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ABSTRACT

Finite element methods (FEMs) are a powerful and ubiquitous tool for solving engineer-
ing problems. Experimenting with different finite elements can improve the quality and
efficiency of solutions. In some cases, the wrong (but nonetheless most common) choice
of finite element will produce solutions which converge to the wrong answer regardless of
mesh resolution. However, in practice, the choice of finite element is not explored due to
the complexity of re-deriving and re-implementing finite element methods. Trying a new
finite element is challenging because practitioners must manually deduce formulas to use
these elements and they must implement these formulas within the context of a potentially
complex system. We address this problem by introducing ElementForge, a finite element
system that is parametric over the literate mathematical specification of a finite element in
a domain-specific language (DSL). The ElementForge compiler reasons about tensor spaces,
tensors, and tensor bases from first principles to derive implementations of finite elements.
The ElementForge compiler is able to automatically derive implementations of finite ele-
ments previously only derived by hand. Further, ElementForge minimally couples several
key mathematical concepts, mainly tensor fields, mesh topologies, sparse tensors, and assem-
bled finite element operators, to produce a complete finite element system that is parametric
over the choice of element. Consequently, the elements derived by the compiler can be
applied parametrically to new meshes, PDEs, and boundary conditions. We evaluate our
system by implementing several simulations with different finite elements, demonstrating
that our system can explore tradeoffs in generality, accuracy, speed, and representational
complexity. For example, we are able to implement the Morley, Bell, Argyris, and Hermite
like elements with less than 50 lines of code and use them all in a single simulation.

Thesis supervisor: Saman Amarasinghe
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Chapter 1

Introduction

Finite Element Methods (FEMs) have become an important tool in a variety of fields, includ-

ing applied mathematics, scientific computing, engineering, and computer graphics [1]–[3].

The FEM is powerful because one can vary the mesh, the problem formulation, the solver,

and the element, a discrete local function space. One can choose from more than 100 families

of finite elements [4],each of which provide specific quantitative and qualitative advantages

and disadvantages. Within computer graphics specifically, practitioners have examined the

trade-offs between convergence and computational cost of various higher order Lagrange

elements [5], [6].

However, practitioners face three challenges if they want to determine and exploit the

trade-offs that different finite elements (FEs) offer. The first challenge is that practitioners

must deduce, from the definition of the FE, various mathematical formulas that software

packages require to implement a FE [7], [8]. The second challenge is that practitioners must

understand global FE operations (e.g., methods to build a sparse matrix or enforce a bound-

ary condition) at both a mathematical and software level so that they can reimplement these

operations for their class of FE. The third challenge is that for practitioners to explore these

trade-offs, they must experiment with multiple FEs, encountering the first two challenges

each time, and they must also experiment with their problem formulation to properly exploit
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some FEs.

Currently, no system offers a solution for the first challenge. Many systems offer partial

solutions to the second challenge because they internally provide an interface to FEs and

use this interface to implement many global FEM operations [9]–[11]. In software packages

that offer solutions to a set of narrow problems, interfaces to a FE might not be present

(the FE is baked into the script) or the interface only serves a narrow set of problems

(e.g., it only supports certain derivatives or boundary conditions (BCs)). Finally, many

systems address third problem via libraries or domain specific languages (DSLs) to vary the

problem formulation [11]–[16]. These DSLs offer a high degree of flexibility for the problem

specifications and they can even work with different FEs, but they do not provide a deductive

system to implement FEs automatically. Our work, ElementForge, offers such a deductive

system among other abstractions to meet all three challenges. As a practical consequence

of the prior lack of automation, many communities stick to varying the problem to work

with linear Lagrange elements, hiding a large space of trade-offs involving both higher order

Lagrange elements and non-Lagrangian elements.

We propose to significantly lower the cost of varying FEs and problems with Element-

Forge, the first FE DSL that is fully parametric over a mathematical definition of a FE.

We believe that ElementForge will allow many to find and take advantage of trade-offs

among FEs and associated problem formulations. To answer the first challenge, Element-

Forge contains a language for specifying FEs and a compiler that automatically deduces

the formulas required to be implemented by hand in other packages, thus automating work

previously found in mathematical journals. To answer the second challenge, ElementForge

offers several core primitives that are sufficient for users to systematically generate global

finite element operations that translate local formulas to useful code for building and ma-

nipulating sparse matrices. To answer the third challenge, ElementForge allows users to

specify suitable problems with the same language that it provides to specify FEs. Finally,

ElementForge agglomerates these solutions into a single package that allows users to de-
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fine, reuse, and combine various FEs, problem specifications, and global routines to rapidly

explore FEMs.

The core design principle of ElementForge is to systematically model the discrete math-

ematical objects of FEMs. In contrast to prior work, our software architecture does not

emphasize either the global theory of PDEs or the structure of a specific class of problems.

ElementForge emphasizes the discrete mathematical objects at the core of FEM implemen-

tations as these are the tools require to save labor through automation. Consequently,

ElementForge pays special care to pointwise manipulation of tensor fields on manifolds, the

definition of an FE, the construction of a discrete mesh, and the algebraic construction of

global operations via the interaction of pointwise expressions and discrete meshes. These

new tools provide the means to go from a mathematically specified FE and operator to a

sparse matrix, automatically, and, hopefully, understandably.

Our implementation is not without some limitations, especially as we currently do not pay

attention to low level performance issues; many FEM packages have outlined techniques to

optimize code generated for FEs with special structures and these techniques could eventually

be employed here [17]–[19]. Even with these limitations, we are able to implement novel

simulations of independent interest to different areas of computer graphics. Moreover, we

view these simulations and our software as part of an effort to make FEs more accessible.

We make the following contributions:

1. To the best of our knowledge, the first FE DSL that is parametric over the definition

of a FE, enabling for the first time rapid exploration of many different FEMs for the

same problem.

2. A novel DSL and compiler for specifying FEs and operators via coordinate-free tensor

algebra. This system enables the automated deduction of formulas needed to imple-

ment FEs at the local level.

3. An interface for the systematic construction of global FE operations, enabling core and
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new global FE operations to be built on a wide variety of elements.

4. An overall compiler taking as input (i) a FE description, (ii) operator specifications,

and (iii) a mesh, and producing discretization operators (and interpolation functions)

as output.

5. Several novel simulations of interest to computer graphics:

(a) A more efficient yet simpler data interpolation/smoothing method based on the

natural BCs of the biharmonic equation, identified in [20], and the Morley ele-

ment [21]. Moreover, we have explored a variety of FEs for this class of problems,

leading to characterization of some of the tradeoffs involved.

(b) The first implementation of the finite element exterior calculus (FEEC) that is

derived purely and automatically from the mathematical specification, which al-

lows us to reimplement the analogues of all the discrete exterior calculus (DEC)

operators, leading to FEM versions of classic DEC applications.

(c) Several FEs for Stokes flows problems in 2D+time and 3D+time, illustrating the

phenomena of locking incompressible fluids (in contrast to prior illuminations

focused on elasticity).

6. We show that deductive symbolic computation is a practical tool for declarative scien-

tific computing, even when the deductions potentially involve inverting large symbolic

matrices, as is often the case. In particular, we show that for FEs, the complexity of

inverting a symbolic Vandermonde matrix, a core step in the deduction of elements, is

practical by ensuring that the structure of the matrix is deduced and exploited in the

inversion.

7. A programming language for multi-linear algebra that properly separates bases from

tensors, the way they are presented in most textbooks. Though this idea has motivated
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some other languages (e.g., UFL [12] and Albert [22]), we believe this is the purest

implementation and the one that most carefully captures the textbook representation.

8. A novel separation between computations within mesh cells and the mesh cells them-

selves, encoded into the design of a novel language for integrated pointwise tensor ex-

pressions on manifolds. We carefully manage the availability of geometric information

to enable automation that helps deduce important information about FEs, reducing

their code size.

9. A mathematical model for global FE computations. In particular, we design:

(a) A succinct mathematical model of meshes, sub-meshes, data on meshes, and global

fields sufficient for FEMs.

(b) A novel mathematical model/semantics for a wide array of computations on

meshes, single valued assembled operators (SVAO), which when paired with a

small set of sparse array operations, models most global FEM computation.

The model built from these ideas is parsimonious, malleable, and robust to changes in

user code, and expressive.
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Chapter 2

Examples

To illustrate the scope of our system and our way of thinking, we run through a few examples

that use our highest-level interface.

2.1 Laplace equation

Given a surface Ω and a boundary condition f : ∂Ω → R, we want to find a function u : Ω →

R such that

∆u(x) = 0 for x ∈ Ω

u(x) = f(x) for x ∈ ∂Ω .

(2.1)

Our program uses linear Lagrange finite elements to produce the familiar cotangent

Laplace matrix.

1 from EF import LaplaceOperator , Tr iang leVertexListReader , assemble , LinearLagrange

2

3 % Load a mesh .

4 mesh = Triang leVertexLi s tReader ( f i l ename )

5

6

7 @po intw i s e In teg ra l

8 def l a p l a c e (u : f i e l d (R) , v : f i e l d (R) ) :
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9 return grad (u) . dot ( grad (v ) )

10

11 % Make a spar s e matrix , the cotan Laplac ian .

12 l ap laceMatr ix = assemble (mesh , [ l a p l a c e ] , [ LinearLagrange , LinearLagrange ] )

Source Code Listing 2.1: Solving the Laplace equation with FEM in ElementForge.

Listing listing 2.1 shows how this works in our system: we import necessary functions and

objects, read a mesh, express an integral, and then assemble the corresponding Laplacian

matrix. The laplace function is an integral: it takes as input two fields u and v, and integrates

over the inner product of their gradients, laplace(u, v) =
∫
∇u · ∇v. The assemble call

builds the Cotan (or stiffness) matrix, Lij =
∫
Ω
∇ϕi · ∇ψj, where Ω is proscribed by the mesh

argument and the functions {ϕi} and {ψj} are proscribed by the two LinearLagrange arguments.

2.2 Weak Formulations: Smoothness and Boundary Con-

ditions

Our Laplace function in listing 2.1 does not directly implement ∆ as seen in eq. (2.1) (the

strong Laplacian), but instead implements the weak Laplacian. To utilize linear Lagrange

functions to build a cotan Laplacian, we must transform the initial problem. This has been

described many times but we will belabor some of the details of derivation to illustrate the

interaction between vector spaces of functions (function spaces) and aspects of the PDE.

By choosing an appropriate space of functions, V , we can integrate by parts to go from

eq. (2.1) to the weak formulation [3]:

∫
Ω

v0 =

∫
Ω

v∆u =

∫
Ω

∇v · ∇u−
∫
∂Ω

∂u

∂n
v. (2.2)

The idea here is that an arbitrary v ∈ V is testing whether ∆u = 0 for some given u ∈ V .

However, we know that u|∂Ω = f , so we don’t need to test there, justifying that we weaken

v ∈ V to v ∈ V0 := {v ∈ V : v|∂Ω = 0}. This leads us to the laplace operator from the previous
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section:

∫
Ω

∇v · ∇u
���

���*0

−
∫
∂Ω

∂u

∂n
v =

∫
Ω

∇v · ∇u. (2.3)

Via our choice of V the problem becomes: find a u ∈ V that satisfies the BCs in eq. (2.1)

such that for all v ∈ V0:

∫
Ω

∇v · ∇u = 0. (2.4)

This is the weak formulation, and it mirrors our Laplace function in listing 2.1. Note

that this is an infinite-dimensional problem, much like eq. (2.1). To make the problem

discrete, one replaces V with a suitable finite-dimensional space such as the linear Lagrange

elements on a triangle mesh. Having done this, one can, as many have observed [23], retrieve

the traditional cotan Laplacian. Thus, we are able to solve a second order problem with

functions that only have a single derivative. In general, using integration by parts allows one

to transform a strong form problem with 2n derivatives to a weak one with n derivatives,

which allows one to use functions that only need n derivatives [3].

However, to use the weak formulation, we observe that two practical matters have not

been resolved1:

1. Can we actually integrate by parts on some finite dimensional V ? (Smoothness)

2. Can we determine a subspace V0? (BCs)

In the case of linear Lagrange FEs for Laplace’s equation, these questions are easy to resolve.

We now turn to other useful operators for which this question is not as clear.
1these are necessary, but not sufficient
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2.3 Weak Formulation of the Biharmonic Equation

Let’s examine the biharmonic equation, a slightly more complicated version of the Laplace

equations where the nuances of the weak formulation begin to show. Given a domain Ω and

BCs fi : ∂Ω → R (i = 0, 1), we seek a u : Ω → R such that

∆∆u = 0 on Ω (2.5)

and

u = f0 and
∂u

∂n
= f1 on ∂Ω. (2.6)

We transform the problem into its weak form with v ∈ V ⊂ H2:

∫
Ω

0v = −
∫
Ω

(∆∆u)v

=

∫
Ω

(∇∆u) · ∇v −
∫
∂Ω

v
∂∆u

∂n

=

∫
Ω

∆u∆v −
∫
∂Ω

∆u
∂v

∂n
−
∫
∂Ω

v
∂∆u

∂n
.

Similar to Laplace, we now formulate a V0-like subspace to erase the boundary terms.

We set V0 = {v ∈ V : v|∂Ω = ∂v
∂n
|∂Ω = 0}.

Our weak formulation then simplifies to: find a u ∈ V subject to (2.6) such that for all

v ∈ V0:

0 =

∫
Ω

∆u∆v. (2.7)

Returning to a practical finite dimensional choice for V , we observe that linear Lagrange

(or even higher order Lagrange) cannot possibly work based on our first two requirements:

1. Even higher-order Lagrange basis functions are only continuous so they must contain
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functions that break two rounds of integration by parts (via Sobolev’s inequality [3]).

2. If we represent a function with Lagrange basis functions, we cannot identify a subset

of the basis functions ϕi so that ϕi = ∂ϕi
∂n

= 0.

We can easily express the Biharmonic operator in our system (although the choice of

element is not clear yet, since our existing elements are still only continuous):

1 @po intw i s e In teg ra l

2 def biharmonic ( c : chart , u : f i e l d (R, 2) , v : f i e l d (R, 2) ) :

3 # trac e o f Hess ian with r e sp e c t to metr ic

4 # because the inner product o f t en s o r s i s a t r a c e

5 de l tau = ( c .CT( ) . inne r ( ) ) . dot (u (2 ) )

6 de l tav = ( c .CT( ) . inner ( ) ) . dot ( v (2 ) )

7 return de l tau ∗ de l tav

8

9 biharmonicMatrix = assemble (mesh , [ biharmonic ] , [ UnknownElement , UnknownElement ] )

Source Code Listing 2.2: The Biharmonic Operator.

2.4 Redux: Other Weak Formulations of Laplace’s equa-

tion

To design other elements, we revisit Laplace’s equation to consider how it could be solved

with other operations, i.e., through variations on the weak form. We consider three vari-

ations: discontinuous Galerkin methods, Nitsche’s method, and mixed methods. These

variations offer ways to overcome deficiencies in an element (e.g., in some circumstances, a

mixed method formulation of the biharmonic equation can be solved via linear Lagrange).

Additionally, these variations also teach us how to define elements that let us use simpler

weak formulations.

