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ABSTRACT

Machine learning applications are increasingly requiring fast and more computational
power. Many applications like language models have become so large that they are run on
distributed systems in parallel. However, getting into the details of optimally scheduling or
even just running machine learning models on distributed systems can be a distraction for
researchers ideating models. Hence there has been development of abstractions to facilitate
running machine learning models in parallel on distributed systems. We present a compiler
for the StreamIt language - a language made for abstract signal processing and multicore
programming. We use that abstraction as a way to distribute the computation of machine
learning models programmed in PyTorch.
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Chapter 1

Introduction

With the rapidly increasing computation requirements of machine learning workloads, train-

ing and deploying them has increasingly required expertise in scheduling workloads on multi-

ple cores and machines. This makes it difficult for people not having an intricate knowledge

of the underlying multicore/distributed system to efficiently test or deploy their machine

learning models. There is a need for a convenient abstraction that analyzes existing ML

programs and convert them to a form that can be easily distributed.

We develop a compiler for the StreamIt language [1], originally meant to optimize stream-

ing applications in the signal processing domain. StreamIt views programs as structured

graphs which makes it convenient to schedule different nodes on different cores/machines.

Then, we also develop a system that analyzes already developed PyTorch models and gen-

erate StreamIt graphs to be fed into the StreamIt compiler.

1.1 The Streaming Abstraction

A lot of applications in signal processing, controls, robotics etc. can be viewed as a continuous

time series. There are a lot of significant algorithms like the Fourier transform, and many

applications like high resolution video streaming, live sports broadcast, radio transmission

and more that lend themselves to a stream abstraction. Going closer to hardware, we can see
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that many things like serial communication, input output streams, file streams, UNIX pipes

and sockets all use a stream abstraction. Given this, the StreamIt domain-specific language

(DSL) was conceptualized 20 years ago [1], [2]. It captures signal processing abstractions

like Filters and Pipelines. It also allows for multiple streams of data to join together, or a

single stream of data to split into multiple streams. The basic unit of computation is a filter

and a stream of data comes in and comes out via channels at possibly different rates from

the filters. Multiple filters (and streams in general) may combine in series to form a pipeline.

Figure 1.1: Depiction of filters and how multiple streams connect sequentially in a pipeline

Figure 1.2: Depiction of how streams split into multiple streams, get computed differently,
and join back into a single stream

Around the time StreamIt was conceptualized, the idea of just doubling the number

of transistors on a computer chip to get performance (Moore’s law) was diminishing and

computers were increasingly having multiple cores. The abstraction of streams splitting

and joining now had another application - splitting computation on multiple cores and

synchronizing it by joining. Each stream of data can be split and handled possibly in
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parallel. Each such resulting stream can also do different transformations of data. Joins

would synchronize these streams into one single stream again. Now, more than two decades

later, we are increasingly using distributed systems for computations and data storage. Our

data and computation needs have become so large that a single machine is often too weak

to handle it. This same streaming abstraction can be used to denote communication over

distributed systems.

1.2 Multistage Compilation and BuildIt

Multistage compilation is to have programs that get compiled in multiple stages, taking some

inputs in each stage. Expressions and language constructs take concrete shapes at various

stages of compilation. This allows us to generate efficient code specialized for various input

conditions. As a very simple example, the code to find the exponent of a base would look

like this in single-stage compiled C/C++.

1 i n t power ( i n t base , i n t exp ) {
2 i n t r e s = 1 ;
3 whi le ( exp > 0) {
4 i f ( exp % 2 == 1) r e s = r e s ∗ base ;
5 r e s = r e s ∗ r e s ;
6 exp = exp / 2 ;
7 }
8 re turn r e s ;
9 }

Figure 1.3: Simple C code to find exponent

Notice here that there are multiple conditional statements and loop all of which makes

the execution slower. However, this is the only form that is the most general and easy to

read. Multi-staging can allow our code to take the exponent in the first stage and generate

a code free from recursive calls, loops and conditionals in the second stage. This makes the

code that actually runs faster. This idea can be extended to more complicated domains

where some properties of the inputs are checked in the first stage, leaving us with a much
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simpler and faster code to run.

To perform multi-staging, we use BuildIt [3] which is a library that introduced mainly

two template wrapper classes - static_var<T> and dyn_var<T>. The first kind is that of

static variables. Static variables take some concrete values in the first stage. Many control

structures also change based on these variables. For instance, if the iterator of a loop is a

static variable, the entire loop body will be unrolled. Dynamic variables on the other hand

are walking abstract syntax trees (ASTs). They generate the code for next stage based on

the ASTs. Here is an example of how the exponent example is written in BuildIt.

1 dyn_var<int> power (dyn_var<int> base , s tat ic_var<int> exp ) {
2 dyn_var<int> r e s =1;
3 whi le ( exp > 0) {
4 i f ( exp % 2 == 1) r e s = r e s ∗ base ;
5 r e s = r e s ∗ r e s ;
6 exp = exp / 2 ;
7 }
8 re turn r e s ;
9 }

Figure 1.4: BuildIt first stage code to find exponent

Notice how few changes needed to be made. Also note that we make the base and

return values dynamic, and the exponent a static variable. This means that we are making

specialized functions for each power. Here is what code will be generated for the next stage

if we set the exponent to 5.

1 i n t power_5 ( i n t arg0 ) {
2 i n t var1 = arg0 ;
3 i n t var2 = 1 ;
4 var2 = var2 ∗ var1 ;
5 var2 = var2 ∗ var2 ;
6 var2 = var2 ∗ var2 ;
7 var2 = var2 ∗ var1 ;
8 var2 = var2 ∗ var2 ;
9 re turn var2 ;

10 }

Figure 1.5: BuildIt 2nd stage code for exp = 5

Since BuildIt is a library, it cannot read within the language syntax and figure out what

16



variable names we have chosen and just assigns names, but we can see that the loop has

been unrolled and all conditions on the exponent have been removed. The next stage of

compilation will be done by the regular C compiler on a user’s machine that generates the

assembly code to be run. This example just showed a 2 stage compilation process, but it

can be extended to multiple nested dynamic variables. Each nesting of dynamic around a

variable gets processed at each stage of compilation leading to interesting patterns based on

the static inputs at each stage.

1.3 Using BuildIt for Compilers

As we saw in the previous section, multistage compilation is a very powerful concept. We

now discuss some general benefits of using that power to quickly and easily build compilers.

Typically compilers are huge and extremely complicated pieces of software running into tens

and even hundreds of thousands of lines of code [4]. The code is first viewed as a string

of characters and parsed based on the syntax of the language. Typically parse trees are

generated from this and syntax errors (like missing a semicolon or not closing a scope or

indentation errors) are caught at this stage. Then further passes over this tree check for

semantic errors (like adding ints to strings or calling a function that does not exist.) Then

the control flow (how the execution of lines of code might happen in order, after considering

conditional statements, loops and function calls) of this code is encoded in an intermediate

representation or a control flow graph. This graph is enough to generate the final assembly

code. However, many optimization passes are done over the control flow graph to generate

much faster assembly code by removing redundant code or by exploiting some patterns like

vectorization of loops. This requires very complex analysis of the nature of the code. This

is a lot of work.

Developers of domain specific languages who just need a small language to run really

fast for a specific domain neither have the time and resources to code all this for each new
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language nor the expertise. They often make libraries in existing popular languages, that

generate optimal code. But still that just removes the effort of parsing some text. All the

other steps - intermediate representation, optimizations, code generation remain. Here is

where multistage compilation comes to the rescue. As we saw in the example of the previous

section, based on inputs of one stage, a very different and efficient code is generated in the

next stage. In many cases, control structures change as well like loops being unrolled, structs

and classes being eliminated into simple linear code, nested loops being generated from a

single level loop and so on. Considering all this, developers have the following advantages

while making compilers using multistage programming:

• The code to be written in the first stage looks very similar to what one would write if

one were to just write a library. So, compiler developers can just write a library and

only the domain specific optimizations.

