An Intermediate Representation for Expressing and
Optimizing Computations in Lattice Quantum
Chromodynamics
by
Richard P. Sollee III
B.S., Computer Science and Engineering and Physics, MIT, 2023

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2024
(© 2024 Richard P. Sollee ITI. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Richard P. Sollee III
Department of Electrical Engineering and Computer Science
May 10, 2024

Certified by: Saman Amarasinghe
Professor of Computer Science and Engineering, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

An Intermediate Representation for Expressing and Optimizing
Computations in Lattice Quantum Chromodynamics

by
Richard P. Sollee III

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

The field of Lattice Quantum Chromodynamics faces massive scaling problems because of
the large iteration spaces of the sums required which scale with the factorial of the number of
atoms represented. The LQCD IR and rewrite system from this thesis allows tackling these
scaling problems quicker and more effectively. The IR allows representing both mathematical
concepts such as products and sums as well as algorithmic concepts such as precomputa-
tions. Our system requires minimal code to initialize the naive algorithm and apply effective
rewrites to increase performance. This development time speedup allows trying various ap-
proaches with ease. The rewrite system allows correctness to be maintained at each step
while being able to drastically change the algorithmic approach in search of better asymp-
totic bounds. Our approaches lead to up to 5x speedups and at worse 2x slowdowns for our
most important problem, but with a better development cycle, requiring only 100s of SLOC
compared to 1000s of SLOC.

Thesis supervisor: Saman Amarasinghe
Title: Professor of Computer Science and Engineering

Acknowledgments

I would like to thank professor Saman Amarasinghe for helping me find this amazing project
to work on and for making the Compilers at MIT (COMMIT) group such an interesting
community. I would also like to thank Mike Wagman and William Detmold for all their
feedback and assistance with developing the system and how it could best be designed to
help the physicists. I am also thankful for the entire COMMIT group for being so welcoming
and providing interesting discussions which I got to appreciate for the last two and a half
years.

I want to give a special thanks to Teo Collin who mentored me on this endeavor. Being
able to work with him was a large motivator to staying on this project. His ability and
willingness to answer my numerous questions while helping me learn more and develop my
skills made this a great experience. His excitement for the work motivated me to strive for
more and it encouraged me whenever we were met with roadblocks. This project began as
my first UROP and stayed my only UROP which developed into this thesis because after
working for a semester with Teo I knew this would be an amazing opportunity to learn from
him.

I also want to thank my family, especially my parents, Dawn and Paul, and my sister
Katie, for their support through my years at MIT. I would like to thank my sister’s bunny
Bufn for providing comfort when I faced problems. Lastly, I am grateful for my friends,
especially those on the lightweight rowing team, for giving me their support and listening to
me ramble about the various problems I faced on this project over the years.

Contents

Title page 1
Abstract 3
Acknowledgments 5
List of Figures 11
List of Tables 13
1 Introduction 15
1.1 Physics Backgroundo 17
1.2 Computation Challenges 18
1.3 Scheduling 21

2 Related Works 23
2.1 Classic DSLs e 23
2.2 Schedule Based DSLs 24
2.3 Rewrite Based DSLs 25

3 System Overview 26
3.1 General Workflow 26
3.2 Frontend Language L 26
3.3 LQCDIR e 30
3.4 Halide Scheduling File L 31

4 Our Intermediate Representation (LQCD IR) 32
4.1 TR Overview 32
4.2 IR Building Blockso 32
4.2.1 Simple Example Programs00 0oL 35

4.3 Formalization 37
4.3.1 Well Formed Sum 37

4.3.2 Well Formed Index Choice 37

4.3.3 Index Expression Ranges 38

4.3.4 Permutation Index Uses 38

4.3.5 Separate Indices L 38

4.3.6 Iteration Index Shorthand 38

4.3.7 IR Isomorphism 40
4.4 Semantics 40
4.4.1 Sum Semantics 40
4.4.2 Other Semantics 41
4.5 IR manipulation tools o 41
4.5.1 Replacement Helpers L. 43
4.5.2 Conversion Helpers oL 43
IR Rewrites 45
5.1 Motivation 45
5.2 Separate Sum 46
5.2.1 Motivation 46
5.2.2 Algorithm 47
5.3 Loop Linearization o 47
5.3.1 Motivation 47
5.3.2 Algorithm 49
5.4 Expression Partitioning 0oL oo 50
5.4.1 Motivation 50
5.4.2 Algorithm 51
5.5 Expanding Permutationso 52
5.5.1 Motivation 52
5.5.2 Algorithm 52
5.6 Constant Propagation oL 54
5.6.1 Motivation 54
5.6.2 Algorithm 55
5.7 Expression Mergingo e 5Y)
5.7.1 Motivation 95
5.7.2 Algorithm 56
5.8 Precomputation over Ranges o oo 57
5.8.1 Motivation 57
5.8.2 Algorithm 58
5.9 Condense Choice e 59
5.9.1 Motivationo 59
5.9.2 Algorithm 59
Case Studies 61
6.1 Baryon 61
6.1.1 Physics Setup 61
6.1.2 Naive Code 61
6.1.3 Rewrites Applied 62
6.1.4 Analysis of Rewrite Impact 63
6.2 Dibaryon-Dibaryono 66
6.2.1 Physics Setup 66
6.2.2 Naive Code 67

6.2.3 Rewrites Applied

6.2.4 Analysis of Rewrite Impact
6.2.5 Impact
6.3 Dibaryon-Hexaquark
6.3.1 Physics Setup
6.3.2 Naive Code
6.3.3 Rewrites Appliedo
6.3.4 Analysis of Rewrite Impact oL
6.4 Hexaquark-Hexaquark
6.4.1 Physics Setup
6.4.2 Naive Code
6.4.3 Rewrites Applied
7 Future Work
7.1 Automatic Algorithmic Optimization
7.2 Automatic GPU Scheduling oo
8 Conclusion
A Large LQCD IR Printouts
A1 Baryon IR o
A.2 Dibaryon Dibaryon IR
A.3 Dibaryon Hexaquark IR
A.4 Hexaquark Hexaquark IR
B Rewrite Code
B.1 Dibaryon Dibaron Rewrites
References

82

84
84
85
98
109

118
118

124

10

List of Figures

1.1

3.1

4.1
4.2
4.3

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2

6.3
6.4
6.5
6.6
6.7

6.8
6.9

SLOC for LQCD correlator computations 19
Diagram showing the work flow from LQCD problem definition to runnable

code . ..o 27
Depicted is a slightly condensed version of the LQCD IR. 33
IR Formalization 39
Operational Semantics for IR to equivalent Python Semantics 42

Separate Sum Formalization The top covers not raising variables while the

bottom covers raising variables. oL 45
Separate Sum Examples o Lo 46
Loop Linearization Formalization 48
Expression Partitioning Formalization 50
Expanding Permutation Formalization 53
Constant Propagation Formalization 55
Expression Merging Formalization 5%)
Precomputation over Ranges Formalization o7
Condense Choice Formalization 59
Baryon Physics Setupo 62

Comparision of various rewrites applied to the Baryon case. The figure shows
the run times with respect to a multiplicative factor increase in the number
of weights we use in the system. Loop linearization takes the scaling to O(W)
from O(W?) while the precomputations reduce scaling by a constant factor. . 64
Dibaryon Dibaryon Physics Setup 66
Timings for a scheduled Dibaryon-Dibaryon on different space sizes for a V100 72
Timings for a scheduled Dibaryon-Dibaryon on different space sizes for a A100 73

Dibaryon Hexaquark Physics Setup 74
Graphs showing how the GFLOPS and runtime change as the lattice size (N)

increases for the Dibaryon Hexaquark case study. 7
Hexaquark Hexaquark Physics Setup 78

Comparision of SLOC for the physicist’s Tiramisu code versus our system.
The Dibaryon Dibaryon case also includes the SLOC for our GPU scheduling
(the other cases were not GPU scheduled). 79

11

12

List of Tables

4.1 Overview of purpose of LQCD IR components

13

14

Chapter 1

Introduction

Lattice Quantum Chromodynamics (LQCD) allows us to predict and further understand
fundamental aspects of our universe. It allows predicting behaviors that occur below atomic
scales such as the strong force between gluons within the proton. Using computations fol-
lowing the theory of the Standard Model of particle physics, these results can be compared
against experimental results to see how well the theory aligns with our observations of the
universe. LQCD also allows predicting the behaviors of quarks in low energy states which
are hard to experimentally obtain.

Lattice Quantum Chromodynamics faces massive scalability problems for computing de-
sired Fuclidean Correlation functions because the naive computation scales factorially in the
number of quarks and polynomially in the spacial domain. LQCD problems allow modeling
the dynamics of changes of quark properties such as position, flavor, and color. Modeling
these involves simulating how every permutation of quarks interacts with every other permu-
tation of quarks. Atoms even as small as carbon for example with 12 protons (and therefore
36 quarks) are too large to simulate with current methods given we would need to iterate
over 36! permutations. Given a lattice of size N, the naive computation for a non-trivial
example such as dibaryon-dibaryon has four nested loops over N as well as a nested loop

over the 36 permutations and another two nested loops over values called the weights which

15

have a size on the order of 200. These nestings give at least seven nested loops which can
lead to massive scaling in the naive case.

Unrolling the permutations of the system results in a typical Einstein summation. Using
this, physicists have been able to hand optimize code to achieve better asymptotics and
runtimes such as reducing the polynomial powers of some factors but these optimizations
take thousands of lines of handwritten code in a Domain Specific Language (DSL) called
Tiramisu [1] for every new problem they desire to solve. The code size blows up in a similar
way to the size of the problem being simulated. This code blowup occurs because typical
DSLs for loop scheduling do not feature ways of changing the algorithm of the program itself
without modifying the code directly.

We seek a way of easing the process of running computations on new problems and
optimizing the runtimes of these computations easily to produce competitive runtimes com-
pared to prior methods while using significantly less code so that different problem sizes
and configurations can be run with minimal setup effort. Our solution uses an intermediate
representation (IR) to encapsulate the mathematics and precomputations of the program.
Using this IR we can then perform rewrites on it to improve the runtime of the algorithm it
represents.

The workflow from LQCD problem definition to executable code goes through three main
stages: problem description, LQCD IR rewrites, and Halide scheduling [2]|. A frontend system
allows the physicists a intuitive way of describing the physics of the specific scenario which is
then converted into our LQCD IR. The rewrites are then applied to optimize the algorithm.
Finally a Halide function file is generated which is then updated with scheduling commands
to target the hardware of the machine we run on, including GPUs. Our approaches leads to
up to bx speedsups and at worse 2x slowdowns for our most important problem, but with a

better development cycle, requiring 100s of SLOC compared to 1000s of SLOC.

16

1.1 Physics Background

Quantum Chromodynamics is an area of theoretical physics which explores the results of the
strong interaction between quarks. This field is able to help predict what happens within
protons on the subatomic level [3]. Lattice Quantum Chromodynamics discretizes the space-
time into a lattice which has a finite number of points and defines field values at each of these
points[4]. Limiting the spacial locations ensures the math can remain tractable by avoiding
infinities that appear when using continuous space at low energies [5|. In addition, limiting
the number of spatial locations limits the degrees of freedom that need to be considered
in the computations which allows computations to be done in physical situations where
nonlinearity makes other methods hard or impossible.

Several key attributes make up the summations used in computing the Euclidean Corre-
lation function of a system. The equations feature sums over space for every spacial location
used (ie 2 locations with quarks means 2 loops over the size of the lattice) as well as 2 loops
over a value called weights. The weights are used to allow accessing various indices of the
arrays while tying those to a specific scaling factor. The sums also contain accesses into ar-
rays based on the iteration values to retrieve the values to be multiplied. These accesses can
be direct, where the iteration index is used to access part of the array directly, or indirect,
where the iteration index is used as input to a function which maps to a much smaller range
which is used to access part of the array.

Throughout this thesis we will use Equation 1.1 as a running example to show how
different parts apply to our overall work. The structure of the equation matches that of
the simpler LQCD problems closely because of the following components: loops over space
(x,y), loops over weights («, 3), direct accesses to arrays, and indirect accesses to arrays.

We also define f and g to map their domains to the numbers in the range 0 to r — 1.

17

w

Y d@)d(y) Y wl@)w(B) x S(x, f(a),9(8)) x Sy, f(B), 9(a)) (1.1)

a75

Prior work by physicists has allowed them to transform the runtimes of the weight loops
from O(W?) to O(W) (where W is the number of weights) as well as reduce situations with
three loops over space to only two thereby taking the spacial loop asymptotics from cubic
to quadratic. These improvements were based on the physical structure of the system. One
example used precomputations over items in the formula relating to specific quarks to make
precomputations that they named hadronic blocks[6]. Another paper which introduced a
multi-baryon system used precomputations over the mathematical structure representing
the baryons to make precomputations they call baryon blocks |7]. These optimizations had
to be done by hand and required thousands of lines of code which makes these optimizations
difficult to implement for larger problems. The scaling of these lines of code on different

architectures can be seen in Figure 1.1.

1.2 Computation Challenges

The long runtimes for computing these results can be attributed to three primary character-
istics: many loops over the lattice space, permutations of accesses needing to be considered,
and indirect accesses, causing various problems in utilizing hardware architectures. Some of
these challenges resemble those faced by the Tensor Contraction Engine (TCE)[8] such as our
partitioning of expressions to reduce arithmetic and balancing the size of precomputations
with executing equivalent math statements repeatedly. However, several of our challenges
diverge from those handled by TCE such as out of order and indirect accesses in memory;,
iterations over permutation groups, and merging equivalent math expressions by finding the
mapping of their isomorphism. These terms will be covered further on in chapter 4.

The naive version of some computations such as dibaryon-dibaryon require nested loops

18

SLOC vs. Program

4000

3000

2000
Q
(e}
—
»n

1000

0

Fused Baryon Fused Baryon Fused Fused Fused
Block Block GPU DiBaryon DiBaryon DiBaryon
Blocks Blocks Blocks GPU
Threaded
Program

Figure 1.1: SLOC for LQCD correlator computations

that cause a quartic scaling with the size of the lattice which can cause runtimes to increase
quickly given the large lattice sizes which are desired. Reducing these scalings requires finding
the factors of the summand which are not dependent on the same indices among those being
iterated over for the sum. Finding factors which depend on different indices allows applying
rules governing summands and multiplications to have the corresponding factors iterated
over separately instead of a nested fashion to reduce the scaling of the equation. The very
simple example in Equation 1.2 can have its asymptotic bounds reduced though this process

into Equation 1.3.

N

> F(x,2) x F(y, z) (1.2)

z?y’z
N

Z(Y = éF(m, 2)in Y x Y) (1.3)

z

19

The equations describing the system require different permutations of the structure to be
considered during computation which means that many different possible access functions to
the data must be used at different points as shown in the example in Equation 1.4 where p
determines what access function is applied on x to access F'. These large numbers of combi-
nations of accesses means that branching must occur to account for the possible accesses or
that nonbranching code runs for each access pattern but then each access pattern is unable to
make use of similar accesses in other sections. Each permutation being iterated over governs
how the memory is being accessed and each individual instance of the permutation ordering
can depend on different indices. These varying dependencies mean that one permutation
order can depend on an index that another permutation order does not use. In order to take
advantage of the potential speedups which are possible for each permutation ordering, the
permutations may need to be expanded to the indices they depend on (meaning we unroll
the corresponding loop) so the structure of the equation can be determined. Determining
the structure allows finding what permutation orderings have isomorphic structures and then
applying the proper rewrites to speed up each equation as much as possible given its unique

structure.

>3 Flla@), B), (@)][p) (1.4)

Many of the accesses to the data in memory are determined by taking the iteration vari-
able and mapping it to a different value which leads to non-consecutive memory accesses
thereby causing slowdowns. Arranging the loop orderings and some of the precomputa-
tions can help alleviate this potentially but overall the indirect accesses still pose a major

slowdown.

20

1.3 Scheduling

A program can be separated into two distinct but related parts: the algorithm and the
schedule. The algorithm is responsible for what loops need to be done, what floating point
operations need to be done, and other similar operations. The schedule is responsible for
defining how the results of the operations of the algorithm are stored and in what order the
operations occur (including optimizations such as loop tiling)[2].

By separating the algorithm from the schedule, it becomes easier to optimize because you
can reorder the scheduling while leaving alone the code defining the algorithm. Many domain
specific languages (DSLs) such as Halide and Tiramisu take this approach to representing a
program.

Domain Specific Languages (DSLs) are a powerful tool which allow succinctly expressing
problems within the domain in which the language is designed to be used. The more limited
feature set of a DSL compared to a full programming language allows for the DSL to leverage
the context of the domain to create optimizations which can not be assured to be correct in
a traditional programming language such as the scheduling commands described above.

The original physicist code took advantage of Tiramisu [1], a polyhedral compiler, to
write their algorithms and do scheduling for the program. While Tiramisu allowed flexibility
of loop structures, it lacked the same level of support as other compilers and DSLs. This lack
of support and better understanding of the use cases for the LQCD computations has lead
to Halide, a programming language for image processing pipelines|2|, being seen as a better
fit here with better community support. As mentioned above, Halide allows separating the
algorithm from the scheduling commands which allows approaching our optimizations at
different levels.

While these DSLs can allow some ease of optimizations by separating the schedule and
algorithm, they prevent expressing some optimizations. The issue stems from the inability to

change the algorithm when attempting to schedule the program. Some optimizations require

21

the algorithm itself to be changed to allow a desired scheduling, which these DSLs do not

support doing without directly modifying the code creating the initial algorithm.

22

Chapter 2

Related Works

The past research most related to this project lies in the field of compilers and Domain
Specific Languages (DSLs). DSLs allow describing problems efficiently in their respective
domains and providing optimizations based on these domains and other principles to generate
efficient code easily, like we hope to do with LQCD. These DSLs can be roughly categorized

into three types: classic, schedule based, and rewrite based.

2.1 Classic DSLs

Classic DSLs provide little to no control to the user and act as a classic compiler. The steps
in using these DSLs involve simply describing the problem in the DSL and then letting the
DSL compile the result. A simple example could be an APL (Array Processing Language)
compiler where you describe your algorithm in APL and it compiles it by applying all the
optimizations it deems possible [9]. One similar to our work, called the Tensor Contraction
Engine (TCE), involved taking quantum chemistry problems, representing them in an inter-
mediate representation, and applying automatic optimizations to them. Their work focused
on getting the problems easily specified in a general tensor representation which allowed
general compiler loop optimizations for tensors to occur with some domain specific opti-

mizations [8]. SQL is another simple example commonly used in databases where queries on

23

the database are expressed in the language and the query engine decides the most optimal

way of executing them [10].

2.2 Schedule Based DSLs

Schedule based DSLs have an additional step in their process where you add scheduling to the
algorithm after describing the algorithm in the DSL and before compiling. Scheduling com-
mands typically encompass processes such as memory management, loop optimizations, and
the use of accelerators, such as GPUs. As mentioned in section 1.3, Halide allows for defining
one’s algorithm, primarily through loop structures and operations, and then scheduling the
order of the loops and operations separately to add optimizations such as tiling [2]. A simple
example from their tutorials can be seen in Listing 2.1 where a function is defined and the
loop ordering is changed. Halide also has support for autoscheduling which allows one to cre-
ate their algorithm in Halide and then have the autorscheduler pick a good schedule without
needed to have a deep understanding of the architecture [11]. The Tiramisu compiler, also
mentioned above, supports more complex iteration spaces than Halide but lacks the same
level of support and maintenance of the codebase [1]. TACO is a tensor algebra compiler
which allows for defining tensor algebra expressions and having the computations sched-
uled based on the density of the tensors involved. Later work called WACO automatically
schedules the computation and storage format in TACO based on the sparsity pattern|12].
Taichi was written to assist in 3D visual computing to take advantage of sparsity that occurs
in those domains but allow the user to define their own data structures[13]. With images
and graphs, Opt allows for least squares problems in graphics which can be used to easily
generate different implementations of the desired function with varying tradeoffs so that
options can be explored easily [14]. Graphlt works in a similar way to Halide but for graphs
where the user can define the algorithm over a graph that they want and then separately

add scheduling like parallelism [15].

24

I import halide as hl

2x, y = hl.Var("x"), hl.Var("y")

3 gradient = hl.Func("gradient")

+ gradient[x, y] = x + y

5 gradient.reorder(y, x) # reorder the loops

¢ output = gradient.realize([4, 4])

Listing 2.1: Halide example (simplified tutorial 5 from the website)

2.3 Rewrite Based DSLs

Rewrite based DSLs have an additional step in their process where you can apply rewrites
to the algorithm after describing the algorithm in the DSL and before compiling. These
rewrites allow manipulating the algorithm while ensuring correctness. An early example of
this pattern is the Elevate strategy language that can be used to modify an algorithm written
in Rise, a functional language similar to Halide [16]. The Elevate language allows modifying
the algorithm itself in ways a schedule cannot which they demonstrate in their paper by
contrasting their work with TVM [17], a schedule based DSL that is very similar to Halide.
Being able to prove the soundness of rewrites is desirable leading to the development of
ATL, a framework written in Coq, which allows justifying the correctness of transformations
while being able to achieve schedules similar to those of Halide [18]. SPIRAL allows writing
floating-point code targeting parallel platforms by using a rewrite system to ensure correct-
ness between the kernel that the user creates and the resulting program that gets run [19].
Spiral is an older stlye compared to the above because the rewriting is done automatically

most of the time, meaning the rewriting is not considered part of the programming process.

