
GSTACO: A Generalized Sparse Tensor Algebra
Compiler

by

Alexandra Dima

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2023

© Massachusetts Institute of Technology 2023. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

January 20, 2023

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Saman Amarasinghe

Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee



[ Page intentionally left blank ]

2



GSTACO: A Generalized Sparse Tensor Algebra Compiler

by

Alexandra Dima

Submitted to the Department of Electrical Engineering and Computer Science
on January 20, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Many applications in engineering and computer science are characterized by sparse
multi-dimensional data. Therefore, optimizations for sparse tensor algebra have re-
ceived a lot of attention lately. Several hardware and software solutions have emerged
in order to speed up the computation of certain tensor expressions, but none of them
provides an interface that is general and comprehensive enough to meet the require-
ments of complex applications like graph analysis. In this work we attempt to identify
where previous solutions fell short and build the Generalized Sparse Tensor Algebra
Compiler (GSTACO), a new compiler aiming to fill in the engineering gaps of efficient
sparse computation.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

3



[ Page intentionally left blank ]

4



Acknowledgments

I would like to thank professor Saman Amarasinghe for welcoming me into his research

group, Compilers At MIT (COMMIT), and for providing continuous guidance and

support throughout my time building GSTACO. Additionally, I am grateful for the

mentorship of Ajay Brahmakshatriya, who first introduced me to the idea of encoding

graph algorithms in tensor algebra and who offered most valuable advice in compiler

and performance engineering. Willow Ahrens, author of Finch - the sparsity generator

underneath GSTACO, also played an instrumental role by addressing all my feature

requests and Github issues as well as helping me understand efficient sparsity code

generation. I found our discussions highly motivating and productive. Outside of

MIT, I am very thankful to my fiancee who listened to my research monologues and

inspired me to study C++ in greater depth, which was immensely helpful in the

completion of this thesis. Lastly, I owe many thanks to my family and friends for

their support throughout my 5-year journey at MIT.

5



[ Page intentionally left blank ]

6



Contents

1 Introduction 15

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Related Work 21

2.1 Finch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Graphit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 GraphBLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 GSTACO Language 25

3.1 Syntax & Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Reduction Operators . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Tensor Variables and Types . . . . . . . . . . . . . . . . . . . 27

3.1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.4 Star Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.5 Tensor Formats . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.6 Scheduling: Format Switch . . . . . . . . . . . . . . . . . . . . 30

3.1.7 Scheduling: Loop Ordering . . . . . . . . . . . . . . . . . . . . 31

7



4 System Overview & Implementation 33

4.1 Intermediate Representation . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Function Declaraion . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.3 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.4 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 IR Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Lowering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5.1 Cross-Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.2 Intra-Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Evaluation 53

5.1 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Further Work 57

6.1 New Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Performance Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Additional Optimizations . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 New Backends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Improved Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7 Conclusion 61

A Grammar & Token List 63

8



B GSTACO Full Implementations 67

9



10



List of Figures

3-1 performs poorly on Swarm . . . . . . . . . . . . . . . . . . . . . . . . 26

3-2 maps well to efficient Swarm code . . . . . . . . . . . . . . . . . . . . 26

3-3 SSSP: computing new distances based on the nodes at the current

priority and edge weights . . . . . . . . . . . . . . . . . . . . . . . . . 27

3-4 BFS: computing the parents of the nodes in the next frontier . . . . . 27

3-5 BFS: computing the next frontier of nodes from the old frontier, edges

adjacency matrix and visited information . . . . . . . . . . . . . . . . 27

3-6 Declaring ’edges’ as a CSR tensor . . . . . . . . . . . . . . . . . . . . 28

3-7 Function declaration for initializing tensors in SSSP . . . . . . . . . . 28

3-8 BFS: repeatedly visiting levels of equidistant nodes from the source

until no more unvisited nodes can be reached . . . . . . . . . . . . . . 29

3-9 SSSP: process all nodes from the queue with given priority level . . . 29

3-10 BFS loop optimized for tensor formats. Two more inputs have been

added in order to keep track of the metrics that drive the format switch

decision (number of visited and frontier nodes) . . . . . . . . . . . . . 31

3-11 Pagernk: by default, the loop order of this kernel would be j, i. How-

ever, out-degree requires reordering the loops in order to optimize ac-

cess over the sparse tensor ’edges’ . . . . . . . . . . . . . . . . . . . . 31

3-12 Language Feature Summary . . . . . . . . . . . . . . . . . . . . . . . 32

4-1 System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-2 Module Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4-3 Function Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

11



4-4 Expression subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-5 Call subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4-6 FuncDeclRewriter : modify function declarations to take allocated

memory as an input pointer, and only allocate memory if the pointer

is null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4-7 MemoryReuseRewriter : refactors function calls to pass pointers to

allocated memory from the caller . . . . . . . . . . . . . . . . . . . . 42

4-8 CallRewriter effect on IR: split a Definition into a MultipleOutput-

Definition (which computes a tuple of results) and a set of Definitions

which index into the tuple to compute final results . . . . . . . . . . . 43

4-9 CallRewriter effect on pseudocode . . . . . . . . . . . . . . . . . . . . 43

4-10 CallStarConditionRewriter . . . . . . . . . . . . . . . . . . . . . . . . 44

4-11 Rewriters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4-12 with Finch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-13 without Finch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-14 NeedsFinchVisitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-15 FinchCompileVisitor on Definition node . . . . . . . . . . . . . . . . . 50

4-16 FinchCompileVisitor on Allocation node . . . . . . . . . . . . . . . . 51

5-1 GSTACO execution times vs. number of nodes in the graph for PageRank 55

5-2 Graphit benchmark on PageRank with optimizations turned off . . . 55

6-1 CSE optimization in BFS: both parents (P) and frontier (F) are com-

puted within the same multiple-output Finch kernel . . . . . . . . . . 58

A-1 GSTACO Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A-2 GSTACO Tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

B-1 Page Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

B-2 Breadth First Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B-3 Single Source Shortest Paths . . . . . . . . . . . . . . . . . . . . . . . 70

B-4 Betweenness Centrality . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12



B-5 Betweenness Centrality Main . . . . . . . . . . . . . . . . . . . . . . 71

B-6 Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . 72

13



14



Chapter 1

Introduction

1.1 Background

Tensor algebra and decomposition have become prevalent in today’s technological

space, from numerical linear algebra, statistical models [21] and machine learning

frameworks[2] to signal processing, computer vision and graph analysis [14]. When

expressed in tensor algebra, many of these applications actually end up operating on

sparse tensors, which are multi-dimensional arrays containing a lot of zero entries.