• The other optimizations that are not domain specific will automatically be applied

when the final stage code gets compiled by a highly optimized off-the-shelf compiler

like LLVM or GCC.

• Many domain specific optimizations involve checking inputs for some special properties

like tensors being sparse or dense (to consider applying sparse tensor representations),

multiple arrays not overlapping in memory (to correctly vectorize loops) and many

more. All these checks can happen at the first stage itself and as we saw in the

example of exponentiation, all conditional checks will get evaluated in the first stage

itself and the final code to run will be specialized for those parameters.

Figure 1.6: How StreamIt Compiler generates code in two stages
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Considering these compelling reasons, we decided to develop the compiler for StreamIt

language on top of BuildIt in C++. BuildIt provides the following additional advantages:

• BuildIt has multiple backends that generate efficient C code for CPUs and CUDA code

for Nvidia GPUs [3], [5]. This allows us to write a single code for StreamIt compiler

and compile it for multiple backends.

• Debugging tools were developed for BuildIt [6] and we get access to that.

1.4 Machine Learning and StreamIt

As we said while introducing the streaming abstraction, computation of any kind can also be

thought of as a stream of data going through multiple instructions and getting transformed.

The set of filters and their dependence on one another creates a computation graph. Machine

learning workloads can hence also be visualized as streams of tensors going through a series

of operations. Filters can be operations like neural network layers, activations, while tensors

can be split when the tensors are too large to be processed at once and we want to distribute

over multiple cores or machines. Thus, this fits right as an application of StreamIt. Popular

machine learning libraries like PyTorch [7] and TensorFlow [8], also create a computation

graph of the operations written in python and then run C code for that. However, these

graphs are dynamic in nature as they are created as the python code is interpreted and can

change based on input. However, StreamIt graphs are static, that is irrespective of the input,

we know the size of the graph at compile time. We implement the conversion of PyTorch

computation graphs into StreamIt graphs via an intermediate representation and study some

edge cases of it.
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1.5 Contributions

• I built the StreamIt compiler in a multistaged manner with BuildIt as described in

detail in Chapter 2.

• Compiling PyTorch graphs into StreamIt streams as described in detail in Chapter 4.

20



Chapter 2

The StreamIt Compiler

2.1 Effect of BuildIt on Structs and Classes

Before jumping into the details of StreamIt language and its compiler, let us see a quick ex-

ample of how BuildIt handles a small library having classes, inheritance and virtual functions

and generates very simple and hence fast code.

1 s t r u c t Number {
2 v i r t u a l ~Number ( ) {}
3 v i r t u a l void s c a l e ( dyn_var<int> f a c t o r ) {}
4 } ;
5

6 s t r u c t Complex : pub l i c Number {
7 dyn_var<int> re , im ;
8

9 Complex (dyn_var<int> re , dyn_var<int> im) {
10 th i s −>re = re ;
11 th i s −>im = im ;
12 }
13

14 void s c a l e ( dyn_var<int> f a c t o r ) {
15 th i s −>re ∗= f a c t o r ;
16 th i s −>im ∗= f a c t o r ;
17 }
18 } ;

Figure 2.1: Complex number library example code

In 2.1, we have an example of an abstract class Number that has a virtual function scale,
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which multiplies that number by a factor. We see a derived class for complex numbers.

Below in 2.2, we have the very simple program that we run.

1 std : : shared_ptr<Number> number = std : : make_shared<Complex>(5 , 6) ;
2 number−>s c a l e (4 ) ;

Figure 2.2: Calling the function scale on a complex number

The code generated by BuildIt is as follows. Notice how structs, inheritance, function

calls, virtual functions all collapse into the simple operation that actually happens. Having

objects and virtual function calls have overheads which get saved in this manner without

compromising on writing modular object-oriented libraries.

1 i n t var1 = 6 ;
2 i n t var2 ;
3 i n t var3 ;
4 var2 = 5 ;
5 var3 = var1 ;
6 i n t var4 = 4 ;
7 var2 = var2 ∗ var4 ;
8 var3 = var3 ∗ var4 ;

Figure 2.3: BuildIt generated code for calling scale on complex number

One can see in the snippet in 2.3, var2 and var3 are the real and imaginary parts of the

complex number, var4 is the scaling factor. I ran this snippet a 1000 times as well as a

version which is just a library using O3 compiler optimizations. That is, from 2.1, I removed

dynamic variables and made them regular ints. Then running the code in 2.2 is the same

as running a library where objects and inheritance has not collapsed into a simpler form.

The call to scale is a virtual function call. The BuildIt generated code took almost no time

(42 nanoseconds) for 1000 runs while the version without BuildIt took 108625 nanoseconds.

The C++ compiler was easily able to optimize the code in 2.3, using constant folding and

common subexpression elimination, but the library call could not be optimized away and was

way slower. This elimination of overheads like virtual functions, dynamic dispatch, function

calls, conditional statements etc. is why code generation is necessary.
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2.2 The StreamIt Language - Basic Types

Figure 2.4: Detailed Figure of StreamIt types

As introduced in [1] and discussed in Chapter 1, the StreamIt language is based on streams

of data. I have made a C++ compiler for the StreamIt language using BuildIt multistage

compilation. A Stream is the top level abstract class which has a stream of data as an

input, which gets processed and transformed and pushed into an output stream of data.

These input and output streams are called Channels. A Stream could be just a stand-alone

Filter, a Pipeline of multiple Streams connected in series, or a SplitJoin which involves

splitting an input stream into multiple parts or duplicating some parts of the stream and

processing each part separately. Notice that any filter can change the type of input as well,

and hence by extension, any stream can have different input and output types. Hence, we

make all these types templates as Stream<I, O> where I is the input type and O is the
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output type. Since Channels are just streams of data, they have only the type of data as a

template parameter - Channel<T>. These types are visualized in 2.4

2.3 Work Function and Flow Rates

Each Stream<I, O> object has a work() function in it. Computation happens and data

moves forward in the stream when this function is called. The only place where the user

specifies the work function is the filter. The work functions for other types of streams are

given by the language as will be discussed in a short while. Each Stream<I, O> also has a

push rate, a peek rate and a pop rate.

• Pop rate is the number of elements from the input channel that get popped from it in

each call to the work function.

• Peek rate is the number of elements from the input channel that are accessed in each

call to the work function. Notice here that these elements are just accessed and possibly

not removed from the input stream.

• Push rate is the number of elements that each call to work function generates as an

output that gets pushed into the output channel.

At this point things will be clearer with examples. If we want to add pairs of numbers in a

stream, we make a filter as follows

1 c l a s s Adder : pub l i c F i l t e r <int , int> {
2 pub l i c :
3 Adder ( ) : F i l t e r <int , int >(2 , 2 , 1) {}
4 void work ( ) {
5 th i s −>push ( th i s −>pop ( ) + th i s −>pop ( ) ) ;
6 }
7 } ;

Figure 2.5: Adder Filter code snippet
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The functionality of the filter is implemented by the user. The Filter class is constructed

with arguments 2, 2 and 1. This means that the pop rate and peek rate is 2 and the push

rate is 1. This is because in each call to work(), 2 elements are popped from the input

channel, they are added together to generate only one element which is pushed into the

output channel. Here, the peek rate is also 2 because 2 elements are accessed while they

were popped. An example where the peek rate is different from the pop rate would be finding

the moving average of the last window elements of the input stream.

