
Implementing BREeze - a High-Performance
Regular Expression Library Using Code Generation

with BuildIt

by

Tamara Mitrovska

B.S., Computer Science and Engineering, Massachusetts Institute of
Technology (2022)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

© 2023 Tamara Mitrovska. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable,
royalty-free license to exercise any and all rights under copyright, including to

reproduce, preserve, distribute and publicly display copies of the thesis, or release
the thesis under an open-access license.

Authored by: Tamara Mitrovska
Department of Electrical Engineering and Computer Science
May 12, 2023

Certified by: Saman Amarasinghe
Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Implementing BREeze - a High-Performance Regular

Expression Library Using Code Generation with BuildIt

by

Tamara Mitrovska

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 2023, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Regular expression matching is a very common problem in software engineering, with
applications in text processing, text searching, data scraping, syntax highlighting,
deep packet inspection in networks, etc. Due to the varying complexity of regular
expressions, having one general approach to match all types of expressions is usually
not enough to get the needed performance for software applications. Many modern
regular expression engines have tried to solve this problem by combining different al-
gorithms and optimization techniques, which in most cases result in very complicated
and large codebases. As a result, we introduce BREeze, a fully functional regular
expression library implemented in just around 1500 lines of code with comparable
performance to the modern regular expression engines. BREeze is implemented on
top of BuildIt, a multi-stage code generation framework that makes it possible to gen-
erate high-performance, specialized code while keeping the implementation simple.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

3

4

Acknowledgments

I would like to express my gratitude to professor Saman Amarasinghe for accepting

me in his research group and offering invaluable support and guidance throughout

this project. I would also like to thank Ajay Brahmakshatriya, a Ph.D. student

and author of BuildIt, for the numerous meetings and his continuous advice and

suggestions that kept me motivated and helped me improve various aspects of this

project. I further extend my appreciation to Alice Chen, a UROP student who helped

with the implementation of important parts of BREeze.

Additionally, I would like to thank all my mentors and advisors throughout my

time at MIT who have helped me attain the knowledge and skills required to tackle

this project.

Finally, I express immense gratitude to my friends and family whose love and

support mean the world to me. I am deeply grateful for all of their encouragement

that kept me going throughout my time at MIT and shaped me into the person that

I am today.

5

6

Contents

1 Introduction 13

1.1 Regular expressions as finite automata 13

1.2 Code specialization . 15

1.3 BuildIt . 15

1.4 Contribution . 17

2 Related Work 19

2.1 PCRE2 . 19

2.2 RE2 . 20

2.3 Hyperscan . 20

3 Introducing BREeze 23

3.1 Syntax . 23

3.2 API . 25

3.2.1 Full match . 26

3.2.2 A single partial match . 27

3.2.3 All partial matches . 27

4 Implementation 29

4.1 Regex parser . 30

4.2 State transition table . 30

4.3 Matching algorithm and code generation 32

4.4 Code specialization for full and partial match 34

7

5 Scheduling options 37

5.1 Splitting the regex . 39

5.2 Matching multiple characters at once 40

5.3 Dynamic grouping . 41

5.4 Interleaving . 42

5.5 Splitting the string . 42

6 Evaluation 45

6.1 Implementation complexity . 45

6.2 Performance . 46

6.2.1 Benchmarks . 46

6.2.2 General schedules . 47

6.2.3 Tuned schedules . 51

7 Conclusion 53

7.1 Summary . 53

7.2 Future work . 53

A Implementation details 57

B Generated Code Examples 61

8

List of Figures

1-1 Regular expressions as FA. 14

1-2 First-stage code for computing the power of a number. The exponent

is static and the base is dynamic. 16

1-3 Generated code for the power function from figure 1-2 after supplying

15 as the static exponent argument. The code raises base to the power

of 15. 16

3-1 Example code for using the match function. 26

4-1 Pseudocode describing the basic matching algorithm. 33

4-2 Example of generating and compiling code with BuildIt. 34

5-1 Example code how to specify some of the scheduling options using the

match function from section 3.2. All three approaches result in a match

i.e. res = 1 as expected. 38

A-1 Parts of the code used for state transition generation. 58

A-2 Parts of the code for the dyn_match function. 59

B-1 Full match code for ab*. 62

B-2 Partial match code for ab*. 63

B-3 Partial match code for abcd using the join schedule as jjjj. 64

B-4 First pass code for finding the first longest match for a*b. 65

B-5 Second pass code for finding the first longest match for a*b. 66

9

10

List of Tables

3.1 Supported expressions and operators. 24

3.2 Special character classes. 24

3.3 Fields of the RegexOptions struct. 25

4.1 The next_states array for the regex a(bc)*d. Note that the next

character index for c is 5 because we skip over). 31

4.2 The state transition table for the regex a(bc)*d. ^ denotes the start

of the regex and $ the end. Each row marks the states that we can

transition to from the current state. For example, having just matched

a we can either match b or d. (,), * are not valid states, so their rows

do not have any active transitions. 31

4.3 Fields of the Schedule struct. 35

4.4 Specifies each type of match in terms of the relevant Schedule options.

Finding a full match and a lazy partial match need only one pass.

Finding the first longest partial match needs a two-pass approach. . . 36

5.1 Times taken to compile (Tom.{10,15}river|river.{10,15}Tom) when

using different scheduling options. In the absence of scheduling, we

were not able to compile the regex in any reasonable amount of time. 38

6.1 Number of lines of source code used for implementation of each of the

libraries. The count excludes the code used for testing and benchmarking. 45

6.2 Example regular expressions from teakettle_2500. 46

6.3 Example regular expressions from snort_literals. 47

11

6.4 Serial running times for finding a single partial match. The times

are given in milliseconds. Each time is a total of matching all the 50

(teakettle) and 20 (snort) expressions. 48

6.5 Compilation times for the serial experiments from table 6.4. The times

are given in milliseconds. 49

6.6 The running times when we search for a partial match in parallel using

the interleaving schedule option. The times are in milliseconds. 50

6.7 The running times when we search for a partial match in parallel using

the block option. The times are in milliseconds. 50

6.8 Running times in milliseconds for the Twain dataset. 51

12

Chapter 1

Introduction

Regular expression (regex) matching is a very old problem with ubiquitous appli-

cations in software engineering. Due to the wide range of regular expressions, one

general implementation approach does not always yield the best performance for

matching all types of patterns. For example, regex libraries implemented with simple

backtracking do not perform well for expressions with high ambiguity [10]. As a re-

sult, there have been numerous techniques throughout the years attempting to solve

the problem in both time and space efficient manner ([17], [6], [18]). Most of these

approaches build upon the same underlying principle that regular expressions can be

represented as finite automata (FA).

1.1 Regular expressions as finite automata

There are two different types of FA: deterministic (DFA) and nondeterministic (NFA).

In DFA there is at most one possible transition from each state. For example, we can

represent the regex abc as a DFA because starting from any character, there is only

one possible character that we can transition to. Matching an input string against

a DFA takes linear time in the length of the string because we can simultaneously

walk through each input string character and the corresponding state in the DFA

(this process is called DFA simulation). However, DFA simulation does not work for

nondeterministic regular expressions like ab*c where we can have multiple possible

13

(a) DFA example: abc (b) NFA example: ab*c

Figure 1-1: Regular expressions as FA.

transitions from a single state. In this case, we have to represent the regex as an

NFA.

The most common way to match an input string against an NFA is backtracking

implemented with depth-first search (DFS), which can have a worst-case exponential

runtime in the length of the input string. Consider matching the string abccc with

.*b.*. The first .* part of the regex will consume the entire string, so when we try

to match b next, we will need to backtrack from the end of the input string all the

way to index 1 (where b is). In the case of a much longer input string, this approach

can result in an exponential blowup which is also known as catastrophic backtracking

[10]. Despite the time inefficiency, backtracking is very easy to implement which is

why it is commonly being used in the regex matchers of programming languages like

Python and Java [10].

More sophisticated regex matchers try to combine the advantages of the NFA

and DFA approaches by doing on-the-fly NFA to DFA conversion (also known as

Thompson’s algorithm or Thompson’s NFA simulation [14]). This approach finds

all the states that can be reached from the current NFA state and merges them

into a single DFA state. This has two main advantages. First, we no longer need

to store the entire NFA or DFA, it is enough to store only the current subset of

reachable states which improves memory efficiency. Second, we can now process

the regex in a breadth-first search (BFS) manner as opposed to depth-first search

used in backtracking. Using BFS helps avoid catastrophic backtracking because after

matching each character in the input string, we now consider all the possible states

we can go to before getting any deeper into the search. In chapter 4 we explain how

we adapt this approach for our implementation.

