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ABSTRACT
Data with spatial relationships are often represented in modern programs using multidimensional arrays or other tensor
structures, along with the associated metadata necessary to track the location of each piece of data. For example, a
program can represent a video as a multidimensional array and a frame within the video as another multidimensional
array with a timestamp that gives the location relative to the start of the video. Current programs cannot natively associate
this location-based metadata with the arrays, causing the burden of tracking location to fall on to the user. It quickly
becomes an arduous task within domains that have numerous arrays with spatial relationships spread across them. The
task becomes further complicated when domains have multiple ways to represent the data, such as using projections,
permutations, refinement, and coarsening. One such domain, block-based compression, has this type of heterogeneous,
spatial data all throughout it, leading to overly complex implementations.

Block-based compression forms the core of many common image and video standards such as JPEG, H.264, H.265, and
H.266. The fundamental data unit in block-based compression, the block, represents everything from a video down to an
individual pixel, all of which need to maintain their location relative to other blocks in a program. Due to the lack of support
for this spatial data, each implementation largely starts from scratch, leading to inconsistencies in data representation
and data access.

This dissertation provides a critical look at the association between location and tensors, and defines a core abstraction
called the Universal Tensor abstraction (UniTe). UniTe mathematically describes what it means to associate tensors with
location and quantify spatial relationships across multiple tensors in a single program.

While UniTe itself is not tied to a particular domain, this dissertation also provides a practical look at implementing UniTe
in the context of block-based compression. An initial library implementation highlights the overhead incurred from UniTe
due to computing spatial relationships and underlying array indices at the innermost level of computations.

To combat this overhead, this dissertation also presents two different domain-specific languages, CoLa (Compression
Language) and SHiM (Staged Hierarchical Multidimensional arrays), and their accompanying compilers built around UniTe.
CoLa and SHiM show that it is possible to remove the overhead and achieve performance parity with hand-implemented
C code, while also providing users with an intuitive way to represent and utilize spatial data.
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1: Typically, new standards begin develop-
ment when it becomes possible to achieve
2× improvement in compression when com-
pared to the prior standard. This is about 10
years.

2: Compression is one of the few domains
that still rely on hand-coded assembly as well!

3: Sometimes a single implementation does
not even agree on the data representation.
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Data compression is a ubiquitous component in nearly every application that
involves storing, transmitting, or processing large amounts of data. Beginning
in the late 1940s with Shannon’s seminal work on information theory [1], data
compression has continued to advance to meet the needs of fast-growing data
and evolving data sources.

While data compression itself is a very broad term, several categories of com-
pression exist within it, each focused on different data sources and different
algorithms. For example, dictionary encoders, such as LZ77 [2] and LZ78 [3],
maintain a record of previously seen strings in a dictionary structure and aim to
replace repeatedly occurring strings with an index into the dictionary. Run-length
encoding schemes replace sequences of repeated values with a single value,
helping for data such as sparse data which contains many sequences of zeros
throughout.

Other categories of compression are collections of related algorithms that together
achieve compression. Block-based compression, which is a major component of
this dissertation, divides input data into blocks and processes each through a
series of stages that progressively transform the data into a form more amenable
for compression. It then applies a more traditional type of compression, such as
Huffman encoding [4]. Block-based compression forms the core of many types
of image and video compression, and is an active area of research, with new
standards coming roughly every 10 years1. These new standards continually
improve various facets of compression, such as compression rates and compres-
sion quality. They also target new data sources which have different structure
and requirements. For example, streaming video data to a laptop should be
compressed differently than a video stored on the laptop as it needs to take into
account the transmission of data across a network.

With the improvement in compression that comes with these new standards, an
unfortunate side effect is the increased complexity of the standards, which in turn
increases the complexity of their implementations. Table 1.1 on Page 16 gives
the lines of code for several implementations for block-based compression for
image and video. At a minimum, tens of thousands of lines of code are required
for an implementation2. Each time a new standard comes out, implementations
start over from scratch and hand-roll their own ad-hoc data structures, which
leads to incompatibility between different implementations, even though they
fundamentally all follow the same structure3. Usually, an application with this
amount of complexity, yet shared core structure, becomes an instant target for
programming language support through libraries and domain-specific languages.
However, there is a conspicuous lack of such support for block-based compres-
sion. To the best of our knowledge, there is only a single library, QccPack [5],
targeting encoders, and a single framework, RMC [6, 7] targeting decoders.
QccPack provides implementations for several kernels used across different
types of block-based encoders, but does not provide any abstractions for imple-
menting the kernels themselves. RMC abstracts the overall structure of decoders
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Table 1.1: Lines of code for various block-based compression implementations that utilize C/C++ (grouped by standard). Note that two different libraries
for JPEG with the name libjpeg exist, thus IJG is used to differentiate (libjpeg-turbo is based on IJG libjpeg).

Software Standard Type C/C++ Assembly
JM [8] H.264 Video 120,000 N/A

x264 [9] H.264 Video 68,000 37,000
openh264 [10] H.264 Video 98,000 33,000

HM [11] H.265 Video 60,000 N/A
x265 [12] H.265 Video 96,000 179,000
VTM [13] H.266 Video 134,000 N/A

libvpx [14] VP8/VP9 Video 326,000 23,000
libwebp [14] WebP Image 74,000 N/A
libjpeg [15] JPEG Image 37,000 N/A

IJG libjpeg [16] JPEG Image 31,000 N/A
libjpeg-turbo [17] JPEG Image 57,000 31,000

Greyscale frame @ time tFrame @ time t

Figure 1.1: Two frames corresponding to
time 𝑡 within a video. Here, the color frame ref-
erences a location within the memory of the
video, while the greyscale frame references
the same location, but has its own separate
region of memory.

using a dataflow framework, but like QccPack, does not provide abstractions for
implementing the kernels (which would represent the nodes within the dataflow
graph).

1.1 Tensors and Spatial Relationships

A core part of any programming language support for a domain is the underlying
data representation, and block-based compression is no exception. Blocks are
the main unit of computation in block-based compression, so a natural data
representation is the multidimensional array (e.g. a tensor), originally introduced
in Fortran [18]. In block-based compression, this tensor can represent anything
from a video down to single pixel within a video. However, these tensors also
have spatial relationships among them, which requires being able to represent
and reason about their location with respect to one another.

Consider a simple visual example in Figure 1.1. This example depicts a color
video with a frame extracted at time 𝑡, which is then converted to a greyscale
frame (with the video and both frames being tensors). Both the color frame
and greyscale frame point to different memory, but the key is that they both
refer to the same location: each represents data that represents a frame at
time 𝑡. While straightforward in this example, this type of relationship between
tensors occurs all throughout the different stages of block-based compression,
with numerous tensors created at every level of computation. Current methods
are ad-hoc, representing tensors as plain multidimensional arrays and manually
tracking all the metadata necessary to capture the location; no library or language
provides the necessary semantics to accurately represent this type of data. In
isolated, local contexts, these ad-hoc approaches may be sufficient. However, in
domains such as block-based compression, issues arise due to both the breadth
and depth of spatial relationships across tensors. Breadth refers to the fact
that computations often operate on data across many tensors simultaneously,
which requires finding the data in each tensor that corresponds to some specific
location. Depth means that the tensors and their location propagate throughout
implementations, which requires tightly integrating tensors with their location so
they can be used at any point within a program.
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4: This particular mode is called 16x16
plane.

5: Known as spatial statistics.

6: Refinement increases the point density in
a given location, while coarsening decreases
the density.

Consider the top example shown in Figure 1.2 on Page 18, which shows a
snippet from the H.264 standard describing an operation called intra-prediction4.
At a minimum, intra-prediction requires two different tensor representations:
one representing a frame of raw pixels and another representing a frame of
reconstructed pixels (more on this in Chapter 2). Intra-prediction takes a location
within the raw pixel frame and must find the corresponding location within the
reconstructed frame. In this particular example, intra-prediction must also access
the data in the row above and column to the left of the current location within
the reconstructed frame, highlighting the breadth of this operation. Furthermore,
the locations tied to the inputs and outputs of this operation propagate through
the rest of the pipeline, showing that the tensors and locations exhibit significant
depth.

These ad-hoc implementations also lead to inconsistent and unintuitive interfaces
for accessing data. The code in the middle of Figure 1.2 shows an example of
one of these ad-hoc implementations for the same type of intra-prediction, where
the access semantics do not match that of the standard. The bottom shows
another implementation using the SHiM domain-specific language (introduced
in Chapter 9), which provides a nearly one-to-one correspondence with the
accesses in the standard. Again, maintaining this type of representation across
tens to hundreds of thousands of lines of code quickly becomes unwieldy and
opens the door for indexing bugs.

1.2 A Universal Tensor Abstraction

Spatial relationships among tensors also span beyond just block-based compres-
sion. For example, adaptive mesh refinement (AMR) requires representing data
in a hierarchical structure, tying each layer back to its location in the prior layer.
However, AMR also refines the data in each successive layer, adding another
level of complexity as individual data points across each layer no longer have a
one-to-one correspondence with one another. Another example, geographical
information systems (GIS), filters out data points within a grid based on their
location, and then computes statistics across all the points sharing the same
location5.

In order to reason about spatial relationships in a program, this dissertation
develops a core theory in Chapter 4 called the Universal Tensor abstraction
(UniTe), which provides well-defined ways to represent tensors with location
and compare those locations. UniTe supports multiple different representations
of locations with tensors, including the ability to vary the dimensionality, axes
orientation, origins, and point density6. Across these different representations,
UniTe defines locations so that they remain invariant to the variations, thus
two tensors, regardless of their representation, can always have their locations
compared to one another.

This work also introduces a more data-aware extension of UniTe called UniTe
eXtended (UniTeX) in Chapter 5. UniTeX defines the block and view tensors,
which own and share their data, respectively, modeling how a program could
likely implement such a tensor. Unlike existing uses of blocks and views that exist
in modern programs (such as with NumPy, Julia, and other array-centric systems),
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1 static inline void get_i16x16_plane(imgpel **cur_pred, imgpel *PredPel,
2 int max_imgpel_value) {
3 int i, j;
4 // plane prediction
5 int ih=0, iv=0;
6 int ib, ic, iaa;
7 imgpel *t_pred = &PredPel[25];
8 imgpel *u_pred = &PredPel[8];
9 imgpel *b_pred = &PredPel[23];

10 for (i = 1; i < 8;++i) {
11 ih += i*(*(u_pred + i) - *(u_pred - i));
12 iv += i*(*t_pred++ - *b_pred--);
13 }
14 ih += 8*(*(u_pred + 8) - PredPel[0]);
15 iv += 8*(*t_pred++ - PredPel[0]);
16 ib = (5 * ih + 32) >> 6;
17 ic = (5 * iv + 32) >> 6;
18 iaa=16 * (PredPel[16] + PredPel[32]);
19 for (j=0;j< MB_BLOCK_SIZE;++j) {
20 for (i=0;i< MB_BLOCK_SIZE;++i) {
21 cur_pred[j][i] =
22 (imgpel) iClip1( max_imgpel_value, ((iaa+(i-7)*ib+(j-7)*ic+16)>>5));
23 }
24 }
25 }

1 template <typename Pred, typename Ref>
2 static void get_16x16_plane(Pred &pred, Ref &ref) {
3 auto p = ref[pred].vpermute({1,0});
4 dint H = 0;
5 dint V = 0;
6 for (dint q = 0; q < 8; q=q+1) {
7 H += (q+1)*(p(8+q,-1) - p(6-q,-1));
8 V += (q+1)*(p(-1,8+q) - p(-1,6-q));
9 }

10 dint a = 16 * (p(-1,15) + p(15,-1));
11 dint b = ((dint)(5 * H + 32) >> 6);
12 dint c = ((dint)(5 * V + 32) >> 6);
13 pred[y][x] = CLIP1Y((a+b*(x-7)+c*(y-7)+16) >> 5);
14 }

Figure 1.2: A comparison between the description of 16x16 plane intra-prediction from the H.264 standard [19] (top), the code from an existing manual
implementation [8] (middle), and code from SHiM (bottom). As shown from the standard, this particular operation requires accessing the data in the row
above and column to the left of the tensor p, which the standard shows using negative indices. The SHiM code (see Chapter 9) provides an intuitive
multidimensional representation of the data, and provides access semantics that support the negative indices of the standard. On the other hand, the
manual code requires accessing a linear array, and also uses a mix of array accesses and pointer arithmetic, resulting in code that obscures what data
is actually being accessed.
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7: Views in other languages have a minimal
notion of spatial relationships as they need to
know where they point to in their backing ar-
ray (a block) in order to correctly access data.
However, this "location" is typically not acces-
sible to the user, nor is it exploited for any
operations based on spatial relationships.

8: Which is likely why there is a lack of library
implementations for block-based compres-
sion.

blocks and views in UniTeX both have location7. This allows UniTe and UniTeX to
define operations that can exploit spatial relationships. For example, Chapter 5
defines an operation called colocation, which provides well-defined semantics
for what it means to access data in a tensor at the same location as another
tensor. This operation is only possible thanks to the underlying representations
of UniTe and UniTeX.

1.2.1 Implementing UniTe and UniTeX

While UniTe and UniTeX provide an intuitive way to represent location-aware
tensors, like most abstractions, they suffer from performance overheads if im-
plemented naively. In particular, these abstractions add additional arithmetic
overhead when computing the underlying array indices due to the different rep-
resentations allowed for locations. In block-based compression, these index
operations also happen at the innermost levels of the loop nests, causing the
overhead to accumulate quickly. In fact, compared to hand-optimized code, a
library implementation for UniTeX can run up to 65× slower due to this overhead8.
The second half of this dissertation focuses on these performance overheads by
implementing the abstractions and applying them to block-based compression
through the use of two domain-specific languages (DSLs), CoLa (Compression
Language) and SHiM (Staged Hierarchical Multidimensional arrays). CoLa (Chap-
ter 8) and SHiM (Chapter 9) are able to achieve performance parity through the
use of various optimization passes (in CoLa) and staging (in SHiM). This work
explores the reasons for the overhead in the context of compression, and also
considers the various design aspects that should be taken into account when
designing a DSL for block-based compression.

1.3 Contributions

This dissertation provides three categories of contributions focused on the the-
ory, implementation, and application of tensors with spatial relationships. The
theory covers how to define an abstraction that captures and makes it possible
to reason about spatial relationships across tensors (and arbitrary sets of points).
The implementation provides practical approaches on how to remove the runtime
overhead associated with the abstraction through the use of domain-specific
languages. Finally, the application shows how the abstraction and DSLs can
be used to simplify the implementation of various kernels within block-based
compression, which heavily utilize spatial tensors throughout. To the best of our
knowledge, this dissertation is the first to provide an abstraction and implementa-
tion of tensors with spatial relationships, as well as the first to provide language
support for block-based compression encoders. In particular, the contributions
of this dissertation are:

A mathematical framework, UniTe, that provides programs with the ability to
capture and reason about spatial relationships in multidimensional array
or tensor data structures. UniTe makes it possible to define the location
of tensors across different frames of reference that allow variations in the
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dimensionality, axes ordering, origin, refinement, and coarsening of points
within the tensors.

A breakdown of tensors into blocks and views, which connects data to the
tensors, where blocks correspond to new multidimensional arrays and
views reference a portion of an existing block. Unlike traditional uses
of views that largely focus on preventing data copies, the views in this
dissertation also provide the ability to represent data with location in the
different frames of reference defined by UniTe.

Novel tensor operations exploiting relationships that users can utilize to cre-
ate new tensors from one another and access them. This dissertation
defines several such operations and provides particular emphasis on colo-
cation and locality access operations which are only possible due to the
underlying structure provided by UniTe.

The DSL CoLa, which is a Pythonic DSL embedded in Codon [20] that removes
the overhead of UniTe. CoLa is able to bring performance from nearly 65×
slower than existing hand-optimized C code down to parity through the
use of domain-specific compiler passes targeting index computations and
view creation.

The DSL SHiM, which is a DSL embedded in C++ that removes the overhead
of UniTe through the use of staging via the BuildIt [21] library. Like CoLa,
SHiM is able to achieve performance parity with existing hand-optimized
C code.

A demonstration of UniTe applied to JPEG and H.264 that shows how ten-
sors with spatial relationships can be utilized to simplify the representation
of and access to data in image (JPEG) and video (H.264) compression.
JPEG and H.264 also serve as benchmarks for CoLa and SHiM.

1.4 Dissertation Overview

The rest of this dissertation is structured as follows:

Chapter 2-The Design of Encoders gives a primer on block-based compres-
sion, focusing on the stages within exemplar pipelines for JPEG and H.264
encoders and pointing out various parts of stages that can be aided by abstrac-
tions.

Chapter 3-Understanding Spatial Relationships provides intuition for reason-
ing about spatial relationships across tensors and what goes into representing
location.

Chapter 4-Formalizing UniTe introduces the core UniTe abstraction, incremen-
tally building up a mathematical framework that captures spatial relationships for
both arbitrary sets of points and tensors.

Chapter 5-Extending UniTe: UniTeX expands UniTe with the addition of block
and view tensors, which open the door for new tensor creation and access
operations.

Chapter 6-Applying UniTeX to JPEG and H.264 provides pseudocode and ac-
companying descriptions that highlight how to apply the abstractions within
several stages from JPEG and H.264 encoders.
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Chapter 7-Implementation Considerations motivates the use of DSLs for im-
plementing UniTe and UniTeX, and also discusses various considerations that
should be taken into account when designing a DSL for block-based compression.

Chapter 8-CoLa introduces the DSL CoLa and describes its integration within
Codon [20], along with a look at its performance and the optimizations necessary
to achieve such performance.

Chapter 9-SHiM introduces the DSL SHiM and describes its integration within
C++ and BuildIt [21], and also provides a look at how it is able to achieve the
same optimizations of CoLa without the need for explicit compiler passes.

Chapter 10-Related Works highlights the lack of prior work specifically related
to language support for block-based compression, while also providing a look at
more general purpose array-based languages and briefly discussing the related
domains of adaptive mesh refinement and geographic information systems.

Chapter 11-Conclusion and Future Work summarizes the dissertation and
provides some possible paths for future work based on the concepts presented.
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Block-based compression is a relatively broad term that encompasses data com-
pression that partition inputs into smaller blocks of data, and operates on those
blocks individually. Specific classes of block-based compression are typically as-
sociated with standards, and this chapter explores two such standards: JPEG [22]
for image compression and H.264 [19] for video compression. Standards de-
scribe the operation of the decoder, which takes in a compressed bitstream and
reproduces either an exact version, or approximation of, the original input. These
standards detail the structure that a compressed bitstream must conform to,
along with other requirements that must be met. However, they do not specify the
operation of the encoder, which produces the compressed bitstream. This allows
for a great deal of variety and creativity across encoder design, opening the door
for tuning the implementation in many ways, but also increasing the complexity of
such a system. This work focuses on the encoder side, as encoders encompass
most of the operations of the decoder as well.

Despite the variations across encoders, the majority of encoders follow the same
high-level structure, composed of a series of stages that either decompose the
data into smaller blocks, and/or operate on the data in those blocks. In both
the JPEG and H.264 encoders discussed in this chapter, the blocks of data are
primarily blocks of pixels, though smaller units, such as partial pixels, are also
allowed (see Subsection 2.2.6). Key components of these blocks are the spatial
relationships amongst one another. Many operations occur across multiple blocks
simultaneously and access data at related locations within each. These blocks
and their location propagate through nearly every stage of an encoder, which
requires significant amounts of metadata in order to track the locations throughout
a program1. The main abstraction of this dissertation, UniTe, focuses on providing
an intuitive representation for this type of data that simplifies accesses on and
across different data blocks, all while maintaining their locations relative to one
another. This chapter serves to provide an overview of not just what the stages
of the encoder do, but also highlights where the interesting and difficult parts of
data representation and data access occur within each stage. The focus will be
on the main stages within JPEG and H.264 encoders, which provide exemplars
of the operations and overall structure for this class of encoders.

While not all of the stages within these pipelines fit into the abstractions presented
here, this chapter still provides a look at these stages because they are useful in
regards to implementing the encoders. For example, the last stage of the encoder
handles bitstream output, which requires various bit-level operations such as
packing bits together. This is outside the scope of this work, but still important
for the overall implementation since it is required for correctness, thus is still
introduced in this chapter.

Note that use of the term "block" in this chapter is mainly used as a general term
encompassing a rectangular region of data as opposed to representing a block
versus a view. When the distinction is necessary, it will be explicitly mentioned.
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2: A lossless encoder produces output that
a decoder can use to perfectly reconstruct
the original input. A lossy encoder produces
output that a decoder cannot use to perfectly
reconstruct the original input.

2.1 JPEG

The JPEG standard [22] defines several different lossy2 modes of image com-
pression, along with a single lossless mode, all of which lead to varying degrees
of compression and quality (in the lossy case) depending on the data and use
case. The pipeline in Figure 2.1 models the lossy baseline sequential mode,
which is the mode typically referred to when "JPEG" is used without additional
qualification. This mode compresses the entire input image in a single pass,
going top-to-bottom, left-to-right through the image. Other lossy modes include
progressive mode, which compresses the image using multiple passes (including
a different part of the image in each pass), and hierarchical mode, which com-
presses the same image multiple times using different resolutions. The lossless
version takes a similar top-to-bottom, left-to-right approach, but with a different
core algorithm. The next sections focus on each stage within baseline JPEG.

Partition Color Transform Transform Quantize

Differential
EncodingZigzagEntropy CodingSyntax Output

Bitstream

Image

Figure 2.1: A possible encoder pipeline for the baseline sequential mode in JPEG. This highlights the primary stages that should be found in any given
implementation for this type of JPEG encoder.

2.1.1 Image Input formats

The raw image data for JPEG typically comes in RGB format, with pixels stored in
either an interleaved or planar fashion. Together, an R, a G, and a B value (each
is a component) define a single pixel. The interleaved format stores the compo-
nents of a pixel sequentially (RGBRGB...RGB), while planar mode stores all R
components, then G, then B (RRR...RRRGGG...GGGBBB...BBB). Figure 2.2 on
Page 25 shows the format of interleaved and planar data, respectively.

Considerations for an abstraction

As conceptually simple as these two representations are, the fact that there
can be multiple representations automatically adds complexity to an imple-
mentation. In this case, the two different layouts would be indexed differently,
thus an implementation that handles both layouts would need separate logic
(or potentially separate functions) depending on the layout. This opens the
door for indexing bugs, such as incorrectly accessing interleaved data as
planar. An abstraction should be able to hide the underlying details of the
data format and provide a uniform representation to the user.

2.1.2 Partition

The partition stage takes the input and transforms it into the separate planar
components, and then splits each plane into 8x8 blocks. The rest of the pipeline
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Interleaved Planar

Figure 2.2: Comparing the memory layout of interleaved and planar data formats for JPEG.

operates on these 8x8 blocks, running the same operations on each, and even-
tually combining the results back together before outputting the final bitstream.

Considerations for an Abstraction

Being able to partition a block of data is a fundamental operation within
compression because it allows representing the data in a more intuitive
format, thus an abstraction needs to support this. For example, with the 8x8
blocks in JPEG, it is much simpler to access pixel components within those
blocks with indices that are relative to the 8x8 block, rather than relative
to the entire image. Standards also define data accesses relative to these
partitioned blocks, so the ability to partition makes it easier to follow the
standard.

From a practical perspective, a user likely does not want to copy data from
one block to another whenever performing a partition, so it is sometimes
necessary to represent partitioned data as views (e.g. aliases or references)
pointing to existing data. Whether a block or alias to one, each of the 8x8
regions needs to know its location (i.e. X and Y position) within the input
image, as well as its location within the physical memory it references.

Like with data formats, an abstraction should not only hide these indexing
details, but also present a uniform representation to the user such that they
do not care if the data they receive is the raw data itself, or some view upon
the data.

2.1.3 Color Transformation and Chroma Subsampling

Color transformation operations convert the input pixels into another color space
more suitable for compression. A common transformation converts from the
RGB color space to the YCbCr [23] color space. With data in the YCbCr color
space, systems will often reduce the resolution of the Cb and Cr (chroma) com-
ponents through chroma subsampling. While this inherently introduces loss into
the compressed bitstream, the chroma components have less of an effect on
human perception as compared to the Y (luma) component, thus the overall loss
in quality becomes largely unnoticeable [24].
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3: These transformations are shown as this
function is referred back to several times.

4: 4:2:0 is the most widely used subsampling
format.

Converting RGB to YCbCr applies the linear transformations3 shown below to
each component in the 8x8 block [24]:

𝑅𝐺𝐵 → 𝑌𝐶𝑏𝐶𝑟

𝑌 =
77
256

𝑅 + 150
256

𝐺 + 29
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256
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256
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𝐶𝑟 =
131
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256
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256
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JPEG supports several subsampling formats, namely 4:4:4, 4:2:2, 4:1:1, and
4:2:0, which define the ratio of luma-to-chroma resolution4. 4:4:4 performs no
subsampling, keeping all components. 4:2:2 and 4:1:1 halve and quarter the
chroma horizontal resolution, respectively, while 4:2:0 halves both the horizontal
and vertical chroma resolution. Figure 2.3 visualizes each type of subsampling,
showing which Cb and Cr components are kept relative to the Y components for
a 2x4 block of pixels.

Considerations for an Abstraction

The color transformation operation provides an example of an elementwise
transform across a block of data, which is an extremely common pattern of
computation within compression. While applying a transformation like this
is relatively simple, depending on how much partitioning has happened and
what the underlying layout of the data is, computing the correct indices into
the underlying data can become arbitrarily complex. Again, an abstraction
should hide these details.

Subsampling also provides another important aspect of location where data
may have a different parameterization, yet still represent the same location.

Y Cb Cr

4:4:4

4:2:2

4:1:1

4:2:0

Y

Cb

Memory 
representation

Cr

Location 
representation

Figure 2.3: Chroma subsampling in JPEG. The left side shows how the different subsamplings for Cb and Cr are spatially aligned with respect to the
unsampled Y components. The right side shows how the 4:2:0 components would map to adjacent locations in memory (which would be similar to the
other subsampling variations as well). The dashed boxes emphasize that the subsampled versions still represent the same location as the Y samples.
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(a) Quality=1, compressed size=288KB

(b) Quality=50, compressed size=965KB

(c) Quality=95, compressed size=8.9MB

Figure 2.4: Differences in quality and size of
an image compressed with various amounts
of quantization. (a) has the best compression
ratio, but is completely unrecognizable except
for faint lines outlining the deer. (b) and (c)
are nearly indistinguishable, but have very
different compression ratios.

For example, despite subsampling effectively removing or skipping over data
in the Cb and Cr planes (except for 4:4:4), the region of data that results still
represents the same part of the image as the Y plane. In other words, it still
has the same location.

Another way to look at subsampling is as if Cb and Cr represent strided
versions of the Y data. For example, 4:2:2 has a stride of one in the vertical
dimension since it preserves all the data, and a stride of two in the horizontal
dimension since it skips every other pixel. While not as important within this
particular example, many stages of compression require having mappings
between different values based on location. These mappings may be one-
to-one, many-to-one, or one-to-many, which introduce additional logic when
computing the underlying array indices. For one-to-one mappings, accesses
across different pieces of data are straightforward. However, for anything
more than a small number of local mappings that are not one-to-one, having
to manually track all of the necessary metadata for location (and then having
to factor in views or different data formats) can quickly get out of hand, leading
to unnecessary code obscurity5 5: The low-level operations on individual pix-

els tend to be quite simple, but additional
computations for computing the actual index
into the arrays overshadow these operations,
leading to code obscurity.

and leaving the door open for indexing bugs.

2.1.4 Transform and Quantization

The transform stage applies an 8x8 discrete cosine transform [25] (DCT) to each
of the blocks. For JPEG, this transform can be implemented as two separate
1-dimensional transforms, the first applied to each row in the 8x8 block, and the
second applied to each column of the transformed rows. These types of Fourier
transforms are an integral part of many block-based compression systems and
serve to separate the values into their lower-frequency and higher-frequency
components (both referred to as coefficients). Lower-frequency coefficients carry
more "useful" information than high-frequency coefficients, and get compacted
into the upper left-hand corner of the 8x8 block. The following quantization stage
maps the coefficients in the block to a different set of values with a smaller range,
often by dividing the coefficients by some (potentially different) quantization value.
This brings many of the coefficients down to zero.

Quantization provides the main tradeoff between compression ratio and compres-
sion quality. The larger the divisors used in quantization, the more coefficients
brought to zero, which ultimately provides better compression. However, this also
introduces more loss, potentially leading to a worse quality image from decoding.
On the other hand, smaller divisors lead to less compression, but can improve
compression quality. The appropriate setting for the quantization factor ultimately
depends on the use case. Figure 2.4 shows the result of using different quality
factors in a JPEG encoder. Note the diminishing returns in quality between 50
and 95, despite the nearly 10× increase in size of the compressed image.

Considerations for an Abstraction

The DCT and quantization provide additional examples of using partitioning
and elementwise operations. The DCT is particularly interesting since it
is usually implemented as a separable transform, meaning it uses a one-
dimensional DCT across each of the rows of the data, followed by another 1D
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99 65 0 0 0 0 0 0

48 0 0 0 0 7 0 0

10 0 0 0 0 1 0

20 43 0 4 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 3 0 0 0 0

0 0 0 0 0 0 0 0

0

50

Runs:
(0,99), (0,65), (0,48), (0,50), 
(4,10), (0,20), (1,43), (12,4), 
(1,7), (4,1), (9,1), (5,3), (7,1), 

(8,END)

Figure 2.5: Run length encoding
with a zigzag. Runs are encoded as
(〈#zeros〉, 〈value after last zero〉).

DCT across each of the columns. The computation on each row and column
are largely the same (except for scaling factors), thus an abstraction should
be able to represent a one-dimensional transform invariant to the particular
row/column layout.

