
Codon: A Compiler for High-Performance Pythonic
Applications and DSLs

Ariya Shajii∗
ariya@exaloop.io

Exaloop Inc.
Brookline, MA, USA

Gabriel Ramirez∗
glram@mit.edu
MIT CSAIL

Cambridge, MA, USA

Haris Smajlović
hsmajlovic@uvic.ca
University of Victoria
Victoria, BC, Canada

Jessica Ray
jray@csail.mit.edu

MIT CSAIL
Cambridge, MA, USA

Bonnie Berger
bab@mit.edu
MIT CSAIL

Cambridge, MA, USA

Saman Amarasinghe†
saman@csail.mit.edu

MIT CSAIL
Cambridge, MA, USA

Ibrahim Numanagić†
inumanag@uvic.ca

University of Victoria
Victoria, BC, Canada

Abstract
Domain-specific languages (DSLs) are able to provide in-
tuitive high-level abstractions that are easy to work with
while attaining better performance than general-purpose
languages. Yet, implementing new DSLs is a burdensome
task. As a result, new DSLs are usually embedded in general-
purpose languages. While low-level languages like C or C++
often provide better performance as a host than high-level
languages like Python, high-level languages are becoming
more prevalent in many domains due to their ease and flex-
ibility. Here, we present Codon, a domain-extensible com-
piler and DSL framework for high-performance DSLs with
Python’s syntax and semantics. Codon builds on previous
work on ahead-of-time type checking and compilation of
Python programs and leverages a novel intermediate repre-
sentation to easily incorporate domain-specific optimizations
and analyses. We showcase and evaluate several compiler
extensions and DSLs for Codon targeting various domains,
including bioinformatics, secure multi-party computation,
block-based data compression and parallel programming,
showing that Codon DSLs can provide benefits of familiar
high-level languages and achieve performance typically only
seen with low-level languages, thus bridging the gap be-
tween performance and usability.

Keywords: domain-specific languages, type checking, Python,
optimization, intermediate representation

∗Both authors contributed equally to this research.
†Both authors share senior authorship.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CC ’23, February 25–26, 2023, Montréal, QC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0088-0/23/02.
https://doi.org/10.1145/3578360.3580275

1 Introduction
Domain-specific languages (DSLs) usually come in one of
two varieties: embedded or standalone. Embedded DSLs are
integrated within a general-purpose host language, whereas
standalone DSLs introduce new languages with idiosyncratic
syntax and semantics. Both varieties have pros and cons, but
embedded DSLs enjoy wider popularity in practice due to
ease of implementation and adoption. Consequently, design-
ers of high-performance DSLs face a crucial choice at the
onset: which language to embed their DSL in. In the past,
the choice was obvious—high performance required embed-
ding in a lower-level, statically analyzable language like C
or C++. Since these languages were already commonly used
in their respective domains, such DSLs frequently saw seam-
less adoption with few issues. Further, by virtue of their host
languages, embedded DSLs inherited existing language and
compiler infrastructure, providing overall end-to-end per-
formance and general-purpose functionality. This approach
was taken by many high-performance DSLs like CUDA [41],
Halide [46] and Tiramisu [7], which derive from C++—the
go-to language at the time for their target audiences.
Nowadays, the decision is no longer so simple. Dynamic

languages like Python and Ruby, combined with the wide-
spread availability of relatively high-performance domain-
specific libraries [1, 24, 44, 45], have captured a large share
of potential DSL users. Thus, building new DSLs on top
of lower-level languages can, in fact, become a barrier to
widespread adoption and even alienate a large fraction of
the potential user base. Nonetheless, building optimized lan-
guage features on top of dynamic languages like Python
or Ruby that do not prioritize performance can be perilous:
for that reason, popular high-performance libraries such as
TensorFlow [1] or PyTorch [44] primarily use their host lan-
guages (e.g., Python) as an interface for interacting with
optimized C/C++ libraries that do the heavy lifting. How-
ever, developing and debugging libraries in C/C++ is often
hard and error-prone. Moreover, some domains make this
approach infeasible, particularly when the data comprise
billions of small objects directly defined and accessed by the

1

https://doi.org/10.1145/3578360.3580275


CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

DSL, drastically increasing the cost of interfacing with an
external library [52].
In this paper, we introduce Codon, a novel solution to

bring high-performance DSLs to the Python user commu-
nity by building a flexible development framework on top
of an optimized Pythonic base. Codon is a full language and
compiler that borrows Python 3’s syntax and (with some
limitations) semantics, but compiles to native machine code
with low runtime overhead, allowing it to rival C/C++ in
performance. To this end, Codon leverages ahead-of-time
compilation, specialized bidirectional type checking, and a
novel bidirectional intermediate representation (IR) to enable
optional domain-specific extensions both in the language’s
syntax (front-end) and in compiler optimizations (back-end).
These features allow not only new DSLs to be seamlessly
built on top of the existing Codon framework but also en-
able different DSLs to be composed within a single program.
Because Codon DSLs are built on top of a Pythonic base,
they benefit from advantages specific to embedded DSLs;
on the other hand, their ability to extend the syntax and
ship custom compiler passes allows them to unlock features
typically only accessible to standalone DSLs.
Codon was initially conceived as a limited Pythonic DSL

for high-performance scientific computing but eventually
evolved into a language that is highly compatiblewith Python
3—one of themost popular programming languages today [56]—
in terms of syntax and semantics. As such, it enables pro-
grammers to write high-performance code in an intuitive,
high-level and familiar manner. While Codon is not a drop-in
replacement for Python as it intentionally omits some dy-
namic features (e.g., dynamic type manipulation and runtime
reflection), we note that this dynamism often goes unused
in many computing domains (such as scientific computing)
and often hinders performance by preventing ahead-of-time
compile-time optimizations and introducing unwanted be-
havior [6, 16]. Despite these decisions, Codon circumvents
the hurdle of having to learn an entirely new language or
ecosystem and still allows for substantial code reuse from ex-
isting Python programs. Unlike other performance-oriented
Python implementations (such as PyPy [10] or Numba [3]),
Codon is built from the ground up as a standalone system
that compiles ahead-of-time to a static executable and is
not tied to an existing Python runtime (e.g., CPython or
RPython [4]) for execution. As a result, Codon can achieve
better performance and overcome runtime-specific issues
such as the global interpreter lock.
We demonstrate Codon’s utility by showcasing several

Codon-based, high-performance DSLs and extensions for
various domains, including bioinformatics, secure multi-
party computation, data compression, and parallel program-
ming. Each of these extensions leverages Codon’s compiler
infrastructure—from the parser to type checker to interme-
diate representation—to implement a performant DSL or
library that allows writing high-level Python code for the

target domain which nevertheless achieves superior perfor-
mance thanks to the various domain-specific optimizations
and transformations included under the hood.

Overall, this paper makes the following contributions:
• Bidirectional IRs. We propose a new class of IRs called
bidirectional IRs, with which compilation does not fol-
low a linear path after parsing but can return to the
type checking stage during IR passes to generate new
specialized IR nodes.We demonstrate the utility of bidi-
rectional IRs by using them to implement various op-
timizations and transformations for several domains.
• Domain-extensible compiler.We show how to construct
a domain-extensible compiler via a plugin system, for
which domain-specific extensions can be seamlessly
implemented and composed in the context of a high-
level, dynamic language (Python).
• Framework for high-performance, Pythonic DSLs. We
implement and evaluate Codon, a new framework for
creating Pythonic DSLs built on top of the previous
two contributions. This framework enables the devel-
opment of DSLs that share Python’s syntax and se-
mantics together with added domain-specific features
and IR optimizations. Since Codon DSLs operate inde-
pendently of the standard Python runtimes, they can
achieve a performance comparable to C while being
readily usable by anyone with a knowledge of Python.

2 Type Checking and Inference
Unlike Python, Codon utilizes static type checking and com-
piles to LLVM IR that does not use any runtime type informa-
tion, similar to previous work on end-to-end type checking in
the context of dynamic languages such as Python [4, 50, 52]
and Ruby [40]. To that end, Codon ships with a static bidi-
rectional type system, called LTS-DI, that utilizes Hindley-
Milner (HM)-style inference to deduce the types in a program
without requiring the user to manually annotate types (a
practice that is, although supported, not widespread among
the Python developers).
Due to the peculiarities of Python’s syntax and common

Pythonic idioms, LTS-DI makes adjustments to the stan-
dard HM-like inference to support notable Python constructs
such as comprehensions, iterators, generators (both send-
ing and receiving), complex function manipulation, variable
arguments, static type checks (e.g., isinstance calls), and
more. To handle these constructs and many others, LTS-DI
relies on (1) monomorphization (instantiating a separate
version of a function for each combination of input argu-
ments), (2) localization (treating each function as an iso-
lated type checking unit), and (3) delayed instantiation (func-
tion instantiations are delayed until all function parameters
become known). Many Python constructs also necessitate
compile-time expressions (akin to C++’s constexpr expres-
sions), which Codon supports. More details about LTS-DI
are available in Appendix A.

2



Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

def fib(n):
a, b = 0, 1
while a < n:

print a
a, b = b, a+b

fib(1000)

+

ba __add__ a b

Call
1

Instr

Func 2

+

ba
intintAbstract 

Syntax Tree Type Checker
Intermediate 

Representation
Source Code Optimization 

Passes
Target

int, int

DSL Plugin

Domain-specific 
optimizations

New syntax

Library modules

Bidirectional Compilation

Figure 1. Codon’s compilation pipeline. Compilation pro-
ceeds at first in a linear fashion, where source code is parsed
into an abstract syntax tree (AST), on which type checking
is performed to generate an intermediate representation (IR).
Unlike other compilation frameworks, however, Codon’s is
bidirectional, and IR optimizations can return to the type
checking stage to generate new IR nodes and specializations
not found in the original program, which is required for sev-
eral key optimizations we present in this work. The frame-
work is “domain-extensible”, and a “DSL plugin” consists of
library modules, syntax, and domain-specific optimizations.