1 c l a s s MovingAverage : pub l i c F i l t e r <f l o a t , f l o a t > {
2 i n t window ;
3 pub l i c :
4 MovingAverage ( i n t window) : F i l t e r <f l o a t , f l o a t >(1 , window , 1) {
5 th i s −>window = window ;
6 }
7 void work ( ) {
8 f l o a t sum = 0 . 0 ;
9 f o r ( i n t i = 0 ; i < window ; i++) {

10 sum += th i s −>peek ( i ) ; // peek the i t h most r e c ent element in the stream
11 }
12 th i s −>push (sum / window) ;
13 th i s −>pop ( ) ; // move the stream forward
14 }
15 } ;

Figure 2.6: Moving Average Filter code snippet

In this example, notice that we are accessing window elements in each call to the work

function, but we are only moving the input channel forward by 1 element by popping only

once. This is because we want moving average at each data point, but for computing the

average we need to read previous window elements. The pop rate is 1 because the output at

each call is one value – the average. Also, note how 2.5, 2.6 look so much like implementing

a library, but when the work function of class Filter<I, O> will get called, BuildIt will

generate C code that gets rid of all the classes, virtual functions and inheritance.
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2.4 Pipelines - Connecting Filters Serially

We saw how individual filters are implemented by the programmers who use StreamIt lan-

guage. These filters are then connected to each other via Pipelines and SplitJoins. During

the design of this, I had to make some choices. I have to support that each stream connected

in a pipeline can have any input and output types as long as the output type of a stream

is the same as the input type of the next stream. For this, there is no easy way in C++

to just create an array or a vector of general stream objects because it is just a template.

When different types are put in those templates, they are different types and we cannot

make an array or vector out of it. So I decided on the following design. An object of type

Pipeline<I, O> can be one of the two -

• OneElementPipeline<I, O>(Stream<I, O> *stream) This class is constructed from

a single stream. It takes in a pointer to that as an argument to the constructor.

• MultipleElementPipeline<I, O>(Pipeline<I, O1> *first, Stream<O1, O2> *last)

This class essentially appends the stream last into an existing pipeline first to create

a new pipeline. This makes the series of streams into a linked list like structure.

The work function for this design was implemented as follows -

• For the one element pipeline, just call the work function of the underlying stream but

wait until there are enough elements to satisfy the pop and peek rates of that stream.

This was done by checking the size of the input channel.

• For the multiple element pipeline, call the work function of the first which is a pipeline

(this will eventually call individual stream work functions,) and then call the work

function of the last stream. While doing this, we ensure at each step that there are

enough elements to satisfy the pop and peek rates of the upcoming stream.

This is how one can join two filters to form a pipeline.
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1 std : : shared_ptr<Pipe l ine <int , int>> p = add<int , int , int >(
2 p ip e l i n e <int , int >(std : : make_shared<Adder<int >>(3) ) ,
3 std : : make_shared<Adder<int >>(−1)
4 ) ;

Figure 2.7: Making Linked List like Pipeline

Note that the adders mentioned in this code are not the adders from 2.5 which added

two numbers from the data itself. These adders add the number given in their constructor

argument to each element of the input data (push rate = pop rate = peek rate = 1.) And,

the compiler generates the code given in 2.8 for this. The reader can observe that as expected

all classes, inheritances, function calls, constructors etc. have disappeared and we are saving

that overhead. However, notice how the code checks for the size of the deques (which are the

input and output channels,) in a while loop. This is a very dynamic and inefficient model

which defeats the purpose of a compiler. Other shortcomings are –

• Creating long pipelines is inconvenient because we have to keep creating

MultipleElementPipelines for every pair.

• While traversing the pipeline by writing a recursive code is very simple, but it is

inefficient. The first stream in this pipeline is buried under several wrappers of

MultipleElementPipelines. This means that each wrapper’s work function adds a

layer of check on the input size before calling work function of the first stream. Also,

these checks cannot be eliminated by BuildIt as it is dependent on the input stream

at runtime.

• One key aspect of StreamIt is generating a highly optimized static graph at compile

time. This is the reason for including push, pop and peek rates at compile time so that

the compiler does away with constantly checking for availability of data. This linked

list like structure generates a dynamic code which does not exploit the fact that we

know the push, pop and peek rates at compile time.
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1 void func t i on ( std : : i s t ream& arg0 , std : : ostream& arg1 ) {
2 i n t var5 = 3 ;
3 i n t var9 = −1;
4 std : : deque<int> var11 ;
5 std : : deque<int> var12 ;
6 i n t var13 = 3 ;
7 std : : deque<int> var18 ;
8 i n t var19 = −1;
9 i n t var24 ;

10 i n t var25 = 0 ;
11 whi le ( arg0 >> var24 ) {
12 var11 . push_back ( var24 ) ;
13 whi le (1 ) {
14 i n t var28 = var11 . s i z e ( ) ;
15 i f ( var28 >= 1) {
16 i n t var29 = var11 . f r on t ( ) ;
17 var11 . pop_front ( ) ;
18 var12 . push_back ( var29 + var13 ) ;
19 } e l s e {
20 break ;
21 }
22 }
23 whi le (1 ) {
24 i n t var32 = var12 . s i z e ( ) ;
25 i f ( var32 >= 1) {
26 i n t var33 = var12 . f r on t ( ) ;
27 var12 . pop_front ( ) ;
28 var18 . push_back ( var33 + var19 ) ;
29 } e l s e {
30 break ;
31 }
32 }
33 var25 = var25 + 1 ;
34 i f ( var25 >= 1) {
35 whi le ( var25 ) {
36 i n t var36 = var18 . f r on t ( ) ;
37 var18 . pop_front ( ) ;
38 arg1 << var36 ;
39 arg1 << "\n" ;
40 var25 = var25 − 1 ;
41 }
42 }
43 }
44 }

Figure 2.8: Output of Fig 2.7
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• I had to make the compiler ready for future optimization passes. Being able to quickly

iterate over the entire array of streams was essential for this. A linked list like structure

was a hindrance.

Therefore, I decided to make a general StreamContainer class from which the template

classes including Stream<I, O> inherit. I then made a new kind of pipeline called

VectorPipeline<I, O>, which has a vector of stream containers. This is also equally general

as the previous design with regards to allowing streams to have any input output types as

well as , but allows us to create vectors of stream containers. So now the inheritance chain

looks like this

Figure 2.9: A tree showing all the streamIt types and their inheritance heirarchy

This allows for easy access to each stream within the pipeline. A dynamic way to im-

plement the work function would still be to just iterate over all streams, call their work

functions after checking if enough elements are there to call the work function. Also, to

further simplify things for this dynamic code generation, I noticed that we have to keep

checking if enough elements are there to call the work function of a stream (which eventually

ends up in a filter.) Hence, I made a wrapper work function for the Filter<I, O> that calls

the user specified work function after checking for enough elements in the input channel for

peeking and popping elements. This simplifies the work function of VectorPipeline<I, O>
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by just iterating over all streams. Notice how we use a static iterator. This means that in

the generated code, this entire loop will be unrolled.

1 void work ( ) {
2 f o r ( bu i l d e r : : s tat ic_var<size_t> i = 0 ; i < streams . s i z e ( ) ; i++) {
3 streams [ i ]−>work ( ) ;
4 }
5 }

Figure 2.10: Work function of VectorPipeline<I, O>

2.5 SplitJoins - Connecting Streams in Parallel

Now that we know how to have filters connected in series to create pipelines, let’s see how

we can connect these streams in parallel. For a parallel connection, we need to figure out

ways to split the input channel of data and ways to join multiple streams of data into one

output channel. Since we plan to use StreamIt for parallelizing programs, let’s think of ways

in which we want parallelism -

• The same data needs to be computed in multiple ways in parallel and combined in some

way. For example, we have a value x, and we want to find f(x) + g(x). Notice that

the same data point is going into both functions, but we want f and g to be computed

in parallel. This means while splitting the stream we need to create extra copies of

each data point. While synchronizing (joining) the outputs, we want one point from

the output of f and one point from g and add them.

• Different parts of data go to different parallel streams. For example, if we are mul-

tiplying a vector by a constant scalar, this can be parallelized by splitting the vector

into multiple streams. However, notice here that we do not need to create extra copies,

we just need to send parts of the vector to various streams and join the results back

in the same order.

• In the example of the previous case, it is possible that we want to load balance in such
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a way that one stream has a higher amount of data going through it as compared to

another. Then while joining also we need to take care of this imbalance.