A discontinuous Galerkin formulation offers a way to understand smoothness and weak

formulations. To derive it, suppose for a moment that Ω = T0 ∪ T1 where functions in V
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can be integrated by parts on T0 and T1. Then we can redo our derivation of the weak

formulation of Laplace’s equation with some careful manipulations on the set ∂T0 ∩ ∂T1:

∫
Ω

v0 =

∫
Ω

∆uv =

∫
T0

∆uv +

∫
T1

∆uv

= −
∫
∂Ω

∂u

∂n
v −

∫
∂T0−∂Ω

∂u

∂n
v −

∫
∂T1−∂Ω

∂u

∂n
v +

∫
T0∪T1

∇u · ∇v

= −
∫
∂Ω

∂u

∂n
v −

∫
∂T0∩∂T1

(
∂u

∂n
v

)
|∂T0 −

(
∂u

∂n
v

)
|∂T1 +

∫
Ω

∇u · ∇v

We note that if our functions in V were continuous, the new middle term would vanish.

We can confirm this empirically via listing 2.3 where we introduce integrals over sub-facets

and an interface to geometry via chart objects that refer to parts of the mesh in an abstract

manner.

1 from EF import LaplaceOperator , Tr iang leVertexListReader , assemble , LinearLagrange ,

d i f f e r e n c e

2

3 # Load a mesh .

4 mesh = Triang leVertexLi s tReader ( f i l ename )

5

6 # Setup i n t e g r a l on boundar ies o f c e l l s

7 # Take d i f f e r e n c e s between the same edge on d i f f e r e n c e c e l l s

8 @po intw i s e In teg ra l ( BoundaryChart , r educt ion=d i f f e r e n c e )

9 def i n t e r i o r (u : f i e l d ( Cel lChart ) , v : f i e l d ( Cel lChart ) ) :

10 n0 = u . chartOf ( ) . normalVector ( )

11 return grad (u) . dot ( n0 ) ∗ v (0 )

12

13 i n t e r i o rMat r i x = assemble (mesh , [ i n t e r i o r ] , [ LinearLagrange , LinearLagrange ] )

14 # This matrix should be == 0 except f o r boundary v e r t i c e s

Source Code Listing 2.3: An Interior Facet Integral for Testing Continuity.

At this point, the DG method becomes less intuitive as the weak formulation is still not

usable without a penalty term to encourage continuity. Ignoring the boundary terms and

27



symmetry, the DG formulation might resemble:

∫
Ω

∇u · ∇v +
∫
∂T0∩∂T1

(
∂u

∂n
v

)
|∂T0 −

(
∂u

∂n
v

)
|∂T1

+σ

∫
∂T0∩∂T1

(u|∂T0 − u|∂T1) (v|∂T0 − v|∂T1)

where σ ∈ R. We can implement such terms, but our purposes here warrant one remark: the

penalty term is a constraint where the other interior integral term emerges from integration

by parts. The core lesson is that performing the above integration by parts exercise yields a

condition that a finite element must pass for integration by parts to work.

Nitsche’s method operates similarly to DG methods, but it is a useful technique for

enforcing general boundary conditions. Nitsche’s method saves us from having to identify

V0 within V . If we go back to before we utilize v ∈ V0 in integration by parts then append

a penalty parameter σ > 0, we get: find a u ∈ V such that for all v ∈ V :

∫
Ω

∇v · ∇u−
∫
∂Ω

∂u

∂n
v + σ

∫
∂Ω

(u− f)v.

This formulation can be symmetrized and rewritten as a bilinear and linear part without

issue: ∫
Ω

∇v · ∇u−
∫
∂Ω

∂u

∂n
v −

∫
∂Ω

∂v

∂n
u+ σ

∫
∂Ω

uv = σ

∫
∂Ω

fv.

This weak formulation is obviously more complex than the original formulation and features

a penalty parameter that one must determine. However, the formulation works for more

general V where we cannot easily determine V0. Further, this formulation teaches us how to

identify V0. The core lesson of the formulation is that to identify the boundary (degrees of

freedom) DOFs, V0, we must determine which basis functions are necessary and sufficient for

the terms
∫
∂Ω
uv and

∫
∂Ω

∂v
∂n
u to be zero. Further, if we wish to find a good approximation

to boundary data, we need to investigate the system
∫
∂Ω
uv =

∫
∂Ω
fv. A simple modification

to listing 2.3, shown in listing 2.4, can help us with these tasks in a way that generalizes

28



easily to non-linear Lagrange elements and other PDEs.

1 from EF import LaplaceOperator , Tr iang leVertexListReader , assemble , LinearLagrange ,

d i f f e r e n c e

2

3 # Load a mesh .

4 mesh = Triang leVertexLi s tReader ( f i l ename )

5 # Get the boundary

6 boundary = mesh . topo log ica lBoundary ( )

7 # Setup i n t e g r a l on boundary

8 @po intw i s e In teg ra l ( BoundaryChart )

9 def i n t e r i o r (u : f i e l d ( Cel lChart ) , v : f i e l d ( Cel lChart ) ) :

10 n0 = u . chartOf ( ) . normalVector ( )

11 return grad (u) . dot ( n0 ) ∗ v (0 )

12

13 i n t e r i o rMat r i x = assemble (mesh , [ i n t e r i o r ] , [ LinearLagrange , LinearLagrange ] ,

r e s t r i c t I n t e g r a l s=boundary )

14 # the non−zero rows that correspond to boundary v e r t i c e s make up V_{0}

15 V0Ent i t i e s = in t e r i o rMat r i x . nonZeroEnt i t i e s ( [ boundary , None ] )

Source Code Listing 2.4: A Boundary Facet Integral for Nitsche’s Method.

A final strategy to overcome smoothness requirements and enforce boundary conditions

is mixed methods. Mixed methods introduce intermediate variables with weaker smoothness

requirements. For Laplace, we can utilize that ∆ = div∇· to introduce another variable,

σ = ∇u. We can thus rewrite the strong form of the PDE to finding a u : Ω → R and

σ : Ω → Rn such that

σ −∇u = 0, div σ = 0 (2.8)

with boundary condition

u(x) = f(x) for x ∈ ∂Ω. (2.9)

If we had a Neumann condition, we would now write it as a condition on σ, which means

the condition can be directly enforced like a Dirichlet condition (as opposed to a variational

enforcement in the original formulation). Turning back to the weak form, we see that we now

have two functions to solve for. So we now need two spaces, V and Σ. The weak formulation
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can be derived by multiplying the first equation in the split strong form PDE by a function

in γ ∈ Σ and the second equation by a function in v ∈ V :

∫
Ω

γ · (σ −∇u) = 0,

∫
Ω

v div σ = 0 (2.10)

The second term in the first equation allows for integration by parts, which reduces the

smoothness requirements on u. The final formulation reads: find u ∈ V and σ ∈ Σ such that

for all v ∈ V0 and γ ∈ Σ0:

∫
Ω

σ · γ + (div γ)u+ v(div σ) = 0. (2.11)

We observe that we do not take derivatives on u or v, so these functions need not be

continuous across cell boundaries. Similarly, we only take a divergence on γ and σ, so these

vector functions need not be continuous either. However, the functions in Σ cannot be totally

discontinuous, as integration by parts for a divergence requires that functions be continuous

in the normal direction at the boundary between two cells (as one can see by repeating the

analysis in the DG section for a term that looks like σ · ∇u). Naturally, this is also why we

expect to be able to enforce a Neumann boundary condition directly. Since we have not yet

introduced any function spaces of vector elements, we simply sketch the code for the (div γ)u

in listing 2.5.

1 cty = TopChart # Highest chart in the mesh .

2 # Vector f i e l d and s c a l a r f i e l d

3 @po intw i s e In teg ra l

4 def i n c omp r e s s i b i l i t y (u : f i e l d ( cty .Rk( ) ) , p : f i e l d (R) ) :

5 j a c = D(u)

6 div = jac . t r a c e (0 , 1)

7 return div ∗ p

8

9 i n c ompr e s s i b i l i t yMat r i x = assemble (mesh , [ i n c omp r e s s i b i l i t y ] , [ unknownVectorElement ,

DGLinearLagrange ] )
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Source Code Listing 2.5: A Divergence Operator.

We also note that (div γ)u also plays a critical role in incompressible Stokes and elasticity,

especially with respect to locking phenomena. A term in an elastic energy might be of the

form:

I(F, p) =

∫
Ω

pC(J(F )) (2.12)

where F is a displacement vector field, p is a scalar pressure field, J is the Jacobin Determi-

nant operator (to extract the third invariant of the right Cauchy-Green deformation tensor),

and C : R → R is a constraint function minimized by J(F ) = 1. Minimizing the energy

via variational derivatives will yield a weak formulation with a divergence term, (div γ)u.

Choosing FEs to approximate F and p is a critical problem which can often lead to ill-

posed discrete problems. A core contribution of the FEEC is to supply a collection of FEs

to handle such problems, which is another reason to investigate a wide variety of FEs and

operators [24].

2.5 Other Finite Elements

As we have illustrated in the previous subsections, advancing beyond the simplest PDE

quickly yields weak formulations whose form calls for different FEs. Moreover, we saw that

the structure of the weak formulation (exposed via various transformations) implies that the

solvability, convergence, or stability of the problem depends on utilizing FEs with specific

properties. Additionally, the choice of the FE basis heavily influences the structure of the

resulting matrices, which impacts the efficiency of solvers along many axes. We now explore

how to specify elements intuitively and with code. We will describe finite elements more

formally in section 3.2.

As is already known by many, higher-order Lagrange elements provide higher degrees of

31



convergence, but the resulting sparse matrices also have larger dense blocks, which can allow

greater degrees of efficiency on platforms such as GPUs, leading to a better accuracy per

flop [25]. If we use discontinuous Lagrange elements, some matrices (e.g., a mass matrix)

might also be block diagonal. The linear Lagrange element in our system is mostly the

specification of a point evaluation at a vertex coupled with a domain and a polynomial

degree.

1 cty = ChartType (0 ) # on ob j e c t s o f dimension 0

2 @pointwiseEval ( cty , barycent r i cCoord inate =0.0)

3 def vertexEval (u : f i e l d ( cty , R, 0) ) :

4 return u (0)

5

6

7 # element type , degree , L i s t [ Dof ]

8 elementEdge = Syb i l .FE(1 , 1 , [ vertexEval ] )

9 e lementTri = Syb i l .FE(2 , 1 , [ vertexEval ] )

10 elementQuad = Syb i l .FE( ( 1 , 1 ) , 1 , [ vertexEval ] )

11

12 # Discont inuous var i an t :

13 @pointwiseEval ( cty , barycent r i cCoord inate =0.0 , s toreAt=TopChart )

14 def vertexEvalDG (u : f i e l d ( cty , R, 0) ) :

15 return u (0)

16 elementEdgeDG = Syb i l .FE(1 , 1 , [ vertexEvalDG ] )

17 elementTriDG = Syb i l .FE(2 , 1 , [ vertexEvalDG ] )

Source Code Listing 2.6: A Linear Lagrange Dof, specifying a pointwise evaluation at a

vertex, used to define linear Lagrange FEs

Up to this point, we have not addressed the ChartType in our examples except for the

obvious BoundaryChart or CellChart, but here the meaning is especially critical: the chart type

in the pointwise macro indicates that the pointwise object is parametric over a vertex (as

opposed to an edge, triangle, or hex). The pointwiseEval indicates an evaluation at a single

point (specified via barycentric coordinates) in an object associated to a given chart. The

chart type in field indicates that an incoming field needs to provide pointwise values in R

on vertices. Finally, the storeAt attribute associates the evaluation to a different geometric
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object, allowing for the creation of a vertex evaluation that is repeated per edge, triangle, or

quad. Critically, since the chart indicates that this object can be run on a vertex and not just

some particular vertex, we can consider all the possible representatives on a triangle: three

point evaluations, one for each vertex. This is roughly the description of linear Lagrange

elements found graphically in fig. 3.5.

Pointwise evaluations of quadratic elements (also depicted in fig. 3.5) is similar.

1 cty = ChartType (1 ) # on ob j e c t s o f dimension 1

2 @pointwiseEval ( cty , barycent r i cCoord inate =(0.5 , 0 . 5 ) )

3 def edgeMidEval (u : f i e l d ( cty , R, 0) ) :

4 return u (0)

5

6 # element type , degree , L i s t [ Dof ]

7 elementEdge = Syb i l .FE(1 , 2 , [ vertexEval , edgeMidEval ] )

8 e lementTri = Syb i l .FE(2 , 2 , [ vertexEval , edgeMidEval ] )

9 elementQuad = Syb i l .FE( ( 1 , 1 ) , 2 , [ vertexEval , edgeMidEval ] )

Source Code Listing 2.7: A Quadratic Lagrange DOF, specifying a pointwise evaluation on

an edge.

In this case, the ChartType refers to an edge and the barycentric coordinate refers to the

midpoint of the edge. By considering all of the possible instances of this object of a triangle

and combining them with the instances of the vertexEval, we get the quadratic Lagrange element

found in fig. 3.5.

As is revealed in the graphic and the code, a core part of a FE is a list of DOFs, which

are often defined via point evaluations of formulas of functions and derivatives. These DOFs

determine properties of basis functions. We are particularly interested in how the DOFs

relate to the properties of basis functions that we can specify with a weak form, such as

the continuity penalty term in the DG formulation of Laplace’s equation. For example,

the continuous Lagrange element ensures that extra terms in the DG formulation of the

Laplace’s equation vanish. We can now return to the biharmonic equation and examine

several plausible finite elements.
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Performing the DG analysis on the weak form of the biharmonic equation yields:

∫
∂T0∩∂T1

(∆u
∂v

∂n
− v

∂∆u

∂n
)|∂T0 − (∆u

∂v

∂n
− v

∂∆u

∂n
)|∂T1 = 0

Roughly, we need that either ∆u or ∂u
∂v

are continuous on the boundaries between cells and

similarly for either u or ∂∆u
∂n

. Just as the Lagrange element ensures continuity by using point

evaluations on cell boundaries, we might seek to do the same with gradients. Starting with a

cubic Lagrange element, one can replace point evaluations on edges with gradients on vertices

in at least two ways: using the x and y to make two evaluations or using the edge tangent

directions. These options yield two types of Hermite DOFs, depicted in code in listing 2.8

and listing 2.9. Contrasting these two code snippets yields some important differences: the

first is C1 at vertices while the latter is C1 at edges in the tangential direction, which is

signaled in the code based on where the derivatives used in the DOFs are defined. Based on

this analysis, we do not expect the Hermite element to always be able to solve the biharmonic

equation as it will never provide a continuous Laplacian and ∂u
∂v

will only be continuous when

all cell normals are identified with x/y directions or edge tangents. However, both options

can be used to solve Laplace’s equation. In our results, we will examine the Morley element.

Morley is quadratic, ensuring ∂∆u
∂n

= 0. Morley uses normal gradient DOFs at edge points to

provide continuous normal gradients. The Morley element is the minimum viable element

that can be used with the standard weak formulation of the biharmonic problem. In contrast

to the Hermite element, though, the Morley element does not offer a continuous function so

cannot be used to solve Laplace type problems that Hermite or Lagrange can solve.

1 cty = ChartType (0 ) # on ob j e c t s o f dimension 0

2 # Since we take d e r i v a t i v e s at v e r t i c e s , we r ep r e s en t the d e r i v a t i v e s in Eucl idean space as

we do not have a c c e s s to a tangent space .