14

1.2 Code specialization

Thompson’s algorithm is not always enough to achieve the regex-matching perfor-

mance required by some software applications. The best-performing regex matchers

try to improve performance by applying tricks like splitting the regex into determin-

istic and non-deterministic parts, using bit masks to represent the states ([17], [9]),

etc. which often result in very long and complicated source code which is hard to

understand and maintain. Despite that, due to the variety of regular expressions

and their complexity, tailoring the implementation to the specific regular expression

helps a lot in terms of performance. For example, one such optimization in RE2

[9] is for patterns where every possible match starts with the same character, as in

(dragon|dog). When looking for this pattern in a long text, the matching would

normally have to be run starting from each character in the text. However, in this

specific case, to avoid unnecessary looping over the text, RE2 uses memchr first to

find an occurrence of the first character of the match (in this example d), and then

runs the normal matching procedure from there [9].

1.3 BuildIt

To simplify the implementation while still being able to obtain specialized code, we

are using BuildIt [7] - a type-based multi-stage code generation framework available

as a C++ library. BuildIt allows for easy implementation of libraries and domain-

specific languages (DSLs) because it does not require any compiler modifications

which domain experts are not usually very familiar with. BuildIt is type-based which

means that the code staging is controlled by 2 types of variables: static and dynamic.

For example, a two-stage approach to generating code would look as follows: we

declare all the variables that we want to be evaluated in the first stage as static, and

all the variables that we want to appear in the generated code for the second stage

as dynamic. Figure 1-2 shows an example of staging a simple function taken from [7]

and figure 1-3 shows an example of the corresponding generated code.

15

1 dyn_var <int > power(dyn_var <int > base , static_var <int > exponent) {
2 dyn_var <int > res = 1, x = base;
3 while (exponent > 1) {
4 if (exponent % 2 == 1)
5 res = res * x;
6 x = x * x;
7 exponent = exponent / 2;
8 }
9 return res * x;

10 }

Figure 1-2: First-stage code for computing the power of a number. The exponent is
static and the base is dynamic.

1 int power_15 (int base) {
2 int res = 1;
3 int x = base;
4 res = res * x;
5 x = x * x;
6 res = res * x;
7 x = x * x;
8 res = res * x;
9 x = x * x;

10 int var3 = res * x;
11 return var3;
12 }

Figure 1-3: Generated code for the power function from figure 1-2 after supplying 15
as the static exponent argument. The code raises base to the power of 15.

BuildIt generates code by repeatedly executing the first-stage code and following

each control flow path to construct the AST of the program to be generated. There-

fore, the main idea is that by declaring a regular expression as static, we are able

to generate specialized code for it using BuildIt. Apart from specifying variables as

static or dynamic, BuildIt does not require any other syntax changes compared to a

normal C++ program which keeps the implementation very simple. This makes it

very easy to add new optimizations with very minimal changes to the source code, as

we will see in chapter 5.

16

1.4 Contribution

This work has two main contributions. First, we manage to keep our implementa-

tion very short and simple compared to the existing regex libraries while achieving

comparable and in some cases even better performance. We achieve this by imple-

menting a variation of Thompson’s algorithm described in section 1.1 and staging it

with BuildIt. BuildIt keeps the source code simple, and at the same time generates

highly specialized code specific to a given regular expression which leads to good

performance.

Second, we allow the user to control the code generation process by providing

special scheduling options which are not available in standard regex libraries. This is

again possible due to BuildIt because it lets us generate significantly different code

with very minimal changes to the implementation. These changes usually include

adding extra static flags or converting static variables to dynamic ones and vice

versa. The scheduling options that we provide can be combined to generate many

different schedules that the user can pick from to optimize the matching performance

of a given regular expression.

The rest of this paper is organized as follows. In chapter 2 we give an overview

of three modern regular expression libraries relevant to our implementation and per-

formance analysis. In chapter 3 we introduce the syntax and API of BREeze. In

chapter 4 we explain the implementation in detail and in chapter 5 we go over the

supported scheduling options. Finally, in chapter 6 we present our implementation

and performance analysis and in chapter 7 we summarize our work and talk about

limitations and future steps.

17

18

Chapter 2

Related Work

This section gives a brief overview of three popular regular expression libraries that we

compare our implementation and performance to. PCRE2 [12] is an updated version

of PCRE - a general and widely used regular expression library. We also take a look

at Hyperscan [17] and RE2 [9] which are more specialized and performance-oriented

than PCRE2.

2.1 PCRE2

PCRE2 is the latest version of the Perl Compatible Regular Expressions (PCRE)

library implemented in C. It is one of the most popular regex libraries and the basis

of the regex features included in the matchers of many languages like PHP, R, and

Delphi [11]. It supports two different matching algorithms. The standard algorithm is

an NFA algorithm that performs backtracking with DFS. The alternative algorithm

is considered a DFA algorithm - it keeps track of multiple active states at a time

and performs BFS to find a match on the input string. Some features like choosing

between greedy and lazy matching that are present in the standard algorithm are

not relevant for the alternative algorithm [12]. To match a regular expression with

PCRE2, it first needs to be compiled into a binary version which is passed to one of

the matching functions to match against a string. Our library supports only a subset

of the features available in PCRE2. Since PCRE2 is widely used, we follow its syntax

19

conventions very closely in our implementation. Section 3.1 and specifically table

3.1 give an overview of the regular expression syntax that we support. The PCRE2

implementation has around 130K lines of code. In chapter 6 we show that BREeze

performs consistently better than PCRE2. With just around 1500 lines of code, we

can obtain up to 5× speedup compared to PCRE2 when using unoptimized schedules

and on average 20× speedup with tuned schedules.

2.2 RE2

RE2 [9] is a regex library developed in C++ by Google. It was implemented for

production use, therefore its main goal is to be able to handle regular expressions

from different types of users by limiting the amount of memory used, to avoid prob-

lems like stack overflowing [4]. It implements an optimized version of Thompson’s

algorithm that includes caching of already-seen DFA states. RE2 guarantees linear

time execution in the length of the matching string. It first parses and simplifies the

regex into a more optimal version and then compiles it into an NFA. The compiled

object is then used to match an input string [9]. To prioritize efficiency, RE2 does not

implement some of the features available in PCRE2 like backreferences. RE2’s source

code has around 26K lines of code [4]. Our library shares a lot of similarities with

RE2 in terms of syntax because it is also based on PCRE. As we will see in chapter

6, we obtain a similar performance to RE2. With untuned schedules BREeze is at

worst 1.6× slower than RE2; however, with tuned schedules, it is on average around

1.85× faster than RE2.

2.3 Hyperscan

Hyperscan [17] is a high-performance regular expression library developed by Intel. It

is primarily optimized for use in deep packet inspection (DPI). Unlike other regular

expression libraries, it is highly optimized for multi-pattern matching and streaming.

Hyperscan performs graph decomposition on the regex to split it into literal strings

20

and finite automata components. For the literal strings, it supports multi-string

shift-or matching which exploits SIMD operations for parallel matching. To match

the FA components Hyperscan uses a bit-based NFA matching algorithm (similar to

Thompson’s algorithm) which also leverages SIMD operations [17]. These techniques

result in a high-performance regex matcher; however, the source code (written in C

and C++) contains around 187K lines of code which is very hard to understand [1].

Using a much simpler and more concise implementation, we were still able to support

some of its features through our scheduling options, like splitting the string into

blocks and parallel matching. As we will see in chapter 6, Hyperscan, in general, has

the best performance among BREeze and the libraries presented above. On average

BREeze is around 7× slower when using serial schedules. However, we will show

that parallelizing our code significantly improves our performance and achieves up to

1.75× speedup compared to the serial Hyperscan running times.

21

22

Chapter 3

Introducing BREeze

In this section, we summarize the syntax and API of BREeze 1 and highlight the

main differences from PCRE2 and RE2. Hyperscan’s API has significant differences

compared to other standard regex libraries and therefore we do not follow most of its

conventions.

BREeze is primarily intended for matching against ASCII-encoded strings. How-

ever, we also support regular expressions with hexadecimal characters which can be

used to match characters outside of the ASCII range based on their code.

3.1 Syntax

BREeze closely follows the PCRE2 and RE2 syntax. It supports a subset of their

operators and expressions shown in table 3.1. BREeze supports all the basic features

such as repetition, alternation, and character classes. Characters that have special

meaning in the syntax like * are preceded by a backslash to be matched as literals.

When a normal alphabetic character is preceded by a backslash it represents a special

character class as described in table 3.2.

Our matching is non-greedy (also called lazy) by default, which means that we

return the first found match based on our algorithm which is not necessarily the

1The first part of the name BREeze stands for BuildIt Regular Expressions (BRE). The rest of
the name was chosen to hint towards the simple and easy implementation.

23

Expression Description
. any character except newline
x? zero or one x
x+ one or more x
x* zero or more x
(x|y) x or y
[xyz] character class
[^xyz] negated character class
[a-z] character range
[^a-z] negated character range
x{n} x repeated n times
x{n,} x repeated n or more times
x{n,m} x repeated between n and m times inclusive
\d,\w,\s,\D,\W,\S special character classes

Table 3.1: Supported expressions and operators.