25

Chapter 3

System Overview

3.1 General Workflow

The workflow from LQCD problem definition to executable code goes through three main
stages seen in Figure 3.1. The problem definition is first described using a frontend language
created to allow the physicists a intuitive way of describing the physics of the specific scenario.
This frontend is then converted into the LQCD IR which forms the crux of our process and is
described in chapter 4. Once converted to the LQCD IR, the algorithm can be transformed
using rewrites described in chapter 5. Once the rewrites are applied, we proceed to the
third stage of a generated Halide function file. Once this file is generated, Halide scheduling
commands are added to the file to allow optimally targeting the hardware of the machine

we run on. Finally, the Halide file runs to carry out the computation and deliver a result.

3.2 Frontend Language

Our frontend language models LQCD problems at a level understood by physcists. Though
this is not the focus of this thesis, we will describe it briefly here. We will attempt to give
intuition for what the naive programs will look like based on a few objects.

At the top level of an LQCD program, a physicist declares three types of sizes and

26

[Frontend j

Conversion to IR

4 LQCD IR N

Asymptotic Constant Factor

Optimizations Optimizations

[Halide Function j

Architecture

Optimizations

[Executable j

Figure 3.1: Diagram showing the work flow from LQCD problem definition to runnable code

27

indices for these sizes: external, lattice, and rank. External indices will iterate over different
problems while lattice and rank indices will form a top level reduction. So the naive program
will be a loop over the range of the external indices followed by a reduction over all rank
and space indices. At the bottom of this loop nest, lies one more group of loop nest and a
single statement, that are determined by the final inputs to the program: the structure of
the quarks and the structure of the weights.

The physicist inputs the structure of the quarks as a list of n regular and n anti quarks
of a given flavor (effectively an enum type in our system), a map from a quark to a lattice
index, and a flavor by flavor matrix that describes what quarks can interact with each other.
Our system forms group of permutations that ensures that every quark of a given flavor can
interact with every eligible anti-quark of a given flavor. This determines the last loops: they
are a reduction over all of these permutations. This also determines that there will be n
accesses to the propagator, an (at minimum) 8 dimensional complex tensor that is flavor by
flavor by lattice by lattice by spin by color by spin by color. The specific meanings of spin
and color do not matter here, but the n access to the propagator will be determined by a
quark and a permutation of this quark into an anti-quark. Each access will use the space
and flavor correspond to the quark and anti-quark pair of the permutation. The 2n spin and
color accesses in this product of n propagator accesses at the bottom of the permutation,
rank, lattice, and external loops will be determined by the final input: the weight tensors.

Lastly, the physicist inputs a list of weight tensors: these are tensors that are associated
to quarks, lattice indices, external indices, and rank indices. A single access to each weight
tensor will be part of the product of propagators determined above. The meaning of the
latter three objects is then clear: the weight tensor will be accessed by these indices. The
quark associations is less clear. Each quark can only be associated to one weight and this
association implies an additional input to the generated program: two indirection maps, one
for spin and one for color, that are accessed by some subset of the indices associated to the

tensor and that are used to access the spin and color components of the propagator. Thus,

28

the accesses to the spin/color of the propagator are indirection maps accesses determined
by the quark and the permuted anti-quark as well as the weight tensors descriptions. These
indirection thus tie together the weight tensors with the product of propagators.

To summarize our final program, we note that it is a description of the initial rank, lattice,
and external indices/sizes, as well as the structure of the quarks and weights in this program.
To summarize the output program, we note that the program is a loop over external indices,
followed by a reduction over lattice, external, and permutation indices. Finally, we note
that a single statement lies in this reduction: a product of accesses to the propagator and of
accesses to the weight tensors where the accesses are determined by the quark structure and
the indices associated to the weights. The frontend is evolving as we understand physicists
better so this description may change and we do not commit to a full description here. We
provide this description to give a sketch of the types of programs we will see represented in

the LQCD IR. An example is shown in Listing 3.1 and the resulting naive IR is Listing 6.2.

29

I N = latticeSize ("N")
2 src = latticeIndex("s", True, N)
3 snk = LatticeIndex("s", False, N)
i ul = quarkField(u, src)

5 d1 = quarkField(d, src)

6 u2 quarkField (u, src)
7 ubarl = quarkField (ubar, snk)
8 dbarl = quarkField(dbar, snk)

9 ubar2 = quarkField(ubar, snk)

10 wRnkSize = size("w_src_1_rank")
11 wRnkSrc = rankIndex("w_src_1_rank", wRnkSize)
12 wRnkSnk = rankIndex("w_src_2_rank", wRnkSize)

13 spatialWeightsSrc = spatialWeights("psi", [src])

14 quarkWeightsSrc = quarkWeightVector ("w_src", [ul, d1, u2], rankIdxs=[wRnkSrc], indexRankIdxs

=[wRnkSrc])

spatialWeightsSnk = spatialWeights("phi", [snk])
16 quarkWeightsSnk = quarkWeightVector ("w_snk", [ubarl, dbarl, ubar2], rankIdxs=[wRnkSnk],
indexRankIdxs=[wRnkSnk])

17 srcField = Field("Baryon", [ul, d1, u2], [spatialWeightsSrc, quarkWeightsSrc])

18 snkField = Field("antiBaryon", [ubarl, dbarl, ubar2], [spatialWeightsSnk, quarkWeightsSnk])

19 g8 = Prop("s")
20 propIndex = [L(False), C(3, False), S(4, False),L(True), C(3, True), S(4, True)]
21 prop = DiagonalProp([qS, qS], [u, d], propIndex)

22 computation = inner (srcField, prop, snkField)

Listing 3.1: Baryon Frontend

3.3 LQCD IR

While the LQCD IR is described in detail in chapter 4, we will have a short overview here
of its use in the system as a whole. The LQCD IR is primarily composed of <expr>s,
<index>es, and <indexExpr>s. The various <expr>s such as Sum, VarAccess, and Mult
represent mathematical or algorithmic expressions we can carry out to compute our result.
The <index>es represent the domains we must iterate over in our Sums to compute the
results. The <indexExpr>s allow describing how we can take an <index> we iterate over

and use it or modify it to perform a lookup on a variable in the program.

30

The LQCD problems we face can be translated into summations over various indices with
summands that are a product of accesses to variables. In addition, some of these variables
have accesses using an intermediate mapping from the iteration index to a different range.
The described parts above of <expr>s, <index>es, and <indexExpr>s allow us to express
these aspects of the computation and additional parts such as the Let <expr> allow denoting
optimizations such as precomputations.

The primary goal of the LQCD IR in the system is to allow applying rewrites to modify
the algorithm we want to run while ensuring we maintain correctness. Therefore, the main
power of the LQCD IR comes from the rewrites we apply to it seen in chapter 5. The
rewrites can be categorized into those which offer speedups to the algorithm and those
which make the IR simpler to read or add additional substeps in the computation which can
be useful when scheduling on hardware. Of the rewrites which offer speedups, they can be
grouped into asypmtotic optimizations, which change the O runtime of the program, and

constant factor optimizations, which change the scaling factor of the O runtime.

3.4 Halide Scheduling File

Generating a Halide scheduling file allows us to have a rerunable file to execute the problem
but does not require running the entire pipeline every time one wants to run the compu-
tations. Most importantly, the Halide scheduling file allows one to add Halide scheduling
instructions on top of the algorithm generated in Halide by the LQCD IR so that one can
get maximal output from their machine. The user wants to consider optimizations such as

GPU scheduling, cache use for precompute sizes, and parallelism to get faster speeds.

31

Chapter 4

Our Intermediate Representation

(LQCD IR)

4.1 IR Overview

To represent the mathematical structure and optimizations of our program, we define an
intermediate representation we call the LQCD IR. In designing the IR, we needed to con-
sider the mathematical operations that were necessary as well as algorithmic steps such as
precomputations. This lead to adding mathematical constructs such as Sum, Mult, and Conj
as well as algorithmic and memory steps such as Let and VarAccess. These computations
also involve many forms of indirect memory accesses so the <indexExpr> type was needed to
encapsulate all the possibilities of accesses while the <index> type encapsulates all the dif-
ferent types of loop iterations, namely loops over a linear range and loops over permutation

groups.

4.2 IR Building Blocks

The main building block of the program is the <expr> which can represent many different

operations. A Sum defines a looping stucture to generate a tensor with free indices (which

32

(perm) ::= Sym(int k)
| Cross((perm)* perms)
| Stab((perm) perm, int k, (indexExpr) v)

(indexSize) ::= ConstantSize(int size) | PermSize((perm) perm)
(index) = (name iname, (indexSize) high val)

(indexExpr) ::= Index((index) access)
| ConstIndex(int access)
| IndexFunc({var) var, (indexEzpr)* access)
| IndexChoice({indexExpr)* vars, (indexExpr) access)
| PermIndex(({indez) perm, (indexExpr) access)

(var) = (name vname, int num_ dim)
(assign) = ((var) var, (expr) rhs, (index)™ lhs)

(expr) == Sum((index)* free indices, (index)* iter indices, (expr) summand)
Mult((expr)* exprs)

Add((expr)* exprs)

Const(float val)

Conj((expr) to_conj)

Let({expr) let expr, (var) Iname, (expr) use expr, (index) * lhs)
MultiLet((assign)™ assigns, (expr) use expr)

VarAccess((var) v, (indexEzpr)* indices)

ExprChoice((expr)* exprs, (indexExpr) access)

Sign((indez) perm)

Det({var) v, int size, (indexExpr)* above)

Figure 4.1: Depicted is a slightly condensed version of the LQCD IR.

33

LQCD IR Type Purpose

Sum Define a summation with free indices that define the re-
sulting dimensions and iteration indices which we perform a
reduction over

Mult/Add Perform multiplication /addition operations between expres-
sions

Const Represent a constant value

Conj Obtain the complex conjugate of an expression

Let /MultiLet Allow performing one or more precomputations which are
then used in another expression

VarAccess Lookup values from memory based on <indexExpr>s

Sign Get the sign of a current iteration of a permutation

ExprChoice Allow selecting which expression to use depending on an
<indexExpr> value

<index> Define iteration spaces over fixed ranges or permutation
groups

Index Used to have an <indexExpr> where the value depends on
an <index> being iterated over

ConstIndex Used to define an <indexExpr> with a fixed value

IndexFunc Allow a memory lookup based on an <indexExpr> to be
used as its own <indexExpr>

IndexChoice Allow selecting which <indexExpr> to use depending on an
<indexExpr> value

PermIndex Allow accessing a part of the permutation of the current
iteration (ex: accessing the Oth index of the current iteration
of the symmetric group 3)

Sym Define a symmetric permutation group iteration

Stab Stabilize a permutation group at a given index to be a value
dependent on an <indexExpr>

Cross Define a permutation iteration space that is the cross prod-

uct of other permutations

Table 4.1: Overview of purpose of LQCD IR components

34

could be used to access the result) and reduction indices (which are looped over and also
fed to the summand <expr>). Mult and Add are those respective n-ary operations between
their children. Const represents constant numbers. Conj indicates the result needs to be
conjugated (we are operating on complex numbers). Sign allows accessing the sign of a
permuation which is being iterated over. Let and Multilet represent precomputing an
expression (or expressions), assigning it to a variable (or variables), and evaluating the use
expression with the new variables defined. VarAccess allows indexing into an input or Let
variable with given <indexExpr>s. Det is computing the determinant of a section on a
matrix variable. ExprChoice allows choosing what expression to evaluate depending on an
<indexExpr>.

For specifying iterations and accesses to variables we define <index> and <indexExpr>
respectively. The <index> is used for specifying variables that loop with value 0 up to
<indexSize> — 1. The <indexExpr> is used for accessing values dependent on the iteration
state. Index is used to access with a given <index> value defined in a Sum. ConstIndex is a
constant access into a variable. IndexFunc accesses a variable with an <indexExpr> and uses
that result as its value. IndexChoice, similar to ExprChoice, chooses what <indexExpr> to
use depending on a given <indexExpr> value. In addition to normal iterations over a range,
we allow iteration over a permutation group. A Sym <perm> represents an iteration over a
symmetric group of a given size. A Stab is when we fix a specified index of the permutation to
a value given by an <indexExpr>. A permutation iteration is created when the <indexSize>
is a PermSize and is used as an access with PermIndex by taking a PermSize type <index>

and an <indexExpr> to choose which value of the current permutation to use as the value.

4.2.1 Simple Example Programs

Below are several example programs written in the LQCD IR to show basic behaviors of
the system. The matrices_match function runs the generated IR given as the first argument

with the inputs of the second argument and ensures the result matches the third argument.

35

V)

w

V]

V]

!

Listing 4.1 shows that the number of iterations that occur over a permutation is the correct
size of the corresponding symmetric group. Listing 4.2 ensures that the sign of each permu-
tation instance is correct as this property shows up in our computations. Listing 4.3 shows
how a simple matrix multiplication can be executed in the IR.

perm_size = 5
perm_sum = LQCD_IR.Sum(
[, [LQCD_IR.index(’x’, LQCD_IR.PermSize (LQCD_IR.Sym(5)))], LQCD_IR.
Const (1.0)
)
expected = factorial (perm_size)

matrices_match(perm_sum, {}, expected)

Listing 4.1: Permutation Size Example (the number of iterations should match the factorial

of the size of the symetric group)

perm_size = 5
perm_index = LQCD_IR.index(’x’, LQCD_IR.PermSize(LQCD_IR.Sym(perm_size)))
perm_sum = LQCD_IR.Sum/(
[1, [perm_index], LQCD_IR.Mult(LQCD_IR.Const(1.0), LQCD_IR.Sign(
perm_index))

)

matrices_match(perm_sum, {}, 0)

Listing 4.2: Permutation Sign Example (the signs should cause the result to sum to 1)

inp_ABCD is a dictionary mapping ’A’ and ’B’ to numpy arrays of
dimentions (MATRIX_SIZE, MATRIX_SIZE)

MATRIX_SIZE = 10

MATRIX_SIZE_IR = LQCD_IR.ConstantSize (MATRIX_SIZE)

A_var, B_var = LQCD_IR.var("A", 2), LQCD_IR.var("B", 2)

i_ind, j_ind, k_ind = LQCD_IR.index("i", MATRIX_SIZE_IR), LQCD_IR.index ("]
", MATRIX_SIZE_IR), LQCD_IR.index("k", MATRIX_SIZE_IR)

i_ind_expr = LQCD_IR.Index(i_ind)

I

j_ind_expr LQCD_IR.Index(j_ind)

36

3

9

16

17

18

k_ind_expr LQCD_IR.Index(k_ind)

mat_mul_AB LQCD_IR. Sum/(

[i_ind, j_ind],
[k_ind],
LQCD_IR.Mult (
LQCD_IR.VarAccess (A_var, [i_ind_expr, k_ind_expr]),
LQCD_IR.VarAccess(B_var, [k_ind_expr, j_ind_exprl]),
),
)
expected = np.linalg.multi_dot([inp_AB[’A’], inp_AB[’B’]1])

matrices_match(mat_mul_AB, inp_AB, expected)

Listing 4.3: Matrix Multiplication Example

4.3 Formalization

In this section, we will be defining several terms for IR structures to make references to them
later when discussing the rewrites that have been implemented. In addition we will define

how we describe parts of the IR in latex mathematically.

4.3.1 Well Formed Sum

When we depict a Sum in LaTeX we will have the free indices on top and the iteration indices
on the bottom. We define a well formed Sum (WFS) as a Sum where its iteration indices and
free indices are disjoint and all free indices appear in the parent sum if there is a parent (as

shown in Figure 4.2a).

4.3.2 Well Formed Index Choice

We define a well formed IndexChoice to be an IndexChoice where the range of the access

<indexExpr> (which we define in Figure 4.2¢) is the same as the number of IndexChoice

37

options. This definition can be seen in Figure 4.2b.

4.3.3 Index Expression Ranges

For the various <indexExpr> types defined in the LQCD IR, we define a range property
(rng) which gives the size of the range so that an <indexExpr> with range k can only output

integers [0, k). These range calculations for the options can be seen in Figure 4.2c.

4.3.4 Permutation Index Uses

In some cases, the LQCD IR type requires an <index> but it actually requires a more
strict type of an <index> with a high val of type PermSize. This occurs with PermIndex
and Sign as seen in Figure 4.2d. These cases require a permutation index because their
behavior is defined with respect to a given permutation. For example, a PermIndex accesses
an index of the array representing the current permutation and Sign represents the sign of

a permutation so neither of these operations would be valid on a non-permutation.

4.3.5 Separate Indices

Many times we have a set of indices which we need to separate into two disjoint sets so we

define this behavior in Figure 4.2e.

4.3.6 Iteration Index Shorthand

We often use a permutation of a symmetry group of some size k so to shorten the notation
we define a notation symPerm shown in Figure 4.2f. We also often use the iteration over a

constant size k so to shorten the notation we define a notation constlter shown in Figure 4.2¢g.

38

X=7) InJ=0
X I WFS

X=7 XFWFS Y=YtX KnL=0 JCKUL I¢KUL

Y = WFS
(a) Well Formed Sum (WFS) Formalization

type j = <indexExpr> rng j =n VJ;, type J; = <indexExpr>
I'-WFIC I J;

(b) Well Formed Sum IndexChoice Formalization

WFIC

i = <index>(high val = ConstantSize(r;)) I = Index(i)
IFmgl=nr
I = ConstIndex(k)
IFmgl=k
Jj s.t. type j = <indexExpr> X =var s.t. max X =k [= IndexFunc(X,)
IFmgl=k
WFIC I J; VJi,mg J;=1;

I Frg I = maxr;

(c) <indexExpr> ranges

Sign(i) PermIndex(i, j)

i = <index>(high val = PermSize) i = <index>(high val = PermSize), j = <indexExpr>

(d) PermIndex uses

I = set of <index> s.t. ||| > 2

indSep I K L
K, Lst. KUL=I,KNL=0,|K|>1,|L|>2
(e) Separating Indices into Disjoint Sets
X = symPerm k
symPerm k

X = <index>(high val = PermSize(Sym(k)))
(f) symPerm Notation

X = constlter &k
X = <index>(high val = ConstantSize(k))

constlter k

(g) constlter Notation

Figure 4.2: IR Formalization

39

4.3.7 IR Isomorphism

We define two IR structures to be isomorphic (notated as iso AB for A and B being iso-
morphic) using a conversion from the IR to a graph structure. If the graph structures are
isomorphic then we have an isomorphism of the IR structure. Converting the IR elements
to a graph involves generating a tree structure with Const, Sign, and VarAccess being the
leaves. To convert an IR <expr> to the graph structure, we first create a node representing
the current expr. Then if it is not a Const, Sign, or VarAccess, we recursively create the
nodes for each of its children in the IR and add edges between the current node and the
children. Next we label the current node with its type (ex: Sum, Const, etc.). If the current
node is a VarAccess, we also label the node with the ranges of each of the accesses. This
labeling ensures an isomorphic mapping needs to map nodes to the same types and the

VarAccesses have the same dimensions.

4.4 Semantics

We will now define how to convert a given LQCD IR <expr> to an example equivalent
program. While the actual conversion to Halide is slightly different, the algorithmic structure
of what generates the final answer is the same. The conversion process is recursive and uses
the IR’s tree-like structure. Some operational semantics of conversion to python code are
shown in Figure 4.3. The translations make use of I' to represent context mappings of names

to values.

4.4.1 Sum Semantics

Given a Sum, for every free <index> and iteration <index>, that we have not already created
a for-loop for at a higher level, we create a new for loop for each <index>. Before the loops

we define a variable with all the free indices as dimensions and initialize all accesses to 0.

40

In the body of the innermost loop, we evaluate the summand with a recursive call having
the <index>es now defined with their current loop value. We then access the result variable
at the points defined by the current free indices and add to it the result of the evaluated

summand.

4.4.2 Other Semantics

Add, Mult, Const, Conj, and Sign all trivially do the actions expected based on their defini-
tion after having recursively evaluated their children. When encountering a Let/Multilet,
shown in Figure 4.3c, you create the let variable and assign it the result of recursing on
the let expression. Then the use expression runs with the let variable now defined in its
environment. This precomputation can occur within the nested loopings of Sums and Lets.
For a VarAccess, shown in Figure 4.3a, the <indexExpr> for each access is evalutated and
then the results are used to access the memory location of the <var> specified. For an
ExprChoice or an IndexChoice, the <indexExpr> for the access is evalutated and then the

<expr>/<indexExpr> at the selected index of the options is evaluated.

4.5 IR manipulation tools

To ease the process of creating the rewrites and choosing specific locations of the IR to apply
them, many helper functions were created. For the IR we define a key to a location in the
IR to be a list of integers where the first integer of the list tells which constructor child to
traverse down. This leads to a recursive key structure for identifying nodes where an empty
list identifies the current node, the list [0] selects its zeroth child (which depends on the type
of the current node), the list [0, 2] first selects the zeroth child then the second child of that

node, and so on.