3 @pointwiseEval ( barycent r i cCoord inate =0.0)

4 def hermiteDof1 (u : ( f i e l d ( cty , R, euc l i d eanDe r i va t i v e=True) , f i e l d ( cty , cty .Rk) ) ) :

5 return u (1) [ 0 ]

6 @pointwiseEval ( barycent r i cCoord inate =0.0)

7 def hermiteDof2 (u : ( f i e l d ( cty , R, euc l i d eanDe r i va t i v e=True) , f i e l d ( cty , cty .Rk , 0) ) ) :
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8 return u (1) [ 1 ]

9

10 # element type , degree , L i s t [ Dof ]

11 hermLine= Syb i l .FE(1 , 3 , [ vertexEval , hermiteDof1 ] )

12 hermTri = Syb i l .FE(2 , 3 , [ vertexEval , c e l lCente rEva l , hermiteDof1 , hermiteDof2 ] )

13 hermQuad = Syb i l .FE( ( 1 , 1 ) , 3 , [ vertexEval , c e l lCente rEva l , hermiteDof1 , hermiteDof2 ] )

Source Code Listing 2.8: Hermite Dofs, version 1. Compare and contrast the handling of

the derivative values with version 2.

1 cty = ChartType (1 ) # on ob j e c t s o f dimension 1

2 # Since we are on edges , we have edge tangent spaces , which can r ep r e s en t d e r i v a t i v e s .

3 @pointwiseEval ( barycent r i cCoord inate =(1 , 0) )

4 def hermiteDof1 ( c : chart , u : f i e l d ( cty , R) ) :

5 return u (1) . dot ( c . tangentVector (0 ) )

6 @pointwiseEval ( barycent r i cCoord inate =(0 , 1) )

7 def hermiteDof2 (u : f i e l d ( cty , R) ) :

8 return u (1) . dot ( c . tangentVector (0 ) )

9

10 # element type , degree , L i s t [ Dof ]

11 hermLine= Syb i l .FE(1 , 3 , [ vertexEval , hermiteDof1 ] )

12 hermTri = Syb i l .FE(2 , 3 , [ vertexEval , c e l lCente rEva l , hermiteDof1 , hermiteDof2 ] )

13 hermQuad = Syb i l .FE( ( 1 , 1 ) , 3 , [ vertexEval , c e l lCente rEva l , hermiteDof1 , hermiteDof2 ] )

Source Code Listing 2.9: Hermite DOFs, version 2. Compare and contrast the handling of

the derivative values with version 1.

For our divergence constraint that appears in the mixed formulation of Laplace (as well

as in vector Poisson equations and incompressible Stokes equations, which we will study in

the results section), we offer a simple vector element as an example. The Brezzi-Douglas-

Marini (BDM) element provides continuity of the normal component of a piecewise affine

vector field, as depicted in listing 2.10. We also depict this visually in fig. 3.5.

1 cty = ChartType (1 ) # on ob j e c t s o f dimension 1

2 R2D = R^2∗∗None # Roughly , \mathbb{R}^2

3 AffineVectorPolysR2D = P(2 , 1 , space=R2D)

4

5 @pointwiseEval ( barycent r i cCoord inate =(1 , 0) )
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6 def bdmDOF1( c : chart , u : f i e l d ( cty , R2D) ) :

7 return u (0) . dot ( c . normalVector (0 ) )

8 @pointwiseEval ( barycent r i cCoord inate =(0 , 1) )

9 def bdmDOF2( c : chart , u : f i e l d ( cty , R2D) ) :

10 return u (0) . dot ( c . normalVector (0 ) )

11 #element type , space o f polys , L i s t [ Dof ]

12 BDMTRI = Syb i l .FE(2 ,

13 AffineVectorPolysR2D ,

14 [bdmDOF2, bdmDOF1] )

Source Code Listing 2.10: A BDM Element.

2.6 Boundary Conditions

Any high level FE software must have a comprehensible and usable system for enforcing

boundary conditions (among other constraints). As we saw by examining weak formulations

of Laplace’s equations, boundary conditions can appear in several different ways depending

on how a PDE is formulated. BCs and other constraints can be enforced either by adding

to the weak formulation (e.g., Nitsche’s method) or by elimination methods. An elimination

method applies when the subspace identified by a homogeneous boundary condition corre-

sponds exactly to a span of a subset of basis functions. In such cases, linear operators can

often be decomposed to eliminate the BC from the system of equations. Since elimination

methods exactly enforce boundary conditions and easily ensure the solvability of systems of

equations, we must support them.

As far as we know, no systems have consistent support for elimination methods on more

complex FEs, and for good reason: determining the relationship between basis functions

and boundary conditions can be highly non-trivial.2 We offer a solid middle ground: given
2Consider two familiar families of functions: Lagrange polynomials and orthonormal polynomials. En-

forcing Dirichlet BCs (or constraints on any point value) on the former is a relatively trivial matter be-
cause they are defined via pointwise evaluations. In the simplest case of linear Lagrange functions, one can
simply remove the DOFs associated with vertices on the boundaries and trivially adjust the problem to
compensate. In contrast, many papers and systems that use orthogonal polynomials struggle to support
anything but periodic boundary conditions because the relationship between coefficients on orthogonal
polynomial bases and point-values is non-trivial.
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a mesh, a FE, a BC, and potentially a right hand side for a BC (f), we offer a variety of

utilities to check if elimination methods can work or to utilize alternatives.

In listing 2.11, we show a typical workflow. First, a mesh subset is identified, with the

built-in topological boundary or via external data (specified with a pointwise condition or

by loading external data). Second, we can specify constraints in the same language we use

to write DOFs or weak formulations. Then we can combine these to produce an object

representing constraints. We can query the constraints to see if they can be factorized. If

constraints can be factorized, we get an object that can be used to slice a sparse matrix/so-

lution vector to extract the boundary part. If constraints cannot be factorized, we can query

the constraints with a right hand side to build a matrix that enforces the conditions. The

constraint matrix and vector are not guaranteed to ensure the correct enforcement of these

constraints (as sometimes the only viable approach is to fix the weak form), but these can

be useful for a first attempt or to debug.

1

2 meshSubset = mesh . topo log ica lBoundary ( )

3 # Alt e rna t i v e l y , mesh subse t s can be i d e n t i f i e d v ia t e s t i n g po in t s

4 # e . g . , we can ask what v e r t i c e s are on x == 0

5 # meshSubset = assemble (mesh , LinearLagrange , [ lambda x : x [ 0 ] == 0 ] ) . asSubset ( )

6

7 cty = BoundaryChart

8 @pointwise

9 def d i r i c h l e tCon s t r a i n t (u : f i e l d ( cty , R, 0) ) :

10 return u (0)

11 @pointwise

12 def neummanConstraint ( c : cty , u : f i e l d ( cty , R, 1) ) :

13 return c . normalVector ( ) . dot (u (1 ) )

14

15 d i r i ch l e tMat = assembleConst ra int s (mesh , meshSubset , d i r i c h l e tCon s t r a i n t , l i nea rLagrange )

16 # Get DOFs that can be f a c t o r ed out o f a l i n e a r system

17 d i r i c h l e t E n t i t i e s = d i r i ch l e tMat . f a c t o r i z e ( )

18 # d i r i c h l e t E n t i t i e s can be used to ex t r a c t the boundary part o f a func t i on or s l i c e a matrix

19

20 neummanMat = assembleConst ra int s (mesh , meshSubset , neummanConstraint , l i nea rLagrange )

21 neumannEntit ies = neummanMat . f a c t o r i z e ( )
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22 # w i l l be None , you must use the spar s e matrix f o r the se c on s t r a i n t s in your s o l v e r .

23 ( constra intsMat , vec ) = neumannMat . asConstraintMatVec ( lambda x : . . . )

24 # This s t i l l might not work − you must ana lyze how th i s w i l l i n t e r a c t with the weak form .

Source Code Listing 2.11: Building Constraints and Factoring Them Out (or Not).

2.7 Loading External Data

As alluded to in listing 2.1, loading a triangle mesh into ElementForge is easy as it is in

all FE systems. Similarly, in listing 2.11, we show that data defined in Python functions

can be parlayed into a subset of a mesh. These two examples represent two classes of data

input: array-based and function-based. ElementForge supports these inputs at each level

of data defined on a given mesh. In a simpler system, loading data on that mesh (e.g., for

a right hand side, to define a boundary via a distance function, for proscribed boundary

values, or for testing against analytical solutions) would be simple too: just load a value

per vertex or evaluate a function at each vertex. However, just as with BCs, we must ask a

more complex question: how do we load data over general meshes and elements? We solve

this problem with three capabilities. First, our system reasons about the topologies of data

to use external arrays for various tasks. Second, our system supports general interpolation

from outside data and to finite elements or other groups of expressions, which via the first

mechanism can be repurposed to represent mesh subsets or functions. Third, our system

supports using general Python functions in the assembly of operators into sparse matrices

or dense vectors. As a preview, the first two features are implemented via a single code

generation approach.

To load data from arrays, ElementForge generalizes the mechanisms by which we load

meshes. Meshes are loaded first as cell vertex lists, but other objects (e.g., edges) and

relations (cell edge lists) are created. Mesh subsets can be loaded as well as data on meshes

using representations of objects as ordered list of vertex tuples. We depict a simple workflow
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in listing 2.12.

1 V = np . load ( . . . )

2 F = np . load ( . . . )

3

4 mesh = meshFromVertexCellList (V, F)

5

6 Esubset = np . load ( . . . ) # |E| by | 2 | array

7

8 # Determine how these edges r e l a t e to edges in the system

9 meshSubset = mesh . orderedSubset ( Esubset )

10

11 dataPerEdge = np . load ( . . . )

12

13 # Reorder data f o r the mesh in our system :

14 edgeDataOnMesh = dataPerEdge [ meshSubset ]

Source Code Listing 2.12: Associating Array Data to Meshes.

Interpolation is an overloaded word; in ElementForge, interpolation refers to evaluating

DOFs on a function to get coefficients for a function represented in a FE basis. The eval-

uations for some elements are again depicted graphically in fig. 3.5 and a code snippet is

provided in listing 2.13. Our interpolation can almost be thought of in a black box manner as

it is highly general. So long as the types are compatible, ElementForge allows interpolation

to occur, though it will produce warnings if the interpolation might be ill-defined due to

discontinuities in a function or derivative. For example, if we interpolated from a Lagrange

element to a Hermite element, a discontinuity in the gradient of the former could result in

two different potential values for a Hermite DOF. Our system issues a warning and then

picks one (though a lower-level interface described later allows the user to determine other

ways to resolve such issues). Additionally, some FE coefficients require computing integrals,

which means resorting to numerical quadrature. The quadrature degree can be configured

and sometimes introduces another layer of approximation.

1

2 @jax . j i t
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3 def outs ideFunc (x ) :

4 return # Arbi t rary j i t t a b l e python

5

6 data1 = i n t e r p o l a t e (mesh , unknownElement1 , outs ideFunc )

7 data2 = i n t e r p o l a t e (mesh , unknownElement2 , data1 )

8 # Int e rpo l a t ed data can sometimes be used as a mesh subset :

9 mesubSubet = data1 . submerse ( )

Source Code Listing 2.13: Using Interpolation to Define a Boundary Condition.

While interpolation is useful for representing outside data with a FE, interpolation some-

times introduces error early in the process. If we add a right hand side to Laplace’s equation

(∆u = f), we introduce a right hand side in the weak formulation,
∫
vf . If we supply f as

an interpolated function that approximates the true f at a linear rate, then a method that

solves u at a quadratic rate might still converge at a linear rate. Thus, our third way to use

external data: we allow Python functions to be provided in the assembly process directly, as

depicted in listing 2.14. We note that an important application of this feature is computing

error against analytic examples, as error can be computed inaccurately without it.

1

2 # Def ine rhs

3 def f ( x ) :

4 . . .

5 # Setup mass :

6 @po intw i s e In teg ra l

7 def mass (u : f i e l d (R) , v : f i e l d (R) ) :

8 return u . dot (v )

9 # Di r e c t l y compute the RHS:

10 rhsS ide1 = assemble (mesh , mass , [ LinearLagrange , f ] )

11 # Alt e rna t i v e : i n t e r p o l a t e and compute

12 i n t e rp = assemble (mesh , LinearLagrange , f )

13 rhsS ide2 = assemble (mesh , mass , [ LinearLagrange , i n t e rp ] )

14 # Third opt ion : assemble mass and use dot product aga in s t i n t e r p o l a t ed func t i on data

15 mass = assemble (mesh , mass , [ LinearLagrange , LinearLagrange ] )

16 rhsS ide3 = mass . dot ( i n t e rp . array )
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Source Code Listing 2.14: Different ways external functions can interact with operator

assembly: directly, with interpolation, and via linear algebra. The latter two should be

identical up to floating point if the correct quadrature degree is used.
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Chapter 3

Background

3.1 Vectors, Tensors, and Tensor Calculus

We require various notions from linear algebra and calculus. At an algorithmic level, we need

this material to explain intuitively the core difficulty of using general FEs: transforming

elements between mesh entities. At a higher level, we need this material to explain our

language, as another core difficulty is also simply writing down FEs independently of mesh

entities. These two core difficulties are related, and we explore this successively through

vectors, tensors, and then tensor-valued functions. In particular, we are interested in the

phenomenon of the naturalness of linear algebra objects: vectors that behave nicely under

change of basis/transformation are precisely those that can be written down independently

of either the underlying vector space or a specific basis for it. (As a simple example, we can

always write down a zero vector in any vector space). Furthermore, if we understand the

naturalness (or lack thereof) of linear algebra objects, we understand how to derive formulas

for many linear algebra phenomena. The same applies to the specific case of FEs. Those

familiar with the issues of transforming vectors, tensors, and tensor fields can consult the

table of notation (table 3.1) and move on.
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Notation Definition
F(A, V ) Space of functions from a set A to another set V , often a vec-

tor space.
P (A) The space of real valued polynomials on the set A.
Pr(A) The space of real valued polynomials of degree at most r on

the set A.
Ck(A) The space of k times continuously differentiable real valued

functions from a set A. For k = 0, this is the set of continuous
functions.

L1(A) The space of integrable real valued functions from a set A.
C(A, V ) or CV (A) Given a class of scalar functions C, a set A, and a finite di-

mensional vector space V , this denotes a subspace of F(A, V )
where every scalar coordinate function is a member of C(A).
Several examples are below.

Ck(A, V ) The space of k times continuously differentiable functions from
a set A to another set V , often a vector space.

P (A, V ) The space of polynomial functions from A to V . When V is a
vector space, the interpretation is that each coordinate of the
function is a scalar polynomial.

L(V,W ) Space of linear functions from a vector space V to a vector
space W .

L(V0, . . . , Vn;W ) Space of multi-linear functions from vector spaces V0, . . . , Vn to
vector space W .

V ⋆ := L(V,R) The dual space of V . We call V the primal space to the dual
space V ⋆.

TxN The tangent space at a point x on a surface N .
V1 ⊗ · · · ⊗ VN The tensor product of N vector spaces.
V p,q The tensor product of p copies of V ⋆ and q copies of V .
Nk,p,q The space Ck(N, (T N)p,q), i.e., the space of k times continu-

ously differentiable functions from the surface N to (p, q) ten-
sors of the tangent space.