This property enables us to save on computation time by developing algorithms for

addition and multiplication which skip those entries that would not otherwise change

the final result of the computation. There are also space optimizations that can

be performed when sparsity is assumed, like only storing the non-zero elements in

memory thus leading to a compressed version of the tensor. However, these algorithms

can be difficult to implement by the programmer, so there is a need for support from

the compiler. The current state-of-the-art work in this area is The Tensor Algebra

Compiler, a DSL (Domain Specific Language) as well as C++ framework which can

efficiently compute a wide range of tensor expressions, from simple sparse matrix-

vector and matrix-matrix multiplications (SpMV and SpMM) to the more complex

matricized tensor times Khatri-Rao product (MTTKRP). [13]
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1.2 Motivation

However, despite its high performance on sequential tensor expressions, TACO fails

to meet all the requirements that most tensor algebra applications have. A par-

ticularly compelling example are graph algorithms like Pagerank, BFS [18], Single

Source Shortest Path (SSSP) [6], Connected Components (CC), Betweenness Cen-

trality (BC) [9] and many others. Graphs can be represented in linear algebra as

adjacency matrices, where the element at position (i,j) coincides with the weight of

the edge between nodes i and j. For instance, figure 1.2 shows a 4-node directed

graph which can be represented as a 4x4 matrix with non-zero values at indices (0,1),

(1,2), (1,3), and (2,3). This graph is relatively sparse, with many of the entries in the

adjacency matrix being zero. This is often the case with real world data like social

networks or road networks. No one is friends with almost everyone just as no city

has direct roads to almost all other cities in the country. Therefore, state-of-the-art

sparsity compilers like TACO should be a good fit for these kinds of problems.

This is not, however, the case. Simply compiling a series of TACO statements

and embedding the result into a hand-written C/C++ program does not reach the

desired performance. There are a number of reasons for this limitation.

First of all, TACO has inadequate support for multi statements, which represent

computation kernels that produce multiple tensors from the same loop. More specif-

ically, when two kernels contain a common subexpression, it is wasteful to compute

them in two individual loops. A tensor compiler should be expected to compute the
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common subexpression once and only generate new loops for the non-overlapping

parts of the tensor definitions. The presence of reductions makes this a more nuanced

task than merely performing loop fusion, which is what TACO does currently.

Secondly, TACO only supports fixed sparsity, meaning that once a tensor has been

defined to be either sparse or dense, that characteristic can not change. In contrast,

the sparsity of the graph data structures we are working with can change throughout

the course of the algorithm. For example, in BFS we start with a mostly empty array

of parent pointers and add non-zero entries along the way. The format of the tensor

therefore changes from sparse to dense as we discover more and more of the graph.

TACO has no way of detecting that in order to change its optimization approach.

Thirdly, TACO does not have any support for control flow like looping or branching

constructs, which are extensively used as part of the inherently iterative algorithms

that apply to graphs. For example, BFS maintains a working queue of nodes to

process and performs tensor operations for each of them. Since this queue has variable

length, there is an unknown number of TACO invocations that may need to happen

until the problem is solved. Without outer loop functionality, TACO needs to rely on

the C++ ‘for‘ construct in which case it would miss many opportunities for sparsity

optimization. Similarly, running Pagerank requires performing an if-else check inside

the tensor-computing loop in order to avoid division-by-zero errors. TACO does not

support this feature out of the box and it would take a significant user effort to encode

the if-else functionality as a custom TACO operator.

Lastly, TACO only supports addition as a dimension reduction operation. How-

ever, in order to solve SSSP we also need a way to extract the minimum element

along a tensor dimension. Similarly, other problems require reduction operators like

OR and CHOOSE, which are not supported in TACO either.

There are also some application-specific features that TACO does not handle, like

tensors acting as priority queues (needed in SSSP) and Scatter outputs (needed in

CC).
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1.3 Contribution

In light of the above limitations, we designed the Generalized Sparse Tensor Algebra

Compiler (GSTACO), which is a DSL with a stand-alone compiler implemented in

C++ that can address most of TACO’s missing functionality. This new language is

able to support the implementation of a diverse set of graph algorithms, including

Pagerank, BFS, SSSP, BC, and CC and is general enough to potentially map other

tensor algebra applications as well.

We break this work into two contributions:

1.3.1 Concept

We began by defining a highly expressive and adaptable syntax for our DSL. The

front-end is a functional language which encodes all tensor expressions in the Einsum

notation [7]. However, we add four extensions to this notation in order to support

the functionality missing in TACO:

1. new reduction operators - MIN, CHOOSE, OR - which allow expressing more

kinds of computation

2. cross-kernel loops represented by the star function operator, which enable ad-

ditional optimizations

3. scheduling annotations, which can express iteration order and dynamic tensor

format changes across iterations

4. statements that produce multiple outputs in order to avoid wasteful computa-

tion

1.3.2 Implementation

We then built GSTACO, an end-to-end compiler for the proposed DSL which emits

C++ as well as C-embedded Julia code for CPU. We build on top of another tensor

compiler called Finch which takes care of complex tensor expressions (kernels), while

18



GSTACO fills the cross-kernel optimization gap. Our framework consists of a parser,

a high-level IR (Intermediate Representation), a lowering framework as well as code

generation. We also perform a data-flow optimization for memory reuse, which proves

the feasibility of cross-kernel optimizations in the context of our language.
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Chapter 2

Related Work

GSTACO is of course standing on the shoulders of giants as there have been many

previous contributions, in hardware and software alike, to the problem of efficient

tensor computation under sparsity. Besides TACO, whose shortcomings were the

main drive for this work, we also acknowledge projects like Finch and Graphit. The

former is actively built upon by GSTACO while the latter served as baseline for

GSTACO functionality and performance. This section will briefly discuss each of

these as well as other related works and how they differ from GSTACO.

2.1 Finch

Finch is a very recent sparsity compiler based on Looplets [3]. It uses iteration proto-

cols, which is a novel abstraction over structured arrays that enables easier coiteration

over different sparsity patterns. This new approach makes Finch a more feasible so-

lution than TACO, as it supports more reduction operators and multiple outputs.

However, Finch is still only concerned with single tensor expressions and is therefore

missing out on cross-kernel optimizations and outer loop scheduling. Nonetheless,

we identified Finch to be a very potent sparsity generator, so we decided to build

GSTACO as a wrapper around Finch. Finch is invoked for each tensor expression re-

quiring advanced computation, while GSTACO is taking care of the efficient context

switching in-between.
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2.2 Graphit

GraphIt[22] is a recent state-of-the-art DSL for fast graph computations on inputs of

various sizes. It takes a completely different approach since it does not attempt to

translate graph problems to a set of tensor computations. It has its own optimization

stack which includes techniques like reducing instruction counts, parallelizing loops,

and improving data locality. In comparison to Graphit, we don’t restrict ourselves

to just graphs, and instead target any problem that can be formulated as a tensor

algebra problem. Nonetheless, GraphIt served as both a proof of concept as well as a

baseline for performance evaluation for GSTACO. We used all the graph algorithms

officially tested by Graphit to guide some of our design choices.