41

neZs I'kFvar(x,n)—v TEVEe{l, ... n}i—

[' F VarAccess(var(’x’, n), [i1, ..., z,]) = 0[J1,- -, Jn)

(a) VarAccess translation

LOOP-SUM(f, i, - - -, ik Jos - - - 5 jn) =
result[:,...,:] =0
for y0 in range(rng jo) :

for yn in range(rng ji) :

for z0 in range(rng i) :

for xn in range(rng i) :
result[y0, ..., yn] += f(x0,... xk,y0,...,yn)

X = Zfsummand I'={iy,...;iey J={j,.-.,Jn} T Fsummand — f(...)

py
T+ X — LOOP-SUM(f, 4o, - . ., ik, jor - - -+ jn)

(b) Sum translation

I = IndexChoice([Jy, ..., Jn-1],7) X =LetY(J)=F(J)in P TFP—p(..)

TEX =Y —py F(J): pl..) Y

(c) Let translation

Figure 4.3: Operational Semantics for IR to equivalent Python Semantics

42

4.5.1 Replacement Helpers

There are three main helpers we defined which allow carrying out an action involving a
location in an IR tree defined by a given key. The helper get_from_ir takes in a tree
and key and returns the IR node located at the given position in the tree. The helper
replace_in_ir takes in a tree, key, and new value and replaces the key position in the tree
with the new value provided. These functions are very helpful for extracting parts of the IR,
rewriting them, and placing them back in the structure. This process was repeated often
enough to define another helper, run_on_loc, which takes in a tree, key, and a function.
This helper extracts the node at the given key position in the tree, then passes it to the
provided function, and finally takes the result of that function and places the result in the
tree at the key location. This helper makes rewrites much simpler to apply by allowing
simply specifying the location to apply the rewrite and passing the rewrite function or a
lambda function that uses it.

We have also defined a find_and_replace_in_ir helper which takes in a tree, a needle
function, and a replacement function/value. This helper allows defining a function to apply
to all parts of the tree and if the function returns true then the location in the tree is replaced.
If the replacement type is simply a value, then the locations where the needle returns true
have that new value placed. If the replacement type is a function, then the node which passed
the needle function is given to the replacement function and the return value is placed at the
original location. This flexibility of a replacement function allows having the replacement
value depend on the current nodes complete properties which makes it very flexible for use

in rewrite rules.

4.5.2 Conversion Helpers

For ease of dealing with the trees created by Mult and Add, helpers have been created

to convert the nodes to arrays and back. The get_mult_tree and get_add_tree take in

43

Mult and Add nodes respectively and return an array of all the children which are being
multiplied /added. This eases the process of iterating through items being multiplied /added
and factorizing them during rewrites. To convert back, the functions prod_ir and sum_ir
take in an array of nodes and return an IR node that has the items of the array all being

multiplied /added.

44

Chapter 5

IR Rewrites

5.1 Motivation

To allow changing the algorithmic structure of a given computation, but ensure correctness
at intermediate steps, we define functions called rewrites which take in a given LQCD IR
representation and return a new modified version which may be algorithmically different but
is mathematically equivalent. By having intermediate steps ensuring correctness it allows for
piecing together different rewrites to get the desired end structure while easing the process

of debugging the intermediate steps.

X=Y7 indSep IKL

p——— sepSum K
X =3%>0

X=YYF(I) indSep IKL F(I)=G(K)H(L)
X = Y GK) 7P H(L)

sepSumMove K

Figure 5.1: Separate Sum Formalization
The top covers not raising variables while the bottom covers raising variables

45

Y F(x)G(y) — (5.1)

> F(x)) Gly) (5.2)

N N

> @)Y o) D> D> wleyw(B) x Sz, f(a),9(8) x Sy, f(B),9(a)) (5.3)
y a B

T

Figure 5.2: Separate Sum Examples

5.2 Separate Sum

5.2.1 Motivation

The separating sum rewrite allows taking a Sum which has many iteration indices (repre-
senting reduction domains) and splitting it into a sum of a sum which together encapsulate
the original iteration indices (formalized in Figure 5.1). This operation allows other rewrites
which must analyze all the iteration indices of a given sum to be applied where it could not
before because the sum had iteration indices that would interfere with the desired rewrite.
The rewrite also has the option of moving accesses to variables which depend only on the
outermost sum to be above the innermost sum which can help reduce the number of FLOPs
which occur. Equation 5.1 and Equation 5.2 show a simple before and after of applying
this rewrite to a sum with moving the variables where we can see that the sum is now two
sums and variables dependant only on the raised sum have been moved. Equation 5.3 shows
the result of this rewrite being applied to the first and second sums of Equation 1.1 (which
represent two nested loops each). The x and y sums have now been separated and the move
vars command was true so the ¢(x) access has been moved upwards. For the o and 5 sum,
the sum was simply separated with no variables being moved. There is the same amount of
total nesting but with moving variables the location of some computations has been moved

and the structure of the IR was changed even in the case of not moving variables.

46

5.2.2 Algorithm

To apply the rewrite, we take the original sum and the iteration indices we want to raise.
Given these, we create a new sum with the same free indices but with the iteration indices as
the ones we specified to raise. We then take the original sum and move the specified iteration
indices to be free indices. We then set the modified original sum as the summand of the
new sum and return the new sum. If we also desired to raise any variable accesses fixed by
the raised iteration indices then we would search the original summand for factors which are
fixed by the raised indices and remove them. We would then take these expressions and have
the new sum’s summand now be a Mult of these additional expressions and the modified

original sum, instead of just the modified original sum.

5.3 Loop Linearization

5.3.1 Motivation

The Loop Linearization rewrite allows us to take a Sum with multiple nested loops and
unnest them so that the iterations over each loop are additive instead of multiplicative. This
linearization allows for substantial asymptotic speed increases given how much the quadratic
scaling potentially grows over the liner scaling. Given the rewrite formalization depicted in
Figure 5.3 , we can describe the speedups saying that we have a Sum with N iteration
indices with a maximum range of n which are used in at most M IndexFuncs each with the
maximum range of any IndexFunc being bounded by r. These parameters give the initial
runtime as O(n”) which the loop linearizing can reduce to O(r¥ Nn) and since in practice
rMM << nand N << n we are able to take a non-linear polynomial scaling down to linear.
Equation 5.4 and Equation 5.5 (where r is the range of the § function) show the before
and after of applying the loop linearization to a sum where you can see the sums become

serial instead of nested. Equation 5.6 shows loop linearization applied to the inner sum of

47

L; CL Vi, X;=<indexExpr> L, = set <index> Jj,k L;NL;=1

indepIndExprs

F indepIndExprs F XL

G is an expression depending on indices,
the I; are the disjoint indices,
Xis the groups of index expressions with defining
X, in this function being the index expressions which depend on only /;

and a; are the set of constlter’s over the ranges of the index expressions in Xj;,j >4

LOOP-LIN(G, Iy, ..., I,, X) =

Let Vy(ag) = ZG(aOaXO(IO))

1o

in Let Vi(a;) = Z%(alaXl(Il))

I

in) Vi(Xa(1))

L;,CIuJ Y= Zg G,indepIndExprs GXL Jis.t. g X;(L;) < rng L;
multIndSep I I;,Vidj s.t. L; C I;
Y — LOOP-LIN(G, Iy, .. ., I, X)

Figure 5.3: Loop Linearization Formalization

48

Equation 1.1. As you can see in the example where linearizing reduction was done to the
weights iterations, we reduce the runtime from O(N?W?) to O(N?W) (the r factor is left

out because it is a constant).

Y Fla(2))G(B(y)) = (5:4)

Let D(b) = > F(a(z))G(b) be{0,....,r—1}in ¥ D(B(y)) (5.5)

x

N

> o(x)d(y) (Let D(k,m) =Y w(B) x S(x,k, g(8)xS(y, f(8),m) k,me{0,....,r =1}
B

z,Y

in 3 w(a) x D<f<a>,g<a>>>

(5.6)

5.3.2 Algorithm

To apply loop linearizing, we first get all the index expressions used to access indices of
variables. Then we group them into disjoint sets based on what iteration indices they depend
on. We then separate the expressions in the summand into groups that depend on just one
set (call these F; with ¢ being the ordering we assign to the indices) and a group that holds
all expressions that depend on more than one set F,. We then choose an ordering of which
sets of indices to iterate over, prioritizing iterating over the smaller sets first. Given the first
set to iterate over, we take the expressions Fjy and E and replace all the index expressions
from the other sets with iterations over their ranges. These iterations over ranges define
the free indices of our precomputation and the iteration indices are the first set we chose to
iterate over. For the use statement of this precomputation we then recursively define other

precomputations where we access the already made precomputation with the original index

49

I =set of <index> ||I||>2 [=Ul; VLIi#jiLNTL,=10
F multIndSep I I;
X = Zi C(IUJ) multlndSepII; C(I U J)=][,A4ALU(JCJ))

multIndSep

J

I;

Figure 5.4: Expression Partitioning Formalization

expressions that were replaced at that level and keep the range replacements for levels that
are not iterated over yet. This results in a final use statement that simply iterates over the
final unused indices and accessed the last precomputation with the index expressions that

depended on that final set of indices.

5.4 Expression Partitioning

5.4.1 Motivation

Expression partitioning allows reducing asymptotics of a sum by partitioning the summands
into two or more summands which are able to be summed up separately and then have the
results multiplied together to get the original result. Being able to sum up the parts in
sequential steps instead of nested loops gives large asymptotic improvements which in the
dibaryon-dibayon case can be used to turn some of the quartic expressions to quadratic and
the rest of the quartic expressions can become cubic. Figure 5.4 shows the criteria for the
rewrite and the general result. Equation 5.7 and Equation 5.8 show the before and after
of applying the expression partitioning to a sum where you can see the sums become serial
instead of nested which reduces the scaling. Given the example in Equation 5.9, we can apply
expression partitioning to the inner sum to achieve Equation 5.10 which has two consecutive

loops over space instead of the two nested ones present in the original equation.

20

> F(2)G(y) — (5.7)

Let C =Y F(x),D=)» G(y)in C x D (5.8)
> w(@w(B) Y d(x)d(y) x S(z, f(a),9(8)) x S(y, F(B),9(a)) (5.9)
a, z,y
Let D(a,8) = > ¢(x) x S(x, f(a),g(8)) o, Be€{0,...,W -1}

E(B,a) =Y é(y) x S(y, f(B).g(a)) a,B€{0,....W =1} (5.10)

Y

w
in) " w(a)w(B) x D(a, B) x E(B,)
a,B

5.4.2 Algorithm

Once we have identified a Sum that is ready for partitioning we take the following steps.
For each expression in the product of the summand we determine what iteration indices
it depends on. Using these dependencies we then find the disjoint sets of iteration indices
which we can partition into. For each disjoint set we create a precomputation using the
iteration indices of the disjoint set and the expressions in the original summand that depend
on those indices. After creating all the precomputations, we create the use expression which

multiplies the results of the precomputations together.

o1

5.5 Expanding Permutations

5.5.1 Motivation

Applying this rewrite (as shown in Figure 5.5) allows the different structures of the individual
permutation iterations to be viewed and optimized based on their individual structures.
Viewing each permutation iteration can allow more optimizations because different iterations
may have different structures that require unique optimizations that could not be applied to
the original summand as a whole.

Applying the rewrite means that we can unroll the loop over the permutations to al-
low constant accesses where there were previously permutation accesses and replaces sign of
permutation expressions with a constant value. This allows other rewrites to then be ap-
plied to find groupings between different permutations. A simple before and after given by
Equation 5.11 and Equation 5.12 shows how the permutation loop becomes unrolled and the
permutation accesses are now IndexChoice accesses. Given the example in Equation 5.13,
we can apply permutation expansion to the innermost sum to achieve Equation 5.14 as

another example.

symPerm 2

Y > F(ylplo)G ([y)pL) — (5.11)

Let € = S~ F([r. y][[0. 1[0])G (.) [0, U1]), D = 3 F(ler. o] [[1, 0)0])G [z] [[1.0][1]]) i € x D

x?y x?y

(5.12)

5.5.2 Algorithm

To apply the rewrite, we take the given sum and permutation index and loop over the

permutation size. For each permutation, we create a new expression where the uses of the

o2

p=symPerm k& X =Sign(p) i€{0,1,... k! -1} -
xPermSign

fixPerm X i = sign(Sk, iteration 7)

j = <indexExpr> p=symPerm k X = PermIndex(p,j) i€ {0,1,... k!l —1}

fixPermPermIndex
fixPerm X i = IndexChoice(Sy iteration i values as list, j)
X = ZgY Ji € I s.t. i = symPerm k
X — Let Yo(JUJ —i) =fixPerm YO,..., Yoy 1 (JUJ —d)=... in Yo+ -+ Y

Figure 5.5: Expanding Permutation Formalization

permutation index have been replaced with an index choice into a list of constant accesses
and the signs are replaced with the computed permutation sign of the current permutation.
We then create a MultilLet where the let expressions are all the expressions generated for

each permutation and the use expression is an addition of all these precomputes (as seen in

Figure 5.5).
> 0@)o(y) Y wla)w()
Ty o,p

symPerm 2

Y S(f(@), g(@plol]. [9(8), £(B)pL) x Sf(B). g(B)p[0]; [9(<r), f(e)][p[1])

p

(5.13)

S(LF(8), g(B)I0, 1011, [g(@), f()II[0A][1]) e, 8 €{0,..., W — 1}
E(B,a) =5([f(a), g()][[1, 0][0]], [g(B), f (BT, O][1]])x (5.14)
SF(8), 9B, 01011, [g(@), f()IIL, 01[1]) e, 8 €{0,..., W —1}

in Y o(x)o(y) Y wla)w(B) x (D(a, f) + E(B,a))
2y o

23

5.6 Constant Propagation

5.6.1 Motivation

This rewrite allows simplifying expressions to be able to compare them to other expressions
and find similarities in their structure. As shown in Figure 5.6, we can apply the propagation
when a choice has a constant access (so we can do the access already) or all the possible access
results are the same (so the actual choice made does not change the result). Equation 5.12
provides a great example to show constant propogation in action as this rewrite ties well with
loop unrolling. We can see the result of this in Equation 5.15. Equation 5.14 gives another
great example to apply constant propagation to where Equation 5.16 shows the result of

applying the constant propagation there.

Let C =) F(z)G(y),D =) F(y)G(z) in Cx D (5.15)

x?y

S(f(ﬁ)af(a)) O./,BE{O,...,W—l}
E(B,a) =5(g(a), g(8)) x (5.16)

S(9(B),9(e)) a,B€{0,.... W -1}

in > 6(2)6(y) > wla)w(B) x (D(a,) + E(B, a))
z,y a,B

o4

i = IndexChoice(J,g) g = ConstantIndex(k)

constPropIndexChoice
i — JIk]
X = ExprChoice(J, = ConstantIndex(k
P (J.9) 9 (k) constPropExprChoice
X — J[k]
1 = IndexChoice(J, J=1j
. ,1 (9 £, IndexChoiceAllSame
1]
X = ExprChoice(J, J=1J
P (9) ExprChoiceAllSame
X =7

Figure 5.6: Constant Propagation Formalization

X = Let YO(I(]> = Z(), ce 7Yn—1(In—1) =Z,-11in G(lfo, - 7Yn_1> G = <expr> VZ,j iso Z; Zj
X — Let F(k,Iy) = merged Zy,...,Z, in G(F(0),...,F(n—1))

Figure 5.7: Expression Merging Formalization

5.6.2 Algorithm

To apply the rewrite we check if there are any of the given situations described above. If
there is an IndexChoice or an ExprChoice with a constant access we replace the choice with
the value at the chosen index of the options. If there is an IndexChoice or an ExprChoice
with all matching options we replace the choice with the first option (since they are all

matching). This process is repeated until no part matches the criteria for rewriting.

5.7 Expression Merging

5.7.1 Motivation

This rewrite allows simplifying the generated representation which results in simpler Halide
code. A simpler representation eases the process of checking the IR for issues. Additionally,
simpler Halide code generation allows quicker compilation and an easier process for schedul-
ing the Halide because of fewer duplicate statements that still must be scheduled separately.

A first simple example of before and after given in Equation 5.17 and Equation 5.18 shows

95

how two precomputations can become merged. We can also see the use of this process by
applying expression merging to Equation 5.10. The result can be seen in Equation 5.19
where there is no longer a need for multiple let statements as the D and E let expressions

could be combined.

Let C =) F(z),D=Y F(y)inCxD - (5.17)

Let C = ZF(QZ) in C xC (5.18)

N

Let D(a, 8) = Y é(x) x S(z, f(a).9(8)) o,B€{0,...,W =1}

T

o (5.19)
in) " w(a)w(B) x D(a, B) x D(B,)
B8

5.7.2 Algorithm

We are only able to merge precomputations which are isomorphic as defined in subsec-
tion 4.3.7 and shown in this rewrite in Figure 5.7. To apply the rewrite, we take all the
precomputations of the MultiLet and recursively apply the rewrite to an array of all the
precomputation expressions. In general, the process of merging the expressions consists of
comparing the children of the expression and recursively merging each of those and remaking
the parent with the merged children. When attempting to merge two incompatible parts,
such as indices with different ranges, an error is thrown. Otherwise, if the pieces are com-
patible but not exact matches or matches given an isomorphism mapping then we create an
IndexChoice or an ExprChoice depending on the type being merged.

Finding the isomorphisms between expressions happens when merging Mult expressions.

To merge a Mult, we first break each Mult into an array of its factors. We then fix the

o6

LiCIUJ X =Y7GXo(Lo),...,Xs1(Lp_1)) Fist. mg X;(L;) < g L,
X — Let Y(ag,...,a51) = G(ag, ..., ar_1) in 7Y (Xo(Lo), .-, Xp1(Lr_1))
a; = constlter (rng X;(L;))

Figure 5.8: Precomputation over Ranges Formalization

first Mult given and do no reorderings on it. All comparisons happen in relation to the first
Mult. For each other expression, we iterate through the permutations of orderings of the
factors and evaluate how well the given ordering matches and merges with the ordering of
the first Mult. The best match is chosen for each Mult we want to merge and then used
for the recursive merge. The mappings of the indices from the previous ordering to the
new ordering are then noted for merging any parent Lets. To merge Let expressions, any
reorderings of the indices from reordered Mult children are noted and the accesses of the Let
variable are rewritten so that all of the ranges of the corresponding indices match between

the Let expressions that are being merged.

5.8 Precomputation over Ranges

5.8.1 Motivation

Precomputation over ranges allows reducing the number of FLOPs in the resulting code.
This occurs when the initial code has multiple iterations that map to the same summand
result because of <indexExpr>s which map to the same result given different inputs. By
computing these summands ahead of time, we can simply look up the summand instead of
taking FLOPs to compute the result every time. Equation 5.20 and Equation 5.21 show
a simple before and after of performing this precomputation. Additionally, Equation 5.22
shows the precomputation applied to the inner sum of Equation 1.1. As you can see in the
example, parts of the original summand are now precomputed ahead of time and accessed

in the main sum.

57

Y Fla(@)G(B(y)) = (5.20)

z,Y

Let D(a,b) = > F(a)G(b) a,be{0,....,r—1}in Y D(a(z),B(y)) (5.21)

T

N N
ZZQS(x)qS(y) <Let D(k,m,l,p) = S(x,k,m)xS(y,l,p) k,m,l,pe{0,....,r—1}

> wl@yw(B) x D(f(a), g(B), f(ﬁ%g(&)))

a B
(5.22)

5.8.2 Algorithm

To apply the optimization we form a precomputation over the ranges of all the IndexFuncs
and then access that precomputation in the main summand (shown in Figure 5.8). To do
this, we first find all the <indexExpr>s used. Then we create a new <index> for each one
which loops over the range of the <indexExpr>. The summand is then modified so that
the use of each unique <indexExpr> is replaced with an Index <indexExpr> which uses the
<index> created for the range of the original <indexExpr>. This summand is then moved
to a let expression with a binding corresponding to the new <index>es used in the modified
summand. The summand of the Sum is then replaced with a VarAccess where the accesses
are the original <indexExpr>s being used in the access that represents the range <index> it
was replaced with in the precomputation. This Sum is then placed in the use expression of

the Let and the new Let is returned.

o8

X =Let Y(a;,b,...) =G(F,...) in Y(a;,b,...) F = IndexChoice([ay,as,as,as,...],b)
X — Let Y(c,b,...) = G(IndexChoice([as, as],¢),...) in Y (IndexChoice([0,1,0,1...],0),...)

Figure 5.9: Condense Choice Formalization

5.9 Condense Choice

5.9.1 Motivation

Condense choice allows reducing the number of precomputations that need to be done.
As seen in Figure 5.9, we can perform a condense choice when an IndexChoice has several
values that are repeated as options. A precomputation would initially form a separate storage
location for each of those choices despite some being equivalent. Moving the selection of all
the options to the use statment allows the let statement to just precompute over the differing
options and then all the reused options can be accessed from the use statement. Provided a
very simple example in Equation 5.23, we can see what applying the condense choice does

to the a index in Equation 5.24.