While these methods are not uncommon in practice (e.g.,
monomorphization is used by C++’s templates, while delayed
instantiaion has been used in the HMF type system [36]),
we are not aware of their joint use in the context of type
checking Python programs. Finally, note that Codon’s type
system in its current implementation is completely static and
does not perform any runtime type deduction; as a result,
some Python features, such as runtime polymorphism or
runtime reflection, are not currently supported. In the con-
text of scientific computing, we have found that dropping
these features represents a reasonable compromise between
utility and performance.
3 Intermediate Representation
Many languages compile in a relatively direct fashion: source
code is parsed into an abstract syntax tree (AST), optimized,
and converted into machine code, typically with the help
of a compiler framework such as LLVM [34]. Although this
approach is comparatively easy to implement, ASTs often
contain many more node types than necessary to represent a
given program. This complexity can make implementing op-
timizations, transformations, and analyses difficult or even
impractical. An alternate approach involves converting the
AST into an intermediate representation (IR) prior to per-
forming optimization passes. IRs typically contain a sub-
stantially reduced set of nodes with well-defined semantics,
making them much more conducive to transformations and
optimizations.
Codon implements this approach in its IR, which is posi-

tioned between the type checking and optimization phases,
as shown in Figure 1. The Codon Intermediate Represen-
tation (CIR) is radically simpler than the AST, with both a

simpler structure and fewer node types (Appendix 4 and D).
Despite this simplicity, CIR maintains most of the source’s
semantic information and facilitates “progressive lowering,”
enabling optimization at multiple levels of abstraction similar
to other IRs [35, 59]. Optimizations that are more convenient
at a given level of abstraction are able to proceed before
further lowering.

3.1 High-Level Design
CIR is a value-based IR inspired in part by LLVM IR [34].
As in LLVM, we employ a structure similar to single static
assignment (SSA) form, making a distinction between val-
ues, which are assigned at one location, and variables, which
are conceptually similar to memory locations and can be
modified repeatedly. To mirror the source’s structure, values
can be nested into arbitrarily-large trees. Keeping this SSA-
like tree structure enables easy lowering at the Codon IR
level. For example, this structure enables CIR to be lowered
to a control flow graph easily. Unlike LLVM, however, CIR
initially represents control flow using explicit nodes called
flows, allowing for a close structural correspondence with
the source code. Explicitly representing the control flow hi-
erarchy is similar to the approaches taken by Suif [59] and
Taichi [26]. Importantly, this makes optimizations and trans-
formations that depend on precise notions of control flow
much easier to implement. A simple example is a for flow
that keeps explicit loops in CIR and allows Codon to easily
recognize patterns such as the common for x in range(y)
loop instead of having to decipher a maze of branches, as is
done in lower-level IRs like LLVM IR. An example of source
code mapping to CIR is shown in Figure 2.

3.2 Operators
CIR does not represent operators like + explicitly but instead
converts them to corresponding function calls (also known
as “magic methods” in the Python world). For example, the +
operator resolves to an __add__ call (Figure 2). This enables
seamless operator overloading for arbitrary types via magic
methods, the semantics of which are identical to Python’s.

A natural question that arises from this approach is how to
implement operators for primitive types like int and float.
Codon solves this by allowing inline LLVM IR via the @llvm
function annotation, which enables all primitive operators to
be written in Codon source code. Information about operator
properties like commutativity and associativity can be passed
as annotations in the IR.

3.3 Bidirectional IRs
Traditional compilation pipelines are linear in their data
flow: source code is parsed into an AST, usually converted
to an IR, optimized, and finally converted to machine code.
With Codon, we introduce the concept of a bidirectional
IR, wherein IR passes are able to return to Codon’s type
checking stage to generate new IR nodes and specializations

3



CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

not present in the source program. Among the benefits of a
bidirectional IR are:

• Large portions of complex IR transformations can be im-
plemented directly in Codon. For example, the prefetch
optimizationmentioned in Section 4.3 involves a generic
dynamic coroutine scheduler that is impractical to im-
plement purely in Codon IR.
• New instantiations of user-defined data types can be
generated on demand. For example, an optimization
that requires the use of Codon/Python dictionaries
can instantiate the Dict type for the appropriate key
and value types. Instantiating types or functions is a
non-trivial process that requires a full re-invocation
of the type checker due to cascading realizations, spe-
cializations and so on.
• The IR can take full advantage of Codon’s high-level type
system. By the same token, IR passes can themselves
be generic, using Codon’s expressive type system to
operate on a variety of types.

While CIR’s type system is very similar to Codon’s, CIR
types are fully realized and have no associated generics (un-
like Codon/AST types). However, every CIR type carries a
reference to the AST types used to generate it, along with
any AST generic type parameters. These associated AST
types are used when re-invoking the type checker and allow
CIR types to be queried for their underlying generics, even
though generics are not present in the CIR type system (e.g.
it is straightforward to obtain the type T from a given CIR
type representing List[T], and even use it to realize new
types or functions). Note that CIR types correspond to high-
level Codon types; LLVM IR types are more low-level and
do not map back directly to Codon types.

The ability to instantiate new types during CIR passes is,
in fact, critical to many CIR operations. For example, creat-
ing a tuple (x, y) from given CIR values x and y requires
instantiating a new tuple type Tuple[X,Y] (where the up-
percase identifiers indicate types), which in turn requires
instantiating new tuple operators for equality and inequality
checking, iteration, hashing and so on. Calling back to the
type checker makes this a seamless process, however.
We demonstrate the power of bidirectional IRs by imple-

menting several real-world domain-specific optimizations
in Section 4, each of which relies on the bidirectional IR
features listed above.

3.4 Passes and Transformations
CIR provides a comprehensive analysis and transformation
infrastructure: users write passes using various CIR built-in
utility classes and register them with a PassManager, which
is responsible for scheduling execution and ensuring that
any required analyses are present. In Figure 13, we show a
simple addition constant folding optimization that utilizes
the OperatorPass helper, a utility pass that visits each node

(bodied_func '"fib[int]" (type '"fib[int]")
(args (var '"n" (type '"int") (global false)))
(vars)
(series
(if (call '"int.__lt__[int,int]" '"n" 2)

(series (return 1))
(series (return
(call '"int.__add__[int,int]"
(call '"fib[int]"

(call '"int.__sub__[int,int]" '"n" 1))
(call '"fib[int]"

(call '"int.__sub__[int,int]" '"n" 2))))))))

def fib(n):
if n < 2:

return 1
else:

return fib(n-1) + fib(n-2)

Figure 2. Example of Codon source mapping for a simple
Fibonacci function into CIR. The function fibmaps to a CIR
BodiedFunc with a single integer argument. The body con-
tains an IfFlow that either returns a constant or recursively
calls the function to obtain the result. Notice that operators
like + are converted to function calls (e.g., __add__), but that
the IR otherwise mirrors the original source code in its struc-
ture, allowing easy pattern matching and transformations.

in an IR module automatically. In this case, we simply over-
ride the handler for CallInstr, check to see if the function
matches the criteria for replacement and perform the ac-
tion if so (recall that binary operators in CIR are expressed
as function calls). Users can also define their own traversal
schemes and modify the IR structure at will.

More complex passes can make use of CIR’s bidirectional-
ity and re-invoke the type checker to obtain new CIR types,
functions, and methods, an example of which is shown in Fig-
ure 3. In this example, calls of the function foo are searched
for, and a call to validate on foo’s argument and its out-
put is inserted after each. As both functions are generic, the
type checker is re-invoked to generate three new, unique
validate instantiations. Instantiating new types and func-
tions requires handling possible specializations and realizing
other nodes (e.g., the == operator method—__eq__—must be
realized in the process of realizing validate in the example),
as well as caching realizations for later use.

3.5 Code Generation and Execution
Codon uses LLVM to generate native code. The conversion
fromCodon IR to LLVM IR is generally a straightforward pro-
cess, following the mappings listed in Table 4. Most Codon
types also translate to LLVM IR types intuitively: int be-
comes i64, float becomes double, bool becomes i8 and so
on—these conversions also allow for C/C++ interoperability.
Tuple types are converted to structure types containing the
appropriate element types, which are passed by value (re-
call that tuples are immutable in Python); this approach for
handling tuples allows LLVM to optimize them out entirely
in most cases. Reference types like List, Dict etc. are im-
plemented as dynamically-allocated objects that are passed
by reference, which follows Python’s semantics for mutable
types. Codon handles None values by promoting types to
Optional as necessary; optional types are implemented via
a tuple of LLVM’s i1 type and the underlying type, where
the former indicates whether the optional contains a value.

4



Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

class ValidateFoo : public OperatorPass {
void handle(AssignInstr *v) {
auto *M = v->getModule();
auto *var = v->getLhs();
auto *call = cast<CallInstr>(v->getRhs());
if (!call) return;
auto *foo = util::getFunc(call->getCallee());
if (!foo || foo->getUnmangledName() != "foo") return;
auto *arg1 = call->front(); // argument of 'foo' call
auto *arg2 = M->Nr<VarValue>(var); // result of 'foo' call
auto *validate = M->getOrRealizeFunc("validate",

{arg1->getType(), arg2->getType()});
auto *validateCall = util::call(validate, {arg1, arg2});
insertAfter(validateCall); // call 'validate' after 'foo'

}
};

def foo(x): return x*3 + x
def validate(x, y):

assert y == x*4
a = foo(10)
b = foo(1.5)
c = foo('a')

a = foo(10)
validate(10, a)
b = foo(1.5)
validate(1.5, b)
c = foo('a')
validate('a', c)

Figure 3. Example of bidirectional compilation in Codon IR.
The simple pass, shown in the bottom box, searches for calls
of function foo, and inserts after each a call to validate,
which takes foo’s argument as well as its output and verifies
the result. Both functions are generic and can take as an
argument any type that can be multiplied by an integer, so
the type checker is re-invoked to generate three distinct
validate instantiations for the example code in the top left
box, producing code equivalent to that in the top right box.

Optionals on reference types are specialized to use a null
pointer to indicate a missing value.

Generators are a prevalent language construct in Python;
in fact, every for loop iterates over a generator (e.g. for
i in range(10) iterates over the range(10) generator).
Hence, it is critical that generators in Codon carry no extra
overhead and compile to equivalent code as standard C for-
loops whenever possible. To this end, Codon uses LLVM
coroutines [42] to implement generators. LLVM’s coroutine
passes elide all coroutine overhead (such as frame allocation)
and inline the coroutine iteration whenever the coroutine
is created and destroyed in the same function. (We found
in testing that the original LLVM coroutine passes—which
rely on explicit “create” and “destroy” intrinsics—were too
conservative when deciding to elide coroutines generated
by Codon, so in Codon’s LLVM fork this process is replaced
with a capture analysis of the coroutine handle, which is able
to elide coroutine overhead in nearly all real-world cases.)