2.1.5 Differential Encoding, Zigzag, Entropy Coding, and
Syntax Output

Differential encoding subtracts the upper-left coefficient of each 8x8 block (called
the DC coefficient) from the DC coefficient of the prior block. The dynamic range
of values taken on by the difference is often smaller than the raw value itself,
which lends itself to better compression in the later entropy coding phase. Next,
the zigzag phase iterates through each of the remaining 63 coefficients of the
block (called the AC coefficients) in a zigzag order and performs run-length
encoding. Here, run-length encoding gathers sequences of adjacent zeros in the
block and represents them with two different values: the number of zeros in the
run, and the non-zero value occurring after the run. This reduces the number
of individual values to compress, which can improve the overall compression
ratio. While JPEG utilizes the zigzag ordering here, other orders exist, such as
Hilbert and Morton orderings [26]. Depending on the common patterns of zeros
in blocks, different types of compression can benefit from alternate orderings.
Figure 2.5 gives an example of zigzag run-length encoding.

Entropy coding replaces the run-length encoded values with codewords, mapping
more frequent values to shorter code words and vice-versa. Most JPEG encoders
utilize Huffman encoding [4], though the standard also allows another form of
entropy coding known as arithmetic coding [27]. Entropy coding outputs all the
codewords for the Y run-length values, Cb run-length values, and Cr run-length
values at the 8x8 block level, so the final bitstream utilizes a hybrid interleaved-
planar format (interleaved across blocks, planar within blocks). Generating the
bitstream from entropy coding requires the standard for the syntax output, which
defines the bit-by-bit structure of the bitstream through syntax elements, which
define a related group of values. For example, JPEG includes a frame syntax
element, which specifies image-wide values necessary for decoding, such as
the original image size and chroma subsampling factors.

Considerations for an Implementation

Unlike the other stages, the operations presented here are very different from
those introduced thus far. While there are some data accesses, there is not
much in the way of partitioning or any type of location. However, these differ-
ences are what make these stages important. Any domain-specific language
for compression should strive to support full end-to-end encoders and include
the necessary features to support these additional operations. Otherwise,
users would have to jump back and forth between different languages, which
can reduce the overall effectiveness and usability of such a language.
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2.2 H.264

While the JPEG encoder represented a fairly flat data hierarchy (except for
the initial 8x8 partition and splitting up rows/columns for the DCT), H.264 [19]
introduces a deeper and wider data hierarchy with several forms of partitioning,
and more spatial operations within and across blocks.

The H.264 standard describes several profiles that provide constraints on the
types of features that a decoder must support, thus the output of an encoder
that says it conforms to profile X should be decodable by any decoder that
also supports X. In order to give a broad look at what makes up an H.264
encoder, the description in this section does not focus on any particular profile
and instead presents a pipeline of stages generally found across the different
profiles. Figure 2.6 shows such a pipeline.

2.2.1 Partition

The encoder begins in a similar fashion to the JPEG encoder with the partitioning
stage, taking in input video frames one at a time and partitioning them into
planes of pixel components, and then partitioning each plane into 16x16 blocks
of pixels called macroblocks. H.264 also operates on pixels with luma and chroma
components, such as YCbCr.

Considerations for an Abstraction

Partitioning here has a similar flavor to JPEG, except H.264 includes more
levels of partitioning, leading to a deeper data hierarchy. As will be seen
shortly, H.264 requires more interactions across data blocks, where interac-
tions range from further partitioning to accessing surrounding data relative
to a block. All together, this increases the metadata necessary to track the
locations of everything, adding further complexity to an implementation.

Partition QuantizeTransform

Syntax Output

Frames

Inv. QuantizeInv. TransformLoop Filter

Entropy Coding Zigzag
Bitstream

Predict

+

Figure 2.6: An encoder pipeline with several stages common to the various profiles of H.264. The stages in the dashed box are decoder stages used
within the encoder.
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 Macroblock

A B

C D

 Frame

Figure 2.7: Availability of neighbors for 4x4
submacroblocks (A, B, C, D) within a mac-
roblock.

6: CAVLC uses the information to better com-
pute the output codewords that ultimately
generate the compressed data.

2.2.2 Prediction (a First Glance)

The prediction stage is arguably the most important part of the pipeline. It attempts
to represent the values in a macroblock as a function of other values in the frame
or other frames. The encoder computes the difference between the original
values and the predicted values (called the residual) and sends that through the
rest of the pipeline, rather than the predicted values themselves. Before diving
further into prediction, we will skip ahead to the rest of the pipeline, and then
return to prediction in Subsection 2.2.6.

2.2.3 Transform, Quantization, Zigzag

The transformation, quantization, zigzag stages also operate similarly to the
JPEG encoder, just with different computations. The transformation stage utilizes
DCT-like transforms applied to each 4x4 block within the 16x16 macroblock, and
also applies additional Hadamard transforms to part of the macroblock in some
cases. The zigzag stage also operates on those 4x4 blocks.

These present the same considerations as for JPEG, so they will not be discussed
further.

2.2.4 Entropy Coding and Syntax Output

One form of entropy coding used in H.264, called context-adaptive variable length
coding (CAVLC), utilizes inter-block data accesses that have not been encoun-
tered yet. Without going into details of CAVLC itself, one step involves taking a
4x4 block of coefficients (the output of the transform and quantization stages)
and checking if a 4x4 block exists above and to the left of it, and if they exist,
checking how many zeros exist in those blocks6. For example, Figure 2.7 shows
a frame and highlights one of the 16x16 macroblocks within it, which is broken
down into its constituent 4x4 submacroblocks. The table below categorizes each
of the highlighted 4x4 submacroblocks (A, B, C, and D) based on whether they
have a left and/or upper neighbor, and if so, whether that neighbor is within the
same macroblock or a different macroblock.

Submacroblock Left Neighbor Upper Neighbor
A None Other macroblock
B Same macroblock Other macroblock
C None Same macroblock
D Same macroblock Same macroblock

Syntax output operates like in JPEG, though H.264 includes a larger number
of syntax elements than JPEG, and has a significantly more complex bitstream
format.

Considerations for an Abstraction

From a computational point-of-view, this particular operation for CAVLC is
easy since it just requires counting the number of zeros in the neighbors.
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However, there are several interesting considerations around how to represent
location in this context. First off, the non-zeros are likely held in a completely
different array than the current data within the actual macroblock, so there
needs to be a way to access the data containing the non-zeros based on the
location of the current macroblock (and ideally the current submacroblock).

Once a reference to the correct data within the non-zeros is obtained, the next
step has to access the surrounding data. This requires knowing the location of
that surrounding data as well. To complicate issues, it is highly likely that the
granularity of the data for the non-zeros is different from the data represented
by the macroblock and submacroblock7 7: This is because only one non-zero is

needed per 4x4 submacroblock, while all 16
values in the submacroblock are required for
the actual step that generates the codewords.

. This difference in granularity adds
another variable to the indexing that needs to be taken into account and
presents another opportunity for simplification with an abstraction.

2.2.5 Decoder Stages

The three stages in the dashed boxes in the earlier Figure 2.6 represent a series
of decoder stages that operate within the encoder and serve to reconstruct
the pixels in the input frame (though imperfectly since the encoder is lossy).
The inverse quantize and inverse transform stages undo the quantization and
transformation operations, respectively. These are similar to their forward (e.g.
encoder side) counterparts. Due to the blocked structure of these encoders, the
decoded blocks may have blocking effects around the edge, which introduce
distortion, so the loop filter stage applies a filter around each block, smoothing
the edges.

After loop filtering, the next step adds the residual from prediction with the
decoded values, which produces the reconstructed pixels. The reconstructed
pixels are what a decoder would ultimately generate from a compressed bitstream,
and in the encoder, the reconstructed pixels are used for predicting the next
macroblock. Thus, the encoding pipeline has a sequential aspect to it, where the
next macroblock (or submacroblock in some cases) cannot be predicted until
the reconstruction of the prior macroblock completes.

Considerations for an Abstraction

While these stages are similar to their encoder-side counterparts, the recon-
structed pixels represent another scenario with location. This time, completely
separate data (the input pixels and the reconstructed pixels) refer to the same
location. Prediction requires being able to go back and forth between these
two different pieces of data, and accessing the data that refers to specific
locations between each.

2.2.6 Prediction (an In-Depth Look)

Now let us return to prediction. Figure 2.8 on Page 32 provides a closer look at
the prediction stage from Figure 2.6. H.264 supports two types of prediction: intra-
prediction, which performs prediction within a frame, and inter-prediction, which
performs prediction across frames. Respecting the constraints of the profile, each
type of prediction also contains several modes of prediction which (along with
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Figure 2.8: A closer look at the H.264 prediction pipeline used within Figure 2.6.
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Figure 2.9: Possible partitions for intra- and
inter-prediction in H.264.
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Figure 2.10: Step-by-step breakdown for
intra-prediction with 4x4 vertical mode in
H.264. See the main text to the side for a
complete description.

a few other parameters) define the values that can be used for prediction. The
encoder can try out any type of prediction it wants, so the first stage duplicates
the current macroblock (while maintaining the location with it) and passes those
off to the various modes of prediction. Next, the encoder performs an optional
second partition stage based on the type of prediction.

Intra-prediction can operate on full 16x16 macroblocks, as well as 8x8 and 4x4
submacroblocks. Inter-prediction can also operate on sizes of 16x16, 8x8, 4x4,
8x16, 16x8, 4x8, and 8x4. Figure 2.9 shows the partition options for intra- and
inter-prediction.

The actual prediction stage varies based on whether the encoder performs
intra- or inter-prediction. Figure 2.10 shows an example of the steps involved
in intra-prediction for H.264 using a particular 4x4 mode referred to as vertical
prediction. As the name suggests, this mode operates on a 4x4 submacroblock
and creates the prediction by copying values vertically. Recall that prediction
utilizes reconstructed values (i.e. the values resulting from the loop filter stage).
The steps for vertical prediction in Figure 2.10 are as follows:

1. Take the current submacroblock which points to data in the input frame
and find its corresponding location in the reconstructed frame.

2. Make a copy of the 4x4 submacroblock with the same location. This will
hold the resulting prediction.

3. Access the row of pixel values above the submacroblock within the recon-
structed frame.

4. Translate the row of pixels over to the submacroblock copy.
5. Fill the copy with the row of pixels by copying them vertically.
6. Compute the residual by subtracting the values in the copy from the corre-

sponding data in the input frame.

In total, H.264 supports nine intra-prediction modes for 4x4 prediction, nine
modes for 8x8 prediction, and four modes for 16x16 prediction. All of them follow
this same general procedure.

Inter-prediction operates across frames, trying to find the best match for the
current block in either a prior or future frame of reconstructed values. In H.264,
inter-prediction takes the form of motion estimation, which attempts to compute
how far objects move between these prior and future frames, and encodes the
prediction as a motion vector that captures the horizontal and vertical offsets of
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Figure 2.11: Step-by-step breakdown for
inter-prediction between two frames in H.264.
See the main text to the side for a complete
description.

8: 1/4-for the luma, and 1/8 for chroma in
4:2:0 chroma subsampling.

the object. Figure 2.11 shows an example of using motion estimation with the
following steps:

1. Start with frame t and t+1 and highlight the region of interest to predict (the
dashed box in frame t).

2. Compare the data at the location in reconstructed frame t+1 with the region
in frame t.

3. Compare the data at the location in reconstructed frame t+1 with the region
in frame t.

4. Compare the data at the location in reconstructed frame t+1 with the region
in frame t. This is the best option since it most closely matches.

5. Compute the motion vector between the two selections by computing the
Y-X offsets.

6. Compute the residual by subtracting the values in the predictioj from the
corresponding data in the input frame.

The most important part of inter-prediction centers around determining which
block of data within a prior or future reconstructed frame to use for computing
the motion vectors. There are two components to this selection process, namely
1) how to search the frame, and 2) how to compare blocks during the search.
This search and compare is one of the most expensive parts of H.264 encoding,
and numerous papers have been devoted to improving the search from both
an algorithmic and implementation perspective, such as hexagonal search in
[28–31].

At a high-level, the search moves a stencil across the reconstructed frame,
comparing the pixel components at the stencil points with the corresponding
pixel components in the current block being predicted. How to do the comparison
between the pixel components varies, but a simple cost function such as sum-
of-absolute differences can be used. Once the cost hits some threshold, the
encoder uses the selected block in the reconstructed frame as the prediction
and computes the motion vector from that.

If the pixel components are used directly in the comparison, this is referred to as
integer motion estimation since the motion vectors computed will have integral
values. However, H.264 also supports 1/4-pixel motion estimation8, which means
the motion vectors will have 1/4-pixel resolution. This requires interpolating the
pixel components within the reconstructed and the current block, which creates
values "in between" the actual pixel components. H.264 defines several filters
used in series to compute the interpolated pixel values.

Since the encoder can potentially attempt many different ways of predicting a
macroblock, at some point the encoder needs to commit to one form of prediction,
which is where the select stage comes into play. Here, the encoder picks the
best type of prediction and passes that information along through the rest of the
pipeline with the macroblock.

Considerations for an Abstraction

Prediction utilizes all the operations discussed thus far, but to an even further
degree. There are a variety of different partitions, many different copies of
blocks referring to the same location (potentially with different granularities),
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▶ H.261: see [32]
▶ MPEG-1: see [33]
▶ JPEG: see [22]
▶ MPEG-2: see [34]
▶ H.263: see [35]
▶ MPEG-4: see [36]
▶ JPEG2000: see [37]
▶ H.264: see [19]
▶ VP8: see [38]
▶ JPEGXR: see [39]
▶ VP9: see [40]
▶ H.265: see [41]
▶ JPEGXS: see [42]
▶ H.266: see [43]
▶ JPEGXL: see [44]

9: While not considered here, wavelet trans-
forms create a blocked-hierarchical structure,
thus can utilize the abstractions presented
later.

but holding different data (e.g. holding the results of prediction, holding the
results of the different modes of prediction). There are also accesses adjacent
to regions of data, and mappings from one location to another.

2.3 Beyond JPEG and H.264

JPEG and H.264 are not the only forms of block-based compression, and nu-
merous standards have been developed since the 1980s utilizing block-based
compression for image and video. However many of them build on top of one
another, leading to the common structure discussed in the prior sections. Fig-
ure 2.12 shows a timeline of some of the major image and video standards
introduced in this area.

Newer standards extend the compression capabilities of prior ones in many ways,
such as supporting new color spaces, allowing more block sizes, introducing new
prediction modes, and so on. New standards also introduce non-compression
improvements as well, such as removing dependencies between data within or
across frames in order to increase the amount of parallelism possible. Other
standards change the fundamental transforms used, such as JPEG2000 and
JPEGXS, which utilize wavelet transforms instead of DCTs9.

Future-proofing an abstraction

While we expect much of the structure to remain the same as new standards
become available, it is important to maintain a degree of flexibility in the
abstraction to support any new features that might arise. Based on variations
across the current set of block-based compression, we believe the most
important part of the abstraction would be the ability to compare locations
across blocks that live in different "frames of reference." For example, the input
stage of JPEG showed that image data that could be stored in an interleaved
or planar format. These two formats could be considered different frames of
reference because they represent the same data at the same location, but
just have different access semantics. Other operations like interpolation add
on another frame of reference that increases the point density for two sets of
data representing the same location. The abstraction must be able to define
locations invariant to these frames of reference, otherwise it would not be
able to compute meaningful relationships between locations.

The UniTe abstraction presented in Chapter 4 does exactly this and provides
a mathematical way to connect together these different frames of reference in
order to be able to transform locations between them. While UniTe represents
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Figure 2.12: Selection of major image and video compression standards.
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a specific set of ways to parameterize these frames of reference, it is possible
that other parameterizations would be useful for future forms of block-based
compression. UniTe focuses on providing the foundations of how to represent
these frames as opposed to unnecessarily constraining the abstraction to one
particular set of representations. This makes it possible to extend UniTe to
meet future needs. For example, it is reasonable to assume that compressing
sparse data could become a part of block-based compression standards in the
future. Computing the data elements that correspond to a particular location
in sparse data is different than computing it for dense data; "sparse" would
become a new frame of reference that requires a transform specifying how
to go between sparse and dense locations. UniTe would be able to support
this, provided that the transforms (and the other necessary components that
UniTe requires) are specified.

2.4 Summary

This chapter provided a high-level overview of what block-based compression
is and the different stages that make up an encoder. It shows two exemplar
encoder pipelines, namely JPEG for image compression and H.264 for video
compression, and discussed the overall control flow and primary stages in each.
JPEG provides a gentle overview of the basic operations required in block-based
compression, while H.264 provides a more advanced set of operations requiring
various spatial operations between blocks of data.

Despite the variety of ways to implement encoders and the sheer number of stan-
dards for compression that exist, these encoders do share a lot of structure. Since
the standards often build off of the prior ones, future block-based compression
standards will undoubtedly continue to follow the same basic structure, meaning
encoders will also continue to share the same structure. However, the complexity
of both the standards and associated implementations will undoubtedly continue
to increase with each new standard as well, making an abstraction all the more
necessary.

Chapters 3 to 5 capture the abstractions alluded to in this chapter. These abstrac-
tions are more broadly applied than just compression, thus they are introduced
in isolation of compression. Later, Chapters 6 to 9 bring compression back into
the picture and tie together the abstractions with block-based compression.
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The last chapter showed several different ways of representing and utilizing
blocks of data within the stages of block-based encoders, sometimes performing
operations within blocks, and other times performing operations across blocks.
The two key features are that the blocks display spatial relationships amongst one
another and also require different frames of reference to describe their location.
Spatial relationships here refer to the fact that blocks need to know and reason
about their location relative to other blocks. For example, in video compression it
is necessary to associate a timestamp with a frame that says where it belongs
relative to its containing video. Frame of reference refers to the different ways
blocks are parameterized, such as some having different layouts (e.g. interleaved
vs. planar), different sizes (e.g. macroblocks, submacroblocks), and so on.

The next chapter describes the UniTe (Universal Tensor) abstraction, which pro-
vides the necessary foundations to capture spatial relationships across tensors
that have different representations (i.e. live in different frames of reference). That
chapter includes all the concrete mathematical components of the UniTe abstrac-
tion, with a particular focus on how to define the different frames of reference
(referred to as reference spaces later on). However, this chapter provides some
insight on what is meant by spatial relationships and what needs to go into an
abstraction that can capture them. The first scenario presented looks at how
to describe the location of a single object (myself) relative to different physical
landmarks. The second scenario looks at frames within a video and explores the
spatial relationship between those frames.

3.1 Scenario 1: Describing My Location

Assume I want to describe my location within my office in CSAIL1 to someone.
The simplest way to describe this location is to just describe my location locally
within CSAIL using my office number, G740. Figure 3.1 on Page 38 shows this
first description. For someone who knows CSAIL, this number likely provides
enough information to find my office; however, if someone does not know where
CSAIL is located, this does not really help. So, I can give more information and
define my location relative to the inside of the Stata Center and instead say that I
am in office G740 in CSAIL, which is on the 7th floor of the Gates tower of the
Stata Center. Figure 3.2 on Page 38 shows this second description.

Now, if the person does not know where Stata is, I can again provide more context
and describe my location relative to the Kendall Sq. area around campus and say
that I am in office G740 in CSAIL on the 7th floor of the Gates tower of the Stata
Center, which is 0.3mi from the Kendall Sq. T stop. In this case, I have effectively
represented my location using three different frames of reference, each of which
builds on the prior (i.e. Stata’s location is relative to the T, my office’s location is
relative to Stata). The object whose location is being described (myself) does
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Office G740

Figure 3.1: Describing my office location in CSAIL using a floor map and my office number.

2: The T stop is used for the frame of ref-
erence here as it does not make sense to
describe the location of something external
to the Stata Center or CSAIL using a frame of
reference within the Stata Center or CSAIL.

not change; rather, the description of the location does. Figure 3.3 on Page 39
shows this third representation.

Now, say I want to go somewhere else, so instead I head from my office over
to the Muddy Charles Pub on the other side of campus. The object is still the
same; it is me. But now I have a totally different location that I need to describe. I
can use the same strategy as before and define my location relative to the same
Kendall Sq. area and say that I am at the Muddy Charles Pub which is 0.4mi
from the T stop2. Using the same Kendall Sq. frame of reference, I could also
compute a distance between the Stata Center and the Muddy Charles Pub, thus
despite the different frames of reference and physical locations, it is possible to
compute a spatial relationship between myself in these two spots. Figure 3.4 on
Page 39 shows this extension.

I can continue to arbitrarily expand this scenario by adding new frames of refer-
ence or moving myself to different physical locations. For example, if I decide to
head home and describe my location relative to that same T stop, it is no longer
sufficient to just represent my location within Kendall Sq. since I do not live near
there. Instead I would need to take another step back and use another frame of
reference for Massachusetts, and then can compute the distance that way. The

 

7th floor of the Stata Center 
Gates Tower 

Figure 3.2: Describing my office location in CSAIL using a floor map (Figure 3.1) and relative description within the Stata Center.
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0.3mi Kendall Sq. T stop

  

 

Figure 3.3: Describing my office location in CSAIL using a floor map (Figure 3.1), relative description within the Stata Center (Figure 3.2), and distance
from the Kendall Sq. T stop.

  

 

 

0.4mi Kendall Sq. T stop

Figure 3.4: Describing my location at the Muddy Charles Pub relative to the Kendall Sq. T stop.

top of Figure 3.5 on Page 40 shows this final extension.

Regardless of how I change the example, the key is having the continued abil-
ity to define my location and compare it across different frames of reference.
The bottom of Figure 3.5 shows a trie representing this scenario, with the root
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25mi Kendall Sq. T stop 

Massachusetts

My House Kendall Sq.

Muddy Charles Stata Center

7th Floor Gates 
Tower

My Office

Figure 3.5: Describing the location at my house relative to the Kendall Sq. T stop using Massachusetts as a frame of reference. The bottom trie shows
the relative relationship between the different frames of reference described within the example (grey) and the different locations (orange).
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3: For example, I could have the Mas-
sachusetts universe, and then another New
Hampshire universe. Each can represent all
the locations within the respective state, but I
cannot use one to represent a location within
the other because it does not logically make
sense.

representing a global frame of reference with respect to all the other frames of
reference within the root’s universe. Global means that it is possible to character-
ize any location within the trie with respect to the root itself, while universe means
that only locations captured within the trie can be compared to each other3.

3.2 Scenario 2: Locations Across a Video

Consider a video like the one represented in Figure 3.6. The video can be broken
up into individual frames, each of which has a location associated with a particular
timestamp within the video. The bottom left of the image shows a single frame
extracted at time 𝑡 within the video, and this frame contains the same data as
the video at time 𝑡. Now look at the frame on the bottom right. This frame holds
a greyscale version of the frame on the left. Despite the fact that it represents
different data now (it is not in color), it still logically represents the same location
at time 𝑡 within the initial video.

t

Figure 3.6: Two frames at time 𝑡 within a
video. Both have different data, but still logi-
cally represent the same location (any differ-
ences in frame resolution are ignored for this
example).

Figure 3.7 on Page 42 shows this example, but using a different frame of reference
to represent the grey frame. Here, the grey frame still represents the same
location, except it skips over elements in the horizontal and vertical dimension
(for example, it could be subsampled). Now, there is combination of different data
and different frames of reference used to describe the same location; however, it
is still necessary to be able to compare and reason about the locations regardless
of these differences.

With this example, the first important concept is that location is a property of the
logical container (e.g. the video, a frame, a row in the frame), not the data itself.
The second important concept (shared with the office location example) is that
the video represents a common ancestor for describing the location of all the
other objects. This means location is essentially invariant to the different frames
of reference, different data, etc. All the different pieces, as long as they have
locations within the video universe, can have their locations compared, where
the comparison can be something like checking if two frames occur at the same
timestamp, or computing the offset between the times of two different frames.
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Figure 3.7: Two frames at time 𝑡 within a
video that each live within a different frame
of reference. The finely dashed box around
the grey blocks emphasizes that the grey
blocks still represent the same location (time
𝑡) within the video as the orange frame.

t

4: This is a multidimensional array that allo-
cates new memory.

5: A view being a reference to an existing
ndarray, such that accessing data in a view
propagates to the ndarray and gets the data
from there.

3.3 Representing Location Manually

Modern programs lack the abstractions necessary to represent these types of
spatial relationships among objects, shifting the burden of doing so to the user.
As a simple example, consider the code in Figure 3.8. This is NumPy code that
models computing the various parts of the video and frame example in the last
section. The issues arise from the NumPy view, orange_frame, on Line 2 and
ndarray4, grey_frame, on Line 4. Even though these logically both correspond to
the same time within the video, NumPy has no way to encode that information,
thus the user would have to associate a timestamp with the objects to track the
location. Internally, NumPy has to maintain a mapping from orange_frame to
video since orange_frame is a view on video5. However, NumPy does not expose
this information to the user, so it is not helpful for tracking spatial relationships.
In a simple localized context such as this, tracking location is manageable. But
with more realistic domains containing numerous different representations of
data spread across entire programs, the required bookkeeping quickly becomes
overwhelming.

Looking ahead to block-based compression presents a more realistic view of the
difficulties in manually tracking location as well. The struct shown in Figure 3.9
on Page 43 is from the H.264 reference code, JM [8], and contains several
parameters for describing the location of just a single macroblock. There are
approximately 130 total parameters dealing with location in the file that contains
this struct definition. These parameters are necessary to describe the macroblock
and pixels within it relative to various input and output frames, as well as other
macroblocks. The multidimensional arrays used in block-based compression all
have intrinsic location in them that describes their location relative to an image

Figure 3.8: NumPy code roughly correspond-
ing to the scenario in Figure 3.7. NumPy has
no intrinsic notion of location, thus it views
orange_frame and grey_frame com-
pletely independently of one another, even
though they logically represent the same lo-
cation.

1 video = ndarray([3,nframes,H,W])
2 orange_frame = video[:,t,:,:]
3 # "subsampled" version of orange_frame
4 grey_frame = ndarray([H/2,W/2])
5 orange_to_grey(orange_frame, grey_frame)
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//! Macroblock
typedef struct macroblock_enc
{
...
short mb_x;
short mb_y;
short block_x;
short block_y;
short pix_x;
short pix_y;
short pix_c_x;
short pix_c_y;
short opix_y;
short opix_c_y;
short subblock_x;
short subblock_y;
... Figure 3.9: Partial definition of the mac-

roblock struct in [8].

(for image compression) or a video (for video compression). Everything from
the image or video down to a pixel has a location that is used at some point
during compression. However, these arrays exist in different frames of reference,
sometimes having different storage formats (interleaved vs planar), different
densities (interpolation vs subsampling), different dimensionalities (2D frame vs.
3D video), and so on. Having to manually deal with these different parameters
across tens of thousands of lines of code quickly becomes a monumental task
that opens the door for data access bugs. It also leads to inconsistencies in
the design of the necessary data structures, which may be designed by several
different developers, even within a single implementation. Chapters 6 and 7
explore this in more detail.

3.4 Summary

This chapter provides intuition for what it means to have data with location and
how to describe the spatial relationships across the data. The key to capturing
and reasoning about these spatial relationships is being able to describe the
location of data invariant to its actual representation, which can vary in several
ways. For example, the office example described my location relative to different
physical locations, while the video example described the same location, but
varied the actual data associated with the location.

The next chapter introduces a mathematical framework called UniTe that cap-
tures these spatial relationships and provides fundamental operations for defining
frames of reference, defining location, moving between frames, and comparing
locations. UniTe provides the necessary basis for defining higher-order represen-
tations and operations that exploit location (Chapter 5), which can be used to
simplify domains containing spatial relationships, such as block-based compres-
sion (Chapter 6).
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The last chapters provided some initial motivation for the association of location
with different objects, namely tensors. Those examples highlight several different
cases where tensors can represent the same data and the same location, or
some combination of different data and different location. Regardless of the
combination, the key is that one should be able to easily represent and compute
the location of a given tensor relative to the other tensors where necessary.
However, to complicate the issue, the tensors themselves may have different
parameterizations, such as different dimensionalities, sizes, and origins, leading
to arbitrarily complex ways to capture the location.

This chapter presents a mathematical framework for capturing and reasoning
about these spatial relationships, starting from a point-based representation
and culminating in the tensor-based representation, UniTe (Universal Tensor
abstraction).

4.1 Building up an Abstraction

Before diving into the formal definitions for capturing spatial relationships, it is
worthwhile to take a step back and understand what makes up the core of UniTe.
Figures 4.1 and 4.2 on Pages 46 and 47, respectively, provide a working example
for this section that highlights how each component builds off of the prior one.

The first necessary component for such an abstraction is a set of "things" that
have a location. Since UniTe opts for a mathematical representation of location, it
simply uses points (top left of Figure 4.1). By themselves, these points do not offer
much, thus the next necessary component is a way to define the local location
of a point. This is where the frames of reference from the prior chapter come into
play. UniTe defines these as mathematical spaces called reference spaces, which
have an attached orthogonal coordinate system (top right of Figure 4.1). These
reference spaces and orthogonal coordinates make it possible to represent the
local location of points and can be used to define local spatial relationships.
However, by themselves, they do not help define relationships across different
spaces. Rather, they require a way to define relative relationships between the
different reference spaces and points across them. UniTe breaks this into two
parts: reference space mappings and point-to-point mappings.

Reference space mappings provide a well-defined way to quantify how two differ-
ent reference spaces differ from one another. In particular, these mappings define
the relative change between a parent reference space and a child reference
space. The bottom left of Figure 4.1 shows this with two different child reference
spaces that differ from the parent through a permutation (left child) and slice
(right child). UniTe itself defines five different possible modifications between
parent and child reference spaces that support changing the dimensionality, axes
layout, origin, refinement, and coarsening.
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Figure 4.1: Points (top left), reference spaces (top right), reference space mappings (bottom left), and point-to-point mappings (bottom right). These
four components, along with the trie shown in Figure 4.2, provide the building blocks for UniTe that make it possible to describe spatial relationships
across points (and ultimately tensors).

Point-to-point mappings define how to map a point from a parent reference space
to a child reference space, and vice versa. For example, the bottom right of
Figure 4.1 shows different mappings between the child and parent reference
spaces, as well as a lateral mapping between siblings. These mappings make
it possible to reason about spatial relationships since points can be compared
across the different reference spaces.