StreamIt is very powerful in allowing a very general framework for this purpose. It provides

for the following types of splitters which I created by making derived classes from a general

class Split.

• DuplicateSplitter(int num_split) This class has a parameter that tells us how

many output streams we want to duplicate the input into. Elements are popped one

by one from the input channel and a copy of it is pushed into each of the num_split

output channels in each call to the work function.

Figure 2.11: Duplicate splitter in action with num_split = 2

• RoundRobinSplitter(vector<int> &weights) This class is for splitting the input

channel into multiple output channel. The argument weights gives us the number of

elements to be pushed to each output channel in each call to the work function. This

way, we are not constrained to send an equal amount of data to each stream. Look at

the figure below to see this in action.
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Figure 2.12: Round Robin splitter in action with weights = {2, 1}

Notice how weights = {2, 1} implies that the first 2 elements will be sent to the first

stream, and the third to the second stream during each call to the work function.

For joining, since in general we cannot guarantee that for the same input, each stream will

generate the same output (or even the same number of outputs,) we do not have a duplicate

joiner. We just have a RoundRobinJoiner(vector<int> &weights). The weights function

in the same manner as the splitter. However, notice here that the weights of a joiner may be

different from the weights of a splitter. This makes the StreamIt language even more general

and powerful to express more complicated parallel settings. A SplitJoin is created by a

splitter, multiple streams and a joiner. The work function for a SplitJoin involves calling

the work function of the splitter, to pop data from the input channel and distribute it to the

streams. Then call work functions on each stream in parallel and finally, call work on the

joiner to join everything back into one output channel.
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2.6 Static Scheduling

As we saw in 2.8, a dynamic schedule of StreamIt filters creates an inefficient and complex

code. To address this issue, especially in steady state, we can take the least common multiple

of all the pop rates, peek rates and push rates and in one go, we extract that amount of data

and push it through the stream.

2.6.1 Flow Constraints in Pipelines

As an example, suppose a pipeline has 2 stream. The first stream S1 has pop, peek and

push rates of 2, 3 and 5 respectively and the second stream S2 has pop, peek and push rates

of 4, 4 and 7 respectively. For both streams, we can just consider the peek rate which is

the maximum of pop and peek rates and that is the amount of data points that need to be

present in the input channel to successfully execute the work function of a stream. So, we

have FS1 needing 3 values and generating 5 values and S2 needs 4 values and generates 2

values. Thus, if S1 takes in 3k values, it generates 5k values for some positive integer k.

Then, S2 gets these 5k values and generates 5k × 7/4 values. Also, 5k needs to be divisible

by 4. If we set k = 4, it solves the problem. In one go, S1 takes 12 values and generates 20

which means S2 can run its work function 5 times generating 35 values as output. Effectively,

the key constraint here was that S1 should generate such a number of values that an integral

number of work function calls can be executed by S2. Extend this to n streams, and let the

stream i (i = 1, .., n) having a peek rate of peeki and push rate of pushi. The pop rates

do not matter as the peek rates are always going to be at least as much as the pop rates

and we need peek rate amount of data to execute a work function. For n = 2, we saw that

LCM(push1, peek2) amount of data is generated by S1 and absorbed by S2.

Adding another stream S3, if S2 absorbs LCM(push1, peek2), it generates
LCM(push1, peek2)× push2

peek2
values and that should be an integral multiple of peek3. That

means, LCM(push1, peek2)×push2 needs to be divisible by peek2×peek3. For simplicity, if we
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have l = push1×peek2×peek3 amount of values generated by S1, then that will satisfy both

S2 and S3’s. Extending it to a general n ≥ 2, we need ln = push1×peek2×peek3× ..×peekn

values being generated by S1 in each bunch to satisfy the peek rates of all streams in the

pipeline. Notice that only the peek rates are important because they get divided, while push

rates are multiplied to the flow rate flowing through the pipeline. Effectively, we can say

that the net peek rate of the entire stream is peek1:n =
ln ∗ peek1
push1

=
∏n

i=1 peeki and the net

push rate is push1:n =
∏n

i=1 pushi. The pop rate would be the number of times the first

stream is run times its pop rate. pop1:n =
peek1:n × pop1

peek1
.

peekpipeline =
∏

stream∈pipeline

peekstream (2.1)

pushpipeline =
∏

stream∈pipeline

pushstream (2.2)

poppipeline =
peekpipeline × pop1

peek1
(2.3)

2.6.2 Flow Constraints in Split Joins

If we are in a duplicate split join with streams 1 to n, then if k elements are popped by the

splitter, each stream gets those same k elements, and k is the pop and peek rate for this

split join. That means k has to be a multiple of the peek rates of all the streams. Hence

the ith stream will generate li =
k × pushi

peeki
elements as the output. Now, let the weight of

the round robin joiner for this stream is wi. Let the joiner perform m sweeps of interleaving

outputs from all streams. If the stream Si is run ni times (ni =
k

peeki
,) then nipushi = mwi.

Notice here that since ni are always in the inverse ratio of the peek rates, and pushi are also

known, we cannot have arbitrary weights for joining. Assuming that wi are valid, that is,

there exists a positive integer m that satisfies given conditions,
kpushi

wipeeki
= m for all i. Thus,
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k also needs to be divisible by wipeeki for all i.

peekdSJ = popdSJ = LCM({wi × peeki}ni=1) (2.4)

The push rate is the number of sweeps of joiner times number of elements output in each

sweep.

pushdSJ =
peekdSJpush1

peek1

n∑
i=1

wi (2.5)

Using the mentioned equations, we can construct static schedules by executing work functions

of individual filters multiple times at once. This was implemented by the research group.

Another optimization to be done as future work is not to use explicit deque channels for

input and output but just allocate a global array buffer for the entire stream, and then the

channels keep track of the indices while pushing, peeking and popping.

35



36



Chapter 3

Machine Learning Computation

Popular machine leraning libraries such as PyTorch [7] and TensorFlow [8] are examples

of embedded domain specific languages. They are embedded as a library within Python,

but they generate a computation graph from the Python code we write. The underlying

structures are in C. Several optimizations are done on this graph and also within individual

functions. There are a lot of optimizations like vectorization of loops, efficient storage of

tensors, avoiding copies of tensors when it can be avoided and many more.

3.1 Computation Graphs

Both PyTorch and TensorFlow create computation graphs to internally store the computa-

tion described in Python [9], [10]. As given in [10], a key application of this graph is to

automatically generate a reverse graph for automatic differentiation, as shown in the figure

below taken directly from that website. There are two ways in which these graphs can be

created - static and dynamic. Earlier versions of TensorFlow had only static computation

graphs. This is where first the programmer explicitly creates a graph, allocates space for

tensors and then runs it whenever it is required. See 3.2.
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Figure 3.1: Computation graph of z = log(xy) with auto differentiation. (Credit: py-
torch.org)

1 import t en so r f l ow as t f
2

3 matrix1 = t f . p l a c eho lde r ( t f . f l o a t32 , shape =(2 , 3) , name=' matrix1 ' )
4 matrix2 = t f . p l a c eho lde r ( t f . f l o a t32 , shape =(3 , 2) , name=' matrix2 ' )
5

6 product = t f . matmul ( matrix1 , matrix2 )
7

8 matrix1_data = [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ]
9 matrix2_data = [ [ 7 , 8 ] , [ 9 , 1 0 ] , [ 1 1 , 1 2 ] ]

10

11 # Create a s e s s i o n to run the computation
12 with t f . S e s s i on ( ) as s e s s :
13 # Run the s e s s i o n to compute the product
14 r e s u l t = s e s s . run ( product , f eed_dict={matrix1 : matrix1_data , matrix2 :

matrix2_data })
15 pr in t ( r e s u l t )

Figure 3.2: Example of TensorFlow Static Graph Creation

The main advantage of a static computation graph is that all sizes and operations are

known before runtime and nothing is dependent on the input. This means that optimization

passes can be made over the entire graph before running it. As listed in [11], TensorFlow

graphs go through a lot of graph optimization passes like constant folding, eliminating com-

mon subexpressions, pruning nodes, parallelizing nodes and more. This means that static

computation graphs have an advantage where resources are scarce or when we value speed.
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PyTorch on the other hand, along with newer versions of Tensorflow, have a dynamic

computation graph creation. This allows a lot of flexibility on size and shape of the com-

putation graph as it is created on the fly. Pytorch model classes specify forward function

where we can write operations, but they can be recursive or have any input (no placeholder

to specify input size). Many research and production models need to have inputs of any size

and that increases accuracy.