Codon uses a small runtime library when executing code.
In particular, the Boehm garbage collector [9]—a drop-in
replacement for malloc—is used to manage allocated mem-
ory1, andOpenMP for handling parallelism. Codon offers two
compilation modes: debug and release. Debug mode includes
full debugging information, allowing Codon programs to be
debugged with tools like GDB and LLDB, and also includes
full backtrace information with file names and line numbers.
Release mode performs a greater number of optimizations
(including -O3 optimizations from GCC/Clang) and omits
1Note that Codon DSLs can use different memory management solutions.

some safety and debug information. Users can therefore use
the debug mode for quick programming and debugging cycle
and the release mode for high-performance deployment.
3.6 Extensibility
Due to the framework’s flexibility and bidirectional IR, as
well as the overall expressiveness of Python’s syntax, a large
fraction of the DSL implementation effort can be deferred to
the Codon source. Indeed, as shown in Section 4, Codon appli-
cations typically implement large fractions of their domain-
specific components in the source itself. This has the benefit
of making Codon DSLs intrinsically interoperable—so long
as their standard libraries compile, disparate DSLs can be
used together seamlessly. Along these lines, we propose a
modular approach for incorporating new IR passes and syn-
tax, which can be packaged as dynamic libraries and Codon
source files. At compile time, the Codon compiler can load
the plugin, registering the DSL’s elements.
Some frameworks, such as MLIR [35], allow customiza-

tion for all facets of the IR. Codon IR, on the other hand,
restrict customization of the IR to a few types of nodes, and
relies on bidirectionality for further flexibility. In particu-
lar, CIR allows users to derive from “custom” types, flows,
constants, and instructions, which interact with the rest of
the framework through a declarative interface. For example,
custom nodes derive from the appropriate custom base class
(CustomType, CustomFlow, etc.) and expose a “builder” to
construct the corresponding LLVM IR (see Appendix 9 a brief
example which implements a 32-bit float type). Notice that
implementing custom types (and custom nodes in general) in-
volves defining a Builder that specifies LLVM IR generation
via virtual methods (e.g. buildType and buildDebugType);
the custom type class itself defines a method getBuilder
to obtain an instance of this builder. This standardization
of nodes enables DSL constructs to work seamlessly with
existing passes and analyses.

4 Applications
4.1 Microbenchmark Performance
Given Codon’s roots in Python, it can substantially accelerate
many standard Python programs out of the box thanks to
AOT compilation. Codon IR makes it easy to optimize several
patterns commonly found in Python code, such as dictionary
updates (that can be optimized to use a single lookup instead
of two; Figure 4), or consecutive string additions (that can
be folded into a single join to reduce allocation overhead).
Here we provide a few benchmarks that show the extent of
Codon’s performance improvements.
Figure 5 shows Codon’s runtime performance, as well as

that of CPython (v3.10) and PyPy (v7.3), on the pybench-
mark benchmark suite2 restricted to a set of “core” bench-
marks that do not rely on external libraries such as Django

2https://github.com/duboviy/pybenchmark

5

https://github.com/duboviy/pybenchmark


CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

d = {'a': 42}
d['a'] = d.get('a', 0) + 1

d = {'a': 42}
d.__dict_do_op__('a', 1, 0, int.__add__)

Figure 4. Example of dictionary optimization. The pass rec-
ognizes the get/set pattern and replaces it with a single call
to __dict_do_op__. As this function is generic, we instanti-
ate a new version and pass the int.__add__ function as a
parameter. This optimization results in a 12% performance
improvement on a wordcount benchmark.

or DocUtils.3 Codon is always faster, sometimes by orders
of magnitude when compared to CPython and PyPy. For
some benchmarks, we also provided corresponding C++ im-
plementations and observed that Codon provides similar—if
not improved—performance. More information about these
benchmarks is given in Appendix B; prior work that uses
Codon ([52]) contains more extensive performance measure-
ments on a broader set of benchmarks, not only against
CPython and PyPy, but also against other Python implemen-
tations such as Nuitka [25] and Shed Skin [21]. As those
results follow the exact same trends as reported here, we
omit them for brevity.
While microbenchmarks are a decent proxy for perfor-

mance, they are not without drawbacks and often do not
tell the whole story. For that reason, the rest of this section
focuses on the practical, real-world applications and DSLs
that utilize Codon to enable users to write simple Python
code for various domains, and yet deliver high performance
on real applications and datasets. Note that these DSLs can
be embedded directly within an existing Python codebase
with the appropriate decorator provided by Codon.

4.2 OpenMP: task- and loop-parallelism
Because Codon is built from the ground up independently
of the existing Python runtimes, it does not suffer from
CPython’s infamous global interpreter lock and can therefore
take full advantage of multi-threading. To support paral-
lel programming, we implemented a Codon extension that
allows end-users to use OpenMP within Codon itself. An
example OpenMP program in C++ and Codon is shown in
Figure 6, exhibiting Codon’s ability to extend the syntax
of the base Python language and its ability to implement
complex transformations needed to interface with OpenMP.

OpenMP predominately leverages outlining to parallelize
code—in general, a parallel loop’s body is outlined into a
new function, which is then called by multiple threads by
the OpenMP runtime. For example, the body of the loop
from Figure 6 would be outlined to a function f that takes
as parameters the variables a, b, c and the loop variable i.

3While Codon can use existing Python libraries through a CPython bridge,
their performance will be equal to that of CPython.

Then, a call to fwould be inserted into a new function g that
invokes OpenMP’s dynamic loop scheduling routines for a
chunk size of 10. Finally, g would be called by all threads
in the team via OpenMP’s fork_call function. The result
is shown in the right snippet of Figure 6 (note that for sim-
plicity, this code omits a few details like the loop schedule
code and thread or location identifiers). Our passes also take
special care to handle private variables (e.g., local to the out-
lined function), as well as shared ones (details omitted for
brevity). Reductions over variables also require additional
code generation for atomic operations (or the use of locks),
as well as an additional layer of OpenMP API calls.
The bidirectional compilation is a critical component of

Codon’s OpenMP pass. The various loop “templates” (e.g.,
dynamic loop scheduling routines in the example above, or
static and task-based loop routines) are implemented in high-
level Codon source code. Following the code analysis, the
reduction pass copies and specializes these “templates” by
filling in the loop body, chunk size and schedule, rewriting
expressions that rely on shared variables, and more. This
design tremendously simplifies the pass implementation and
adds a degree of generality (e.g., it is easy to implement new
templates and strategies directly in Codon for new types
of loops without having to redesign the pass itself). Unlike
Clang or GCC, Codon’s OpenMP pass deduces which vari-
ables are shared, which are private, as well as any reductions
taking place (e.g. a += iwithin the loop bodywould generate
code for a +-reduction on a). Custom reductions can be im-
plemented simply by providing an appropriate atomic magic
method (e.g. __atomic_add__) on the reduction type. Codon
also employs several lowering passes that lower certain for-
loops that iterate over a generator (the default behaviour of
Python loops) to “imperative loops”—C-style loops with a
start, stop, and step values. For example, for i in range(N)
will be lowered to an imperative loop with start index 0, stop
index N, and step 1; iterations over lists will also be lowered
to imperative loops. Imperative loops are, in turn, converted
into OpenMP parallel loops if the @par tag is present. Non-
imperative parallel loops are parallelized by spawning a new
OpenMP task for each loop iteration and placing a synchro-
nization point after the loop. This scheme allows all Python
for-loops to be parallelized.

OpenMP transformations are implemented as a set of CIR
passes that match the for loops marked by the @par attribute
(a syntactic extension provided by the Codon parser) and
transform such loops into the appropriate OpenMP construct
within CIR. Nearly all OpenMP constructs were implemented
as higher-order functions in Codon itself.

4.3 Seq: a DSL for Bioinformatics
Seq [52] is a complete DSL for bioinformatics and compu-
tational genomics and the original motivation for Codon
itself. On top of standard Python, Seq adds new data types
for “sequences” (DNA strings comprised of ACGT characters)

6



Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

100

101

loop
0

10

20

go
0

10

20

30

nbody

Python PyPy Codon C++

0

10

20

chaos
0

50

100

150

spectral_norm
0

1

2

3

4

set_partition
0

10

20

30

primes
0

50

100

binary_trees
0

10

20

30

fannkuch
0

1

2

3

word_count
0

5

10

taq

Figure 5. Comparison of Python (CPython 3), PyPy, Codon and C++ (where applicable) on several benchmarks from Python’s
benchmark suite (pyperformance). The 𝑦-axis shows the speedup (in times) over the CPython implementation.

// C++
#pragma omp parallel for schedule(dynamic, 10) num_threads(8)
for (int i = 0; i < N; i++)

c[i] = a[i] + b[i]

# Codon
@par(schedule='dynamic', chunk_size=10, num_threads=8)
for i in range(N):

c[i] = a[i] + b[i]

import openmp as omp
def f(a, b, c, i):

c[i] = a[i] + b[i]
def g(loop, a, b, c):

omp._dynamic_init(loop=loop, chunk=10)
while True:

more, subloop = omp._dynamic_next(loop)
if not more: break
for i in subloop: f(a, b, c, i)

omp._push_num_threads(8)
omp._fork_call(g, range(N), a, b, c)

Figure 6. OpenMP program in C++ and in Codon. The result
of applying Codon’s OpenMP pass and lowering the parallel
loop is given in the bottom snippet.

and “𝑘-mers” (fixed length-𝑘 sequences), as well as numerous
library features packaged in a new bio module. Finally, Seq
leverages Codon IR to perform several performance-critical
domain-specific optimizations. Importantly, bioinformatics
and genomics have distinct computational characteristics
that make interfacing with a high-performance library in
plain Python impractical—in particular, billions of distinct
sequences and 𝑘-mers are often processed concurrently by
an application, so any per-object overhead imposed by the
Python’s runtime (either CPython or RPython [4]) is detri-
mental to the overall performance. Since Codon avoids the
high overhead of the existing Python implementations, it is
a natural choice for implementing a genomics DSL.