2.3 GraphBLAS

Another relevant piece of work is the GraphBLAS library [1], which provides an API

for implementing graph algorithms as matrix computations. Just as GSTACO, it

was inspired by the crucial observation that graphs are basically sparse matrices and

that one iteration of BFS can be formulated as a sparse matrix-vector multiplication

[1]. GraphBLAS specifies useful building blocks for graph applications, but putting

those building blocks together and optimizing the end result is still the user’s job.

GSTACO’s syntax provides a higher level of abstraction and therefore requires much

less user effort. Additionally, the primitives in GraphBLAS (mainly sprase matrix,

sparse vector, and operators), do not appear to solve the problem of more complex

data types required by graph applications, like priority queues, which are sparse across

multiple dimensions.

2.4 Others

Additional contributions that inspired our work are ExTensor, Taichi, and COMET.

ExTensor [10] is a recent accelerator which produces good performance by only

sending non-zero tensor entries to the arithmetic unit within hardware. However, be-
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ing bound to a specific hardware architecture makes this approach much less portable

and adaptable than a software solution. Additionally, ExTensor is missing some op-

timizations that could be made at the software level, like choosing among the many

possible storage formats for sparse tensors (COO, CSR, CSF). Our Finch-based so-

lution does not have these limitations, as Finch supports a variety of formats and

GSTACO switches between them according to a user-specified schedule.

From the software side, Taichi [11] is another DSL with an optimizing compiler

for sparse data structures, but it is specifically targeted towards physical simulation

and rendering applications. Our ambition is to build a more general framework that

can map well to any problem involving sparse tensors.

COMET[20] is a DSL very similar to TACO in terms of approach and performance,

and therefore has many of the same limitations. It only supports compiling individual

tensor expressions, without any support for outer loops or changing sparsity.
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Chapter 3

GSTACO Language

Having introduced GSTACO at a high-level, we will now go more in depth into how

it works. This chapter describes the GSTACO language constructs which enable im-

portant features for tensor-based program and provides examples from real GSTACO

programs for graph algorithms.

3.1 Syntax & Semantics

Our language takes inspiration from the Einsum notation [7], which is a compressed

way of expressing reduction by summation over the elements of a collection. For

example, a matrix-vector multiplication operation can be briefly described in Einsum

as:

𝑎𝑖 =
𝑁∑︁
𝑗=1

𝑏𝑖𝑗 * 𝑣𝑗 (3.1)

In GSTACO, variables a, b, and v would be declared as tensors of integers of

appropriate dimensions and the kernel would translate to:

𝑎[𝑖] = 𝑏[𝑖][𝑗] * 𝑣[𝑗]|𝑗 : (+, 0) (3.2)

The pipe is used to mark the presence of a reduction, which means that there are

more index variables on the righthand side than on the lefthand side of the tensor
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expression, and hence these need to be reduced/accumulated using the plus operator.

The pipe is then followed by specifications (operator and initial value ) for each of the

accumulated index variables. Notice how GSTACO is actually more powerful than

the classic Einsum notation as it allows users to customize the operator as well as

the initial value. However, diverse reduction operators are not the only extension to

Einsum. In order to fulfill all the requirements of a tensor algebra language, we also

added constructs like types, functions, the Star(*) operator for outer loops, tensor

storage formats, as well as simple but specific scheduling commands. Each of these

will be presented in detail.

Additionally, it is worth mentioning that GSTACO is a functional language, with

immutable variables and functions that only create and return new values computed

from old values. The motivation behind this design decision was making GSTACO

easily extendable to more back-ends other than CPU. For example, next-generation

architectures like SWARM[12] break code down into potentially parallelizable chunks

called tasks and attempt to execute them in parallel for increased performance. These

architectures detect any data dependencies during the execution of parallel tasks in

order to abort/restart the dependent tasks and preserve correctness. This means

that efficient SWARM code would ideally contain very few data dependencies so that

the code can benefit from the high degree of parallelization. Imposing the constraint

that all variables are immutable offers the guarantee that they will not be both

read and written by two parallel tasks. Hence, this makes it possible to schedule

many computations simultaneously, provided that their inputs become available at

the same time. Figures 3.1 and 3.1 show examples of code that would achieve different

performance on a Swarm architecture.

a𝑖 = 𝑎𝑖+1

Figure 3-1: performs poorly on Swarm

b𝑖 = 𝑎𝑖+1

Figure 3-2: maps well to efficient Swarm
code
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3.1.1 Reduction Operators

Many graph applications require accumulating values with MIN, OR, and CHOOSE

operators. For example, in SSSP we pop nodes from the queue and relax their out-

going edges in order to make progress towards discovering new shortest paths. When

we try to express this in Einsum, we realize that summation is not enough; we need

to take the minimum over all relaxed edges from a node. This can be achieved with

the syntax in figure 3-3.

Figure 3-3: SSSP: computing new distances based on the nodes at the current priority
and edge weights

Another common example is BFS, where we assign a parent to an unvisited node

once we discover it through any of its neighbours at the current level. We can express

"any of" through a CHOOSE/OR reduction over the new level/frontier computation,

as shown in figures 3-4 and 3-5. The CHOOSE operator returns the first non-zero

element from a collection. As such, we use CHOOSE in order to assign a parents to

the visited nodes. Similarly, we use OR in order to compute membership in the next

level/frontier. Under the hood, both reductions should be implemented with early

break out of the iteration once a non-zero/one is found.

Figure 3-4: BFS: computing the parents of the nodes in the next frontier

Figure 3-5: BFS: computing the next frontier of nodes from the old frontier, edges
adjacency matrix and visited information

3.1.2 Tensor Variables and Types

In GSTACO, we have both scalar and tensor variables as well as 4 builtin types: Int,

Float, Bool, and tensor types written as "P[N1][N2]...[Nx]". Here, P is the primi-
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tive type of the elements in the tensor and N1-Nx are the dimensions of the tensor.

Variables need to be declared as either global variables or function inputs/outputs

before being defined. Additionally, tensor variables may only be defined once after

declaration and never mutated, just like in other functional languages.

edges int[Dense[N]][SparseList[N]]

Figure 3-6: Declaring ’edges’ as a CSR tensor

3.1.3 Functions

Since GSTACO has a functional layout, functions build their outputs as immutable

objects, and can use as many temporary variables as needed in order to express

complex computations. Syntactically, functions always starts with the "Let" keyword

and list the names and types of all inputs as well as outputs, after the arrow. This is

illustrated in figure 3-7. Additionally, functions don’t merely provide the user with a

means for reusing code, but they are also heavily used in conjunction with the star

operator described in the next section.