• Convolutional Neural Networks (CNNs) may need to process images of multiple sizes

and padding or downsizing leads to poor results.

• Sequence models such as those in natural language processing or signal processing used

to pad all sentences/sequences in a dataset to the maximum sequence length. This was

not only wasteful but also resulted in poor results.

• An interesting edge case is that of the Tree-Recursive Neural Networks. These are a

new type of RNNs which understand sentence grammar in a tree fashion, connecting

grammatically related words together, building phrases etc. This means that the tree

can have a different structure for each input. These are also used in other domains of

structure prediction e.g. making robots understand tasks and their subtasks etc. This

is very easy to create in a dynamic graph [12].

Also, since the computation graph creation happens implicitly, the programmer just gets

the experience of writing in Python rather than like writing in a new language. However,

dynamic graphs do not give opportunities for static type checking and doing optimization

passes before runtime. The industry opinion seems to be favoring dynamic graphs since last

many years because of the ease of use of PyTorch and PyTorch is also significantly optimized.

Hence recent versions of TensorFlow also adapt a similar approach. We saw an opportunity

here to bring all the advantages of an arguably better static graph system StreamIt with a

user interface of PyTorch. We will talk about that in the next chapter.
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3.2 Related Work for Distributed ML Execution

A lot of work in industry and academia has been done in trying to figure out good abstractions

of making machine learning workloads faster on single nodes, but Yadav et. al. mention in

[13] that not much has been done to create powerful abstractions over . The Distributed

Tensor Algebra Compiler (DISTAL) introduced in [13], is a very recent work in this domain

and a addresses the problem in a complete manner. The paper addresses this problem by

extending the Tensor Algebra Compiler (TACO) [14] to run on distributed supercomputers.

It provides a very python-like language (easy to understand and write) for three purposes

• Describing the storage of tensors (data types, sizes, place in memory). For this they

also describe the grid of the supercomputer machine.

• A scheduling language to describe how the computation is to be scheduled over the

machine.

• Describing the tensor algebra kernel (a computation involving tensors, similar to ma-

chine learning layers).

Using simple functions like distribute and communicate, this system allows programmers

to distribute workloads over a specified set of machines and communicate results between

machines. Distribution happens by evaluating the iteration space by considering broadcast-

ing dimensions and then it is divided over the given devices. They have achieved a speed

improvement of 1.8x to 3.7x over 256 nodes of Lassen supercomputer on tensor multiplica-

tions.

A more detailed library for distributed training is provided by PyTorch itself - the

torch.distributed package [15]. This allows a more fine grained control over how things

are distributed. There is a Remote Procedure Call library which can be used to initialize and

communicate between machines. Additionally, abstractions such as DistributedDataParallel
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and FullyShardedDataParallel allow for single machine multiple GPU and multiple ma-

chine distributed training systems respectively [15]. [16] introduces detailed evaluation of

DistributedDataParallel and its performance speedups over existing distributed frame-

works while training benchmark models such as ResNet and BERT.

The work presented in this thesis aims to take such related work to the next level by

allowing users to write a simple PyTorch model as they would do while researching the model,

then allow them to compile that model down to StreamIt and use StreamIt scheduling to

distribute and parallelize the execution. A key part of this is to compile PyTorch graphs

into StreamIt streams and then schedule those streams.
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Chapter 4

PyTorch to StreamIt Graph Compilation

The compiler developed for converting PyTorch models into StreamIt stream serves as an

intermediary tool designed to translate the high-level representations of neural network archi-

tectures in PyTorch into a format conducive to stream processing applications. The primary

function of this compiler is to create a structured, data-flow oriented StreamIt stream from

a PyTorch computational graph. This process involves several critical steps:

• Graph Extraction: The compiler begins by extracting the computational graph from

the PyTorch model. This graph outlines the operations (nodes) and their dependencies

(edges), representing the flow of tensors through the model’s layers and functions. This

is done by symbolic execution of the given model. Notice how this is very similar to

BuildIt that we discussed earlier, that a library embedded in a mainstream language

does symbolic execution and generates a computation graph that can be used for

optimizations and generating a next stage code.

• Intermediate Representation: There is often a variable reuse in the Python code

for PyTorch modules. Also, multiple operations might be nested into one another. To

simplify all such situations, I designed an intermediate representation (IR) that has

two forms - one is a graph that has edges depicting dependencies but only containing

information I care about for further StreamIt stream generation and other is a flattened
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set of instructions. Each instruction creates a new variable as the output, and is a result

of some operation on variables created by preceding instructions.

• Optimization: The compiler then does a liveness analysis pass over the IR graph and

eliminates dead code. The IR graph lends itself for other such passes as well.

• Code Generation: Finally, the compiler generates the StreamIt stream code that

embodies the translated and optimized model. This code is ready to be utilized in

stream processing environments where the high throughput and parallel processing

capabilities of StreamIt can be leveraged.

This compiler facilitates the deployment of sophisticated machine learning models via

StreamIt to edge devices, heterogeneous and distributed systems.

4.1 Graph Extraction

The torch.fx module in PyTorch provides tools for capturing and transforming the compu-

tational graphs of PyTorch models, facilitating programmatic manipulation of the model’s

operations.

4.1.1 Example PyTorch Module

Consider the following PyTorch module:

1 import torch
2 import torch . nn as nn
3

4 c l a s s MyModule(nn . Module ) :
5 de f __init__( s e l f ) :
6 super ( ) . __init__ ( )
7 s e l f . l i n e a r = nn . Linear (4 , 5)
8 de f forward ( s e l f , x ) :
9 x = s e l f . l i n e a r ( x )

10 re turn x + torch . s i n (x )

Figure 4.1: Python code for a simple PyTorch module.
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This module introduces a parameter and a linear transformation, followed by a non-linear

activation function (sine).

4.1.2 Graph Generation using torch.fx

To generate the computational graph of this model, we use torch.fx as follows:

1 import torch . fx as fx
2

3 model = MyModule ( )
4 x = torch . randn (3 , 4) # Example input t enso r
5 graph = fx . symbol ic_trace ( model )
6

7 pr in t ( graph )

Figure 4.2: Using torch.fx to generate the computational graph.

Notice that this is symbolic execution, hence the variable x declared for input is not used

anywhere.

4.1.3 Graph Output and Explanation

The output from the print(graph) looks like this:

1 graph ( ) :
2 %x : [ num_users=1] = p la c eho lde r [ t a r g e t=x ]
3 %l i n e a r : [ num_users=2] = call_module [ t a r g e t=l i n e a r ] ( args = (%x , ) , kwargs

= {})
4 %s in : [ num_users=1] = ca l l_ func t i on [ t a r g e t=torch . s i n ] ( args = (%l i n e a r , ) ,

kwargs = {})
5 %add : [ num_users=1] = ca l l_ func t i on [ t a r g e t=operator . add ] ( args = (%l i n e a r ,

%s i n ) , kwargs = {})
6 re turn add

Figure 4.3: Output of the torch.fx graph trace.
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The table below presents this graph in a structured format:

Opcode Name Target Arguments Keyword Arguments
placeholder x x () {}
call_module linear linear (x,) {}

call_function sin <built-in method sin..> (linear,) {}
call_function add <built-in function add> (linear, sin) {}

output output output (add,) {}

Table 4.1: Table representation of the torch.fx graph.

Here is a visual I’ve created to see the flow of the tensors.