Many genomics applications can be conceptualized as a se-
ries of stages through which data is passed. To that end, Seq
uses Codon’s “pipeline” syntax—added on top of Python’s
base syntax and denoted with the |> operator—to concisely
express many genomics operations. For example, the pipeline
shown at the bottom of Figure 7 reads sequences from a
FASTQ file (standard format for storing sequencing data),
partitions each into length-k subsequences, and process each
subsequence using the search function, the output of which
is passed to some function process. Pipeline stages can be
plain functions, in which case the function is simply applied
to the whole input to produce the output; stages can also be

generators, in which case all values produced by the genera-
tor are lazily passed to the rest of the pipeline. Additionally,
the “parallel” pipe operator ||> indicates that all subsequent
stages can be executed in parallel.
Since pipelines are a central component of Seq, and the

way in which the main loop of most applications is expressed,
Seq implements several optimizations on them throughCodon
IR passes. One example pertains to expensive genomic index
queries: the search function in Figure 7 queries a sequence in
an FM-index data structure, which entails repeatedly updat-
ing an FM-index interval by randomly accessing an auxiliary
array, incurring numerous cache misses (note that genomic
indices are often very large exceeding tens of gigabytes or
more). The @prefetch annotation instructs the compiler
to perform pipeline optimizations to overlap the function’s
cache misses with other useful work by converting search
to a coroutine that issues a software prefetch and yields
just before the expensive memory access, in conjunction
with a dynamic scheduler of coroutines, written in Codon
itself (Appendix Figure 11), that manages several instances
and dynamically switches between them as appropriate. The
prefetch optimization is implemented as a Codon IR pass in
roughly 100 lines of code. The two necessary transforma-
tions for this optimization are (1) converting the annotated
function to a coroutine and (2) inserting the dynamic sched-
uler in the pipeline. The scheduler is implemented in Codon
as a generic function and appropriately instantiated during
the IR pass by re-invoking the bidirectional type checker.

import sys, bio, bio.fmindex
@prefetch
def search(s, index):

# initialize interval
intv = index.interval(s[-1])
s = s[:-1] # trim last base
while s and intv:

# extend interval
intv = index[intv, s[-1]]
s = s[:-1] # trim last base

return intv
# create the index
idx = bio.fmindex.FMIndex(argv[1])
( bio.FASTQ(argv[2])
|> bio.seqs |> bio.split(k=20)
|> search(idx) |> process )

10 15 20 25 30

20
0

40
0

60
0

80
0

1,
00
0

𝑘

Ru
nt
im

e
(s
)

FM-index queries

w/o prefetch
w/ prefetch

Figure 7. Example of a prefetch optimization on a FM-
index, together with performance results—with and without
@prefetch annotation—for various k. More experiments are
available in Appendix B.

7



CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

To illustrate the effect of this optimization, Figure 7 shows
the runtime of the FM-index query code with and without
the @prefetch annotation, for various subsequence lengths
(k in the code). For shorter sequences, less of the FM-index is
accessed, so cache misses are less likely (note that querying
an FM-index is conceptually equivalent to walking down a
tree—in this case, the “head” of the tree is cache-resident). For
longer sequences, more cache misses are incurred, leading
to a substantial improvement with the prefetch optimization,
up to about 2× in this example. Note that even the version
that does not use prefetch optimization already equals C im-
plementation of FM-index used in other tools [52], showing
that even “raw” Codon can be used for high-performance
tasks before being augmented by large-scale complex code
transformations that can enable surpassing even the state-of-
the-art C/C++ implementations without necessitating major
code refactoring. The details are available in Appendix B;
the real-world demonstration of prefetch, as well as other
bioinformatics-specific Codon IR passes, is available in [53].
For example, the Seq version of BWA MEM [39] sequence
alignment tool was 2× faster than the highly optimized C
version and up to 4× shorter.

4.4 Sequre: a DSL for Multi-Party Computation
Secure multi-party computation (MPC) [19] is a strategy for
securely performing computations over multiple computing
parties in a distributed manner on shared data without ac-
tually revealing the data itself to the parties. To satisfy the
security guarantees, MPC relies on specialized algebraic op-
erations and, as such, requires a complete re-implementation
of all core operations (arithmetic, matrix manipulation, com-
munication primitives, etc.) in a secure and distributed man-
ner. Under such guarantees, common arithmetic operations
(such as multiplication) are significantly slower (more than
100× on average [47]) compared to their standard non-secure
counterparts. A naïve library implementation of MPC pro-
tocols (e.g. through operator overloading [51]) considers
each operation independently and thus misses on efficient
compile-time optimization opportunities such as secure loop
unrolling or network-latency-based prefetching [31]. For
that reason, the existing MPC applications require careful
bookkeeping and manual optimizations to achieve satisfac-
tory performance [18] and do not generalize well beyond
their original use-case.
We used Codon to implement a high-level DSL—called

Sequre [55]—for rapid development ofsecure MPC pipelines.
The implementation of standard MPC primitives and secure
core operations is done in Codon itself. Codon IR and its
bidirectionality is used to implement residue caching and
polynomial scaffolding optimizations [18] in an automatic
fashion at the compile time as follows.

Sequre initially transforms all arithmetic operators to their
secure multiparty counterparts. While doing so, it rearranges
the expressions into the shapes suitable for MPC-friendly

order of execution (an order that might not be optimal in a
non-secure environment). For example, in the polynomial
scaffolding pass, a series of arithmetic expressions are re-
shaped into a generalized polynomial form and then relayed
to an efficient secure polynomial evaluator that minimizes
the network communication between the MPC parties (Fig-
ure 8). To that end, Codon IR is used to detect such expres-
sions and rearrange them into an MPC-optimal shape, while
the secure polynomial evaluator is implemented in Codon
itself. Sequre thus allows end-users to write the idiomatic
Python code without worrying about MPC specifics to imple-
ment performant protocols that automatically minimize the
network utilization of the essential arithmetic operations.
Residue caching is another MPC-specific optimization

that Sequre implements. Each secure multiplication requires
the operands to be transformed into randomized tuples—
multiplicative residues commonly known as Beaver parti-
tions [18]—before computing the final product. These residues
can be cached and reused for subsequent multiplications be-
cause obtaining them requires communication between the
computing parties and is thus expensive. Furthermore, some
operations can reuse the existing operand residues to cheaply
construct the final residue (e.g., the residue of a sum can
be obtained by simply adding summand residues). Unfortu-
nately, computing, propagating, and reusing of the residues
are in almost all cases done manually, unavoidably resulting
in complex implementations that are hard to understand and
review and even harder to extend. We used Codon IR to au-
tomate residue caching by analyzing the binary expression
tree of the expressions and labelling variables reused either
directly or through propagation for residue caching.
Together with the efficient MPC primitive library imple-

mented in Codon itself, residue caching and polynomial
scaffolding significantly reduced the network communica-
tion between the computing parties. In the example shown
in Figure 8, Sequre exchanges 3,680 bytes over the network
without the two IR transformations enabled. Enabling the
transformations decreases this amount up to 10× (256 bytes
for residue optimization and 224 bytes for polynomial opti-
mization). Finally, we note that additional optimizations (e.g.,
using an MPC-specific modulo operator that is inserted by
the Codon IRwhere needed) allowed us to produce high-level
Sequre code for genome-wide association studies, achieving
up to 4× speed-ups with 7× reductions in code size over the
existing C++ state-of-the-art [18, 55]. In concrete terms, a
high-level Python implementation of GWAS protocol that
can be easily reviewed for security takes 20 days to complete
as compared to the optimized 80-day long C++ pipeline.
Both Seq and Sequre are Codon plugins that contain a

library of core primitives written in Codon, and a set of CIR
and LLVM passes that operate within the functions marked
with plugin-specific attributes (e.g., prefetch or secure).

8



Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

@secure
def foo(a, b, c):

d = b + c
e = d ** 2
print e
f = e * a * d
return f

def sequre_foo(a, b, c):
beaver_cache_partitions(a, b, c)
d = b + c # d = b + c
beaver_cache_partitions(d)
d_powers = secure_powers(d, 2)
e = e_powers[2] # e = d ** 2
beaver_cache_partitions(e)
print secure_reveal(e)
# __mul__ reuses the cached partitions
f = e.__mul__(a).__mul__(d) # f = e * a * d
return f

𝑒 = 𝑃1(𝑏, 𝑐) =1 · 𝑏2𝑐0 +2 · 𝑏1𝑐1 +1 · 𝑏0𝑐2

𝑓 = 𝑃2(𝑎, 𝑏, 𝑐) =1 · 𝑎1𝑏3𝑐0 +3 · 𝑎1𝑏2𝑐1 +3 · 𝑎1𝑏1𝑐2 +1 · 𝑎1𝑏0𝑐3

def secure_foo(a, b, c):
P1 = beaver_poly(b, c, coeffs=(1,2,1), exps=((2,0), (1,1), (0,2)))
print secure_reveal(P1)
P2 = beaver_poly(a, b, c, coeffs=(1,3,3,1), exps=((1,3,0), (1,2,1), (1,1,2), (1,0,3)))
return P2

Residue caching pass
Polynomial pass

0 1,000 2,000 3,000

Library MPC

Beaver (opt)

Polynom. (opt)

Bytes exchanged

(b)(a)

Figure 8. (a) A simple example of how Sequre leverages Codon’s bidirectional IR in foo function decorated with @secure
attribute to optimize the enclosed arithmetic expressions via either the residue caching pass (left) or the polynomial pass
(right). (b) Total network utilization for standard MPC library (“Library MPC”) and Sequre’s two optimized solutions (“Beaver”
and “Polynomial”) in terms of exchanged bytes between computing parties on a degree-30 polynomial.