The final core component of UniTe is a way to globally represent spatial relation-
ships; or in other words, provide a way to capture spatial relationships across
points in reference spaces that are not necessarily connected as parent and child.
UniTe defines all its reference space mappings such that they can be recursively
applied to generate a trie. The root of this trie represents a global location within
which all the points in all the descendant reference spaces can be compared.
Similarly, it is always valid to compare points within a common ancestor reference
space. All the point-to-point mappings in UniTe can also be recursively applied
in order to move points beyond just parent-to-child or child-to-parent. In fact,
it is possible to map a point from any reference space to any other reference
space (assuming they are in the same trie) by repeatedly applying a combination
of parent-to-child and child-to-parent mappings, even when the two reference
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Figure 4.2: Extending Figure 4.1 into a trie by
adding on additional reference spaces with
their mappings. Various point-to-point map-
pings are included to show that points can be
mapped across arbitrary reference spaces in
the trie.

1: Though, the mapping itself may not pro-
duce a point in all cases. See Subsec-
tion 4.3.1, which discusses cases with pro-
jections.

spaces are in different paths of the trie1. This is possible due to the fact that
common ancestors represent a common frame of reference. Figure 4.2 shows
one example of such a trie built off of Figure 4.1.

The next sections look at these mappings in more detail, starting with reference
space mappings, followed by the point-to-point mappings.

UniTe as an abstraction framework

While UniTe defines these five particular types of mappings, the purpose of
the abstraction is not to constrain users to just these mappings. The ones
presented in this chapter are ultimately useful for the examples of block-based
compression given in later chapters, but it is expected that other domains
would likely have additional or different mapping requirements. Thus, it is
more useful to think of UniTe as an abstraction framework which can contain
many types of mappings, as long as they conform to the constraints defined in
this chapter. For example, the mappings must be able to be defined between
parent and child reference spaces, but also must be able to be defined
recursively in order to create the trie structure.

4.2 Reference Spaces

UniTe defines a single type of reference space that captures possible changes
in the dimensionality, axes layout, origin, refinement, and coarsening between a
child reference space and its parent. This section focuses on how these different
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parameters modify the space itself, while the next section defines the point-to-
point mappings associated with the different parameters. Definition 4.2.1 gives
the definition for a reference space.

Definition 4.2.1 (Reference space) A reference space, ℝ𝑁
𝑐 , is an

𝑁-dimensional space defined by the 5-tuple (ℝ𝑀
𝑝 , 𝑝⃗ , 𝑜⃗ , 𝑟⃗ , 𝑐⃗), where

ℝ𝑀
𝑝 is the parent reference space of ℝ𝑁

𝑐 (𝑁 ≤ 𝑀),
𝑝⃗ = (𝑝0 , . . . , 𝑝𝑁−1) represents the permutation of ℝ𝑁

𝑐 with respect to ℝ𝑀
𝑝

(0 ≤ 𝑝𝑖 < 𝑀 − 1 and each 𝑝𝑖 has a unique value),
𝑜⃗ = (𝑜0 , . . . , 𝑜𝑀−1) represents the origin of ℝ𝑁

𝑐 with respect to ℝ𝑀
𝑝 (𝑜𝑖 ∈ ℤ),

𝑟⃗ = (𝑟0 , . . . , 𝑟𝑁−1) represents the refinement factor of ℝ𝑁
𝑐 with respect to

ℝ𝑀
𝑝 (𝑟𝑖 ≥ 1), and

𝑐⃗ = (𝑐0 , . . . , 𝑐𝑁−1) represents the coarsening factor of ℝ𝑁
𝑐 with respect to

ℝ𝑀
𝑝 (𝑐𝑖 ≥ 1).

In addition, a dimension 𝑖 cannot be both refined and coarsened (where 𝑟𝑖 > 1
indicates a refinement and 𝑐𝑖 > 1 indicates a coarsening), thus 𝑟𝑖 and 𝑐𝑖
cannot both be greater than one simultaneously.

The root of the trie, 𝕌𝐿, is simply represented by its dimensionality 𝐿 since it does
not have a parent. This definition for reference spaces can be used to construct
the trie representation since it defines each child reference space relative to its
parent, thus it provides the ability to define location using different frames of
reference throughout.

The first change supported by the reference space is a change in dimensionality,
which allows a child reference space (dimension 𝑁) to drop dimensions from the
parent (dimension 𝑀). The left diagram of Figure 4.3 shows an example of this.
The only constraint is that the dimensionality must monotonically decrease from
root to leaves, meaning it is not possible to add back on a dimension once it is
dropped as this does not logically make sense from a spatial point-of-view.

The next change is the permutation, 𝑝⃗, which reorders the dimensions of a
child reference space relative to the parent. The permutation vector 𝑝⃗ ultimately

Y

X

X

Slice off 
Y dimension

(2)

(0,2)

Y

X

X

Y

Permute 
Y-X to X-Y

(2,0)

(0,2)

(2,0)
Y

X

Y

X

 Translate
 by (2,1)

(0,-1)

Figure 4.3: Examples of a slice (left), permutation (middle), and translation (right) operation between parent and child reference spaces. The slice
operation takes the row at Y= 0 and drops then drops the outermost (Y) dimension. The permutation operation swaps the Y and X axes. Finally, the
translation operation shifts the origin by (2, 1).
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2: A value of one for a given dimension in
both 𝑟⃗ and 𝑐⃗ indicates that no refinement or
coarsening occurs in that dimension.

defines a partial permutation matrix, 𝑃, which is defined in the next section in
Definition 4.3.1. When the parent and child have the same dimensionality, 𝑃 is
square, otherwise it is rectangular. The middle of Figure 4.3 gives an example of
a permutation.

A change in the origin, 𝑜⃗, represents a translation between the parent and child
space. The right of Figure 4.3 gives an example of a translation.

Finally, refinement and coarsening change the density of points in a reference
space2. Figure 4.4 gives an example of refinement and coarsening. Note that
refinement introduces a one-to-many mapping from the parent to the child, while
coarsening introduces a one-to-many mapping from the child to the parent. The
mapping functions in the next section take this into account and ultimately work
on sets of points when refinement and coarsening are used, as opposed to single
points.

Y

X

 Refine by (1,2)

Y

X

 Coarsen by (2,1)

Y

X

(2,0)

(2,1)

(0,0)

(0,0)

(0,0) (0,1)

(1,0)(2,0)

Figure 4.4: Refining and coarsening a 2D
reference space.

4.3 Point Mappings

While the last section defined the different parameters for reference spaces, this
section defines the various mappings necessary to map points throughout the
trie. Like the reference spaces themselves, these mappings are defined between
a parent and child, but can be recursively applied to map points between any
two reference spaces. An upstream mapping (𝜙↑) moves a set of points from
child to parent, while a downstream mapping (𝜙↓) moves them from parent to
child. This section presents a single set of mappings that can take into account
changes in all the parameters of reference spaces.

4.3.1 Mapping Types

Before giving the definitions for the mapping, this section builds up some intuition
and looks at the types of mappings that arise depending on how the parameters
between parent and child reference spaces change. In particular, there are
three categories of mappings that naturally arise out of the various parameters:
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3: Technically, the reference spaces are in-
finite, so an infinite number of points would
project to a single point in the child.

bijective mappings, embedded mappings, and R-C mappings (where R stands
for refinement and C stands for coarsening).

Bijective mappings perform affine mappings between points in the parent and
child, where every point in the child maps to a unique point in the parent, and
vice versa (hence the bijective part) using a combination of permutations and
translations. These are the most basic type of mapping and occur when a parent
and child have the same dimensionality and point density (the refinement and
coarsening vectors are unit vectors). Figure 4.5 shows an example of a bijective
mapping.

Embedded mappings occur when the parent and child have a different dimension-
ality, but still have the same point density. To represent these types of mappings,
UniTe introduces projections, which map multiple points in a parent to a single
point in the child. The left part of Figure 4.6 on Page 51 shows an example of
a projection for an embedded mapping which projects the three colored points
down to the single orange point in the child3.

UniTe uses projections to simplify the definitions for the mappings given in
Subsection 4.3.2. However, these projections can introduce mappings that are
not spatially sound. This issue is depicted in Figure 4.6. The left side shows three
points in the parent reference space that map to the same point in the child due
to the projection. However, from a spatial point-of-view, this does not logically
make sense because the top two points do not share the same location as the
bottom point, thus should not be able to map to the same point in the child. This
requires that embedded mappings be able to produce "one-to-none" mappings
which can map an input point to the empty set, signifying that it does not have a
valid location in the child. The right side of Figure 4.6 depicts this.

The trie structure used to represent reference spaces makes it easy to check for
these one-to-none mappings. In particular, the root of the trie represents a global
location for all points within the trie. Checking for an invalid spatial projection
between a parent and child involves mapping the point in the parent to the root,
then mapping the projected point to the root, and finally comparing their locations.
If the locations are the same, then the projection is spatially valid; if not, then

Figure 4.5: Bijective mappings between a
parent and child that differ in their axes layout
and origin.

Y

X

X

Y

Permute
and
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(0,2)

(-2,1)
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X

Project

Y

X
Slice

X

{ }

Project

Valid and invalid spatial projections Keeping only the valid spatial projection

(2,2)

(1,2)

(0,2)

(2)

Figure 4.6: Invalid (left) and valid (right) embedded mappings arising from projections. The blue and red points represent a different location than the
orange point, thus cannot project to the orange point in the 1D space.

the original points map to the empty set. Figure 4.7 on Page 52 depicts this
procedure.

Finally, R-C mappings allow any of the parameters to vary and introduce one-
to-many mappings in the upstream direction (when coarsening is applied) and
many-to-one mappings in the downstream direction (when refinement is applied).
Figure 4.8 on Page 53 depicts these types of mappings. Note that R-C mappings
also allow projections.

4.3.2 Mapping Functions

The various mapping functions and related components are described in Def-
initions 4.3.1 to 4.3.5, starting with the partial permutation matrix [45] in Def-
inition 4.3.1. These take into account all of the possible parameter changes,
thus fully support R-C mappings, but can be simplified to support bijective and
embedded mappings as well. Further discussion follows each definition.

Definition 4.3.1 (Partial permutation matrix) Let 𝑃 be an 𝑁 × 𝑀 partial
permutation matrix defined for a child reference space, ℝ𝑁

𝑐 , with definition
ℝ𝑁

𝑐 = (ℝ𝑀
𝑝 , 𝑝⃗ , 𝑜⃗ , 𝑟⃗ , 𝑐⃗). Derive 𝑃 from the permutation vector 𝑝⃗ as follows:

𝑃 =

⎡⎢⎢⎢⎢⎢⎣
𝑃0,0 . . . 𝑃0,𝑀−1
...

. . .
...

𝑃𝑁−1,0 . . . 𝑃𝑁−1,𝑀−1

⎤⎥⎥⎥⎥⎥⎦
𝑃𝑖 , 𝑗 =

{︄
1 If 𝑝𝑖 = 𝑗

0 Otherwise.

The partial permutation matrix combines together any permutations and pro-
jections defined on the axes between the parent and the child. The following
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Figure 4.7: The procedure for finding valid projections with embedded mappings. The top left performs the initial projection for all points, regardless of
whether the mapping is spatially valid or not. The top right maps the original points and projected point up to their corresponding locations in the root.
The bottom left finds the point in the root that shares a location with both the original orange point and the projected orange point. Since the original
orange point and projected orange point both map to the same location in the root, that would be a valid projection. The bottom right finalizes the
mapping and allows the projection for orange, while mapping blue and red to the empty set.
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Figure 4.8: R-C mappings from refinement (left) and coarsening (right). Mappings with refinement map a single point in the parent to multiple points in
the child, while mappings with coarsening map a single point in the child to multiple points in the parent.

4: This example is like an embedded map-
ping, but with no translation. The definitions
in Subsection 4.3.2 take into account all the
parameters that may change.

example shows applying the matrix to do a simple mapping from parent-to-child
and child-to-parent4.

Partial permutation example

Let the dimensionality of a parent be 𝑀 = 4 and the child be 𝑁 = 3 with
permutation vector 𝑝⃗ = [3, 1, 2]. The resulting partial permutation matrix is:

𝑃 =

⎡⎢⎢⎢⎢⎣
𝑃0,0 𝑃0,1 𝑃0,2 𝑃0,3
𝑃1,0 𝑃1,1 𝑃1,2 𝑃1,3
𝑃2,0 𝑃2,1 𝑃2,2 𝑃2,3

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎦
Let 𝑥⃗ = [𝑥0 , 𝑥1 , 𝑥2 , 𝑥3]𝑇 be a point in the parent. To permute and project 𝑥⃗
from the parent to the child, compute 𝑥⃗

′
= 𝑃𝑥⃗ as shown below:

𝑥⃗
′
= 𝑃𝑥⃗ =

⎡⎢⎢⎢⎢⎣
0 0 0 1
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑥0
𝑥1
𝑥2
𝑥3

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
𝑥0 × 0 + 𝑥1 × 0 + 𝑥2 × 0 + 𝑥3 × 1
𝑥0 × 0 + 𝑥1 × 1 + 𝑥2 × 0 + 𝑥3 × 0
𝑥0 × 0 + 𝑥1 × 0 + 𝑥2 × 1 + 𝑥3 × 0

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑥3
𝑥1
𝑥2

⎤⎥⎥⎥⎥⎦ .
Let 𝑦⃗ = [𝑦0 , 𝑦1 , 𝑦2]𝑇 be a point in the child. To undo a projection and apply
a permutation from child to parent, compute 𝑦⃗

′
= 𝑃𝑇 𝑦⃗ as shown below:

𝑦⃗
′
= 𝑃𝑇 𝑦⃗ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑦0
𝑦1
𝑦2

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
𝑦0 × 0 + 𝑦1 × 0 + 𝑦2 × 0
𝑦0 × 0 + 𝑦1 × 1 + 𝑦2 × 0
𝑦0 × 0 + 𝑦1 × 0 + 𝑦2 × 1
𝑦0 × 1 + 𝑦1 × 0 + 𝑦2 × 0

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

0
𝑦1
𝑦2
𝑦0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The remaining definitions for upstream and downstream mappings integrate this
matrix with the remaining factors for translation, refinement, and coarsening as
well. Definition 4.3.2 gives the upstream mapping function.

Definition 4.3.2 (Upstream mapping) Let ℝ𝑁
𝑐 be a reference space with definition ℝ𝑁

𝑐 =

(ℝ𝑀
𝑝 , 𝑝⃗ , 𝑜⃗ , 𝑟⃗ , 𝑐⃗). Let 𝑆𝑥⃗ be a set of points where for each 𝑥⃗ ∈ 𝑆𝑥⃗ , 𝑥⃗ is a point within ℝ𝑁

𝑐 . Let
𝑃 be a partial permutation matrix defined on ℝ𝑁

𝑐 and ℝ𝑀
𝑝 .

An upstream mapping 𝜙↑(𝑆𝑥⃗) maps the set 𝑆𝑥⃗ from ℝ𝑁
𝑐 to ℝ𝑀

𝑝 . Compute the upstream
mapping as follows:

𝜙↑(𝑆𝑥⃗) =
⋃︂
𝑥⃗∈𝑆𝑥⃗

{︂
𝑃𝑇(𝑑⃗ + 𝑖⃗) + 𝑜⃗ | where for each 𝑗 ∈ [0, 𝑁), 𝑑 𝑗 =

⌊︃
𝑐 𝑗𝑥 𝑗

𝑟 𝑗

⌋︃
and 𝑖 𝑗 ∈ [0, 𝑐 𝑗)

}︂
.

The upstream mapping function maps a point from the child to parent by account-
ing for all the possible changes in parameters between the reference spaces.
For upstream mappings, a coarsening between the parent and child creates the
scenario where a single point in the child maps to multiple points in the parent.
In particular, the child point would map to an interval of points within the parent.
For a single point 𝑥⃗ ∈ 𝑆𝑥⃗ , the upstream mapping definition contains several
key components to deal with this within the term 𝑃𝑇(𝑑⃗ + 𝑖⃗) + 𝑜⃗. The 𝑃𝑇 , 𝑑⃗, and
𝑜⃗ compute the "base" point in the parent. If there is a coarsening, this base
point represents the first point in the interval mapped to in the parent. The 𝑖⃗ part,
along with the associated range 𝑖 𝑗 ∈ [0, 𝑐 𝑗) computes the rest of the points in
the interval by accounting for coarsening in all possible dimensions. If multiple
dimensions have coarsening applied, this amounts to a cross-product between
the intervals to which they are mapped in each dimension.

This mapping is not always this complex, however. For example, in the case
of bijective and embedded mappings, this equation can be simplified to omit
refinement and coarsening, which results in the following:

𝜙↑(𝑆𝑥⃗) =
⋃︂
𝑥⃗∈𝑆𝑥⃗

𝑃𝑇 𝑥⃗ + 𝑜⃗.

For a bijective mapping, 𝑃 is square since the dimensionality of the parent and
child is the same. For an embedded mapping, it would be rectangular.

To map a point from a child to an arbitrary ancestor in the trie, it is possible to re-
cursively apply the upstream mapping until reaching the necessary ancestor. The
spatial intersection function described in Definition 4.3.3 uses such a recursive
mapping.

Definition 4.3.3 (Spatial intersection function) Let ℝ𝑁
𝑥 and ℝ𝑀

𝑦 be two refer-
ence spaces in the same trie with root 𝕌𝐿. Let 𝑆𝑥⃗ and 𝑆𝑦⃗ be two sets of points
where for each 𝑥⃗ ∈ 𝑆𝑥⃗ and 𝑦⃗ ∈ 𝑆𝑦⃗ , 𝑥⃗ is a point in ℝ𝑁

𝑥 and 𝑦⃗ is a point in ℝ𝑀
𝑦 .

Let Φ↑(𝑆𝑥⃗) represent the recursive application of 𝜙↑(𝑆𝑥⃗) from ℝ𝑁
𝑥 to 𝕌𝐿 and

Φ↑(𝑆𝑦⃗) represent the recursive application of 𝜙↑(𝑆𝑦⃗) from ℝ𝑀
𝑦 to 𝕌𝐿. The

spatial intersection function 𝑆𝑥⃗ ∩𝑠 𝑆𝑦⃗ computes the intersection of the sets 𝑆𝑥⃗
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and 𝑆𝑦⃗ with respect to 𝕌𝐿. Compute the spatial intersection as follows:

𝑆′
𝑥⃗
= Φ↑(𝑆𝑥⃗)

𝑆′
𝑦⃗
= Φ↑(𝑆𝑦⃗)

𝑆𝑥⃗ ∩𝑠 𝑆𝑦⃗ = 𝑆′
𝑥⃗
∩ 𝑆′

𝑦⃗
.

The spatial intersection function computes a normal set intersection on two sets
of points, but first maps both sets to the root of a trie. Since the root represents
a global location that all points have a location within, this function effectively
keeps the points in each set that overlap in their location. Figure 4.9 depicts
this operation. Other related operations like spatial union are possible, but this
intersection function is required for the downstream functions given next in order
to account for the possibility of projections.

Root

Y

Y Y

Spatial intersection

Identity Identity

Figure 4.9: A spatial intersection. The com-
bined blue/orange points in the root represent
the intersection of the points mapped to from
the child reference spaces.

The downstream mapping function requires two different definitions, starting with
the downstream hull given in Definition 4.3.4.

Definition 4.3.4 (Downstream hull) Let ℝ𝑁
𝑐 be a reference space with definition ℝ𝑁

𝑐 = (ℝ𝑀
𝑝 , 𝑝⃗ , 𝑜⃗ , 𝑟⃗ , 𝑐⃗). Let

𝑆𝑥⃗ be a set of points where for each 𝑥⃗ ∈ 𝑆𝑥⃗ , 𝑥⃗ is a point in ℝ𝑀
𝑝 . Let 𝑃 be a partial permutation matrix defined

on ℝ𝑁
𝑐 and ℝ𝑀

𝑝 .
A downstream hull 𝛿↓(𝑆𝑥⃗) maps the set 𝑆𝑥⃗ from ℝ𝑀

𝑝 to ℝ𝑁
𝑐 . Compute the downstream hull as follows:

𝛿↓(𝑆𝑥⃗) =
⋃︂
𝑥⃗∈𝑆𝑥⃗

{︂
𝑑⃗ + 𝑖⃗ | where for each 𝑗 ∈ [0, 𝑁), 𝑑 𝑗 =

⌊︃
𝑡 𝑗𝑟 𝑗

𝑐 𝑗

⌋︃
and 𝑡⃗ = 𝑃(𝑥⃗ − 𝑜⃗) and 𝑖 𝑗 ∈ [0, 𝑟𝑗)

}︂
.

The downstream hull is analogous to the upstream mapping function given
in Definition 4.3.2, except that the interval comes from refinement instead of
coarsening. This function is referred to as a hull because it computes a superset
of the possible points since it does not account for the issue with projections
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5: The next chapter abuses this slightly with
the introduction of locality accesses, but gives
a well-defined result for what it means to ac-
cess points (data) outside the bounds of a
tensor.

(meaning it will project points to a single point in the child even if the projection is
spatially unsound). The downstream mapping function given in Definition 4.3.5
includes the logic necessary to adjust for this scenario.

Definition 4.3.5 (Downstream mapping) Let ℝ𝑁
𝑐 be a reference space with

definition ℝ𝑁
𝑐 = (ℝ𝑀

𝑝 , 𝑝⃗ , 𝑜⃗ , 𝑟⃗ , 𝑐⃗) in a trie with root 𝕌𝐿 and 𝑆𝑥⃗ be a set of points
where for each 𝑥⃗ ∈ 𝑆𝑥⃗ , 𝑥⃗ ∈ ℝ𝑀

𝑝 .

Let Δ↓(𝑆) represent the recursive application of 𝛿↓(𝑆) from 𝕌𝐿 to ℝ𝑁
𝑐 . A down-

stream mapping 𝜙↓(𝑆𝑥⃗) maps the set 𝑆𝑥⃗ from ℝ𝑀
𝑝 to ℝ𝑁

𝑐 while accounting
for invalid spatial projections. Compute the downstream mapping as follows:

𝜙↓(𝑆𝑥⃗) = Δ↓(𝛿↓(𝑆𝑥⃗) ∩𝑠 𝑆𝑥⃗).

The downstream mapping function in Definition 4.3.5 utilizes the spatial inter-
section and downstream hull functions in order to map only those points from
parent-to-child that have a spatially valid projection. The term 𝛿↓(𝑆𝑥⃗) first com-
putes the downstream hull assuming that all points in 𝑆𝑥⃗ have valid locations in
the child. The intersection 𝛿↓(𝑆𝑥⃗) ∩𝑠 𝑆𝑥⃗ intersects the location of those mapped
points with the original points in 𝑆𝑥⃗ . The points that intersect in the root have
locations that overlap, meaning they have a valid location in the child reference
space thus can be mapped back down from the root, which is what the final Δ↓

application performs.

For bijective mappings, no projections can occur, so the downstream hull and
downstream mapping functions are the same and can be written as follows:

𝜙↓(𝑆𝑥⃗) = 𝛿↓(𝑆𝑥⃗) =
⋃︂
𝑥⃗∈𝑆𝑥⃗

𝑃(𝑥⃗ − 𝑜⃗).

For embedded mappings, the downstream hull and downstream mapping be-
come:

𝛿↓(𝑆𝑥⃗) =
⋃︂
𝑥⃗∈𝑆𝑥⃗

𝑃(𝑥⃗ − 𝑜⃗)

𝜙↑(𝑆𝑥⃗) = Δ↓(𝛿↓(𝑆𝑥⃗) ∩𝑠 𝑆𝑥⃗).

Together, these definitions provide all the core functionality necessary to move
points all throughout the trie (up, down, and laterally) and compare locations.

4.4 Adding Tensors

A tensor reference space provides the final component necessary for UniTe and
simply bounds a set of points within a reference space, which defines the tensor.
The bounds can be represented by an extent in each dimension corresponding
to a simple linear constraint that creates a hyperrectangular shape. The primary
effect of bounding the points is that tensor reference spaces are finite, thus the
operations defined earlier only apply to points within the bounds of the tensor5.
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Definition 4.4.1 gives the definition of a tensor reference space, which builds off
of the reference space definition from 4.2.1. Tensors are built out more in the
next chapter with the introduction of blocks and views.

Definition 4.4.1 (Tensor reference space) A tensor reference space, 𝕋𝑁 , is
an 𝑁-dimensional reference space with an associated extent defined by the
tuple (ℝ𝑁 , 𝑒⃗), where

ℝ𝑁 is the associated reference space of 𝕋𝑁 and
𝑒⃗ = (𝑒0 , . . . , 𝑒𝑁−1) represents the extent of 𝕋𝑁 with respect to ℝ𝑁 (𝑒𝑖 ≥ 1).

Ample prior work exists in the area of tensors, particularly in how to represent
them within a program. UniTe’s representation sits at a lower-level than much of
the work since it largely deals with unconstrained sets of points, but the addition
of bounds for tensors moves UniTe towards other representations such as the
polyhedral model [46–48]. While UniTe does not consider these models directly
(as it is not necessary for the implementations described later in this dissertation),
they could prove useful when extending UniTe for other domains that have more
complex usages of tensors (or have more shapes than just hypperectangular–for
example, more general rectilinear shapes).

4.5 Summary

This chapter introduced the fundamental abstraction for capturing and reasoning
about spatial relationships, UniTe. At its core, UniTe defines reference spaces
which create different frames of reference for describing the location of points.
Child reference spaces are defined relative to their parent, creating a trie structure
where reference spaces can differ in their dimensionality, axes layout, origin,
refinement, and coarsening. UniTe provides reference space mappings to quantify
the relationships between the parent and child reference spaces, as well as
mappings between points in difference spaces, ultimately making it possible
to compare the location of points or sets of points (including tensors) across
different spaces in the trie.

The next chapter builds some higher-order components on top of UniTe and
begins to look at how to map these tensors to data. Chapter 6 shows how to
apply UniTe to various kernels within JPEG and H.264, while Chapters 7 to 9
describe different approaches to implementing the abstraction.
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While the last chapter provided the necessary foundations for connecting location
with sets of points and tensors, it provides relatively low-level operations that
do not take into account the actual data tied to a tensor. This chapter extends
UniTe with a set of higher-order tensors and operations that focus on the data
aspect, providing ways to create, share, and access the underlying data. The
implementations CoLa and SHiM (introduced in Chapters 8 and 9, respectively)
build off of this extension, referred to as UniTe eXtended, or UniTeX. While
these later chapters use UniTeX in the context of block-based compression, the
material in this chapter is still general enough to support more than just that, so
it is presented independent of any particular domain.

5.1 Extending Tensors

UniTeX splits the tensor reference space of UniTe into two separate categories:
block tensor reference spaces (blocks) and view tensor reference spaces (views).
From an implementation point-of-view, blocks correspond to multidimensional
arrays that have their own data storage, while views represent lightweight tensors
that reference existing blocks. Thus a block can exist on its own, but a view
cannot. This is a necessary detail to avoid unnecessary copying of data in an
implementation, but also provides a more intuitive data representation. This
chapter does not provide any specific operation for creating an initial block from
scratch and instead leaves it to the implementation.

Both views and blocks maintain mappings to their parents as with the tensor
spaces of UniTe, but views also maintain an implicit mapping to the block that
they reference, which is referred to as the nearest block. A view and its nearest
block can be arbitrarily far apart, but will always maintain an ancestor-descendant
relationship, with the block representing the ancestor and the view representing
the descendant. Sticking with the trie representation, this can be shown with
additional upwards links in the trie as in Figure 5.1 on Page 60.

By themselves, blocks and views are not a novel construct and appear in many
existing languages and libraries such as Julia and NumPy (see Chapter 10
for more examples of view-centric systems). However, UniTeX defines several
higher-order operations on top of blocks and views that are either novel (such as
colocation) or easier to reason about using UniTe (such as locality access). The
next section defines a selection of these operations, and the next chapter looks
at how to utilize many of these operations within block-based compression.
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Figure 5.1: A trie containing blocks and
views. Both blocks and views point to their
parent as with the trie representations for ref-
erence spaces. However, views also point to
their nearest block, which contains the data
they reference.

Tensor derivation

Nearest block

Block

View

T

b = block_copy(T)

b

Figure 5.2: A block copy operation. Block
copy creates a new block (orange) from an
existing tensor (grey), with the existing ten-
sor becoming the parent and the new block
becoming the child. The new block has the
same absolute parameterization as the par-
ent.

5.2 Extending UniTe Operations

Using blocks and views opens the door for a variety of other operations based
on UniTe that can be used to access data within these tensors, as well as to
derive new blocks and views. Technically, any operations that conform to UniTe
are allowed, however this section focuses on 10 particular operations listed in
Table 5.1.

Table 5.1: Operations defined in UniTeX. b
and v represent a block and view, respec-
tively, while T represents a tensor which can
be a block or a view.

Operation Syntax UniTeX Section
Block copy b = block_copy(T) 5.2.1
Virtual permute v = permute(T) 5.2.2
Virtual slice v = T / k 5.2.2
Virtual refine v = refine(T,F) 5.2.2
Virtual coarsen v = coarsen(T,F) 5.2.2
Partition v = T[x0:y0:z0,...,zN:yN:zN] 5.2.3
Colocation v = T0[T1] 5.2.4
Coverage v = cov(x,T0,T1) 5.2.5
Read val = T(i0,...,iN) 5.2.6
Write T(i0,...,iN) = val 5.2.6

5.2.1 Block Copy

Syntax: b = block_copy(T)

Block copy is the simplest operation and creates a new block, b, with the same
parameterization as tensor T. b becomes a child of T as well. This operation
provides a simple way to create a new block with the same location as another
block, but pointing to a different set of data. For example, b and T could both
represent the same frame within a video, but one storing the color version and
the other storing the greyscale version.
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1: When only coarsening is used, it is effec-
tively the same as striding, which is the term
more commonly associated with array slicing.