Let Init(source int) -> (dist float[N], priorityQ int[P][SparseList[N]])
dist[j] = ifelse(j != source, P, 0)
priorityQ[p][j] = (p == 1 && j == source) || (p == P && j != source)

End

Figure 3-7: Function declaration for initializing tensors in SSSP

3.1.4 Star Operator

The main contribution behind GSTACO is being able to efficiently implement entire

tensor applications, not only individual kernels. It was therefore crucial to design the

language and intermediary representation in a way that is conducive to identifying

opportunities for optimization across kernels. We also made the observation that

many algorithms require computing the same tensor expressions repeatedly until a
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certain state or steady state is reached. For example, in BFS we keep visiting neigh-

bouring nodes until all nodes in the graph have been visited. Hence, we introduced

the concept of an outer loop - the repeated execution of a function computing one or

multiple kernels by passing the output back as inputs to the function until a specified

end condition becomes true. This behavior is encapsulated by the star operator for

function calls.

_, P_out, _, _ = BFS_Step*(F_in, P_in, V, temp_in) | (#1 == 0)

Figure 3-8: BFS: repeatedly visiting levels of equidistant nodes from the source until
no more unvisited nodes can be reached

As shown in figure 3-8, the Star function call defines its end condition after the

pipe symbol. This condition is an expression which evaluates to a boolean, and more

specifically, it should eventually evaluate to true in order to ensure the termination

of the program. It is most often written in terms of one or more of the function

outputs which are referenced by their absolute position in the source code. Here,

in BFS, the ending condition is satisfied when the most recently computed frontier

becomes empty ( no more nodes to visit ). Since the frontier is the first argument to

the function and the first output, it will be represented with the syntax "#1" in the

condition. The underscores on the left hand side act as wildcards and can be useful

when we don’t necessarily care about some of the outputs beyond the iteration.

Similarly, in SSSP we keep relaxing edges from the nodes with the currently lowest

priority from the queue, until no more nodes with that priority exist. The end con-

dition here is written in terms of both the priority queue argument and the current

priority level argument, as in figure 3-9.

Figure 3-9: SSSP: process all nodes from the queue with given priority level

Finally, it should be noted that in order for the Star operator to be applied, the

function needs to have the same number of inputs and outputs, otherwise the behavior

is not defined.
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3.1.5 Tensor Formats

There is, however, one more layer of complexity over tensor abstractions, and that has

to do with specifying storage formats. GSTACO adopts a storage scheme similar to

TACO’s level formats[13], where each dimension of a tensor can be declared as either

dense or compressed. The syntax "P[N1][N2]...[Nx]" makes all dimensions Dense by

default, while "P[SparseList[Ni]]..." would be used to indicate sparsity. For example,

figure 3-6 shows the "edges" tensor in PageRank is declared as having a dense and

a compressed dimension, which is equivalent to the known CSR formats[5]. This

format is likely to be optimal in many programs since most graphs used in real life

are sparse. On the other hand, the ranks tensor in PageRank is dense since this is not

expected to contain a lot of zeroes. An important thing to note is that these formats

are not static. They may change throughout the execution of an algorithm, and so

they need to be adjusted. More specifically, while executing an outer loop, one of the

input tensors to the function may start out as empty and end up filled with values,

or the other way around. This means that using only one format is not efficient. The

better approach is to start out sparse and dynamically "densify" at some point in the

execution. Exactly when this should happen varies from case to case, and should be

specified by the user with the scheduling constructs described next.

3.1.6 Scheduling: Format Switch

As mentioned before, formats are a dynamic property and they need to be flexible

enough to allow efficient storage all throughout the execution. Therefore, GSTACO

grants users the ability to dictate when a format switch should happen for tensors

whose properties change across the outer loop. They can do so by inserting one or

more FormatRule annotations above outer loop definitions, as pictured in BFS 3-10.

Each rule specifies the index in the argument list of the underlying function call which

identifies the tensor changing formats. Besides, the rules also include the starting and

ending format, as well as an expression which is the transition condition. For the BFS

example, we switch the visited tensor from sparse to dense once a quarter of all nodes
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have already been visited. Similarly, the frontier tensor starts sparse and becomes

dense when the number of frontier nodes is larger than a fifth of all nodes. However,

the size of the frontier does not vary monotonically, and so it is possible for it to

pass the 𝑁
5

threshold multiple times. In the case when the size decreases below this

number, the format switch will take place in reverse (from dense to sparse).

Figure 3-10: BFS loop optimized for tensor formats. Two more inputs have been
added in order to keep track of the metrics that drive the format switch decision
(number of visited and frontier nodes)

3.1.7 Scheduling: Loop Ordering

Another feature which conceptually pertains to the schedule rather than to the tensor

algorithms themselves is the iteration order of nested loops. The importance of this

aspect is best highlighted by the out-degree tensor in PageRank. In order to compute

the out-degrees of all nodes, the kernel might iterate thorough all nodes, and for each

of them iterate through all its out-going edges, reducing the results into one element

of the ranks tensor. Alternatively, for each of the nodes we can also iterate through

all its in-coming edges and update different rank locations. Which approach is more

efficient depends on the format of the edges. We can easily switch between them

by specifying a different i-j order right after the stop condition of a function star

operator, as seen in figure 3-11. The default behavior is when no orders are given, in

which case the loop order will be the order in which index variables first show up in

the tensor definition, from left to right.

out_d[j] = edges[i][j] | i:(+, 0) Ord i, j

Figure 3-11: Pagernk: by default, the loop order of this kernel would be j, i. However,
out-degree requires reordering the loops in order to optimize access over the sparse
tensor ’edges’
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Lastly, a summary of the most important language features presented so far can

be found in table 3-12

Figure 3-12: Language Feature Summary
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Chapter 4

System Overview & Implementation

GSTACO is both a research and engineering effort dedicated to improving the way

that state of the art sparsity tools are used. Details of implementation deserve sig-

nificant word count and, as such, this chapter outlines the most important technical

components one has to familiarize themselves with in order to produce further work

on GSTACO. Figure 4-1 depicts the different stages of GSTACO as a system. Firstly,

the syntax described in chapter 3 is passed through a lexer and parser in order to pro-

duce the abstract syntax tree (AST). Afterwards, we perform some cleanup passes

over the AST in order to address some of the shortcomings of a Bison-generated

parser, though these may not be needed if a custom, hand-written parser would be

produced in the future. The resulting high level intermediary representation (IR) is

fed into a pipeline of visitors and rewriters for optimization and lowering to a low-level

IR. Lastly, we have a code generation phase which visits each node in the low level

IR and emits C++ code embedding some Julia snippets.

This chapter will also go through the two different approaches we tried for gener-

ating sparse code (TACO vs Finch), as well as the details of why we chose to build

upon the Finch compiler. We offer an analysis of Finch advantages and disadvan-

tages over TACO and describe solutions to the challenges we encountered during the

integration between GSTACO and Finch.

33



Figure 4-1: System Diagram
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4.1 Intermediate Representation

The second step after designing the GSTACO language was to pin down the interme-

diary representation (referred to as IR in this document). The IR could not simply

map one to one with the language syntax since that would make the job of lowering

to C++ much harder. It also should not be so complex that its constructs are lower

level than C++ itself, which is the product of the compilation in our case. Therefore,

any LLVM-like representation optimized to generating low level assembly was unnec-

essary and suboptimal. We therefore chose a middle ground, where we designed our

own hierarchy of C++ classes to serve as a base for program analysis.