Table 3.1: Vector Spaces Used in This Paper
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3.1.1 Transforming Vectors

To understand the naturalness of vectors, we need to understand a few example spaces. In

particular, we ask: how do we write down vectors in this space? Vector spaces are typically

introduced via the prototypical example Rn. The space Rn lets us write down a vector

as a list of numbers. This is just the definition of Rn, though it is easy to conflate this

with the standard Euclidean basis. Given a point x on the surfaces of the sphere S2, we can

consider the tangent space TxS2 the set of vectors tangent to the surface at x. A vector in the

tangent space can be described as a list of numbers only after a choice of basis. Alternatively,

without a choice of basis or any information about the tangent space, we can refer to vectors

in the tangent space by taking the derivative of scalar functions at a point x. Most vector

spaces that concern us are like the tangent space rather than Euclidean space: we cannot

write down vectors with lists of numbers without some contortion. Since lists of numbers

otherwise simplify writing down vectors and doing calculations (using index notation), we

must ask: how can we sensibly write down vectors and do calculations in such vector spaces?

We can identify vectors that are easy to write down by considering a few more abstract

spaces. Given an arbitrary set A and a vector space V , the set of functions f : A → V ,

denoted F(A, V ), can be made into a vector space via pointwise extension of vector addition

and scaling. A useful specialization of F(A, V ) occurs when A is a vector space; we define

L(A, V ) as the space of linear functions from A to V . We need the case A⋆ := L(A,R),

the dual space of a vector space A. Usually, we can more easily write down elements in the

dual space. For example, for any vector space S ⊂ F(A,R) and a ∈ A, we can write down

F ∈ S⋆ as F (f) = f(a) without any reference to a basis. Moreover, we can use vectors

such as F to make bases, which allow us to use lists of numbers to describe vectors while

maintaining natural description of the vector (insofar as the vectors like F feel natural to us).

We will now formalize this notion and introduce one more, dagger maps. Dagger maps are

the essence of basis-dependent computations that are not invariant under arbitrary change
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of basis.

Definition 3.1.1 (Primal and Dual Basis, Dagger). Given a vector space V with a basis

{vi}, we say that {v′j}, a basis for V ⋆ is a dual basis for {vi} if v′j(vi) = δij. We call {vi} the

primal basis to {v′j}. Together, {vi} and {v′j} are a primal-dual basis pair. A primal

dual basis pair defines a dagger isomorphism between V and V ⋆:

(vi)
† = v′i. (3.1)

We denote the inverse of the dagger mapping as (·)−†. When necessary, we can subscript the

dagger mapping with a primal or dual or primal dual pair to indicate its origin. Since dual

or primal bases uniquely determine each other, either part of the pair identifies the mapping.

The dagger map is critical to many calculations. Given a matrix Aij, we know that it

can be associated to a map (yi, xj) 7→ yiAijxj and a map (xj) 7→ Aijxj. However, finding an

equivalent matrix for such maps is not so simple because the latter map requires a dagger

map. Given a linear transform A ∈ L(V,W ) and bases {vj} and {wi}, then the corresponding

matrix is given by a formula involving the dagger: Aij = (wi)
†(A(vj)). In contrast, given

a bilinear map from V and W to the real numbers (denoted A ∈ L(V,W ;R)), then we

don’t need a basis-dependent dagger map to write Aij = A(vj, wi). The consequence of this

contrast is that the formula for a matrix vector product has one more sensitivity to the bases

involved that the formula for bilinear map does not. (In differential geometry, we often see

this with the presence of metric terms.) To show how transformations might preserve the

dagger map and how vectors represented with dual vectors behave under transformation, we

study how a transformation on V behaves on V ⋆ with adjoints.

Definition 3.1.2 (Transformation, Inverse, Adjoint, Adjoint-Inverse, System of transforma-

tions). Suppose V and W are dual spaces. We say that T ∈ L(V,W ) is a transformation

if it is an isomorphism. Then we can define T−1 ∈ L(W,V ), the inverse transformation. For
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any T ∈ L(V,W ), we can also define a map, the adjoint, T ⋆ ∈ L(W ⋆, V ⋆) via

T ⋆(w′) = v 7→ w′(T (v)).

If T is an isomorphism, then T ⋆ is. Finally, when T is an isomorphism, then (T ⋆)−1 = (T−1)⋆

so we can denote (T ⋆)−1 as T−⋆ ∈ L(V ⋆,W ⋆), which we call the adjoint inverse. We

note that V and W are finite dimensional so that V ⋆⋆ ∼= V and W ⋆⋆ ∼= W , then any of

T, T−1, T ⋆, T−⋆ defines the other three. Thus any one identifies the other three as a system

of transformations.

Now, we can easily show that if two primal dual basis pairs are related via a transforma-

tion, then the dagger mapper will behave well under transformation.

Proposition 3.1.3. Suppose V and W are finite-dimensional vector spaces. Suppose we

have a system of transformations T, T−1, T ⋆, T−⋆. Suppose we have a primal dual basis pair

for V , {vi} and {v′i}. Then {Tvi} and {T−⋆v′i} are a primal dual basis pair for W . Further,

we have that for all v ∈ V

T ⋆(T (v)†) = v†. (3.2)

Though this result is simple, we cannot say much more with just abstract linear algebra.

We explore a pragmatic example, which happens to be a microcosm for some issues that we

will encounter in transforming elements.

Suppose we are given two triangles, K and K ′ related by a mapping T ∈ C1(K,K ′).

Given a point on an edge labeled with □, we have tangent vector t and normal vector n.

These are defined via the property that ||t|| = ||n|| = 1 and t · n = 0. Similarly, at the point

T (□), we have a tangent t′ and a normal n′ similarly defined. We depict the situation in

fig. 3.1. These definitions feel simple and natural, so we ask how the definitions behave under

transformation. We ask: can we come up with a formula for n′ with DT□, DT−⋆
□ , t, and n?

Similarly, we want to know what type of formula are available (e.g., linear or non-linear in

each of the four inputs).
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To find a formula, we note that both sets of normal and tangent vectors define bases.

Further, there are associated dual bases {t†, n†} and {(t′)†, (n′)†}. Unfortunately, unless

DT□ is a rotation map, we know that the primal dual pair at K is not mapped to the primal

dual pair of K ′. With just abstract linear algebra, we do not see a coordinate independent

linear formula for n′ via the transformations, t, and n. Without geometric information,

the best we can say is that while we do not have that DT□n · DT□t ̸= 0, we do get that

DT−⋆
□ n†(DT□t) = 0. Thus, we are limited in our ability to write down n′ in terms of

information in K unless we use geometric information. In particular, since geometrically

DT□(span {t}) = span {t′}, we already have the direction of t′ from just DT□ and t. Thus,

an appropriate way to recover the direction of the normal vector in this scenario is to set

n′′ = (DT−⋆(n†))−†. In particular, we have that n′′ · t′ = 0. So with geometric information,

we can write down a linear relation for a vector in the same direction of n′ using just

t, n, and DT−⋆. Finally, to recover the size of n′, that |n′| = 1, we must non-linearly

normalize n′′. Linearly in each argument with geometric information, the best that we have

is DT−⋆
□ (span {n†})−† = span {n′}.

The recapitulate the above: we wrote down certain vectors in two contexts related by

transformation. Then we hoped to find nice (linear, polynomial) formulas for one vector in

terms of the others and transformations. We found that the transformations did not preserve

the precise relationship between the vectors, but we could get closer to writing down the

desired formula by using that the transformations did preserve the relationships between

primal and dual bases. With geometric information, we get that some information in t is

transformed into that of t′, mainly the space spanned by it. In this sense, there is something

natural about the definition of t. With this and the transformation of primal-dual bases, we

could recover the direction of the normal vector, the space spanned by it, with a formula

that is linear in the transformations and the vectors n and t. A complete formula for n′ in

terms of information in K is necessarily non-linear. The lesson is that specifying an abstract

vector or vector subspace in a coordinate independent manner is difficult without additional
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context and that, without that context, nice linear formulas for the vector are unlikely to

behave well under change of basis. In contrast, tensor spaces provide a rich family of vectors

and vector subspaces that can be written down independently of even the underlying vector

spaces. In essence, tensor spaces provide many analogues of t and t′ where there is a bespoke

relationship under the transformation. With enough machinery, we can elegantly capture

our efforts to write down n′ via anti-symmetric tensors and the Hodge star operator.

3.1.2 Transforming Tensors

We start with an algebraic definition of a tensor product as an operation on vectors and

vector spaces.

Definition 3.1.4 (Tensor Product). Suppose we have N vector spaces V0, . . . , VN−1. An

N -ary operator ⊗ and a vector space Z := V0 ⊗ · · · ⊗ VN−1 are a tensor product and tensor

product space if

1. ⊗ ∈ L(V0, . . . , VN−1;Z),

2. ⊗ is associative,

3. and if for each i, {vij} is a basis for Vi, then {v0i0 ⊗ · · · ⊗ VN−1iN−1
} is a basis for Z.

One can think of this as a formal operation and simply compute algebraically with it.

For example, ei ⊗ ej + ek ⊗ ej = (ei + ek) ⊗ ej. These manipulations utilize the first two

properties of the tensor product, but the depth of the product comes from the third property.

Simply, this says that any linear map T ∈ L(V1⊗· · ·⊗VN ,W ) can be described by its action

on elements of the form (vi1 ⊗ · · · ⊗ viN ). This yields an isomorphism that has surprising

amounts of depth:

Proposition 3.1.5. Suppose we have N finite-dimensional vector spaces V0, . . . , VN−1 and
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Figure 3.1: Suppose we are given two triangles, K and K ′ related by a mapping T ∈
C1(K,K ′). Given a point on an edge labeled with □, we have tangent vector t and nor-
mal vector n. These are defined via the property that ||t|| = ||n|| = 1 and t · n = 0.
Similarly, at the point T (□), we have a tangent t′ and a normal n′ similarly defined. Both
of these define bases and there are associated dual bases {t†, n†} and {(t′)†, (n′)†}. We use
this situation to study the transformation of vectors.
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Figure 3.2: Transforming tensors to preserve certain properties like trace is much simpler
than preserving vectors.
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a vector space W . Then L(V0, · · · , VN−1,W ) ∼= V ⋆
0 ⊗ · · · ⊗ V ⋆

N−1 ⊗W via the identification:

f(v′0 ⊗ · · · ⊗ v′N−1 ⊗ w) = (v0, . . . , vN−1) 7→ w

N−1∏
i=0

(v′i(vi)). (3.3)

What is interesting about this isomorphism is that we write it down using property three

of tensor products but without reference in the formula to a choice of basis for each Vi. This

hints at a class of vectors that can be defined on many tensor spaces simultaneously and

that are preserved under certain transformations, called pullbacks. We define pullbacks for

a certain class of tensor spaces to avoid needless notation.

Definition 3.1.6 (V p,q Tensor Space, Pullback). Suppose V is a finite-dimensional vector

space. Then V p,q = ⊗p
i=1V

⋆ ⊗ ⊗q
j=1V is a tensor space. Suppose we have another finite-

dimensional space W and a transformation T ∈ L(V,W ). The pullback can be defined using

property three of tensor products as a mapping in L(V p,q,W p,q) given by

(T ⋆)(v′0 ⊗ · · · v′p−1 ⊗ v0 ⊗ · · · ⊗ vq−1) =

T−⋆(v′0)⊗ · · · ⊗ T−⋆(v′p−1)⊗ T (v0)⊗ · · · ⊗ T (vq−1).

(3.4)

Compared to vectors, pullbacks in general preserve a greater variety of subspaces of tensor

spaces. In particular, we can specify a preserved subspace as the zero set of a collection of

linear operators that are defined without reference to a particular basis.

Proposition 3.1.7. Let V and W be a finite-dimensional vector spaces with an isomorphism

T ∈ L(V,W ) and let q, p ≥ 0 with p + q > 0. Pick q′ ≥ 0 and p′ ≥ 0 such that q ≥ q′

and p ≥ p′ and q − q′ = p − p′. Suppose we have two functions α : Sq′ → {0, 1,−1} and

β : Sp
′ → {0, 1,−1}. Suppose we have an element γ ∈ Sq−q

′. Let KW ∈ L(W p,q,W q′,p′) and
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KV ∈ L(V p,q, V q′,p′) be both be given by a formula:

KH(h
′
1, . . . , h

′
q′ , h

′
q′+1, . . . h

′
q, h1, . . . , hp′ , hp′+1, . . . , hp)

= (

q−q′∏
j=1

h′q′+γ(j)(hp′+j))(
∑
σ∈Sq′

α(σ)h′σ(1) ⊗ · · · ⊗ h′σ(q)′)

⊗
(
∑
σ′∈Sp′

β(σ′)hσ′(1) ⊗ · · · ⊗ hσ′(p′)).

(3.5)

Consider the subspace VK = kerKV and WK = kerKW . We have that T ⋆|VK ∈ L(VK ,WK)

is an isomorphism.

For the cases V 0,2 ∼= V 2,0 ∼= V 1,1 ∼= L(V, V ), the above proposition states that symmetric,

anti-symmetric, and trace-free matrices are preserved under change of basis. Further, this is

a much richer space of subspaces preserved under transformation than the situation depicted

by fig. 3.1, where we need information outside of linear algebra to show that the subspace

was preserved (contrast with fig. 3.2) . Similarly to our analysis of fig. 3.1, we would also

not expect pullbacks to preserve sizes of tensors within preserved subspaces.

3.1.3 Transforming Tensor Fields

We now advance one step closer to transforming FEs by transforming sufficiently smooth

functions and dual functions on certain spaces of smooth functions. To define the specific

spaces that we will transform and the transformation, we need some notation. Specifically,

we consider the derivative of a transformation T : N → M where N and M are surfaces.1

Specifically, for every x ∈ N , we recall that the derivative is a map between tangent spaces

DTx ∈ L(TxN, TxM). To work with functions that resemble the derivatives, we will suppress

the dependence on x, allowing us to write a white lie: DT ∈ F(N,L(T N, TM)). We can

now define the space functions that we will transform.

Definition 3.1.8 (Tensor Fields). LetN be a surface and p, q ≥ 0. LetNk,p,q := Ck(N, (T N)p,q)

1We wish to de-emphasize manifolds as a concept here.
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Figure 3.3: A more abstract analogue of fig. 3.1 for spaces of functions. The pushforward
and pullback map a finite-dimensional subspace P and its dual space to spaces with the
same duality relationship, depicted by the right angle. However, we often hope that P
would be mapped to an analogous space P ′ and similarly for the dual. But there is no rea-
son for this to be the case generically, especially when we do not use the geometric infor-
mation that was present in fig. 3.1.
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be the space of tensor fields. Let Np,q := F(N, (T N)p,q)) be the space of tensor-valued func-

tions.

Tensor spaces have one unified transformation, the pullback, in contrast to vector spaces,

which have separate transforms for the primal and dual space. Tensor fields return to

the vector field model via the definition of the pullback (transformation) and pushforward

(adjoint transformation).