Expression Character class
\d [0-9]
\D [^0-9]
\w [a-zA-Z0-9_]
\W [^a-zA-Z0-9_]
\s a single space
\S anything except a single space

Table 3.2: Special character classes.

longest match. Greedy matching on the other hand reports the longest found match.

For example, a lazy match of ab* in abbc is a and a greedy one is abb. We support

greedy matching as well, but it needs to be turned on with a special flag as described

in section 4 where we go more into detail about why we choose to default to lazy

matching. In contrast, PCRE2 and RE2 return greedy matches by default and provide

extra notation to represent lazy matching. For example, ab*c is matched greedily

with PCRE2 and RE2, and lazily with BREeze. Lazy matching in PCRE2 and RE2

can be turned on by adding a question mark after the repetition operator like ab*?c.

Another difference between our implementation and the above-mentioned libraries

is in alternation. In case of multiple matches, PCRE2 and RE2 have a preference

over the available options. For example, when matching (abc|def) they prefer the

leftmost option abc over def. As a special design choice, BREeze reports the first

24

found match disregarding the alternation ordering.

Any other features present in PCRE2 like backreferences, lookahead assertions,

named groups, etc. are not currently supported in BREeze. This however does not

impede the usability of our library since we are still able to express a wide range of

regular expressions as we will see in chapter 6. Most of these features like backref-

erences and lookahead assertions are not present in RE2 either. Moreover, from our

experience implementing BREeze, these features could very easily be added in the

future.

Option Description
ignore_case when true, caseless matching is turned on (default: false)
dotall when true, . matches newline as well (default: false)
greedy when true, greedy matching is turned on (default: false)
block_size when set to a positive integer the string is split into that many

blocks which are matched in parallel (default: -1)
interleaving_parts matching stride for partial matches, distinct parts can be

matched in parallel (default: 1)
flags a string of the same length as the regex; splitting and grouping

scheduling options are specified by marking specific positions
with special characters like s or g

Table 3.3: Fields of the RegexOptions struct.

A full list of flags that are currently supported is given in table 3.3. The dotall,

ignore_case and greedy flags have their equivalent or similar flags in PCRE2, RE2

and Hyperscan. The rest of the flags are specific to our library and are used to control

the scheduling options described in section 5.

3.2 API

BREeze takes a two-step approach towards regex matching: it first compiles the

regex into a function object and then runs the compiled function to find a match. For

convenience, we provide a single match function that performs both of these steps.

However, we also provide helper functions for running the compilation and matching

steps separately. The match function takes the following arguments:

25

1 string regex = "(ab|cd)(12)*";
2 string text = "23 cd12123";
3

4 RegexOptions default_options;
5 int partial = match(regex , text , default_options , MatchType ::

PARTIAL_SINGLE); // returns 1
6 int full = match(regex , text , default_options , MatchType ::FULL); //

returns 0
7

8 int res = 0;
9 RegexOptions opt;

10 opt.greedy = false;
11 string word;
12 res = match(regex , text , opt , MatchType :: PARTIAL_SINGLE , &word);
13 cout << "Lazy match: " << word << endl; // prints "cd"
14

15 opt.greedy = true;
16 string longest;
17 res = match(regex , text , opt , MatchType :: PARTIAL_SINGLE , &longest);
18 cout << "Greedy match: " << longest << endl; // prints "cd1212"

Figure 3-1: Example code for using the match function.

• string regex - a regular expression

• string str - the string in which to look for matches

• RegexOptions options - the available flags to be set by the user provided in

table 3.3; they can be used to turn on the scheduling options given in section 5

• MatchType match_type - an enum type to choose between full and partial

match; it has 2 available options: FULL and PARTIAL_SINGLE

• string* submatch - a pointer to a string that will hold the found match; this

is an optional parameter and it is set to nullptr by default

The function returns an integer 1 or 0 corresponding to match or no match re-

spectively.

3.2.1 Full match

The full match option can be specified by passing MatchType::FULL to the match

function. It checks whether the regular expression exactly matches the input string.

26

It is equivalent to the RE2 FullMatch function.

3.2.2 A single partial match

This option can be activated by passing MatchType::PARTIAL_SINGLE. If a submatch

string pointer is not passed, it returns 1 as soon as it finds any partial match and 0

otherwise. If submatch is passed by the user and the greedy option is false, it fills

submatch with the first found match which is often the same as the first shortest

match. If greedy is true, it finds the first longest match. This option is equivalent

to the PartialMatch function in RE2.

3.2.3 All partial matches

We provide a get_all_partial_matches function which takes in a regex, a string,

and a RegexOptions object and returns a vector of non-overlapping partial matches.

This function works the same as repeatedly calling the match function with the

PARTIAL_SINGLE option and advancing the start of the string pointer after the end

of each found match to find the next one. This option gives the same results as

repeatedly calling the FindAndConsume function in RE2.

27

28

Chapter 4

Implementation

The following steps take place when a user calls the match function from section 3.2:

1. The RegexOptions and MatchType are transformed into a Schedule struct

whose options are summarized in table 4.3.

2. The regex is parsed (section 4.1).

3. The parsed regex is used to generate a state transition table (section 4.2).

4. The schedule options, parsed regex, and state transition table are passed to a

BuildIt function to generate specialized code (section 4.3).

5. The generated code is compiled and loaded and a pointer is returned to the

matching function.

For the rest of our discussion, we consider all of the steps above as part of the

regex compilation process. After they are completed, the compiled matching code is

run to find a match. The following sections go over each one of these steps in detail.

BREeze is implemented in C++ 1. The generated code is in C.

1The implementation is available as a public GitHub repository as part of the BuildIt-lang orga-
nization at https://github.com/BuildIt-lang/buildit_regex.

29

https://github.com/BuildIt-lang/buildit_regex

4.1 Regex parser

The first step is parsing the user-provided regular expression into a meaningful rep-

resentation to be consumed by the matching algorithm. The parser has multiple

roles.

First, it simplifies some of the operators using other operators. Specifically, match-

ing one or more characters like x+ is transformed into xx*, and bounded repetition

like x{2,5} is changed into xx(x(x(x?)?)?. Therefore, the matching algorithm does

not require special handling of + or bounded repetition; it instead reuses the logic for

simpler operators like * and ? which simplifies the implementation.

Second, the parser extracts metadata about the regex which is used to simplify and

optimize the matching process. It produces arrays that keep track of corresponding

opening and closing brackets and the locations of | characters inside the regex. This

information allows us to easily jump back and forth between states when generating

the state transition table.

Third, in case of any invalid characters or malformed regular expressions, the

parser prevents further compilation and matching and outputs the reason for termi-

nation.

4.2 State transition table

After parsing the regular expression, the next step is generating the state transition

table. This is one of the most important steps in the compilation process because

code generation is completely controlled by the state transitions. It is important to

note that the states that we talk about here and for the rest of this paper are slightly

different from the finite automata states that we saw in the introduction. We use

the following notion of states. Each normal character in a regular expression has a

corresponding state. In addition to that, each expression has an end state which gets

activated only when a match is found. Therefore, a pattern of length re_len can

have at most re_len + 1 states. A transition from a state s to a state t means that

30

after matching the character corresponding to s we can match the character at t.

There are two main steps involved in generating the state transition table.

First, we generate a one-dimensional array next_states of length len(regex)

such that next_states[s] is the index of the next character we should check after

s. This array is meant to simplify the second step of the generation described below.

In most cases we have next_states[s] = s+1; however, in case s is followed by a

closing bracket or parenthesis we set next_states[s] = next_states[s+1]. Since

parentheses are used mostly for grouping and are not treated as actual states, in case

of multiple nested groups this lets us skip over all the closing parentheses to get to

an actual state. Table 4.1 gives an example of this array.

regex a (b c) * d
next_states 1 2 3 5 5 6 7

Table 4.1: The next_states array for the regex a(bc)*d. Note that the next char-
acter index for c is 5 because we skip over).

a (b c) * d $
^ 1 0 0 0 0 0 0 0
a 0 0 1 0 0 0 1 0
(0 0 0 0 0 0 0 0
b 0 0 0 1 0 0 0 0
c 0 0 1 0 0 0 1 0
) 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 1

Table 4.2: The state transition table for the regex a(bc)*d. ^ denotes the start of
the regex and $ the end. Each row marks the states that we can transition to from
the current state. For example, having just matched a we can either match b or d.
(,), * are not valid states, so their rows do not have any active transitions.