Figure 4.4: Visualizing the computation graph of MyModule from 4.2

4.1.4 Explanation of torch.fx Features

• Graph Nodes: Each operation in the model is represented as a node in the graph.

This includes both primitive operations like addition and more complex functions like

those provided by PyTorch modules. There are multiple types of nodes.

– placeholder denotes that space for a tensor is allocated. This naturally does not

have any arguments but has a name.
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– get_attr is for finding a parameter from a class, or finding some element from a

tuple of outputs.

– call_function is for function calls like adding, activation functions etc. These

are functions that do not have trainable weights. The built-in function getitem

is for operations like accessing a slice/view/value from a tensor.

– call_module is for calling the forward function of modules (typically neural net-

work layers, but precisely instances of torch.nn.Modules.) These differ from

functions by having trainable weights.

– output denotes what values are returned. This information is very helpful in doing

a liveness analyis pass and removing the nodes that do not contribute towards

outputs.

Each node also has a name to make it unique.

• Edges and Data Flow: The arguments to each node illustrate the flow of tensors

through the model. For instance, add1 takes x and param1 as inputs and add1 itself is

fed into linear1.

4.2 Intermediate Representation

The Intermediate Representation (IR) for PyTorch models is designed to simplify the struc-

ture of neural network models by transforming complex Python code and nested operations

into a more analyzable format. This is achieved through a dual-representation approach:

• Graph Representation: This component visualizes the model as a graph with nodes

representing operations or data entities and directed edges depicting data dependencies.

It focuses on elements crucial for further transformations, particularly for generating

StreamIt code.
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• Flattened Instruction Set: This linear sequence of instructions ensures each oper-

ation in the model generates a new variable, avoiding variable reuse and simplifying

the computational model for sequential processing and hardware translation.

4.2.1 Syntax of the IR

The IR syntax is designed for clarity and straightforward interpretation, where each instruc-

tion specifies an operation and its dependencies explicitly. The formal grammar of the IR is

as follows:

IR ::= Instruction*

Instruction ::= Var '=' Op [ Params ] '(' VarList ')'

Var ::= 'var' Int

Op ::= [a-zA-Z_] [a-zA-Z0-9_]*

Params ::= '<' ParamList '>'

ParamList ::= Param (',' Param)*

Param ::= Int | Slice

Slice ::= 'slice' '(' SliceArg ',' SliceArg ',' SliceArg ')'

SliceArg ::= IntLit | 'None'

VarList ::= Var (',' Var)*

IntLit ::= [0-9]+

Var represents a variable, uniquely identified by an integer (identifier) i.e. a variable var4

has an identifier 4. Op denotes an operation applied to one or more variables. This can be a

layer with parameters or some built-in function or a slice etc. Each line in the IR describes

a unique operation, demonstrating the transformation from input to output.
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4.2.2 Mathematical Justification

The PyTorch computation graph will always have an acyclic dependence, hence the compu-

tation graph and the IR graph is a directed acyclic graph (DAG.) Having a cyclic dependence

is not possible as a value cannot be created from other values that depend on this value itself.

The flattened IR code is one of the possibly several topological sortings over the IR graph.

This is also ensured by having instructions such that if an instruction represents a function

f : Rn → R, vi = f(vi1 , vi2 , ..., vin ; params), where vi, vi1 , .., vin are variables with identifiers

i, i1, ..., in, then i > ij∀1 ≤ j ≤ n. Also as a definition, I will refer to vi as the result of the

instruction and vi1 , ..., vin to be the arguments of the instruction.

4.2.3 Example IR

Consider the module MyModule in 4.1, the IR for that module will be the following.

var0 = placeholder()

var1 = linear<4, 5>(var0)

var2 = sin(var1)

var3 = add(var1, var2)

Notice how the variable identifiers are all unique and increase from 0 to 3. Each instruc-

tion generates a new variable and the functions depend on variables with lesser identifiers

to generate that variable. Also notice how the parameters of the linear layer which are the

number of input and output channels have been parsed from the PyTorch graph and encoded

in the IR for future use.
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4.3 StreamIt Code Generation

Now that the IR is ready, we traverse over the IR graph to generate the equivalent StreamIt

graph. The overall algorithm has a lot of details, so I will go over some examples and

progressively add complexity.

4.3.1 Simple sequential models

A large proportion of models will be just a series of transformations of the input like this

one below:

1 c l a s s CNN(nn . Module ) :
2 de f __init__( s e l f , num_classes ) :
3 super (CNN, s e l f ) . __init__ ( )
4 s e l f . conv_layer = nn . Conv2d ( in_channels=3, out_channels=32,

ke rne l_s i z e =3)
5 s e l f . max_pool = nn . MaxPool2d ( ke rne l_s i z e = 2 , s t r i d e = 2)
6 s e l f . f l a t t e n = nn . F lat ten ( )
7 s e l f . f c = nn . Linear (1600 , num_classes )
8 s e l f . r e l u = nn .ReLU( )
9

10 de f forward ( s e l f , x ) :
11 out = s e l f . conv_layer ( x )
12 out = s e l f . max_pool ( out )
13 out = s e l f . f l a t t e n ( out )
14 out = s e l f . f c ( out )
15 out = s e l f . r e l u ( out )
16 re turn out

Figure 4.5: An example of a module that sequentially does operations on the input

Here is what the IR would look like

var0 = placeholder()

var1 = conv2d<3, 32, 3, 3, 1, 1, 0, 0>(var0)

var2 = maxpool2d<2, 2, 0>(var1)

var3 = flatten(var2)

var4 = linear<1600, 10>(var3)

var5 = relu(var4)

50



In this example, it is clear that we just need a pipeline in StreamIt. For this, the algorithm

by default just creates a pipeline as the top level stream to be returned. Then it iterates

over all the IR instructions in the flattened topologically sorted order. Each instruction is

analyzed for push, pop and peek rates and added as a filter in the pipeline. Since it is not

possible to know all this automatically, we generate a StreamIt code as follows:

1 p ip e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
2 pipe−>add ( conv2d (3 , 32 , 3 , 3 , 1 , 1 , 0 , 0) ) ;
3 pipe−>add ( maxpool2d (2 , 2 , 0) ) ;
4 pipe−>add ( f l a t t e n ( ) ) ;
5 pipe−>add ( l i n e a r (1600 , 10) ) ;
6 pipe−>add ( r e l u ( ) ) ;
7 }) ;

Figure 4.6: Generated StreamIt graph for the CNN module from 4.5

The above code creates a pipeline which has input and output types both as tensor_t,

which is a mock type for the BuildIt system to generate the libtorch’s tensor type in

the second stage of code generation. During each call to pipe->add(), we are adding a

filter. The individual functions are implemented separately, one each for each possible layer,

function or operator. It generates a new filter for the given set of parameters.

4.3.2 ResNet - An example for Duplicate Split Join

Now, let us handle split joins. Consider Residual Networks (ResNet) [17] which introduced

the idea of having residual edges in deep convolutional neural networks. This means that

the input will go through a sequence of convolutional blocks and at the end, the input itself

gets added to the result to have a better influence on the result. 4.7 is an example code for

ResNet block. Multiple such blocks are typically connected in series, but we will look at this

small block for simplicity. Notice in the code that we need a DuplicateSplitter as the

same value x gets passed through the convolutions and also downsample. These two paths

join at the addition.
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1 c l a s s Res idualBlock (nn . Module ) :
2 de f __init__( s e l f , in_channels , out_channels , s t r i d e = 1) :
3 super ( ResidualBlock , s e l f ) . __init__ ( )
4 s e l f . conv1 = nn . Sequent i a l (
5 nn . Conv2d ( in_channels , out_channels , 3 , s t r i d e , 1) ,
6 nn . BatchNorm2d ( out_channels ) ,
7 nn .ReLU( ) )
8 s e l f . conv2 = nn . Sequent i a l (
9 nn . Conv2d ( out_channels , out_channels , 3 , 1 , 1) ,