Definition 3.1.9 (Pullback and Pushforward). LetN andM be surfaces. Let T ∈ C1(N,M)

have an inverse T−1 ∈ C1(M,N). The pullback along T is a mapping in L(Np,q,Mp,q) given

by

(T ⋆f)(x) = (DTx)
⋆(f(T−1(x)) for all f ∈ Np,q. (3.6)

The pushforward along T is a mapping in L((Mp,q)⋆, (Np,q)⋆) given by

(T⋆ϕ)(f) = ϕ(T ⋆f) for all ϕ ∈ (Mp,q)⋆ and f ∈ Np,q. (3.7)

As with the inverse adjoint, we have that (T⋆)−1 = (T−1
⋆ ) as mappings in L((Np,q)⋆, (Mp,q)⋆))

so we use the notation T−⋆ for (T−1)⋆ and similarly T−⋆ for (T−1)⋆.

An even richer and more complex situation exists for preservation of vectors, subspaces,

and properties under pullback and pushforward. We consider three aspects of the situation.

First, we also note that something close to proposition 3.1.3 is true though these spaces are

not finite dimensional: we still have that if f ∈ Np,q and ϕ ∈ (Np,q)⋆, then (T−⋆ϕ)(T
⋆f) =

ϕ(f). Thus, duality relationships between sets of functions and dual functions are still

preserved. Second, we note that proposition 3.1.7 can be directly lifted to the context of

pullbacks and pushforwards. Thus, subspaces identified via pointwise extensions of natural

tensor subspaces behave similarly under pullback. Third, ignoring the the tensor aspect, we

can see that the properties defining a finite-dimensional subspace of functions are often not

preserved. To see this, we consider a simple example. Suppose we are given two triangles,
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K and K ′, related by a mapping T ∈ C1(K,K ′). On both triangles, we can consider

polynomials that are at most degree 2 in x and degree 1 in y. An algebraic calculation

can show that this subspace is not generically preserved under pullback (consider (x + y)2

which could occur via simple shear T (x, y) = (x+ y, y)). In summary, the general situation

is depicted in fig. 3.3: although we still have duality relationships and a lifted version of

proposition 3.1.7, we cannot depend on pullbacks and pushforwards to match spaces of

functions and dual functions that we define on different triangles, even if we define both pairs

of space through seemingly natural means. In the next section, we will see the consequences of

this for transforming FEs. For now, we briefly introduce exterior calculus and an application

of proposition 3.1.7 to an interesting class of tensor fields, forms. With some additional

machinery, we can even characterize a collection of finite-dimensional subspaces of tensor-

valued polynomial spaces that are preserved under pullback by affine functions.

3.1.4 Interlude on Exterior Calculus

To handle several geometric issues, most notably integration on volumes and surfaces, we

utilize exterior calculus. Additionally, exterior calculus allows us to exercise our knowledge

of pullbacks. Finally, exterior calculus allows us to understand a result about a class of

spaces preserved by pullback of affine functions. This will later allow us to understand the

FEEC. We start by briefly defining forms and their connection to integration.

Definition 3.1.10 (Exterior Power, Forms). Suppose V is a finite-dimensional vector space.

We can define the symmetrizer of V 0,k or V k,0 as

Symk(v1 ⊗ · · · ⊗ vk) =
1

k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k). (3.8)

The kth exterior power of V is ker Symk and it is denoted ΛkV . The space of k forms

on a surface N is the space C∞(N,Λk(T N⋆)), which is often denoted C∞ΛkN .

If a surface is k dimensional (the tangent space is a k-dimensional space), then we can
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Integration of Two Form

Figure 3.4: A rough visual definition of integration of differential forms. Forms locally con-
sume tangent vectors spanning a local area to produce area measurements. This figure was
modeled after Keenan Crane’s lectures on exterior calculus.

integrate k forms on it. A sketch of this definition of integration is depicted in fig. 3.4. In

essence, anti-symmetric objects locally capture the area of parallelepipeds and forms allow

us to define integrals by summing up all the local areas. The space of forms is preserved

under pullback via an application of proposition 3.1.7 with the operator Symk. This leads

to a key property of the pullback:

Proposition 3.1.11. Suppose M and N are manifolds of dimension k and T ∈ C1(M,N)

has an inverse T−1 ∈ C1(N,M). Suppose w ∈ L1(M,Λk(TM)⋆). Then

∫
M

w =

∫
N

T ⋆w. (3.9)

A similar property is that two other operations on forms commute with pullbacks in some

cases. Derivatives commute against pullback with sufficiently smooth functions. A class of
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formal anti-derivatives, called Koszul derivatives, commutes only against affine transforma-

tions. We define both of these:

Definition 3.1.12 (Exterior and Koszul Derivative). Let N be a surface. Consider the

space of k forms Ck(N,ΛkV ⋆). The exterior derivative of a k + 1 form is simply the anti-

symmetrization of the derivative:

dw := Pker Symk+1(Dw) for all w ∈ Ck(N,ΛkV ⋆). (3.10)

If N ⊂ RN , we can define a vector field X : N → T N so that X(x) points in the direction

of x and satisfies ||X(x)|| = 1. Then the Koszul derivative is a k − 1 form given by

κw(x)(t1, . . . , tk−1) := w(x)(X(x), t1, . . . , tk−1) for all w ∈ Ck(N,ΛkV ⋆). (3.11)

The Koszul derivative is probably new to most readers, but a simple intuition exists for it

to those familiar with forms already: the Koszul derivative is the interior product of a form

with the vector x at every point x. We suggest several references for translations of exterior

calculus to the language of vector fields [24], [26]–[30]. By translating the interior product

to the language of vector fields, one can consider several examples of the Koszul derivative.

For example, for a 1 form in R3, the Koszul derivative would amount to taking a vector field

V : R3 → R3 and defining a scalar field f(x) = V (x) · x. The exterior and Koszul derivatives

allow a more sophisticated statement about the types of spaces preserved under pullback by

affine functions:

Proposition 3.1.13 (See Section 3.4 in [26]). Consider P (M,Λk(TM)⋆), the space of poly-

nomial differential forms. The following spaces characterizes all subspaces preserved under

pullback by affine function:

X(r, s, k,M) = dPr+1(M,Λk−1(TM)⋆) + κPs(M,Λk+1(TM)⋆)
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Suppose we have a mapping A that maps surfaces M to subspaces of P (M,Λk(TM)⋆). Then

A(M) = X(r, s, k,M) if and only if for all affine transformations T : N →M , T ⋆(A(M)) =

A(N).

3.2 The Mathematical Definition of a Finite Element

Before providing the definition of a FE and illuminating the resulting computational issues,

especially those relating to transforming elements, we recast the linear Lagrange element on

a triangle. The two key properties of the linear Lagrange basis functions are:

1. The basis functions f0, f1, f2 are affine functions on the triangle, i.e., fi ∈ P (K) the

vector space of affine functions defined on a triangle K.

2. Each basis function corresponds to a triangle vertex, v0, v1, v2, so that if f = α0f0 +

α1f1 + α2f2, then f(vi) = αi.

We can recast this definition by means of a dual basis. This may seem circuitous. Why

not just define a primal basis, the functions f0, f1, f2, directly? Consider our triangle, K

and the linear Lagrange basis functions again. Depending on the coordinates of our triangle,

f0, f1, f2 may have all different sorts of arbitrary coefficients. However, consider the follow-

ing dual basis functions: ϕ0(f) = f(v0), ϕ1(f) = f(v1), ϕ2(f) = f(v2). These these dual

basis functions just say “the value at each of the vertices,” which is a simple, coordinate-

independent concept. Finding the coefficients of the primal basis functions then reduces to

solving n linear systems:

ϕi(f
′
j)fjk = δik. (3.12)

where f ′
0, f

′
1, f

′
2 is some arbitrary basis for the function space (e.g., monomials or Legendre

polynomials). Note as a consequence of eq. (3.12), that fk =
∑

j f
′
jfjk. Some readers may

recognize the matrix ϕi(f ′
j) as a generalized Vandermonde matrix [31].

The key step in the above exercise is that we no longer write down the primal basis
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f0, f1, f2 explicitly, but we instead write down the dual basis. This has a few key advantages:

the mathematical theory works mostly on the dual basis, the dual basis functions make the

interaction between neighboring triangles easier to reason about, interpolation methods come

for free via the dual basis, and the dual basis is easier to write down. Thus the mathematical

definition centers the dual basis:

Definition 3.2.1 (Finite Element). A finite element (K,V, P,Σ) consists of

1. K ⊆ Rn, the domain of the element (e.g. a triangle, quad, hex, tetrahedron),

2. V a vector space of values (e.g., real numbers R or vectors R3)

3. P (K) is a finite dimensional vector space of functions from K to V (usually some class

of polynomial functions)

4. Σ(K) is a dual basis for P (K) (e.g., point evaluations)

This definition dates back to Ciarlet [1] and variations of it have been reproduced in

many FEM textbooks [3], [14], [32], [33]. Typically a diagram is used to depict a given

FE, representing various dual basis functions via glyphs (such as dots and circles) as we do

in fig. 3.5.

These diagrams raise a critical issue in the definition: we have instantiated this FE on a

particular set K, but our definition is coordinate free and independent of K. Moreover, as

practitioners will have anticipated, we want to instantiate a FE on arbitrary K. And if we

simply use the recipe of using eq. (3.12) to find basis functions for many different K, we suffer

from cubic scaling in solutions to eq. (3.12), not to mention the sub-optimal performance

qualities of linear solvers. To avoid this issue, we observe that a single formula, dependent

on K, might capture many different related FEs on different sets K. To see how this might

work, we return to the linear Lagrange element on a triangle.

Let K0 be the unit triangle and K1 be some arbitrary non-degenerate triangle, related to

K0 via an affine map2 T : K0 → K1. Suppose we are given two finite elements, (Ki,R, Pi,Σi)

2This could be a more general diffeomorphism instead.
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for i = 0, 1 where Pi are the affine functions on Ki and Σi Let p0, p1, p2 be the primal basis

corresponding to Σ(K0). With the formula for Lagrange interpolating polynomials on a

triangle, we can verify that if T : K0 → K1 is a diffeomorphism and q0, q1, q2 is the primal

basis corresponding to Σ(K1), then qi = pi ◦ T−1. In particular, if we consider the pullback

map on scalar functions T ⋆ : P (K0) → P (K1) = f 7→ f ◦ T−1, we can see that it is linear

and its matrix representation in the bases p0, p1, p2 and q0, q1, q2 is the identity matrix, i.e.,

cijT
⋆(pj) = qi iff cij = δij. (3.13)

The consequence of eq. (3.13) is that any computation on the primal basis corresponding to

an arbitrary K1 can be done in terms of pi and T , avoiding the need to actually find qi for

each cell. This possibility is referred to as affine equivalence [1]:

Definition 3.2.2 (Affine Equivalence for Scalar-Valued Elements). Given two finite ele-

ments: (Ki,R, Pi,Σi) for i = 0, 1 are said to be affine equivalent if whenever there is a affine

map T between K0 and K1, then T ⋆ = f 7→ f ◦ T−1 maps the primal basis corresponding to

Σ0 to the primal basis corresponding to Σ1.

However, many FEs are not affine equivalent, and so other notions of equivalence have

been developed, including affine-interpolation equivalence for the Hermite element [1] and

compatible nodal completion equivalent for the Morley and Argyris elements [34]. We do not

deeply investigate these notions here, but the key idea is that the matrix representation of

T ⋆, the cij in eq. (3.13), is not the identity matrix but now takes some other forms, possibly

non-linearly dependent on the map T . In particular, for the Morley element, the matrix

representation of the pullback map was computed by [34] as follows:

Example 3.2.3 (Morley Pullback Matrix). Let K be a non-degenerate triangle and K ′ be

the unit triangle. For each edge ei of K and each edge e′i of K ′, we can define the edge

tangents and normals t, t′ and n, n′. Each edge has a midpoint mi and length li. Then given
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the map T : K → K ′, we can define

Bi =

[
t n

]
DT T (mi)

 t′
n′

 .
Then the matrix would be roughly:

c =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 −B1
12/l1 B1

12/l1 B1
11 0 0

−B2
12/l2 B2

12/l2 0 0 B2
11 0

B3
12/l3 0 −B3

12/l3 0 0 B3
11


(3.14)

This matrix c from eq. (3.14), the matrix representation of the pullback map T ⋆, again lets us

compute with the Morley element basis functions on an arbitrary triangle by only computing

the matrix and the Morley element basis functions on a single reference triangle.

At present, these matrices are computed by hand, as in [9], [34]–[37]. One of the

core aspects of our system is that we will compute these automatically from a software

specification of definition 3.2.1. Naturally, these are formulas that are available in these

papers, but there are several virtues to automation. First, for an unknown element, a

formula is not already available. Second, as we will describe in the next two sections, the

formula is not enough. The formula must be integrated into a FE code, which is a finicky

task that requires awareness of the various conventions and methods a given code employs.

Third, the first two reasons compound: exploring new elements requires changing other

aspects of the system in subtle ways, and changing the system might require one to revisit

and change existing formulas. To facilitate rapid exploration of FEMs, we need to automate

the discovery of the relevant formula in the context of an expressive system for other aspects
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of FEs.

With this motivation and background in hand, we can now frame the core problem that

we will solve in chapter 6. We are interested in finding formulas for the primal basis functions

of a class of FEs (K ′, P ′, V ′,Σ′) so that the primal basis functions depend (linearly) on a

fixed FE (K,P, V,Σ) and (non-linearly) on a transformation T : K → K ′. We can now

formally define the object that we will compute in chapter 6.

Definition 3.2.4 (Transformation of a Finite Element). Fix a finite element (K,V, P,Σ).

Suppose we have a collection of sets {K ′} that are isomorphic to K via a C1 mapping

TK′ . Suppose further that we have a collection of finite elements {(K ′, V ′, P ′,Σ′)} indexed

by K ′. Let {fi} be the primal basis for (K,V, P,Σ). Let {fK′
i } be the primal basis for

(K ′, V ′, P ′,Σ′). We seek a function P: {TK′} → L(RdimP ,RdimT ⋆P ′
) such that

T ⋆K′fK
′

i =
∑
j

P(T )ijfj. (3.15)

The matrix P(T ) is the representation of the pullback as a linear map from the basis {fK′
i }

to the basis {fi}.

Ultimately our system will compute this from a software implementation of the mathe-

matical definition of a FE. Based on our discussion of pullbacks, we can now anticipate some

difficulties and the tools that we have to solve them. First, the above formulation assumes

that T ⋆K′fK
′

i ∈ P , which in general does not need to be the case, as discussed in section 3.1.3

and depicted in fig. 3.3. Thus, P does not obviously exist in many cases, though there is

hope in the ideas in section 3.1.2 and section 3.1.4, as they illustrate some cases for P where

P exists. Second, even if it does exist, P might be a complex symbolic object, especially

because pullbacks depend polynomially on derivatives and inverse matrices turn polynomials

into large complex rational functions. Thus, we should seek to use the ideas of section 3.1.2

and section 3.1.1 to identify objects related to FEs that transform nicely, alleviating this

problem. As noted in fig. 3.1, geometric information allows one to extract the direction of
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normals and tangents on another triangle up to normalization using the normal and tangent

of a reference triangle and a transformation. We hint that many variants of the Lagrange

element defined above resemble tangent vectors in this respect. We return to this in chap-

ter 6 and for now move on to the second big challenge of using FEs: the global FE space

and operations on it.