The second step is generating the actual state transition table which is a two-

dimensional array of size (len(regex)+1) * (len(regex)+1). We call this table

the cache. For any two states s and t, cache[s][t] = 1 if both s and t are valid

states and there is a transition from s to t. Otherwise, cache[s][t] = 0. An

example of this table is given in table 4.2. A state s is valid if regex[s] is not

31

one of the following special characters:]()|*+?^. Figure A-1 shows partial code for

generating the table for a simplified version of the language that contains only * as a

special character. As shown in the code, the state transitions are generated for each

state i.e. cache row separately.

4.3 Matching algorithm and code generation

Our implementation builds upon an already existing implementation of a small regex

compiler with BuildIt [8] which only supports matching zero or more characters with

*. We kept the core of the algorithm the same, but we extended the language to

support more operators and schedules. Our main algorithm follows Thompson’s NFA

to DFA conversion; hence, it is close to a BFS approach. First, we will go over how

one would implement a simple match function with this approach, and then we will

talk about how to stage the code with BuildIt.

Figure 4-1 shows the pseudocode of our implementation without any staging.

First, we allocate two state arrays of length len(regex)+1: current that keeps track

of currently active states, and next that keeps states that are reachable from the

current states. The algorithm consists of 2 nested loops. The outer loop iterates

over each character of the input string, and the inner loop iterates over the current

array. If a character from the input string matches with a character from the regex

corresponding to an active state in current, we call the progress function which

updates next with all the transitions from the current state using the state transition

table from 4.2. In case of a partial match, after the completion of the inner for loop

we activate the first state again in the next array to be able to match from the

beginning of the regex again for the next position in the string. After that, next

becomes current, and current is cleared for the next iteration of the outer for loop.

Finally, if the end state is active in current we return the end index of the found

match. In case of no match, we return -1. This simple approach summarizes the main

logic behind our implementation.

Now we will talk about how to stage this approach with BuildIt. As mentioned

32

Figure 4-1: Pseudocode describing the basic matching algorithm.

before, BuildIt is type-based, meaning the stage that the code is evaluated in is

determined by the type of variables that it uses. In our implementation, we use only

2 stages such that we declare the variables that we want to be evaluated in the first

stage as static, and the ones that we want to appear in the second stage as dynamic.

So starting with the simple implementation from figure 4-1, the only part left to do

is decide for each variable whether it should be static or dynamic. When making

this decision, the main goal we have in mind is to be able to generate specialized

code for a given regular expression which can be compiled and run to find matches

in different input strings. Therefore, we declare the regex as static and the string as

dynamic. As a result, all the variables associated with the regex, such as current,

next, state, etc. are also static, and the variables associated with the string such as

c are dynamic. Similarly, the loop over the input string is dynamic, but the loop over

the regex is static, and so on. As mentioned before, all the static code is evaluated

in the first stage, which leaves the dynamic code to appear in the second stage. The

entirety of the staged code is contained within a single dynamic function which we

will refer to as dyn_match. Figure A-2 shows a simplified version of this function

following the same logic as figure 4-1.

33

1 builder :: builder_context context;
2 context.feature_unstructured = true;
3 auto fptr = (int (*)(const char*, int , int))builder ::

compile_function_with_context(context , dyn_match , "ab*c", ...);
4 int match = fptr("abcde", 5, 0);

Figure 4-2: Example of generating and compiling code with BuildIt.

The next step is to generate and compile the second-stage code (i.e. the specialized

code) with BuildIt. This can be done by first creating a special BuildIt context object

and passing it to the compile_function_with_context function (as shown in figure

4-2) which goes through 3 steps. First, it constructs the AST of the second-stage code

by following the control flow paths of the first-stage code based on evaluating the

static variables. Second, it generates code corresponding to the AST. The generated

code mainly consists of if-else blocks comparing characters from the input string to

characters from the regex, and labels and goto statements that simulate the outer

for loop from the dyn_match function. Appendix B has some examples of generated

code. Third, it compiles the generated code, loads it, and returns a pointer to the

compiled function. Finally, to find a match, we just run this function on a given input

string.

4.4 Code specialization for full and partial match

The code generation is controlled by the options of the Schedule struct which are

passed to the dyn_match function described in the previous section. Depending on the

values of these options, BuildIt can generate different variants of specialized code for

the same regex to optimize for performance. The Schedule options are summarized in

table 4.3. In this section, we are going to focus on three of these flags: start_anchor,

reverse, and last_eom which help us distinguish between the full and partial match

cases. We are going to discuss the rest of the options in section 5.

Table 4.4 shows how MatchType is transformed into different combinations of

Schedule options. The only difference between a full and partial match implemen-

tation is one extra condition at the end of each iteration of the inner for loop that

34

Option Description
ignore_case when true, caseless matching is turned on (default: false);

same as in RegexOptions
dotall when true, . matches newline as well (default: false); same

as in RegexOptions
start_anchor when true, anchors the match at the beginning of the string

(default: false)
last_eom when true, dyn_match returns the last end of a match instead

of the end of the first found match (default: false)
reverse when true, the regex is reversed and dyn_match matches the

string in reverse order (default: false)
block_size when set to a positive integer the string is split into that many

blocks which are matched in parallel (default: -1); same as in
RegexOptions §5.5

interleaving_parts matching stride for partial matches, distinct parts can be
matched in parallel (default: -1); same as in RegexOptions
§5.4

split set to true if the flags string in RegexOptions contains an
s character (default: false); it splits the regex such that there
are multiple generated functions §5.1

state_group set to true if the flags string in RegexOptions contains a g
character (default: false); the grouped state transitions are
kept in dynamic arrays instead of static §5.3

Table 4.3: Fields of the Schedule struct.

activates the first state of the regex in case start_anchor is false. This condition

is given in line 30 in figure A-2. Figures B-1 and B-2 show the differences in the

generated code for the same regex between full and partial matching.

As mentioned before, the match function from section 3.2 returns the first found

match by default. We can make it return the first longest match by setting the

greedy flag in RegexOptions. This triggers a two-pass matching process, where two

functions get generated instead of one. The first pass is backward, which means

we traverse the string from right to left and we follow the state transitions in the

opposite direction from what is specified in the state transition table. That is, if we

have just matched the state t, to update the next array, we look for all states s such

that cache[s][t] = 1 where cache is the state transition table. If last_eom is set

(as is the case for the first longest match), the backward pass returns the leftmost

35

full match any partial first longest partial
pass 1 pass 1 pass 1 pass 2

start_anchor true false false true
reverse false false true false
last_eom true false true true

Table 4.4: Specifies each type of match in terms of the relevant Schedule options.
Finding a full match and a lazy partial match need only one pass. Finding the first
longest partial match needs a two-pass approach.

match end position which is the same as the start index si of the first match. From

that index, we run a forward pass with last_eom set to find the end position ei of

the longest match anchored at si. Finally, the substring between si and ei in the

input string is returned as the first longest match. We show examples of first- and

second-pass code in figures B-4 and B-5.

If the greedy option is false we only need to run a single forward pass which is

by far more efficient than the two-pass approach. This is the main reason why our

implementation defaults to lazy matching.

36

Chapter 5

Scheduling options

Thompson’s NFA simulation which is the basis of our code generation described above

is a good general strategy for matching most types of regular expressions. As we were

able to see in section 2, this approach is used in high-performance regex engines like

RE2 and Hyperscan. However, it has been shown that this method does not perform

very well for expressions with bounded repetition such as (abc){50} [15]. This is

mainly because as the regex gets longer the size of the subset of currently active

states during the NFA to DFA construction gets larger and widens the search. In

our implementation, this means that BuildIt has to explore more code paths dur-

ing the code generation stage and generate more complicated code which increases

the compilation time. This inefficiency is evident in BREeze when trying to compile

the following regex (Tom.{10,15}river|river.{10,15}Tom). Apart from repeti-

tion, this expression also contains ambiguity due to the use of the dot character and

alternation. As a result, the general code generation approach described above is not

enough to compile this expression in any reasonable amount of time (it takes more

than 5 minutes).

The scheduling options described in this section and summarized in table 4.3 are

the result of our efforts to limit the number of currently active states at each search

level and simplify the code generation process for this type of expressions. In general,

in addition to improving compilation times, this also improves the running times

due to the simpler matching code. More specifically, we leverage BuildIt’s staging

37

1 string regex = "(ab|cd)(12)*";
2 string text = "23 cd12123";
3 int res = 0;
4

5 RegexOptions split_options;
6 split_options.flags = ".s..s......."; // splitting on | groups
7 res = match(regex , text , split_options , MatchType :: PARTIAL_SINGLE);
8

9 RegexOptions join_options;
10 join_options.flags = ".jj.jj..jj.."; // joining literal strings
11 res = match(regex , text , join_options , MatchType :: PARTIAL_SINGLE);
12

13 RegexOptions options;
14 options.interleaving_parts = 2;
15 res = match(regex , text , options , MatchType :: PARTIAL_SINGLE);

Figure 5-1: Example code how to specify some of the scheduling options using the
match function from section 3.2. All three approaches result in a match i.e. res = 1
as expected.

capabilities to combine the BFS approach used in Thompson’s algorithm with other

approaches like backtracking. Table 5.1 shows the improvement in compilation times

when using the scheduling options explained below.