4.5 CoLa: a DSL for Block-Based Compression
CoLa4 is a Codon-based DSL targeting block-based data com-
pression, which forms the core of many common image and
video compression algorithms in use today. These types of
compression rely heavily on partitioning regions of pixels
into a series of smaller and smaller blocks, forming a multi-
dimensional data hierarchy where each block needs to know
its location relative to the other blocks. For example, one
stage of H.264 video compression partitions an input frame
of pixels into a series of 16x16 blocks of pixels, partitions each
of those into 8x8 blocks of pixels, and then partitions those
into 4x4 blocks of pixels. Tracking the locations between
these individual blocks of pixels requires significant book-
keeping information, which quickly obscures the underlying
algorithms in existing implementations.
CoLa introduces the Hierarchical Multi-Dimensional Ar-

ray (HMDA) abstraction, which simplifies the representa-
tion and use of hierarchical data. HMDAs represent multi-
dimensional arrays with a notion of location, which tracks
the origin of any given HMDA relative to some global co-
ordinate system. HMDAs also track their dimensions and
strides. With these three pieces of data, any HMDA can de-
termine its location relative to any other HMDA at any point
in the program. CoLa implements the HMDA abstraction in
Codon as a library centered around two new data types: the
block and view. blocks create and own an underlying multi-
dimensional array, while views point to a particular region
of a block. CoLa exposes two main hierarchy-construction
operations, location copy and partition, which create blocks
and views, respectively. CoLa supports standard indexing
with integer and slice indices but also introduces two unique
indexing schemes, which model how compression standards
describe data access. “Out-of-bounds” indexing allows users
to access data that surrounds a view, and “colocation” index-
ing lets users index an HMDA with another HMDA.
4Currently under submission [5]

While the combination of Codon’s Pythonic features and
CoLa’s abstractions provides users the benefits of a high-
level language and compression-specific abstractions, the
HMDA abstraction incurs significant run-time overhead due
to the extra indexing operations required. For compression,
many HMDA accesses occur at the innermost levels of com-
putation, so any extra computations on top of accessing
the raw array prove detrimental to run-time. CoLa utilizes
Codon’s IR and pass framework to implement hierarchy
collapsing and location propagation passes. Hierarchy col-
lapsing reduces the number of intermediate views created,
and location propagation attempts to infer the location of
any given HMDA. Together, these passes decrease the overall
size of the hierarchy and simplify the actual indexing com-
putations. Without these optimizations, CoLa runs 48.8×,
6.7×, and 20.5× slower on average compared to reference
C codes for JPEG [27], JPEG lossless [49], and H.264 [28],
respectively. With the optimizations, performance reaches
parity, with average run-times of 1.06×, 0.67×, and 0.91×
relative to the same reference codes.

CoLa is implemented as a Codon plugin, and as such, ships
with a library of compression primitives written in Codon
itself and a set of CIR and LLVM passes that operate on
hierarchical data structures defined by CoLa and optimize
their creation and access routines. CoLa also uses Codon to
provide custom data structure access syntax and operators
that simplify common indexing and reduction operations.

5 Related Work
Many frameworks for implementingDSLs rely on embedding
into another language and extending its features through
metaprogramming techniques. Delite framework [12] uti-
lizes Scala’s rich operator overloading support to implement
custom syntax, represents applications as valid Scala code,
and constructs an intermediate representation at runtime;
DSL optimizations can manipulate its IR through “rewrite
rules” and “traversals” before final compilation. BuildIt [11]

9



CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

uses C++ for code generation. AnyDSL [38] takes a similar ap-
proach of embedding in a new language called Impala. Other
approaches include Racket-based Sham [58] that embed in
dynamic languages and emit IR, and extensible compilers
such as ableC [29] that allows extending C with new syn-
tactic and semantic constructs, and JastAdd [22] that does
the same with Java. Some languages, such as Julia [13], also
use static compilation and elaborate type systems and al-
low end-users to extend the core language through macros
in limited fashion. While these frameworks allow consider-
able DSL customization, they are constrained by their parent
languages in terms of syntax familiarity (e.g., unfamiliar or
uncommon syntax) and typing flexibility (e.g., being limited
by the host language typing system). By contrast, Codon
attempts to build performant DSLs with the ahead-of-time
compilation on top of an existing, widely-used dynamic lan-
guage, which comes with its own unique challenges that are
not directly addressed by prior work.
Codon is modelled upon the Seq language [52], a DSL

for bioinformatics itself inspired by various other DSLs [2,
8, 15, 17, 32, 33, 46, 61]. Seq was originally designed as a
Pythonic DSL with many advantages such as ease of adop-
tion, excellent performance, and expressiveness. However, it
did not support many common Python language constructs
due to rigid typing rules, nor did it offer a mechanism to
easily implement new compiler optimizations. By applying
a bidirectional IR and improved type checker, Codon builds
substantially on Seq’s foundation and offers a general so-
lution to these issues. In particular, Codon covers a much
larger portion of Python’s features, and provides a frame-
work for implementing domain-specific optimizations. Fur-
thermore, Codon offers a flexible type system that better
handles various Pythonic idioms. Similar work on type sys-
tems for Pythonic codebases includes RPython [4] and the
related PyPy [10], linters such as Pyright/Pylance, Mypy [37]
and Pytype, and static type systems such as Starkiller [50]
and others [14]. Many of these ideas have also been applied in
the context of other dynamic languages, such as InferDL [30],
Hummingbird [48] and PRuby [23] (Ruby) and TypeScript.
Finally, we note that the back-and-forth approach used by
Codon’s bidirectional IR shares similarities with the previous
work on pluggable type systems [20] (an example of such
approach is Checker framework [43] for Java).
While the Codon Intermediate Representation is not the

first customizable IR, it differs from frameworks likeMLIR [35]
in its approach. Rather than supporting customization of
everything, Codon’s IR opts for a simple, clearly-defined cus-
tomizations that can be combined with bidirectionality for
more complex features. In terms of structure, CIR takes inspi-
ration from LLVM [34] and Rust’s IRs [57]. These IRs benefit
from a vastly simplified node set and structure, which in turn
simplifies the implementation of IR passes. Structurally, how-
ever, these representations are too low-level to effectively
express Pythonic optimizations. In particular, they radically

restructure the source code, eliminating semantic informa-
tion that must be reconstructed to perform transformations.
To address this shortcoming, many IRs like Taichi [26] and
Suif [59] adopt hierarchical structures that maintain control
flow and semantic information, albeit at the cost of increased
complexity. Unlike Codon’s, however, these IRs are largely
disconnected from their languages’ front-ends, making main-
taining type correctness and generating new code imprac-
tical or even impossible. Therefore, CIR takes the best of
these approaches by utilizing a simplified hierarchical struc-
ture, maintaining both the source’s control flow nodes and a
radically decreased subset of internal nodes. Importantly, it
augments this structure with bidirectionality, making new
IR easy to generate and manipulate.

6 Conclusion
We have introduced Codon, a domain-configurable frame-
work for designing and rapidly implementing Pythonic DSLs.
By applying a specialized type checking algorithm and novel
bidirectional IR, Codon enables easy optimization of dynamic
code in a variety of domains. Codon DSLs achieve consider-
able performance benefits over Python and can match C/C++
performance without compromising high-level simplicity.
We note that Codon is already being used commercially in
quantitative finance and bioinformatics.
Currently, there are several Python features that Codon

does not support. They mainly consist of runtime polymor-
phism, runtime reflection and type manipulation (e.g., dy-
namic method table modification, dynamic addition of class
members, metaclasses, and class decorators). There are also
gaps in the standard Python library coverage. While Codon
ships with Python interoperability as a workaround to some
of these limitations, future work is planned to expand the
amount of Pythonic code immediately compatible with the
framework by adding features such as runtime polymor-
phism and by implementing better interoperability with the
existing Python libraries. Finally, we plan to increase the
standard library coverage, as well as extend syntax config-
urability for custom DSLs.

Acknowledgments
This work was partially supported by NSERC Discovery Grant
RGPIN-04973 (to I.N.), Canada Research Chair program (to I.N.),
DARPA HR0011-18-3-0007 and HR0011-20-9-0017 (to S.A.), and
NIH R01 HG010959 (to B.B.). Codon is currently maintained by
Exaloop, Inc. We thank all contributors whose contributions were
invaluable to the development of Codon.

Competing interests. A.S., B.B., S.A., and I.N. are shareholders of
Exaloop, Inc., which oversees the development of Codon.

Availability. Codon source code, binary distributions, as well as
the benchmarking suite is freely available at https://github.com/
exaloop/codon. Full documentation is available at https://docs.exaloop.
io/codon/.

10

https://github.com/exaloop/codon
https://github.com/exaloop/codon
https://docs.exaloop.io/codon/
https://docs.exaloop.io/codon/


Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,
Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[2] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[3] Anaconda. 2018. Numba. https://numba.pydata.org/
[4] Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D.

Matsakis. 2007. RPython: A Step towards Reconciling Dynamically
and Statically Typed OO Languages. In Proceedings of the 2007 Sym-
posium on Dynamic Languages (Montreal, Quebec, Canada) (DLS ’07).
Association for Computing Machinery, New York, NY, USA, 53–64.
https://doi.org/10.1145/1297081.1297091

[5] Anonymous. 2023. Hierarchical Multi-Dimensional Arrays and its
Implementation in the CoLa Domain Specific Language for Block-
Based Data Compression. In Under submission to CGO’23.

[6] John Aycock. 2000. Aggressive Type Inference. In Proceedings of the
8th International Python Conference, Vol. 1050. 18.

[7] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code. In Proceedings of
the 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (Washington, DC, USA) (CGO 2019). IEEE Press, 193–205.

[8] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhedral
Compiler for Expressing Fast and Portable Code. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and Opti-
mization (Washington, DC, USA) (CGO 2019). IEEE Press, Piscataway,
NJ, USA, 193–205. http://dl.acm.org/citation.cfm?id=3314872.3314896

[9] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in
an Uncooperative Environment. Softw. Pract. Exper. 18, 9 (Sept. 1988),
807–820. https://doi.org/10.1002/spe.4380180902

[10] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. 2009. Tracing the Meta-level: PyPy’s Tracing JIT Compiler. In
Proceedings of the 4th Workshop on the Implementation, Compilation,
Optimization of Object-Oriented Languages and Programming Systems
(Genova, Italy) (ICOOOLPS ’09). ACM, New York, NY, USA, 18–25.
https://doi.org/10.1145/1565824.1565827

[11] Ajay Brahmakshatriya and Saman Amarasinghe. 2021. BuildIt: A Type-
Based Multi-stage Programming Framework for Code Generation in
C++. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 39–51. https://doi.org/10.1109/CGO51591.
2021.9370333

[12] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Oder-
sky, and K. Olukotun. 2011. A Heterogeneous Parallel Framework
for Domain-Specific Languages. In 2011 International Conference on

Parallel Architectures and Compilation Techniques. 89–100. https:
//doi.org/10.1109/PACT.2011.15

[13] Tyler A. Cabutto, Sean P. Heeney, Shaun V. Ault, Guifen Mao, and
Jin Wang. 2018. An Overview of the Julia Programming Language.
In Proceedings of the 2018 International Conference on Computing and
Big Data (Charleston, SC, USA) (ICCBD ’18). Association for Comput-
ing Machinery, New York, NY, USA, 87–91. https://doi.org/10.1145/
3277104.3277119

[14] Brett Cannon. 2005. Localized Type Inference of Atomic Types in
Python.