Linear Lagrange Quadratic Lagrange 

Crouzeix-Raviart Quadratic Morley

Cubic Hermite V2 Quintic Argyrs

DOF Legend
Point Evaluation

Normal Derivative Evaluation

Tangential Derivative Evaluation

Gradient Evaluations

Hessian Evaluations

Figure 3.5: Examples of finite elements depicted graphically via their dual basis functions.
This figure was inspired by graphical depictions going back to the Ciarlet definition of the
finite element, but especially those in [14].

3.3 The Mathematical Definition of Global Finite Ele-

ment Spaces and Associated Operations

1d

2d

A FE defines a local space of functions on individual mesh elements. Now we

seek to construct a global FE space, a space of functions defined on the whole

(global) mesh. Like the individual FEs, this construction will consist of a domain,

a space of functions, and a dual basis. Returning to the linear Lagrange example

from section 3.2, the primal bases of the corresponding global space are the well-

known linear hat functions, one for each vertex in the mesh.
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A hat function associated to the vertex v matches a primal basis function in

each local linear Lagrange FE space on a triangle incident to the vertex. However, the hat

function is not simply the sum of these local functions, as this would result in over-counting

values on the shared edges between triangles. The problem of how to handle boundaries

between elements also arises when we seek to describe spaces of discontinuous functions,

whose values at such boundaries are ill-defined. For instance, this occurs when modeling

fractures, creases, or interfaces between different materials.

add together

We need a few auxiliary notations from topology in order to talk coherently

about the boundary vs. interior of our elements. We write S to mean the closure

of the set S, and S◦ to mean the interior of the set S. We say that a set S is

regular closed if S◦ = S.

Definition 3.3.1 (Restriction of Functions). Suppose T ⊆ Ω is a regular closed

set and V is a vector space. Given f ∈ F(Ω, V ) such that f is continuous and

bounded on T ◦, then ρT (f), the restriction of f to T , is the unique continuous

extension of f |T ◦ to T .

T1

T2

v

ρ (f)
T1

ρ (f)
T2

A key application of this concept is the construction of discontinuous

functions: consider two triangles T0, T1 ⊆ Ω sharing a vertex v, as well as

a function f defined on Ω. If f is discontinuous at v, then we can evaluate

ρT1(f) and ρT2(f) at v to get two distinct values. This allows us to have

two different DOFs at v and thus to construct global FE spaces that include

discontinuous functions.

We can generalize the preceding construction to extend local dual func-

tions back to operating on the global space.

Definition 3.3.2 (Extension of Dual Functions). Suppose T ⊆ Ω is a regular

closed set and V is a vector space. Given a ϕ ∈ C⋆(T, V ), the extension to Ω is a dual

function ETϕ ∈ F(T, V )⋆ defined via ET (ϕ)(f) = ϕ(ρT (f)) for all f . More concisely, ET (ϕ) =

ϕ ◦ ρT . Hence ET is dual (a.k.a. adjoint) to ρT .

64



This machinery is sufficient to define a broken global FE space, which models a fully

discontinuous space.

Definition 3.3.3 (Broken Global Finite Element Space). Let Ω ⊂ Rn be a domain meshed

by a finite collection of elements {Ti}, each a regular closed subset of Ω and forming a

partition of Ω in the sense that Ω = ∪Ti and T ◦
i ∩ T ◦

j = ∅ if i ̸= j. Furthermore, let

(Ti, V, Pi,Σi) be the FEs associated to each Ti. Then define

1. a global space of piecewise functions P = {p : Ω → V | ∀i.ρTi(p) ∈ Pi}

2. a global set of dual function Σ = ∪i{ETiϕ : ϕ ∈ Σi} so that Σ ⊂ P ⋆.

We call (Ω, V, P,Σ) the broken global finite element space associated to a collection of

finite elements.

Note that the union of local dual basis functions in the above construction is disjoint.

We have exactly one global dual function for each local dual function on each element.

Further note that the construction of P given above is intuitively accurate, but requires

tricky functional analysis to specify precisely3.

The broken space does not yet allow us to produce our hat functions. Intuitively, we

still need to ensure that all the DOFs corresponding to point evaluation at the same vertex

evaluate to the same value for all functions in P . To do this, we must group or equate DOFs

to construct the global FE space. We accomplish this via an equivalence relationship on the

global broken degrees of freedom.

Definition 3.3.4 (Global Finite Element Space). Suppose we have a collection of finite

elements (Ti, V, Pi,Σi) that form a broken global finite element space (Ω, V, P,Σ). Further
3Let us consider an example of the issue that occurs. Consider a mesh of the interval [0, 2] consisting

of two sub-intervals [0, 1] and [1, 2]. Even if the local function spaces consist of affine functions, P as con-
structed above does not specify the value of f(1) for f ∈ P ; it can be arbitrarily modified. This problem
occurs in much of functional analysis and is resolved by drawing functions from Lebesgue spaces, such as
L1. These spaces technically consist of equivalence classes of functions, rather than individual functions.
This is almost entirely a distraction from any of our development here, so we choose to not needlessly
complicate our presentation further.
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suppose ≡ is an equivalence relationship on Σ such that basis functions from the same

element are not made equivalent: if ϕ1, ϕ2 ∈ Σi for some i and ϕ1 ̸= ϕ2, then EΩϕ1 ̸≡ EΩϕ2.

Then we can define P≡ ⊂ P via

P≡ = {p ∈ P : ∀ϕ, ϕ′ ∈ Σ: ϕ ≡ ϕ′ =⇒ ϕ(p) = ϕ′(p)},

and we can define

Σ≡ = Σ/ ≡ .

The global finite element space is then (Ω, V, P≡,Σ≡).

We make two observations and a remark. First, a good choice of equivalence relationship

can sometimes be generated via the space of continuous functions, C0(Ω):

ϕ1 ≡ ϕ2 ↔ ∀f ∈ C0(Ω, V ) : ϕ1(f) = ϕ2(f).

This requires that all dual basis functions are well defined on functions in C0(Ω, V ). In the FE

literature, equivalence relations are used implicitly by way of a choice of function space. Not

all equivalence relationships provide sensible spaces for PDEs, but we outline a combinatorial

guideline in appendix A. Second, although Σ≡ is technically a set of equivalence classes, the

construction of P≡ as a quotient allows us to use any set of representatives of the classes

Σ≡ as a dual basis for P≡. Third, just as with the broken global FE space, we can easily

characterize the primal basis functions, which will allow us to characterize how we compute

using global spaces.

Remark 3.3.5 (The Primal Basis for the Global Spaces). Fix an arbitrary choice of represen-

tatives ϕi for the equivalence classes φi ∈ Σ≡. This {ϕi} is a basis for P ⋆
≡. Further, suppose

{fj} is the corresponding primal basis (ϕi(fj) = δij). Suppose we are given a Tk. We can

characterize the behavior of fj(x) on x ∈ Tj with two cases:

1. If there is a ψi ∈ φj such that there is a ψi,k ∈ Σk where ψi = ETkψi,k, then ρTk(fj) = gi,k
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where gi,k ∈ Pi is the primal basis function corresponding to ψi,k.

2. Otherwise, ρTk(fj) = 0.

In light of this construction, it is useful to introduce a bit of notation to deal with equivalence

classes. Given ψ ∈ Σi, let [ψ]≡ be the equivalence class in Σ≡ that contains ETiψ.

The idea in the above remark proves a key lemma that will help us compute on functions

defined in the global FE bases:

Lemma 3.3.6. Fix a global finite element space (Ω, V, P≡,Σ≡) and the corresponding local

finite element spaces (Ti, Vi, Pi,Σi). Let Σ≡ = {φ} and let {fφ} be the corresponding primal

basis. Also, for each i and ψ ∈ Σi, let fi,ψ be the primal basis function corresponding to ψ.

Suppose f ∈ P≡ is such that there is αφ ∈ R|Σ≡| so that

f =
∑
φ∈Σ≡

αφfφ.

Then for all i, we have that

ρTif =
∑
ψ∈Σi

α[ψ]fi,ψ (3.16)

.

As an initial application of the above machinery of global FE spaces, we can define a

notion of interpolation. Traditionally, interpolation uses a set of points {xi} and a cor-

responding set of measurements {yi}. Interpolation seeks to find a function that satisfies

f(xi) = yi. For FEs, we can replace the pairs (xi, yi) with dual basis functions, ϕi, and values

for these dual basis functions, αi. In line with the above remark, given a global FE space

(Ω, V, P≡,Σ≡), we can define an f ∈ P with a vector α ∈ R|Σ≡|. In this setting, given an αi

associated to each ϕi, we can define a function f using the notation of the above remark:

f =
∑
ϕi∈Σ≡

αifi.
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And, of course, via the primal and dual basis property, we have that ϕi(f) = αi. However,

we are not often given a set of values αi as actual numbers. Instead, we often are given some

other function h, not necessarily in the FE space, that we use to compute the αi, which then

defines a function f that approximates h.

Definition 3.3.7 (Finite Element Interpolation). Let E = (Ω, V, P≡,Σ≡) be a global finite

element space. Let h ∈ F(Ω, V ) be such that for all ϕ ∈ Σ≡, ϕ(h) is well defined. Then the

interpolation of h into the global finite element space is a function IEh ∈ P≡ given by

IEh =
∑
ϕi∈Σ≡

ϕi(h)fi. (3.17)

FE interpolation lets one approximate a wide variety of functions with FE functions.

Practically, interpolation allows one to get data into the system in a consistent way. In

particular, if some FEM converges at an order k with some given FE, then interpolating

incoming data will often not disrupt this order of convergence.4

3.4 Global Operations on Finite Element Spaces

We now deduce how to use global FE spaces in computations. We examine three examples

of using the global FE spaces: integration over a domain, integration over a subset, and FE

style interpolation. We explore these methods by example to present the issues involved in

working with global FE spaces and to motivate a more general method that will handle all

of these examples. In particular, we seek to reduce our computations to be cell local in the

sense that the data needed to compute the quantities is accessible from a cell or a local basis

function that corresponds to some global basis function.

Our first example is analogous to the action of a PDE operator or some derived integral

quantity of a solution. This example shows how to make such computations cell local. We
4In some systems, e.g., Firedrake/FEniCS, inappropriate representations of DOFs have led to interpola-

tion changing the order of convergence.
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also extend the example to the case of integrating over the entire mesh for each basis function.

This shows how we can construct an array that represents the operator in the primal basis

of the global FE space.

Example 3.4.1 (Integration of Finite Element Functions). Fix a global finite element space

(Ω, V, P≡,Σ≡) with local elements Ei = (Ti, Vi, Pi,Σi). Set {φk} = Σ. Let {fφk
} be the

associated primal basis. Given f ∈ P≡, we have that there is a vector αφk
so that

f =
∑
φk∈Σ≡

αφk
fφk

. (3.18)

Given any integrable function F : R → R, we have that

∫
Ω

F (f(x))dx =
∑
i

∫
Ti

ρTi(F (f))(x)dx

=
∑
i

∫
Ti

ρTi(F (f))(x)dx

=
∑
i

∫
Ti

F ((ρTi(f))(x))dx

Applying lemma 3.3.6 to ρTi(f(x)), we have that

ρTi(f) = ρTi(
∑
φk∈Σ≡

αφk
fφk

)

= ρTi(
∑
ϕ∈Σi

α[ϕ]≡f[ϕ]≡)

=
∑
ϕ∈Σi

α[ϕ]≡ρTi(f[ϕ]≡)

=
∑
ϕ∈Σi

α[ϕ]≡fϕ.
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So we have that

∫
Ω

F (f(x))dx =
∑
i

∫
Ti

F (
∑
ϕ∈Σi

α[ϕ]≡fϕ(x))dx.

This formula allows one to compute an integral of a function defined in a finite element

space using two cell-local quantities.

First, we need the local finite element basis functions of each element. Second, we need

the coefficients defined via the equivalence class associated to each primal basis function via

duality.

If in addition F is also linear, then

∫
Ω

F (f(x))dx =
∑
φk∈Σ≡

αφk

∫
Ω

F (fφk
(x))dx

=
∑
φk∈Σ≡

αφk

∑
i

∫
Ti

(ρTi(F (fφk
)))(x)dx

=
∑
φk∈Σ≡

αφk

∑
ETiϕj

∈φk

∫
Ti

F (ϕj(x))dx.

Thus if

Fk :=

∫
Ω

F (φk(x))dx =
∑

ETiϕj
∈φk

∫
Ti

F (ϕj(x))dx

then ∫
Ω

F (f(x))dx =
∑
k

Fkαφk
.

Thus, we have a formula for an array that lets us compute
∫
Ω
F (f(x))dx on f ∈ P≡ using

standard linear algebra. Again, this array can be computed in a cell-local fashion modulo

aggregation between cells that share a dual basis function. This example is simple, but more

complex examples on the interior of elements will remain cell local modulo some aggregation.

If we added more finite element basis functions (a bilinear operator) or more fixed functions
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(a non-linear argument), the same steps would lead to a cell local formula.

A simple variation of the above computation is an integral over a union of a set of edges

as opposed to a union of a set of triangles. This occurs in the form of boundary integrals,

which are part and parcel of the weak form of many PDEs as well as in integrals over interior

facets.

Integrals over interior edges occur in various methods for the biharmonic equation, in FE

style interpolation, in tests to validate FEs, and at interfaces between different materials in

simulations [38].

Example 3.4.2 (Facet Integrals of Finite Element Functions). Fix a global finite element

space (Ω, V, P≡,Σ≡) with local elements Ei = (Ti, V, Pi,Σi). Let E ⊂ ∂Tk ⊂ Ω for some k.

If E ⊂ ∂Ω, then for some f ∈ P≡, we can follow the previous steps to obtain

∫
E

F (f(x))dx =

∫
E

F (
∑
ϕ∈Σk

α[ϕ]≡fϕ(x))dx. (3.19)

However, if E is in the interior, then we cannot reach this point. There is some k′ ̸= k so

that E ⊂ ∂Tk′. Even if this is the only k′, it may be that

∫
E

F (f(x))dx ̸=
∫
∂Tk∩E

ρTk(F (f))(x)dx

+

∫
∂Tk′∩E

ρTk′ (F (f))(x)dx

In fact,
∫
E
F (f(x))dx is not necessarily well defined. There are two approaches that make

mathematical sense. First, one can compute
∫
∂Tk∩E

ρTk(F (f))(x)dx and
∫
∂Tk′∩E

ρTk′ (F (f))(x)dx

as separate values. These can be combined to various ends (e.g., if the functions are contin-

uous then we could just pick one as the quantity is well defined). This approaches extends

to lower-dimensional objects like points in R2 shared by many cells. Second, one can define

F on an interior boundary as a function of two values, one from each cell. This approach
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is no longer cell local as it requires an adjacency relationship to combine basis functions

defined in different cells in the same pointwise computation. Further, this only works on

d − 1-dimensional objects shared between two cells. In either case, the complexity of these

approaches multiplies with more arguments as there will be separately defined quantities for

every combination of values that could exist. For example, the assembly of a bilinear function

into a 2d array might need to account for the cases of two values coming from the same side

or two values from different sides, leading to four distinct well-defined quantities to compute

per edge [39].

Our final example computation is FE interpolation as defined in definition 3.3.7.