Scheduling option Compile time
none > 5 minutes
split 70 milliseconds
join 32 milliseconds
interleaving 8 seconds
block 42 milliseconds

Table 5.1: Times taken to compile (Tom.{10,15}river|river.{10,15}Tom) when
using different scheduling options. In the absence of scheduling, we were not able to
compile the regex in any reasonable amount of time.

The scheduling options can be specified using the flags field of the RegexOptions

struct as shown in figure 5-1. The flags field is a string of the same length as the

regex where each character is either . (default), s, g or j. The following sections go

more into detail about each of these options.

38

5.1 Splitting the regex

This option combines the basic BFS approach with backtracking. More specifically,

patterns with alternations can be compiled such that each alternation part is matched

separately. This resembles backtracking because if one alternation option fails, we

have to go back and try another one. To demonstrate how this works, consider the

regex from above (Tom.{10,15}river|river.{10,15}Tom). For this expression, the

normal approach generates one function that performs BFS. Instead, we can generate

2 BFS functions f1 and f2 for matching Tom.{10,15}river and river.{10,15}Tom

respectively. Finally, to get a match, we run f1 first, and if it fails we run f2. To de-

note a split like this, we pass the following string as the flags option in RegexOptions:

.s................s.................. The flags string is the same length as

the regex. To denote that we want to split the expression at index i, we set flags[i]

= ’s’. If there are no special options for index j, we just set flags[j] = ’.’. When

the user provided RegexOptions get parsed into a Schedule struct, the split option

is set to true if there are any s characters in flags.

Although the split option was inspired by alternation expressions, it works in

general for splitting at any position in the pattern even with no alternations.

Compiling (Tom.{10,15}river|river.{10,15}Tom) with this option takes only

70 milliseconds (compared to more than 5 minutes without any scheduling). The

generated code has 3 functions: 1 function for each of the alternation options (we

will call these functions helpers) and 1 main function that calls the helper functions.

Only the main function implements the partial match logic. The helper functions

implement an anchored match at a specific position in the string passed as an argu-

ment from the main function. We achieve this by keeping a working set of all the

functions that need to be generated during the code generation stage. BuildIt first

starts generating the main function. When the main function calls another dynamic

function, we add that function to the working set and BuildIt generates it once it is

done with the previous function. The number of active states at any time during the

generation of each of these functions is generally lower than in the basic approach

39

because the work is distributed across multiple functions. This results in generating

more compact code which improves both the compilation and running times.

5.2 Matching multiple characters at once

In the normal approach, literal strings that appear as part of a regex, such as Tom are

matched one character at a time. As mentioned before, this results in a lot of states

being active at the same time which slows down the code generation process. One

reason for this is that each character results in a separate if condition in the generated

code. Combined with different paths the code can take based on the outcome of the

if statements, the matching code can become very long and complicated.

To decrease the total number of active states and simplify the code generation we

introduce the join option to compare multiple consecutive characters at once with

memcmp. For example, with this option, the string Tom is represented with only one

state instead of 3. Similarly, the generated code has only one if condition instead

of 3. This option not only simplifies the compilation process, but also has some

benefits in terms of running times. Namely, when compiling the generated code, the

backend C compiler can represent memcmp as a single instruction which adds an extra

optimization of being able to compare multiple bytes with a single instruction call.

In the normal approach, one instruction would compare only a single byte.

The join option can be specified as part of the flags string in RegexOptions just

like the split option. To mark that we want to match multiple characters as a single

string, we put the character j in flags at the positions of those characters. For exam-

ple, if we want Tom and river from (Tom.{10,15}river|river.{10,15}Tom) to be

matched with this option, we set flags to .jjj........jjjjj.jjjjj........jjj..

Since we are using memcmp, the join option can only be used for normal characters

(characters that are not escaped) and with the ignore_case flag set to false.

Compiling (Tom.{10,15}river|river.{10,15}Tom) as described above takes only

32 milliseconds. The generated code consists of 5 functions: 1 main function and 4

helper functions corresponding to each one of the 4 literal strings appearing in the

40

regex. This is because apart from memcmp the join option utilizes a similar splitting

technique as in section 5.1. It works as follows. Just like in section 5.1, we keep

a working set of functions that need to be generated. BuildIt starts generating the

main function. When the main function calls memcmp on Tom if the call results in

a match, it calls a new dynamic function that starts matching right after Tom i.e.

.{10,15}river. That dynamic function is pushed to the working set to be gener-

ated later. The same procedure happens for all the literal strings that are marked

with j, hence we have 4 helper functions. Note that this approach is also similar to

backtracking. An example of using this option is given in figure B-3.

5.3 Dynamic grouping

As described in section 4, the active states are kept in two static arrays current

and next. Because both of these arrays are static, all the state transition work

happens in the first stage of code generation. We can spread this work out over two

stages by introducing the dynamic grouping option. The user can mark multiple

consecutive states in the flags string from RegexOptions with the character g. For

example, the regex Tom.{10,15}river can be compiled as ggggggggggg...... The

state transition for all the states marked with g is handled dynamically in the second

stage, which means it appears in the generated code. If there are any g characters

present in flags, the state_group flag is set to true when translating RegexOptions

into the Schedule struct.

This option is implemented by keeping two extra dynamic arrays dyn_current and

dyn_next in addition to the static arrays. We keep track of the grouped states (the

states marked with g) in the dynamic arrays and of the rest of the states in the static

arrays as usual. One would expect that this would improve the compilation times be-

cause some of the first-stage work is shifted to the second stage. However, it does not

help with compiling complex patterns like (Tom.{10,15}river|river.{10,15}Tom).

This is mainly because introducing extra dynamic variables in the first stage code re-

sults in generating longer and more complicated code which naturally takes a longer

41

time. Due to the bad performance, we do not further explore this option and do not

include it in the results section.

5.4 Interleaving

As mentioned in section 4.4 the partial match code is generated by activating the

first state of the regex for each position in the dynamic string that we are matching.

This is the main reason behind having many states being active at the same time.

To control the frequency at which we activate new states to start matching from the

beginning of a pattern, we introduce the interleaving option. The user can specify

the interleaving frequency with the interleaving_parts option in RegexOptions

which later gets copied to the Schedule struct.

Let 𝑛 be the number of interleaving parts. Interleaving works as follows. There are

𝑛 different functions generated, such that the 𝑖𝑡ℎ function is responsible for matching

the pattern starting at every position 𝑝 in the dynamic string where 𝑝 mod 𝑛 = 𝑖.

These functions are independent of each other because they operate from different

starting positions in the dynamic string. Therefore, we can run them in parallel. We

parallelize the code by adding #pragma omp parallel for to the for loop that calls

each of the 𝑛 functions.

This option lets us compile (Tom.{10,15}river|river.{10,15}Tom) with 16 in-

terleaving parts in around 8 seconds. The compilation time can be improved by

varying the number of interleaving parts or combining these options with the split

and join options. Table 6.6 shows how changing the number of interleaving parts

affects the running times.

5.5 Splitting the string

Although interleaving helps with the compilation times, it does not in general

improve the running times as we will see in section 6.2.2. The main reason for this is

that each interleaving function still has to traverse the entire string to find a match.

42

To avoid iterating over the entire dynamic string serially, we split it into blocks that

can be traversed in parallel. The user can specify the block size with the block_size

option in RegexOptions which gets copied into the Schedule struct. For the rest of

the paper, we refer to this scheduling option as the block option.

The generated code with this option consists only of one function, assuming we are

not using any of the other scheduling options from above. Among other arguments,

this function takes in an index 𝑠 in the dynamic string that we need to start matching

from. Let 𝐿 be the length of the dynamic string and 𝐵 the block_size specified by

the user. Then, the number of blocks is 𝑁 = ⌈𝐿
𝐵
⌉. We simulate splitting the string

into 𝑁 blocks by calling the generated function 𝑁 times such that in the 𝑖𝑡ℎ call

we pass 𝑠 = 𝐵 * 𝑖 for the string start position. Internally, the generated function

continues looking for partial matches only until their starting positions correspond to

a position in the dynamic string 𝑝 such that 𝑠 ≤ 𝑝 < 𝑠+𝐵. The 𝑁 function calls can

be run in parallel.

The block option can be used in combination with the other scheduling options de-

scribed above. Generally, it has better compilation times compared to interleaving.

We can compile (Tom.{10,15}river|river.{10,15}Tom) with the join and block

options together in around 42 milliseconds. Moreover, block significantly improves

the running times, as we will see in section 6.2.2.

