (Loop + SLP)
Bmm SuperVectorization

J I||”

(’«3(’8 6‘6(\0 \\)‘(\e
@'A\K

o
©

o
o

o
IS

o
N

Percentage of Dynamic Instructions Reduced

o
o

N X
,600?'“ ‘\o \\0(0‘

\
0“\\’A %\ac W

Benchmark

Figure 19. Reduction in dynamic instruction counts in the
ISPC benchmarks

The only ISPC benchmarks that our vectorizer does not
vectorize is Ray Tracer. Ray Tracer reuses a single array
across computations that are otherwise logically indepen-
dent. Consequently, our dependence analysis concludes that
all reads and writes to the array are dependent, thus prevent-
ing vectorization.

To analyze the source of the speedups, we collected hard-
ware performance counters. Figure 19 shows the reduction of
dynamically executed instructions for the ISPC benchmarks.
The speedups correlate with the reduction in the number
of instructions executed at runtime. We observed similar
correlations in TSVC and PolyBench. In some PolyBench
benchmarks such as 2mm, not only did our vectorizer reduce
the number of instructions executed but also reduced L1 data
cache miss rates from 60% to 40%.

PLDI °22, June 13-17, 2022, San Diego, CA, USA

6 Related Work

There has been extensive work on compiler auto-vectorization.

We list some of the key developments here.

Loop Vectorization. Allen and Kennedy [4] pioneered
loop vectorization. Their seminal paper also introduced ap-
plying if-conversion to vectorize control flow. Nuzman et al.
[19] extended the traditional loop-based vectorization algo-
rithm to support interleaved data accesses. Baghsorkhi et al.
[6] proposed an architectural extension and a joint vector-
ization for algorithm detecting and speculating over data
dependences at runtime. Nuzman and Zaks [20] proposed an
outer-loop vectorization approach based on unroll-and-jam.

SLP Vectorization. Larsen and Amarasinghe [14] devel-
oped SLP vectorization as an alternative to traditional loop-
based vectorization. SLP vectorization targets short-vector
parallelism and requires a much simpler dependence analysis
in comparison to traditional loop vectorizers. Almost all sub-
sequent work following Larsen and Amarasinghe [14] pro-
posed algorithmic improvements to the original algorithm to
uncover more parallelism. Examples include Holistic SLP vec-
torization [16], Super-node SLP [27], TSLP [24], PSLP [25],
VW-SLP [26], and applying integer linear programming (ILP)
solver to select vector packs [17]. Shin et al. [31] extended
SLP to vectorize control flow with if-conversion.

Compilation for Data-Parallel Languages. There is a
related line of work on compiling data-parallel languages
for vector architectures. In contrast to auto-vectorization,
compilers for such language do not need to extract vector
parallelism or prove its safety because their source semantics
are already data-parallel. OpenCL provides a data-parallel
programming model that maps to SIMD extensions [11]. Kar-
renberg and Hack [12] proposed a set of techniques for vec-
torizing arbitrary reducible CFGs in a data-parallel language.
Moll and Hack [18] proposed techniques for recovering con-
trol flow from if-conversion, thereby reducing the amount
of speculative computation and improving utilization. Pharr
and Mark [23] proposed ispc, a C-like data-parallel language
that targets SIMD extensions.

Compiler Intermediate Representation. There hasbeen
extensive work towards developing IRs to simplify the down-
stream compiler optimizations. Cytron et al. [9] developed a
seminal algorithm for efficiently computing SSA form, which
is now used by production compilers such as GCC and LLVM.
Ottenstein et al. [21] originally proposed gated SSA as an
IR for their Fortran compiler that targets dynamic data-flow
architectures. Tu and Padua [33] developed an algorithm
for efficiently computing gated SSA. Tristan et al. [32] used
gated SSA for translation validation.