[15] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Anand R. Atreya, and Kunle Olukotun. 2011. A Domain-specific Ap-
proach to Heterogeneous Parallelism. SIGPLAN Not. 46, 8 (Feb. 2011),
35–46. https://doi.org/10.1145/2038037.1941561

[16] Zhifei Chen, Yanhui Li, Bihuan Chen, Wanwangying Ma, Lin Chen,
and Baowen Xu. 2020. An empirical study on dynamic typing related
practices in python systems. In Proceedings of the 28th International
Conference on Program Comprehension. 83–93.

[17] Charisee Chiw, Gordon Kindlmann, John Reppy, Lamont Samuels, and
Nick Seltzer. 2012. Diderot: a parallel DSL for image analysis and
visualization. In Acm sigplan notices, Vol. 47. ACM, 111–120.

[18] Hyunghoon Cho, David J. Wu, and Bonnie Berger. 2018. Secure
genome-wide association analysis using multiparty computation. Na-
ture Biotechnology 36, 6 (01 Jul 2018), 547–551. https://doi.org/10.1038/
nbt.4108

[19] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. 2015.
Secure Multiparty Computation and Secret Sharing. Cambridge Univer-
sity Press. https://doi.org/10.1017/CBO9781107337756

[20] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muşlu,
and Todd W. Schiller. 2011. Building and Using Pluggable Type-
Checkers. In Proceedings of the 33rd International Conference on Soft-
ware Engineering (Waikiki, Honolulu, HI, USA) (ICSE ’11). Associa-
tion for Computing Machinery, New York, NY, USA, 681–690. https:
//doi.org/10.1145/1985793.1985889

[21] Mark Dufour. 2006. Shed skin: An optimizing python-to-c++ compiler.
Master’s thesis. Delft University of Technology.

[22] Torbjörn Ekman and Görel Hedin. 2007. The jastadd extensible java
compiler. In Proceedings of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems, languages and applications.
1–18.

[23] Michael Furr, Jong-hoon An, and Jeffrey S Foster. 2009. Profile-guided
static typing for dynamic scripting languages. In Proceedings of the
24th ACM SIGPLAN conference on Object oriented programming systems
languages and applications. 283–300.

[24] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre
G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
https://doi.org/10.1038/s41586-020-2649-2

[25] K Hayen. 2012. Nuitka. http://nuitka.net
[26] Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,

and Frédo Durand. 2019. Taichi: A Language for High-Performance
Computation on Spatially Sparse Data Structures. ACM Trans. Graph.
38, 6, Article 201 (Nov. 2019), 16 pages. https://doi.org/10.1145/3355089.
3356506

[27] Independent JPEG Group. 2022. JPEG software. https://ijg.org/
[28] Joint Video Team. 2009. JM software (v19.0). http://iphome.hhi.de/

suehring/
[29] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.

Reliable and automatic composition of language extensions to C: the

11

https://www.tensorflow.org/
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://numba.pydata.org/
https://doi.org/10.1145/1297081.1297091
http://dl.acm.org/citation.cfm?id=3314872.3314896
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1145/1565824.1565827
https://doi.org/10.1109/CGO51591.2021.9370333
https://doi.org/10.1109/CGO51591.2021.9370333
https://doi.org/10.1109/PACT.2011.15
https://doi.org/10.1109/PACT.2011.15
https://doi.org/10.1145/3277104.3277119
https://doi.org/10.1145/3277104.3277119
https://doi.org/10.1145/2038037.1941561
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.1038/s41586-020-2649-2
http://nuitka.net
https://doi.org/10.1145/3355089.3356506
https://doi.org/10.1145/3355089.3356506
https://ijg.org/
http://iphome.hhi.de/suehring/
http://iphome.hhi.de/suehring/


CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

ableC extensible language framework. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–29.

[30] Milod Kazerounian, Brianna M. Ren, and Jeffrey S. Foster. 2020. Sound,
Heuristic Type Annotation Inference for Ruby. In Proceedings of the
16th ACM SIGPLAN International Symposium on Dynamic Languages
(Virtual, USA) (DLS 2020). Association for Computing Machinery, New
York, NY, USA, 112–125. https://doi.org/10.1145/3426422.3426985

[31] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party
computation. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 1575–1590.

[32] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and
Saman Amarasinghe. 2017. Taco: A tool to generate tensor algebra
kernels. In Proc. IEEE/ACM Automated Software Engineering. IEEE,
943–948.

[33] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW
Levin, Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M Kauf-
man, Gurtej Kanwar, Wojciech Matusik, et al. 2016. Simit: A language
for physical simulation. ACM Transactions on Graphics (TOG) 35, 2
(2016), 20.

[34] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004. Palo Alto, Cali-
fornia, 75–86. https://doi.org/10.1109/CGO.2004.1281665

[35] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasi-
lache, and Oleksandr Zinenko. 2020. MLIR: A Compiler Infrastructure
for the End of Moore’s Law. arXiv:2002.11054 [cs.PL]

[36] Didier Le Botlan and Didier Rémy. 2014. MLF: raising ML to the power
of System F. ACM SIGPLAN Notices 49, 4S (2014), 52–63.

[37] Jukka Antero Lehtosalo. 2015. Adapting dynamic object-oriented lan-
guages to mixed dynamic and static typing. Ph.D. Dissertation. Univer-
sity of Cambridge.

[38] Roland Leißa, Klaas Boesche, Sebastian Hack, Arsène Pérard-Gayot,
RichardMembarth, Philipp Slusallek, André Müller, and Bertil Schmidt.
2018. AnyDSL: A Partial Evaluation Framework for Programming
High-Performance Libraries. Proc. ACM Program. Lang. 2, OOPSLA,
Article 119 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276489

[39] Heng Li. 2013. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN]

[40] Manas. 2023. Crystal. https://crystal-lang.org/
[41] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008.

Scalable Parallel Programming with CUDA: Is CUDA the Parallel
Programming Model That Application Developers Have Been Waiting
For? Queue 6, 2 (March 2008), 40–53. https://doi.org/10.1145/1365490.
1365500

[42] Gor Nishanov. 2017. ISO/IEC TS 22277:2017. https://www.iso.org/
standard/73008.html

[43] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jeff H. Perkins,
and Michael D. Ernst. 2008. Practical Pluggable Types for Java. In
Proceedings of the 2008 International Symposium on Software Testing
and Analysis (Seattle,WA, USA) (ISSTA ’08). Association for Computing
Machinery, New York, NY, USA, 201–212. https://doi.org/10.1145/
1390630.1390656

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–
8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-
style-high-performance-deep-learning-library.pdf

[45] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
2011. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12 (2011), 2825–2830.

[46] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

[47] Jaak Randmets. 2017. Programming languages for secure multi-party
computation application development. Ph.D. Dissertation. PhD Thesis,
University of Tartu.

[48] BriannaMRen and Jeffrey S Foster. 2016. Just-in-time static type check-
ing for dynamic languages. In Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 462–
476.

[49] Richter, Thomas. 2022. libjpeg. https://github.com/thorfdbg/libjpeg
[50] Michael Salib. 2004. Starkiller: A static type inferencer and compiler for

Python. Ph.D. Dissertation. Massachusetts Institute of Technology.
[51] Berry Schoenmakers. 2018. MPyC—Python package for secure mul-

tiparty computation. InWorkshop on the Theory and Practice of MPC.
https://github. com/lschoe/mpyc.

[52] Ariya Shajii, Ibrahim Numanagić, Riyadh Baghdadi, Bonnie Berger,
and Saman Amarasinghe. 2019. Seq: A High-Performance Language
for Bioinformatics. Proc. ACM Program. Lang. 3, OOPSLA, Article 125
(Oct. 2019), 29 pages. https://doi.org/10.1145/3360551

[53] Ariya Shajii, Ibrahim Numanagić, Alexander T Leighton, Haley
Greenyer, Saman Amarasinghe, and Bonnie Berger. 2021. A Python-
based programming language for high-performance computational
genomics. Nature Biotechnology 39, 9 (2021), 1062–1064. https:
//doi.org/10.1038/s41587-021-00985-6

[54] Jared T. Simpson and Richard Durbin. 2012. Efficient de novo as-
sembly of large genomes using compressed data structures. Genome
Res 22, 3 (Mar 2012), 549–556. https://doi.org/10.1101/gr.126953.111
22156294[pmid].

[55] Haris Smajlović, Ariya Shajii, Bonnie Berger, Hyunghoon Cho, and
Ibrahim Numanagić. 2023. Sequre: a high-performance framework
for secure multiparty computation enables biomedical data sharing.
Genome Biology 24, 1 (2023), 1–18.

[56] Stack Overflow. 2022. Stack Overflow Developer Survey 2022. https:
//survey.stackoverflow.co/2022/

[57] Rust Team. 2013. The MIR. https://rust-lang.org
[58] RajanWalia, Chung chieh Shan, and SamTobin-Hochstadt. 2020. Sham:

A DSL for Fast DSLs. arXiv:2005.09028 [cs.PL]
[59] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P.