43

44

Chapter 6

Evaluation

One of the main goals of this project is to keep the implementation simple while

achieving comparable performance to the existing regex libraries. In the following

sections, we evaluate both of these aspects of our implementation.

6.1 Implementation complexity

Implementing BREeze on top of BuildIt allowed us to generate highly specialized

code with very simple and concise implementation. To demonstrate this, we compare

the number of lines of code in our codebase to the total lines of code in Hyperscan

[1], RE2 [4], and PCRE2 [2]. For fairness, we only counted the lines of code inside the

src directory of the official GitHub repositories of each of these libraries, excluding

any testing or timing code. Table 6.1 summarizes our findings.

Library LOC
BREeze 1,564
BREeze + BuildIt 9,290
RE2 26,587
Hyperscan 187,033
PCRE2 131,995

Table 6.1: Number of lines of source code used for implementation of each of the
libraries. The count excludes the code used for testing and benchmarking.

Even if we consider the lines of code in the BuildIt implementation, our imple-

45

mentation does not get longer than 10000 lines of code, which is significantly less

than the number of lines in the libraries shown in table 6.1. This is mainly because

it is very easy to add new features to BREeze with very minimal changes due to the

specialized code generation with BuildIt.

6.2 Performance

In this section, we analyze the compilation and running times for finding a single

partial match in a long string. We ran the experiments on an Intel(R) Xeon(R) CPU

E5-2680 v3 @ 2.50GHz machine with 128GB memory, 48 cores, and 2 threads per core.

We used the teakettle_2500 and snort_literals regular expressions sets with the

gutenberg and alexa200 texts respectively from a Hyperscan performance analysis

blog [16]. Additionally, we used the Twain benchmark [5] to show our performance

on a small set of regular expressions compiled with hand-optimized schedules.

6.2.1 Benchmarks

Teakettle

The teakettle_2500 pattern set consists of 2500 synthetically generated regular

expressions. Each expression contains literal strings separated by character class

repetitions [16]. Some of these patterns are compiled with the ignore_case and

dotall flags set. We show a few of these expressions in table 6.2. For our experiments

we picked 50 patterns at random and matched them against the gutenberg text from

[16]. gutenberg is a 6.7M character long string - a collection of texts in English taken

from Project Gutenberg [3].

^backfields.*lipstick.*curers
outstriding.{9,11}dislike.{6,6}pout.{1,8}sterigmata
leaderless[^\r\n]+doubtlessnesses[^\r\n]+lummox

Table 6.2: Example regular expressions from teakettle_2500.

46

Snort

The snort_literals dataset consists of around 3000 regular expressions extracted

from a ruleset provided by the Snort 3 network intrusion detection system [16]. Some

of these patterns are using the ignore_case flag. In contrast to teakettle, the

patterns in this dataset contain a large number of hexadecimal and escaped char-

acters. Some examples are shown in table 6.3. For our experiments, we picked 20

expressions from this dataset and matched them against the alexa200 text [16]. This

text is around 142.3M characters long and represents a sample of a PCAP capture of

browsing a list of websites.

B09DE715-87C1-11D1-8BE3-0000F8754DA1
f\xB9\xFF\xFF\xEB\x19\^\x8B\xFE\x83\xC7
PARENTNODE\.REMOVECHILD\(DOCUMENT\.GETELEMENTSBYTAGNAME\(’SELECT’\)\)

Table 6.3: Example regular expressions from snort_literals.

Twain

Twain consists of a small set of regular expressions with varying complexity shown

in table 6.8. It is a widely used dataset for benchmarking regex engines [13]. The

text used for matching is a collection of Mark Twain’s works [5] and it is around 16M

characters long.

6.2.2 General schedules

In this section, we are measuring our performance against 50 patterns from teakettle

and 20 patterns from snort. Due to the size of these datasets, we were not able to

manually find the optimal schedule for each expression. Instead, we picked one general

schedule for all of the patterns as discussed below.

Serial matching

Table 6.4 shows the running times when matching each of the expressions when

compiled with a serial schedule. A serial schedule is any schedule that does not

47

include the interleaving or block options. The times in the two rows represent the

total times required to match the 50 teakettle and 20 snort patterns respectively.

For the BREeze results, the patterns without escaped characters and ignore_case

enabled were compiled with the join schedule option by grouping all the characters

of the literal strings. For example, ^backfields.*lipstick.*curers was compiled

as .jjjjjjjjjj..jjjjjjj..jjjjjj. We compiled the rest of the patterns with the

split option by splitting on every 8th character whenever possible. For example,

ameliorator.*syncretistic was compiled ass.......s.......s..

For BREeze we used the PARTIAL_SINGLE flag which stops matching as soon as

any match is found. For RE2 we used the PartialMatch function. For PCRE2 we

used pcre2_match. Since RE2 and PCRE2 match greedily by default, we converted

the greedy operators into lazy ones to compare against our default lazy matching. We

ran Hyperscan in block mode with HS_FLAG_SINGLEMATCH enabled to stop scanning

as soon as a match is found. For a fair comparison, we did not use Hyperscan’s

multi-pattern matching mode since BREeze, PCRE2, and RE2 do not support it.

teakettle snort
BREeze 211.64 1798.37
RE2 181.81 1100.32
Hyperscan 34.10 249.06
PCRE2 1066.23 2315.46

Table 6.4: Serial running times for finding a single partial match. The times are
given in milliseconds. Each time is a total of matching all the 50 (teakettle) and
20 (snort) expressions.

From table 6.4 we observe that BREeze performs better than PCRE2 and worse

than Hyperscan and RE2. We believe that the bad serial performance is mainly

because our code is not very well optimized for the case when the pattern does

not exist in the text, which is the case with most of the selected patterns in this

experiment. While RE2 and Hyperscan have special mechanisms for looking for the

start of the literal strings in the text ahead of matching, we do not have anything

similar. Instead, our code tries matching starting from each character in the text

which is very expensive if we are searching in a very long text such as alexa200.

48

From the results, it is also notable that BREeze performs better for teakettle

than for snort. From our experience, this is due to two main reasons. First, the

alexa200 text used with snort is much longer than the gutenberg text so in case

there is no match, snort will naturally take more time. Second, the snort patterns

are more complicated because they contain special characters that need to be escaped

which prevents us from using the join option.

teakettle snort
BREeze 9461.64 3803.61
RE2 2.07 0.90
Hyperscan 57.47 1.60
PCRE2 0.50 0.19

Table 6.5: Compilation times for the serial experiments from table 6.4. The times
are given in milliseconds.

Table 6.5 summarizes the compilation times for the same experiment. It is ex-

pected that our compilation process takes more time than the existing libraries be-

cause it includes the code generation stage with BuildIt. Although there is some

room for improvement, we are not very concerned about the compilation times at

the moment. This is because in most cases we would expect the user to compile the

pattern once and reuse the generated code to match against different strings. Hence,

for most of our work, we prioritized improving the running times.

Parallel matching

To improve the running times from table 6.4 we tried using the interleaving and

block scheduling options to parallelize the matching. We still keep the split and

join options on in this part.

The results for the interleaving schedule are given in table 6.6. The number of

interleaving parts is equal to the number of threads that we run in parallel. According

to the results, increasing the number of interleaving parts increases the matching

times. Although this might seem surprising, it is expected. With interleaving enabled

we only increase the stride at which we start matching from the beginning of the

pattern in the string. However, each thread still has to loop through every character

49

interleaving parts teakettle snort
2 436 2448.79
4 561.11 3753.61
8 846.88 6347.58

16 1247.53 11050.6

Table 6.6: The running times when we search for a partial match in parallel using
the interleaving schedule option. The times are in milliseconds.

in the string to check if the pattern matches. Moreover, when the pattern results in a

match in one of the threads, we currently do not have a way to stop the other threads

from running. Instead, we have to wait for them to complete before returning the

match.

When there is no match, in the serial case we have an optimization to stop match-

ing as soon as there are no more active states. This optimization cannot be used with

interleaving because even if there are no more active states at the moment, we might

insert a new active state in the future marking the beginning of the pattern which

may result in a match. This is another reason behind the increased running times.

number of blocks teakettle snort
10 75.57 329.1
20 40.72 176.663
30 33.91 184.839
40 29.9 141.05
50 33.97 176.33

Table 6.7: The running times when we search for a partial match in parallel using
the block option. The times are in milliseconds.

To avoid looping serially through the entire string we tried processing contiguous

blocks of the string in parallel using the block schedule option. The results from

this approach are given in table 6.7. The number of blocks is equal to the number

of threads we run in parallel. The running times decrease as we increase the number

of blocks to 40 and then they stay around the same for 50 blocks or more. This is

expected due to the number of cores on our machine. Overall, this schedule improved

the teakettle running times from 211.64ms to 29.9ms and the snort ones from

1798.37ms to 176.33ms. The new times are better than the serial times for Hyperscan

50

from table 6.4. This does not mean that our library is more optimized than Hyperscan

since we have not utilized Hyperscan’s parallel functions. However, it shows that our

scheduling options are enough to generate code that runs in a reasonable amount of

time compared to state-of-the-art libraries.