5.2.2 Virtual Permute, Slice, Refine, and Coarsen

Syntax: v = permute(T,F)

Syntax: v = T / K

Syntax: v = refine(T,F)

Syntax: v = coarsen(T,F)

These operations function just like their counterparts in UniTe, but return new
views from each. This allows changing the representation of underlying data
without having to actually copy it. Figure 5.3 highlights each of these operations.
If a new block is required after one of these operations, a block copy can simply
be used on the view to create a new block.

5.2.3 Partition

Syntax: v = T[x0:y0:z0,...,xN:yN:zN]

The partition operation combines the UniTe translate and coarsen operations
together, allowing a user to extract a segment of a tensor given a new origin (the
x parameters), a stopping point in each dimension (the y parameters), and a
coarsening factor (the z parameters). This operation returns a view and functions
like array slice operations in existing tools like Python1. The left side of Figure 5.4
on Page 62 shows an example of a partition operation.

Note that the view created from partitioning does not necessarily have to reference
data within the bounds of the original partitioned tensor. A concern within an
actual implementation would be making sure that accesses to the underlying
array are in-bounds, however, a partition does not actually access any data. Thus,
a partition can be used to create arbitrary views over any location, regardless
of whether data actually exists for that view, such as shown on the right side
of Figure 5.4. Of course, accessing such a view requires handling cases that
may result in an out-of-bounds access on an underlying array. This is discussed

Y

X
Z

X

Z
Y

v = vpermute(T,[2,0,1])

T

v

Y

X
Z

v = T / 2

T

vY

X

T

v

v = vrefine(T,[1,2])

T

v

v = vcoarsen(T,[1,2])

Figure 5.3: From left-to-right, a permutation, slice, virtual refinement, and virtual coarsening operation. Each creates a new view from an existing
tensor, with the existing tensor becoming the parent and the new view becoming the child.
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Figure 5.4: Partition operations on tensors.
The left side shows a partition that points
to a location fully within the parent tensor.
The right side shows a partition that points
outside the parent tensor. In this case, the red
Xs may or may not correspond to valid data
(see locality access in Subsection 5.2.6), but
since a view does not access data, this is
perfectly valid.

T

v

v=T[1:3:1,0:4:1]

T

v

v=T[1:3:1,2:6:1]

2: Another way to think about colocation is
that it lets you index a tensor with another
tensor.

3: The only constraint is that the views are
valid with respect to UniTe. For example, colo-
cation cannot produce a view that has greater
dimensionality than the parent, which would
violate the semantics of reference spaces.

4: T1 can be anywhere in the trie; it does not
necessarily need to be in the same path as
T0.

shortly in the context of locality access, which differentiates between data and
location with regards to what "out-of-bounds" means.

5.2.4 Colocation

Syntax: v = T0[T1]

The colocation operation maps a tensor from one tensor space (the source)
to another (the destination). This creates a view relative to the destination cor-
responding to the location of the source2. There are many possible ways to
parameterize the resulting view in regards to whether the parameters of the
source or destination should be used. For example, say the source and destina-
tion define different permutations on their axes. Some domains may prefer the
new view preserve the source permutation, while others may want the destination
permutation. UniTeX itself does not constrain how to combine the parameters3,
however, the implementations introduced in Chapters 8 and 9 use the source
parameterization for the new view. Figure 5.5 on Page 63 shows two examples
of colocation, one using the source’s parameterization and the other using the
destination’s parameterization.

Like with partitions, a view created from colocation does not have to reference
data within the bounds of the destination tensor since it does not actually access
the underlying data.

5.2.5 Coverage

Syntax: v = cov(x,T0,T1)

At a high-level, the coverage operation returns a view that contains all the points
in a tensor T0 that overlap the location of the point x with respect to another tensor
T1. This operation is useful when refinement and/or coarsening are applied since
they create multiple points sharing the same location. However, depending on the
amount of refinement and/or coarsening applied, coverage can return different
views, hence the need for the addition tensor T1, which specifies how "far" to walk
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b0

Using the source’s 
parameterization

b0 b0
b1

Original
b0 = source

b1= destination 
 

Using the destination’s 
parameterization

v = b1[b0] v = b1[b0]

b1 b1

Figure 5.5: Two possible versions of colocation using the source’s parameterization (middle) and the destination’s (right). The left gives the initial
structure with the left block pointing to the first row of the parent and applying a horizontal coarsening by two. The right block simply points to the first
two rows of the parent. Using the source’s parameterization effectively creates a virtual coarsening on b1. Note that b0, b1, and the parent could also
be views; this example just sticks with blocks to reduce clutter in the image.

5: Reading from or writing to a view propa-
gates to the view’s nearest block.

the trie in order to compute the coverage4. Figure 5.6 shows various examples
of how varying T1 relative to T0 impacts the returned view for a series of 1D
reference spaces.

T1

T0

T2

x

v=cov(x,T2,T2) v=cov(x,T2,T1) v=cov(x,T2,T0)

Figure 5.6: Different versions of the coverage operation showing how context effects the resulting view. The left figure gives the initial state and the
others show coverage with respect to different reference spaces (in general, they do not need to be ancestors). Since these reference spaces are
refined relative to one another, more points are included in the resulting view as coverage moves up the trie. The downward arrows show how each
point within each reference space maps from the parent to the child.

5.2.6 Data Access

Syntax: val = T(i0,...,iN) (read)
Syntax: T(i0,...,iN) = val (write)

The data access operations are necessary for reading from and writing to data
in tensors5. When the accessed location maps to an index that is in-bounds with
respect to the tensor and corresponding underlying memory, the read and write
operations are straightforward and just directly access the data at that index. In
cases where the locations accessed are outside the bounds of the tensor, or
even outside the bounds of the memory, UniTeX differentiates between location
out-of-bounds and memory out-of-bounds.
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b

b(-1,1)

b(2,1)

Figure 5.7: In-bounds and out-of-bounds ac-
cesses on a block.

First, consider a simple example with a single 4x4 block as shown in Figure 5.7.
In an implementation, this block would correspond to an underlying memory
allocation with enough space to hold at least 16 data elements. A read (or write)
specified with 2D indices (𝑌, 𝑋) points to valid data in the memory if the indices
are anywhere in the range (𝑌, 𝑋) : 0 ≤ 𝑌 < 4 and 0 ≤ 𝑋 < 4. The access in
the diagram at (2,1) is valid since it points to a valid memory location, while the
index at (-1,1) is invalid. This is hardly surprising, but the key with this is how
implementations handle such an "invalid" access on an array. Implementations
range the entire spectrum for this, with languages like C not performing any
checks (leaving the door open for segmentation faults), and others like NumPy
letting the users choose from a variety of options.

For example, in NumPy, users can choose from throwing an error, clipping the
index, or wrapping the index. Other libraries, such as ones for image processing
like JuliaImages [49] or Halide [50], also provide options to return default values
for out-of-bounds accesses, which are helpful for dealing with accesses at the
edge of an image. This is all perfectly reasonable for accesses on independent
tensors/arrays; however, UniTeX exploits spatial relationships across tensors to
to provide a larger set of semantics (referred to as locality access semantics) that
handle (and make it easier to reason about) these "out-of-bounds" accesses.

The left side of Figure 5.8 shows a straightforward example of a locality access
on a view where the access refers to data in the row below the view. However,
this particular data has a corresponding location within the block that the view
points to, thus UniTeX supports returning that point in the block. The key in this
example is that there is a difference between the index itself being out-of-bounds,
and the location being out-of-bounds, meaning an out-of-bounds index can still
point to an in-bounds location.

Figure 5.8: Locality accesses on a view (left)
and block (right). Both support walking up the
trie until finding data that corresponds to the
initial out-of-bounds location accessed.

b

v

v(-1,1)

b

v

b1(-1,-1)

b1
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6: Of course, if an index results in a truly out-
of-bounds location that does not exist in any
block, then an implementation would have
to handle that and either throw an error or
adjust the index accordingly.

At some point, a locality access may result in accessing a location that is outside
of a block as well. In this scenario, two options are available: 1) utilize an existing
approach such as throwing an error or clipping the index, 2) continue walking
up the trie. The first option is easy and just requires checking whether the final
index is within the bounds of the block or not. The second option treats the block
like a view and walks up the trie until an access within the bounds of a block is
encountered6. The right side of Figure 5.8 shows an example of locality access
on a block. This type of access is only possible due to the fact that UniTe can
represent the location of both blocks and views.

5.3 Summary

This chapter gave a look at higher-order structures and operations that can
be defined by extending the core principles of UniTe. This extension, UniTeX,
separates tensors into blocks and views, where blocks correspond to a new
multidimensional array and views reference an existing block. While blocks and
views themselves are not a new idea, UniTeX builds several operations on top of
them that exploit location information. In particular, UniTeX defines the colocation
and locality access operations, which are only possible due to the fact that
all tensors have locations that can be related to one another within a single
universe.

The next chapter shifts the focus to block-based compression and looks at how
UniTe and UniTeX provide intuitive ways to represent and access data within
several kernels from JPEG and H.264. Then Chapters 7 to 9 look at implementing
UniTe and UniTeX through the use of domain-specific languages.





Applying UniTeX to JPEG and H.264 6
6.1 Syntax . . . . . . . . . . . 67
6.2 JPEG . . . . . . . . . . . . 67
6.2.1 Primary Encoding Loop . 68
6.2.2 Color Transformation . . . 69
6.2.3 DCT . . . . . . . . . . . . . 69
6.2.4 Entropy Coding . . . . . . 70
6.3 H.264 . . . . . . . . . . . . 71
6.3.1 Intra-Prediction Loop . . . 71
6.3.2 Frame Coarsening/Refine-

ment . . . . . . . . . . . . 73
6.3.3 Mode Verification . . . . . 75
6.3.4 Vertical Right Intra-

Prediction . . . . . . . . . 76
6.4 Summary . . . . . . . . . . 77

UniTe and its extension UniTeX define themselves independent from any partic-
ular application, presenting a broad and flexible set of components that can be
used in many domains. This chapter provides a concrete look at how these com-
ponents apply in the context of block-based compression, utilizing kernels from
various stages in JPEG and H.264 as introduced in Chapter 2. The examples
provided in this chapter highlight use cases of UniTeX as applied to block-based
compression, and also serve to highlight some various features of these kernels
that are not directly related to the application, but are important for designing an
implementation (discussed more in Chapters 7 to 9).

Note that the kernels described in this chapter represent an "idealized" view
of an encoder, leaving out some finer algorithmic details that are not relevant
to the abstractions. Also ignored are details such as how to implement the
underlying data structures and operations. Chapters 8 and 9 dive more into
these implementation details, as well as provide concrete examples of how
the pseudocode in this chapter translates to an actual program. However, this
chapter does point out some details that should be considered when choosing
an implementation. Chapter 7 explores these considerations in more detail.

6.1 Syntax

All the UniTeX operations used in the pseudocode of this chapter follow from
the syntax introduced in the prior chapter, which is reintroduced in Table 6.1. In
addition, all the lines in the pseudocode that correspond to UniTeX operations
have their line numbers highlighted in red.

Operation Syntax UniTeX Section
Block copy b = block_copy(T) 5.2.1
Virtual permutation v = permute(T) 5.2.2
Slice v = T / k 5.2.2
Virtual refinement v = refine(T,F) 5.2.2
Virtual coarsening v = coarsen(T,F) 5.2.2
Partitioning v = T[x0:y0:z0,...,zN:yN:zN] 5.2.3
Colocation v = T0[T1] 5.2.4
Read val = T(i0,...,iN) 5.2.6
Write T(i0,...,iN) = val 5.2.6

Table 6.1: Pseudocode syntax used in the
examples of this chapter. b and v represent
a block and view, respectively, while T rep-
resents a tensor which can be a block or a
view.

6.2 JPEG

This section focuses on four different kernels within the JPEG encoder: the pri-
mary encoding loop (Subsection 6.2.1), color transformation (Subsection 6.2.2),
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the DCT (Subsection 6.2.3), and entropy coding (Subsection 6.2.4). Together,
these serve as a gentle introduction to some basic usages UniTeX.

6.2.1 Primary Encoding Loop

The pseudocode and diagram in Figure 6.1 show the structure of the main
encoding loop in JPEG. At a high-level, these two functions shown are responsible
for getting the initial input data (Lines 1 to 7) and dispatching it throughout the
various stages for compression. Line 12 initially partitions the input into 8x8
views and creates a block (Line 13) with the same location as the 8x8 view. This
block (ycbcr) holds the result of converting the input from RGB to YCbCr format
(Line 14). Then the function partitions ycbcr into views representing its three
constituent color planes (Lines 15 to 17), which are passed to the remaining
stages of compression. The read accesses on Lines 27 to 29 store the upper-left
value of each processed 8x8 region, which is required for entropy coding.

Why this example

While straightforward, this example highlights an important benefit of data
layout transformations through permutations. The initial start function begins
by taking interleaved data and immediately applying a virtual permutation

1 def start(H,W)
2 if input_data is interleaved then
3 image = <read interleaved into block>
4 jpeg(permute(image,(2,0,1)))
5 else
6 image = <read planar into block>
7 jpeg(image)
8 def jpeg(image: t)
9 last_Y,last_Cb,last_Cr = 0

10 for y = 0 to h by 8 do
11 for x = 0 to w by 8 do
12 rgb = image[y:y+8:1,x:x+8:1,0:3:1]
13 ycbcr = block_copy(rgb)
14 colorTransform(rgb,ycbcr)
15 Y = ycbcr[0:1:1,0:8:1,0:8:1]
16 Cb = ycbcr[1:2:1,0:8:1,0:8:1]
17 Cr = ycbcr[2:3:1,0:8:1,0:8:1]
18 dct(Y)
19 dct(Cb)
20 dct(Cr)
21 quantize(Y, luma_quant_table)
22 quantize(Cb, chroma_quant_table)
23 quantize(Cr, chroma_quant_table)
24 entropy(Y, last_Y)
25 entropy(Cb, last_Cb)
26 entropy(Cr, last_Cr)
27 last_Y = Y(0,0,0)
28 last_Cb = Cb(0,0,0)
29 last_Cr = Cr(0,0,0)

Raw 
data

Is interleaved?

Yes No

Partition

Permute

Color

CrCbY

Rest of the pipeline

Figure 6.1: The main JPEG encoding loop. The start function takes in the raw data in either interleaved or planar format and then converts it to
planar format so that the jpeg function can logically access data in planar format. The diagram depicts the high-level flow of these two functions.
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1: The left one could technically slice plane
to 1D since the Y index is always zero.

2: In reality, there are some differences be-
tween scaling in the row and column 1D trans-
forms. This can easily be handled by passing
in the scaling factor as a parameter to the
transform.

to make it look like planar data. This makes it so the jpeg function only
needs to consider planar input, as opposed to having to deal with both planar
and interleaved. The permutation functions allow abstracting this sort of
data layout from the get-go, such that only the top-level functions have to
actually worry about handling the different layouts. The same idea applies
with operations like coarsening and refinement. The further these operations
are pushed upwards, the less specialized the inner functions needs to be,
which helps simplify the code.

6.2.2 Color Transformation

Figure 6.2 shows the pseudocode for color conversion. Following from the prior
code, this code expects that rgb and ycbcr are both logically represented in
planar format. The main operations used here are basic in-bounds accesses for
reads and writes (Lines 5, 7 and 9).

Why this example

The reads and writes in the color conversion code all represent elementwise
accesses on tensors, which are extremely prevalent throughout many of
the stages of block-based compression. The implementations introduced in
Chapter 8 and Chapter 9 provide a simple syntax for performing elementwise
operations across tensors without the need for explicit loop nests.

1 def colorTransform(rgb: t, ycbcr: t)
2 for y = 0 to 8 do
3 for x = 0 to 8 do
4 # Compute Y component
5 ycbcr(0,y,x) = rgb(0,y,x)*0.299+rgb(1,y,x)*0.587+rgb(2,y,x)*0.114;
6 # Compute Cb component
7 ycbcr(1,y,x) = rgb(0,y,x)*-0.168736+rgb(1,y,x)*-0.33126+rgb(2,y,x)*0.50000+128;
8 # Compute Cr component
9 ycbcr(2,y,x) = rgb(0,y,x)*0.5+rgb(1,y,x)*-0.418688+rgb(2,y,x)*-0.081312+128;

Figure 6.2: Pseudocode for the RGB to YCbCr color transformation stage. Like the jpeg function shown prior in Figure 6.1, this function assumes that
the inputs are logically in planar format, even though the underlying data may actually have an interleaved layout.

6.2.3 DCT

Figure 6.3 on Page 70 shows parts of two different versions of DCT functions,
which mainly involve partitioning, reads, and writes. Both functions apply the
2D DCT as separate 1D transforms (Lines 11 and 12 on the left and Lines 20
and 21 on the right), where the first transform computes the 1D DCT across the
rows, and the second across the columns. Both apply slicing as well (Line 2
on the left and Line 11 on the right) in order to access plane as a 2D object
instead of a 3D object1. However, the version on the left applies a permutation
that transforms the columns to logically appear as rows, making it so the same
1D DCT kernel can be used for both the row and column transform2. The version
on the right does not use a permutation, thus requires two separate functions,
one for the rows and one for the columns, which only differ in the order of the Y
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and X coordinate (compare Lines 5, 6, 8 and 9 on the left against Lines 14, 15,
17 and 18 on the right).

Why this example

Here, the use of a permutation helps abstract the algorithm (as opposed to
just the data), making it invariant to whether the DCT is on a row or a column.

The slicing operation allows the plane to be accessed as a 2D tensor (which
is what it logically represents), even though it is derived from a 3D tensor
originally. This further separates the physical layout from the logical data
layout.

1 def dct1d(plane: t)
2 plane2D = plane/2
3 for r = 0 to 8 do
4 vec = plane2D[r:r+1:1,0:8:1]
5 tmp0 = vec(0,0) + vec(0,7)
6 tmp7 = vec(0,0) - vec(0,7)
7 ...
8 vec(0,3) = scale(tmp6+z2+z3, SCALE)
9 vec(0,1) = scale(tmp7+z1+z4, SCALE)

10 def dctA(plane: t)
11 dct1d(plane)
12 dct1d(permute(plane,(0,2,1)))

1def dct_row(plane: t)
2plane2D = plane/2
3for r = 0 to 8 do
4vec = plane2D[r:r+1:1,0:8:1]
5tmp0 = vec(0,0) + vec(0,7)
6tmp7 = vec(0,0) - vec(0,7)
7...
8vec(0,3) = scale(tmp6+z2+z3, SCALE)
9vec(0,1) = scale(tmp7+z1+z4, SCALE)
10def dct_col(plane: t)
11plane2D = plane/2
12for c = 0 to 8 do
13vec = plane2D[0:8:1,c:c+1:1]
14tmp0 = vec(0,0) + vec(7,0)
15tmp7 = vec(0,0) - vec(7,0)
16...
17vec(3,0) = scale(tmp6+z2+z3, SCALE)
18vec(1,0) = scale(tmp7+z1+z4, SCALE)
19def dctB(plane: t)
20dct_row(plane)
21dct_col(plane)

Figure 6.3: Pseudocode for part of the DCT transformation. The left and right versions of the DCT presented here use two individual 1D transformations
that first go over the rows of the input, then the columns. The left DCT version uses permutations and slicing, making it possible to use the same
1D DCT code for both rows and columns by permuting the columns and making them accessible as rows. The right DCT shows the code without a
permutation, which requires two separate functions, even though the accesses only differ slightly.

6.2.4 Entropy Coding

Figure 6.4 on Page 71 shows the high-level structure of Huffman entropy coding,
focusing on the interleaving of the control flow structure and reads and writes
on plane (Lines 2 and 8). JPEG utilizes a zigzag traversal for accessing the AC
values, where the call to zigzag represents some operation (or table lookup) that
transforms linear coordinates into the appropriate zigzag coordinate.

Why this example

While this part of the encoder is outside the scope of UniTeX, the implementa-
tions in Chapter 8 and Chapter 9 take special care to ensure that non-UniTeX
operations easily interleave with UniTeX operations, ensuring that users are
provided with a wide variety of features necessary to implement full encoders.
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1 def entropy(plane: bv)
2 DC = plane(0,0,0)
3 if (...) then
4 while (...) do
5 if (...) then
6 for (i = ...) do
7 for (j = ...) do
8 AC = plane((0,zigzag(i,j)))
9 if (...) then

10 else
11 while (...) do
12 if (...) then
13 while (...) do
14 if (...) then

Figure 6.4: High-level structure of Huffman entropy coding in JPEG. This function interleaves tensor reads on plane with several pieces of other
control flow. The zigzag traversal iterates through the plane using the ordering shown on the right.

This is necessary here to support all the control flow, especially the non-
standard zigzag traversals. Most implementations represent the zigzag via
an indirect lookup on a matrix that stores the zigzag coordinate at each
row/column index corresponding to the linear coordinate.

6.3 H.264

The JPEG example showed several straightforward uses of operations like
partition, slice, and tensor access. H.264 utilizes all of these operations, along
with the rest of the UniTeX operations. Rather than include stages similar to
JPEG, this section highlights a few examples in H.264 related to intra-prediction
which have very different use cases from JPEG. This provides a broader view of
how UniTeX is useful. There are many ways to define the underlying algorithms
for these stages, however, this section opts for straightforward versions for
presentation purposes, so this section may show some operations that would
not necessarily occur in a real implementation (such as making extra copies of
data).

6.3.1 Intra-Prediction Loop

Figure 6.5 on Page 72 shows the main control loop for 4x4 intra-prediction.
H.264 also contains 16x16 and 8x8 forms of intra-prediction, but the overall
idea is the same. This code can be broken down into four main segments:
frame coarsening/refinement, frame partitioning, mode verification, and prediction.
Lines 3 and 4 create a new tensor representing a coarsened and refined version of
the original frame. This will be explained shortly. The partitions on Lines 10 and 15
extract macroblocks from the frame, then submacroblocks from the macroblocks,
respectively. Prediction happens on each of these submacroblocks, and each
submacroblock can be predicted independently. Since there are nine possible
modes of prediction, Lines 17 to 19 creates nine blocks with the same location
of the submacroblock that will store the individual predictions.
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1 def predict(frame: t, rframe: t, H, W)
2 # block copy
3 coarsenedFrame = block_copy(coarsen(frame, (16,16)))
4 usedIntraPred = refine(coarsenedFrame, (16,16))
5 ...
6 intraLoop(frame, rframe, usedIntraPred, H, W)
7 def intraLoop(frame: t, rframe: t, usedIntraPred: t, H, W)
8 for r = 0 to H by 16
9 for c = 0 to W by 16

10 mblk = frame[r:r+16,c:c+16]
11 predMblk = block_copy(mblk)
12 # Partition into 4x4 submacroblocks
13 for r2 = 0 to 16 by 4
14 for c2 = 0 to 16 by 4
15 smblk = mblk[r2:r2+4:1,c2:c2+4:1]
16 # There are 9 modes
17 pred0 = block_copy(smblk)
18 ... other pred blocks ...
19 pred8 = block_copy(smblk)
20 # Initialize state
21 bestCost = MAX
22 bestMode = -1
23 bestPred = ∅
24 # Try each mode if possible
25 if (canRunMode0(frame,mblk,pred0,usedIntraPred)) then
26 mode0(pred0, rframe)
27 cost = sad(pred0,smblk)
28 if cost < bestCost then
29 bestCost = cost
30 bestMode = 0
31 bestPred = pred0
32 ... other modes ...
33 if (canRunMode8(frame,mblk,pred8,usedIntraPred)) then
34 mode8(pred8, rframe)
35 cost = sad(pred8,smblk)
36 if cost < bestCost then
37 bestCost = cost
38 bestMode = 8
39 bestPred = pred8
40 # Write the best prediction
41 for i = 0 to 4 do
42 for j = 0 to 4 do
43 predMblk[bestPred](i,j) = bestPred(i,j)
44 return bestCost,predMblk

Figure 6.5: The structure of the main control flow for 4x4 intra-prediction. This begins by creating a special coarsened version of the input frame (see
Subsection 6.3.2 for more info). The outer loops create macroblocks and submacroblocks. The code at the inner level generates the necessary blocks
for holding each possible type of prediction, then checks which modes can execute, and then runs the modes. It finishes by copying the best prediction
back into another macroblock.

3: These operations would exist for all nine
modes even though only two are shown.

Not all nine modes of prediction are valid for every submacroblock, and depend
on factors such as whether the submacroblock is at a frame edge or not. Lines 25
and 33 verify whether a mode is valid3 through the canRunModeX functions, and
then performs the actual prediction (modeX). Both of these will be explained shortly.
Once the prediction is complete for the submacroblock (i.e. the best mode was
picked), the final loop writes the best prediction for the submacroblock back to its
corresponding location in the prediction macroblock via a colocation and write
on Line 43.
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Why this example

Intra-prediction in H.264 is a very involved process, and this example serves
to show all the different pieces that must come together in order to compute
a single prediction on a submacroblock. The remaining H.264 examples in
this section highlight some of the kernels within this main loop, so having this
initial example provides some necessary context for those.

This example also highlights how deep tensors can go within an encoder.
For example, frame, rframe, and usedIntraPred are created at the outer
levels of the code, but passed all the way through down into the innermost
prediction functions. Without UniTeX, this adds another layer of complexity
to an implementation as locations cannot just be handled locally; often, they
need to be tracked through all levels of the program. The depth of the tensors
(submacroblocks in this case) also impacts performance as many tensors
need to be created at the innermost levels of the program. The implementa-
tions given in Chapter 8 and Chapter 9 take this into account in their designs,
ensuring that creating tensors does not introduce additional overhead within
user code.

6.3.2 Frame Coarsening/Refinement

Lines 3 and 4 of Figure 6.5 on Page 72 use coarsening and refinement operators,
along with a block copy, to generate a block (coarsenedFrame) that has 1/16 the
size of the original frame (thus represents data at the macroblock level), but
can be indexed at the pixel level (using usedIntraPred). Figure 6.6 provides
a visualization and in-depth description of what this operation does. But to
understand the purpose of this, it is first necessary to understand how the
usedIntraPred view is utilized within the prediction.

Recall that H.264 prediction uses pixels from a reconstructed frame for the
prediction, as opposed to the raw frame pixels. This reconstruction represents
data that was already encoded (and decoded), which means it used either
intra-prediction or inter-prediction. H.264 includes an option that constrains intra-
prediction to only use reconstructed pixels that were also predicted via intra-
prediction. If a particular intra-prediction mode accesses reconstructed data
predicted with inter-prediction, that mode would be invalid and would not be used.
As a result, determining what type of prediction was used requires being able to
associate a flag with each pixel in the reconstructed data, so that intra-prediction
can check that the pixels it needs are valid. The usedIntraPred tensor in this
example is what stores those flags.

The most intuitive way to represent all the flags would be to create a tensor that
is the same size as the frame, such that every point within it contains the flag.
However, this is very wasteful as every pixel within a macroblock is predicted the
same way. The better way to approach this is to store one flag per macroblock.
This is optimal in terms of storage, but complicates accessing the data as it can
no longer be accessed at the pixel level; it must be accessed at the macroblock
level. However, being able to access at the pixel level is much more intuitive
and fits in better with how this tensor is actually utilized. This is exactly what the
code originally shown in Figure 6.5 does: it creates a block with macroblock-level
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Virtually coarsen 

Block

Virtually refine

All accesses in a macroblock map to the same value

frame

coarsenedFrame

coarsenedFrame (pre-block copy)

usedIntraPred

Block copy

View

Figure 6.6: Applying virtual coarsening and refinement to frame from Figure 6.5. This example simplifies the representation slightly in order to fit within
the diagram, and assumes the frame itself is 8x8, and macroblocks are 4x4. The colors indicate which parts of the tensors share the same location.
The virtual coarsening operation creates a view over the 8x8 frame, coarsening it to the macroblock-level instead of the pixel level. Then the copy
operation creates a new block. This new block effectively stores one value per macroblock as opposed to one value per pixel like the original frame.
Taking a step further, virtual refinement allows making the coarsened block "look like" the original block in terms of how many points can be indexed
within the refined view. Thus, it can be indexed as if it were an 8x8 frame, even though underneath it only stores 4x4 values (all the accesses map back
to a single value in usedIntraPred, as shown by the curved left-to-right arrow).

granularity (Line 3), then creates a refined view (Line 4), which can be accessed
at pixel-level granularity. The next example shows how to actually access the
usedIntraPred tensor.

Why this example

Even though this example is small in terms of code, it shows a very practical
use case that requires combining multiple UniTeX operations together (virtual
coarsening, block copy, and virtual refinement) and maintaining the correct
locations throughout. This general paradigm shows up constantly within
encoders as well–this particular flag shown here is not the only use case.
Without the abstraction, users would be required to manually handle all the
mappings and parameters between the various tensors created.

Location of Reads and Writes for Coarsened and Refined View Access

For the purposes of compression, any reads or writes to a coarsened view map
to a single point in the corresponding block. Other domains may want to map
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Virtually 
coarsen 

1. Write to here

2. Perform actual 
write here

Virtually 
coarsen 

1. Write to here

2. Perform broadcast

Virtually 
coarsen 

Initial state Style of write used in 
the compression kernels

A broadcasted write

Figure 6.7: Writing to a coarsened view and accessing the corresponding data in the corresponding block. The left shows the initial state. The middle
depicts how the kernels presented in this chapter (and the rest of the dissertation) assume that a write to a coarsened region maps to the upper-left
pixel. The right shows another possible case where the write is broadcast to all pixels corresponding to the location of the coarsened point. Reads
would operate in an analogous way, but could also support returning more complex results such as taking the average of all the points in the coarsened
region (or min, max, etc.).

4: This also assumes the existence of some
origin function which returns the origin param-
eter.

to different points, which can be done with UniTe and UniTeX since operations
like coverage can be used to access all the points with the same location. This
makes it possible to do something like take a write to a coarsened point in a
view and broadcast it all the points that it covers with respect to the parent block.
Figure 6.7 shows both cases for a write (a read would operate in a similar way).
Refinement is a little different since refined points in the view all map to a single
point in the corresponding block. However, coverage can again be used to have
more control over which points in the block are accessed, but it is not necessary
for these examples.