Amarasinghe, Jennifer M. Anderson, Steve W. K. Tjiang, Shih-Wei
Liao, Chau-Wen Tseng, Mary W. Hall, Monica S. Lam, and John L.
Hennessy. 1994. SUIF: An Infrastructure for Research on Parallelizing
and Optimizing Compilers. SIGPLAN Not. 29, 12 (Dec. 1994), 31–37.
https://doi.org/10.1145/193209.193217

[60] Matei Zaharia, William J. Bolosky, Kristal Curtis, Armando Fox,
David A. Patterson, Scott Shenker, Ion Stoica, Richard M. Karp, and
Taylor Sittler. 2011. Faster and More Accurate Sequence Align-
ment with SNAP. CoRR abs/1111.5572 (2011). arXiv:1111.5572
http://arxiv.org/abs/1111.5572

[61] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. 2018. GraphIt: A High-
performance Graph DSL. Proc. ACM Program. Lang. 2, OOPSLA, Article
121 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276491

12

https://doi.org/10.1145/3426422.3426985
https://doi.org/10.1109/CGO.2004.1281665
https://arxiv.org/abs/2002.11054
https://doi.org/10.1145/3276489
https://arxiv.org/abs/1303.3997
https://crystal-lang.org/
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://www.iso.org/standard/73008.html
https://www.iso.org/standard/73008.html
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/1390630.1390656
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/thorfdbg/libjpeg
https://doi.org/10.1145/3360551
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1101/gr.126953.111
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
https://rust-lang.org
https://arxiv.org/abs/2005.09028
https://doi.org/10.1145/193209.193217
https://arxiv.org/abs/1111.5572
http://arxiv.org/abs/1111.5572
https://doi.org/10.1145/3276491


Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

Appendix
A A short overview of LTS-DI
The LTS-DI (Localized Type System with Delayed Instantia-
tion) type checking algorithm operates on a localized block
(or list) of statements that, in practice, represents either a
function body or the top-level code. The crux of LTS-DI’s
typing algorithm consists of a loop that continually runs
the type checking procedure on expressions whose types
are still not completely known until either all types become
known or no changes can be made (the latter case implies
a type checking error, often due to a lack of type annota-
tions). Multiple iterations are necessary because types of
later expressions are often dependent on the types of earlier
expressions within a block, due to dynamic instantiation (e.g.
x = []; z = type(x); x.append(1); z()).

Type checking of literals is straightforward, as the type of
a literal is given by the literal itself (e.g. 42 is an int, 3.14
is a float, etc.). Almost all other expressions—binary opera-
tions, member functions, constructors, index operations, and
so on—are transformed into a call expression that invokes a
suitable magic method (e.g. a + b becomes a.__add__(b)).
Each call expression is type checked only if all of its argu-
ments are known in advance and fully realized. Once they
are realized, the algorithm recursively type checks the body
of the function with the given input type argument types
and caches the result for later uses.
Call expression type checking will also attempt to apply

expression transformations if an argument type does not
match the method signature, an example of which is un-
wrapping Optional arguments. Finally, references to other
functions are passed not as realized functions themselves
(as we often cannot know the exact realization at the time
of calling), but instead as temporary named function types
(or partial function types, if needed) that point to the passed
function. This temporary type is considered to be “realized”
in order to satisfy LTS-DI’s requirements.
Below, we provide a semi-formal characterization of the

algorithm and highlight its differences from the standard
Hindley-Milner type checking algorithm.

Notations and definitions
Before proceeding, we will introduce the following notations
and definitions:
• Each function F is defined to be a list of statements
coupled with argument types F arg

1 , . . . , F arg
𝑛 and a re-

turn type F ret.
• Each statement is defined to be a set of expressions
𝑒1, . . . , 𝑒𝑚 . Each expression 𝑒 has a type 𝑒type—the goal
of type checking is to ascertain these types.
• All types are either realized (meaning they are known
definitively) or unrealized (meaning they are partially
or completely unknown). For example, int is a real-
ized type, List[T] is only partially realized as T is a

generic type, and T itself is completely unrealized. Let
Realized(𝑡) denote whether type 𝑡 is fully realized.
• Some expressions are returned from a function and
thus used to infer the function’s return type. Let Retur-
ned(𝑒) denote whether expression 𝑒 is returned.
• Let UnrealizedType() return a new, unrealized type
instance.
• Unification is the process by which two types are
forced to be equivalent. If both types are realized, both
must refer to the same concrete type, or a type check-
ing error will occur. Partially realized types are re-
cursively unified; for example, unifying List[T] and
List[float] results in the generic type T being real-
ized as float. Let Unify(𝑡1, 𝑡2) denote this operation
for types 𝑡1 and 𝑡2.
• Define an expression transformation to be a function
𝜉 : E ↦→ E that converts one expression into another,
where E is the set of expressions. LTS-DI employs a
set of expression transformations X to handle various
aspects of Python’s syntax and semantics, such as what
is described in 21.

The algorithm
The LTS-DI algorithm is primarily based on two subroutines
that recursively call one another. Firstly, LTSDI(F ) (Algo-
rithm 1) takes a function F and assigns realized types to
each expression contained within or reports an error if un-
able to do so. This procedure continually iterates over the
contained expressions, attempting to type check each that
has an unrealized type. If no expression types are modified
during a given iteration, an error is reported. Otherwise, if
all expression types are realized, the procedure terminates.
Secondly, TypeCheck(𝑒) performs type checking for the

individual expression 𝑒 . Since this process predominantly en-
tails type checking call expressions, Algorithm 2 outlines the
algorithm specifically for such expressions. Each argument
is first recursively type checked, after which the types of the
argument expressions are unified with the function’s argu-
ment types. If unification fails, expression transformations
are applied in an effort to reach a successful unification; if
none is encountered, an error is reported. In the end, if all
argument expression types are realized, the function body is
recursively type checked by again invoking LTSDI.

Special cases
Optional values. In Python, all objects are treated as ref-

erences, and there is no formal distinction between optional
and non-optional references. As LTS-DI supports by-value
passing and thus makes a distinction between optional and
non-optional types, it automatically promotes certain types
in a program to Optional as needed in order to accommo-
date Python’s None construct. It also automatically coerces
non-optionals and optionals when needed to maximize the
compatibility with Python.

13



CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

Algorithm 1: Type checking of a function F .
Result: LTSDI(F )

1 F ret ← UnrealizedType();
2 foreach 𝑠 ∈ F do // iterate over statements
3 foreach 𝑒 ∈ 𝑠 do // iterate over

expressions
4 𝑒type ← UnrealizedType();
5 end
6 end

7 T ← {(𝑒, 𝑒type) | 𝑒 ∈ 𝑠,∀𝑠 ∈ F };
8 loop
9 T0 ← T ;

10 foreach 𝑠 ∈ F do // iterate over

statements
11 foreach 𝑒 ∈ 𝑠 do // iterate over

expressions
12 if Realized(𝑒type) then
13 if Returned(𝑒) then
14 Unify(etype, F ret);
15 end
16 else
17 𝑒type ← TypeCheck(𝑒);
18 end
19 end
20 T ← {(𝑒, 𝑒type) | 𝑒 ∈ 𝑠,∀𝑠 ∈ F };
21 if

∧
(𝑒,𝑡 ) ∈T

Realized(𝑡) then

22 return
23 else if T = T0 then// check change in types
24 error // type checking error

25 end

Functions. Codon supports partial function application
and manipulation through Python’s functools.partial
construct or via a new internal ellipsis construct (e.g. f(42,
...) is a partial function application with the first argument
specified). Each partial function is typed as a named tuple of
known arguments, where the names correspond to the orig-
inal function’s names. Unlike in ML-like languages, LTS-DI
allows functions and partial functions to be generic and thus
instantiated multiple times differently. LTS-DI also automat-
ically “partializes” functions that are passed as an argument
or returned as a function value and thus allows passing and
returning generic functions that can be instantiated multi-
ple times (e.g. lambdas). By doing so, the system is able to
support decorators that rely on generic function passing and
returning. This approach also results in a somewhat higher
number of types and instantiations than a Standard ML-like
approach; however, duplicate instantiations are merged later
in the compilation pipeline by an LLVM pass and thereby
have no effect on code size.

Algorithm 2: Type checking of a call-expression 𝑒 =
(F , 𝑎1, . . . , 𝑎𝑛) for called function F and argument
expressions 𝑎1, . . . , 𝑎𝑛 .
Result: TypeCheckcall (𝑒)

1 foreach 𝑎𝑖 ∈ {𝑎1, . . . , 𝑎𝑛} do
2 𝑡 ← TypeCheck(𝑎𝑖 );
3 if ¬Unify(𝑡, F arg

𝑖
) then

4 unified← 0;
5 foreach 𝜉 ∈ X do
6 𝑎′𝑖 ← 𝜉 (𝑎𝑖 );
7 𝑡 ′← TypeCheck(𝑎′𝑖 );
8 if Unify(𝑡 ′, F arg

𝑖
) then

9 unified← 1;
10 break
11 end
12 end
13 if unified = 0 then
14 error
15 end
16 end
17 end

18 if
∧

𝑎∈{𝑎1,...,𝑎𝑛 }
Realized(𝑎type) then

19 LTSDI(F );
20 return F ret

21 end

Finally, we note that Codon allows users to overload meth-
ods either through using static expression and isinstance
checks (as commonly done in Python) or through overloaded
methods with @overload decorator (syntactic sugar for man-
ual isinstance conditionals).

Miscellaneous considerations. In order to match the be-
haviour of Python, Codon processes import statements at
runtime. This is done by wrapping each import in a function
that is called only once by the first statement that reaches
it. Codon’s LTS-DI also unwraps iterables when needed and
casts int to float when needed.

Codon also supports Python interoperability and can han-
dle objects managed by the Python runtime via its pyobj
interface. Such objects are automatically wrapped and un-
wrapped by LTS-DI, depending on the circumstances, in
a similar fashion to Optional[T]. As a result, all existing
Python modules and libraries (NumPy, SciPy, etc.) can be
used within Codon.

14



Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

B Additional Benchmarks
Microbenchmarks
pyperformance benchmarks were done on an arm64 (Apple
M1 Max) machine with 64 GB of RAM running macOS 12.5.1,
and on x86-64 (64-core Intel Xeon Gold 5218) machine with
754 GB of RAM running CentOS 7. We ran CPython 3.10.8,
3.8.2, PyPy 7.3.9, Clang 13.0.1 and Codon 0.15.

The following table contains the runtimes pyperformance
microbenchmarks on arm64/macOS. The same trends were
observed in Linux/x86-64 environment as well.

macOS Python PyPy C++ Codon
sum 2.54 0.11 0.00 0.00
float 10.76 2.02 - 0.33
go 16.43 4.73 - 0.62
nbody 4.29 0.35 0.15 0.15
chaos 13.78 1.04 - 0.64
spectral_norm 39.49 0.58 - 0.23
set_partition 48.50 22.75 25.73 12.17
primes 12.86 0.72 - 0.50
binary_trees 437.90 7.89 9.22 3.62
fannkuch 349.34 32.50 - 12.00
word_count 4.36 5.74 3.64 1.58
taq 56.34 56.04 12.14 4.37

Table 1. pyperformance benchmark runtime (in seconds)
on four different implementations in arm64/macOS environ-
ment. sum benchmark was completely inlined by Codon and
C++; therefore the runtime was instantaneous.