6.2.3 Tuned schedules

To generate the results for this section we tried different schedules for each regular

expression and picked the one which resulted in the best performance. After compiling

each expression with its corresponding schedule, we ran the generated code to find the

first partial match. Table 6.8 shows the running times. The schedules that were used

for getting these results mostly involved the split and join options from section

5. We tried parallelizing the code with the interleaving and block options, but

we did not get a big performance improvement. This is because most of the Twain

patterns result in a match very early in the text at which point the matching stops,

so processing the text in parallel does not add any advantages.

regular expression BREeze RE2 HScan PCRE2
Twain 0.0001 0.0006 0.0020 0.0005
(?i)Twain 0.0001 0.0004 0.0020 0.0004
[a-z]shing 0.0022 0.0051 0.0025 0.0529
(Huck[a-zA-Z]+|Saw[a-zA-Z]+) 1.539 3.999 0.623 2.052
[a-q][^u-z]{13}x 0.131 0.066 0.011 0.110
(Tom|Sawyer|Huckleberry|Finn) 0.027 0.035 0.003 0.160
(?i)(Tom|Sawyer|Huckleberry|Finn) 0.015 0.012 0.002 0.160
.{0,2}(Tom|Sawyer|Huckleberry|Finn) 0.041 0.045 0.003 3.734
.{2,4}(Tom|Sawyer|Huckleberry|Finn) 0.041 0.035 0.003 3.594
(Tom.{10,25}river|river.{10,25}Tom) 5.195 13.349 0.815 26.962
[a-zA-Z]+ing 0.0015 0.0029 0.0025 0.0536
\s[a-zA-Z]{0,12}ing\s 0.011 0.0048 0.0047 0.0362
([A-Za-z]awyer|[A-Za-z]inn)\s 5.796 2.964 0.336 87.339
["’][^"’]{0,30}[?!\.]["’] 0.027 0.030 0.034 0.058

Table 6.8: Running times in milliseconds for the Twain dataset.

From table 6.8 we observe that BREeze is consistently faster than PCRE2, and

faster than RE2 for most of the expressions. Although we are doing better for some

51

expressions, Hyperscan in general performs the best for this benchmark. These results

show the importance of tuning the schedules to their corresponding regular expres-

sions for getting the best performance. We can see that BREeze generally performs

better in this case than when using untuned schedules as in section 6.2.2. This ex-

periment also shows that our scheduling options are enough to generate code with

similar and in most cases better performance compared to the existing libraries.

52

Chapter 7

Conclusion

7.1 Summary

In this paper we introduced BREeze, a regular expression library implemented on top

of BuildIt that generates specialized regular expression matching code. We demon-

strated that BREeze supports a reasonable set of characters and operators that make

it possible to represent a wide range of regular expressions. Moreover, it has a fully

functional API that supports a variety of matching modes present in modern regular

expression libraries. BREeze is distinguishable from the existing libraries because it

provides the user with a unique set of scheduling options that can be used to further

specialize and optimize the generated code. Next, we showed that combining these

scheduling options is enough to generate code with comparable and in some cases

even better performance than the state-of-the-art regex engines. Finally, we made all

of the above possible with only 1564 lines of code.

7.2 Future work

From the results in section 6 it is evident that BREeze performs better for regular

expressions compiled with tuned schedules. However, currently, we do not have a

good approach to finding the most optimal schedule. More specifically, the hand-

tuning approach used to generate the schedules for the Twain results in table 6.8

53

looks as follows. First, we generate a subset of schedules that we expect to have good

performance (for example, using the join option on short literal string components).

We compile the regex separately with each one of the schedules. We measure the

running time for each of the compiled match functions on the text. Finally, we pick

the schedule which results in the best running time. This approach is very inefficient,

especially because it requires generating code for every possible schedule which takes

a long time.

Tuning the Twain regular expressions from table 6.8 with the above approach ex-

posed some common patterns shared among the most optimal schedules. First, when

a regular expression contains short literal string components the best schedule al-

most always involves grouping the literal string characters with the join option. For

example, the best performing schedule for (Tom.{10,25}river|river.{10,25}Tom)

is .jjj........jjjjj.jjjjj........jjj.. Second, for expressions with repeated

character classes, the schedule usually involves the split option for some of the

classes. For example, s...s..........s.....s... is the best schedule for the

regex ["’][^"’]{0,30}[?!\.]["’]. Although these patterns are not instantly ob-

vious from a user’s perspective, they should be very easily detectable by a machine

learning model. Therefore, the main focus of our future work is to automate the

schedule tuning process by introducing a machine learning model to predict the most

optimal schedule for a given regular expression. This involves two main tasks.

The first task is to generate a training dataset mapping regular expressions to their

optimal schedules. The teakettle and snort datasets from [16] contain around 5500

regular expressions in total which can be used for training. One could generate the

most optimal schedules for the training data using the tuning approach described at

the beginning of this section. Generating the training dataset will likely take a long

time; however, it needs to be done only once.

The second task is to implement and train a machine learning model that takes a

regular expression string as input and outputs a string of the same length as the regu-

lar expression representing the flags of the most optimal schedule. Following the pre-

vious examples, a trained model that takes in (Tom.{10,25}river|river.{10,25}Tom)

54

as input should output .jjj........jjjjj.jjjjj........jjj..

Using a machine learning model greatly simplifies the tuning process. Once the

model is trained, it can be used to pick one specific schedule per regular expression

which eliminates the need to repeat the compilation multiple times to try different

schedules. As a result, this will allow users to easily get the best performance out of

BREeze.

55

56

Appendix A

Implementation details

57

1 void fill_cache_row(char* re, int cs, int* next_states , int* row) {
2 int ns = (cs == -1) ? 0 : next_states[cs];
3 if (strlen(re) == ns) {
4 row[ns] = 1;
5 } else if (is_normal(re[ns]) || re[ns] == ’.’) {
6 if (re[ns+1] == ’*’) {
7 // skip the current state ...
8 progress(re , ns + 1, next_states , row);
9 }

10 // ... or keep it
11 row[ns] = 1;
12 } else if (re[ns] == ’*’) {
13 row[cs] = 1; // repeat the last state
14 progress(re , ns, next_states , row); // or skip
15 } ... // other conditions
16 }
17

18 void fill_cache(string re, int* next_states , int** cache) {
19 // generate the state transition table row by row
20 for (int s = -1; s < strlen(re); s++) {
21 fill_cache_row(re , s, next_states , cache[s+1]);
22 }
23 }

Figure A-1: Parts of the code used for state transition generation.

58

1 dyn_var <int > dyn_match(const char* re , dyn_var <char*> str ,
2 dyn_var <int > str_len , Schedule options , int* cache ,
3 bool partial_match , dyn_var <int > to_match , ...) {
4

5 // allocate two state vectors
6 static_var <char[]> current , next;
7

8 dyn_var <int > no_match = to_match - 1; // no_match is usually -1
9 dyn_var <int > last_end = no_match; // last end of match

10

11 // activate the initial states
12 update_states(current , cache , -1, ...);
13

14 // iterate over str
15 while (to_match < str_len) {
16 // check each state
17 for (static_var <int > state = 0; state < re_len; state ++) {
18 if (current[state])
19 if (is_normal(re[state])) {
20 if (str[to_match] == re[state])
21 update_states(next , cache , state , ...);
22 } else if (’.’ == re[state]) {
23 update_states(next , cache , state , ...);
24 } ... // other cases
25 } else {
26 // invalid character
27 return no_match;
28 }
29 }
30 if (partial_match) {
31 // start matching again from the first state
32 update_states(next , cache , -1, ...);
33 }
34 // swap current and next , clear next
35 ...
36 to_match = to_match + 1;
37

38 // check if there is a match so far
39 if (current[re_len]) {
40 last_end = to_match;
41 // if lazy match return last_end
42 ...
43 }
44 ...
45 }
46 return last_end;
47 }

Figure A-2: Parts of the code for the dyn_match function.

59

60

Appendix B

Generated Code Examples

61

1 int match_0 (char* arg4 , int arg5 , int arg6);
2 int match_0 (char* arg4 , int arg5 , int arg6) {
3 int var15;
4 int var0 = arg6;
5 int var8 = (var0 * 1) - 1;
6 int var9;
7 char var10;
8 if ((var0 >= 0) && (var0 < arg5)) {
9 var10 = arg4[var0];

10 var9 = var10 == 97;
11 if (var9) {
12 } else {
13 goto label1;
14 }
15 var0 = var0 + 1;
16 if (var0 > var8) {
17 } else {
18 goto label0;
19 }
20 var8 = var0;
21 label0:
22 if ((var0 >= 0) && (var0 < arg5)) {
23 var10 = arg4[var0];
24 var9 = var10 == 98;
25 if (var9) {
26 var0 = var0 + 1;
27 if (var0 > var8) {
28 var8 = var0;
29 }
30 goto label0;
31 }
32 label1:
33 var0 = var0 + 1;
34 var15 = var8;
35 return var15;
36 } else {
37 var15 = var8;
38 return var15;
39 }
40 } else {
41 var15 = var8;
42 return var15;
43 }
44 }

Figure B-1: Full match code for ab*.