4.1.1 Module

The top-level node of the IR is called Module, and it represents the entire GSTACO

program read from one file. The module contains one or more module components,

each of which can be a function declaration (FuncDecl), or a tensor variable initializa-

tion (Initialize). The initialization has a field for the tensor variable that it initializes

(TensorVar). At the same time, the tensor variable has not only a string name, but

also a type of class TensorType. We show a tree representation of the data structures

in figure 4-2, where green arrows represent class inheritence relationships, red arrows

are for class fields, and square brackets around nodes represent an array of nodes of

the specified type.

4.1.2 Function Declaraion

The function declaration node has several child nodes corresponding to its inputs,

outputs, storages for outputs, as well as the body of the function, as seen in figure

4-3. Each of these fields is an array containing other IR nodes. For example, the body

of the function consists of an array of Statements, which are a type of valid constructs

within a function. The reader might now be wondering what is the purpose of the

output-storage field. Behind the scenes, GSTACO maintains the contract that the

caller of a function allocates memory for the results and the callee builds its outputs
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Figure 4-2: Module Components

following the pointers passed in by the caller. Therefore, each function output that

is a tensor and not a primitive type will require an associated input for the storage.

This is an easy way of ensuring that memory is only allocated once and it also enables

certain memory reuse optimizations (to be described later). One exception to this

memory management strategy is the Main function (mandatory entry point of the

program) which does not take any arguments and, instead, allocates all the memory

required for outputs or other functions that it calls.

4.1.3 Statements

There are 3 subtypes to the Statement node: Initialize (already covred), Allocate,

and Definition.

The Allocate node is used to signal that memory should be allocated for a partic-

ular tensor. Often inside of a function, Initialize and Allocate nodes are constructed

in pairs as part of the AST of a program since, logically, in order to compute a tensor

we need to declare its variable and allocate its space. Each function will only initialize

and allocate those tensors that it did not receive storage for.

Next, a Statement can also be subclassed as a Definition, which is a node describ-

ing a tensor computation, potentially in terms of other tensors. A lot of work has been
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Figure 4-3: Function Declaration

done on optimizing individual tensor definitions like this, so GSTACO will determine

when a Definition node can be offloaded to Finch rather than handled internally.

Definitions can sometimes have multiple tensor outputs (one multiple-output kernel),

so its left-hand-side consists of an array of tensor write accesses instead of just one.

The right-hand-side of a Definition inherits from the Expression node. Additionally,

we also keep track of an Array of Reduction nodes for each tensor definition. As ex-

emplified in Chapter 3, the extended Einsum notation that we use allows for possibly

several reductions, with user-specified operator and initial values. This information

is stored inside the Reduction nodes, whose order in the array coincides with the

user-specified order and dictates which loops will be reduced first.

4.1.4 Expression

There are 6 subtypes of Expressions in the high level IR of GSTACO (we extend

this high level IR with additional nodes that are needed in the low level IR in order

to make code generation easier; each will be described in the Lowering phase). The

base types correspond to literals (Literal), read access into tensors (ReadAccess),
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Figure 4-4: Expression subtypes

Figure 4-5: Call subtypes

and index variable expressions (IndexVarExpr). The recursive types are for binary

expressions (BinaryOp - arithmetic,comparison,boolean), unary operator expressions

(UnaryOp - boolean not), and function calls (Call). Additionally, there are two special

types of functional calls which inherit from Call. The star operator can be applied

to a function call either for a fixed number of iterations (CallStarRepeat) or until a

stopping condition is met (CallStarCondition). Each of these contains a set of rules

(FormatRule) dictating how and when the formats of certain tensors involved should

change throughout iterations. These are illustrated in 4-4 and 4-5.

Lastly, while most nodes in the class inheritance hierarchy are concrete types,
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some of them are virtual and are not meant to ever be instantiated. For example,

ModuleComponent, Statement, and Expressions are types which only exist to help

the compiler architect and enhance the Object Oriented Design.

4.2 Parser

The high level IR is the product of the GSTACO parser, which is a generated parser

reading in GSTACO syntax and building the program AST using the previously

described classes as building blocks. It is created from a context-free version of

GSTACO’s grammar, using the Flex lexical analyzer and the Bison general-purpose

parser generator. Bison takes in a grammar and tokens definition and generates a

kind of bottom-up deterministc shift-reduce parser. The grammar and list of tokens

we used can be found in the appendix figures A-1 and A-2 respectively.

4.3 IR Cleanup

Another drawback of Bison is that it requires our grammar to be context free. Never-

theless, some AST nodes contain information that is very much dependent on other

ascendant nodes. For example, a Call node stores a pointer to its corresponding

FuncDecl node (the declaration of the function it calls). This may be a node higher

up the hierarchy that was already individually instantiated. Therefore, in order to

correctly link it to the call expression, we would need to keep track of some form of

state in the parser, remembering which functions have already been instantiated. See-

ing as this is not possible in our parser due to Bison limitations, we decided to create

call nodes without a link to their functions, and then introduce a separate cleanup

step. In this phase, we use a custom IR rewriter class in order to visit the entire AST

recursively and augment the call nodes with function pointer information. Since we

define the rewriter as a visitor over the IR, we can define and maintain as much state

as needed. We applied this same approach to fix other parser-related issues too.
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4.4 Lowering

After constructing the IR and cleaning it up, the next step is to generate a low level IR

which resembles C++ and Finch code more closely, and hence makes code generation

easier.

The first observation we made was that memory allocation may or may not happen

for a particular tensor output (see memory reuse section), and switching this feature

on or off would be much easier if we could insert/remove a special IR node rather

than crowding the code with if statements. Therefore, we augment the IR with the

Allocate node, which we add to the AST after the Initialize nodes of tensors that

don’t reuse memory. We do this using the AllocateInserter class.

Next, we had to modify the IR in order to maintain the previously stated invariant:

callers allocate memory for outputs and pass it to calees as pointers. Since this is an

internal invariant and not obvious at all from the GSTACO frontend, the parser could

not have appropriately built the function declarations to take additional arguments

for the memory pointers. Similarly, the parser is not responsible for refactoring the

Call nodes and add argument nodes corresponding to storage. As such, we added

two more IR passes, the FuncDeclRewriter and MemoryReuseRewriter. Figures 4-6

and 4-7 emphasize the effect of these rewriters on the generated code in the context

of some BFS snippets.

After paving the way for easier memory management, we start thinking about

lowering the multiple-output function calls. As seen in GSTACO syntax, it’s possible

to unpack the return value of a function into multiple variables (even place holders).