Let D(a) = F([0,1,0,1][a]) a€{0,1,2,3} in Y D(c) x D(d) (5.23)

Let D(a) = F([0,1][a]) a€{0,1} in Y D(0,1,0,1][]) x D([0,1,0,1][d]) ~ (5.24)

c,d

5.9.2 Algorithm

To apply the optimization we give a fixed size index which is used in the IndexChoicees we
would like to condense and find the Let which uses it. We then find all the IndexChoicees

in the let which use the given index. Then a list is formed of all the unique options in the

29

IndexChoice. The original index choice is then replaced with an IndexChoice over these
options. Finally, the use statement is updated so that references to the Let which used the
original fixed size index now access the Let using an IndexChoice which maps the original

index to the smaller range of the corresponding unique option we desire.

60

Chapter 6

Case Studies

These case studies together represent the code needed to implement the correlation functions
done in previous 2 nucleon studies |7]. The most important is the dibaryon dibaryon which

is 95% of the optimized runtime, so that one will have the most real data.

6.1 Baryon

6.1.1 Physics Setup

The physical situation of the baryon system features two lattice sites: one source and one
sink. The source node has three quarks: two up and one down. The sink node has three
quarks: two up and one down and all the quarks having antiness. These are represented in

Figure 6.1.

6.1.2 Naive Code

The naive code generated features two nested loops over space (one for each lattice site),
three nested weight loops, and two nested permutation loops for a total of seven main nested
reduction domain loops. One of the permutation loops is over the symmetric group 1 and the

other is over the symmetric group 2. The summand consists of a product of three accesses to

61

Source Sink

OXCI0
® ®E

Figure 6.1: Baryon Physics Setup

the propogator (which has six dimensions), two accesses to spacial weights, and two accesses

to other weights.

6.1.3 Rewrites Applied

The IR starting point can be seen in Listing 6.2. To begin we first want to simplify out
the iteration over the symetric group 1. We can do this using a couple steps. First, we
retrieve the index which represents it (named "down" in our code). Then we expand out
the permutation which creates a MultilLet with one assign. Finally we can take the let
statement and replace all the times the variable is referenced in the use statement with the
actual let value (can be though of inlining the variable where it is used). Finally we ap-
ply remove_unnecessary_index_choice which cleans up our IndexChoicees. This process
makes the IR cleaner without the excess index.

Looking at the IR now, there are no ways to reduce the loops over space by expression
partitioning but we can reduce the weight looping with loop linearization. To prep it for
loop linearization we need to isolate the weight iterations and the remainig permutation
iteration from the rest of the loops. Therefore, we apply simplify_conj, which moves a

conj of an Add/Mult into its children instead. This allows separating spacial accesses from

62

N

~

the weight accesses later since they are no longer combined together under a Conj. Then we
apply separate_sum where we raise up the space indices. Then on the inner sum we apply
loop_linearize. The rewritten IR can be seen in Listing A.1.

def baryon_rewrite (comp) :

down_perm = find_index_by_name (comp, ’down’)

comp = push_use_into_let (expand_perm(comp, down_perm))

comp = remove_unnecessary_index_choice (comp)

comp = separate_sum(simplify_conj(comp, ["w_src", "w_snk"]), ["s_src",

"s_snk"], move_vars=True)
comp = run_on_loc(comp, [2, 2, 0, 0], loop_linearize)

return comp

Listing 6.1: Baryon Rewrites

6.1.4 Analysis of Rewrite Impact

The main result of the rewrites is the loop strengthening which takes the asymptotic scaling
from O(W?) to O(W) where W is the number of weights given to the system. These results
can be seen in Figure 6.2 where we have four different rewrite possibilities applied and show
how the run times increase as the number of weights given to the system is scaled by a
multiplicative factor. The naive line shows no rewrites applied while the loop linearized line
shows the scaling difference which occurs after the loop linearizing rewrite. While we do not
go over the application of the precomputation rewrite in the previous section (though the
rewrite itself is covered in section 5.8), we also have data from applying that rewrite to both
the naive case and the loop linearized case. In both situations it reduces the scaling by a

constant multiplicative factor so we see a slight speed up.

63

Baryon Run Time vs Weight Scaling on Lattice Size 8

Run TIme (s)
N w N ol [e))
o o o o o

=
o

1 11 21 31 41 51 61 71 81 91 101 111 121
Weight Scaling Factor

=@=N3aive ==@==Precomputed ==@==| 00p Linearized ==@=Lo0p Linearized and Precomputed

Figure 6.2: Comparision of various rewrites applied to the Baryon case. The figure shows
the run times with respect to a multiplicative factor increase in the number of weights we
use in the system. Loop linearization takes the scaling to O(W) from O(W?) while the
precomputations reduce scaling by a constant factor.

64

%)

output_152: NDArray = np.zeros(1l,)
summand_1 = 0.0
for (w_src_2_rank_136, s_src_116, s_snk_118, w_src_1_rank_134) in zip(range(w_src_1_rank),
range(N), range(N), range(w_src_1_rank)):
for up_148 in itertools.permutations(range (2)):
for down_150 in itertools.permutations (range(1)):
summand_1 += (
S_138[s_src_116, w_src_spin_0_120[w_src_1_rank_134],
w_src_color_0_120[w_src_1_rank_134],
[s_snk_118, s_snk_118][up_148[0]], [
w_snk_spin_0_126 [w_src_2_rank_136],
w_snk_spin_2_130[w_src_2_rank_136]
J[up_148[0]11, [
w_snk_color_0_126 [w_src_2_rank_136],
w_snk_color_2_130[w_src_2_rank_136]
J[up_148[011]1 =
S_138[s_src_116, w_src_spin_2_124[w_src_1_rank_134],
w_src_color_2_124[w_src_1_rank_134],
[s_snk_118, s_snk_118][up_148[1]1]1, [
w_snk_spin_0_126 [w_src_2_rank_136],
w_snk_spin_2_130[w_src_2_rank_136]
J[up_1481[111, [
w_snk_color_0_126[w_src_2_rank_136],
w_snk_color_2_130[w_src_2_rank_136]
Jlup_148[1]]1] * sign(up_148) *
S_138[s_src_116,
w_src_spin_1_122[w_src_1_rank_134],
w_src_color_1_122[w_src_1_rank_134],
[s_snk_118] [down_150[0]],
[w_snk_spin_1_128[w_src_2_rank_136]1][
down_150[0]],
[w_snk_color_1_128[w_src_2_rank_136]][
down_150[0]]] * sign(down_150) =*
(psi_140[s_src_116] * w_src_142[w_src_1_rank_134])
* np.conj ((phi_144[s_snk_118] =*
w_snk_146[w_src_2_rank_136])))

output_152[None] = summand_1

Listing 6.2: Baryon Naive IR

65

Source1l Sink1

@\ (@
OO
@) \®

Source 2 Sink 2

@\ (@
O ®
@) \@®

Figure 6.3: Dibaryon Dibaryon Physics Setup

6.2 Dibaryon-Dibaryon

6.2.1 Physics Setup

The physical situation of the dibaryon-dibaryon system features four lattice sites: two source
nodes and two sink nodes. Each source node has three quarks with one node having two
down and one up and the other having one down and two up. Each sink node has three
quarks with one node having two down and one up and the other having one down and two

up and all the quarks having antiness. These are represented in Figure 6.3.

66

6.2.2 Naive Code

The naive code generated features four nested loops over space (one for each lattice site),
four nested weight loops, and two nested permutation loops over the symmetric group 3 for
a total of ten main nested reduction domain loops. The summand consists of a product of
six accesses to the propogator (which has six dimensions), four accesses to spacial weights,

and six accesses to other weights.

6.2.3 Rewrites Applied

The initial naive IR can be seen at Listing A.2. Looking at the structure of the IR for
dibaryon-dibaryon, one can notice that some of the permutation iterations may map to
similar computations based on what spacial indices are used. This leads us to first expanding
the up and down permutations so we have 36 groups. Then we reduce the space loops by
partitioning each group. This leads to 4 groups with O(N?) scaling and 32 with O(N?)
scaling which are both down from the original O(N?). The O(N?) groups represent when
all the quarks from one source all map to the same sink while the O(N?) groups represent
when the quarks from one source map to different sinks. We then group these into their two
groups of asymptotic.

Listing 6.3 shows a snippet of the IR pertaining to the spacial loops for the case that
becomes O(N?). In this snippet it is currently O(N?) where we have separated the O(N?)
loops that we cannot partition on into a higher sum with the lower sum having the two
spacial loops that can be partitioned. Listing 6.4 then shows the snippet once the spacial
loops have been partitioned where you can see the asymptotic bound is now O(N?3). The
two precomputes have an isomorphic structure so they can have their expressions merged
which we can see in Listing 6.5. The accesses on lines 14 and 15 show how the first access
to the precomputed expression chooses which option to select. For the case which becomes

O(N?) the IR looks like Listing 6.3 but the accesses added to the summand which have been

67

1

10

15

removed for brevity can be factored into two groups completely. This factorization can be
seen in Listing 6.6 after the expression partitioning has been done. Then Listing 6.7 shows
how the precomputes are able to merged as before.

summand_1 = 0.0
for src_p_src_6 in range(N):
for src_src_4 in range(N):
summand_2 = 0.0
for snk_p_snk_10 in range (N):
for snk_snk_8 in range(N):
for w_snk_1_rank_62 in range(w_snk_1_rank):
for w_snk_2_rank_64 in range(w_snk_2_rank):
summand_2 += # REMOVED FOR BREVITY
summand_1 += # REMOVED FOR BREVITY

output_328 ["REMOVED FOR BREVITY"] = summand_1

Listing 6.3: Dibaryon Dibaron Snippet for O(N?) before Expression Partitioning

summand_3 = 0.0
for src_p_src_6 in range(N):
for src_src_4 in range(N):
epsilon_9_332: NDArray = np.zeros(1l,)
summand_4 = 0.0
for snk_p_snk_10 in range (N):
for w_snk_2_rank_64 in range(w_snk_2_rank):
summand_4 += # REMOVED FOR BREVITY
epsilon_9_332[None] = summand_4
epsilon_10_334: NDArray = np.zeros(1,)
summand_5 = 0.0
for snk_snk_8 in range(N):
for w_snk_1_rank_62 in range(w_snk_1_rank):
summand_5 += # REMOVED FOR BREVITY
epsilon_10_334 [None] = summand_5

summand_3 += (psil_92[srcSpaceRank_30, src_src_4, srcExternal_14]

68

10

11

psi2_94 [srcSpaceRank_30, src_p_src_6, srcExternal_14

(1.0 * -1.0 * \
epsilon_9_332["REMOVED FOR BREVITY"] * \
epsilon_10_334 ["REMOVED FOR BREVITY"]))

output_336 ["REMOVED FOR BREVITY"] = summand_3

Listing 6.4: Dibaryon Dibaron Snippet for O(N3) after Expression Partitioning

summand_6 = 0.0
for src_p_src_6 in range(N):
for src_src_4 in range(N):
epsilon_9_11_342: NDArray = np.zeros (2)
for choose_i_50_338 in range(2):
summand_7 = 0.0
for snk_p_snk_10 in range(N):
for w_snk_2_rank_64 in range(w_snk_2_rank):
summand_7 += # REMOVED FOR BREVITY
epsilon_9_11_342[choose_i_50_338] = summand_7

summand_6 += (psil_92[srcSpaceRank_30, src_src_4, srcExternal_14]

psi2_94 [srcSpaceRank_30, src_p_src_6, srcExternal_14

(1.0 * -1.0 * \
epsilon_9_11_342[0, "REMOVED FOR BREVITY"] * \
epsilon_9_11_342[1, "REMOVED FOR BREVITY"]))

output_344 ["REMOVED FOR BREVITY"] = summand_6

Listing 6.5: Dibaryon Dibaron Snippet for O(N3) after Expression Partitioning and Merging
baryon_1_238: NDArray = np.zeros(1l,)

summand_1 = 0.0

for snk_p_snk_10 in range(N):

for src_p_src_6 in range(N):

69

15

1

for w_snk_2_rank_64 in range(w_snk_2_rank):
summand_1 += # REMOVED FOR BREVITY
baryon_1_238[None] = summand_1
baryon_2_240: NDArray = np.zeros(l,)
summand_2 = 0.0
for snk_snk_8 in range (N):
for src_src_4 in range(N):
for w_snk_1_rank_62 in range(w_snk_1_rank):
summand_2 += # REMOVED FOR BREVITY
baryon_2_240[None] = summand_2
output_242 ["REMOVED FOR BREVITY"] = \
(1.0 * 1.0 * baryon_1_238["REMOVED FOR BREVITY"] % \

baryon_2_240["REMOVED FOR BREVITY"])

Listing 6.6: Dibaryon Dibaron Snippet for O(N?) after Expression Partitioning

baryon_1_3_248: NDArray = np.zeros(2)
for choose_i_16_244 in range (2):
summand_3 = 0.0
for snk_p_snk_10 in range (N):
for src_p_src_6 in range(N):
for w_snk_2_rank_64 in range(w_snk_2_rank):
summand_3 += # REMOVED FOR BREVITY
baryon_1_3_248[choose_i_16_244] = summand_3
output_250 ["REMOVED FOR BREVITY"] = (1.0 * 1.0 * \
baryon_1_3_248[0, "REMOVED FOR BREVITY"] x \

baryon_1_3_248[1, "REMOVED FOR BREVITY"])
Listing 6.7: Dibaryon Dibaron Snippet for O(N?) after Expression Partitioning and Merging
We now focus on the O(N?) grouping as it dominates the runtime of the program. On
this grouping we move the two spacial loops that we do not precompute over to the highest

loop. Then we notice that many of the index choices with 32 options map to the same 2

options. This means that instead of doing a computation 32 times where we choose that same

70

thing several times we can instead compute two results and when doing the 32 iterations we
can choose which result to pull from. We then apply some condense choice filter rewrites to
achieve this goal. Finally we move index choices from inside the let to be instead in the use
statement which can provide some flexibility when GPU scheduling. The complete rewrite
code can be seen in Listing B.1 with the generated IR being at Listing A.3 (the precomputes

have been removed from the printout for brevity).

6.2.4 Analysis of Rewrite Impact

Theoretical

The main result of our rewrites is the partition_exprs rewrite. This rewrite takes our
spacial asymptotics from O(N*), where N is the size of the lattice, to O(N?®) since we have
removed a nested loop over space. The condense choice also adds constant factor scaling

improvements by reducing the number of unique blocks that need to be precomputed.

Practical

Our results are summarized in Figure 6.4 and Figure 6.5. After we finished rewriting, we
iteratively scheduled and profiled the code. We needed to tweak the rewrites four times as we
sought to find versions that contained better schedules; this process was smooth and a good
initial schedule was found in a few hours. The main time suck in scheduling was waiting
for profiling data. Eventually, we found programs that outperformed the Tiramisu code on
both V100s and A100s. We are still gathering data for A100s at present.

On smaller sizes, the pre-computations of access yield a non-trivial constant factor, lead-
ing to speeds up of 5x to 10x. On larger sizes, the asymptotic costs dominate so we get closer
to the base Tiramisu code. However, our rewrites to move around sums and access as well
as condensing duplicates choices and creating let bindings allowed to us find a version that

outperformed the Tiramisu by a consistent 1.25x on the larger sizes on the V100. We believe

71

B Tiramisu [Us

5
4
2
3 3
T
-
&
o 2
o
>
1
0

16 64 128 256 512

Space Size
Figure 6.4: Timings for a scheduled Dibaryon-Dibaryon on different space sizes for a V100

that we can still do better. Most of the rewrites got us most of the way there by hitting
the asymptotic costs, but they also helped us deal with the constant factors associated with

complex computer architectures.

6.2.5 Impact

The Dibaryon Dibaryon case in particular has significance to the physicists because of its
large scaling compared to the other problems described here. The ability of our system to
quickly generate asymptotically optimal code has allowed a much better development time
and allowed more time devoted to targeting machine architecture instead of on algorithmic
correctness. For reference, our system takes around 100 SLOC to define the system, around
100 to perform the rewrites, and 100-200 additional scheduling lines in the Halide file. This
is in contrast to the 1000s of SLOC required to do the computations in the previous system

which also must have their correctness reasoned as a whole entity instead of people able to be

72

B Tiramisu [Us

0.15
» 0.10
>
[s)
T
>
o
O]
3
= 0.05

0.00

16 64 128
Space Size

Figure 6.5: Timings for a scheduled Dibaryon-Dibaryon on different space sizes for a A100

reasoned about in parts one can with the new system. The comparison of SLOC between our

system and the physicist’s Tiramisu code can be seen for all the case studies in Figure 6.9.

6.3 Dibaryon-Hexaquark

6.3.1 Physics Setup

The physical situation of the dibaryon-hexaquark system features three lattice sites: two
source nodes and one sink node. Each source node has three quarks with one node having
two down and one up and the other having one down and two up. The sink node has

six quarks with three up and three down and all the quarks having antiness. These are

represented in Figure 6.6.

73

Source 1
Sink

OXOJ0,

Source 2

<cJelelejclor

OX0J0,

Figure 6.6: Dibaryon Hexaquark Physics Setup

74

6.3.2 Naive Code

The naive code generated features three nested loops over space (one for each lattice site),
three nested weight loops, and two nested permutation loops over the symmetric group 3 for
a total of eight main nested reduction domain loops. The summand consists of a product of
six accesses to the propogator (which has six dimensions), three accesses to spacial weights,

and four accesses to other weights.

6.3.3 Rewrites Applied

The initial naive IR can be seen in Listing A.4. To begin, we first apply simplify_conj,
which moves a conj of an Add/Mult into its children instead. This allows separating spacial
accesses later since they are no longer combined with other parts under a Conj. Then
we apply remove_unnecessary_index_choice which removes IndexChoicees which have
all choices that are the same, which is the case for the second spacial access of all the
propagators.

At this point we notice that all the propagators depend on the sink but they are split into
groups of three based on which source they depend on (and this also matches what weight
index they depend on). This means we want to apply a partition expression call at some
point. To apply this call we need the iteration indices to not have parts of the summand
that share all of them so we need to use separate_sum to move some of the iteration indices
to a separate sum. We apply separate_sum where we move the variables and we specify
the indices to move as all the indices besides the sink and weight indices that will split the
propagators into groups of three.

Now that we have the inner sum we can apply partition_exprs to it. Once the partition
has been done, we can merge the lets of the multilet generated since the let expressions are

isomorphic. The final result of the IR can be seen in Listing A.5.

1 def dib_hex_rewrite (comp):

5

N

res = remove_unnecessary_index_choice(simplify_conj (comp))
res = separate_sum(res, [’w_snk_H_rank’, ’up’, ’down’, ’snkSpaceRank’,

>srcSpaceRank’, ’srcSigmal’, ’srcSigma2’, ’snk_snk’], move_vars=True)

inner_sum_key = [2, 2, 0, 3]
res = run_on_loc(res, inner_sum_key, partition_exprs)
res = run_on_loc(res, inner_sum_key, merge_multilet)

return res

Listing 6.8: Dibaryon Hexaquark Rewrites

6.3.4 Analysis of Rewrite Impact

Theoretical

The main result of our rewrites is the partition_exprs rewrite. This rewrite takes our inner
loop asymptotics from O(N3W?3), where N is the size of the lattice and W is the number of
weights, to O(N?W?) since we have removed a nested loop of both space and weights. All
the other loops remain the same because there is no way to avoid iterating over them.

Practical

As shown in Figure 6.7, the rewritten code scales with N2 where N is the lattice size. The
unrewritten code takes long enough that a timing comparison is not included because of the

time needed to generate data.

6.4 Hexaquark-Hexaquark

6.4.1 Physics Setup

This physical situation of the hexaquark-hexaquark system features two lattice sites: one

source node and one sink node. The source node has six quarks with three up and three

76

GFLOPS vs Lattice Size

25

20

15

GFLOPS

10

10 20 30 40 50 60 70 80 90 100 110 120
Lattice Size

Run Time vs Lattice Size
70
60
50
40

30

Run TIme (s)

20

10

10 20 30 40 50 60 70 80 90 100 110 120
Lattice Size

Figure 6.7: Graphs showing how the GFLOPS and runtime change as the lattice size (N)
increases for the Dibaryon Hexaquark case study.

7

Source Sink

OO
OO

Figure 6.8: Hexaquark Hexaquark Physics Setup

down. The sink node has six quarks with three up and three down and all the quarks having

antiness. These are represented in Figure 6.8.

6.4.2 Naive Code

The naive code generated features two nested loops over space (one for each lattice site),
two nested weight loops, and two nested permutation loops over the symmetric group 3 for
a total of siz main nested reduction domain loops. The summand consists of a product of
six accesses to the propogator (which has six dimensions), two accesses to spacial weights,

and two accesses to other weights.

78

6.4.3 Rewrites Applied

We first apply remove_unnecessary_index_choice which removes IndexChoicees which
have all choices that are the same, which is the case for the second spacial access of all the
propagators. This cleans up the IR and allows us to realize that there are no asymptotic
optimizations possible. There are no optimizations because we have already achieved the
minimum number of nested loops needed in order to compute the mathematical structure
since all the propagators depend on all the indices we loop over. The unchanged IR and the

changed IR can be seen at Listing A.6 and Listing A.7 respectively.