Example 3.4.3 (Computing Interpolation Operations). Fix a global finite element space

(Ω, V, P≡,Σ≡) with local elements Ei = (Ti, V, Pi,Σi). Suppose we have some function f ∈

F(Ω, V ) such that for each i and each ϕ ∈ Σi, ETi(ϕ)(f) is well defined. Computing each

ETi(ϕ)(f) is a simple matter as this is already a cell local computation. However, for some

ψ ∈ Σ≡ with ETi(ϕ)(f) ∈ ψ, there might also be an i′ and ϕ′ ∈ Σi′ such that ETi′ϕ
′ ∈ ψ.

There is no guarantee that ETi(ϕ)(f) = ETi′ (ϕ
′)(f). Thus, to ensure that interpolation is

well defined, we must compute every cell-local degree of freedom for each ψ ∈ Σ≡ and then

we must check that they are all equal. If they are not equal, interpolation is not well defined

without additional information. In such cases, one can investigate procedures to combine the

different cell-local values (e.g., averaging them). Thus this situation is fairly similar to the

previous example, though integration might be replaced with point evaluation and we have

an output per dual function. However, we also note that within the finite element literature,

one can find various interpolation schemes to solve variants of this problem. Oftentimes,

these interpolation schemes use alternative sets of dual vectors to compute values that are

then used as the αi for some finite element. Most notably Scott-Zhang interpolation handles

"rough" functions by integrating functions against Lagrange basis functions (as opposed to

evaluating at cell vertices where functions might be discontinuous) [40].

In each of these examples, we tried to use the structure of a global FE space to make the
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computation local to cells. Our ability to do so is moderated by the location of the compu-

tation (interior edge vs. interior cell), the continuity of the functions in the global FE space,

and the specific properties of the formula F that we are integrating. Additionally, some-

times we must handle that computations are produced per combinations of basis functions

in cases where the formula F is multi-linear or when we produce an output per basis func-

tion as in various interpolation algorithms. These example computations belong to a class

called assembly operations, which we will more precisely define in section 7.1. Further, in

section 7.1, we will provide a universal algorithm for computing assembly operations, which

will address the various issues encountered in the above examples and which will guide the

code generation for assembly operations in our system.
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Chapter 4

Related Work

4.1 Finite Elements in Graphics

FEMs are a standard part of the toolkit of computer graphics, especially piece-wise linear

FEs. The piece-wise linear discretization of the Laplacian operator appears ubiquitously in

computer graphics in the form of the cotangent Laplacian [23]. Moreover, piece-wise linear

Lagrange FEs are used to simulate fluids, simulate solids, simulate fluid structure interaction,

mesh objects, render objects, smooth meshes, and more [41]–[48].

In several subfields of computer graphics, alternatives to piece-wise linear Lagrange FEs

are under consideration due to various problem specific needs. The primary alternatives

under consideration are simply higher-order Lagrange elements or similar constructions for

squares and hexahedra (such as B-splines) [5], [6], [49]. Most notably, higher-order Lagrange

elements (typically not beyond cubic) have been employed to deal with locking phenomena

in elasticity problems [49], [50]. In elasticity in particular, more exotic elements have been

used specifically to deal with locking or other more specific phenomena [51], [52]. In fluids in

particular, B-Spline constructions have been employed as FEs, though with staggering to al-

low for smoother bases [53]. Finally, the lower-order non-linear Lagrange elements have been

employed in a variety of other problems, such as meshing and surface deformation [54], [55].
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Beyond higher order Lagrange, a few have used the FEEC elements (mainly the Whitney

elements via subdivision representations) and their relatives (Crouzeix-Raviart), especially

when dealing with the structure of harmonic functions [27], [28], [56]–[61]. In the latter case,

the elements are always of the lowest orders. Even more rarely in these cases, authors have

used elements that we cannot find implemented elsewhere, such as the Fraeijs de Veubeke’s

element [62]. The same work also uses Morley’s element but does not provide any related

details on its useage

4.2 Automation for the Finite Element

In this section, we survey the related work with respect to the ability of other FE software to

use definition 3.2.1 of a FE automatically and parametrically. To the best of our knowledge,

to add a new FE to an existing FEM implementation, all existing systems require some

mathematical derivations and some manual coding (if it is possible at all to add new FEs). In

particular, all systems require that the user manually ensure that the basis functions of a FE

can be evaluated on an arbitrary domain K - you must verify some version of definition 3.2.2

or eq. (3.13). For non-affine equivalent elements (definition 3.2.2), the most flexible and

sophisticated libraries, often built out of multiple DSLs, allow users to manually provide

matrix representations of the pullback matrix as a function of the geometry of a domain. As

far as we know, only Firedrake, FEniCS, NGSolve, Dune, scikit-fem, and GetFEM provide

such overrides [9], [10], [13], [63], [64]. These libraries offer a wide variety of FEs, with

Firedrake supporting the greatest variety [9], [65]–[68]. In the cases where (definition 3.2.2)

holds, FIAT, a library used in Firedrake, can automatically generate basis functions for a

wide variety of DOFs, polynomial spaces, and domains, while FINAT facilitates the manual

specification overrides and other symbolic data useful for finite elements [7]–[9], [15], [34].

In contrast, ElementForge will do all that FIAT can do while automatically deducing the

overrides FINAT provides for inverse Vandermonde matrices, among other tasks.
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Outside of providing basis function values, several other aspects of using FEs have been

partially automated in a few libraries. The systems that support non-affine equivalent el-

ements support using their DOFs to perform interpolation or to enforce BCs to varying

degrees, though in all cases the support is partial [9], [10], [13], [63], [64]. Similarly, some of

these systems make assumptions on the mesh to make certain types of FEs work [69] while

others, mainly FEniCS via the Basisx library for basis functions, allow users to specify how

basis functions are impacted by transformations [70].

The overwhelming majority of libraries live between FEniCS and systems like PolyFEM,

which only provide Lagrange elements up to a certain order [11], [16], [71]–[78]. These

systems shy away from the problems of using non-affine equivalent elements, managing per-

mutations of basis functions, enforcing element specific boundary conditions, or performing

interpolation operations other than point evaluations. Finally, even SymFEM, the symbolic

FE library and the tool behind the website defelement.com, does not symbolically determine

the pullback matrix [79], so that the Morley element, for example, can only be constructed

on a single specific triangle in that system. In contrast, we seek to provide a far greater

degree of automation for elements by ensuring that our specifications work on symbolic ge-

ometries, enabling the automatic generation of formulas for Vandermonde matrices among

many other tasks.

4.3 Automation for Other Aspects of the Finite Element

Method

Outside of the FE itself, many other aspects of the FEM have been somewhat automated,

often via DSLs. Discussions of meshing software are not germane to our purposes, but the

specification of weak formulations is heavily related to our enterprise.

Essentially three approaches have emerged to allow users of FEM software to specify their

problems. First, systems such as PolyFEM or nekRS offer parameterized PDEs that users
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can configure with expressions for fixed tensors or BCs or other parameters [6], [71]. Second,

systems such as MFEM and Nektar++ offer libraries of operators that can be combined

to specify the variational formulation of a PDE [11], [78]. Third, several systems such as

Firedrake, FEniCS, and Dune rely on the Unified Form Language, a DSL for specifying weak

forms as expressions [12], [14]–[16].

Form languages are the line of work closest to our own as the specification form is

similar to the specification of elements, but they are not used this way. Form language

compilers produce quadrature loops, which are heavily optimized for performance, as opposed

to symbolic outputs that can be used to compute pullback matrices [14], [19], [80], [81].

As a minor example of this, when users wanted to use FEEC elements in form compilers,

form compilers had to be modified to deal with pullbacks associated with FEEC elements as

opposed to symbolically deducing such pullbacks [82]. However, we note that form compilers

have other symbolic capabilities such as various forms of automatic differentiation [12], [83],

[84] and the ability to express many highly specialized time-steppers and preconditions [39],

[85]–[87]. At this time, we do not pursue this higher-level work, but we do produce a form

language (the same language we use to specify elements). Our form language inherits some

advantages and disadvantages from a non-specialized form language: our language can be

more concise for many forms that operate on high-level tensor expressions, especially those

involving exterior calculus, but our language can also be more verbose as we do not build in

specialized constructs for form differentiation or for discontinuous Galerkin methods.

4.4 Less Well-Known Finite Elements

We highlight the many FEs that appear in the literature, briefly commenting on their var-

ious utilities. For example, there are many families of FEs that offer various forms of con-

tinuity [21], [88]–[94]. Sometimes FEs are defined because they allow elegant and correct

solutions to certain problems [95]–[100]. Some FEs offer superior convergence speeds or
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conditioning properties over easier to use options [101]–[107] or sometimes they offer highly

efficient code for the same convergence [108]–[112]. Some FEs are uniquely suited for certain

applications using some portion of the above properties [95], [96], [113]–[120]. We believe

that ElementForge can implement most of these elements with the exception of the small

minority of elements relying on rational function spaces. We do require an extension for

piecewise polynomial spaces in the element space, but these are known to be simple.
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Chapter 5

Software Representation of DOFs and

Operators: Integrated Pointwise Tensor

Expressions on Manifolds

We capture both DOFs and operators via Integrated Pointwise Tensor Expressions on Man-

ifolds (IPTEM). We define IPTEM to decompose the expression into various components:

integrals, pointwise expressions, tensor expressions, and an interface to geometry motivated

by differential geometry. IPTEM are flexible enough to express most known DOFs and

operators, but, critically for our automation efforts, each component of IPTEM models a

continuous concept in a manner amenable to algorithmic reasoning for code generation. We

discuss each component in turn from lowest to highest level, building to the full interface,

but considering how each part facilitates or balances the expression of FEM concepts and

the automatic generation of formulas.
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5.1 Tensor Expressions: Tensors, Tensor Spaces, Basis

5.1.1 Design Rationale

Along the lines of our discussion of tensors in section 3.1, we provide a grammar in listing 5.1

that balances writing down tensors and generating formulas with natural constructions.

In section 3.1, we argued that certain natural tensor objects produce simpler formulas, so

we organized listing 5.1 around natural constructions in tensor algebra. We also observed

that sometimes basis-dependent computation is necessary, but can be carefully isolated via

dagger maps. Though other more familiar tensor representations such as Einstein index

notation or Numpy arrays are trivial for computers to implement, our representation can

produce better formulas because natural constructions and careful usage of basis dependent

computations via inner products and daggers can expose simpler computer formulas via

exploiting choice of basis. Additionally, our language naturally expresses everything that

Einstein index notation can express while also providing a more natural class of operations

such as reshapes.

5.1.2 Semantics

A full denotational semantics for the language is superfluous for our language as it is a direct

specification of mathematics. Here we seek to clarify the meaning of the terms, illustrate

how they are grouped by natural constructions, and argue that each space is a Hilbert space.

Our first space is R, which is associated to the operations available in every vector space

0, + and scalar multiplication via ×. This space is a Hilbert space under the inner product

(v, w)R 7→ v × w.

Our next two space constructions, dual spaces and tensor products, are intertwined via

the universal property for tensor algebra (essentially proposition 3.1.5). As a start, all

vector spaces V get an identity vector map, which necessarily is a member of the tensor
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space V ⋆ ⊗ V ∼= L(V, V ). Any vector space v′ ∈ V ⋆ can evaluate a vector v ∈ V , which we

represent via Eval(v′, v). Similarly, given any two vectors v ∈ V and w ∈ W , we can construct

v ⊗ w. Dual vectors and multi-linear maps can be constructed naturally via a function

abstraction (lambda) and a variable construct. The Evaluation, Abstract, and variable

terms allow users to realize one direction of the isomorphism in proposition 3.1.5 and the

natural isomorphism from V to V ⋆⋆. The opposite direction of the natural isomorphism is

offered via the J map. The other direction of proposition 3.1.5 (going from V ⋆ ⊗ W ⋆ to

V ⊗W as opposed to the other way around) corresponds to the reshape term, which groups

tensor products of dual spaces (at the given indices) into a dual space of a tensor product

space (at a specific location in the original tensor product). The reshape term facilitates the

core consequences of proposition 3.1.5 such as the associativity of tensor products, which

corresponds to a reshaping operation.

If V and W have inner products (·, ·)V and (·, ·)W , assumes inner products on V ⋆ and

V ⊗W . For the latter case, we can define (v0 ⊗ w0, v1 ⊗ w1)V⊗W = (v0, v1)V (w0, w1)W with

an appeal to proposition 3.1.5. In our language, we can construct this vector directly with

eval, abstraction, variable, inner, and reshape (the appeal to proposition 3.1.5). For the

former case, we appeal to a formulation of the dagger map (definition 3.1.1) that works for

any orthonormal basis, the inverse of the map v0 7→ v1 7→ (v0, v1)V . With such a map, the

inner product on V ⋆ is given by (v′0, v
′
1)V ⋆ = ((v′0)

†, (v′1)
†)V .

If we have two spaces V and W , we can construct V ⊕W . The universal property of

products supplies projection operations from V ⊕W to V or W . We also naturally have

embeddings from V or W to V ⊕W . Finally, if V and W have inner products, we have an

inner product ⟨z0, z1⟩V⊕W = (PV⊕W,V z0, PV⊕W,V z1)V + (PV⊕W,W z0, PV⊕W,W z1)W .

Kernel, co-kernel, image, and co-image behave similarly, in that given a linear v ∈ V ⋆⊗W ,

they provide projection and embedding maps into/from V or W . For convenience, we also

allow these spaces to be annotated with information about the map, mainly if the map is

surjective and/or injective. The embedding maps of the kernel and image fulfill the universal

81



properties of those spaces while the projection maps of the co-kernel and co-image fulfill their

universal properties. We can access the isomorphism from the co-kernel to image via the

restriction operation. Similarly, these maps allow existence of an inverse map: a mapping

from the image of a map to the co-kernel. The inner products for these spaces are simply

the inner products of the source or target of the map, utilized via embedding maps.

Finally, for expressibility, we note that we support evaluation of external non-linear func-

tions such as square root, division, or trigonometric functions. We note that such computa-

tion cannot be done with variables bound in abstraction nodes, as these define multi-linear

functions. Our system checks that Abstract nodes define truly multi-linear functions.

⟨TensorSpace⟩ = R

| ⟨TensorSpace⟩⋆

| ⟨TensorSpace⟩ ⊗ ⟨TensorSpace⟩

| ⟨TensorSpace⟩ ⊕ ⟨TensorSpace⟩

| kernel(⟨TensorExpr⟩, ?⟨TensorSpace⟩, ?⟨TensorSpace⟩,?bool, ?bool)

| cokernel(⟨TensorExpr⟩, ?⟨TensorSpace⟩, ?⟨TensorSpace⟩, ?bool,?bool)

| image(⟨TensorExpr⟩, ?⟨TensorSpace⟩, ?⟨TensorSpace⟩, ?bool, ?bool)

| coimage(⟨TensorExpr⟩, ?⟨TensorSpace⟩, ?⟨TensorSpace⟩, ?bool, ?bool)

⟨TensorExpr⟩ = Zero(⟨TensorSpace⟩)

| Scalar(⟨num⟩)

| ⟨TensorExpr⟩ + ⟨TensorExpr⟩

| ⟨TensorExpr⟩ × ⟨TensorExpr⟩

| Identity(⟨TensorSpace⟩)

| Eval(⟨TensorExpr⟩, ?⟨int⟩, ⟨TensorExpr⟩)

| ⟨TensorExpr⟩ ⊗ ⟨TensorExpr⟩

| Abstract(+⟨str⟩, +?⟨TensorSpace⟩, ⟨TensorExpr⟩, ?⟨TensorSpace⟩)

| Var(⟨str⟩)
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| J(⟨TensorSpace⟩)

| Reshape(⟨TensorExpr⟩, *⟨int⟩, ⟨int⟩)

| Inner(⟨TensorSpace⟩)

| ⟨TensorExpr⟩†

| ⟨TensorExpr⟩ ⊕ ⟨TensorExpr⟩

| Project(⟨TensorSpace⟩, ⟨TensorSpace⟩)

| Embed(⟨TensorSpace⟩, ⟨TensorSpace⟩)

| Inverse(⟨TensorExpr⟩)

| Restrict(⟨TensorExpr⟩)

| NonLinear(⟨str⟩, ⟨TensorExpr⟩)

Source Code Listing 5.1: A Grammar to Describe Tensor Expressions and Tensor Spaces.