However, this is not supported in C++, where unpacking would first require storing

the result in a tuple variable, and then initializing each output with the correspond-

ing tuple element (using std::get). As such, we introduce two more nodes in our IR.

MultipleOutputDefinition, TupleVar, and TupleVarReadAccess. The former de-

scribes a definition whose right hand side is a function call with multiple outputs. Its

left hand side is a TupleVar nodes. This statement would then be followed by defi-

nitions which read from the tuple variable and store into each of the desired output

40



Figure 4-6: FuncDeclRewriter : modify function declarations to take allocated mem-
ory as an input pointer, and only allocate memory if the pointer is null
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Figure 4-7: MemoryReuseRewriter : refactors function calls to pass pointers to allo-
cated memory from the caller
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Figure 4-8: CallRewriter effect on IR: split a Definition into a MultipleOutputDefi-
nition (which computes a tuple of results) and a set of Definitions which index into
the tuple to compute final results

Figure 4-9: CallRewriter effect on pseudocode

variables. Their right-hand-side is therefore a TupleVarReadAccess. Figures 4-8 and

4-9 show how this transformation affects the IR and pseudocode, respectively.

Nevertheless, we still have a construct that doesn’t map quite well to C++ code:

the outer loops CallStarRepeat and CallStarCondition. In these cases, we would

like to make it more obvious in the low level IR that there is a temporary variable

storing the loop breaking condition (stopCondition). We therefore need to create

a new Definition whose right hand side evaluates to a boolean and whose left hand

side introduce a new temporary which should be checked every iteration. When the

value becomes true, the loop can be broken out of. We can not simply insert this new

Definition node before the call node, as in this case the condition is only evaluated

once, right before the loop. Therefore, we add it as a new field to the call node called
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Figure 4-10: CallStarConditionRewriter

conditionDefinition. This way, code generation will know it has to emit code for

that Defintion inside the generated while loop. This transformation is pictured in

figure 4-10.

Lastly, after we applied all the rewriters that can potentially generate new def-

initions, we would like to make another pass and assign unique numerical identi-

fiers to each definition, as needed in code generation. This is achieved with the

DefinitionSplitter class.

Figure 4-11 shows the relative order in which all these visitors are applied.

4.5 Optimizations

GSTACO performs a range of intra-kernel and cross-kernel optimizations, with the

former being offloaded to the Finch tensor compiler and the latter being supported

in GSTACO’s own pipeline. GSTACO does not aim to reimplement already existing

algorithms for single-tensor sparse computation. Rather, it tries to optimize across

multiple sparse computations in order to produce full-fledged tensor applications.

This has not, to the best of our knowledge, been done before.
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Figure 4-11: Rewriters
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4.5.1 Cross-Kernel

A good example that showcases our contribution so far is the memory reuse opti-

mization across functions and outer loops. A naive and initial approach to memory

management would be to simply allocate memory whenever a new tensor is computed.

This, however, leads to a lot of redundant allocations, thus yielding a sub-optimal

outcome in terms of both runtime and storage. For example, both the caller and the

callee of a function technically need to produce an output, and so they would both

have to allocate memory for the same object. We already touched on the solution for

this when we introduced the MemoryReuseRewriter and FuncDeclRewriter. How-

ever, those rewriters don ’t completely solve the issue of repeated allocation in the

Star operator case.

With the repeated call nodes, while each function call reuses memory from the

caller, we also need to have each iteration reuse memory from the previous iteration

(with the only allocation happening at the very beginning of the loop). One way

to achieve this is to use an intermediary temporary variable in order to swap the

contents of the inputs and outputs every iteration such that we never need more

than two memory locations for each input-output pair. Therefore, a definition like

"C, D = foo(A, B) | 3" should yield C++ code resembling the pseudocode below:

int iter = 0;

// Copy the inputs so they don’t get modified while swapping

in_A = Copy A; in_B = Copy; B

out_A = Allocate A; out_B = Allocate B;

while(iter < 3) {

// foo constructs the result directly into out_A and out_B

foo(in_A, in_B, out_A, out_B);

temp_A = in_A; temp_B = in_B;
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in_A = out_A; in_B = out_B;

out_A = temp_A; out_B = temp_B

iter += 1;

}

C = out_A; D = out_B;

This is just one optimization that we implemented, but we are confident that

GSTACO’s IR and design are expressive enough to support many other optimizations

in-between kernel invocations, including data-flow.

4.5.2 Intra-Kernel

Optimizations within tensor expressions stem from opportunities to cut down on

computation and storage based on the sparsity of the input. These are best handled

by state of the art tensor compilers like TACO and, more recently, Finch.

Sparsity Generator: TACO

Our first approach was centering around TACO, which is not only a DSL but also

a C++ library emitting C++ code. This makes it easy to integrate within our

compiler with little to no overhead. GSTACO would involve a code generation pass

which transforms all kernels into TACO data structures. It would then compile them

and capture TACO’s output (C++ code), which would then be included in the final

source code. This way, we could invoke TACO and integrate its result into our own

compilation product.

On the downside, it turned out that TACO had drawbacks that we could not fix

without changing its design significantly, which was beyond the scope of our project.

For instance, TACO does not efficiently handle computations where the left hand

side tensor is sparse. This was a nonnegotiable for our project since many tensor

algorithms require sparse outputs (the nodes frontier in BFS for example). Addi-

tionally, TACO also did not support kernels with multiple reductions using different

operators, or computing multiple outputs within the same loop. Since fixing all of

47



TACO’s insufficiency’s would have been an entire project in and of itself, we decided

to continue our search for tensor compilers.

Sparsity Generator: Finch

While Finch’s design does not suffer from the same issues as TACO’s (Finch does

support sparse and multiple outputs and also has a very comprehensive interface for

reductions), it is less compatible with GSTACO’s infrastructure. Finch is written in

the Julia programming language and emits Julia code. Because of this, we could not

use it directly, neither as a DSL compiler, nor as a library. We had to use Finch’s

C interface, which passes values around between the C and the Julia runtime in

order to integrate the two. For example, a tensor could be represented in Finch as

a Finch.Fiber object, and the C embedding can convert this into a jl_value_t*

pointer usable in C/C++. Similarly, one can call julia functions from a C/C++

environment by first evaluating and converting them to a jl_function_t* pointer.

This extra step between C and Julia adds not only additional complexity to

GSTACO’s code generation, but also overhead to its performance. We believed that

this overhead, while not insignificant, is secondary to other performance improve-

ments that we decided to focus on first hand. Additionally, other approaches that

have a lower impact on performance increase the code complexity of integration even

further (see Further Work for an alternative embedding solution).

In the light of the above, we decided to use Finch as underlying tensor compiler

and connect it to GSTACO via its C embedding module.

4.6 Code Generation

The code generation phase consists of a series of visitors on the product of the lowering

phase and eventually produces 3 files: a C++ source/header pair as well as a driver

which calls the main function of the program.