6.3.3 Mode Verification

To ensure that a particular intra-prediction mode is valid, an encoder needs to
check that 1) the data accessed actually exists and 2) only reconstructed pixels
predicted with intra-prediction are used. The first requirement involves checking
whether or not the current submacroblock exists at the edge of a frame, which
can be done by checking its origin relative to the frame. For example, Figure 6.8
on Page 76 shows code for verifying the vertical right mode of intra-prediction,
which requires the row above and column to the left of the current submacroblock
(pred). Thus, this mode cannot be used for a submacroblock that exists on the
top or left frame edge. Lines 4 and 5 performs a locality access to get the row and
column, then gets the origins4 relative to the frame using colocation on Lines 6
and 7.

If the data does exist (Line 8), the next step checks for intra-prediction using the
usedIntraPred tensor described earlier, using colocation to get a view represent-
ing the prediction submacroblock’s location within usedIntraPred. Depending on
the location of the submacroblock, up to three different macroblocks are adjacent
to it, meaning three different points need to be checked (see the right side of
Figure 6.8). Lines 11 to 13 check these three points, accessing usedIntraPred
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1 def canDoModeVR(frame: t, mblk: t, pred: t,
2 usedIntraPred: t)
3 # Make sure data exists
4 rowUp = pred[-1:0:1,0:4:1]
5 colLeft = pred[0:4:1,-1:0:1]
6 rowY,rowX = origin(frame[rowUp])
7 colY,colX = origin(frame[colLeft])
8 if rowY>0 && colX>0 then
9 # Check for intra-prediction

10 flags = usedIntraPred[pred]
11 upleft = flags(-1,-1) == INTRA
12 up = flags(-1,0) == INTRA
13 left = flags(0,-1) == INTRA
14 return left && up && left
15 else
16 return false

Zoomed-in on flags

Each is a single “virtual” pixel

Check surrounding values in row above 
and column to the left of the submacroblock 

“Virtual” submacroblock

Figure 6.8: Checking that the reconstructed data needed for performing 4x4 vertical right intra-prediction exists and was also predicted via intra-
prediction. The right side shows a zoomed-in view of flags (Line 10), showing colored regions that correspond to "virtual" submacroblocks and the
individual squares representing "virtual" pixels (virtual meaning there are not actually values per submacroblock/pixel since this is virtually refined).
With virtual refinement, it is possible to check the flag values at the pixel level, even though flags physically contains one value per macroblock, not
per pixel. The abstraction hides all the low-level indexing details.

as if it had pixel-level granularity. If all points are predicted via intra-prediction,
this mode can be used.

Why this example

While the earlier example showed how to construct the usedIntraPred tensor
using virtual coarsening and refinement, this example shows one way to
actually access it. The colocation operation abstracts away the mappings
needed to find the location of the submacroblock, while still maintaining the
virtual refinement of usedIntraPred.

6.3.4 Vertical Right Intra-Prediction

Figure 6.9 on Page 77 shows one mode of 4x4 intra-prediction referred to as
vertical right intra-prediction. This code starts by using colocation (Line 4) to get
the location in the reconstructed data (rframe). In this case, pred is a 4x4 block
representing the current submacroblock, and is also used to hold the resulting
prediction. The rest of the code relies on locality accesses to get the data in the
row above and the column to the left of the submacroblock.
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Surrounding data to use 
for prediction 4x4 region to predict

1 # Intra_4x4_Vertical_Right
2 def modeVR(pred: t, rframe: t)
3 # Map pred into rframe
4 p = rframe[pred]
5 for y = 0 to 4 do
6 for x = 0 to 4 do
7 zVR = 2*x-y
8 # Compute the prediction
9 if zVR == 0 || zVR == 2 || zVR == 4 || zVR == 6 then

10 pred(y,x) = (p(-1,x-(y>>1))+p(-1,x-(y>>1))+1)>>1
11 else if zVR == 1 || zVR == 3 || zVR == 5 then
12 pred(y,x) = (p(-1,x-(y>>1)-2)+2*p(-1,x-(y>>1)-1)+p(-1,x-(y>>1))+2)>>2
13 else if zVR == -1 then
14 pred(y,x) = (p(0,-1)+2*p(-1,-1)+p(-1,0)+2)>>2
15 else
16 pred(y,x) = (p(y-1,-1)+2*p(y-2,-1)+p(y-3,-1)+2)>>2

Figure 6.9: Vertical right 4x4 intra-prediction as defined in the H.264 standard [19]. The top image shows which of the pixels (green, blue, grey) are
accessed relative to pred (orange). The code utilizes colocation (Line 4) and locality accesses (Lines 10, 12, 14 and 16) in order to perform the
prediction, which accesses the points relative to the submacroblock pred.

Why this example

This example highlights the benefit of the indexing scheme used in UniTeX.
Rather than follow indexing like in other programs such as NumPy (which
may do something like wrap or clip an out-of-bounds index), the locality
access semantics provide a very intuitive correspondence between how the
standards define an operation and how to actually implement it.

6.4 Summary

The tensors and operations defined in UniTeX apply to many stages throughout
JPEG and H.264, and this chapter provided a look at several such examples.
While these examples are not the only usages of spatial relationships within
JPEG and H.264, they serve as exemplars of each operation and provide a broad
look at how UniTeX interleaves within the other processing for compression. It
also pointed out different considerations to take into account when implementing
these abstractions.

The next chapter shifts to the implementation side and discusses the pros and
cons of different approaches to implementing UniTeX at a high level. Following
that chapter are the two implementations, CoLa and SHiM, which provide a
concrete look at how to effectively implement UniTeX for use with compression.
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The last chapters described the theory behind UniTe and UniTeX and looked
at their application within several examples from JPEG and H.264, focusing on
how the abstraction helps simplify various operations. However, it also alluded to
some implementation considerations for both practicality and performance that
are taken into account by the CoLa and SHiM implementations introduced in the
next chapters. Both of these implementations are designed as domain-specific
languages (DSL) to provide performance parity with existing implementations.
Furthermore, they are also designed with flexibility in mind and provide users
with access to a variety of features necessary for implementing the parts of
compression that fall outside the domain of UniTeX. This chapter provides a
bridge between the discussion of application and implementation and focuses on
the reasons for selecting DSLs as opposed to another implementation strategy
such as a library. In particular, it provides examples of some of the difficulties that
come with current manual (Section 7.1) and library (Section 7.2) implementations,
and then discusses how a DSL (Section 7.3) provides a middle-ground combining
the benefits of a manual and library approach.

7.1 A Manual Approach

Due to the lack of existing work related to language support for encoders, im-
plementations for block-based compression encoders are largely implemented
from scratch, where each implementation chooses their own representation for
tensors1. While this may be fine for small programs, these end-to-end encoders
can contain hundreds of thousands of lines of code. Any additional implemen-
tation complexity on top of the complexity of the algorithms themselves opens
up the door for bugs, particularly indexing bugs, and leads to unnecessary code
obscurity.

Take the code on the top of Figure 7.1 on Page 80 as an example, which comes
from the reference implementation for H.264 (JM [8]). At first glance, it appears
that this code is doing some rather complicated operation between the pointer
objects due to the mixture of array indexing and pointer arithmetic. In reality,
all this code is actually doing is 1) computing the residual (i.e. subtraction)
between cur_img and prd_img and storing in m7, and 2) copying the prediction
from prd_img to cur_prd. There is no reason this code needs to be this obscure
for such a simple operation2. This highlights the need for some higher-level
abstraction to provide a uniform way to access the data and avoid code like this,
which is what the code on the bottom of Figure 7.1 shows. This is pseudocode
using UniTeX operations, which hides the underlying indexing details and provides
a clean interface for accessing the data in a logical 2D fashion.

Tensor representations also vary within a given implementation, sometimes using
multiple representations within a single function. Figure 7.2 on Page 80 shows
a collection of function signatures for Hadamard and DCT transforms in JM.
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1 void generate_pred_error_4x4(imgpel **cur_img, imgpel **prd_img,
2 imgpel **cur_prd, int **m7, int pic_opix_x,
3 int block_x) {
4 int j, i, *m7_line;
5 imgpel *cur_line, *prd_line;
6 for (j = 0; j < BLOCK_SIZE; j++) {
7 m7_line = &m7[j][block_x];
8 cur_line = &cur_img[j][pic_opix_x];
9 prd_line = prd_img[j];

10 memcpy(&cur_prd[j][block_x], prd_line, BLOCK_SIZE * sizeof(imgpel));
11 for (i = 0; i < BLOCK_SIZE; i++) {
12 *m7_line++ = (int) (*cur_line++ - *prd_line++);
13 }
14 }
15 }

1 def generate_pred_error_unitex(cur_img: tensor, pred_img: tensor,
2 cur_pred: tensor, m7: tensor)
3 for i = 0 to BLOCK_SIZE do
4 for j = 0 to BLOCK_SIZE do
5 cur_prd[prd_img](i,j) = prd_img(i,j)
6 m7[prd_img](i,j) = cur_img[prd_img](i,j) - prd_img(i,j)

Figure 7.1: Code for computing the residual between cur_img and prd_img, as well as copying prd_img to its location in cur_prd. The code on the
top comes from the H.264 reference implementation, JM [8], while the bottom shows the same operation using UniTeX primitives (see Section 6.1 for
pseudocode syntax). The UniTeX operations makes the data access clear with its use of 2D tensors and simple indexing, while the JM code obscures
the underlying access through 1D arrays and a mixture of array and pointer arithmetic.

1 void hadamard4x4(int **block, int **tblock);
2 void hadamard2x2(int **block, int tblock[4]);
3 void ihadamard2x2(int tblock[4], int block[4]);
4 void forward8x8(int **block, int **tblock, int pos_y, int pos_x);

Figure 7.2: Hadamard and transform function signatures in JM. Each of these operations functions on a 2D region of data, though JM varies in how it
stores the data. In some cases, it stores the data as a pointer-to-pointer and in others it stores it as a 1D array. In the first three functions, the blocks
store exactly the data needed for the function, while the last one stores the data within a larger block (like a view), hence the need for the offsets pos_y
and pos_x.

This shows various ways the implementation represents tensors, all of which
require a different way of accessing them. Having these different representations
requires maintaining different location information for each, leading to additional
complexity that should instead be captured by an abstraction.

Figure 7.3 on Page 81 provides one final example, this time from openh264 [10].
This code implements the 4x4 vertical right intra-prediction mode originally shown
in Figure 6.9. This code is particularly interesting because parts of it mimic the
locality access operation introduced in Subsection 5.2.6 (see the negative indices
on Lines 9 to 16) for reads on the input data. However, these accesses are on a
1D array and do not match up to the standard in any intuitive manner since the
standard defines the accesses on a 2D array.

Together, these different examples, along with the earlier ones shown throughout
this dissertation, serve to give a taste of some of the issues that come with
having to manually implement tensors and location within encoders. Complexity
pops up in several different ways, from lack of uniform representations for the
tensors themselves to variations in how they are accessed. Even though these
issues may not pose an issue locally, when spread across an entire encoder, they
introduce a considerable amount of bookkeeping to the implementation in order
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1 #define LD64(a) (*((uint64_t*)(a)))
2 #define ST64(a, b) *((uint64_t*)(a)) = (b)
3 static inline void WelsFillingPred8x2to16_c (uint8_t* pPred, uint8_t* pSrc) {
4 ST64 (pPred , LD64 (pSrc));
5 ST64 (pPred + 8, LD64 (pSrc + 8));
6 }
7 void WelsI4x4LumaPredVR_c (uint8_t* pPred, uint8_t* pRef, const int32_t kiStride) {
8 const int32_t kiStridex2 = kiStride << 1;
9 const uint8_t kuiLT = pRef[-kiStride - 1];

10 const uint8_t kuiL0 = pRef[-1];
11 const uint8_t kuiL1 = pRef[kiStride - 1];
12 const uint8_t kuiL2 = pRef[kiStridex2 - 1];
13 const uint8_t kuiT0 = pRef[-kiStride];
14 const uint8_t kuiT1 = pRef[1 - kiStride];
15 const uint8_t kuiT2 = pRef[2 - kiStride];
16 const uint8_t kuiT3 = pRef[3 - kiStride];
17 const uint8_t kuiVR0 = (1 + kuiLT + kuiT0) >> 1;
18 const uint8_t kuiVR1 = (1 + kuiT0 + kuiT1) >> 1;
19 const uint8_t kuiVR2 = (1 + kuiT1 + kuiT2) >> 1;
20 const uint8_t kuiVR3 = (1 + kuiT2 + kuiT3) >> 1;
21 const uint8_t kuiVR4 = (2 + kuiL0 + (kuiLT << 1) + kuiT0)>>2;
22 const uint8_t kuiVR5 = (2 + kuiLT + (kuiT0 << 1) + kuiT1)>>2;
23 const uint8_t kuiVR6 = (2 + kuiT0 + (kuiT1 << 1) + kuiT2)>>2;
24 const uint8_t kuiVR7 = (2 + kuiT1 + (kuiT2 << 1) + kuiT3)>>2;
25 const uint8_t kuiVR8 = (2 + kuiLT + (kuiL0 << 1) + kuiL1)>>2;
26 const uint8_t kuiVR9 = (2 + kuiL0 + (kuiL1 << 1) + kuiL2)>>2;
27 uiSrc[0] = uiSrc[9] = kuiVR0;
28 uiSrc[1] = uiSrc[10] = kuiVR1;
29 uiSrc[2] = uiSrc[11] = kuiVR2;
30 uiSrc[3] = kuiVR3;
31 uiSrc[4] = uiSrc[13] = kuiVR4;
32 uiSrc[5] = uiSrc[14] = kuiVR5;
33 uiSrc[6] = uiSrc[15] = kuiVR6;
34 uiSrc[7] = kuiVR7;
35 uiSrc[8] = kuiVR8;
36 uiSrc[12] = kuiVR9;
37 WelsFillingPred8x2to16 (pPred, uiSrc);
38 }

Figure 7.3: Code from openh264 for performing vertical right intra-prediction originally as shown in the standard (bottom). This code uses negative
indexing, however it uses a 1D representation instead of 2D, so the accesses still do not match up with the standard.
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to maintain the correct locations, which is why abstractions like UniTe and UniTeX
become necessary. A library representation provides a straightforward way to
implement the abstraction and provides users with a drop-in solution. However,
the next section discusses the performance implications that come with a library,
making it an impractical approach for implementing such an abstraction.

7.2 A Library Approach

UniTeX lends itself well to a library implementation that can provide blocks and
views and expose a simple API with all the necessary operations. Many different
languages can support such an implementation, making a library as close to a
drop-in replacement for existing implementations as possible. Figure 7.4 shows
an example of the color conversion operation from Subsection 2.1.3 using a
simple C++ library called libUnite. While libUnite provides a straightforward
interface that provides similar syntax to the pseudocode examples of UniTeX, it
comes with severe performance overheads, rendering it effectively useless for
any practical purpose.

Table 7.1 on Page 83 shows some results from implementing the vertical right
mode of intra-prediction using libUnite, and a manual version, also in C++ (Fig-
ure 7.5 shows the same data in graph form). The manual version operates like
the existing implementations shown already, directly passing around a multidi-
mensional array and performing all the indexing directly using only the properties
needed. libUnite implements blocks and views as C++ objects with methods for
each operation, and stores all the property values in std::array objects. It does
not do any specialization based on property values, thus relies on the backend
compiler (clang 12 in this case) to attempt optimizations (such as removing the
division by one in the event that no coarsening is required). As the table shows,
clang largely fails to optimize the library version as it runs about 12× slower than
the manual version in the best case.

There are two primary factors leading to this slowdown: 1) the additional indexing
computations, and 2) where the indexing computations occur. In this particular

1 template <typename RGB_T, typename YCbCr_T>
2 void color(RGB_T &RGB, YCbCr_T &YCbCr) {
3 for (int i = 0; i < 8; i++) {
4 for (int j = 0; j < 8; j++) {
5 YCbCr[{0,i,j}] = (int)((double)(RGB(i,j,0))*0.299 +
6 (double)(RGB(i,j,1))*0.587 +
7 (double)(RGB(i,j,2))*0.114));
8 YCbCr[{1,i,j}] = (int)((double)(RGB(i,j,0))*-0.168736 +
9 (double)(RGB(i,j,1))*-0.33126 +

10 (double)(RGB(i,j,2))*0.500002)+128);
11 YCbCr[{2,i,j}] = (int)((double)(RGB(i,j,0))*0.5 +
12 (double)(RGB(i,j,1))*-0.418688 +
13 (double)(RGB(i,j,2))*-0.081312)+128);
14 }
15 }
16 }

Figure 7.4: A look at a C++ library implementation with libUnite for the color conversion function from JPEG. Utilizing operator overloading in C++
makes it simple to provide an intuitive interface for data access that hides all the low-level indexing details.
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Clang opt Manual (s) libUnite (s) libMin (s)
-O3 0.27 5.51 0.46
-O2 0.45 5.34 0.78
-O1 0.72 75.22 27.79

Table 7.1: Performance comparison between
a manual and library implementation of pre-
diction. The last column shows performance
for a minimal (and largely impractical) library
implementation that only tracks and com-
putes with the extent and origin of the blocks
and views.
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Figure 7.5: Chart for the raw runtime perfor-
mance shown in Table 7.1.

instance, only the origin and the extent properties are really necessary for com-
puting the indices. However, the library does not have knowledge of that, thus
must take them into account in all of its indexing computations. Even though the
values for coarsening and refinement are both one in all dimensions (the default
value), clang fails to exploit this in its optimizations, leaving expensive divisions
and multiplications by coarsening and refinement in the compiled code.

If the indexing operations occurred at the outer loop levels of the program, then
some additional overhead could be handled as it would be amortized within the
rest of the program runtime. However, many of these tensor operations happen
at the inner levels of the loop nest, executing across every macroblock and
submacroblock. This causes any additional indexing overhead to quickly add
up.

The other library shown in the data, libMin, represents a minimal library imple-
mentation that only includes extent and origin within its computation, thus does
not have to worry about the divisions and multiplications with coarsening and
refinement, nor any permutations. This provides a sort of upper bound on the per-
formance that can be achieved with a library of UniTeX since it only requires the
minimal amount of computation. However, it still suffers some overhead, coming
in at about 1.7× slower than the manual implementation. clang fails to remove
some usages of the block and view objects themselves, leading to extra overhead
in just accessing the underlying data through the object when compared to the
manual implementation. All together, these results lead to the conclusion that a
library version of UniTeX is not a suitable method of implementation.
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7.3 A DSL Approach

With the issues stemming from a library implementation, a DSL offers a way
to provide a library-like implementation for working with these tensor objects,
while also providing the ability to remove the overheads associated with indexing.
While the two DSLs introduced in the next chapters (CoLa and SHiM) differ in
their style of implementation, they both focus on three different key requirements
listed below:

▶ Provide an intuitive API for creating and operating on tensor data structures.
▶ Support control flow and other high-level non-UniTeX features.
▶ Remove the overhead associated with creating and indexing tensor objects.

Next discusses each requirement in more detail and provides the motivation
behind why each is important.

7.3.1 Designing Tensor Data Structures

To provide as seamless a transition between existing implementations and Uni-
TeX, both the CoLa and SHiM implementations strive to present a clear and
intuitive syntax and API for building blocks and views and performing any opera-
tions on them.

Why this matters

In terms of syntax, users in other domains that already contain DSLs may be
more willing to deal with new types of syntax and such. But, with compression,
there are not any other DSLs out there for designing any part of encoders.
Trying to convince developers to switch from using plain C/C++ or Python
to some brand new language with unfamiliar syntax would ultimately be a
losing battle. CoLa and SHiM build off of Python and C++, respectively, thus
provide a familiar syntax to the user.

One glaring issue in existing implementations is the wide variety of ways the
implementations represent and operate on multidimensional data due to the
lack of a unified representation. A plain C or C++ representation offers the
maximum flexibility since it just has an array, but then leads to this issue of
multiple representations. On the other hand, a representation that only supports
one type of tensor (i.e., only fixed size, only on the heap, etc.) creates a very
specific representation, but cannot be tuned appropriately to the use case. CoLa
and SHiM strike a balance between the two, providing several ways to define
blocks and views based on use cases observed in implementations, but limiting
how they can be accessed.

7.3.2 Control Flow and Non-UniTeX Features

As discussed in prior chapters, implementations for compression require other
language features beyond just creating blocks and views and operating on them.
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3: Taken from https://github.com/

halide/Halide/blob/master/apps/

blur/halide_blur_generator.cpp.

This requires a careful balance between choosing what should and what should
not go into the DSL.

Why this matters

As shown in examples so far, many features outside of UniTeX are needed
to express the various stages of compression. Whether it be something
simple like maintaining an integer tracking the best cost of prediction, or
more complicated like entropy coding requiring a lot of control flow, these
non-UniTeX features are intimately interweaved with UniTeX features. As
before, CoLa and SHiM strike a balance in the features they offer, as too
few features hamper their usefulness, while too many features make them
more like general purpose languages, ultimately making it difficult to provide
targeted optimizations.

A DSL for UniTeX needs to be able to express some degree of control flow
and external operations within it. However, this limits the choice for DSLs. For
example, consider an embedded DSL within C++ such as Halide [50]. At a
high-level, Halide (and most C++-embedded DSLs) utilizes staging, where the
users write their program in C++ using Halide constructs, which creates an AST
(abstract syntax tree) of the user program. From the AST, Halide transforms and
optimizes it, and then generates new code which the user can link into an external
program. Since C++ does not support any type of control flow overloading, any
C++ control flow used within the user program will not be present in the generated
code as Halide has no knowledge of it. For example, the Halide code below
presents a simple blur stencil3 that will produce a two-level loop nest in the
generated code that traverses a single image.

Func blur_x("blur_x");
Var x("x"), y("y"), xi("xi"), yi("yi");
blur_x(x,y) = (input(x,y)+input(x+1,y)+input(x+2,y))/3;
blur_y(x,y) = (blur_x(x,y)+blur_x(x,y+1)+blur_x(x,y+2))/3;

If a user wanted to run this blur across multiple images, they cannot just wrap
the Halide code in a loop nest like below because it will execute during staging
and will not be present in the generated code.

for (auto image : images) {
blur_x(x,y) = (input(x,y)+input(x+1,y)+input(x+2,y))/3;
blur_y(x,y) = (blur_x(x,y)+blur_x(x,y+1)+blur_x(x,y+2))/3;

}

Instead, they would need to call blur within a loop nest in some external program
that links in the generated code for the blur.

Now, in Halide this is not really a problem for the stencil operations since they can
capture the necessary program semantics with this declarative structure. But,
this will not cut it for compression. CoLa achieves this goal by implementing itself
as a sort of hybrid standalone-embedded DSL. It implements its UniTeX specific
features in a standalone fashion, but also embeds itself within the Pythonic
language Codon [20], so it exposes all the existing Codon features, including
control flow, and more Pythonic control flow like generators. SHiM takes a different
approach and embeds itself within C++, but utilizes the BuildIt [21] staging library
which captures C++ control flow and other arithmetic operators.

https://github.com/halide/Halide/blob/master/apps/blur/halide_blur_generator.cpp
https://github.com/halide/Halide/blob/master/apps/blur/halide_blur_generator.cpp
https://github.com/halide/Halide/blob/master/apps/blur/halide_blur_generator.cpp


86 7 Implementation Considerations

4: "Free" meaning SHiM itself does not need
to do special static analysis or constant fold-
ing/propagation. But it stills need to be careful
with implementation to ensure the generated
code can actually be optimized by the back-
end compiler.

7.3.3 Ability to Optimize

This final requirement is simple: the DSL must remove the overhead incurred by
the UniTeX abstraction. Any DSL for UniTeX would be useless if it did not provide
any way to optimize, as that would essentially produce another slow library.

Why this matters

By now, it should be obvious why performance matters, especially with how
much of a slowdown a library implementation of UniTeX incurs. In general,
this requires that DSL includes UniTeX-specific compiler optimizations with
knowledge of the UniTeX primitives. As discussed previously, the performance
overhead of the library largely stems from the extraneous computations per-
formed during indexing, for example, dividing by coarsening and refinement
even if they are equal to one in a given dimension. Such a compiler should
be able to perform some type of static analysis to determine when blocks
and views have constant values for these expensive properties, and then
perform transformations exploiting those constant values, such as constant
folding/propagation and function specialization.

CoLa follows a more traditional path for optimization, utilizing the compiler frame-
work exposed by Codon. CoLa inserts UniTeX-specific passes within Codon’s
compiler that perform these exact analyses and transformations, allowing it to
remove the indexing overhead, and also address some other necessary transfor-
mations specific to using Codon as the host language.

SHiM also has the ability to insert traditional compiler passes that operate on the
AST constructed via BuildIt. However, SHiM largely takes a different approach,
implementing its data structures and operations so that they are inlined within
the generated code from BuildIt, which exposes all the constant values. With this,
SHiM can rely on the backend compiler (e.g. clang) to perform the necessary
transformations, allowing SHiM to essentially get the optimizations for "free"4.

7.4 Summary

This chapter provided an overview of various considerations that need to be taken
into account when designing an implementation for UniTeX. It discussed the pros
and cons of a library implementation, which provides a simple, drop-in use of the
tensors and operations for users, but incurs overheads due to the added arith-
metic needed for data access. Then it discussed how domain-specific languages
provide the ability to remove this overhead through the use of domain-specific op-
timizations, though at the cost of a (potentially) more complicated implementation
of the language itself. It also discussed some important compression-specific
considerations that must be taken into account for any domain-specific language
for compression, including the need for more general purpose language features
such as control flow.

The next chapters discuss two implementations, CoLa (Chapter 8) and SHiM

(Chapter 9), which follow the advice of this section and implement UniTe and
UniTeX as domain-specific languages. Though each follows a very different style
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of implementation, both focus on removing the overhead of the abstraction while
also providing users a library-like feel that supports language features outside of
the abstraction itself.
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This chapter introduces one of two implementations of UniTeX for compression,
CoLa (Compression Language), which is a hybrid standalone-embedded DSL
built around the Pythonic language and compiler Codon [20]. CoLa provides
users with UniTeX-specific data structures and functions through customizations
made in Codon, while also preserving Codon’s Pythonic high-level features.
This way, users get the best of both worlds, allowing them to use UniTeX when
necessary, and Python for everything else, making it possible to implement
end-to-end encoders all within a single language.

Through Codon’s extensible compiler framework, CoLa inserts UniTeX-specific
passes focused on removing the overhead introduced by the abstraction, bringing
average case performance from 20.5×, 48.8×, and 6.5× slower than reference
down to 1.2×, 1.0×, and 1.5× faster than that of reference for a series of H.264,
JPEG baseline, and JPEG lossless benchmarks, respectively. The rest of this
chapter provides examples of CoLa, explains the various additions made to
Codon to support the UniTeX-abstraction, and discusses the various optimizations
performed by CoLa to reach parity with existing implementations.

8.1 A Taste of CoLa

This section begins with a discussion of the UniTeX components implemented in
CoLa and then offers a look at the syntax of CoLa through a description of the API
and code examples for different compression kernels introduced in Chapters 2
and 6. Each example provides a mix of the Pythonic syntax of Codon with the
UniTeX-specific features of CoLa.

8.1.1 CoLa and UniTeX

CoLa implements a subset of the UniTeX operations introduced in Chapter 5.
In particular, CoLa implements block copy, partitions, colocation, and locality
access on views (both reads and writes), along with various ways to create new
blocks manually. Through partitions, CoLa supports virtual coarsening. However,
CoLa refers to coarsening as striding instead, which more closely aligns with how
implementations describe this type of partition operation1.

In CoLa’s implementation, blocks and views store their absolute location instead
of relative locations. This means blocks and views update their absolute location
on-the-fly and maintain a flattened representation of location rather than storing
the trie structure used to describe UniTe and UniTeX. Views also store a reference
to their nearest block, which is still necessary for data access operations.

https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
https://www.w3schools.com/python/numpy/numpy_array_slicing.asp
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2: Zero in all dimensions for origin and one
in all dimensions for extents and stride.

8.1.2 API

CoLa supports all the Pythonic features provided by Codon (see Section 8.2)
and implements UniTeX features using Codon-proper. In particular, CoLa heavily
relies on magic-method overloading (see Subsection 8.3.1) for many of the
UniTeX operations. The segments below highlight the main operations related to
UniTeX.

Block.make(origin,extents,stride,init,elem_type) creates a new block from
a set of manually-supplied parameters. CoLa provides various versions of this
function that take in different combinations of the parameters, each of which are
tuples of the same length (where the length is the dimensionality). Any omitted
parameters are given default values2. At a minimum, the type parameter is re-
quired, as it specifies the underlying element type stored within the Block. CoLa
supports all primitive Codon types as the element type. If the init parameter is
specified (which can be a Codon list), CoLa copies the data from init into the
memory allocated for the block.

Block.make(tensor) performs a block copy, copying the parameters of tensor
and allocating new memory for the resulting block. CoLa does not copy the data
from the tensor in this case.

tensor[x0:y0:z0,...,xN:yN:zN] partitions a tensor (see Subsection 5.2.3), pro-
ducing a new view. This overloads the __getitem__ magic method, and operates
using the familiar slice syntax of Python. Here, the x parameters represent the
start, y represents the stop, and z represents the stride. In place of the start,
stop, slice triples, a single integer value can be used instead. If the number of
parameters is less than the dimensionality, CoLa pads the left with zeros. The
start and stop may point out-of-bounds with respect to the tensor and perform a
locality partition.

tensor0[tensor1] performs colocation (see Subsection 5.2.4), producing a new
view. This also overloads the __getitem__ magic method.

tensor(c0,...,cN) reads a value from a tensor (see Subsection 5.2.6) at the
coordinate specified by the c indices, which are integers. This overloads the
__call__ magic method. If the number of parameters is less than the dimension-
ality, CoLa pads the left with zeros. The start and stop may point out-of-bounds
with respect to the tensor and perform a locality access.

tensor[c0,...,cN] = val writes a value to tensor (see Subsection 5.2.6) at
the coordinate specified by the c indices, which are integers. This overloads
the __setitem__ magic method. If the number of parameters is less than the
dimensionality, CoLa pads the left with zeros. The start and stop may point
out-of-bounds with respect to the tensor and perform a locality access.

tensor[!x] = tensor2(!x) creates an implicit loop nest around the write state-
ment and performs an elementwise write. See Subsections 8.3.2 and 8.3.4 for
more information.
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8.1.3 Code Examples

The first piece of code shown in Figure 8.1 gives the implementation for the
color conversion operation in JPEG, which was presented earlier in both Sub-
sections 2.1.3 and 6.2.2. This code relies on reads and writes to access the
two tensors, YCbCr and RGB. Blocks and views have the same operations, thus
users do not need to worry about whether YCbCr and RGB are blocks or views
(Codon’s type system handles type inference at compile time). It also highlights
CoLa’s custom elementwise iterator syntax, given by the bang notation (i.e.,
!i). Elementwise iterators define an implicit loop nest around a write statement,
applying the same operation to each tensor in the statement, thus removing the
need for explicit loops. This is discussed more in Subsection 8.3.2.