SLOC vs Case Study Program

2500 2975

2000

1500

SLOC

1000

541
500 370
252 194 192
91 . 108
. N] [-
Baryon Dibaryon Dibaryon Dibaryon Hexaquark

Hexaquark Hexaquark

H Tiramisu m Our System

Figure 6.9: Comparision of SLOC for the physicist’s Tiramisu code versus our system. The
Dibaryon Dibaryon case also includes the SLOC for our GPU scheduling (the other cases
were not GPU scheduled).

79

Chapter 7

Future Work

7.1 Automatic Algorithmic Optimization

The most promising area to speed up the development process for solving these computations
is automatic optimizations. With manual optimizations, one must first look at the generated
IR and then use the optimization functions with specific inputs to rewrite the IR into the
desired optimal structure. An automatic system for applying optimizations would allow the
physicists to simply specify their desired problem and be able to immediately obtain an
optimized program for getting their results. Finding an efficient way for finding optimal
rewrites can pose a challenge because the space of potential rewrites can be large or lead to
extraneous rewrites.

One potential way to approach rewrites is to make a pipeline of applying rewrites. The
algorithm could first attempt to apply algorithmic optimizations, then search for duplicate
structures and merge any MultiLets that are eligible. Afterwards, it could attempt expand-
ing a permutation followed by constant propagation. It could then repeat these steps until
some decided ending criteria is met.

Another approach could follow more of a search method. It could take a given structure

and try different possible rewrites on it and use some heuristics for evaluating the asymptotics

80

and FLOPs of a given structure so we could perform an A* search. The search could continue
till we meet some end condition, most likely based on the heuristic of the leaf reaching a
certain threshold.

To complement the other methods, there are specific optimizations one could attempt
to apply based on the IR value. Given a Sum over a permutation one could immediately
choose to expand it. Another is always attempting to propagate constants after every other
optimization attempt. Also, precomputation can be almost always left till the end because
it increases the complexity of the structure which can make it harder to optimize a structure
after applying it. The FLOP savings of precomputation should be the same no matter when
we apply the optimization because any structure we could save time by precomputing will
remain after other optimizations are done because if it is gone then it was optimized to a

better structure.

7.2 Automatic GPU Scheduling

Once the Halide generation file has been created from the IR, one has to manually schedule
it to get competetive results especially for use on GPUs. The process of manually scheduling
can be tedious and is a prime candidate for automatic generation since a schedule could
potentially be inserted when creating the Halide generation file.

A flag for enabling GPU scheduling could be added to the Halide generation process
and parameters be added to describe the machine that will be running the program. The
automatic scheduler could use the parameters to create optimal cache usage and use the IR
structure to determine an optimal scheduling from a set of schedules that have been manually

scheduled before for similar structures.

81

Chapter 8

Conclusion

Based on the flexibility of the rewrite rules and ability to represent desired computations in
our IR, the LQCD IR DSL we have created is a powerful tool to speed up the development
of solving new Lattice Quantum Chromodynamics problems. It is able to easily generate
naive computations given the physics problem description so that initial benchmarks can
be found. From there, testing various algorithms can be done quickly by applying different
rewrites with minimal code needed. This flexibility for changing algorithms quickly with
correctness greatly improves the work flow of previous methods which required tremendous
amounts of handwritten code for each algorithm one desired to test.

The case studies show that a variety of scenarios can be easily generated with our system.
Using the visual outputs of the IR also allows easy inspection of the formula involved which
can make finding optimizations smoother. Without an IR, one would need a complete
mental model of their code and how it represents the manually rewritten formulas in code.
The ability to see the progress on changing the formula visually can speed up development
greatly.

The quicker development time to GPU scheduling also greatly removes a bottleneck for
optimizing new problems. In the past, one needed to spend large amounts of time forming

the overall code with correct asymptotics before attempting to schedule it on a GPU or

82

had to intermix the scheduling with the algorithm development. Either of these approaches
form a large bottleneck before being able to spend time fine tuning the program for the
targeted machine. With the IR and rewrite system, one can quickly apply rewrites and
confirm astmptotics of the program which then allows moving onto the scheduling process
quickly. Overall, this work marks a significant step forward in being able to solve larger

LQCD problems through much better development time and code correctness.

83

1

2

N

Appendix A

Large LQCD IR Printouts

A.1 Baryon IR

output_348: NDArray = np.zeros(1l,)
summand_6 = 0.0
for s_snk_298 in range(N):

for s_src_296 in range(N):

let_strngth_2_346: NDArray = np.zeros(2, 3, 3, 2, 2, 3)
for 1i_.2_12_334 in range(2):
for i_3_13_336 in range(3):
for i1_3_14_338 in range (3):
for 1i_2_15_340 in range(2):
for 1_2_16_342 in range(2):
for 1_3_17_344 in range(3):
summand_7 = 0.0
for w_src_1_rank_314 in range(w_src_1_rank):
summand_7 += (
w_src_322[w_src_1_rank_314] * S_318[
s_src_296,
w_src_spin_0_300[w_src_1_rank_314],
w_src_color_0_300[w_src_1_rank_314],
s_snk_298, i_2_12_334, i_3_13_336]
* S_318[
s_src_296,
w_src_spin_2_304[w_src_1_rank_314],

w_src_color_2_304[w_src_1_rank_314],

84

24 s_snk_298, i_2_16_342, i_3_14_338]
25 * S_318[

26 s_src_296,

27 w_src_spin_1_302[w_src_1_rank_314],
28 w_src_color_1_302[w_src_1_rank_314],
29 s_snk_298, i_2_15_340, i_3_17_344]
30 * 1.0)

31 let_strngth_2_346[i_2_12_334, i_3_13_336,

32 i_3_14_338, i_2_15_340,

33 i_2_16_342,

34 i_3_17_344] = summand_7

35 summand_8 = 0.0

36 for w_src_2_rank_316 in range(w_src_1_rank):

37 for up_328 in itertools.permutations(range(2)):

38 summand_8 += (

39 sign(up_328) * w_snk_326[w_src_2_rank_316] =*

40 let_strngth_2_346[s_snk_298, s_src_296, [

11 w_snk_spin_0_306 [w_src_2_rank_316],

12 w_snk_spin_2_310[w_src_2_rank_316]

13 1[up_328[0]11, [

44 w_snk_color_0_306[w_src_2_rank_316],

15 w_snk_color_2_310[w_src_2_rank_316]

16 J[up_328[0]11, [

17 w_snk_color_0_306[w_src_2_rank_316],

18 w_snk_color_2_310[w_src_2_rank_316]

19 J[up_328[1]1], w_snk_spin_1_308[w_src_2_rank_316], [

50 w_snk_spin_0_306 [w_src_2_rank_316],

51 w_snk_spin_2_310[w_src_2_rank_316]

52 J[up_328[1]], w_snk_color_1_308[w_src_2_rank_316]1])

53 summand_6 += (psi_320[s_src_296] * np.conj(phi_324[s_snk_298]) x*
summand_8)

55 output_348[None] = summand_6

Listing A.1: Baryon Rewritten IR

A.2 Dibaryon Dibaryon IR

1 output_2078: NDArray = np.zeros(EN, rhoSnkSize, EN, rhoSrcSize)

2 for snkExternal_16 in range (EN):

85

for rhoSnk_24 in range(rhoSnkSize):
for srcExternal_14 in range (EN):
for rhoSrc_22 in range(rhoSrcSize):
summand_O0 = 0.0
for srcSigmal_42 in range(srcSigmal):
for snk_p_snk_10 in range(N):
for srcSpaceRank_30 in range(srcSpaceRank):
for src_p_src_6 in range(N):
for w_src_1_rank_58 in range(w_src_1_rank):
for w_src_2_rank_60 in range(w_src_2_rank):
for w_snk_2_rank_64 in range(w_snk_2_rank):
for srcSigma2_44 in range(srcSigma2):
for snkSigma2_48 in range (snkSigma2):
for w_snk_1_rank_62 in range(
w_snk_1_rank):
for src_src_4 in range(N):
for snkSigmal_46 in range(
snkSigmal) :
for snk_snk_8 in range(N):
for snkSpaceRank_32 in
range (snkSpaceRank) :
for up_112 in
itertools.permutations (range (3)):
for down_114 in
itertools.permutations (range (3)):
summand_0 +=
(S_90[src_src_4, w_src_1_spin_0_66[w_src_1_rank_58, srcSigmal_42], w_src_1_color_0_66[
w_src_1_rank_58, srcSigmal_42], [snk_snk_8, snk_snk_8, snk_p_snk_10][up_112[0]], [
w_snk_1_spin_0_78[w_snk_1_rank_ 62, snkSigmal_46], w_snk_1_spin_2_82[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48]][up_112[0]]1, [
w_snk_1_color_0_78[w_snk_1_rank_62, snkSigmal_46], w_snk_1_color_2_82[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48]][up_112[0]]] * S_90[
src_src_4, w_src_1_spin_2_70[w_src_1_rank_58, srcSigmal_42], w_src_1_color_2_70[
w_src_1_rank_58, srcSigmal_42], [snk_snk_8, snk_snk_8, snk_p_snk_10][up_112[1]], [
w_snk_1_spin_0_78[w_snk_1_rank_62, snkSigmal_46], w_snk_1_spin_2_82[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48]][up_112[1]], [
w_snk_1_color_0_78[w_snk_1_rank_62, snkSigmal_46], w_snk_1_color_2_82[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48]][up_112[1]]1] * S_90[
src_p_src_6, w_src_2_spin_1_74[w_src_2_rank_60, srcSigma2_44], w_src_2_color_1_74[
w_src_2_rank_60, srcSigma2_44], [snk_snk_8, snk_snk_8, snk_p_snk_10][up_112[2]], [

w_snk_1_spin_0_78[w_snk_1_rank_ 62, snkSigmal_46], w_snk_1_spin_2_82[w_snk_1_rank_62,

86

snkSigmal_46], w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48]][up_112[2]], [
w_snk_1_color_0_78[w_snk_1_rank_62, snkSigmal_46], w_snk_1_color_2_82[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48]][up_112[2]]1] * sign(
up_112) * S_90[src_src_4, w_src_1_spin_1_68[w_src_1_rank_58, srcSigmal_42],
w_src_1_color_1_68[w_src_1_rank_58, srcSigmal_42], [snk_snk_8, snk_p_snk_10,
snk_p_snk_10] [down_114[0]], [w_snk_1_spin_1_80[w_snk_1_rank 62, snkSigmal_46],
w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[w_snk_2_rank_64,
snkSigma2_48]] [down_114[0]], [w_snk_1_color_1_80[w_snk_1_rank_62, snkSigmal_46],
w_snk_2_color_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_2_88[w_snk_2_rank_64,
snkSigma2_48]] [down_114[0]]1] * S_90[src_p_src_6, w_src_2_spin_0_72[w_src_2_rank_60,
srcSigma2_44], w_src_2_color_0_72[w_src_2_rank_60, srcSigma2_44], [snk_snk_8,
snk_p_snk_10, snk_p_snk_10][down_114[1]], [w_snk_1_spin_1_80[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[
w_snk_2_rank_64, snkSigma2_48]][down_114[1]], [w_snk_1_color_1_80[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_color_0_84[w_snk_2_rank_64, snkSigma2_ 48], w_snk_2_color_2_88[
w_snk_2_rank_64, snkSigma2_48]][down_114[1]]] * S_90[src_p_src_6, w_src_2_spin_2_76[
w_src_2_rank_60, srcSigma2_44], w_src_2_color_2_76[w_src_2_rank_60, srcSigma2_44], [
snk_snk_8, snk_p_snk_10, snk_p_snk_10][down_114[2]], [w_snk_1_spin_1_80[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[
w_snk_2_rank_64, snkSigma2_48]][down_114[2]], [w_snk_1_color_1_80[w_snk_1_rank_62,
snkSigmal_46], w_snk_2_color_0_84[w_snk_2_rank_64, snkSigma2_ 48], w_snk_2_color_2_88[
w_snk_2_rank_64, snkSigma2_48]][down_114[2]]] * sign(down_114) * (psil1_92[
srcSpaceRank_30, src_src_4, srcExternal_14] #* psi2_94[srcSpaceRank_30, src_p_src_6,
srcExternal_14] * w_src_1_96[w_src_1_rank 58, srcSigmal_42] * w_src_2_98[w_src_2_rank_60
, srcSigma2_44] * v_src_100[srcSigmal_42, srcSigma2_44, rhoSrc_22]) * np.conj((phil_102[
snkSpaceRank_32, snk_snk_8, snkExternal_16] #* phi2_104[snkSpaceRank_32, snk_p_snk_10,
snkExternal_16] * w_snk_1_106[w_snk_1_rank_62, snkSigmal_46] * w_snk_2_108[
w_snk_2_rank_64, snkSigma2_48] * v_snk_110[snkSigmal_46, snkSigma2_48, rhoSnk_24])))
output_2078 [snkExternal_16, rhoSnk_24, srcExternal_14, rhoSrc_22] =

summand_0

Listing A.2: Dibaryon Dibaryon Naive IR

output_2080: NDArray = np.zeros (EN, rhoSnkSize, EN, rhoSrcSize)
for snkExternal_16 in range (EN):
for rhoSnk_24 in range(rhoSnkSize):
for srcExternal_14 in range (EN):
for rhoSrc_22 in range(rhoSrcSize):
sep_unroll_perm_2_3510658113350937887_epsilon_144_sumed_1958: NDArray = np.
zeros (1,)
summand_1 = 0.0

for srcSpaceRank_30 in range(srcSpaceRank):

87

19

20

22

et

for src_p_src_6 in range(N):
for src_src_4 in range(N):

summand_2 = 0.0
for snkSpaceRank_32 in range (snkSpaceRank):

for i_condensed_614_1944 in range (32):

for srcSigmal_42 in range(srcSigmal):
for srcSigma2_44 in range(srcSigma2):
for w_src_1_rank_58 in range(w_src_1_rank):
for w_src_2_rank_60 in range(w_src_2_rank):
for snkSigmal_46 in range(snkSigmal):

for snkSigma2_48 in range (snkSigma?2)

acc_pre_2024: NDArray = np.zeros

(1,)

PRECOMPUTES REMOVED FOR
BREVITY

acc_pre_2052: NDArray = np.zeros
(1,)

acc_pre_2052[None] = [0, O, O,
o, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 1, 1, 2, 2, 2, 2, 4, 4, 5, 5, 5, 5][
i_condensed_614_1944]
merged_eps_0_2016: NDArray = np.
zeros (2, 3, 2, 3, 2, 3, 6, 2)
for sc_2_1966 in range(2):
for sc_3_1968 in range(3):

for sc_2_1970 in range

(2):
for sc_3_1972 in
range (3):
for sc_2_1974 in
range (2) :

for
sc_3_1976 in range (3):
for
i_6_2012 in range (6):
for

i_2_2014 in range(2):

merged_eps_O_compressed_2010: NDArray = np.zeros (6, 2)

for i_6_2006 in range (6):

88

36

19

for choose_eps_612_compressed_2008 in range (2):
merged_eps_O_compressed_compressed_1994: NDArray = np.zeros(6, 2)
for choose_eps_612_compressed_1992 in range (6):
for choose_eps_612_compressed_1984 in range (2):
summand_3 = 0.0
for snk_p_snk_10 in range(N):
summand_4 = 0.0
for w_snk_2_rank_64 in range(w_snk_2_rank):

acc_pre_2054: NDArray = np.zeros(1,)

acc_pre_2054[None] = [w_snk_2_spin_0_84[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_spin_2_88[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[
w_snk_2_rank_64, snkSigma2_48)], w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48],
w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_0_84[w_snk_2_rank_64,
snkSigma2_48]] [choose_eps_612_compressed_1992]

acc_pre_2056: NDArray = np.zeros(1l,)

acc_pre_2056 [None] = [w_snk_2_color_0_84[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_color_2_88[w_snk_2_rank_64, snkSigma2_ 48], w_snk_2_color_2_88[
w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48],
w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_0_84[w_snk_2_rank_64,
snkSigma2_48]] [choose_eps_612_compressed_1992]

acc_pre_2058: NDArray = np.zeros(1l,)

acc_pre_2058[None] = [w_snk_2_spin_1_86[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_1_86[
w_snk_2_rank_64, snkSigma2_48)], w_snk_2_spin_2_88[w_snk_2_rank_64, snkSigma2_48],

w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1992]

89

50

56

snkSigma2_48]

acc_pre_2060: NDArray = np.zeros(1l,)

acc_pre_2060[None] = [w_snk_2_color_1_86[w_snk_2_rank_64,

, w_snk_2_color_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_1_86[

w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_2_88[w_snk_2_rank_64, snkSigma2_48],

w_snk_2_color_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_2_88[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1992]

snkSigma2_48]

acc_pre_2062: NDArray = np.zeros(1,)

acc_pre_2062[Nonel = [w_snk_2_spin_2_88[w_snk_2_rank_64,

, w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_0_84[

w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48],

w_snk_2_spin_2_88[w_snk_2_rank_ 64, snkSigma2_48], w_snk_2_spin_1_86[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1992]

snkSigma2_48]

acc_pre_2064: NDArray = np.zeros(1l,)

acc_pre_2064 [None] = [w_snk_2_color_2_88[w_snk_2_rank_64,

, w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_0_84[

w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_0_84[w_snk_2_rank_ 64, snkSigma2_48],

w_snk_2_color_2_88[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_1_86[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1992]

summand_4 += (S_90[src_src_4, sc_2_1966, sc_3_1968, snk_p_snk_10

, acc_pre_2054[w_snk_2_rank_64, snkSigma2_48, choose_eps_612_compressed_1992],

acc_pre_2056[w_snk_2_rank_64, snkSigma2_48, choose_eps_612_compressed_1992]] * S_90[[

src_p_src_6,

snk_p_snk_10,

src_src_4] [choose_eps_612_compressed_1984], sc_2_1970, sc_3_1972,

acc_pre_2058[w_snk_2_rank_64, snkSigma2_48, choose_eps_612_compressed_1992

], acc_pre_2060[w_snk_2_rank_64, snkSigma2_48, choose_eps_612_compressed_1992]] * S_90[

src_p_src_6,
snkSigma2_48,
snkSigma2_48,

snkSigma2_48]

sc_2_1974, sc_3_1976, snk_p_snk_10, acc_pre_2062[w_snk_2_rank_64,
choose_eps_612_compressed_1992], acc_pre_2064[w_snk_2_rank_64,
choose_eps_612_compressed_1992]] * w_snk_2_108[w_snk_2_rank_64,
)

summand_3 += (np.conj(phi2_104[snkSpaceRank_32, snk_p_snk_10,

snkExternal_16]) * summand_4)

merged_eps_O_compressed_compressed_1994 [choose_eps_612_compressed_1992,

choose_eps_612_compressed_1984] = summand_3

90

60

64

66

68

69

~
N

76

merged_eps_O_compressed_2010[i_6_2006,
merged_eps_O_compressed_compressed_1994[i_6_2006,

snkSpaceRank_32, src_p_src_6, src_src_4, sc_2_1966,

sc_2_1974, sc_3_1976,

merged_eps_0_2016[sc_2_1966, sc_3_1968, sc_2_1970,

i_6_.2012, i_2_2014] = merged_eps_O_compressed_2010[snkExternal_16,
snkSpaceRank_32, src_p_src_6, src_src_4, sc_2_1966,
sc_2_1974, sc_3_1976, i_6_2012, i_2_2014]

zeros (2, 3, 2, 3, 2, 3, 6, 2)

(2):

range (3) :

range (2) :

sc_3_1976 in range (3):

i_6_2018 in range (6):

i_2_2020 in range(2):

merged_eps_1_compressed_2004: NDArray = np.zeros(6, 2)
for i_6_2000 in range (6):
for choose_eps_612_compressed_2002 in range (2):
merged_eps_1_compressed_compressed_1998: NDArray

for choose_eps_612_compressed_1996 in range (6):

snkExternal_16,
sc_3_1968,
choose_eps_612_compressed_2008]

sc_3_1972,

sc_3_1968,

choose_eps_612_compressed_2008] =

snkSigma2_48,

sc_2_1970, sc_3_1972,

sc_2_1974, sc_3_1976,

snkSigma2_48,

sc_2_1970, sc_3_1972,

merged_eps_1_2022: NDArray = np.
for sc_2_1966 in range(2):
for sc_3_1968 in range(3):
for sc_2_1970 in range
for sc_3_1972 in

for sc_2_1974 in

for

for

= np.zeros (6, 2)

for choose_eps_612_compressed_1988 in range (2):

summand_5 = 0.0

for snk_p_snk_10 in range(N):