Some of the codegen visitors are used for bookkeeping (helpers) and some actually

emit code to be embedded into the source file. Without going into a lot of detail about
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the helpers, this section will cover how we generate code for Definition’s as well as

how we setup Finch for automated use.

The first thing we concern ourselves with is finding out which IR constructs can

directly emit code and which need some help from Finch. In general, any definition

which either computes a tensor from scratch or contains tensor expressions on the

right hand side, will be offloaded to Finch. Another case where we invoke Finch is

memory allocation (Allocate nodes) of tensor variables (not scalars), as we need to

inform the Julia runtime of these new objects. On the other hand, definitions and

allocations that only involve scalars as well as all other language constructs (function

definitions, function calls, initializations, etc) are directly lowered to C++ code by

GSTACO. To perform this analysis, we use the NeedsFinchVisitor which produces

a mapping between each node and a boolean representing whether it needs Finch or

can be handled by GSTACO alone. A few examples of nodes that do and don’t need

Finch can be found in figure 4-14.

A[i][j] = 10
a = A[i]| i:(+, 0)
A[i] = B[i][j] * C[j] | j:(+, 0)

Figure 4-12: with Finch

c, d = foo(1, 2)
c, d = foo(1, 2) | 5
c = 1
d = c * 3

Figure 4-13: without Finch

Figure 4-14: NeedsFinchVisitor

According to this analysis, we will then perform another pass over the IR nodes

that do require Finch. In this phase, we build the equivalent Finch kernels out of

each GSTACO definition and compile them down to free-standing Julia code. The

generated source will contain this Julia implementation wrapped in a call to the Julia-

C interface. This will, at runtime, produce the function pointer needed to call the

compiled kernel and thus compute the Definition. This step is performed by the

FinchCompileVisitor and is pictured in 4-15.

While this usage of Finch might seem intricate, we chose this approach in order to

separate Finch’s compile time from its run time. This is crucial so that the code that
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Figure 4-15: FinchCompileVisitor on Definition node

GSTACO generates does not incur the performance cost of compiling Finch to Julia,

a process which tends to be very slow. We will still incur the cost of the Julia compile

time (since Julia-C conversion happens at runtime), but that only happens the first

time we run the Main function (also called warm up). The Julia environment caches

compilation results, so subsequent executions (within the same process) should not

suffer from this downside.

Besides Definitions, Allocation nodes are also lowered to julia code which is then

embedded in the source code, as exemplified in 4-16.

Other notable constructs which don’t map one-to-one with C++ code are the

star operator (CallStarRepeat and CallStarCondition) and format change rules

(FormatRule). The former are lowered down to for and while loops respectively,

while the latter generates an if statement to check whether the condition for the

tensor format switch has been reached.
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Figure 4-16: FinchCompileVisitor on Allocation node
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Chapter 5

Evaluation

GSTACO is in its early stages, so for now it is primarily a "new-feature" contribution,

rather than a "performance" contribution. We reiterate that GSTACO unlocks new

capabilities absent from other tensor compilers. We also analyze its current perfor-

mance (with little optimization in place), and discuss how our design accommodates

future performance contributions which will bring this project closer in speed to older

state-of-the-art compilers.

5.1 Capabilities

Unlike TACO and Finch, which only compute individual tensor definitions, GSTACO

can encode entire applications with the help of outer loop and scheduling constructs.

As detailed in previous chapters, GSTACO can handle cross-kernel tensor format

changes and data flow. This means that the user does not need to worry about

bridging the gap between the different expressions that constitute an algorithm. In

the most basic case, this gap might just include passing data around from one tensor

kernel to another. In other scenarios, it may require more complex control flow like

if/for/while blocks and memory management. The GSTACO language is powerful

enough to fill in these gaps without any additional effort on the programmer’s side.

We prove this by testing that GSTACO correctly generates code for 5 different tensor-

based graph algorithms. Implementations for PageRank, Breadth First Search, Single
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Source Shortest Paths, Betweenness Centrality, as well as Connected Components can

be found in the attached appendix. We also show that the IR preserves opportunities

for optimization by implementing memory reuse across the outer loops, as described

before. We believe this should be suggestive of GSTACO’s ability to be further

optimized.

5.2 Performance

While the main focus of this project was to produce a compiler with new abilities

which works well on a variety of inputs, the ultimate hope is for GSTACO to also

be a high performance compiler, producing output comparable to heavily optimized

manual implementations. All design choices have been made with this target in mind,

taking into account future performance extensions. Therefore, we provide some initial

benchmarks to show where GSTACO stands now and to serve as reference for further

work.

5.2.1 Experimental Setup

We compiled PageRank with both GSTACO and Graphit and measured the perfor-

mance of the generated code on different graph datasets. Since Graphit has already

seen comprehensive work done on optimizations and scheduling, we turn off the opti-

mizations that are not also present in GSTACO in order to level the ground and get

a better idea about how GSTACO performs relative to its age.

The largest graph used was the LiveJournal dataset from the Stanford Network

Analysis Platform (SNAP) [17] for C++, which has approx. 5 million nodes and 86

million edges. In order to test on smaller sized graphs as well, we used subgraphs

of the SNAP dataset, which we computed by first finding a minimum spanning tree

containing the desired number of nodes. We then started randomly adding edges

form the large graph whose ends were present in the established tree, taking care to

maintain the initial node-to-edge ratio. All benchmarks have been run on an AMD

processor, model EPYC 7642 48-Core, architecture x86-64, frequency 2.3GHz, and
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the following cache configuration: L1d 512KiB, L1i 512KiB, L2 4MiB, L3 16MiB.

5.2.2 Results

With the above setup, GSTACO-compiled PageRank runs from less than a second on

graphs of 250000 nodes to around 22 seconds on a sparse graph of 5 million nodes.

Results for this algorithm on various graph sizes can be found in figure 5-1.

Figure 5-1: GSTACO execution times vs. number of nodes in the graph for PageRank

When we run PageRank generated by Graphit without additional optimizations

(like parallelization), we get worse perfromance, as seen in figure 5-2. However, with

optimizations and proper schedules, Graphit can run pagerank on large graphs in

less than 10 seconds, a number we should also aim for in the future development of

GSTACO.

Figure 5-2: Graphit benchmark on PageRank with optimizations turned off
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Chapter 6

Further Work

The presented work serves as a proof of concept for the feasibility of GSTACO as an

improved tensor algebra language. While we believe the evidence should be convinc-

ing, it has to be noted that there is still a lot of work needed to bring GSTACO closer

to the state-of-the art by industry standards.

6.1 New Applications

The lowest hanging fruit would be adding more applications to GSTACO’s reper-

toire. We believe GSTACO is suitable for tensor-expressible programs that Graphit

or GraphBLAS don’t support, like hypergraph analysis [8] (graphs where edges are

many-to-many node mappings), solvers (Sudoku), or graph neural networks [19]

(GNN). Making sure GSTACO generates efficient code in these new algorithm spheres

will bring us closer to our generality goal.