The next piece of code given in Figure 8.2 shows part of CoLa’s implementation
for the DCT, originally introduced in Subsections 2.1.4 and 6.2.3. The remainder
of the DCT looks the same as what is shown, but just using different indices.
This code uses reads and writes throughout, along with CoLa’s partition syntax
(Lines 3 and 11).

Figure 8.3 on Page 92 gives CoLa code for part of the Huffman entropy coding
kernel of JPEG, mentioned prior in Subsections 2.1.5 and 6.2.4. This code just
highlights that CoLa preserves the Pythonic operations provided by Codon and
supports seamlessly interleaving CoLa operations (see the reads on Lines 3
and 21). It also shows the function pack_and_stuff, which is part of a bitstream
packing library in CoLa.

1 def RGB2YCbCr(RGB, YCbCr):
2 YCbCr[0,!i,!j] = \
3 RGB(!i,!j,0)*0.299 + RGB(!i,!j,1)*0.587 + RGB(!i,!j,2)*0.114
4 YCbCr[1,!i,!j] = \
5 RGB(!i,!j,0)*-0.168736 + RGB(!i,!j,1)*-0.33126 + RGB(!i,!j,2)*0.500002+128
6 YCbCr[2,!i,!j] = \
7 RGB(!i,!j,0)*0.50000 + RGB(!i,!j,1)*-0.418688 + RGB(!i,!j,2)*-0.081312+128

Figure 8.1: CoLa code for color conversion in JPEG. This code utilizes CoLa’s custom elementwise iterator syntax in conjunction with reads and writes
on the tensors YCbCr and RGB.

1 def dct(obj):
2 for r in range(8):
3 row = obj[r,:]
4 tmp0 = int(row(0) + row(7))
5 tmp7 = int(row(0) - row(7))
6 ...
7 row[7] = descale(tmp4 + z1 + z3, 11)
8 row[5] = descale(tmp5 + z2 + z4, 11)
9 ...

10 for c in range(8):
11 col = obj[:,c]
12 tmp0 = int(col(0,0) + col(7,0))
13 tmp7 = int(col(0,0) - col(7,0))
14 ...
15 col[7,0] = descale(tmp4 + z1 + z3, 15)
16 col[5,0] = descale(tmp5 + z2 + z4, 15)
17 ...

Figure 8.2: CoLa code showing part of a DCT. This code utilizes reads, writes, and partitions. It also uses CoLa’s implicit index padding, which adds 0s
to the front of any coordinates that contain less than 𝑁 indices, where 𝑁 is the dimensionality of the tensor. This mimics the slice operation of UniTe.
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1 def huffman_encode_block(blk, last, bits, zigzag, huff_codes: HuffmanCodes):
2 # DC
3 dc = blk(0)
4 temp = dc - last
5 temp2 = temp
6 if temp < 0:
7 temp = -temp
8 temp2 -= 1
9 nbits = 0

10 while temp > 0:
11 nbits += 1
12 temp >>= 1
13 pack_and_stuff(bits, huff_codes.dc_ehufco[nbits], huff_codes.dc_ehufsz[nbits])
14 if nbits != 0:
15 pack_and_stuff(bits, temp2, nbits)
16 # AC
17 run = 0
18 ziter = iter(zigzag)
19 next(ziter) # skip the DC
20 for zcoord in ziter:
21 ac = blk(*zcoord)
22 ...

Figure 8.3: CoLa code showing part of the Huffman entropy coding kernel. This code does not use many UniTeX-specific features, but serves to show
that CoLa preserves the Pythonic features of Codon. It also uses some library functions for bit packing (pack_and_stuff) provided by CoLa.

The final sample, given in Figure 8.4, gives CoLa code for computing the 4x4 ver-
tical right intra-prediction mode. This code highlights several reads/writes/locality
accesses (Lines 7, 9, 11 and 13), and a colocation operation (Line 2) which gets
the region of pixels in the reconstructed frame (represented by ref) based on
the location of the predication (pred) submacroblock.

1 def intra_4x4_vr(pred, ref):
2 p = ref[pred]
3 for y in range(4):
4 for x in range(4):
5 zVR = 2*x-y
6 if zVR % 2 == 0 and zVR > 0:
7 pred[y,x] = (p(-1,x-(y>>1)-1)+p(-1,x-(y>>1))+1)>>1
8 elif zVR > 0:
9 pred[y,x] = (p(-1,x-(y>>1)-2)+2*p(-1,x-(y>>1)-1)+p(-1,x-(y>>1))+2)>>2

10 elif zVR == -1:
11 pred[y,x] = (p(0,-1)+2*p(-1,-1)+p(-1,0)+2)>>2
12 else:
13 pred[y,x] = (p(y-1,-1)+2*p(y-2,-1)+p(y-3,-1)+2)>>2

Figure 8.4: CoLa code for computing the vertical right mode of 4x4 intra-prediction. This code utilizes elementwise reads and writes, locality accesses,
and colocation.

8.2 Overview of the Codon Language

At its core, Codon [20] is a high-level general purpose language that implements
the syntax of Python, along with many of Python’s features and semantics. Com-
pared to Python, Codon differs in two primary ways: 1) it enforces static type
checking and requires strong types, and 2) it utilizes ahead-of-time compila-
tion. Unlike other extensions to Python, such as MyPy [51] and PyType [52] for
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3: https://docs.python.org/3/

reference/grammar.html

4: Codon supports about 95% of the features
in Python, but due to its use of static and
strong typechecking, Codon does not sup-
port truly dynamic features such as dynamic
polymorphism.

optional static type checking, Codon does not utilize the Python interpreter (or
any parts of the standard Python implementation) at any stage of compilation or
execution. Rather, Codon implements its own full-featured compilation framework
that supports parsing, AST/IR generation, typechecking, optimization, and code
generation with LLVM. Figure 8.5 provides a breakdown of Codon into separate
layers and briefly describes each below. The next section will explore how CoLa

modifies these layers.

Layer 1: User API Represents the user-facing frontend where users implement
their programs. This exposes Pythonic data structures, operators, and
libraries.

Layer 2: Parser Specifies Codon’s grammar as a parsing expression gram-
mar [53] (PEG) derived from Python 3’s PEG3 (and adds type annotations).
This also generates Codon’s AST.

Layer 3: AST Transformations/Typechecking Performs various canonicaliza-
tion and simplification passes on the AST. It also runs type inference and
type checking, assigning static types for every object and operation.

Layer 4: AST Lowering Generates Codon IR from the AST, which is a bidirec-
tional graph IR that can interact with the typechecker in order to generate
new fully-type IR nodes.

Layer 5: IR Transformations Includes various analysis and transformation passes.
Codon includes a default set of passes that can be run on any program.

Layer 6: LLVM Code Generation Generates LLVM code and includes an addi-
tional Codon-specific LLVM pass focused on coroutines (which are used
to implement Python generators in Codon).

Using Codon to implement CoLa gives users access to Python primitive data
types (numerical types, sets, lists, dictionaries, etc.), Python language con-
structs (classes, generators, magic methods, etc.), and the most common Python
modules (math, file I/O, exception handling, etc.), all of which have been re-
implemented to work with Codon4. Developers using Codon as a host language
for a DSL implementation (as done with CoLa) get access to the full AST, type-

Parser

Frontend

Backend

AST Transformations/Typechecking

AST Lowering

IR Transformations

LLVM Code Generation

User API

Figure 8.5: Codon’s framework, which supports all the stages of compilation from frontend parsing down to code generation with LLVM. CoLa inserts
UniTeX-specific functionality in nearly every layer (except LLVM Code Generation), but still preserves the core functionality of Codon, which provides
users with a combination of UniTeX and Python features.

https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html
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5: Magic methods allow Python (or Codon)
objects to exploit built-in functions and oper-
ators within Python (or Codon). CoLa utilizes
them to exploit operators on its classes, such
as overloading the square bracket syntax to
perform colocation on blocks and views.
6: The full frontend of CoLa is approximately
1,250 lines of code, with the other 500 lines
of code implementing a bit-level library for
packing and outputting the compressed bit-
streams.

checking, and IR framework, as well as a set of standard compiler passes
for analysis (control flow graph construction, reaching definitions analysis, side-
effect analysis, etc.) and transformations (dead code elimination, constant folding,
global demotion, etc.). CoLa utilizes many of these existing features, and also
inserts customizations at nearly every level of the Codon framework.

8.3 Implementation

CoLa’s implementation with Codon adds in UniTeX-specific data structures and
methods and custom compiler passes operating on those data structures. This
section goes through each layer in Codon’s framework (Figure 8.5) and points out
any modifications that CoLa makes to the layer. The frontend levels mainly deal
with the API presented to users, and the backend levels focus on optimizations.

8.3.1 Layer 1: User API

CoLa defines its API using Codon-proper, effectively defining all the data struc-
tures and operations as a library, and then applies CoLa-specific compiler passes
later to optimize it. Rather than implementing UniTeX with separate tensors and
reference spaces, CoLa ties the reference space parameters directly with ten-
sors. It also utilizes a flat representation such that tensors always maintain their
absolute parameter values, as opposed to relative values like in the description
of UniTeX. The user API includes all the type information and logic necessary
to generate blocks and views and perform all operations on them, reducing
the amount of changes required in the typechecking stage for CoLa-specific
objects.

CoLa utilizes Codon classes to implement blocks and views and heavily relies on
magic method5 overloading to provide users with intuitive syntax for interacting
with blocks and views. In all, the UniTeX frontend of CoLa is approximately 750
lines of Codon code6. Figure 8.6 provides an example of the implementation for
tensor(c0,...,cN), showing that CoLa just utilizes the normal Pythonic syntax
of Codon to implement its methods.

1 def __call__(self, *idxs) -> E:
2 if staticlen(idxs) == 0:
3 compile_error(’Idxs is an empty tuple. Did you use * with an integer argument?’)
4 padded = pad_zeros(idxs, staticlen(self.dims()))
5 for p in padded:
6 if not isinstance(p, int):
7 compile_error(’Must be integer index. Did you forget *?’)
8 coord = compute_astarts(self.astarts(), self.astrides(), padded)
9 # now do relative to the block

10 bcoord = tup_fdiv(tup_sub(coord, self._block.astarts()), self._block.astrides())
11 lidx = linearize(bcoord, self._block.dims())
12 return self._block._buff[lidx]

Figure 8.6: An example of an overloaded magic method in CoLa for performing a read on a view. CoLa uses plain Codon to implement its functions in
the frontend, thus adding new operations for blocks and views is straightforward.
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1 T0[!y,!x] = T1(!y,-1)

1 for y in range(T0.dims(0)):
2 for x in range(T0.dims(1)):
3 T0[y,x] = T1(y,-1)

Figure 8.7: Elementwise iterators (top) and
the loop nests they correspond to (bottom).

7: Specifically, a 64-bit integer.

/ ’!’ NAME {
return ast<IdExpr>(...);

}

Figure 8.8: PEG rule added to Codon to sup-
port element iterators in CoLa.

8: CoLa’s usage is similar to that in
Halide [50], which also defines simple ele-
mentwise iterators for use in stencil compu-
tations.
9: While this provides the necessary level
of flexibility for the purposes of compression,
the only real disadvantage of this notation is
the fact that it requires modifying the compiler,
which increases the complexity of CoLa itself.
10: And also provides a longer form
add function: https://numpy.org/doc/

stable/reference/generated/numpy.

add.html.

8.3.2 Layer 2: Grammar

In this layer, CoLa defines syntactic sugar for the elementwise iterators. This
operator is indicated by the use of the bang (!) symbol and defines an implicit loop
nest around writes to a tensor. The top of Figure 8.7 shows an example using
two of these iterators. Here, !y and !x on the left-hand side define a two-level
loop nest that would iterate over the two dimensions of T0. The use of !y on the
right-hand side operates like a normal loop index and can be used wherever an
integer7 can be used. The bottom of Figure 8.7 shows the corresponding loop
nest code.

To provide this operator to the user, CoLa augments Codon’s parsing expression
grammar specification with the simple syntax shown in Figure 8.8. This parses
the elementwise iterators like a normal expression, and then the later layers
check for valid usages of the iterators. Subsection 8.3.4 discusses the transforms
necessary to convert writes with elementwise iterators into their corresponding
loop nest form.

CoLa provides this syntactic sugar to users as elementwise writes are an ex-
tremely common operation on the innermost tensors created within the encoder,
and this gives a straightforward way to perform the operation while avoiding
bugs such as selecting the wrong loop extent. For block-based compression,
a simple iterator such as this is satisfactory; other types of index notation like
einsum are unnecessary8. Despite the simplicity of the operation9, this syntax
defers from typical implementations of elementwise operations, which typically
would utilize magic method overloads to implement the elementwise operations
instead. For example, NumPy implements an elementwise addition by overload-
ing __add__ for ndarrays10. CoLa could implement the elementwise operations
this way, but avoids doing so for two primary issues: 1) creation of temporaries
and 2) ambiguity.

Temporaries A common issue in libraries that implement these types of opera-
tions using methods (whether magic or not) is the introduction of temporaries. For
example, if CoLa provided the __add__ method between tensors, and a user wrote
the expression t0 = t1 + t2 + t3, this would result in creating a temporary to
hold t1+t2, then adding the temporary to t3, creating yet another temporary.
Then the result in that second temporary would be written to t0. With CoLa’s
syntax, this could just be written as something like t0[!i] = t1[!i] + t2[!i]

+ t3[!i], which does not create any temporaries and writes directly to the result.
With Codon (or Python), the only way to avoid this would be to warn the user that
they should not write the code this way and instead write a loop nest to perform
the operation. C++-based libraries can utilize expression templates [54] to solve
this issue by lazily building up the expression; however, that requires the use of
templates, so it is not relevant to Codon nor Python.

Ambiguity Ambiguity in an expression like t0 = t1 + t2 + t3 arises due to
the location associated with tensors. Ignoring the issue of temporaries from
above, a statement like this requires that CoLa implicitly create a new block
tensor for t0 that holds the resulting computation. However, it is ambiguous
which location should be used for t0 since each tensor on the right-hand side

https://numpy.org/doc/stable/reference/generated/numpy.add.html
https://numpy.org/doc/stable/reference/generated/numpy.add.html
https://numpy.org/doc/stable/reference/generated/numpy.add.html
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could have a different location. The elementwise notation t0[!i] = t1[!i] +

t2[!i] + t3[!i] would require that t0 already exists, so no ambiguity arises.

8.3.3 Layers 3 and 4: AST Transformations/Typechecking/AST
Lowering

Here, CoLa primarily includes the code necessary to propagate through the
use of the elementwise iterators as they are not lowered until the IR transform
stage. This involves wrapping the iterators in CoLa-specific AST nodes, and
assigning integral types to them so the typechecker can appropriately typecheck
any expressions and statements that utilize them. This is similar to what Codon
does for magic methods, where it looks for the special syntax associated with
the magic method and converts it to the appropriate method call.

8.3.4 Layer 5: IR Transforms

All of Codon’s optimizations and analysis passes live within this layer, and it is
also where CoLa inserts its custom compiler passes targeting blocks, views, and
the operations on them. Through Codon, the IR at this level is fully typechecked,
so it is possible to detect uses of CoLa-specific objects by just checking different
type information attached to the IR nodes. The main transformations in CoLa

fall into two primary categories: lowering passes and optimization passes. The
lowering passes are necessary to ensure correct code generation, while the
optimization passes are necessary to remove the performance overhead that
comes from the UniTeX features (see Section 8.4). This section discusses three
main passes: elementwise lowering, collapsing, and parameter propagation. As
the name suggests, elementwise lowering is a lowering pass, while the other two
are optimization passes. Each pass is actually a collection of several smaller
passes, but to simplify the presentation, they are described as if they are singular
passes.

Elementwise Lowering

The elementwise lowering pass is a straightforward pass that adds explicit loop
nests around write statements using elementwise iterators. This pass first verifies
that all usages of elementwise iterators are valid, which includes checking that
iterators on the left-hand side are unadorned, iterators are unique, and right-hand
side iterators exist on the left-hand side. For example, the following usages are
invalid:

pred[!y,!x] = p(!y,!z) # INVALID USAGE
pred[!y,!x+1] = p(!y,!x) # INVALID USAGE
pred[!y,!y] = p(!y,!y) # INVALID USAGE

The first one is invalid because !z does not occur on the left-hand side. The
second is invalid as !x is adorned on the left-hand side (it can be adorned on the
right-hand side). Finally, the last one is invalid because !y occurs in two positions
on the left-hand side.
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11: This pass is intra-procedural, so parti-
tions across function boundaries are not con-
sidered.

12: Collapsing only proceeds when a use
has a single reaching definition. For the en-
coders implemented in CoLa, this was not
an issue. However, it would be possible to
expand the collapsing pass and perform spe-
cialization with multiple reaching definitions
if necessary.

The next step infers the extents of the loop nest based on their location on the
left-hand side. For example, consider the following elementwise write below:

obj[!i,0,!j] = p(!j+1,-1)+p2(0,0)+p3(!i,!j)

This write contains two iterators, !i and !j, thus corresponds to a two-level
loop nest. CoLa infers the extent based on which dimension on the left-hand
side contains the iterator. In this case, !i corresponds to dimension 0 of obj,
and !j corresponds to dimension 2. Thus, the outer loop will have the extent
corresponding to dimension 0, and the inner loop will have the extent of dimension
2. CoLa wraps the write in the loop nest, and converts the elementwise iterators
into simple integer variables (on both the left-hand side and right-hand side),
resulting in the code below:

for i in range(obj.dims()[0]):
for j in range(obj.dims()[2]):

obj[i,0,j] = p(j+1,-1)+p2(0,0)+p3(i,j)

For multidimensional loops, CoLa opts for a simple transformation that nests
the loops in the order that the iterators are used on the left-hand side (going
outermost-to-innermost). CoLa also places the write at the innermost loop level,
even if it could be hoisted; it relies on the LLVM backend for performing loop-
based transforms and optimizations.

Collapsing

The collapsing optimization pass aims to reduce the number of intermediate views
created from partitioning by looking for reads, writes, and partitions on views
and propagating those operations as high up the partition hierarchy as possible,
effectively collapsing successive views together. Views are often created from
partitions at the innermost levels of loop nests, so reducing the number of views
both reduces the number of operations needed to create new objects and the
number of heap allocations needed, as Codon allocates all created objects on
the heap. Figure 8.9 on Page 95 shows an example of a before and after that
collapses two successive partitions such that they can be removed.

Collapsing proceeds in a bottom-up fashion, iteratively repeating until no more
collapsing can occur. It runs two main steps that 1) identify candidate reads/writes
and 2) lift the reads/writes up to the parent of the view. To find the candidates,
CoLa checks for any reads or writes on a view, and then looks for the definition of
the view itself. CoLa utilizes Codon’s built-in reaching definitions analysis for this
part. If the definition of the view is the result of a partition operation, this can be
collapsed11. In the code on the top of Figure 8.9, there is a read on V1, where V1

is produced by a partition on V0, thus this can be collapsed. In this case, the read
is referred to as the downstream operation, V1 is the downstream view, while the
partition on V0 is the upstream operation and V0 is the upstream view12.

Once a candidate has been identified, the next step combines the indices of the
downstream operation and upstream operation together, and moves the read or
write on the downstream view to the upstream view. Looking now at the middle
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1 i,j = <some integer values>
2 # partition
3 V0 = B[x0:y0:z0,x1:y1:z1]
4 # partition
5 V1 = V0[x2:y2:z2,x3:y3:z3]
6 # read
7 val = V1(i,j)

B

V0

V1

val=V1(i,j)
val = V0(f(i,x2,y2,z2),f(j,x3,y3,z3))

1 i,j = <some integer values>
2 # partition
3 V0 = B[x0:y0:z0,x1:y1:z1]
4 # partition
5 V1 = V0[x2:y2:z2,x3:y3:z3]
6 # read
7 val = V0(f(i,x2,y2,z2),f(j,x3,y3,z3))

B

V0

V1

val = V0(f(i,x2,y2,z2),f(j,x3,y3,z3))

1 i,j = <some integer values>
2 # partition
3 V0 = B[x0:y0:z0,x1:y1:z1]
4 # partition
5 V1 = V0[x2:y2:z2,x3:y3:z3]
6 # read
7 val = B(f(f(i,x2,y2,z2),x0,y0,z0),
8 f(f(j,x3,y3,z3),x1,y1,z1))

B

V0

V1

val = B(f(f(i,x2,y2,z2),x0,y0,z0),
           f(f(j,x3,y3,z3),x1,y1,z1))

Figure 8.9: Before and after collapsing. The top code snippet does two partitions, creating two views, and then performs a read on the final partition V1.
The top diagram gives the initial state. The middle example shows the result of lifting the read on V1 and collapsing it with the partition on V0, rendering
V1 dead (the function f is a placeholder for a function inserted by the compiler that combines the indices of the read and the partition). The bottom
example repeats this process, lifting the newly formed read on V0 and collapsing it with the partition on B. Now V0 is dead and also can be removed.
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of Figure 8.9, this has combined the original indices i and j in the downstream
operation with the partition parameters x2, y2, z2, x3, y3, z3 in the upstream
operation (with the combination represented by the black box function f). It also
moved the read to be on the upstream view. At this point, the downstream view
V1 is no longer required and can be removed by dead code elimination (also
provided by Codon). In this particular example, it is possible to collapse one more
time, resulting in the code on the bottom of Figure 8.9.

Location Propagation

Location propagation performs an aggressive form of constant propagation and
function specialization across an entire CoLa program, propagating through
constant values for the origin, stride, and extent parameters of blocks and views.
This pass ultimately helps expose opportunities for constant folding, which helps
remove certain expensive indexing operations, such as division by stride.

Consider the example in Figure 8.10. This shows the high-level steps performed
in order to infer that the value for d0 (a) is equivalent to the value 20 (d). At a
high-level, this pass operates top-down and looks for uses of origin, stride, and
extent, which are accessible by the user through corresponding getter functions
(which are called origin(), strides(), and dims()). When CoLa finds one of
the getter functions, it attempts to infer any constant values within the returned
tuple by checking whether the corresponding tensor contains constant values.

This pass runs independently for each type of parameter, but each follows the
same basic structure containing two (unordered) phases: 1) inference and 2)
propagation. Each phase is applied on-the-fly rather than doing all inference in
one pass, then all propagation in one pass.

1 block = Block.make(dims=(10,20))
2 d0 = block.dims()[1]

(a) Initial state before location propagation.

1 block = Block.make(dims=(10,20), origin=(0,0), stride=(1,1))
2 d0 = block.dims()[1]

(b) Expanding builder functions.

1 block = Block.make(dims=(10,20), origin=(0,0), stride=(1,1))
2 d0 = (10,20)[1]

(c) Propagating dimensions.

1 block = Block.make(dims=(10,20), origin=(0,0), stride=(1,1))
2 d0 = 20

(d) Tuple extraction.

Figure 8.10: Simple example of location propagation in CoLa. In this code, CoLa can infer that the value of block.dims()[1] in (a) is 20 based on the
parameters originally used to create block. It does this by first expanding the make function to include any missing parameters in (b), then propagating
the appropriate parameter tuple in place of block.dims() in (c). Finally, CoLa simplifies the resulting code with tuple extraction, which removes the
second element of the tuple and results in the value of 20 in (d). CoLa implements a series of passes that can be used to infer the values of the origin,
extents, and strides of tensors at various points throughout a program.



100 8 CoLa

13: CoLa also looks for views created from
partitioning, and can compute the location of
the view based on the partition parameters
and the parameters of the tensor being parti-
tioned. However, most views are removed in
the collapsing phase, so this is not as com-
mon.

14: CoLa also supports propagation in cases
where the parameter only has constant val-
ues in some of the dimensions.

The first phase, inference, runs whenever CoLa finds a definition for a tensor. For
example, in Figure 8.10, CoLa finds the Block.make function. CoLa infers any
missing parameters for the function (origin and stride in this case) by inserting
default values (b). CoLa performs this general process when encountering such
a definition13. In the event that the parameters provided to the definition are not
constants, CoLa attempts normal constant propagation and folding to see if the
parameters correspond to constants. Once all the constants are found, CoLa
now knows the full location the block (or view).

The propagation phase looks for any usages of the getter functions and checks
to see if the tensor that the getter is called on has constants for that particular
value. In the example of Figure 8.10, the getter function for the extents (block
.dims()) can be replaced by (10,20) in (c) since block has constant values
for that parameter14. To find the tensor that the getter is called on, CoLa relies
on reaching definitions analysis provided in Codon. Finally, CoLa simplifies the
result, which gives the code in (d).

CoLa runs this pass inter-procedurally, performing function specialization if a
tensor is passed into a function and the function calls a getter on it. For example,
consider the code in Figure 8.11a, which reconfigures the code in Figure 8.10
to use a function call. When CoLa finds a getter function (block.dims() in foo)
and the tensor definition points to a function argument, CoLa goes to the calling
site and performs the same type of reaching definitions/constant propagation as
before, except moving it across the function boundary, effectively specializing the
function with the constant values. CoLa also memoizes the specialized function

1 def foo(block):
2 d0 = block.dims()[1]
3 block = Block.make(dims=(10,20))
4 foo(block)

(a) Initial state before location propagation.

1 def foo(block):
2 d0 = block.dims()[1]
3 block = Block.make(dims=(10,20), origin=(0,0), stride=(1,1))
4 foo(block)

(b) Expanding builder functions.

1 def foo_special(block):
2 d0 = (10,20)[1]
3 block = Block.make(dims=(10,20), origin=(0,0), stride=(1,1))
4 foo_special(block)

(c) Specializing foo.

1 def foo_special(block):
2 d0 = 20
3 block = Block.make(dims=(10,20), origin=(0,0), stride=(1,1))
4 foo_special(block)

(d) Tuple extraction.

Figure 8.11: Simple example of function specialization within location propagation. CoLa can infer the constant tuple for block.dims() in the foo
function (see (a)) using the same techniques as for intra-procedural location propagation (see Figure 8.10), and then specializing the function body with
the constants.
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Rc Rb

Ra X

Figure 8.12: Valid reconstructed pixel com-
ponent positions for use in predicting 𝑥 with
JPEG lossless.

Mode Prediction
0 None
1 𝑅𝑎

2 𝑅𝑏

3 𝑅𝑐

4 𝑅𝑎 + 𝑅𝑏 − 𝑅𝑐

5 𝑅𝑎 + (𝑅𝑏 − 𝑅𝑐)/2
6 𝑅𝑏 + (𝑅𝑎 − 𝑅𝑐)/2
7 (𝑅𝑎 + 𝑅𝑏)/2

Table 8.1: Prediction modes for JPEG loss-
less using the neighborhood shown in Fig-
ure 8.12.

Image Resolution
Rose 227×149
Cat 640×960
Poster 2160×2880
Painting 2653×3307
Satellite 5181×4828
Overcast 7200×5400
Overcast Big 7200×10800
Map 10315×7049
Map Big 20630×7049

Table 8.2: Resolution of test images.

Video Resolution
Carphone QCIF
Coastguard QCIF
Foreman CIF
Akiyo CIF
Football CIF

Table 8.3: Resolution of test videos.

in the case that multiple specializations all produce the same function.

8.3.5 Layer 6: LLVM Code Generation

By this point, all CoLa-specific features have been lowered to standard Codon
IR nodes, thus CoLa does not modify the code generation layer.

8.4 Evaluation

The optimizations performed in CoLa allow it to both reduce the number of views
created (collapsing pass) and specialize location information for tensors (location
propagation pass), which impact the performance in different ways. This section
discusses CoLa’s performance on three different encoder benchmarks.

8.4.1 Benchmarks

Performance is measured across three different benchmarks, two for JPEG [22]
and one for H.264 [19], and compared against the reference implementations
for each standard. For JPEG, implementations for both the sequential baseline
(JPEGS) and lossless version (JPEGL) are included. JPEGS represents the
version of JPEG used as an example throughout this dissertation, and follows the
pipeline given in Chapter 2. JPEGL, despite having JPEG in the name, follows
a different encoder pipeline. Briefly, JPEGL uses similar entropy coding and
syntax output to JPEGS, but utilizes prediction instead for the core of the encoder
(as opposed to the DCT and quantization in JPEGS). It supports eight different
prediction modes which utilize up to three surrounding pixel values. Figure 8.12
shows the pixel positions available for prediction and Table 8.1 gives the actual
predictions. From the prediction, it computes the residual and sends that to the
entropy coding stage. Like H.264, JPEGL uses reconstructed pixels for computing
the prediction as opposed to the raw values.

For H.264, CoLa implements an encoder utilizing a subset of the pipeline given
in Chapter 2.

The performance of CoLa is compared to ijg [16], libjpeg [55], and JM [8] for
JPEGS, JPEGL, and H.264 benchmarks, respectively. These existing systems
provide a suitable comparison as they implement straightforward versions of
algorithms used within the compression pipeline, and include many options for
tuning what features are used. This provides a fairer comparison than with other
implementations that utilize numerous algorithmic modifications for performance.
These types of algorithmic changes are outside the scope of this work.