10 nn . BatchNorm2d ( out_channels ) )
11 s e l f . downsample = nn . Sequent i a l (
12 nn . Conv2d (3 , 64 , 1) ,
13 nn . BatchNorm2d (64) )
14 s e l f . r e l u = nn .ReLU( )
15 s e l f . out_channels = out_channels
16

17 de f forward ( s e l f , x ) :
18 out = s e l f . conv1 (x )
19 out = s e l f . conv2 ( out )
20 r e s i d u a l = s e l f . downsample ( x )
21 out += r e s i d u a l
22 out = s e l f . r e l u ( out )
23 re turn out

Figure 4.7: ResNet Code - An example of DuplicateSplitJoin

Figure 4.8: PyTorch Graph visualization for 4.7
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To handle this, I revised the iteration scheme from just plainly iterating over a flattened IR

instruction list to doing depth first search (DFS) traversal over the IR graph. At each vertex

(instruction), if the result of that instruction is fed as it is to more than one instructions, then

we create a duplicate split join. So, to the top level pipeline, we add a split join, and we keep

the split join open. When we travel on each outgoing edge, we create a new stream inside the

split join. The new streams are created recursively via another recursive DFS traversal. Note

that we have not yet closed the split join with a joiner. Hence, I do not traverse a depth fully.

When I reach an instruction that has multiple arguments, I know that that is a join. Hence,

I return back to let other streams in the split join reach the join. When the last stream has

reached the joining instruction, I close the split join with a round robin joiner, and put the

joining instruction as the next filter in the top-level pipeline. Notice that each individual

stream in the split join will be a top-level pipeline in itself while it is getting generated and it

can have split joins within it too. Also, notice that I put the joining instruction outside of the

split join. This is because a join is created in a PyTorch graph when a function or operation

requires multiple arguments created as results in previous instructions. This means that its

pop rate and peek rate is more than one. So, if we interleave the output channels of the

split join streams with a round robin joiner, we can pop multiple data points at once. For

example, in the ResNet graph, add requires 2 tensors. Each call to the work function will

generate one output from the conv1 - conv2 stream and one output from downsample. The

round robin joiner takes one from each and push two outputs into the stream forward. These

two are absorbed into add. Here is the StreamIt code generated for ResNet(in_channels =

3, out_channels = 64) and after that a visualization of the StreamIt graph.
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1 p ip e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
2 pipe−>add ( dup l i c a t eSp l i t J o i n <tensor_t , tensor_t >([&]( auto s j ) {
3 s j−>add (1 , p i p e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
4 pipe−>add ( conv2d (3 , 64 , 3 , 3 , 1 , 1 , 1 , 1) ) ;
5 pipe−>add ( batchnorm2d (64) ) ;
6 pipe−>add ( r e l u ( ) ) ;
7 pipe−>add ( conv2d (64 , 64 , 3 , 3 , 1 , 1 , 1 , 1) ) ;
8 pipe−>add ( batchnorm2d (64) ) ;
9 }) ) ;

10 s j−>add (1 , p i p e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
11 pipe−>add ( conv2d (3 , 64 , 1 , 1 , 1 , 1 , 0 , 0) ) ;
12 pipe−>add ( batchnorm2d (64) ) ;
13 }) ) ;
14 }) ) ;
15 pipe−>add ( add ( ) ) ;
16 pipe−>add ( r e l u ( ) ) ;
17 }) ;

Figure 4.9: Generated StreamIt code for ResNet

Figure 4.10: Visualization of StreamIt stream for ResNet

Notice that I have not expanded on the streams created for conv1, conv2 and downsample.

These are instances of nn.Sequential which creates a pipeline for each of them.
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4.3.3 Round Robin Split Joins

Our examples so far have only one input and one output. However, this may not always be

the case. Modules can accept more than one input and more than one output. However, our

current scheme of DFS traversal will just try to close a split join, if and when the multiple

inputs ever meet at one instruction. To correct for that, I introduce a root node that is

connected to all the instructions that did not have an incoming edge. However, notice here

that we cannot create a duplicate split join, as we want a round robin split join with weights

1 each so that each input goes to the stream that processes each input. Similarly at the

output, I add an additional node that connects all the instructions that have no outgoing

edge to create a single interleaved stream, maintaining the StreamIt abstraction. Another

place where we can get round robin split joins is if a particular function returns multiple

outputs in a tuple, and each output is handled separately afterwards. Now, to determine if

an instruction having multiple outgoing edges needs to be a duplicate split join or a round

robin split join, I created a check. If a split occurs at an instruction, then it will only happen

when the exact result of that instruction is the argument of multiple future instructions.

Now, if the downstream filters are getitem tensors, which means they are accessing different

parts of the input, then I create a round-robin split join, else a duplicate split join. On the

other hand, if this split is at the root, then it is always a round-robin split join. Here are a

few examples for this.
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1 c l a s s TwoInputs (nn . Module ) :
2 de f __init__( s e l f ) :
3 super (TwoInputs , s e l f ) . __init__ ( )
4 s e l f . conv1 = nn . Sequent i a l (nn . Conv2d (3 , 64 , 3) , nn . BatchNorm2d (64) )
5 s e l f . conv2 = nn . Conv2d (3 , 64 , 3)
6

7 de f forward ( s e l f , x , y ) :
8 re turn s e l f . conv1 (x ) + s e l f . conv2 (y )

Figure 4.11: Two Inputs

Figure 4.12: PyTorch graph (left) and StreamIt stream visualization (right) for Two Inputs

1 p ip e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
2 pipe−>add ( roundRobinSpl i tJoin<tensor_t , tensor_t >([&]( auto s j ) {
3 s j−>add (1 , 1 , p i p e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
4 pipe−>add ( conv2d (3 , 64 , 3 , 3 , 1 , 1 , 0 , 0) ) ;
5 pipe−>add ( batchnorm2d (64) ) ;
6 }) ) ;
7 s j−>add (1 , 1 , p i p e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
8 pipe−>add ( conv2d (3 , 64 , 3 , 3 , 1 , 1 , 0 , 0) ) ;
9 }) ) ;

10 }) ) ;
11 pipe−>add ( add ( ) ) ;
12 }) ;

Figure 4.13: Two Inputs StreamIt code
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1 c l a s s TwoOutputs (nn . Module ) :
2 de f __init__( s e l f ) :
3 super (TwoOutputs , s e l f ) . __init__ ( )
4 s e l f . conv1 = nn . Sequent i a l (nn . Conv2d (3 , 64 , 3) , nn . BatchNorm2d (64) )
5 s e l f . conv2 = nn . Conv2d (3 , 64 , 3)
6

7 de f forward ( s e l f , x ) :
8 re turn s e l f . conv1 (x ) , s e l f . conv2 (x )

Figure 4.14: Two Outputs

Figure 4.15: PyTorch graph (left) and StreamIt stream visualization (right) for Two Outputs

1 p ip e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
2 pipe−>add ( dup l i c a t eSp l i t J o i n <tensor_t , tensor_t >([&]( auto s j ) {
3 s j−>add (1 , p i p e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
4 pipe−>add ( conv2d (3 , 64 , 3 , 3 , 1 , 1 , 0 , 0) ) ;
5 pipe−>add ( batchnorm2d (64) ) ;
6 }) ) ;
7 s j−>add (1 , p i p e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
8 pipe−>add ( conv2d (3 , 64 , 3 , 3 , 1 , 1 , 0 , 0) ) ;
9 }) ) ;

10 }) ) ;
11 }) ;

Figure 4.16: Two Outputs StreamIt code
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4.3.4 Liveness Analysis and Dead Code Elimination

Look at this example PyTorch module.