6.2 Performance Tuning

As mentioned in the previous chapter, GSTACO could also benefit from additional

performance optimizations which can be achieved through a combination of more ad-

vanced IR visitors and scheduling constructs. In other words, these are optimizations

that stem from the compiler’s own analysis and optimizations that are driven by the
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Figure 6-1: CSE optimization in BFS: both parents (P) and frontier (F) are computed
within the same multiple-output Finch kernel

user’s scheduling directives.

6.2.1 Additional Optimizations

In terms of analysis-based optimizations that are performed from the inside-out, we

emphasize those that target more efficient program structure. As mentioned before,

GSTACO needs a way to detect which tensor expressions can reuse computation

and merge them into a multiple-output kernel. This optimization is also called loop

fusion, and can be achieved by performing a data analysis similar to the Common

Subexpression Elimination (CSE) in classic compiler theory. Clasically, the common

expression is computed once and stored in a separate temporary variable in order to be

reused. A similar process would take place in GSTACO, except that the expressions

are considered in the context of loops/kernels. Figure 6.2.1 shows a CSE opportunity

in BFS.
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6.2.2 Scheduling

Currently, GSTACO has a minimalist scheduling language comprised of the Ord and

FormatRule described earlier. However, there are other parameters that users can

tune in order to achieve higher performance, and GSTACO would need to support

directives for each of them. More advanced settings could allow the programmer to

manage loop paralellization (possibly the most impactful of the remaining optimiza-

tions), blocking, and cache accesses. Additionally, Graphit also contains scheduling

features for specifying edge traversal direction (Push vs Pull schedules) [22]. The

challenge here would be to come up with an abstraction that supports a similar opti-

mization, but which does not lose generality and can therefore be applied to non-graph

programs too.

6.3 New Backends

GSTACO’s syntax and intermediary representaion have been designed with flexibil-

ity in mind. We wanted the compiler to support easier code generation for several

backends, including GPU and Swarm. However, at the moment GSTACO only has 1

backend, which generates C++ code, which is then compiled down to traditional CPU

assembly. Considering that many tensor-based applications are also data-intensive

(very large graphs or neural networks) and hence need to run on specialized hard-

ware, targeting new architectures within GSTACO would be a worthwhile engineering

effort.

6.4 Improved Integration

Lastly, further work on the integration between GSTACO and Finch can also bring

performance improvements. Because Finch emits Julia, we currently achieve this inte-

gration through a layer of indirection: the Julia-C interface. A better approach would

be compiling the generated Julia down to LLVM [15] and inlining that into GSTACO’s

other products of compilation after passing them through an LLVM-compatible com-
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piler like Clang [16]. Another clean-slate approach would be implementing a C/C++

back-end for Finch, which can be done either manually or using the Buildit framework

for creating new Domain Specific Languages [4].

The contributions proposed in this chapter may require new features to either

GSTACO, Finch, or both.
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Chapter 7

Conclusion

In light of the work presented above, we conclude that the Generalized Sparse Tensor

Algebra Compiler (GSTACO) is a comprehensive and convenient solution for sparse

tensor algebra compilation as well as a successful step towards a high-performance

tool. It can translate extensive graph logic, overcoming the capability shortcoming of

TACO and Finch, while still maintaining per-kernel performance since it is building

on top of Finch.

Most importantly, GSTACO’s novelty stems from its ability to encode cross-kernel

tensor transformations and open the door to a wide range of outer loop optimiza-

tions, of which memory reuse has already been implemented. Unlike TACO and

Finch, which compute an individual tensor expression per run, GSTACO provides

the infrastructure for specifying how multiple tensor computations interact with one

another to create full fledged tensor applications. At a lower level, GSTACO also

provides a starting scheduling language for establishing loop iteration order, and can

be extended to include more complex settings, as dictated by performance require-

ments. Other features that facilitate the translation of graph algorithms include

several reduction operators and statements producing multiple outputs.

We measured GSTACO’s performance for PageRank and found that it runs twice

as fast as unoptimized Graphit, but much slower than optimized Graphit. We con-

clude that it still needs more tuning in order to achieve the speed of Graphit’s

application-specific optimizations while still maintaining its generality. As such, we
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propose a list of future improvements leveraging the current design, like implementing

loop parallelization, commons subexpression elimination, and more complex schedul-

ing directives.

All work can be found on the public GitHub at GSTACO.
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Appendix A

Grammar & Token List
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Figure A-1: GSTACO Grammar
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Figure A-2: GSTACO Tokens
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Appendix B

GSTACO Full Implementations
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N int
edges int[N][SparseList[N]]

damp float

beta_score float

Let InitRank() -> (r_out float[N])
r_out[j] = 1.0 / N

End

Let PageRankStep(out_d_in int[N], contrib_in float[N], rank_in float[N],
r_in float[N]) -> (out_d int[N], contrib float[N], rank float[N],
r_out float[N])

out_d[j] = edges[i][j] | i:(+, 0)
contrib[i] = r_in[i] / out_d[i]
rank[i] = edges[i][j] * contrib[j] | j:(+, 0.0)
r_out[i] = beta_score + damp * (rank[i])

End

Let Main() -> (out_d int[N], contrib float[N], rank float[N], r_out float[N])
out_d[i] = 0
contrib[i] = 0.0
rank[i] = 0.0
_, _, _, r_out = PageRankStep*(out_d, contrib, rank, InitRank()) | 20

End

Figure B-1: Page Rank
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N int

source int

edges int[Dense[N]][SparseList[N]]

Let BFS_Step(F_in int[SparseList[N]], P_in int[Dense[N]], V_in int[N],
temp_in int[N][1]) ->
(F_out int[SparseList[N]], P_out int[N], V_out int[N], temp_out int[N][1])

V_out[j] = P_in[j] == 0 - 1
F_out[j] = edges[j][k] * F_in[k] * V_out[j] | k: (CHOOSE, 0)
temp_out[j][m] = edges[j][k] * F_in[k] * V_out[j] * k | k:(CHOOSE, 0)
P_out[j] = CHOOSE(temp_out[j][1], P_in[j])

End

Let Init() -> (F int[SparseList[N]], P int[N])
F[j] = (j == source)
P[j] = (j == source) * (0 - 2) + (j != source) * (0 - 1)

End

Let Main() -> (P_out int[N], F_in int[SparseList[N]], P_in int[N], V int[N], temp_in int[N][1])
F_in, P_in = Init()
V[i] = 0
temp_in[i][j] = 0
_, P_out, _, _ = BFS_Step*(F_in, P_in, V, temp_in) | (#1 == 0)

End

Figure B-2: Breadth First Search
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Figure B-3: Single Source Shortest Paths

70



Figure B-4: Betweenness Centrality

Figure B-5: Betweenness Centrality Main
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Figure B-6: Connected Components
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