314

Yishen Chen, Charith Mendis, and Saman Amarasinghe

7 Conclusion

We have introduced a new vectorization framework that
targets arbitrary superword-level parallelism that spans dif-
ferent basic blocks and loops. With loop unrolling, our vec-
torizer matches and, in many cases, outperforms LLVM’s
vectorization pipeline, which uses both loop and SLP vector-
izers. For example, our vectorizer vectorizes and accelerates
several of the benchmarks that Pharr and Mark [23] argued
as being unsuitable for automatic vectorization due to their
complex control and data dependences. Our vision for the
future is that a single vectorizer based on our framework
would be sufficient for a vectorizing compiler.

Acknowledgments

We thank our shepherd Laure Gonnord and the anonymous
reviewers for their valuable suggestions. We thank Teodoro
Collin, Logan Weber, Jesse Michel, Alex Renda, Daniel Do-
nenfeld, and Changwan Hong for reading early drafts of this
paper and providing feedback. Our work is supported by the
DARPA/SRC JUMP ADA Center; the Toyota Research Insti-
tute; the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research under Award
Numbers DESC0008923 and DESC0018121; NSF Grant No.
CCF-1533753; and DARPA under Awards HR0011-18-3-0007
and HR0011-20-9-0017. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the aforementioned funding agencies.

References

[1] 2022. Auto-Vectorization in GCC. https://gcc.gnu.org/projects/tree-
ssa/vectorization.html.

[2] 2022. Auto-Vectorization in LLVM. https://llvm.org/docs/Vectorizers.
html.

[3] 2022. llvm::TargetTransformInfo Class Reference. https://llvm.org/
doxygen/classllvm_1_1TargetTransformInfo.html.

[4] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FOR-
TRAN Programs to Vector Form. ACM Transactions on Programming
Languages and Systems (1987).

[5] Randy Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. 1983.

Conversion of Control Dependence to Data Dependence. In Symposium

on Principles of Programming Languages.

Sara S. Baghsorkhi, Nalini Vasudevan, and Youfeng Wu. 2016. FlexVec:

Auto-vectorization for Irregular Loops. In Programming Language

Design and Implementation.

Bob Blainey, Christopher Barton, and José Nelson Amaral. 2002. Re-

moving impediments to loop fusion through code transformations.

In International Workshop on Languages and Compilers for Parallel

Computing.

David Callahan, Jack] Dongarra, and David Levine. 1988. Vectoriz-

ing Compilers: A Test Suite and Results. In ACM/IEEE Conference on

Supercomputing.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and

F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-

ment Form and the Control Dependence Graph. ACM Transactions on

Programming Languages and Systems (1991).

Tobias Grosser, Armin Grofilinger, and Christian Lengauer. 2012. Polly

- Performing polyhedral optimizations on a low-level intermediate

[6

—

[7

—

8

—

—
O
—

[10]

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html
https://llvm.org/doxygen/classllvm_1_1TargetTransformInfo.html

All You Need Is Superword-Level Parallelism: Systematic Control-Flow Vectorization with SLP PLDI °22, June 13-17, 2022, San Diego, CA, USA

[22] Joseph CH Park and Mike Schlansker. 1991. On predicated execution.
[11] Khronos Group. 2009. OpenCL 1.0 Specification. http://khronos.org/ [23] Matt Pharr and William R. Mark. 2012. ispc: A SPMD Compiler for
registry/cl/specs/opencl-1.0.pdf. High-Performance CPU Programming. In Innovative Parallel Comput-
[12] Ralf Karrenberg and Sebastian Hack. 2011. Whole Function Vectoriza- ing.
tion. In International Symposium on Code Generation and Optimization. [24] Vasileios Porpodas and Timothy M. Jones. 2015. Throttling Automatic
[13] Ken Kennedy and Kathryn S McKinley. 1993. Maximizing loop par- Vectorization: When Less is More. In Conference on Parallel Architecture
allelism and improving data locality via loop fusion and distribution. and Compilation.
In International Workshop on Languages and Compilers for Parallel [25] Vasileios Porpodas, Alberto Magni, and Timothy M. Jones. 2015. PSLP:
Computing. Springer, 301-320. Padded SLP Automatic Vectorization. In International Symposium on
[14] Samuel Larsen and Saman Amarasinghe. 2000. Exploiting Superword Code Generation and Optimization.
Level Parallelism with Multimedia Instruction Sets. In Programming [26] Vasileios Porpodas, Rodrigo CO Rocha, and Luis FW Gées. 2018. VW-
Language Design and Implementation. SLP: auto-vectorization with adaptive vector width. In International
Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame- Conference on Parallel Architectures and Compilation Techniques.
work for Lifelong Program Analysis & Transformation. In International [27] Vasileios Porpodas, Rodrigo C. O. Rocha, Evgueni Brevnov, Luis F. W.