1 c l a s s LSTMModel(nn . Module ) :
2 de f __init__( s e l f ) :
3 super (LSTMModel , s e l f ) . __init__ ( )
4 s e l f . lstm = nn .LSTM(28 , 128 , 2 , ba t ch_f i r s t=True )
5 de f forward ( s e l f , x ) :
6 out , _ = s e l f . lstm (x , None )
7 re turn out

Figure 4.17: LSTM example to motivate dead code elimination

Here, the self.lstm returns a tuple of two values, but only one is used. The PyTorch

graph created by default is as follows. Now, if we follow the algorithm that we have to

Table 4.2: torch.fx graph for LSTMModel

opcode name target args kwargs
placeholder x x () {}
call_module lstm lstm (x, None) {}
call_function getitem <built-in function getitem> (lstm, 0) {}
call_function getitem_1 <built-in function getitem> (lstm, 1) {}
output output output (getitem,) {}

generate a StreamIt stream, then we will generate the following IR.

var0 = placeholder()

var1 = lstm<28, 128, 2>(var0)

var2 = getitem<0>(var1)

var3 = getitem<1>(var1)

Then, we will detect that the result var1 has two outgoing edges. We generate a split join.

However, we never get to a join because only one output exists. To resolve this issue, we

do a liveness analysis. All outputs are marked to be live and then we traverse the graph

backwards and mark each instruction visited as live. Then while traversing, I ignore the

dead nodes. While determining whether there is need for a split join, I check for the live
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children and not all of them. So now we know that we will ignore the instruction var3 =

getitem<1>(var1) in this. But, the output channel from lstm is generating two outputs for

every input. We cannot just remove the instruction var3 = getitem<1>(var1) and pass

all the output data from lstm into var2 = getitem<0>(var1). For this, I introduce the

concept of a separator filter. I add this filter after every such case where one instruction

is generating more than one output results but not all of them are being accepted into live

streams. The separator filter takes in a vector of weights and denotes how many repetitions

of each output from an instruction are needed downstream. If an output is dead, then that

has a weight 0.

Figure 4.18: Separator Filter in Action

Below I show the transformation of the PyTorch graph and the resulting StreamIt code

and graph.

Figure 4.19: Dead Code Elimination on the IR graph (left), StreamIt stream (right)
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1 p ip e l i n e <tensor_t , tensor_t >([&]( auto pipe ) {
2 pipe−>add ( lstm (28 , 128 , 2) ) ;
3 pipe−>add ( s epa ra to r ({1 , 0}) ) ;
4 pipe−>add ( get i tem (0) ) ;
5 }) ;

Figure 4.20: Output StreamIt code for LSTMModel

Notice how there is not split join also in the final output code.

4.3.5 Fused Instructions

There are a few fairly common programming patterns that will require some modifications

to the StreamIt abstraction or some performance loss. Consider the following module

1 c l a s s Fused (nn . Module ) :
2 de f __init__( s e l f ) :
3 super ( Fused , s e l f ) . __init__ ( )
4 s e l f . f = nn . Linear (4 , 5)
5 s e l f . g = nn . Linear (4 , 1)
6 s e l f . h = nn .ReLU( )
7 de f forward ( s e l f , x ) :
8 y = s e l f . g ( x )
9 re turn y + s e l f . f ( x ) , y + s e l f . h ( x )

Figure 4.21: Fused Split Join example. f, g, h are some functions

Table 4.3: torch.fx graph for Fused

Opcode Name Target args kwargs
placeholder x x () {}
call_module g g (x,) {}
call_module f f (x,) {}
call_function add <built-in function add> (g, f) {}
call_module h h (x,) {}
call_function add_1 <built-in function add> (g, h) {}
output output output ((add, add_1),) {}
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Figure 4.22: Visualizing PyTorch graph for Fused

For this case, notice that in the current state this graph cannot be converted to a StreamIt

graph as there is no clean split join. The two split joins have a common node at g. There

are 2 ways to resolve this -

• Detect such cases by traversing the graph backwards from each join. Create a copy

of each instruction seen this way and recreate the graph. Eventually, we will have a

separate split join for each join instruction. At the inputs, if there are multiple copies

of the input, replace it with a single node and a duplicate splitter. I have currently

implemented a fused instruction replication pass that does exactly this. However,

this means that the fused instructions are executed multiple times which is wasteful.

• Relax the StreamIt abstraction from SplitJoins to splitters and joiners. This however

would require a much higher effort on the side of StreamIt compiler. Also, this might

break some optimizations that rely on the StreamIt abstraction. And lastly, this es-

sentially makes StreamIt the same as connecting individual nodes in a graph losing the

appeal of StreamIt.
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4.3.6 Sequence Models - Static vs Dynamic Loops, Back Edges

Sequence models such as Recurrent Neural Networks (RNNs), Long Short Term Memory

(LSTMs) and Gated Recurrent Units (GRUs) work in a similar way. They have a single set

of weights for all tokens in a sequence. The tokens appear sequentially, for each token, the

operations are done and an output and a hidden state are generated. This hidden state and

the next token are the inputs for the next time step, the function and the weights remaining

the same. Hence it is a very popular technique to create a module for just one time step.

This block contains the weights and one call to the forward function takes in a hidden state

and a token and returns output and next hidden state. Then another module does this for

as many tokens are there. For this, we need a for loop. As we discussed in Chapter 3, a

key advantage of PyTorch dynamic graphs is the ability to only call the recurrent function

on tokens that exist in the sequence and sequences could be of variable lengths. However

such a code is not possible to symbolically execute because the number of loop iterations

for the loop that iterates over the sequence and applies the recurrent functions on it, is

dynamic i.e., dependent on the input. If this size is static i.e. known before runtime, then

the loop gets unrolled just like BuildIt loops get unrolled when iterated by a static variable.

This means we have to preselect the maximum possible sequence length as a static value

and unroll the loop. This approach also solves the issue of a back edge because without

unrolling, the hidden state represented a back edge which is not possible to encode in the

version of StreamIt we presented in Chapter 2.

Figure 4.23: Dynamic vs Unrolled RNN
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Chapter 5

Experiments & Conclusion

In order to split a StreamIt graph of a machine learning model on a multicore system, we will

have to split on some dimension of the input tensor. The key experiments run to evaluate the

performance of this project are trying to split tensors on various dimensions are running this

code on multiple number of cores and analyzing the performance to see if splitting tensors

into multiple parts is a good idea or not.

I used OpenCilk to parallelize the split tensor operations and compared the performance

with libtorch.

I measure the performance of a linear layer computation, split on the batch size. I split

it into two parts and then, in general, with the granularity as a parameter. The performance

with split tensors is not optimal without some optimizations on not copying the tensors,

which will be developed by the group in the future. However, we can see that when tensor is

split into a granularity significantly higher than 1, the performance is comparable (within 3-

4x) to the performance of libtorch. We believe that this is entirely attributed to the copying

of the results of each split tensor into the result, and also due to some vectorization that

breaks with our splitting.
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Number of Workers libtorch Split in 2 granularity 64 granularity 128
1 253284ns 921548ns 1075967ns 859909ns
2 240746ns 922122ns 862070ns 745538ns
4 242876ns 898322ns 654500ns 626017ns
8 249802ns 899796ns 716605ns 697393ns

Table 5.1: Linear layer: 1024x512 inputs, 1024x256 outputs with split tensors

Number of Workers libtorch Split in 2 granularity 64 granularity 128
1 6565µs 18718µs 22376µs 22455µs
2 6384µs 19746µs 24404µs 22796µs
4 6359µs 19143µs 23698µs 20490µs
8 6490µs 19150µs 23546µs 20854µs

Table 5.2: Linear layer: 1024x4096 inputs, 1024x1024 outputs with split tensors

5.1 Future Work

• Developing a scheduler to parallelize StreamIt graphs

• A system that views StreamIt edges as network communication and individual nodes

as being run on different machines in order to run these models on distributed systems.

• Modifying torch tensor implementation in such a way that when we split workloads on

a single machine, no copying of tensors is required.

5.2 Conclusion

From the work of this thesis I conclude that multistage code generation is a fast and powerful

way to compile StreamIt graphs, thus improving the StreamIt compiler. Also, StreamIt

provides a useful abstraction for splitting and distributing machine learning workloads, hence

compiling PyTorch models into StreamIt graphs is a very crucial contribution.
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