8.4.2 Experimental Setup

CoLa’s performance is evaluated across each of the benchmarks discussed
above, first applying only the lowering passes required for correctness, which
effectively runs CoLa as a library. Then, collapsing is added ("+ Collapse"),
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followed by location propagation for each of the individual properties ("+ Prop
(origin)", "+ Prop (strides)", "+ Prop (extents)"). The JPEG benchmarks use the
test images given in Table 8.2, while the H.264 benchmarks use the videos given
in Table 8.3. All H.264 benchmarks are evaluated across 200 frames.

All runtimes in Subsection 8.4.3 are given in seconds (H.264 also provides an
additional frames per second version) and represent the average of 20 iterations.
Through Codon, all CoLa code is generated and compiled through llvm version
12.0.0 with the default -O3 optimizations. All reference codes were compiled
with clang 12.0.0 (all references are written in C) with -O3, along with the flags
included in the Makefiles provided with each reference. Each experiment was run
on systems with Intel Xeon E5-2695 v2 cores running at 2.40GHz. All times are
for single threaded performance. Allocation and instruction counts were collected
with valgrind.

8.4.3 Runtime Performance

Figures 8.13 to 8.15 on Pages 104 and 105 show the runtime results for JPEGS,
JPEGL, and H.264, respectively. All of these charts show the speedup of CoLa
relative to the corresponding reference implementation (represented by the value
one on the vertical axis) such that bars greater than one represent a speedup.
Tables 8.4 to 8.6 on Page 105 provide the raw runtimes of each, and Table 8.7
on Page 106 also gives the performance for H.264 in frames per second (which
is a more standard way of representing performance for video compression appli-
cations). With the combination of these optimizations, CoLa achieves speedups
of 1.0×, 1.5×, and 1.2× relative to the reference implementations for JPEGS,
JPEGL, and H.264, respectively.

Unsurprisingly, the performance of CoLa without any optimizations is far worse
than compared to the reference C implementations, running nearly 65× slower
in the worst case (JPEGS-overcast). Similar to the library implementation in the
previous chapter, there are two main culprits for the performance degradation: 1)
an excess of views, and 2) additional indexing computations. Views are often
created at innermost loop levels, and tensors are often indexed at those inner
levels as well. Thus, any additional overhead proves catastrophic for the runtime.
This is discussed next.

Location Propagation

In the context of additional indexing overhead, stride incurs an extremely costly
overhead due to divisions and multiplications that happen for many of the op-
erations. However, in most cases, the stride is one, making these operations
unnecessary. Even when the stride is greater than one, it is usually a power of
two, so the multiplication and divisions can be converted into less costly shift
operations. With CoLa’s passes, it effectively exposes these opportunities for con-
stant folding and strength reduction to the underlying llvm framework, providing
the necessary reduction in overhead.
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Collapsing

With view creation, performance is impacted partially due to the fact that Codon
allocates objects on the heap, as well as due to the need for computing the new
parameter values for a view whenever one is created. With the collapsing pass,
many of these views are eliminated. Using the JPEGL benchmark, Table 8.8 on
Page 106 shows the total number of instructions, as well as the total number
of mallocs before and after this pass. For instruction counts, CoLa is able to
reduce the number of instructions by up to a factor of ten, largely due to the fact
that removing views also removes the need to recompute a new parameterization
for each of them.

Collapsing also significantly impacts the number of mallocs in the generated
code as shown in the bottom of Table 8.8. Again, this is due to collapsing being
able to remove many of the views itself. To support Python’s pass-by-object-
reference semantics, Codon allocates all objects on the heap (and performs
automatic memory management). As a result, all blocks and views in CoLa are
allocated on the heap as well. This can lead to a bottleneck, as views are often
created at the innermost loop levels of encoders, requiring a large amount of
small allocations, especially when the loop extents are proportional to the input
image size (as they are here). As seen in the table, JPEGL can allocate up
to nearly 500 million objects. However, after removing a majority of the views
created after hierarchy collapsing, CoLa reduces the number of mallocs by up
to a factor of 14,120 times! In the end, adding parameter propagation reduces the
number of mallocs even further. In the case of JPEGL, all the view allocations
happen within the innermost levels of the encoder, and CoLa is able to remove
all of them, leaving just the allocations for the initial block objects and some
other non-CoLa objects, which all happen outside the main loop nest. As a result,
the program ultimately only requires a constant amount of allocations, making
allocations invariant to the initial image size.

8.5 Summary

This chapter introduced one of two implementations for UniTeX, CoLa. CoLa is a
hybrid embedded-standalone domain-specific language embedded within the
language Codon, which provides the high-level syntax of Python along with a
type system and full compiler framework. CoLa also extends some of the syntax
of Codon and inserts UniTeX-specific passes within Codon’s compiler framework,
allowing it to optimize usages of blocks and views and remove the overhead
associated with a library implementation. In particular, CoLa implements two
primary optimizations passes called view collapsing and location propagation,
which target overheads from creating views and additional indexing, respectively.
On a set of JPEG and H.264 benchmarks comparing CoLa to reference hand-
optimized C implementations, CoLa is able to bring performance from nearly
65× slower than reference down to parity.

The next chapter introduces the SHiM implementation, which takes a very different
implementation approach from CoLa, but achieves the same performance goals
while still providing a simple API for users.
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Figure 8.13: CoLa performance on JPEGS relative to IJG.
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Table 8.4: Raw runtimes for CoLa and IJG for JPEGS (in seconds).

No Opts + Collapse + Prop (origin) + Prop (strides) + Prop (extents) IJG
rose 0.108 0.043 0.034 0.006 0.004 0.004

cat 1.338 0.473 0.392 0.064 0.037 0.029
poster 10.891 4.075 3.262 0.407 0.256 0.186

painting 14.990 5.766 4.627 0.583 0.356 0.278
satellite 42.081 16.502 13.173 1.638 0.958 1.030

overcast 65.482 25.041 19.940 2.132 1.080 1.008
overcast big 138.041 50.078 39.851 4.290 2.051 2.181

map 131.930 47.590 38.058 4.593 2.521 2.750
map big 273.892 97.894 78.274 11.462 6.505 7.054

Table 8.5: Raw runtimes for CoLa and libjpeg for JPEGL (in seconds).

No Opts + Collapse + Prop (origin) + Prop (strides) + Prop (extents) libjpeg
rose 0.045 0.017 0.016 0.006 0.006 0.010

cat 0.502 0.216 0.215 0.059 0.055 0.066
poster 3.896 1.402 1.418 0.383 0.352 0.491

painting 5.563 2.122 2.108 0.633 0.567 0.783
satellite 15.785 6.284 6.325 2.095 1.833 2.752

overcast 23.545 8.706 8.719 2.182 1.840 3.084
overcast big 49.384 16.394 16.441 4.267 3.655 6.086

map 48.108 17.807 17.833 6.478 5.544 8.217
map big 100.332 34.572 34.766 12.895 11.403 17.317

Table 8.6: Raw runtimes for CoLa and JM for H.264 (in seconds).

No Opts + Collapse + Prop (origin) + Prop (strides) + Prop (extents) JM
Carphone 23.741 6.143 5.341 1.778 1.093 1.144

Coastguard 23.990 6.195 6.203 1.756 1.125 1.186
Foreman 76.648 23.112 21.535 5.587 3.488 4.333

Akiyo 76.177 22.586 21.409 5.508 3.195 4.085
Football 76.841 23.278 21.524 5.585 3.561 4.340
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Table 8.7: Raw runtimes for CoLa and JM for H.264 (in frames per second).

No Opts + Collapse + Prop (origin) + Prop (strides) + Prop (extents) JM
Carphone 8 33 37 112 183 175

Coastguard 8 32 32 114 178 169
Foreman 3 9 9 36 57 46

Akiyo 3 9 9 36 63 49
Football 3 9 9 36 56 46

Table 8.8: Instruction and malloc counts for JPEGL with and without CoLa optimizations.

# Instructions
Image Pure Library + Collapse + Prop (all)
Rose 120,955,600 29,311,077 20,980,925
Cat 1,787,985,652 344,059,715 199,419,046

Poster 16,192,330,494 3,112,528,526 1,665,259,234
Painting 23,307,655,048 5,107,986,425 3,068,869,577
Satellite 66,622,488,297 15,574,441,545 9,765,728,553
Overcast 100,498,604,280 21,404,924,936 12,379,880,192

# mallocs
Image Pure Library + Collapse + Prop (all)
Rose 405,920 1534 642
Cat 7,369,600 6,400 642

Poster 74,638,720 17,920 642
Painting 105,269,064 20,482 642
Satellite 300,147,744 29,608 642
Overcast 466,539,040 33,040 642



SHiM 9
9.1 Inserting a SHiM . . . . . . 107
9.1.1 SHiM and UniTeX . . . . . . 107
9.1.2 API . . . . . . . . . . . . . 108
9.1.3 Code Examples . . . . . . 109
9.2 Overview of the BuildIt

Library . . . . . . . . . . . 111
9.3 Implementation . . . . . . 112
9.3.1 Code Generation Example 113
9.3.2 Design of SHiM Structures 114
9.3.3 Elementwise Writes . . . . 115
9.3.4 Memory Allocation Ab-

stractions . . . . . . . . . . 117
9.4 Evaluation . . . . . . . . . 117
9.4.1 Benchmarks . . . . . . . . 117
9.4.2 Runtime Performance . . . 118
9.5 Summary . . . . . . . . . . 118

This chapter looks at a second approach to the implementation of UniTeX, SHiM
(Staged Hierarchical Multidimensional arrays), which is an embedded DSL within
C++ that utilizes the BuildIt [21] staging library. Like CoLa, SHiM provides UniTeX-
specific data structures and functions, but does so without any modifications to the
host language. Unlike other DSLs embedded within C++, SHiM supports control
flow through BuildIt, allowing users to interleave UniTeX structures with normal
C++ control flow, making SHiM capable of implementing end-to-end encoders
as with CoLa. SHiM is also helpful for generating individual compression kernels,
which can be linked into existing implementations. This makes it possible to
incrementally update existing implementations if a user does not want to write
an entire end-to-end encoder from scratch.

Like CoLa, SHiM focuses on removing the overhead of the abstraction. However,
SHiM takes a very different approach than CoLa, taking advantage of BuildIt’s
staging capabilities to provide the necessary optimizations "for free." All SHiM-
generated programs have these optimizations applied, and the results (Sec-
tion 9.4) show that the performance of the generated code does not add any
additional overhead. The rest of this chapter provides examples of SHiM, dis-
cusses the design of SHiM within BuildIt, and finally looks at SHiM’s performance
on H.264 and JPEG benchmarks.

9.1 Inserting a SHiM

This section highlights using SHiM for a selection of the kernels presented earlier
in Chapter 6. These examples highlight the UniTeX operations, as well as the
interaction between the non-UniTeX features and normal C++ code (and BuildIt).
In particular, these examples use SHiM to write kernels that can generate code
that plug into existing implementations (though SHiM can implement end-to-end
encoders as well). Since SHiM is embedded within C++, it provides familiar syntax
and does not require any changes to the C++ syntax.

9.1.1 SHiM and UniTeX

SHiM implements the full UniTeX abstraction, except for coverage. Like CoLa,
blocks and views in SHiM store their absolute location rather than a trie repre-
senting the relative location, and views also maintain a reference to their nearest
block.
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9.1.2 API

Users of SHiM get access to all the features provided by BuildIt in addition to the
UniTeX features. The segments below highlight the main operations related to
UniTeX.

Block<type,N>::heap(origin,extents,refinement,coarsening,permutation

) creates a new heap-allocated N-dimensional block (see Subsection 9.3.4) with
the specified location parameters. SHiM includes overloads of this function taking
different combinations of the parameters.

Block<type,N>::stack<extents>(origin,refinement,coarsening,permutation

) creates a new stack-allocated N-dimensional block (see Subsection 9.3.4) with
the specified location parameters. SHiM includes overloads of this function tak-
ing different combinations of the parameters. Extents are specified as template
parameters to ensure that the generated code generates an array with constant
parameters, since C++ does not support variable length arrays.

Block<type,N>::external(origin,extents,refinement,coarsening,permutation

) creates a new N-dimensional block pointing to a user-allocated region of mem-
ory (see Subsection 9.3.4) with the specified location parameters. SHiM includes
overloads of this function taking different combinations of the parameters.

tensor.partition(range(x0,y0,z0),...,range(xN,yN,zN)) partitions a ten-
sor (see Subsection 5.2.3), producing a new view. Here, the x parameters rep-
resent the start, y represents the stop, and z represents the stride. In place of
the triples, a single integer or BuildIt dyn_var or static_var can be used. If the
number of parameters is less than the dimensionality, SHiM pads the left with
zeros. The start and stop may point out-of-bounds with respect to the tensor as
well.

tensor0.coloc(tensor1) performs a colocation (see Subsection 5.2.4), produc-
ing a new view.

tensor(c0,...,cN) reads from a tensor at the specified indices (see Subsec-
tion 5.2.6). The indices can be integers or BuildIt dyn_var or static_var objects,
but cannot be Iter objects (see Subsection 9.3.3). If the number of parameters
is less than the dimensionality, SHiM pads the left with zeros. The start and
stop may point out-of-bounds with respect to the tensor and perform a locality
access.

tensor[c0][...][cN] reads from a tensor at the specified indices (see Subsec-
tion 5.2.6). This is similar to the read function above, but also supports Iter

objects for indices (see Subsection 9.3.3).

tensor[c0][...][cN] = val writes to tensor at the specified indices (see Sub-
section 5.2.6). The indices can be integers, BuildIt dyn_var or static_var objects,
or Iter objects (see Subsection 9.3.3). If the number of parameters is less than
the dimensionality, SHiM pads the left with zeros. The start and stop may point
out-of-bounds with respect to the tensor and perform a locality access.

tensor.vrefine(r0,...,rN) performs a refinement in each dimension (see
Subsection 5.2.2), producing a new view. The refinement factors r0,...,rN can
be integers or BuildIt dyn_var or static_var objects.



9.1 Inserting a SHiM 109

tensor.vcoarsen(c0,...,cN) performs a coarsening in each dimension (see
Subsection 5.2.2), producing a new view. The coarsening factors c0,...,cN can
be integers or BuildIt dyn_var or static_var objects.

tensor.vpermute(p0,...,pN) performs a permutation (see Subsection 5.2.2),
producing a new view. The permutation factors p0,...,pN must be integers.

Iter defines an elementwise iterator (see Subsection 9.3.3), modeling those
used in CoLa.

Note that SHiM does not include an explicit slice operation. Instead, SHiM auto-
matically applies padding to read, write, partition, and colocation operations that
take into account any differences in dimensionality (which is sufficient for the
uses of slicing in the encoders described here).

9.1.3 Code Examples

Figure 9.1 gives an example of the JPEG color conversion kernel in SHiM, taking
advantage of elementwise iterators (like CoLa’s), which are defined with the Iter

objects and shown on Lines 11 to 13. It also uses permutations to abstract the
underlying data layout (Line 4).

This code also highlights the interface between an external user program that
would call the code generated from this kernel. In particular, on Line 2, the
provided SHiM function wraps some user-defined pointer that represents the
image data (wrapped in a dyn_var in order to make it work with BuildIt). Now this
external pointer can be used like a regular SHiM tensor.

SHiM can also generate the 1D DCT code from Figure 6.3 using permutations
as shown in Figure 9.2 on Page 110. Here, SHiM also inserts padding into the
accesses on vec (Lines 5 to 9), which implements the functionality of the UniTe
slice operation.

The example in Figure 9.3 on Page 110 performs the necessary checks for the
vertical right mode of intra-prediction originally discussed in Subsection 6.3.3.
This code utilizes SHiM partitions (Lines 9 and 10), colocations (Lines 11 and 12),

1 void jpeg(dyn_var<uint8_t*> image) {
2 auto RGB = Block<uint8_t,3>::external({H, W, 3}, image);
3 ...
4 color(RGB.vpermute({2,0,1}), YCbCr);
5 ...
6 }
7 template <typename RGB_T, typename YCbCr_T>
8 void color(RGB_T &RGB, YCbCr_T &YCbCr) {
9 Iter<’i’> i;

10 Iter<’j’> j;
11 YCbCr[0][i][j] = RGB[0][i][j]*0.299+RGB[1][i][j]*0.587+RGB[2][i][j]*0.114;
12 YCbCr[1][i][j] = RGB[0][i][j]*-0.168736+RGB[1][i][j]*-0.33126+RGB[2][i][j]*0.500002)+128;
13 YCbCr[2][i][j] = RGB[0][i][j]*0.5+RGB[1][i][j]*-0.418688+RGB[2][i][j]*-0.081312)+128;
14 }

Figure 9.1: SHiM code for a color conversion kernel in JPEG (See Subsections 2.1.3 and 6.2.2), and initial construction of the RGB image. This code
originally builds up the RGB image based on an external allocation provided by the user (allowing this code to be inserted into an existing codebase),
then permutes it to convert it to planar format. The actual conversion functions utilizes elementwise iterators (Iter) to create implicit loops, and then
performs basic tensor accesses.
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1 template <typename Plane_T>
2 void dct1d(Plane_T &plane, dyn_var<int> f) {
3 for (dyn_var<int> r = 0; r < 8; r=r+1) {
4 auto vec = plane.partition(range(r,r+1,1),range(0,8,1));
5 auto tmp0 = vec(0) + vec(7);
6 auto tmp7 = vec(0) - vec(7);
7 ...
8 vec[3] = scale(tmp6+z2+z3, f);
9 vec[1] = scale(tmp7+z1+z4, f);

10 }
11 }
12 template <typename Plane_T>
13 void dct(Plane_T &plane, dyn_var<int> scale_row, dyn_var<int> scale_col) {
14 dct1d(plane, scale_row);
15 dct1d(plane.vpermute({0,2,1}), scale_col);
16 }

Figure 9.2: SHiM code for a DCT (see Subsections 2.1.4 and 6.2.3). This code relies on permutations to implement a single 1D DCT kernel that can
compute on either rows or columns. Rather than providing an explicit slice operation, SHiM automatically inserts zero padding for the outermost indices
(vec(7) becomes (vec(0,0,7)), which provides the same functionality.

1 template <typename Frame_T>
2 void predict(Frame_T &frame) {
3 auto coarsened_frame = frame.vcoarsen({16,16}).to_block();
4 auto used_intra_pred = coarsened_frame.vrefine({16,16});
5 ...
6 }
7 template <typename Frame_T, typename MBlk_T mblk, typename Pred_T pred, typename Used_T>
8 void can_do_mode_VR(Frame_T &frame, MBlk_T mblk, Pred_T &pred, Used_T &used_intra_pred) {
9 auto row_up = pred.partition(range(-1,0,1),range(0,4,1));

10 auto col_left = pred.partition(range(0,4,1),range(-1,0,1));
11 auto row_origin = row_up.coloc(frame).vorigin();
12 auto col_origin = col_left.coloc(frame).vorigin();
13 if (row_origin[0] > 0 && row_origin[1] > 0) {
14 auto flags = used_intra_pred[pred];
15 dyn_var<bool> up_left = flags(-1,-1) == INTRA;
16 dyn_var<bool> up = flags(-1,0) == INTRA;
17 dyn_var<bool> left = flags(0,-1) == INTRA;
18 return up_left && up && left;
19 } else {
20 return false;
21 }
22 }

Figure 9.3: Utilizing coarsening and refinement in SHiM to determine whether a mode of prediction is possible (see Subsection 6.3.3). SHiM provides a
straightforward translation of the pseudocode in Figure 6.8 into an implementation, making it possible to access used_intra_pred at pixel-level
granularity (even though it stores data at macroblock-level granularity).

and locality accesses (Lines 15 to 17). The final example in Figure 9.4 on Page
111 shows code for the vertical right mode itself. Utilizing a combination of
permutations (Lines 5 and 6), elementwise iterators (Lines 10, 12, 14 and 15),
and special elementwise conditionals (Lines 9, 11 and 13), SHiM is able to provide
a near one-to-one mapping with the standard for this operation.
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1 template <typename Pred, typename Ref>
2 void get_4x4_vert_right(Pred &predr, Ref &ref) {
3 Iter<’x’> x;
4 Iter<’y’> y;
5 auto p = ref.coloc(predr).vpermute(1,0);
6 auto pred = predr.vpermute(1,0);
7 auto zVR = 2*x-y;
8 pred[x][y] =
9 select(zVR == Or(0,2,4,6),

10 (p[x-(y>>1)-1][-1]+p[x-(y>>1)][-1]+1)>>1,
11 select(zVR == Or(1,3,5),
12 (p[x-(y>>1)-2][-1]+2*p[x-(y>>1)-1][-1]+p[x-(y>>1)][-1]+2)>>2,
13 select(zVR == -1,
14 (p[-1][0]+2*p[-1][-1]+p[0][-1]+2)>>2, (p[-1][y-1]+2*p[-1][y-2]+
15 p[-1][y-3]+2)>>2)));
16 }

Figure 9.4: SHiM code for computing the vertical right mode of 4x4 intra-prediction. This code utilizes a combination of permutations, elementwise
reads/writes, colocation, and locality accesses.

9.2 Overview of the BuildIt Library

BuildIt [21] is a C++ library for multi-stage programming that can capture control
flow without the need for any changes to C++ or the C++ compiler. Since C++
does not offer any type of reflection nor control flow overloading capabilities,
embedded DSLs within C++ traditionally have to take a more declarative approach
and implicitly represent control flow (such as loop nests) through other means
such as lambdas. If control flow represents a large portion of a given program
in a DSL, this approach can lead to compensating for control flow with overly
complicated code.

During execution of a staged program, BuildIt constructs an AST that captures
all operations using BuildIt types, with operations ranging from simple arithmetic
expressions to control flow through for/while loops and conditionals. BuildIt
introduces three data types, dyn_var<T>, static_var<T>, and dyn_arr<T,N>,
which are wrappers to the underlying T types (and T[N] for dyn_arr<T,N>). In
the context of staging, dyn_var<T> objects get passed through to the generated
code, while static_var<T> objects are evaluated during staging. The individual
elements in dyn_arr<T,N> objects are treated as dyn_var<T> objects, and the
actual array does not live through to code generation. In the context of control
flow, BuildIt utilizes implicit conversions and operator overloading on dyn_var<T>

and static_var<T> objects to infer their use within a program. Figure 9.5 on
Page 112 shows a toy example of some code utilizing BuildIt and the resulting
generated code, which fully unrolls the static_var, but leaves the loop and
arithmetic expressions with dyn_vars. Note that BuildIt does not actually execute
the loops with dyn_var or static_var loop induction variables (i.e., it is not
running the for loop with the static_var five times); it only generates the code
representing the loop.
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1 dyn_var<int> func(dyn_var<int**> obj,
2 dyn_var<int> Y) {
3 static_var<int> X = 5;
4 dyn_var<int> res = 0;
5 dyn_var<int> y = 0;
6 static_var<int> x = 0;
7 for (y; y < Y; y=y+1) {
8 for (x; x < X; x=x+1) {
9 res += obj[y][x];

10 }
11 }
12 return res;
13 }

1 int func(int** arg0, int arg1) {
2 int var2 = 0;
3 for(int var3=0; var3<arg1; var3=var3+1) {
4 var2 = var2 + arg0[var3][0];
5 var2 = var2 + arg0[var3][1];
6 var2 = var2 + arg0[var3][2];
7 var2 = var2 + arg0[var3][3];
8 var2 = var2 + arg0[var3][4];
9 }

10 return var2;
11 }

Figure 9.5: Code written using BuildIt (left), and the code ultimately generated from BuildIt’s AST after staging (right). BuildIt unrolls the inner loop due
to the use of a static_var, but leaves the outer loop and expressions using dyn_var<int>.

1: Assuming users used the correct BuildIt
types for their control flow

9.3 Implementation

SHiM takes a very different implementation approach to UniTeX as compared
to CoLa, but the goals of the implementation are the same: provide a straight-
forward API to UniTeX and remove the overhead incurred by the abstractions.
SHiM provides additional features such as elementwise writes (like in CoLa) and
memory allocation abstractions. For transformations and optimizations, SHiM
exploits the staging framework provided by BuildIt and applies many of its trans-
formations during AST construction as opposed to transforming the AST itself. In
particular, SHiM uses a two-stage pipeline, where the first stage represents the
user’s program written with SHiM and BuildIt, and the second stage represents
the generated code corresponding to the user’s program. Figure 9.6 gives the
high-level pipeline for staging code written with SHiM.

As discussed in Chapter 7, a C++ library suffers from unacceptable performance
overheads, thus SHiM needs to ensure that the generated code removes the
overhead as well. Through careful integration with BuildIt, a program written
with SHiM captures all the UniTeX functionality specified in the user code, as
well as any user control flow1 that may (or may not) encapsulate the UniTeX
operations. Since BuildIt constructs an AST, SHiM could technically proceed in
a similar fashion to CoLa and apply all of its transformations on the AST using
full-fledged compiler passes (e.g. collapsing and propagation). However, SHiM

SHiM

BuildIt

User code Compile Run

External 
program

Compile Run Results

Stage 1 Stage 2

Figure 9.6: The SHiM execution pipeline, which utilizes two stages. The first stage contains the user’s C++ code, where users can interleave SHiM and
BuildIt types and operations. Then the stage generates code from the BuildIt AST. This generated code is free of SHiM and BuildIt types. The second
stage is where the user would actually run their program (and optionally link the generated code into a larger program).
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2: SHiM performs some AST transforma-
tions, but these are mostly for inserting some
function wrappers that are needed in the gen-
erated code. These types of transformations
do not add anything to the discussion, thus
will be omitted.

3: Much of the generated code is omitted as
it contains many redundant variable initializa-
tions. These are easily optimized away.

builds on BuildIt’s datatypes such that all SHiM data structures and operations
are fully inlined within the produced AST. This results in the generated code
from staging also being fully inlined, which makes it trivial for another compiler
(e.g. clang) to aggressively apply constant propagation, constant folding, and
strength reduction on the generated code. Of course, it is still possible to run
passes on the AST itself for any SHiM-specific transformations. Thus, it is useful
to differentiate between AST construction transformations, which modify how
the AST is initially constructed (covering the majority of SHiM’s operation), and
more traditional AST transformations, which modify the AST after construction.
This section primarily looks at AST construction transformations, though SHiM

provides the necessary tooling for performing AST transformations as well2.

With this design, SHiM sits somewhere between a fully templated C++ library
approach and a runtime C++ library approach. A fully templated library (where
the templates store constant property values) could theoretically provide all the
necessary constant folding, propagation, etc., but would be unable to adapt
to any values only known at runtime. A runtime library, again, supports both
constant and dynamic values, but then has the issues with overhead. SHiM gives
the best of both worlds without requiring any differences in how users specify
constant or dynamic values.

9.3.1 Code Generation Example

Before getting into the details on the internals of SHiM, this section gives a preview
of what code generated using SHiM’s implementation of UniTeX looks like. The
top of Figure 9.7 on Page 114 shows a simple example of SHiM code that creates
a heap allocated block (Line 5) and writes to it (Line 7) using a mixture of an
explicit loop (which BuildIt captures in its AST) and implicit elementwise loops
(see Subsections 9.3.3 and 9.3.4), and a permutation. The bottom of Figure 9.7
shows the relevant portions of the code generated by SHiM3. Note that the while
loops in the generated code are from the expansion of the elementwise writes;
BuildIt does not necessarily guarantee that the generated code will use the same
control flow structures as in the user code, but guarantees that the semantics
will be the same.

There are several important parts of the generated code to notice in this exam-
ple:

Tensor parameters are inlined as shown on Lines 3 to 5, which represent
the extents of the block created. This exposes constant parameters for
propagation and folding, which as discussed in CoLa, are necessary for
improving performance.

Operations are inlined and all accesses are reduced to direct accesses on
the underlying array, as shown by the write on Line 22. Combined with
the inlined property values, this exposes further opportunities for constant
propagation, as well as constant folding. In addition, none of the tensor
objects pass through to code generation. They exist only in the frontend.

SHiM generates necessary allocation code as shown on Line 7. SHiM sup-
ports several different types of allocations and generates the appropriate
code for each type.
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SHiM generates implicit loops for the elementwise operations, which are shown
by the while loops.

As mentioned earlier, SHiM effectively achieves the same type of optimizations
as CoLa in terms of exposing the necessary code for further optimization by an
existing compiler, hence the aggressive inlining on the generated code.

1 // SHiM code
2 void func() {
3 Iter<’j’> j;
4 Iter<’k’> k;
5 auto block = Block<int,3>::heap({5,10,15});
6 for (dyn_var<int> i = 0; i < 5; i=i+1) {
7 block.vpermute(2,0,1)[i][j][k] = i;
8 }
9 }

1 // Generated code
2 ...
3 int var48 = 5;
4 int var49 = 10;
5 int var50 = 15;
6 ...
7 shim::HeapArray<int32_t> var85 = shim::build_heaparr<int32_t>(var72);
8 for (int var86 = 0; var86 < 5; var86 = var86 + 1) {
9 while (1) {

10 if (var341 < var100) {
11 int var364 = 0;
12 while (1) {
13 if (var364 < var102) {
14 ...
15 var436 = ((var391 * var106) + var103) / var109;
16 var437 = ((var392 * var107) + var104) / var110;
17 var438 = ((var393 * var108) + var105) / var111;
18 ...
19 var457 = (var445 - var3) / var6;
20 var458 = (var446 - var4) / var7;
21 var459 = (var447 - var5) / var8;
22 var85[var459 + (var62 * (var458 + (var61 * var457)))] = var86;
23 var364 = var364 + 1;
24 } else {
25 break;
26 }
27 ...

Figure 9.7: SHiM UniTeX operations before (top) and after code generation (bottom). The generated code shows the allocation, loop structures, and
writes to the block. Note that the code is fully inlined, with no reference to the block object.