62

1 int match_0 (char* arg4 , int arg5 , int arg6);
2 int match_0 (char* arg4 , int arg5 , int arg6) {
3 int var13;
4 int var0 = arg6;
5 int var8 = (var0 * 1) - 1;
6 int var9;
7 char var10;
8 label0:
9 if ((var0 >= 0) && (var0 < arg5)) {

10 var10 = arg4[var0];
11 var9 = var10 == 97;
12 if (var9) {
13 } else {
14 var0 = var0 + 1;
15 goto label0;
16 }
17 var0 = var0 + 1;
18 if (var0 > var8) {
19 } else {
20 goto label1;
21 }
22 var8 = var0;
23 label1:
24 var8 = var0;
25 var13 = var8;
26 return var13;
27 } else {
28 var13 = var8;
29 return var13;
30 }
31 }

Figure B-2: Partial match code for ab*.

63

1 #include <string.h>
2

3 int match_0 (char* arg4 , int arg5 , int arg6);
4 int match_0 (char* arg4 , int arg5 , int arg6) {
5 int var0 = arg6;
6 int var8 = (var0 * 1) - 1;
7 int var9;
8 label0:
9 if ((var0 >= 0) && (var0 < arg5)) {

10 var9 = memcmp ((arg4 + var0) - 0, "abcd", 4);
11 if (var9 == 0) {
12 } else {
13 goto label1;
14 }
15 int var11;
16 var11 = var0 + 4;
17 if (var11 > ((var0 + 4) - 1)) {
18 } else {
19 label1:
20 var0 = var0 + 1;
21 goto label0;
22 }
23 return var11;
24 } else {
25 return var8;
26 }
27 }

Figure B-3: Partial match code for abcd using the join schedule as jjjj.

64

1 int match_4 (char* arg4 , int arg5 , int arg6);
2 int match_4 (char* arg4 , int arg5 , int arg6) {
3 int var17;
4 int var0 = arg6;
5 int var8 = (var0 * 1) + 1;
6 int var9;
7 char var10;
8 label0:
9 if ((var0 >= 0) && (var0 < arg5)) {

10 var10 = arg4[var0];
11 var9 = var10 == 98;
12 if (var9) {
13 } else {
14 goto label3;
15 }
16 label1:
17 var0 = var0 + -1;
18 if (var0 < var8) {
19 } else {
20 goto label2;
21 }
22 var8 = var0;
23 label2:
24 if ((var0 >= 0) && (var0 < arg5)) {
25 var10 = arg4[var0];
26 var9 = var10 == 97;
27 if (var9) {
28 var0 = var0 + -1;
29 if (var0 < var8) {
30 var8 = var0;
31 }
32 goto label2;
33 }
34 var10 = arg4[var0];
35 var9 = var10 == 98;
36 if (var9) {
37 goto label1;
38 }
39 label3:
40 var0 = var0 + -1;
41 goto label0;
42 }
43 var17 = var8;
44 return var17;
45 } else {
46 var17 = var8;
47 return var17;
48 }
49 }

Figure B-4: First pass code for finding the first longest match for a*b.

65

1 int match_0 (char* arg4 , int arg5 , int arg6);
2 int match_0 (char* arg4 , int arg5 , int arg6) {
3 int var15;
4 int var0 = arg6;
5 int var8 = (var0 * 1) - 1;
6 int var9;
7 char var10;
8 label0:
9 if ((var0 >= 0) && (var0 < arg5)) {

10 var10 = arg4[var0];
11 var9 = var10 == 97;
12 if (var9) {
13 var0 = var0 + 1;
14 goto label0;
15 }
16 var10 = arg4[var0];
17 var9 = var10 == 98;
18 if (var9) {
19 } else {
20 goto label2;
21 }
22 var0 = var0 + 1;
23 if (var0 > var8) {
24 } else {
25 goto label1;
26 }
27 var8 = var0;
28 label1:
29 if ((var0 >= 0) && (var0 < arg5)) {
30 label2:
31 var0 = var0 + 1;
32 var15 = var8;
33 return var15;
34 } else {
35 var15 = var8;
36 return var15;
37 }
38 } else {
39 var15 = var8;
40 return var15;
41 }
42 }

Figure B-5: Second pass code for finding the first longest match for a*b.

66

Bibliography

[1] Hyperscan code. https://github.com/intel/hyperscan.

[2] PCRE2 code. https://github.com/PCRE2Project/pcre2.

[3] Project Gutenberg. https://www.gutenberg.org/.

[4] RE2 code. https://github.com/google/re2.

[5] Project Gutenberg complete works of Mark Twain. 2021. https://www.
gutenberg.org/files/3200/.

[6] Michela Becchi and Patrick Crowley. A-DFA: A time- and space-efficient DFA
compression algorithm for fast regular expression evaluation. ACM, 2013.

[7] Ajay Brahmakshatriya and Saman Amarasinghe. BuildIt: A type based multi-
stage programming framework for code generation in C++. CGO, 2021.

[8] Ajay Brahmakshatriya and Saman Amarasinghe. GraphIt to CUDA compiler in
2021 LOC: A case for high-performance DSL implementation via staging with
BuilDSL. CGO, 2022.

[9] Russ Cox. Regular expression matching in the wild. 2010. https://swtch.com/
~rsc/regexp/regexp3.html.

[10] James Davis. Rethinking regex engines to address ReDoS. ACM, 2019.

[11] Jan Goyvaerts. The PCRE open source regex library. 2021. https://www.
regular-expressions.info/pcre.html.

[12] Philip Hazel. pcre2matching man page. 2021. https://www.pcre.org/current/
doc/html/pcre2matching.html.

[13] Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. Symbolic regex matcher.
In Tomáš Vojnar and Lijun Zhang, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 372–378, Cham, 2019. Springer Inter-
national Publishing.

[14] Ken Thompson. Regular expression search algorithm. In Communications of the
ACM, 1968.

67

https://github.com/intel/hyperscan
https://github.com/PCRE2Project/pcre2
https://www.gutenberg.org/
https://github.com/google/re2
https://www.gutenberg.org/files/3200/
https://www.gutenberg.org/files/3200/
https://swtch.com/~rsc/regexp/regexp3.html
https://swtch.com/~rsc/regexp/regexp3.html
https://www.regular-expressions.info/pcre.html
https://www.regular-expressions.info/pcre.html
https://www.pcre.org/current/doc/html/pcre2matching.html
https://www.pcre.org/current/doc/html/pcre2matching.html

[15] Lenka Turonová, Lukáš Holík, Ivan Homoliak, Ondrej Lengál, Margus Veanes,
and Tomáš Vojnar. Counting in regexes considered harmful: Exposing ReDoS
vulnerability of nonbacktracking matchers. USENIX, 2022.

[16] Justin Viiret. Hyperscan: Performance analysis of Hyperscan with hsbench.
https://www.intel.com/content/www/us/en/collections/libraries/
hyperscan/performance-analysis-hyperscan-hsbench.html.

[17] Xiang Wang, Yang Hong, Harry Chang, KyoungSoo Park, Geoff Langdale, Jiayu
Hu, and Heqing Zhu. Hyperscan: A fast multi-pattern regex matcher for modern
CPUs. In Proceedings of the 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2019.

[18] Zhi Liu Zhe Fu and Jun Li. Efficient parallelization of regular expression match-
ing for deep inspection. IEEE, 2017.

68

https://www.intel.com/content/www/us/en/collections/libraries/hyperscan/performance-analysis-hyperscan-hsbench.html
https://www.intel.com/content/www/us/en/collections/libraries/hyperscan/performance-analysis-hyperscan-hsbench.html

	Introduction
	Regular expressions as finite automata
	Code specialization
	BuildIt
	Contribution

	Related Work
	PCRE2
	RE2
	Hyperscan

	Introducing BREeze
	Syntax
	API
	Full match
	A single partial match
	All partial matches

	Implementation
	Regex parser
	State transition table
	Matching algorithm and code generation
	Code specialization for full and partial match

	Scheduling options
	Splitting the regex
	Matching multiple characters at once
	Dynamic grouping
	Interleaving
	Splitting the string

	Evaluation
	Implementation complexity
	Performance
	Benchmarks
	General schedules
	Tuned schedules

	Conclusion
	Summary
	Future work

	Implementation details
	Generated Code Examples