representation. Parallel Processing Letters (2012).

[15

[

Symposium on Code Generation and Optimization: Feedback-directed
and Runtime Optimization.

[16] Jun Liu, Yuanrui Zhang, Ohyoung Jang, Wei Ding, and Mahmut Kan-

demir. 2012. A Compiler Framework for Extracting Superword Level
Parallelism. In Programming Language Design and Implementation.
Charith Mendis and Saman Amarasinghe. 2018. goSLP: Globally Op-
timized Superword Level Parallelism Framework. Proceedings of the
ACM on Programming Languages (2018).

Simon Moll and Sebastian Hack. 2018. Partial Control-Flow Lineariza-
tion. In Programming Language Design and Implementation.

Dorit Nuzman, Ira Rosen, and Ayal Zaks. 2006. Auto-vectorization
of Interleaved Data for SIMD. In Programming Language Design and
Implementation.

Dorit Nuzman and Ayal Zaks. 2008. Outer-loop Vectorization: Revisited
for Short SIMD Architectures. In International Conference on Parallel
Architectures and Compilation Techniques.

Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. 1990.
The Program Dependence Web: A Representation Supporting Control-,
Data-, and Demand-Driven Interpretation of Imperative Languages.
In Programming Language Design and Implementation.

Goes, and Timothy Mattson. 2019. Super-Node SLP: Optimized Vector-
ization for Code Sequences Containing Operators and Their Inverse
Elements. In International Symposium on Code Generation and Opti-
mization.

Louis-Noél Pouchet. 2021. PolyBench/C: the polyhedral bench-
mark suite. https://web.cse.ohio-state.edu/~pouchet.2/software/
polybench/.

Rodrigo C. O. Rocha, Vasileios Porpodas, Pavlos Petoumenos, Luis
F. W. Goes, Zheng Wang, Murray Cole, and Hugh Leather. 2020.
Vectorization-Aware Loop Unrolling with Seed Forwarding. In In-
ternational Conference on Compiler Construction.

Ira Rosen, Dorit Nuzman, and Ayal Zaks. 2007. Loop-aware SLP in
GCC. In GCC Developers Summit.

[31] Jaewook Shin, Mary Hall, and Jacqueline Chame. 2005. Superword-

Level Parallelism in the Presence of Control Flow. In International
Symposium on Code Generation and Optimization.

[32] Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. 2011. Evalu-

ating Value-Graph Translation Validation for LLVM. In Programming
Language Design and Implementation.

Peng Tu and David Padua. 1995. Efficient Building and Placing of Gat-
ing Functions. In Programming Language Design and Implementation.

http://khronos.org/registry/cl/specs/opencl-1.0.pdf
http://khronos.org/registry/cl/specs/opencl-1.0.pdf
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	Abstract
	1 Introduction
	2 Background
	2.1 Handling Control Flow in SLP Vectorization
	2.2 Vector Instruction Sets
	2.3 Definitions

	3 SuperVectorization
	3.1 Predicated SSA
	3.2 Vector Packing
	3.3 Loop Fusion and Co-iteration
	3.4 Generating Vector Instructions from Packs
	3.5 Lowering to IR with control flow

	4 Implementation
	4.1 Loop Unrolling
	4.2 Dependence Analysis
	4.3 Cost Model

	5 Evaluation
	5.1 TSVC
	5.2 PolyBench
	5.3 ISPC

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