Note that we were able to trivially add OpenMP paral-
lelism to Codon implementations of primes and fannkuch
benchmarks, resulting in 12× and 4× runtime improvements,
respectively.

Seq benchmarks

macOS Time (m:s) Mem. (GB) Seq imprv.
BWA (C) 1:19 0.4∗ 2.3×
Rust-Bio (Rust) 4:17 61.1 7.6×
SeqAn (C++) 4:53 2.6 8.6×
Seq 50 7.3 1.5×
Seq (prefetch) 34 7.3 —

Table 2. Performance in SMEM finding from using the Seq
language and compiler on a macOS system. The Seq version
achieves nearly a 2× speed improvement over BWA MEM,
and roughly a 6–9× improvement over high-performance ge-
nomics libraries Rust-Bio and SeqAn. The reported timings
represent the time needed for each tool to find SMEMs in a
set of FASTQ reads. Seq, Rust and SeqAn FM-index imple-
mentations are not compressed, and as such use more RAM
than BWA’s compressed implementation (marked with ∗).
See [53] for more details.

Seq C++ C++ Seq Speedup
w/o prefetch Clang GCC with prefetch

SNAP 328.1 450.5 327.5 211.9 1.5–2.1×
SGA 453.0 569.3 610.1 409.6 1.4–1.5×

Table 3. Seq runtime compared to C++ as compiled with
Clang and GCC (seconds) when querying large genomic in-
dices generated by SNAP [60] and SGA [54]. The difference
between the without-prefetch and with-prefetch Seq pro-
grams is just a single prefetch statement. See [52] for more
details.

15



CC ’23, February 25–26, 2023, Montréal, QC, Canada A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe, I. Numanagić

C Additional Figures

class Builder : public TypeBuilder {
llvm::Type *buildType(LLVMVisitor *v) {
return v->getBuilder()->getFloatTy();

}

llvm::DIType *buildDebugType(LLVMVisitor *v) {
auto *module = v->getModule();
auto &layout = module->getDataLayout();
auto &db = v->getDebugInfo();
auto *t = buildType(v);
return db.builder->createBasicType(

"float_32",
layout.getTypeAllocSizeInBits(t),
llvm::dwarf::DW_ATE_float);

}
};

class Float32 : public CustomType {
unique_ptr<TypeBuilder> getBuilder() const {
return make_unique<Builder>();

}
};

Figure 9. 32-bit float CustomType

LLVM
equivalent Examples

Node N/A See below

Module Module N/A

Type Type
IntType,
FuncType,
RecordType

Var AllocaInst Var, Func

Func Function
BodiedFunc,
LLVMFunc,

ExternalFunc

Value Value See below

Const Constant
IntConst,
FloatConst,
StringConst

Instr Instruction
CallInstr,

TernaryInstr,
ThrowInstr

Flow Various
IfFlow,

WhileFlow,
ForFlow

Table 4. CIR structure

for y in range(pred.dims[0]):
pred[y,:] = ref[pred](y,-1)

int pos_x = pix_a.pos_x;
int pos_y = pix_a.pos_y;
for (i=0; i<cr_MB_y; i++)

vline[i] = ref[pos_y++][pos_x];
for (j=0; j<cr_MB_y; j++) {

int predictor = vline[j];
for (i = 0; i < cr_MB_x; i++)

pred[j][i] = (imgpel) predictor;
}

Figure 10. (Left) CoLa code (top) and C code (bottom) for
horizontal prediction. (Right) A visualization of the data
accessed in the reference region for the computation.

class PrefetchFunctionTransformer : public Operator {
// return x --> yield x
void handle(ReturnInstr *x) override {

auto *M = x->getModule();
x->replaceAll(

M->Nr<YieldInstr>(x->getValue(), /*final=*/true));
}

// idx[key] --> idx.__prefetch__(key); yield; idx[key]
void handle(CallInstr *x) override {

auto *func =
cast<BodiedFunc>(util::getFunc(x->getCallee()));

if (!func ||
func->getUnmangledName() != "__getitem__" ||
x->numArgs() != 2) return;

auto *M = x->getModule();
Value *self = x->front(), *key = x->back();
types::Type *selfType = self->getType();
types::Type *keyType = key->getType();
Func *prefetchFunc = M->getOrRealizeMethod(

selfType, "__prefetch__", {selfType, keyType});
if (!prefetchFunc) return;

Value *prefetch = util::call(prefetchFunc, {self, key});
auto *yield = M->Nr<YieldInstr>();
auto *replacement = util::series(prefetch, yield);

util::CloneVisitor cv(M);
auto *clone = cv.clone(x);
see(clone); // don't visit clone
x->replaceAll(M->Nr<FlowInstr>(replacement, clone));

}
};

@inline
def _dynamic_coroutine_scheduler[A,B,T,C](

value: A, coro: B, states: Array[Generator[T]],
I: Ptr[int], N: Ptr[int], M: int, args: C):
n = N[0]
if n < M:

states[n] = coro(value, *args)
N[0] = n + 1

else:
i = I[0]
while True:

g = states[i]
if g.done():

if not isinstance(T, void):
yield g.next()

g.destroy()
states[i] = coro(value, *args)
break

i = (i + 1) & (M - 1)
I[0] = i

Figure 11. (Top) Function-to-coroutine transformer for
Codon IR. This transformation is utilized by several of Seq’s
pipeline optimizations for bioinformatics and genomics ap-
plications. (Bottom) Coroutine scheduler for Seq’s prefetch
optimization. A pipeline stage marked with @prefetch is
converted to a coroutine by the pass in Figure 7, and this
scheduler is used to manage multiple instances of this corou-
tine, overlapping cache miss latency from one with useful
work from another. The scheduler state is passed as pointers
(Ptr[int]) and modified by the scheduler, which itself gets
inserted in the pipeline. Codon IR’s bidirectionality is used
to instantiate the scheduler with concrete argument types
when applying the prefetch optimization.

16



Codon: A Compiler for High-Performance Pythonic Applications and DSLs CC ’23, February 25–26, 2023, Montréal, QC, Canada

D Codon Extension API
New Python-like DSLs can be authored by creating a Codon
DSL plugin and putting it into the Codon search path. A DSL
plugin consists of:
• plugin-specific Codon code (which is treated akin to a
Python library package), and
• A set of syntactic extensions and compiler passes in
C++.

Codon C++ API can be used by including codon/codon.h.
All API primitives are located within codon namespace.

Every Codon plugin derives from a codon::DSL class that
provides several virtual methods for providing general plugin
info, registering Codon IR and LLVM IR passes, and adding
new keywords.

Defining new keywords
A Codon DSL can “extend” a Python syntax by adding a new
“soft” keyword that can:

1. redefine a simple expression, or
2. redefine a code block.

In Python grammar notation,5 a keyword kwd defines the
following grammar blocks that are processed if and only if
all other parses fail:
custom_simple_stmt:
| 'kwd' expression
custom_block_stmt:
| 'kwd' expression? ':' block

Such keywords can be registered through overriding getExpr
Keywords or getBlockKeywords methods of codon::DSL
class that return a C++ vector of plug-in specific keywords
together with the associated transformation functions that
transform the keyword into a valid Codon statement that
can be typechecked6.

Adding transformation passes
New Codon IR passes can be made by implementing codon::
ir::transform::Pass interface that provides stubs to be
called upon encountering the specific CIR nodes that all in-
herit from common CIR classes (see Figure 12) to provide
a recipe for their manipulation and transformation into a
different set of CIR nodes. Such passes need to be registered
with the compiler by overriding addIRPasses method of
codon::DSL class. Note that a pass can load and process
new Codon code from a given module, and can instanti-
ate new types and functions through getOrRealizeFunc,
getOrRealizeMethod and getOrRealizeType methods in
codon::ir::Module class. Each of these methods will in-
voke the typechecker when needed to ensure the soundness
of new instantiations.
5https://docs.python.org/3/reference/grammar.html
6While there is no API for extending the typechecker at the moment of
writing this manual, we plan to address this issue in the future.

Node

Module Value

Const Instr Flow

Type Var

Func

Figure 12. CIR hierarchy

Similarly, an LLVMpass can be added by defining it through
the LLVM API infrastructure and registered by overriding
addLLVMPasses method of codon::DSL class.

class AddFolder : public OperatorPass {
void handle(CallInstr *v) {

auto *f = util::getFunc(v->getCallee());
if (!f || f->getUnmangledName() != "__add__") return;
auto *lhs = cast<IntConst>(v->front());
auto *rhs = cast<IntConst>(v->back());
if (lhs && rhs) {
auto sum = lhs->getVal() + rhs->getVal();
v->replaceAll(v->getModule()->getInt(sum));

}
}

};

Figure 13. Simple integer addition constant folder pass in
Codon IR. This pass recognizes expressions of the form <int>
+ <int> (where <int> is a constant integer) and replaces
them with the correct sum.

More details on how to write a CIR pass and how to uti-
lize CIR API efficiently, together with working examples, is
available at https://docs.exaloop.io/codon/advanced/ir.

Received 2022-11-10; accepted 2022-12-19

17

https://docs.python.org/3/reference/grammar.html
https://docs.exaloop.io/codon/advanced/ir

	Abstract
	1 Introduction
	2 Type Checking and Inference
	3 Intermediate Representation
	3.1 High-Level Design
	3.2 Operators
	3.3 Bidirectional IRs
	3.4 Passes and Transformations
	3.5 Code Generation and Execution
	3.6 Extensibility

	4 Applications
	4.1 Microbenchmark Performance
	4.2 OpenMP: task- and loop-parallelism
	4.3 Seq: a DSL for Bioinformatics
	4.4 Sequre: a DSL for Multi-Party Computation
	4.5 CoLa: a DSL for Block-Based Compression

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A A short overview of LTS-DI
	B Additional Benchmarks
	C Additional Figures
	D Codon Extension API