9.3.2 Design of SHiM Structures

To generate the inlined code shown previously, SHiM heavily utilizes the BuildIt
types to represent the block and view data structures and all of their parameteri-
zations. Figure 9.8 on Page 115 gives a peek at the layout of SHiM’s Properties

data structure, which corresponds to the parameters defined for UniTe in Chap-
ter 4. This structure forms the core of SHiM’s tensors and stores all the tensor
space parameters in dyn_arr objects, except for permutations, which are stored
in C++ std:array. The dyn_arr objects do not live through to code generation–
they exist to store arrays of dyn_var objects during staging. This means any
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1 template <unsigned long Rank>
2 struct Properties {
3 dyn_arr<int,Rank> _extents;
4 dyn_arr<int,Rank> _origin;
5 dyn_arr<int,Rank> _strides;
6 dyn_arr<int,Rank> _refinement;
7 array<int,Rank> _permutations;
8 };

Figure 9.8: Representation of the core data structure in SHiM that contains all the parameters for a tensor space. All parameters are stored in dyn_arr
objects (except for permutations, which use a regular std:array–this is just an implementation quirk). Note that _strides is a legacy name and
operates the same as coarsening.

4: See Subsection 8.3.2 for a discussion on
the purpose of elementwise iterators with re-
spect to ambiguity.

operations or accesses to a dyn_arr instead generate code corresponding to
the dyn_var value they hold, which effectively amounts to inlining all accesses
on dyn_arr. No explicit passes on the AST are necessary.

With this structure, it is possible to implement the operations for UniTeX in
the frontend just like a library. Figure 9.9 shows the implementation for the
refinement operation, which updates the various parameters as necessary. The
implementation is straightforward, and through the structure of SHiM, generates
the inlined code without the need for any special optimizations.

1 template <unsigned long Rank>
2 Properties<Rank> Properties<Rank>::refine(Property<Rank> refinement) {
3 Property<Rank> new_extents;
4 Property<Rank> new_origin;
5 Property<Rank> new_refinement;
6 for (static_var<int> i = 0; i < Rank; i=i+1) {
7 new_extents[i] = _extents[i] * refinement[i];
8 new_origin[i] = _origin[i] * refinement[i];
9 new_refinement[i] = _refinement[i] * refinement[i];

10 }
11 return {new_extents, new_origin, _strides, new_refinement, this->

_permutations};
12 }

Figure 9.9: Implementation for the refinement operation in SHiM. All UniTeX components in SHiM have a straightforward library implementation and do
not require any special AST passes for optimization.

9.3.3 Elementwise Writes

Like CoLa, SHiM provides the ability to generate writes to tensors through the
use of elementwise iterators4. However, unlike CoLa, SHiM does not need any
explicit compiler passes to perform the transformation; instead, it uses an AST
construction transformation, generating the correct loops during execution of the
first stage. Figure 9.10 on Page 116 gives a working example for this section
and shows a case with two iterators.

Since SHiM does not change any of the syntax of C++, it cannot use the iterator
style of CoLa (the !x syntax). Instead it introduces Iter objects (similar to Var

objects in Halide [50]). Semantically, these are the same as the CoLa iterators
such that they represent the current iteration of the implicit loop, and have integer
type so that they can be used in any expression that takes an integer. SHiM also
places the same constraints on the iterators: any iterator on the right-hand side
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1 Iter<’i’> i;
2 Iter<’j’> j;
3 tensorA[i][2][j] = tensorB[i+j] + tensorC[i];

(a) Two elementwise writes using Iter objects.

1 // First peel
2 for (dyn_var<int> i = 0; i < tensorA.vextents()[0]; i=i+1) {
3 }
4 // Second peel
5 for (dyn_var<int> i = 0; i < tensorA.vextents()[0]; i=i+1) {
6 dyn_var<int> c = 2;
7 }
8 // Third peel
9 for (dyn_var<int> i = 0; i < tensorA.vextents()[0]; i=i+1) {

10 dyn_var<int> c = 2;
11 for (dyn_var<int> j = 0; j < tensorA.vextents()[2]; j=j+1) {
12 }
13 }

(b) Peeling off indices to generate loop nests from (a).

1 for (dyn_var<int> i = 0; i < tensorA.vextents()[0]; i=i+1) {
2 dyn_var<int> c = 2;
3 for (dyn_var<int> j = 0; j < tensorA.vextents()[2]; j=j+1) {
4 tensorA.write({i,2,j}, tensorB(i+j) + tensorC(i));
5 }
6 }

(c) Adding in the write statement from (a) into (b).

Figure 9.10: Example of the process of generating loops from Iter objects in SHiM. See the text in Subsection 9.3.3 for a full discussion of each step.

must be present on the left-hand side, left-hand side iterators must be unadorned,
and iterators on the left-hand side must be unique.

SHiM constructs the right-hand side of an elementwise statement lazily using
expression templates [54, 56–58]. Expression templates are traditionally used
for lazy evaluation in order to reduce the number of temporaries necessary. For
example, if d=a+b+c represents the addition of three matrices, eager evaluation
of this would evaluate tmp=a+b, then d=tmp+c. This issue of temporaries is not
so much of an issue with SHiM’s particular use case, but expression templates
provide a straightforward way for SHiM to generate the full loop nest. Rather than
focus on the explicit use of expression templates, the rest of this description for
elementwise writes will focus on how SHiM generates the loop nests from the
constructed statement.

Once SHiM has verified that an expression contains a valid use of elementwise
iterators, it performs a two-step procedure until all loops have been generated
for the expression. The first step generates the loop nest, while the second step
executes the actual statement. All of this happens during the first stage, and the
transformations happen within the write functions; no explicit AST transformations
are necessary.

To generate the loop nest, SHiM "peels" off indices from the left-hand side and
replaces them one-by-one with their corresponding loop nest (or a constant if
not using an iterator). Similar to CoLa, SHiM does this by determining which
dimension the loop corresponds to and uses that for the extent of the loop nest.
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5: Note that SHiM does not actually allo-
cate any of this memory itself during staging.
Rather, it generates the code necessary to
perform the allocation.

From Figure 9.10a, there are three different "peels": one for i, constant index 2,
and j. Since 2 is just a constant, that does not produce a loop nest and instead
just creates a dyn_var representing the value. Applying this process produces
the code in Figure 9.10b.

Once SHiM has generated the loops, it unwraps the right-hand side expression.
This involves applying all the terms captured within the expression template and
replacing uses of the Iter objects with their corresponding loop iterators. This
generates the code in Figure 9.10c. By default, SHiM places the full right-hand
side expression within the innermost level of the loop nest even if parts of the
expression can be hoisted.

9.3.4 Memory Allocation Abstractions

SHiM provides several different ways to generate code for the underlying block
allocations. Users can have SHiM generate code for performing the allocation
automatically, or can instruct it to use an existing memory allocation. The latter
provides a necessary degree of flexibility that makes it easy to integrate kernels
generated with SHiM into existing implementations because the kernels can
utilize memory allocated by the existing implementation.

SHiM defines four primary ways to specify the type of allocation used5, which
are shown in Figure 9.11 on Page 118. A heap allocation, shown on Line 5,
generates code for a reference-counted array, and a stack allocation, shown on
Line 6, generates code for a plain stack array.

Lines 7 and 8 show two ways to specify that SHiM should not perform an allocation
itself and instead utilize an existing allocation (represented by the two dyn_var

pointers passed into the function). This abstraction not only provides a way to
utilize already-allocated data, but also provides a solution to cases where an
existing implementation is not consistent with the way it represents blocks. For
example, in this case, one 2D block has type int* and the other has int**. It is
possible to wrap each in a 2D block, allowing both to be intuitively accessed with
2D indices, even though the former is stored linearly. The type of allocation does
not affect the user’s view of the data, and the API for accessing and operating
on blocks (and corresponding views) does not change.

9.4 Evaluation

The fully inlined nature of the generated code from SHiM allows it to be very easily
optimized by an external compiler, thus SHiM, like CoLa, is able to generate code
that ultimately removes the overhead associated with the UniTeX abstraction. This
section highlights SHiM’s performance on two different encoder benchmarks.

9.4.1 Benchmarks

The evaluation for SHiM includes the same sequential JPEG example discussed
in CoLa’s evaluation in Section 8.4 (JPEGS) and compares against the same ref-
erence (IJG). It also includes H.264 and compares against JM. However, instead



118 9 SHiM

1 dyn_var<int> func(dyn_var<int*> ext, dyn_var<int**> ext2,
2 dyn_var<int> Y, dyn_var<int> X) {
3 Iter<’y’> y;
4 Iter<’x’> x;
5 auto block_heap = Block<int,2>::heap({10,10});
6 auto block_stack = Block<int,2>::stack<10,10>();
7 auto block_ext = Block<int,2>::external({Y,X}, ext);
8 auto block_ext2 = Block<int,2,true>::external({Y,X}, ext2);
9 block_heap[y][x] = 1;

10 block_stack[y][x] = 1;
11 block_ext[y][x] = 1;
12 block_ext2[y][x] = 1;
13 return 0;
14 }

Figure 9.11: Four different ways of allocating memory with SHiM. The heap allocation on Line 5 generates code allocating a reference-counted array,
while Line 6 generates code for a simple stack-allocated array. On Lines 7 and 8, SHiM takes in externally-allocated arrays rather than generating
allocations itself. The former expects a single pointer, while the latter supports a pointer-to-pointer allocation (and more generally, takes in an N-level
pointer, where N corresponds to the number of dimensions specified).

6: Note that this usage of JM uses differ-
ent parameters than the JM benchmark for
CoLa, hence the overall performance differ-
ence when compared to the runtime for JM
in the CoLa chapter.

of implementing the full encoder for comparison, individual kernels are imple-
mented in SHiM, and the generated code is linked into JM6, replacing the original
functions. In particular, the JM kernels related to 4x4 and 16x16 intra-prediction
are replaced with SHiM kernels. The evaluation setup (Subsection 8.4.2) and
data (Tables 8.2 and 8.3) are the same as presented in CoLa as well. Unlike
CoLa, SHiM’s optimizations cannot be disabled, so SHiM produces a single result
per individual benchmark that just represents the optimized runtime.

9.4.2 Runtime Performance

Figures 9.12 and 9.13 on Page 119 show the performance of CoLa relative to
the IJG and JM reference, respectively, and Table 9.1 on Page 120 gives the
corresponding raw runtimes. Overall, the results are similar to what was shown
for CoLa, with SHiM reaching parity with the reference implementations. This
performance shows that SHiM effectively exposes all the underlying constant
property values, allowing the external compiler (clang in this case) to optimize
any unnecessary operations/simplify others.

9.5 Summary

This chapter introduced SHiM, which implements the full UniTeX abstraction
as an embedded C++ domain-specific language utilizing staging through the
BuildIt library. Through BuildIt, SHiM provides the ability to interleave C++ control
flow with SHiM-specific data structures and operations, which is not typically
supported with other C++-embedded domain-specific languages. Unlike CoLa,
SHiM is able to perform many of its transformations and optimizations without
the need for separate compiler passes.

While SHiM supports the ability to implement end-to-end encoders, SHiM also
makes it easy to implement compression kernels that take in external data
allocations and wrap them in SHiM block data structures. These kernels can be
seamlessly integrated with existing code, allowing users to replace certain parts
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of encoders rather than having to design an encoder from scratch. Regardless
of whether SHiM is used for an end-to-end encoder, or for generating kernels,
SHiM is able to achieve runtime parity with existing implementations.
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Figure 9.12: SHiM performance on JPEGS relative to IJG.
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Figure 9.13: SHiM performance H.264 relative to JM.
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Table 9.1: Raw runtimes for SHiM.

SHiM IJG
rose 0.004 0.004

cat 0.028 0.029
poster 0.196 0.186

painting 0.277 0.278
satellite 0.875 1.030

overcast 1.014 1.008
overcast big 1.905 2.181

map 2.466 2.750
map big 6.497 7.054

(a) SHiM vs IJG for JPEG (seconds).

SHiM JM
Carphone 2.670 2.617

Coastguard 3.169 3.146
Foreman 9.674 9.553

Akiyo 8.597 8.419
Football 10.554 10.231

(b) SHiM vs JM for H.264 (seconds).

SHiM JM
Carphone 75 76

Coastguard 63 64
Foreman 21 21

Akiyo 23 24
Football 19 20

(c) SHiM vs JM for H.264 (frames per second..



1: There tends to be a tradeoff in the imple-
mentation space between performance and
how many features are implemented, with
more performance corresponding to less fea-
tures and vice versa. Thus being able to try
different algorithms and such will likely re-
quire hand-implementation of the algorithm,
or potentially even the whole system if the
algorithm does not fit into the existing struc-
ture.
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Works related to this dissertation come from both application-specific research,
as well as more general research focused on programming with arrays. This
chapter first explores related work (or lack thereof) for block-based compression
(Section 10.1), then moves on to array programming (Section 10.2). The array
programming section looks at both more traditional uses of array programming,
which largely deal with applying operations across arrays, as well as view-based
programming (Subsection 10.2.1), which focuses on different ways to capture
both structured and arbitrary data within arrays. Finally, this chapter concludes
with a look at the domains of adaptive mesh refinement (Subsection 10.3.1) and
geographic information systems (Subsection 10.3.2), which share aspects of
spatial relationships with block-based compression.

10.1 Block-Based Compression

Decades of research for block-based compression have led to numerous im-
plementations for end-to-end systems from both open source developers and
companies alike. However, the majority of work on encoders focuses on the
algorithmic side, as opposed to providing language support.

10.1.1 End-to-End Implementations

Some of the most prevalent open-source implementations include the reference
software released with the standards, such as JM [8] (H.264), HM [11] (H.265),
VTC [13] (H.266), and libjpeg [55] (JPEG), libvpx [14] (VP8/VP9). Many other
implementations are based on these, thus share similar structure, but are typ-
ically implemented from scratch every time. While it is relatively easy to find
highly optimized end-to-end encoders1, such as nvJPEG [59], libjpeg-turbo [17],
x264 [9], x265 [12], and x266 [60]), it is nearly impossible to find any language
support to help build these implementations.

10.1.2 Decoder Support

Even language support for decoders, which are generally more straightforward
to implement than encoders, is scarce. Some abstractions for MPEG decoders
appear in the work on Flavor [61–63], XFlavor [64], BFlavor [65, 66], MPEG21-
BDSL [67], StreamIt [68], StreamJIT [69], and the Reconfigurable Media Codec
(RMC) [6, 7]. Flavor and its variants, along with the work on MPEG21-BDSL, focus
on providing abstractions that simplify parsing a compressed MPEG bitstream,
which is the first step in any decoder. Flavor provides a DSL in the style of C++
for declaratively describing the structure of the bitstream, while the others utilize
primarily XML-based descriptions that act as input to RMC. RMC provides a more
general dataflow model for decoders and provides users with a control flow graph
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2: The JuliaImages [49] and Padded-
Views.jl [82] libraries in Julia provide some
related work on accessing surrounding data
(though not referred to by any specific name).
For example, the libraries use negative
indices to define relative offsets from an
origin, but in this case, an index outside the
bounds of a view returns a padding value
as opposed to the data in the surrounding
block. This could provide an extension to
locality access on a block in UniTeX where
it defines boundary conditions that dictate
what to return on a truly out-of-bounds
access. These types of boundary condition
semantics are commonly found in image
processing languages, such as Halide [50].

where they can mix-and-match different computational kernels (called functional
units) throughout. StreamIt and StreamJIT model the MPEG2 video decoder
with structured streams. These dataflow platforms largely focus on describing
the overall pipeline of the decoder as opposed to the internals of stages.

10.2 Array Programming

Array programming has a much richer history of language support, beginning
with the introduction of multidimensional arrays in Fortran [18]. A vast amount of
libraries and languages have been developed over that span of time, with many
focused on numerical and scientific computing. Irrespective of the application
domain, languages and libraries for array programming constantly provide new
ways to represent, transform, compute on, and optimize arrays. Several prior
works capture various parts of UniTe and UniTeX, such as using views, but none
fully encapsulate the semantics in this dissertation nor provide an underlying
framework for spatial relationships among data.

Many languages are array-based or have wide ranging support for multidimen-
sional arrays, with more popular ones including Julia [70], APL [71], Ada [72],
MATLAB [73], SaC [74], and J [75]. Several libraries also include support such as
NumPy [76], Eigen [77], Blaze [78], Blitz++ [79], Armadillo [80], and FTensor [81].
These systems provide a variety of tools for manipulating arrays and performing
arithmetic operations on them, so have operations that can be useful for compres-
sion, but none provide abstractions for fully capturing spatial relationships. For
example, NumPy and Julia provide native support for views and various types of
manipulation (slicing, partitioning, etc.), but do not expose any of the location
information for views related to their blocks, nor do they provide a global concept
of location, which limits their usefulness for an application like compression2.

In a sense, this dissertation does not provide an abstraction for a traditional
array-based programming, as that typically refers to applying operations on all
the elements of the arrays at once. For example, A*B in many of these languages
performs a matrix multiplication. These types of operations are orthogonal to
UniTe as UniTe focuses on the relationships across these multidimensional arrays
instead of the computations on them. However, both CoLa and SHiM can easily
support this type of functionality through overloading magic methods (for CoLa),
operator overloading (for SHiM), or elementwise iterators.

10.2.1 View Programming

Other systems with multidimensional arrays focus on the view/hierarchical as-
pect, which is more closely aligned with this work. Marray [83] provides a hybrid
templated/runtime library implementation in C++ that treats strided views as a
core primitive. Velociraptor [84] provides a framework for building JIT compilers
for multidimensional tensors and views, providing an array-based IR. The work on
Flexible Data Views [85] utilizes templates for C++ and dynamic staging through
Lightweight Modular Staging [86] for Scala and focuses on providing views that
cover disjoint regions of data. Hierarchically tiled arrays (HTAs) [87–89] provide
a library approach to partitioning blocks and strided views for the purpose of
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3: For example, an iterator-based view (not
in any particular language) would look some-
thing like view=block.keep_if(fun
x -> x > 10), where view represents
only the elements of block that are larger
than 10.

4: HTAs provide support for computing and
transferring boundary values as well.

parallelism. Taichi [90] focuses on the hierarchical structure of disjoint, sparse
data. Finally, the View Template Library [91] represents views in a more functional
manner, utilizing smart iterators [92] which are C++ iterators with attached predi-
cates. This provides the most flexible representation of a view as it can arbitrarily
select data for a view depending on the evaluation of the predicate across each
element3. However, for domains that have more constrained representations of
views, this type of flexibility would lead to significant overheads. Across all of
these, Marray is the only work that provides a theoretical foundation for the types
of structure underlying their arrays and the operations on them.

Like the general array-programming works, none of these capture all the seman-
tics and functionality described in this dissertation. There is also a fundamental
mismatch between how many of these prior works view the hierarchical structure
of the data and the way this work views it. To understand the mismatch, consider
the HTA library introduced earlier. HTA stores blocks and views in a hierarchy
and provides various ways to partition the data. However, their focus is more
on local, structured decomposition of the data, such as performing a quadtree
decomposition on an array into tiles and then immediately executing all the tiles
in parallel4. As a result, all of the operations are more focused on providing users
with a simple way to decompose their data in this way and optimizing these
localized usages. While that is extremely helpful for many applications, it is not
as useful within compression.

Compression has elements of more structured decomposition in it (for example,
partitioning macroblocks into submacroblocks in H.264 follows a quadtree de-
composition), but the usages of the individual partitions are largely spread out
across various stages, and also mixed with more ad-hoc partitions (like accessing
a single row above a submacroblock to see if it exists), making it hard to extract
any sort of simple, localized representation. While UniTe can already be used to
extract this localized representation, it does not necessarily mean the tensors
have the ability to be parallelized. With HTAs, there is an underlying assumption
that the partitions are done for the purposes of parallelization, not necessarily
for providing a more intuitive view of the data like with UniTe. In addition, many
of the dependencies cannot be captured with simple boundary conditions. For
example, conditions such as the one in H.264 checking whether a macroblock
used intra-prediction or inter-prediction, introduce other complex dependencies
between data that are actually based on runtime data decisions, not just the
location. However, in the case that this type of hierarchical structure proves
beneficial, UniTeX already provides the necessary semantics to capture the local
structure, determine dependencies, etc.

10.3 Related Domains: Adaptive Mesh Refinement
and Geographic Information Systems

Although this dissertation largely focuses on compression, the underlying abstrac-
tions span beyond that area and can be used as a foundation for representing
data in related domains. Two particularly relevant domains are that of adaptive
mesh refinement and geographic information systems, as UniTeX can represent
the core data in each, as well as many of the operations.
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5: It is possible to take the representation
a step further and represent non-rectilinear
shapes, such as triangles. Chapter 11 dis-
cusses this more when looking at potential
future work.

6: See https://pro.arcgis.

com/en/pro-app/latest/

tool-reference/spatial-analyst/

how-zonal-statistics-works.htm

10.3.1 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR), particularly that of block structured adaptive
mesh refinement, represents a hierarchy of grids derived from one another, where
grids at the lower levels have greater resolution (refinement) and grids at the
higher levels have less resolution (coarsening). At a high-level, AMR iteratively
applies refinement to the grid until some stopping criterion is met. However, an
entire grid is not usually refined, rather smaller rectangular regions within each
are refined instead, leading to rectilinear patches of different refinement. A layer
in a grid is the combination of all the patches having the same refinement, and
AMR requires being able to globally represent all of these patches within the grid.
Existing libraries for structured AMR, such as SAMRAI [93], Paramesh [94], and
BoxLib/AMReX [95, 96] each utilize their own hand-rolled representation for these
data structures, even though each effectively needs the same representation.

UniTeX provides a natural connection to this type of AMR and can serve as a
foundation for representing the grid and patches within it. It has the necessary
semantics for refinement, and could easily determine all the patches in a layer
by computing the refinement of each tensor space with respect to the root of the
trie. Since UniTe also supports arbitrary sets of points, it is possible to use UniTe
to describe more than just tensors, thus it can also represent these rectilinear
patches5.

10.3.2 Geographic Information Systems

Geographic information systems (GIS) are a broad class of tools that store,
visualize, and analyze geospatial data, with ArcGis [97] and QGIS [98] being the
most widely used implementations of GIS. A core class of analyses used in GIS,
known as spatial statistics, compute various statistics (such as min/max) across
different pieces of data that have some spatial connection between them, such
as proximity. For a particular example, consider one category of spatial statistics
known as zonal statistics6.

A zonal statistic computes some value on a value raster (the input data) based
on a zonal raster, which effectively acts as a mask that indicates which data in
the value raster to use in computing the statistic. These rasters are made up of
cells, and the zonal raster groups cells into zones, where different zones each
have the statistic computed independently on them. As with AMR, the zones can
define rectilinear regions, but are not strictly limited to that shape. Figure 10.1 on
Page 125 gives an example of the setup for computing a sum zonal statistic.

Like AMR, UniTeX contains the necessary semantics to represent this data.
However, unlike AMR, these zonal statistics also have an element of colocation
in them, as they need to determine the data in the value raster corresponding to
the location of the zonal raster. This would be possible with UniTe by extending it
in a similar way to UniTeX and defining colocation on arbitrary sets of points.

https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-zonal-statistics-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-zonal-statistics-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-zonal-statistics-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-zonal-statistics-works.htm
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Figure 10.1: A zonal statistic for calculat-
ing the sum of elements in each zone. The
top raster defines the individual zones, which
each have the statistic (sum) computed inde-
pendently on them. The middle raster defines
the values to use for the statistic, and the bot-
tom layer represents the result of summing
the data corresponding to each zone.
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This dissertation showed how to capture, implement, and apply spatial relation-
ships across tensors within a program. It introduced a mathematical framework,
UniTe, which provides a way to capture and reason about location on arbitrary
sets of points, as well as tensors, which represent bounded sets of points. UniTe
makes it possible to capture the location of data with different representations
using reference spaces, where the representations can vary in their axes ori-
entation, dimensionality, origin, and point density (refinement and coarsening).
Together with a set of definitions that perform mappings across reference spaces,
UniTe provides well-defined ways to map data between reference spaces and
compute spatial relationships across them.

In addition to UniTe, this dissertation introduced UniTeX, which defines higher-
order operations on top of UniTe that exploit spatial relationships. These oper-
ations specify how to both create new reference spaces (e.g. copy, permute,
slice, refine, coarsen, partition, colocation) and access data (e.g. locality access,
coverage). UniTe and UniTeX aim to provide a concrete framework for defining
and utilizing location, but are flexible enough that they can be extended to support
new features that may be necessary with certain domains. The goal of these
abstractions is not to constrain tensors to a particular set of parameters, but
rather provide the structure necessary to fit parameters within the abstraction
(i.e. requiring mappings between reference spaces).

To demonstrate the use of the abstraction, this work applied the abstraction to
block-based compression, which heavily relies on spatial relationships across
tensors all throughout encoders. Block-based compression largely lacks any sort
of programming language support, but UniTe and UniTeX provide the necessary
data representations that can be used to build such support. However, this work
showed that a library implementation can incur up to a 65× slowdown compared
to hand-optimized C code due to the overhead of indexing and creating views.

To remove this overhead, this dissertation presented two different domain-specific
languages, CoLa and SHiM, which are built off of UniTe and UniTeX. Both of these
provide an intuitive interface for users while also removing the overhead and
bringing performance down to parity with the existing implementations; however,
both take very different approaches in doing so. In particular, CoLa follows a more
traditional path, using domain-specific compiler passes to remove the overhead,
while SHiM utilizes staging, which generates code that an existing compiler (such
as clang) can instead successfully optimize.

This work is ultimately a necessary first step in enabling programming language
support for block-based compression, and there are many paths for continuing
research in both the abstraction and block-based compression. Some potential
avenues include:

Structured encoder pipelines Chapter 2 introduced the high-level pipelines
and stages found in encoders for JPEG and H.264 and discussed both the
underlying data representations and operations, as well as how the stages
connect to one another. The work in this dissertation targets simplifying the
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1: Rectilinear regions can just be repre-
sented with a collection of tensors.

implementation of the stages themselves, but does not address how the
stages connect to one another. Another source of complexity in existing
encoder implementations comes from hooking the stages together, as
processing data throughout an encoder pipeline is largely non-linear (for
example, reconstructed data must be fed back into the pipeline for use
with the next block of data).
For this, there is potential in the area of structured stream processing where
the tensors defined in UniTe can be used to define the data elements con-
sumed and produced by nodes in the stream graph. This structure could
simplify building an encoder by providing a sort of "plug-and-play" frame-
work. While the difficulty lies in the dynamism that comes with compression,
there should be ways to leverage the overall structure within the compres-
sion pipelines to make it fit within such a framework. Existing structured
stream processing works such as that with StreamIt [68], StreamJIT [69],
and the Reconfigurable Media Codec [6, 7] would be ideal starting points
for this type of work as they define many primitive node types that would
be useful for encoders.

Bitstream abstractions A somewhat unexpected difficulty encountered when
writing implementations for compression was correctly formatting the out-
put bitstreams. The sheer number of parameters that have to be written
to the bitstream quickly gets overwhelming, as many dependencies exist
across the parameters, and can only be figured out by jumping back and
forth between pages of the standard. A useful DSL would be one that could
be used to encode the structure of a bitstream in a library, where the library
provides functions representing bitstream primitives that continuously vali-
date the produced bitstream (e.g. check for valid values, valid orderings,
etc.). Having such a tool, even just for the purposes of debugging, would
undoubtedly reduce the implementation effort for the encoder itself.

Expanding into other domains As discussed in Chapter 10, the abstractions
presented in this dissertation also apply to domains such as adaptive mesh
refinement and geographic information systems, which utilize spatial rela-
tionships across different reference spaces. Understanding the differences
between these domains and the current version of UniTe can help expand
it with new types of reference spaces and operations exploiting spatial
relationships, ultimately adding to the power of the representation.

Expanding UniTe and UniTeX Both UniTe and UniTeX are ultimately tied to ten-
sors, which can be used to define both rectangular and rectilinear regions
of data1. However, other domains (including adaptive mesh refinement and
geographic information systems defined earlier) utilize non-rectangular
regions of data, such as triangles. Since the foundations of UniTe just op-
erate on sets of points, it would be possible to extend UniTe to these other
types of shapes by just providing different bounds on the sets of points
themselves. Similarly, other domains may require different types of param-
eterizations and mappings such as rotations and non-linear mappings. The
reference spaces and point mappings of UniTe can be extended with these
other features, as long as the core of UniTe is maintained (namely, refer-
ence spaces are defined relative to one another, points can be mapped
between any reference space, etc.). The definition of UniTe used in this
dissertation was picked to primarily support block-based compression, and
adding other features would have added unnecessary overhead that would
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2: NumPy kernels are written in C, thus could
be specialized using staging.

still need to be accounted for in the compilers. However, other domains
can mix-and-match the necessary components to define their own spatial
abstraction.

Adding spatial structures and operators to existing languages Spatial op-
erations appear in many different applications, not just block-based com-
pression, adaptive mesh refinement, and geographic information systems.
In fact, spatial data structures such as quadtrees [99], octtrees [100], k-d
trees [101], and R-trees [102] have been studied for decades and have nu-
merous variants derived from each of them. While these spatial structures
are all different, they still have a notion of location at their core and require
maintaining relative locations within each. To the best of our knowledge,
existing general purpose languages do not natively include any spatial
primitives for building these structures. UniTe and UniTeX provide the
necessary components for defining these primitives in a language, and the
various considerations described in Chapters 7 to 9 provide some initial
insight into the implementation details of such primitives.
Admittedly, adding new features to an existing general-purpose language
can be a difficult path, however, other paths such as implementing UniTe
and UniTeX into a library could prove to be a useful starting point. While
Chapter 7 discussed the performance issues that come with a naive library
implementation, it could be possible to use staging techniques to integrate
UniTe efficiently into existing libraries such as NumPy2.

As these domains that utilize spatial relationships continue to evolve and become
more complex, there is an immediate need for better programming language
support. This dissertation has demonstrated that it is possible to develop a
flexible abstraction for capturing and reasoning about spatial relationships within
a program. From this work, the hope is that it inspires others to take a serious
look at ways to improve language support for both block-based compression and
other related domains.
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