91

79

80

81

85

86

summand_6 = 0.0

for w_snk_2_rank_64 in range(w_snk_2_rank):

acc_pre_2066: NDArray = np.zeros(1,)

acc_pre_2066[None] = [w_snk_1_spin_1_80[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_spin_2_82[w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_2_82[
w_snk_2_rank_64, snkSigma2_48)], w_snk_1_spin_1_80[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_spin_0_78[w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_0_78[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1996]

acc_pre_2068: NDArray = np.zeros(1,)

acc_pre_2068[None] = [w_snk_1_color_1_80[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_color_2_82[w_snk_2_rank_64, snkSigma2_ 48], w_snk_1_color_2_82[
w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_1_80[w_snk_2_rank_ 64, snkSigma2_48],
w_snk_1_color_0_78[w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_0_78[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1996]

acc_pre_2070: NDArray = np.zeros(1l,)

acc_pre_2070[None] = [w_snk_1_spin_0_78[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_spin_0_78[w_snk_2_rank_ 64, snkSigma2_48], w_snk_1_spin_1_80[
w_snk_2_rank_64, snkSigma2_48)], w_snk_1_spin_2_82[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_spin_2_82[w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_1_80[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1996]

acc_pre_2072: NDArray = np.zeros(1l,)

acc_pre_2072[None] = [w_snk_1_color_0_78[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_color_0_78[w_snk_2_rank_64, snkSigma2_ 48], w_snk_1_color_1_80[
w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_2_82[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_color_2_82[w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_1_80[w_snk_2_rank_64,
snkSigma2_48]] [choose_eps_612_compressed_1996]

acc_pre_2074: NDArray = np.zeros(1l,)

acc_pre_2074 [None] = [w_snk_1_spin_2_82[w_snk_2_rank_64,

snkSigma2_48], w_snk_1_spin_1_80[w_snk_2_rank_ 64, snkSigma2_48], w_snk_1_spin_0_78[

92

90

91

94

95

96

w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_0_78[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_spin_1_80[w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_2_82[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1996]

acc_pre_2076: NDArray = np.zeros(1l,)

acc_pre_2076 [None] = [w_snk_1_color_2_82[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_color_1_80[w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_0_78[
w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_0_78[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_color_1_80[w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_2_82[w_snk_2_rank_64,

snkSigma2_48]] [choose_eps_612_compressed_1996]

summand_6 += (S_90[src_src_4, sc_2_1966, sc_3_1968, snk_p_snk_10
5 acc_pre_2066[choose_eps_G12_compressed_1996, w_snk_2_rank_64, snkSigma2_48],
acc_pre_2068[choose_eps_612_compressed_1996, w_snk_2_rank_64, snkSigma2_48]] * S_90[[
src_p_src_6, src_src_4][choose_eps_612_compressed_1988], sc_2_1970, sc_3_1972,
snk_p_snk_10, acc_pre_2070[choose_eps_612_compressed_1996, w_snk_2_rank_64, snkSigma2_48
], acc_pre_2072[choose_eps_612_compressed_1996, w_snk_2_rank_64, snkSigma2_48]] * S_90[
src_p_src_6, sc_2_1974, sc_3_1976, snk_p_snk_10, acc_pre_2074([
choose_eps_612_compressed_1996, w_snk_2_rank_64, snkSigma2_48], acc_pre_2076[
choose_eps_612_compressed_1996 , w_snk_2_rank_64, snkSigma2_48]] * w_snk_1_106[

w_snk_2_rank_64, snkSigma2_48])

summand_5 += (np.conj(phil_102[snkSpaceRank_32, snk_p_snk_10,

snkExternal_16]) * summand_6)

merged_eps_1_compressed_compressed_1998[choose_eps_612_compressed_1996,

choose_eps_612_compressed_1988] = summand_5

merged_eps_1_compressed_2004[i_6_2000, choose_eps_612_compressed_2002] =
merged_eps_1_compressed_compressed_1998[i_6_2000, snkExternal_16, snkSigma2_48,
snkSpaceRank_32, src_p_src_6, src_src_4, sc_2_1966, sc_3_1968, sc_2_1970, sc_3_1972,

sc_2_1974, sc_3_1976, choose_eps_612_compressed_2002]

merged_eps_1_2022[sc_2_1966, sc_3_1968, sc_2_1970, sc_3_1972, sc_2_1974, sc_3_1976,
i_6_2018, i_2_2020] = merged_eps_1_compressed_2004 [snkExternal_16, snkSigma2_48,
snkSpaceRank_32, src_p_src_6, src_src_4, sc_2_1966, sc_3_1968, sc_2_1970, sc_3_1972,
sc_2_1974, sc_3_1976, i_6_2018, i_2_2020]

merged_vars_epsilon_9_11_1962:
NDArray = np.zeros(1,)

merged_vars_epsilon_9_11_1962[

93

98

99

100

102

None] = merged_eps_0_2016 [snkExternal_16, snkSigma2_48, snkSpaceRank_32, src_p_src_6,
src_src_4, acc_pre_2024[srcSigmal_42, srcSigma2_44, i_condensed_614_1944,
w_src_2_rank_60, w_src_1_rank_58], acc_pre_2026[srcSigmal_42, srcSigma2_44,
i_condensed_614_1944, w_src_2_rank_60, w_src_1_rank_58], acc_pre_2028[srcSigmal_42,
srcSigma2_44, i_condensed_614_1944, w_src_2_rank_ 60, w_src_1_rank_58], acc_pre_2030[
srcSigmal_42, srcSigma2_44, i_condensed_614_1944, w_src_2_rank 60, w_src_1_rank_58],
acc_pre_2032[srcSigmal_42, srcSigma2_44, i_condensed_614_1944, w_src_2_rank_60,
w_src_1_rank_58], acc_pre_2034[srcSigmal_42, srcSigma2_44, i_condensed_614_1944,
w_src_2_rank_60, w_src_1_rank_58], acc_pre_2036[i_condensed_614_1944], acc_pre_2038[
i_condensed_614_19441]]
merged_vars_epsilon_9_11_1964:
NDArray = np.zeros(1l,)
merged_vars_epsilon_9_11_1964[
None] = merged_eps_1_2022[snkExterna1_16, snkSigmal_46 , snkSpaceRank_32, src_src_4,
src_p_src_6, acc_pre_2040[srcSigmal_42, srcSigma2_44, i_condensed_614_1944,
w_src_2_rank_60, w_src_1_rank_58], acc_pre_2042[srcSigmal_42, srcSigma2_44,
i_condensed_614_1944, w_src_2_rank_60, w_src_1_rank_58], acc_pre_2044[srcSigmal_42,
srcSigma2_44, i_condensed_614_1944, w_src_2_rank_ 60, w_src_1_rank_58], acc_pre_2046[
srcSigmal_42, srcSigma2_44, i_condensed_614_1944, w_src_2_rank_60, w_src_1_rank_58],
acc_pre_2048[srcSigmal_42, srcSigma2_44, i_condensed_614_1944, w_src_2_rank_60,
w_src_1_rank_58], acc_pre_2050[srcSigmal_42, srcSigma2_44, i_condensed_614_1944,
w_src_2_rank_60, w_src_1_rank_58], acc_pre_2052[i_condensed_614_1944], acc_pre_2038[
i_condensed_614_1944]]
summand_2 += (w_src_1_96[
w_src_1_rank_ 58, srcSigmal_42] * w_src_2_98[w_src_2_rank_60, srcSigma2_44] * v_src_100[
srcSigmal_42, srcSigma2_44, rhoSrc_22] =* v_snk_llO[snkSigma1_46, snkSigma2_48, rhoSnk_24
] » (ft.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0]L
i_condensed_614_1944] * [-1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0,
-1.0, -1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, -1.0,
-1.0, -1.0, -1.0, -1.0, -1.0, -1.0]J[i_condensed_614_1944] x*
merged_vars_epsilon_9_11_1962[srcSigmal_42, src_p_src_6, w_src_1_rank_ 58, src_src_4,
srcSigma2_44, i_condensed_614_1944, snkExternal_16, snkSigma2_48, w_src_2_rank_60,
snkSpaceRank_32] * merged_vars_epsilon_9_11_1964[srcSigmal_42, src_p_src_6,
w_src_1_rank_58, src_src_4, srcSigma2_44, i_condensed_614_1944, snkExternal_16,
w_src_2_rank_60, snkSigmal_46, snkSpaceRank_32]))
summand_1 += (psil_92[srcSpaceRank_30, src_src_4, srcExternal_14
] * psi2_94[srcSpaceRank_30, src_p_src_6, srcExternal_14] * summand_2)
sep_unroll_perm_2_3510658113350937887 _epsilon_144_sumed_1958 [None] =
summand_1

sep_unroll_perm_0_7330295488186759212_baryon_145_sumed_1960: NDArray = np.

94

104

109

110

111

119

zeros (1,)
merged_vars_baryon_1_3_1948: NDArray = np.zeros(4, 2, 2, 2, 2, 3, 3, 3,
snkSigma2, snkSpaceRank, srcSpaceRank, N)
for choose_eps_613_1930 in range (4):
for choose_i_16_240 in range(2):
for i1_2_12_224 in range (2):
for i_2_2_204 in range(2):
for i_2_7_214 in range(2):
for 1_3_11_222 in range(3):
for i_3_5_210 in range(3):
for 1_.3_8_216 in range(3):
for snkSigma2_48 in range (snkSigma2):
for snkSpaceRank_32 in range(
snkSpaceRank) :
for srcSpaceRank_30 in range(
srcSpaceRank) :
for src_p_src_6 in range(N):
summand_7 = 0.0

for snk_p_snk_10 in range (N)

for w_snk_2_rank_64 in

range (w_snk_2_rank) :
summand_7 += (S_90[

src_p_src_6, [i_2_7_214, i_2_2_204, i_2_7_214, i_2_7_214][choose_eps_613_1930]1, [
i_3_.11_222, i_.3_.8_216, i_3_5_210, i_3_5_210][choose_eps_613_1930], snk_p_snk_10, [[
w_snk_2_spin_2_88[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_0_84[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[
w_snk_2_rank_64, snkSigma2_48]][choose_eps_613_1930], [w_snk_1_spin_0_78[w_snk_2_rank_64
, snkSigma2_48], w_snk_1_spin_0_78[w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_2_82[
w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_2_82[w_snk_2_rank_64, snkSigma2_48]][
choose_eps_613_1930]] [choose_i_16_240], [[w_snk_2_color_2_88[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_color_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_0_84[
w_snk_2_rank_64, snkSigma2_ 48], w_snk_2_color_2_88[w_snk_2_rank_ 64, snkSigma2_48]][
choose_eps_613_1930], [w_snk_1_color_0_78[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_color_0_78[w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_2_82[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_color_2_82[w_snk_2_rank_64, snkSigma2_48]] [choose_eps_613_1930]][
choose_i_16_240]] * S_90[src_p_src_6, [i_2_12_.224, i_2_12_224, i_2_12_224, i_2_2_204]1[
choose_eps_613_1930], [i_.3.8_216, i_3_11_.222, i_3_11_222, i_3_8_216][choose_eps_613_1930
], snk_p_snk_10, [[w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_1_86[
w_snk_2_rank_64, snkSigma2_ 48], w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48],

w_snk_2_spin_0_84[w_snk_2_rank_64, snkSigma2_48]][choose_eps_613_1930], [

95

w_snk_1_spin_2_82[w_snk_2_rank_64, snkSigma2_48], w_snk_1_spin_2_82[w_snk_2_rank_64,
snkSigma2_48], w_snk_1_spin_0_78[w_snk_2_rank_ 64, snkSigma2_48], w_snk_1_spin_0_78[
w_snk_2_rank_64, snkSigma2_48]][choose_eps_613_1930]][choose_i_16_240]1, [[
w_snk_2_color_0_84 [w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_1_86[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_0_84[
w_snk_2_rank_64, snkSigma2_48]][choose_eps_613_1930], [w_snk_1_color_2_82[
w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_2_82[w_snk_2_rank_64, snkSigma2_48],
w_snk_1_color_0_78[w_snk_2_rank_64, snkSigma2_48], w_snk_1_color_0_78[w_snk_2_rank_64,
snkSigma2_48]] [choose_eps_613_1930]] [choose_i_16_240]] * S_90[src_p_src_6, [i_2_2_204,
i_2_7_214, i_2_2_204, i_2_12_224][choose_eps_613_1930], [i_3_5_210, i_3_5_210, i_3_8_216
, i_.3_11_222][choose_eps_613_1930], snk_p_snk_10, [[w_snk_2_spin_1_86[w_snk_2_rank_64,
snkSigma2_48], w_snk_2_spin_2_88[w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_2_88[
w_snk_2_rank_64, snkSigma2_48], w_snk_2_spin_1_86[w_snk_2_rank_64, snkSigma2_48]][
choose_eps_613_1930], w_snk_1_spin_1_80[w_snk_2_rank_64, snkSigma2_48]][choose_i_16_240
], [[w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_2_88[
w_snk_2_rank_64, snkSigma2_48], w_snk_2_color_2_88[w_snk_2_rank_64, snkSigma2_48],
w_snk_2_color_1_86[w_snk_2_rank_64, snkSigma2_48]][choose_eps_613_1930],
w_snk_1_color_1_80[w_snk_2_rank_64, snkSigma2_48]][choose_i_16_240]] * [w_snk_2_108[
w_snk_2_rank_64, snkSigma2_48], w_snk_1_106[w_snk_2_rank_64, snkSigma2_48]][
choose_i_16_240] #* np.conj([phi2_104 [snkSpaceRank_32, snk_p_snk_10, snkExternal_16],
phil_102[snkSpaceRank_32, snk_p_snk_10, snkExternal_16]][choose_i_16_240]))
merged_vars_baryon_1_3_1948[
choose_eps_613_1930, choose_i_16_240, i_2_12_224, i_2_2_204, i_2_7_214, i_3_11_222,
i_3.5_210, i1_3_.8_216, snkSigma2_48, snkSpaceRank_32, srcSpaceRank_30, src_p_src_6] = ([
psi2_94 [srcSpaceRank_30, src_p_src_6, srcExternal_14], psil_92[srcSpaceRank_30,
src_p_src_6, srcExternal_14]][choose_i_16_240] * summand_7)
summand_8 = 0.0
for srcSpaceRank_30 in range(srcSpaceRank):
for snkSpaceRank_32 in range(snkSpaceRank):
for i_condensed_615_1946 in range (4):
for srcSigmal_42 in range(srcSigmal):
for srcSigma2_44 in range(srcSigma2):
for snkSigmal_46 in range(snkSigmal):
for snkSigma2_48 in range (snkSigma2):
baryon_outer_148_1954: NDArray = np.zeros(1l,)
summand_9 = 0.0
for w_src_1_rank_58 in range(w_src_1_rank):
for src_p_src_1952 in range(N):
summand_9 += (w_src_1_96[w_src_1_rank_58
, srcSigmal_42] * merged_vars_baryon_1_3_1948[i_condensed_615_1946, 1, [

w_src_1_spin_2_70[w_src_1_rank_ 58, srcSigmal_42], w_src_1_spin_2_70[w_src_1_rank_58,

96

136

138

139

140

srcSigmal_42], w_src_1_spin_2_70[w_src_1_rank_58, srcSigmal_42], w_src_1_spin_1_68[
w_src_1_rank_ 58, srcSigmal_42]][i_condensed_615_1946], [w_src_1_spin_1_68[
w_src_1_rank_58, srcSigmal_42], w_src_1_spin_0_66[w_src_1_rank_58, srcSigmal_42],
w_src_1_spin_1_68[w_src_1_rank_58, srcSigmal_42], w_src_1_spin_2_70[w_src_1_rank_58,
srcSigmal_42]][i_condensed_615_1946], [w_src_1_spin_0_66[w_src_1_rank_58, srcSigmal_42],
w_src_1_spin_1_68[w_src_1_rank_ 58, srcSigmal_42], w_src_1_spin_0_66[w_src_1_rank_58,
srcSigmal_42], w_src_1_spin_0_66[w_src_1_rank 58, srcSigmal_42]][i_condensed_615_1946],
[w_src_1_color_0_66[w_src_1_rank_58, srcSigmal_42], w_src_1_color_2_70[w_src_1_rank_58,
srcSigmal_42], w_src_1_color_2_70[w_src_1_rank_58, srcSigmal_42], w_src_1_color_1_68[
w_src_1_rank_58, srcSigmal_42]][i_condensed_615_1946], [w_src_1_color_1_68[
w_src_1_rank_58, srcSigmal_42], w_src_1_color_1_68[w_src_1_rank_ 58, srcSigmal_42],
w_src_1_color_0_66[w_src_1_rank_58, srcSigmal_42], w_src_1_color_0_66[w_src_1_rank_58,
srcSigmal_42]][i_condensed_615_1946], [w_src_1_color_2_70[w_src_1_rank_ 58, srcSigmal_42
], w_src_1_color_0_66[w_src_1_rank_58, srcSigmal_42], w_src_1_color_1_68[w_src_1_rank_58
, srcSigmal_42], w_src_1_color_2_70[w_src_1_rank_ 58, srcSigmal_42]][i_condensed_615_1946
], snkExternal_16, snkSigmal_46, snkSpaceRank_32, srcExternal_14, srcSpaceRank_30,
src_p_src_1952])
baryon_outer_148_1954[None]l = summand_9
baryon_outer_149_1956: NDArray = np.zeros(1l,)
summand_10 = 0.0
for w_src_2_rank_60 in range(w_src_2_rank):
for src_p_src_1950 in range(N):
summand_10 += (w_src_2_98[
w_src_2_rank_60, srcSigma2_44] * merged_vars_baryon_1_3_1948[i_condensed_615_1946, 0, [
w_src_2_spin_0_72[w_src_2_rank_ 60, srcSigma2_44], w_src_2_spin_1_74[w_src_2_rank_60,
srcSigma2_44], w_src_2_spin_1_74[w_src_2_rank 60, srcSigma2_44], w_src_2_spin_1_74[
w_src_2_rank_60, srcSigma2_44]][i_condensed_615_1946], [w_src_2_spin_1_74[
w_src_2_rank_60, srcSigma2_44], w_src_2_spin_2_76[w_src_2_rank_60, srcSigma2_44],
w_src_2_spin_2_76[w_src_2_rank_ 60, srcSigma2_44], w_src_2_spin_2_76[w_src_2_rank_60,
srcSigma2_44]][i_condensed_615_1946], [w_src_2_spin_2_76[w_src_2_rank_60, srcSigma2_44],
w_src_2_spin_0_72[w_src_2_rank_60, srcSigma2_44], w_src_2_spin_0_72[w_src_2_rank_60,
srcSigma2_44], w_src_2_spin_0_72[w_src_2_rank_ 60, srcSigma2_44]][i_condensed_615_1946],
[w_src_2_color_2_76[w_src_2_rank_60, srcSigma2_44], w_src_2_color_1_74[w_src_2_rank_60,
srcSigma2_44], w_src_2_color_1_74[w_src_2_rank_60, srcSigma2_44], w_src_2_color_1_74[
w_src_2_rank_60, srcSigma2_44]][i_condensed_615_1946], [w_src_2_color_1_74][
w_src_2_rank_60, srcSigma2_44], w_src_2_color_0_72[w_src_2_rank 60, srcSigma2_44],
w_src_2_color_0_72[w_src_2_rank_60, srcSigma2_44], w_src_2_color_0_72[w_src_2_rank_60,
srcSigma2_44]][i_condensed_615_1946], [w_src_2_color_0_72[w_src_2_rank_60, srcSigma2_44
], w_src_2_color_2_76[w_src_2_rank_60, srcSigma2_44], w_src_2_color_2_76[w_src_2_rank_60
, srcSigma2_44], w_src_2_color_2_76[w_src_2_rank_ 60, srcSigma2_44]][i_condensed_615_1946

], snkExternal_16, snkSigma2_48, snkSpaceRank_32, srcExternal_14, srcSpaceRank_30,

97

src_p_src_1950])

baryon_outer_149_1956 [None] = summand_10

summand_8 += (v_src_100[srcSigmal_42,
srcSigma2_44, rhoSrc_22] * v_snk_110[snkSigmal_46, snkSigma2_48, rhoSnk_24] * ([1.0,
1.0, -1.0, -1.0][i_condensed_615_1946] * [1.0, -1.0, 1.0, -1.0][i_condensed_615_1946] =x*
baryon_outer_148_1954[i_condensed_615_1946 , snkExternal_16, snkSigmal_46,
snkSpaceRank_32, srcExternal_14, srcSigmal_42, srcSpaceRank_30] * baryon_outer_149_1956[
i_condensed_615_1946 , snkExternal_16, snkSigma2_48, snkSpaceRank_32, srcExternal_14,

srcSigma2_44, srcSpaceRank_30]))

sep_unroll_perm_0_7330295488186759212_baryon_145_sumed_1960 [None]
summand_8

output_2080 [snkExternal_16, rhoSnk_24, srcExternal_14, rhoSrc_22] = (
sep_unroll_perm_2_3510658113350937887_epsilon_144_sumed_1958 [rhoSnk_24, snkExternal_16,
srcExternal_14, rhoSrc_22] + sep_unroll_perm_0_7330295488186759212 _baryon_145_sumed_1960

[rhoSnk_24, snkExternal_16, srcExternal_14, rhoSrc_22])

Listing A.3: Dibaryon Dibaryon Rewritten IR (prcomputes removed for brevity)

A.3 Dibaryon Hexaquark IR

output_92: NDArray = np.zeros(rhoSrcSize, EN, EN, rhoSnkHSize)
for rhoSrc_20 in range(rhoSrcSize):
for srcExternal_12 in range (EN):
for snkExternal_14 in range (EN):
for rhoHSnk_22 in range (rhoSnkHSize):
summand_0 = 0.0
for srcSigmal_32 in range(srcSigmal):
for w_src_1_rank_42 in range(w_src_1_rank):
for snk_snk_8 in range(N):
for src_src_4 in range(N):
for srcSigma2_34 in range(srcSigma2):
for src_p_src_6 in range(N):
for w_src_2_rank_44 in range(
w_src_2_rank):
for w_snk_H_rank_46 in range(
w_snk_H_rank) :
for srcSpaceRank_26 in range(
srcSpaceRank) :

for up_88 in itertools.permutations(

98

permutations (

range (3)):

for down_90 in itertools.

range (3)):
summand_0 += (
s_72[
src_src_4,
w_src_1_spin_0_48[
w_src_1_rank_42,
srcSigmal_32],
w_src_1_color_0_48[
w_src_1_rank_42,

srcSigmal_32],

snk_snk_8,
snk_snk_8,
snk_snk_8
1[up_88I[0]1]1,
[
w_snk_spin_0_60[

w_snk_H_rank_46

w_snk_spin_2_64[

w_snk_H_rank_46

w_snk_spin_4_68[
w_snk_H_rank_46]
J[up_88[0]1],
[
w_snk_color_0_60[

w_snk_H_rank_46

w_snk_color_2_64[

w_snk_H_rank_46

w_snk_color_4_68[
w_snk_H_rank_46]

J[up_88[0]1]]

*
S_72[src_src_4,

w_src_1_spin_2_52[

99

~
N

-~

79

80

81

89

90

w_src_1_rank_42,

srcSigmal_32],
w_src_1_color_2_52[

w_src_1_rank_42,

srcSigmal_32],

snk_snk_8,

snk_snk_8,

snk_snk_8
1 [up_88[

111,

w_snk_spin_0_60[

w_snk_H_rank_46

w_snk_spin_2_64[

w_snk_H_rank_46

w_snk_spin_4_68[

w_snk_H_rank_46

1[up_88[
111,

w_snk_color_0_60[

w_snk_H_rank_46

w_snk_color_2_64[

w_snk_H_rank_46

w_snk_color_4_68[

w_snk_H_rank_46

J[up_88[
11171 =

S_72[src_p_src_6,

w_src_2_spin_1_56[
w_src_2_rank_44,
srcSigma2_34],

w_src_2_color_1_56[

w_src_2_rank_44,

98

99

100

101

102

110

111

101

srcSigma2_34],

snk_snk_8,

snk_snk_8,

snk_snk_8
J[up_88[

211,

w_snk_spin_0_60[

w_snk_H_rank_46

w_snk_spin_2_64[

w_snk_H_rank_46

w_snk_spin_4_68[

w_snk_H_rank_46

1[up_88[
211,

w_snk_color_0_60[

w_snk_H_rank_46

w_snk_color_2_64[

w_snk_H_rank_46

w_snk_color_4_68[

w_snk_H_rank_46

J[up_88[
2111 =
sign (up_88)
* 8_72[
src_src_4,
w_src_1_spin_1_50[
w_src_1_rank_42,
srcSigmal_32],
w_src_1_color_1_50[
w_src_1_rank_42,

srcSigmal_32],

159

160

161

162

snk_snk_8,

snk_snk_8,

snk_snk_8
J[down_90[

0l1,

w_snk_spin_1_62[

w_snk_H_rank_46

w_snk_spin_3_66[

w_snk_H_rank_46

w_snk_spin_5_70[
w_snk_H_rank_46]
J[down_90[

011,

w_snk_color_1_62[

w_snk_H_rank_46

w_snk_color_3_66[

w_snk_H_rank_46

w_snk_color_5_70[
w_snk_H_rank_46]
1[down_90[
0111 =
s_72[
src_p_src_6,
w_src_2_spin_0_54[
w_src_2_rank_44,
srcSigma2_34],
w_src_2_color_0_54[
w_src_2_rank_44,

srcSigma2_34],

[
snk_snk_8,
snk_snk_8,
snk_snk_8
J[down_90 [
111,

102

163

164

165

166

167

78

179

180

189

190

191

193

194

195

196

197

198

103

w_snk_spin_1_62[

w_snk_H_rank_46

w_snk_spin_3_66[

w_snk_H_rank_46

w_snk_spin_5_70[
w_snk_H_rank_46]
J[down_90[

111,

w_snk_color_1_62[

w_snk_H_rank_46

w_snk_color_3_66[

w_snk_H_rank_46

w_snk_color_5_70[
w_snk_H_rank_46]
J[down_90 [
1111 =
S_72[
src_p_src_6,
w_src_2_spin_2_58[
w_src_2_rank_44,
srcSigma2_34],
w_src_2_color_2_58[
w_src_2_rank_44,

srcSigma2_34],

[
snk_snk_8,
snk_snk_8,
snk_snk_8

J[down_90[
211,

[

w_snk_spin_1_62[

w_snk_H_rank_46

w_snk_spin_3_66[

199

w_snk_H_rank_46

w_snk_spin_5_70[
w_snk_H_rank_46]
J[down_90[

211,

w_snk_color_1_62[

w_snk_H_rank_46

w_snk_color_3_66[

w_snk_H_rank_46

w_snk_color_5_70[
w_snk_H_rank_46]
J[down_90[

2111 =
sign(down_90) *
(psil_74[

srcSpaceRank_26,
src_src_4,
srcExternal_12]

* psi2_76[
srcSpaceRank_26,
src_p_src_6,
srcExternal_12]

* w_src_1_78[
w_src_1_rank_42,
srcSigmal_32]

* w_src_2_80([
w_src_2_rank_44,
srcSigma2_34]

* v_src_82[
srcSigmal_32,
srcSigma2_34,
rhoSrc_20]

) * np.

conj ((phi_84[
snk_snk_8,
snkExternal_14]

*

104

N}
~

N

38

239

240

output_92[rhoSrc_20, srcExternal

rhoHSnk_22] = summand_

w_snk_86[
w_snk_H_rank_46,
rhoHSnk_22]

)))

_12, snkExternal_14,

0

Listing A.4: Dibaryon Hexaquark Naive IR

output_104: NDArray = np.zeros(EN, EN, rhoSrcSize, rhoSnkHSize)

for srcExternal_12 in range (EN):
for snkExternal_14 in range (EN):
for rhoSrc_20 in range(rhoSrcSize):
for rhoHSnk_22 in range (rhoSnkHSize)

summand_0 = 0.0

for srcSpaceRank_26 in range(srcSpaceRank):

for snk_snk_8 in range(N):

for srcSigmal_32 in range(srcSigmal):

for w_snk_H_rank_46

in range(w_snk_H_rank):

for srcSigma2_34 in range(srcSigma2):

for up_88 in itertools.permutations(

range (3)):

for down_90 in itertools.permutations(

range (3)):

part_0_2_102: NDArray = np.zeros(2)

for

105

choose_i_0_98 in range (2):
summand_1 = 0.0
for src_p_src_6 in range(N):
for w_src_2_rank_44 in range(
w_src_2_rank):
summand_1 += (S_72[src_p_src_6, [
w_src_2_spin_1_56[
w_src_2_rank_44,
srcSigma2_34],
w_src_1_spin_0_48[
w_src_2_rank_44,
srcSigma2_34]
J[choose_i_0_98], [
w_src_2_color_1_56[
w_src_2_rank_44,
srcSigma2_34],

w_src_1_color_0_48[

w_src_2_rank_44,
srcSigma2_34]
J[choose_i_0_98], snk_snk_8, [
w_snk_spin_0_60[
w_snk_H_rank_46],
w_snk_spin_2_64[
w_snk_H_rank_46],
w_snk_spin_4_68[
w_snk_H_rank_46]
J[up_88I[L
2, 0
J[choose_i_0_9811]1, [
w_snk_color_0_60[
w_snk_H_rank_46],
w_snk_color_2_64[
w_snk_H_rank_46],
w_snk_color_4_68[
w_snk_H_rank_46]
J[up_88I[[
2, 0
J[choose_i_0_98]111]1 * S_72[
src_p_src_6, [
w_src_2_spin_0_54[
w_src_2_rank_44,
srcSigma2_34],
w_src_1_spin_2_52[
w_src_2_rank_44,
srcSigma2_34]
Jlchoose_i_0_98]1, [
w_src_2_color_0_54[
w_src_2_rank_44,
srcSigma2_34],
w_src_1_color_2_52[
w_src_2_rank_44,
srcSigma2_34]
J[choose_i_0_98], snk_snk_8, [
[
w_snk_spin_1_62[
w_snk_H_rank_46],
w_snk_spin_0_60[

w_snk_H_rank_46]

106

79

80

81

88

89

90

91

96

97

98

99

100

101

104

105

106

src_p_src_6,

[

J[choose_i_0_98],
[
w_snk_spin_3_66[
w_snk_H_rank_46],
w_snk_spin_2_64[
w_snk_H_rank_46]
l[choose_i_0_98],
[
w_snk_spin_5_70[
w_snk_H_rank_46],
w_snk_spin_4_68[
w_snk_H_rank_46]
J[choose_i_0_98]
JCC
down_90[1], up_88[1]
J[choose_i_0_981]1, [
[
w_snk_color_1_62[
w_snk_H_rank_46],
w_snk_color_0_60[
w_snk_H_rank_46]
llchoose_i_0_98],
[
w_snk_color_3_66[
w_snk_H_rank_46],
w_snk_color_2_64[
w_snk_H_rank_46]
J[choose_i_0_98],
[
w_snk_color_5_70[
w_snk_H_rank_46],
w_snk_color_4_68[
w_snk_H_rank_46]
J[choose_i_0_98]
JCC
down_90[1], up_88[1]

J[choose_i_0_9811]1 * s_72[
w_src_2_spin_2_58[

w_src_2_rank_44,

srcSigma2_34],

107

114 w_src_1_spin_1_50[
115 w_src_2_rank_44,
116 srcSigma2_34]

117 J[choose_i_0_981, [

118 w_src_2_color_2_58[
119 w_src_2_rank_44,
120 srcSigma2_34],

121 w_src_1_color_1_50[
122 w_src_2_rank_44,
123 srcSigma2_34]

124 J[choose_i_0_98], snk_snk_8, [
125 w_snk_spin_1_62[

126 w_snk_H_rank_46],

127 w_snk_spin_3_66[

128 w_snk_H_rank_46],
129 w_snk_spin_5_70[

130 w_snk_H_rank_46]
131 1[down_90L[[

132 2, 0

133 J[choose_i_0_98111, [

134 w_snk_color_1_62[

135 w_snk_H_rank_46],
136 w_snk_color_3_66[

37 w_snk_H_rank_46],
138 w_snk_color_5_70[

139 w_snk_H_rank_46]
140 J[down_90L[[

141 2, 0

142 J[choose_i_0_981111 * [
143 psi2_761[

144 srcSpaceRank_26,
145 src_p_src_6,

146 srcExternal_12],

147 psil_74([

148 srcSpaceRank_26,
149 src_p_src_6,

150 srcExternal_12]
151 J[choose_i_0_98] * [

152 w_src_2_80[

153 w_src_2_rank_44,
154 srcSigma2_34],

108

159

160

161

163

164

166

167

168

169

178

179

180

w_src_1_78[
w_src_2_rank_44,
srcSigma2_34]
J[choose_i_0_981)
part_0_2_102[
choose_i_0_98] = summand_1
summand_0 += (
sign(up_88) * sign(down_90) *
v_src_82[srcSigmal_32,
srcSigma2_34,
rhoSrc_20] *
np.conj (phi_84 [snk_snk_8,
snkExternal_14])
* np.conj (
w_snk_86[w_snk_H_rank_46,
rhoHSnk_22]) *
(part_0_2_102[
0, down_90, snk_snk_8,
srcExternal_12,
srcSigma2_34,
srcSpaceRank_26, up_88,
w_snk_H_rank_46] x
part_0_2_102[
1, down_90, snk_snk_8,
srcExternal_12,
srcSigmal_32,
srcSpaceRank_26 , up_88,
w_snk_H_rank_46]))
output_104 [srcExternal_12, snkExternal_14, rhoSrc_20,

rhoHSnk_22] = summand_O

Listing A.5: Dibaryon Hexaquark Rewritten IR

A.4 Hexaquark Hexaquark IR

output_68: NDArray = np.zeros(EN, EN, rhoSrcHSize, rhoSrcHSize)
for srcExternal_14 in range (EN):
for snkExternal_16 in range (EN):

for rhoHSnk_20 in range(rhoSrcHSize):

109

for rhoHSrc_18 in range(rhoSrcHSize):
summand_0 = 0.0
for w_snk_1_rank_52 in range(w_snk_1_rank):
for snk_snk_6 in range(N):
for w_src_1_rank_50 in range(w_src_1_rank):
for src_src_4 in range(N):
for up_64 in itertools.permutations(range(3)):
for down_66 in itertools.permutations(
range (3)):
summand_0 += (S_54[
src_src_4,
w_src_spin_0_22[w_src_1_rank_50],
w_src_color_0_22[w_src_1_rank_50],
[snk_snk_6, snk_snk_6, snk_snk_61]1[

up_64[011,

w_snk_spin_0_34[
w_snk_1_rank_52],
w_snk_spin_2_38[

w_snk_1_rank_52],

w_snk_spin_4_42[w_snk_1_rank_52]

Jlup_64[0]]1, [
w_snk_color_0_34[
w_snk_1_rank_52],
w_snk_color_2_38[
w_snk_1_rank_52],
w_snk_color_4_42[
w_snk_1_rank_52]
J[up_64[0]1]1] * S_54[
src_src_4, w_src_spin_2_26[
w_src_1_rank_50],
w_src_color_2_26[
w_src_1_rank_50]1, [
snk_snk_6, snk_snk_6,
snk_snk_6
J[up_64[111, [
w_snk_spin_0_34[
w_snk_1_rank_52],
w_snk_spin_2_38[
w_snk_1_rank_52],

w_snk_spin_4_42[

110

66

68

69

70

~
N

79

80

81

111

w_snk_1_rank_52]

J[up_641[111,

w_snk_color_0_34[

w_snk_1_rank_52],

w_snk_color_2_38[

w_snk_1_rank_52],

w_snk_color_4_42[

w_snk_1_rank_52]

J[up_64[111]1 * sS_54[

src_src_4, w_src_spin_4_30([

w_src_1_rank_50],

w_src_color_4_30[

w_src_1_rank_50],

snk_snk_6, snk_snk_6,

snk_snk_6

Jlup_64([211, [

w_snk_spin_0_34[

w_snk_1_rank_52],

w_snk_spin_2_38[

w_snk_1_rank_52],

w_snk_spin_4_42[

w_snk_1_rank_52]

Jlup_64[211, [

w_snk_color_0_34[

w_snk_1_rank_52],

w_snk_color_2_38[

w_snk_1_rank_52],

w_snk_color_4_42[

w_snk_1_rank_52]

J[up_64[2]1]1] * sign(up_64) * S_54[

src_src_4,

w_src_spin_1_24[

w_src_1_rank_50],

w_src_color_1_24[

w_src_1_rank_50],

[
snk_snk_6,
snk_snk_6,
1 [down_66[

snk_snk_6

87 0171,

89 w_snk_spin_1_36[

90 w_snk_1_rank_52],
91 w_snk_spin_3_40[

92 w_snk_1_rank_52],
93 w_snk_spin_5_44[

94 w_snk_1_rank_52]

95 J[down_66[0]11, [

96 w_snk_color_1_36[

97 w_snk_1_rank_52],
98 w_snk_color_3_40[

99 w_snk_1_rank_52],
100 w_snk_color_5_44[

101 w_snk_1_rank_52]

102 J[down_66[0]]] =*

103 S_54[

104 src_src_4,

105 w_src_spin_3_28[

106 w_src_1_rank_50],

107 w_src_color_3_28[

108 w_src_1_rank_50],

109 L

110 snk_snk_6,

111 snk_snk_6,

112 snk_snk_6

113 J[ldown_66[1]1], [

114 w_snk_spin_1_36[

115 w_snk_1_rank_52],
116 w_snk_spin_3_40[

117 w_snk_1_rank_52],
118 w_snk_spin_5_44[

119 w_snk_1_rank_52]
120 J[down_66[111, [

121 w_snk_color_1_36[

122 w_snk_1_rank_52],
123 w_snk_color_3_40[

124 w_snk_1_rank_52],
125 w_snk_color_5_44[

126 w_snk_1_rank_52]

127 J[down_66[11]1] =*

112

146

160

161

162

163

164

output_68[srcExternal_14,

S_54[

src_src_4,

w_src_spin_5_32[
w_src_1_rank_50],

w_src_color_5_32[

w_src_1_rank_50],

snk_snk_6,
snk_snk_6,
snk_snk_6
J[down_66[211, [
w_snk_spin_1_36[
w_snk_1_rank_52],
w_snk_spin_3_40[
w_snk_1_rank_52],
w_snk_spin_5_44[
w_snk_1_rank_52]
J[down_66[211, [
w_snk_color_1_36[
w_snk_1_rank_52],
w_snk_color_3_40[
w_snk_1_rank_52],
w_snk_color_5_44[
w_snk_1_rank_52]

J[down_66[2]1]1] =*

sign(down_66) *

(psil_b66[src_src_4,

srcExternal_14]

* w_src_58[

w_src_1_rank_50,

rhoHSrc_18]) *

np.conj(

snkExternal_16,

113

(phi1_60[
snk_snk_6,
snkExternal_16] *
w_snk_62[
w_snk_1_rank_52,
rhoHSnk_20])))

rhoHSnk_20,

167 rhoHSrc_18] = summand_O

Listing A.6: Hexaquark Hexaquark Naive IR

1 output_68: NDArray = np.zeros(EN, rhoSrcHSize, rhoSrcHSize, EN)

2 for snkExternal_16 in range (EN):

3 for rhoHSrc_18 in range (rhoSrcHSize):

4 for rhoHSnk_20 in range(rhoSrcHSize):

5 for srcExternal_14 in range (EN):

6 summand_0 = 0.0

7 for w_snk_1_rank_52 in range(w_snk_1_rank):

8 for w_src_1_rank_50 in range(w_src_1_rank):

9 for snk_snk_6 in range(N):

10 for src_src_4 in range(N):

11 for up_64 in itertools.permutations (range(3)):
12 for down_66 in itertools.permutations(
13 range (3)):

14 summand_0 += (

15 S_54[src_src_4, w_src_spin_0_22[
16 w_src_1_rank_50],

17 w_src_color_0_22[

18 w_src_1_rank_50],

19 snk_snk_6, [

20 w_snk_spin_0_34[
21 w_snk_1_rank_52],
22 w_snk_spin_2_38[
23 w_snk_1_rank_52],

24 w_snk_spin_4_42[

25 w_snk_1_rank_52]

26 1[up_64[011, [
27 w_snk_color_0_34[
28 w_snk_1_rank_52],

29 w_snk_color_2_38[

30 w_snk_1_rank_52],
31 w_snk_color_4_42[

32 w_snk_1_rank_52]

33 J[up_64[0]11]1 =*

34 S_54[src_src_4, w_src_spin_2_26[
35 w_src_1_rank_50],

36 w_src_color_2_26[

37 w_src_1_rank_50],

38 snk_snk_6, [

114

~
N

w_snk_spin_0_34[
w_snk_1_rank_52],
w_snk_spin_2_38[
w_snk_1_rank_52],
w_snk_spin_4_42[
w_snk_1_rank_52]
1lup_64[111, [
w_snk_color_0_34[
w_snk_1_rank_52],
w_snk_color_2_38[
w_snk_1_rank_52],
w_snk_color_4_42[
w_snk_1_rank_52]
1[up_64[111] =
S_b4[src_src_4, w_src_spin_4_30[
w_src_1_rank_50],
w_src_color_4_30[
w_src_1_rank_501],
snk_snk_6, [
w_snk_spin_0_34[
w_snk_1_rank_52],
w_snk_spin_2_38[
w_snk_1_rank_52],
w_snk_spin_4_42[
w_snk_1_rank_52]
1lup_64[2]1, [
w_snk_color_0_34[
w_snk_1_rank_52],
w_snk_color_2_38[
w_snk_1_rank_52],
w_snk_color_4_42[
w_snk_1_rank_52]

J[up_64[2]1]1]1 * sign(up_64)

* S_b4[src_src_4, w_src_spin_1_24[

w_src_1_rank_50],
w_src_color_1_24[
w_src_1_rank_50],
snk_snk_6, [
w_snk_spin_1_36[
w_snk_1_rank_52],

w_snk_spin_3_40[

115

80

81

88

89

90

95

96

97

98

99

109

110

111

w_snk_1_rank_52],
w_snk_spin_5_44[
w_snk_1_rank_52]
J[down_66[011, [
w_snk_color_1_36[
w_snk_1_rank_52],
w_snk_color_3_40[
w_snk_1_rank_52],
w_snk_color_5_44[
w_snk_1_rank_52]
J[down_66[0]11]1 =*
S_54[src_src_4, w_src_spin_3_28[
w_src_1_rank_50],
w_src_color_3_28[
w_src_1_rank_50],
snk_snk_6, [
w_snk_spin_1_36[
w_snk_1_rank_52],
w_snk_spin_3_40[
w_snk_1_rank_52],
w_snk_spin_5_44[
w_snk_1_rank_52]
J[down_66[111, [
w_snk_color_1_36[
w_snk_1_rank_52],
w_snk_color_3_40[
w_snk_1_rank_52],
w_snk_color_5_44[
w_snk_1_rank_52]
J[down_66[111]1 =*
S_54[src_src_4, w_src_spin_5_32[
w_src_1_rank_50],
w_src_color_5_32[
w_src_1_rank_50],
snk_snk_6, [
w_snk_spin_1_36[
w_snk_1_rank_52],
w_snk_spin_3_40[
w_snk_1_rank_52],
w_snk_spin_5_44[

w_snk_1_rank_52]

116

J[down_661[211, [
w_snk_color_1_36[
w_snk_1_rank_52],
w_snk_color_3_40[
w_snk_1_rank_52],
w_snk_color_5_44[
w_snk_1_rank_52]
J[down_66[2]1]1] =*
sign(down_66) *
(psil_b6[src_src_4, srcExternal_14]
* w_src_58[w_src_1_rank_50,
rhoHSrc_18]) =*
np.conj ((phil_60[snk_snk_6,
snkExternal_16] x*
w_snk_62[w_snk_1_rank_52,
rhoHSnk_201)))
output_68[snkExternal_16 , rhoHSrc_18, rhoHSnk_20,

srcExternal_14] = summand_O

Listing A.7: Hexaquark Hexaquark Rewritten IR

117

Appendix B

Rewrite Code

B.1 Dibaryon Dibaron Rewrites

1 def

N

dibar_rewrite (comp) :

up_perm = find_index_by_name (comp, ’up’)

down_perm = find_index_by_name (comp, ’down’)

res = simplify_conj(comp, [’w_src_1’, ’w_src_2’, ’w_snk_1’, ’w_snk_27,
v_src?’, ’v_snk’])

res = separate_sum(res, ["srcSpaceRank", "snkSpaceRank"], move_vars=
True)

Expand the perms

def expand_perms (exp) :

exp = expand_perm(exp,

up_perm)

exp = apply_to_all_lets(exp, lambda x:

expand_perm(x, down_perm)))

exp = flatten_multilets (exp)

return exp

res = run_on_loc(res,

(21,

expand_perms)

118

propagate_const_acc(

N
N

def reduce_space_loops(perm_let):
perm_letp = run_on_loc(perm_let, [], lambda x: separate_sum(x, [’
w_src_1_rank’, ’w_src_2_rank’, ’srcSigmal’, ’srcSigma2’, ’up’, ’down’],

move_vars=True))

groups = [w_src_1_rank’, ’w_src_2_rank?’, ’srcSigmal’, ’srcSigma2’
]

perm_letpp = run_on_loc(perm_letp, [], lambda y:
loop_linearize_controllable(y, groups, {’w_src_1_rank’: 12, °’

w_src_2_rank’: 12, ’srcSigmal’: 2, ’srcSigma2’: 2}))

perm_letppp = run_on_loc(perm_letpp, [0, 2, 0, 1], lambda y:
separate_sum(y, ["snkSigmal", "snkSigma2"], move_vars=True))
key = [0, 2, 0, 1, 2, 1]
if not can_partition(get_from_ir (perm_letppp, key)):
perm_letppp = run_on_loc(perm_letppp, key, lambda x:
separate_sum(x, [’src_src’, ’src_p_src’], move_vars=True))
key = [0, 2, 0, 1, 2, 1, 2, 2, 0, O]
assert can_partition(get_from_ir (perm_letppp, key))
perm_letppp_partedl = run_on_loc(perm_letppp, key, lambda x:
partition_exprs(x, multi=True, name="epsilon"))
perm_letppp_merged = run_on_loc(perm_letppp_partedl, key,
merge_multilet)
return perm_letppp_merged
else:
temp = run_on_loc(perm_letppp, key, lambda x: partition_exprs(
x, name="baryon"))
tempp = run_on_loc(temp, key, merge_multilet)
temppp = run_on_loc(tempp, key + [0,], lambda y: separate_sum(
y, ["src_p_src", "src_src"], move_vars=True))

return temppp

119

38

39

40

44

19

56

60

61

res = run_on_loc(res, [2], lambda x: apply_to_all_lets(x,

reduce_space_loops))

Group by number of spatial loops.
res = run_on_loc(res, [2], lambda x: separate_lets(x, lambda y:
count_num_sums (y, [’src_src’, ’src_p_src’, ’snk_snk’, ’snk_p_snk’]) ==

2, {True : "baryon", False : "epsilon"}))

res = run_on_loc(res, [2], lambda x: apply_to_all_lets(x, lambda y:
merge_multilet (y, name="eps")))
res = run_on_loc(res, [2], lambda x: apply_to_all_lets(x, lambda y:

run_on_loc(y, [2], condense_add)))

pass
res = run_on_loc(res, [2, 0, O, 1], push_use_into_let)
res = run_on_loc(res, [2, 0, O, 1, 2], push_use_into_let)
res = run_on_loc(res, [2, 0, 0, 1], merge_sum)

res = run_on_loc(res, [2, O, O, 1], merge_sum)

res = run_on_loc(res, [2, 0, 0, 1], merge_sum)

res = run_on_loc(res, [2, 0, 1, 1], push_use_into_let)
res = run_on_loc(res, [2, 0, 1, 1, 2], push_use_into_let)
res = run_on_loc(res, [2, O, 1, 1], merge_sum)

res = run_on_loc(res, [2, 0, 1, 1], merge_sum)

res = run_on_loc(res, [2, 0, 1, 1, 2, 2, 0, 2], pull_sum_from_let)

res = run_on_loc(res, [2, 0, 1, 1], move_into_let_use)
res = (run_on_loc(res, [2, 0, 1, 1, 2], lambda y: separate_sum(y, ["

w_src_1_rank", "w_src_2_rank"], move_vars=True, tonotraise=True)))

assert can_partition(get_from_ir(res, [2, O, 1, 1, 2, 2, 2, 0, 0]))

res = run_on_loc(res, [2, O, 1, 1, 2, 2, 2, 0, 0], lambda x:

66

68

69

76

80

81

84

partition_exprs(x, multi=False, homo=False, name="baryon_outer"))
res = run_on_loc(res, [2, O, 1, 1, 2, 2, 2, O, O, 2, 0, O, O],
merge_sum)

res = run_on_loc(res, [2, O, 1, 1, 2, 2, 2, O, O, 2, 0, 1, O],

merge_sum)

res = push_sum_varaccs (res)

res = run_on_loc(res, [1,], push_sum_to_acceses)

res = push_sum_varaccs (res)

res = run_on_loc(res, [0, 0, 1], merge_sum)

res = run_on_loc(res, [0, 1, 1], move_into_let_use)

res = run_on_loc(res, [0, 1, 1], move_into_let_use)

res = run_on_loc(res, [0, 1, 1, 2], merge_sum)

res = (run_on_loc(res, [0, O, 1], lambda y: separate_sum(y, [’
src_p_src’, ’src_src’, ’srcSpaceRank’], move_vars=True, tonotraise=
False)))

res = (run_on_loc(res, [0, O, 1, 2, 2, O, O, 2, 2, 0, 271,
normalize_let_uses))
res = run_on_loc(res, [0, O, 1, 2, 2, O, O, 2, 2, 0, 2, 0], lambda y:

separate_sum(y, [’snk_p_snk’], move_vars=True))

Pushes the choice on the linearized indicies to another level
res = run_on_loc(res, [0, O, 1, 2, 2, O, O, 2, 2, 0, 2], lambda y:
transfer_index_logic_to_use(y, ["i_2", "i_3"], name="sc"))

Resimplfies access to that

res = run_on_loc(res, [0, O, 1, 2, 2, O, O, 2, 2, 0, 2],

resimplify_choice)

res = run_on_loc(res, [0, O, 1, 2, 2, O, O, 2, 2, 0, 2], lambda x:
unroll_let_expr(x, "choose_i", name="merged_eps", multi=True))

Condense the choice

res = run_on_loc(res, [0, O, 1, 2, 2, 0, O, 2, 2, 0, 2], lambda y:

condenseChoiceVerticalFilter(y, "merged_eps_0", "choose_ep", filter =

121

88

90

91

93

94

96

97

98

99

lambda x:
list |

res =

condenseChoiceVerticalFilter (y,

lambda x:
list |
res =
condenseChoices (y,
lambda x:
res =
condenseChoices (y,
lambda x:
res =

clear_dead_multi)

res = run_on_loc (res,
lambda y:
res = run_on_loc (res,

clear_dead_multi)

res = run_on_loc(res,
lambda y:
res = run_on_loc(res,

transfer_index_logic_to_use_new(y,

res =

transfer_index_logic_to_use_new(y,

res =

precompute_access (y,

w_snk_2_rank"]))
res =
0o, 0, 1, 0, 0, 1,

w_snk_2_rank"]))

len(set(x.vars)) ==

run_on_loc(res,

len(set(x.vars)) ==

run_on_loc(res,

"compressed"

run_on_loc(res,

"compressed"

run_on_loc (res,

run_on_loc(res,

run_on_loc (res,

run_on_loc (res,

run_on_loc (res,

2, 1,

tuple) and x.vars[0].access.iname ==

[0) 0, 1’ 2, 2) O’ O)

"merged_eps_1

tuple) and x.vars[0].access.iname ==

[o, o, 1, 2, 2, 0, O,
"merged_eps_O_compressed",
not in x))

[o, o, 1, 2, 2, 0, O,
"merged_eps_1_compressed",
not in x))

[0’ 0’ 1’ 2, 2’ O, 0’

(o, o, 1, 2, 2, 0, O,

transfer_index_logic_to_use_new (y,

(o, o, 1, 2, 2, 0, O,

[0) 0, 1) 2, 2) O’ O)

transfer_index_logic_to_use_new(y,

fo, o, 1,2, 2, 0, 0, 2

[0, 0: 1’2; 23 O, O: 2
o, 0o, 1, 2, 2, 0, O,

["w_src_2_rank",

[0 b 0 b 1 s 2 b 2 s O b O b
1, 2], lambda y:
(o, o, 1, 2, 2, 0, O,

2], lambda y:

122

["choose_eps"],

["choose_eps"],

2 and not isinstance(x.vars[0].access,

"src_p_src"))

2, 2, 0, 2], lambda y:

", "choose_ep", filter =

2 and not isinstance(x.vars[0].access,

"src_p_src"))

2, 2, 0, 2], lambda y:

"choose_eps", idxMatcher=

2, 2, 0, 2], lambda y:

"choose_eps", idxMatcher=

2, 2, 0, 2, 0, 1, 17,

2, 2, 0, 2, 0, 1, 17,

["choose_eps"1))

2, 2, 0, 2, 0, 0, 171,

2, 2, 0, 2, 0, 0, 171,

["choose_eps"]1))

, 2, 0, 2], lambda y:
idxLet=0))

, 2, 0, 2], lambda y:
idxLet=1))

2, 2, 0, 2], lambda y:

"i_condensed_614"]))

2, 2, 0, 2, 1, 0, O, 1, O,

precompute_access (y, ["

2, 2, 0, 2, 1, 0, 1, 1,

precompute_access (y, ["

100

104

Partition that last sum - do the reduction seperately

res = apply_to_all_til_no_change(res,

clear_dead_multi)

res = apply_to_all_til_no_change(res, LQCD_IR.Let

LQCD_IR.Sum,

return res

clean_unneeded_binds)

Listing B.1: Dibaryon Dibaryon Rewrites

123

LQCD_IR.Multilet,

LQCD_IR.Multilet

References

1]

2]

13

4]

[5]
[6]

R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang, P. Suriana,
S. Kamil, and S. P. Amarasinghe, “Tiramisu: A polyhedral compiler for expressing
fast and portable code,” CoRR, vol. abs/1804.10694, 2018. arXiv: 1804.10694.
[Online|. Available: http://arxiv.org/abs/1804.10694.

J. Ragan-Kelley, A. Adams, D. Sharlet, C. Barnes, S. Paris, M. Levoy,

S. Amarasinghe, and F. Durand, “Halide: Decoupling algorithms from schedules for
high-performance image processing,” Commun. ACM, vol. 61, no. 1, pp. 106-115,
Dec. 2017, 1SSN: 0001-0782. poI: 10.1145/3150211. [Online|. Available:
https://doi.org/10.1145/3150211.

C. Gattringer and C. B. Lang, Quantum Chromodynamics on the Lattice: An
Introductory Presentation (Lecture Notes in Physics). Springer, 2010, vol. 788. DOI:
10.1007/978-3-642-01850-3.

K. G. Wilson, “Confinement of quarks,” Phys. Rev. D, vol. 10, pp. 2445-2459, 8 Oct.
1974. pot: 10.1103/PhysRevD.10.2445. [Online|. Available:
https://link.aps.org/doi/10.1103 /PhysRevD.10.2445.

R. Gupta, Introduction to lattice qed, 1998. arXiv: hep-lat /9807028 [hep-lat].

W. Detmold and K. Orginos, “Nuclear correlation functions in lattice qcd,” Phys.
Rev. D, vol. 87, p. 114512, 11 Jun. 2013. pDOI1: 10.1103 /PhysRevD.87.114512.
[Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.87.114512.

124

https://arxiv.org/abs/1804.10694
http://arxiv.org/abs/1804.10694
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1007/978-3-642-01850-3
https://doi.org/10.1103/PhysRevD.10.2445
https://link.aps.org/doi/10.1103/PhysRevD.10.2445
https://arxiv.org/abs/hep-lat/9807028
https://doi.org/10.1103/PhysRevD.87.114512
https://link.aps.org/doi/10.1103/PhysRevD.87.114512

7]

8]

19]

[10]

[11]

[12]

S. Amarasinghe, R. Baghdadi, Z. Davoudi, W. Detmold, M. Illa, A. Parreno,

A. V. Pochinsky, P. E. Shanahan, and M. L. Wagman, “Variational study of
two-nucleon systems with lattice qed,” Physical Review D, vol. 107, no. 9, May 2023,
ISSN: 2470-0029. DOI: 10.1103/physrevd.107.094508. [Online|. Available:
http://dx.doi.org/10.1103/PhysRevD.107.094508.

G. Baumgartner, A. Auer, D. Bernholdt, et al., “Synthesis of high-performance
parallel programs for a class of ab initio quantum chemistry models,” Proceedings of

the IEEE, vol. 93, no. 2, pp. 276-292, 2005. por: 10.1109/JPROC.2004.840311.

J. A. Mason, Learning APL: An Array Processing Language. USA: John Wiley &
Sons, Inc., 1985, 1SBN: 0471603392.

D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query language,” in
Proceedings of the 197/ ACM SIGFIDET (Now SIGMOD) Workshop on Data
Description, Access and Control, ser. SIGFIDET 74, Ann Arbor, Michigan:
Association for Computing Machinery, 1974, pp. 249-264, 1SBN: 9781450374156. DOTI:

10.1145,/800296.811515. [Online]. Available: https://doi.org/10.1145/800296.811515.

R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian,
“Automatically scheduling halide image processing pipelines,” ACM Trans. Graph.,
vol. 35, no. 4, Jul. 2016, 1SSN: 0730-0301. DOI: 10.1145/2897824.2925952. |Online|.
Available: https://doi.org/10.1145/2897824.2925952.

J. Won, C. Mendis, J. S. Emer, and S. Amarasinghe, “Waco: Learning
workload-aware co-optimization of the format and schedule of a sparse tensor
program,” in Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, ser. ASPLOS
2023, Vancouver, BC, Canada: Association for Computing Machinery, 2023,

pp. 920-934, 1SBN: 9781450399166. DOIL: 10.1145/3575693.3575742. [Online].
Available: https://doi.org/10.1145/3575693.3575742.

125

https://doi.org/10.1103/physrevd.107.094508
http://dx.doi.org/10.1103/PhysRevD.107.094508
https://doi.org/10.1109/JPROC.2004.840311
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/2897824.2925952
https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1145/3575693.3575742

[13] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi: A language
for high-performance computation on spatially sparse data structures,” ACM

Transactions on Graphics (TOG), vol. 38, no. 6, pp. 1-16, 2019.

[14] Z. DeVito, M. Mara, M. Zollhéfer, G. Bernstein, J. Ragan-Kelley, C. Theobalt,
P. Hanrahan, M. Fisher, and M. Niessner, “Opt: A domain specific language for
non-linear least squares optimization in graphics and imaging,” ACM Transactions

on Graphics (TOG), vol. 36, no. 5, pp. 1-27, 2017.

[15] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe, “Graphit:
A high-performance graph dsl,” Proceedings of the ACM on Programming Languages,
vol. 2, no. OOPSLA, pp. 1-30, 2018.

[16] B. Hagedorn, J. Lenfers, T. Kcehler, X. Qin, S. Gorlatch, and M. Steuwer, “Achieving
high-performance the functional way: A functional pearl on expressing
high-performance optimizations as rewrite strategies,” en, Proceedings of the ACM on
Programming Languages, vol. 4, no. ICFP, pp. 1-29, Aug. 2020, ISSN: 2475-1421. DOI:
10.1145/3408974. [Online]. Available: https://dl.acm.org/doi/10.1145/3408974
(visited on 04/29/2022).

[17] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Tvm: End-to-end optimization stack for deep

learning,” arXiv preprint arXiv:1802.04799, vol. 11, no. 2018, p. 20, 2018.

[18] A. Liu, G. L. Bernstein, A. Chlipala, and J. Ragan-Kelley, “Verified tensor-program
optimization via high-level scheduling rewrites,” Proceedings of the ACM on
Programming Languages, vol. 6, no. POPL, 55:1-55:28, Jan. 2022. DOTI:
10.1145/3498717. |Online]. Available: https://dl.acm.org/doi/10.1145/3498717
(visited on 04/03/2024).

[19] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Piischel, J. C. Hoe, and J. M. Moura, “Spiral: Extreme

126

https://doi.org/10.1145/3408974
https://dl.acm.org/doi/10.1145/3408974
https://doi.org/10.1145/3498717
https://dl.acm.org/doi/10.1145/3498717

performance portability,” Proceedings of the IEEE, vol. 106, no. 11, pp. 1935-1968,

2018.

127

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Physics Background
	1.2 Computation Challenges
	1.3 Scheduling

	2 Related Works
	2.1 Classic DSLs
	2.2 Schedule Based DSLs
	2.3 Rewrite Based DSLs

	3 System Overview
	3.1 General Workflow
	3.2 Frontend Language
	3.3 LQCD IR
	3.4 Halide Scheduling File

	4 Our Intermediate Representation (LQCD IR)
	4.1 IR Overview
	4.2 IR Building Blocks
	4.2.1 Simple Example Programs

	4.3 Formalization
	4.3.1 Well Formed Sum
	4.3.2 Well Formed Index Choice
	4.3.3 Index Expression Ranges
	4.3.4 Permutation Index Uses
	4.3.5 Separate Indices
	4.3.6 Iteration Index Shorthand
	4.3.7 IR Isomorphism

	4.4 Semantics
	4.4.1 Sum Semantics
	4.4.2 Other Semantics

	4.5 IR manipulation tools
	4.5.1 Replacement Helpers
	4.5.2 Conversion Helpers

	5 IR Rewrites
	5.1 Motivation
	5.2 Separate Sum
	5.2.1 Motivation
	5.2.2 Algorithm

	5.3 Loop Linearization
	5.3.1 Motivation
	5.3.2 Algorithm

	5.4 Expression Partitioning
	5.4.1 Motivation
	5.4.2 Algorithm

	5.5 Expanding Permutations
	5.5.1 Motivation
	5.5.2 Algorithm

	5.6 Constant Propagation
	5.6.1 Motivation
	5.6.2 Algorithm

	5.7 Expression Merging
	5.7.1 Motivation
	5.7.2 Algorithm

	5.8 Precomputation over Ranges
	5.8.1 Motivation
	5.8.2 Algorithm

	5.9 Condense Choice
	5.9.1 Motivation
	5.9.2 Algorithm

	6 Case Studies
	6.1 Baryon
	6.1.1 Physics Setup
	6.1.2 Naive Code
	6.1.3 Rewrites Applied
	6.1.4 Analysis of Rewrite Impact

	6.2 Dibaryon-Dibaryon
	6.2.1 Physics Setup
	6.2.2 Naive Code
	6.2.3 Rewrites Applied
	6.2.4 Analysis of Rewrite Impact
	6.2.5 Impact

	6.3 Dibaryon-Hexaquark
	6.3.1 Physics Setup
	6.3.2 Naive Code
	6.3.3 Rewrites Applied
	6.3.4 Analysis of Rewrite Impact

	6.4 Hexaquark-Hexaquark
	6.4.1 Physics Setup
	6.4.2 Naive Code
	6.4.3 Rewrites Applied

	7 Future Work
	7.1 Automatic Algorithmic Optimization
	7.2 Automatic GPU Scheduling

	8 Conclusion
	A Large LQCD IR Printouts
	A.1 Baryon IR
	A.2 Dibaryon Dibaryon IR
	A.3 Dibaryon Hexaquark IR
	A.4 Hexaquark Hexaquark IR

	B Rewrite Code
	B.1 Dibaryon Dibaron Rewrites

	References