5.1.2.1 Simple Examples

To make the language immediately concrete, we build some simple examples. The space R

is well known, as is the space R ⊕ R ∼= R2, which has elements of the form a ⊕ b where

a, b ∈ R. A more complex example is R2 ⊗ R2, which is isomorphic to the space of 2 by

2 matrices. We might write an element in this space via (a1 ⊕ b1) ⊗ (a2 ⊕ b2) , which can

be written as the matrix

a1a2 a1b2

b1a2 b1b2.

. To write an element of a kernel, image, or their

co-variants, we need to use the dual space. Thus, we might instead consider the element

v = (a1 ⊕ b1)
† ⊗ (a2 ⊕ b2), which is a member of the space (R2)⋆ ⊗ R2. Because of the

presence of the dual element, this vector can be evaluated. We could, for example, write

Eval(v, 0, (a1 ⊕ b1)), which mathematically is v(a1 ⊕ b1) = ((a1 ⊕ b1)
† ⊗ (a2 ⊕ b2))(a1 ⊕ b1) =

(a1 ⊕ b1)
†((a1 ⊕ b1)) ⊗ (a2 ⊕ b2) = (a21 + b21) ⊗ (a2 ⊕ b2) = (a21 + b21) × (a2 ⊕ b2). The vector

v ∈ (R2)⋆ ⊗ R2 is paired with a vector in R2 to make another vector in R2. Since v defines

a linear map from R2 to R2, we can use it to define the various subspace constructors, and
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vectors can be defined by projecting vectors from R2 into this space.

5.1.3 Validity of Programs

Our grammar has several context-dependent constraints on its validity. For example, a

construction v×w, meaning scalar multiplication, requires that one of the items be a scalar,

a member of R. Similarly, both Eval and Reshape only work on tensor product spaces where

the integer (in the former) or list of integers (in the latter) identifies elements of a tensor

product space that are dual spaces. In the case of Eval(v,j ,w), the dual space within the tensor

product space of v identified by the integer j must be the same space that w is a member of.

Another relatively simple requirement is that the tensor expressions used by the subspace

constructors, Inverse, or Restrict all are members of spaces of the form V ⋆⊗W , as these all expect

linear maps which are identified by V ⋆⊗W . Finally, the Abstract(vs, sps, expr, sp) construct has

perhaps the most complex context dependent restriction: the expression must be a linear

function in each of the inputs. This is similar to context-dependent typing systems such as

linear types found in languages such as Rust [121], [122].

5.1.4 Expressing Generalized Pullbacks

To demonstrate the expressiveness of our language and to provide a utility for future uses,

we show that our language can express a generalization of the notion of pullbacks from V p,q

spaces. We assume that we have a set of base cases, pairs of spaces (Vi,Wi) with tensors

Ti ∈ V ⋆
i ⊗Wi. If we assume that Ti is invertible, then we can clearly express the adjoint

inverse in the language via T−⋆
i (x) = y 7→ x(T−1

i (y)). Technically, we can assume Ti is just

injective and replace every Wi with the image of Ti. We construct the generalized pullback

by destructing a tensor expression until we hit a base case. We sketch this by sketching a

match on a space Z.

1. If Z = V ⋆ and V is not Vi, then we recurse on V to get a mapping on V and use the
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adjoint inverse construction from above.

2. If Z = P ⊗Q, we can recurse onto P and Q to get mappings TP and TQ and then write

Reshape(Abstract(u, (Abstract(v, TP (u)⊗ TQ(v))), 0, 1, 0)

to get a mapping on Z.

3. If Z = P ⊕Q, we can recurse to get a mapping TP and TQ so that we can write

Embed(P,Z) ◦ TP ◦ project(Z, P ) + Embed(Q,Z) ◦ TQ ◦ project(Z,Q)

to get a mapping on Z.

4. For each of the subspace constructions, if Z is a subspace of Z ′ and we get a mapping

TZ′ , then we can write

Abstract(z′, project(Z ′, Z)(TZ′(embed(Z,Z ′)(z′))))

to get a mapping on Z.

In the case of only one base space, it is not hard to check that this reproduces the V p,q space

pullbacks, but this construction can provide pullbacks for more complex spaces.

5.1.5 Formulas

We now must be careful about what a formula is. Our answer is depicted in listing 5.2.

In particular, our formulas balance easy computation and symbolic manipulation. Another

option, Einstein index notation formulas, are trivially computed but don’t expose the internal

structure of arrays (e.g., what we see in the Morley matrix in example 3.2.3) and can’t

easily express computation such as inverse matrices. We use a different notion to facilitate

a greater degree of symbolic manipulation: our formulas are straight-line array programs
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that produce arrays of values where each value is a rational function in intermediate values

and the formula inputs. We choose rational functions because they can (sometimes) be

symbolically analyzed efficiently and they can enable direct symbolic representation of the

inverses of matrices, which we would like to analyze in the case of Vandermonde matrices.

Note that we force all formulas to return arrays of rational functions to prioritize possible

future simplification. Further, we provide a few external functions to manage linear algebra

where rational functions will not do and where we don’t expect a need for greater symbolic

manipulation.

⟨shape⟩ = *⟨int⟩ ⟨var⟩ = (⟨str⟩, ⟨shape⟩)

⟨rf ⟩ = VarAcc(⟨var⟩, *⟨int⟩)

| ⟨rf ⟩ + ⟨rf ⟩

| ⟨rf ⟩ * ⟨rf ⟩

| ⟨num⟩ * ⟨rf ⟩

| - ⟨rf ⟩

| ⟨num⟩>

⟨array⟩ = Array(*⟨rf ⟩, ⟨shape⟩)

⟨stmt⟩ = ⟨var⟩ = Einsum(⟨str⟩, *⟨var⟩)

| (⟨var⟩,⟨var⟩) = QR(⟨var⟩))

| (⟨var⟩,⟨var⟩, ⟨var⟩) = SVD(⟨var⟩))

| ⟨var⟩ = Inv(⟨var⟩)

| (+⟨var⟩) = func(⟨str⟩, ⟨var⟩)

| ⟨var⟩ = ⟨Array⟩

| Return(⟨Array⟩)

⟨formula⟩ = (*⟨var⟩, ⟨stmt⟩)
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Source Code Listing 5.2: A grammar to describe formulas, code that computes arrays that
represent a tensor expression in a given basis.

5.1.5.1 Simple Example

To clarify the scope of formulas and their utility as an intermediate representation favoring

symbolic simplification, we provide a simple example using Sympy [123] in listing 5.3. This

example is a literal representation of a formula with a single input A, a 2 by 2 by 2 array. The

grammar of rational functions forces the return of an array of rational functions similar to

maintaining the rational vector at the end of listing 5.3. Since the structure of these rational

functions is evident in the program at the return, other programs that are combined with

this one have an opportunity to symbolically optimize based on the structure. Internally,

our representation of formulas is an array of rational functions similar to the construction

in listing 5.3, representing the final return of an array in the formula, but with additional

information about the list of inputs and intermediate statements.

1 import sympy as sp

2

3 # Step 1 : Create a symbol ic array "A" with shape (2 , 2 , 2) , the input var to the formula

4 A = sp . IndexedBase ( ’A ’ , shape =(2 , 2 , 2) )

5

6 # Step 2 : Extract e n t r i e s e x p l i c i t l y

7 x000 = A[ 0 , 0 , 0 ]

8 x001 = A[ 0 , 0 , 1 ]

9 x010 = A[ 0 , 1 , 0 ]

10 x011 = A[ 0 , 1 , 1 ]

11 x100 = A[ 1 , 0 , 0 ]

12 x101 = A[ 1 , 0 , 1 ]

13 x110 = A[ 1 , 1 , 0 ]

14 x111 = A[ 1 , 1 , 1 ]

15

16 # Step 3 : Bui ld r a t i o n a l f un c t i on s e x p l i c i t l y

17 S_all = x000 + x001 + x010 + x011 + x100 + x101 + x110 + x111

18

19 r0 = ( x000∗∗2 + S_all ) / (1 + x000 )

20 r1 = ( x001∗∗2 + S_all ) / (1 + x001 )
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21 r2 = ( x010∗∗2 + S_all ) / (1 + x010 )

22 r3 = ( x011∗∗2 + S_all ) / (1 + x011 )

23 r4 = ( x100∗∗2 + S_all ) / (1 + x100 )

24 r5 = ( x101∗∗2 + S_all ) / (1 + x101 )

25 r6 = ( x110∗∗2 + S_all ) / (1 + x110 )

26 r7 = ( x111∗∗2 + S_all ) / (1 + x111 )

27

28 # Step 4 : Assemble in to a vector , the re turn

29 r a t i ona l_vec to r = sp . Matrix ( [ r0 , r1 , r2 , r3 , r4 , r5 , r6 , r7 ] )

Source Code Listing 5.3: A simple Python program creating a vector of rational functions

over an array input. This example was generated with ChatGPT.

5.1.6 Bases

A tensor expressed in listing 5.1 always has mathematical meaning, but we cannot assign

it to a formula in listing 5.2 unless we select bases. A basis is a collection of linearly

independent vectors that span a set; via their linear independence, they allow vectors to

be written uniquely as a given array where each array entry corresponds to a given basis

element. Given an array, we cannot give it meaning as a tensor unless each entry corresponds

to an element of a basis. Further, to produce formulas with inputs, the elements in those

inputs only make sense given a basis. Thus, to specify formula generation, we must specify

bases, and our formula generator will start with initial mappings from tensors to bases and

formulas for those bases.

Our basis language is depicted in listing 5.4. Just as our language for tensors and spaces

was grouped by constructions, so is our language for bases. Furthermore, just as each space

construction has an inner product, the basis language can construct a particular orthogonal

basis in that space, which we call the standard basis. For R, the standard basis is, of course,

{1}. For any other space, we can utilize suitable lists of vectors as a basis. Alternatively,

for a dual space, tensor product space, or a tensor sum space, we can construct such lists

algorithmically while keeping the label to recognize the structure of the basis. For example,
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given two spaces, V and W with bases {vi} and {wj}, we have {vi ⊗ wj} for V ⊗W and

{vi ⊕ 0W} ∪ {0V ⊕ wj} for V ⊕W . For V ⋆, we have the dual and primal basis construc-

tion from definition 3.1.1. Each of these constructs will transform orthogonal bases to an

orthogonal basis and so they transform the standard bases for the components to the stan-

dard basis. Finally, for our various subspaces (kernel, image, co-kernel, co-image) of a space

V , we always have a projected basis, a basis derived from the QR factorization (co-kernel,

image) or SVD factorization (kernel, co-image) realized with a given source and target basis.

If the source and target basis are orthogonal (standard), the SVD or QR will produce an

orthogonal (standard) basis in the inner products of the sub-spaces. We note that in the

case of an injective (surjective) mapping, we can simplify in the case of a co-kernel (image).

Finally, in the case of an injective linear mapping F : V → W , another option is available

for the image space: the image basis is the basis {F (bi)} given the basis {bi} for V .

⟨Basis⟩ = {1}

| RawBasis(⟨TensorExpr⟩+)

| DualBasis(⟨Basis⟩)

| PrimalBasis(⟨Basis⟩)

| ⟨Basis⟩ ⊗ ⟨Basis⟩

| ⟨Basis⟩ ⊕ ⟨Basis⟩

| ProjectedBasis(⟨Basis⟩, ⟨Basis⟩, ⟨TensorSpace⟩)

| ImageBasis(⟨Basis⟩, ⟨TensorSpace⟩)

Source Code Listing 5.4: A grammar to describe bases for tensor spaces.

5.1.6.1 Basis Semantics

We reiterate that the semantics of a basis are simply the list of vectors in the basis. For

example, the first two bases in listing 5.4 clearly correspond to lists of vectors. Dual and
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primal bases were defined in definition 3.1.1. The constructors ⊗ and ⊕ follow the recipes

of the standard bases given above. Finally, the last two simply apply the mappers they are

associated to to each element of the source basis.

5.1.6.2 Basis Examples

We consider two examples of bases. First, we consider the vectors e1 =

1
0

 and e2 =

0
1

.

These form the standard basis for R2. For any a ̸= 0, we also have f1 =

a
0

 and f2 =

0
a

,

two formulas with a dependence on a. (To actually specify this in our system, we would

specify f1 and f2 as vectors given by the above formulas in the basis {e1, e2}). Now, we

consider the identity mapping on the space R2. This is a vector in (R2)⋆ ⊗ R2, as it is a

linear map from R2 to R2. If we realize this with our first basis as the source and target, we

get the identity matrix

1 0

0 1

. Despite the formulas for f1 and f2, if we use them for source

and target, then we get the same identity matrix. Finally, if we considered representing

the identity map using the first basis as the source and the second as a target, we get:1/a 0

0 1/a

 because id(ei) = ei = 1/afi for i = 1, 2. Though this example is simple, we

hope it illustrates that a vector is given meaning by a basis and that the complexity of the

meaning ( the complexity of the formulas, in terms of the number of statements or the degrees

of the involved rational functions), can be useful or surprising based on special properties of

the vector (e.g., the identity vector is the identity matrix so long as the source and target

basis are the same).

5.1.7 Formula Generation

Formula generation can now be formalized. Given a tensor expression, suppose that we have

a mapping (an environment) from the free variables of the expression to pairs of bases and
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either arrays of numbers or input variables (symbolic inputs). Further, suppose we have a

basis for the tensor space that the tensor expression lives in. Formula generation combines

the expression, mapping, and basis to produce a program which, given arrays for every input,

produces an array that represents the expressions in the given basis under the assumptions

of the mapping (that certain variables have certain representations).

An algorithm for formula generation is easy to reason out as a recursive algorithm on

the tensor expression and basis expression. For each tensor expression, only a few types of

bases can be used, typically separated into those that match the structure of the term and

those that do not (and thus require a representation in another basis followed by a change

of basis). For our purposes, simpler formulas typically result from the former case, as we

avoid extra terms due to the change of basis. Simpler formulas also result from the former

case because the basis matches either the universal property or the basis matches the basis

dependent property. We loosely work out a few examples.

1. Given v ⊗ w and a basis bv ⊗ bw, the algorithm can work mechanically. First, we

might produce a formula fv for v represented in bv and a formula fw for w represented

in bw. Second, we can combine the two formulas to a formula for v ⊗ w in bv ⊗ bw

into a new one that returns an array of rational function entities corresponding to the

tensor product (allowing us to eliminate structural zeros immediately) or by using an

Einstein summation notation to compute the tensor product and then returning an

array of accesses to the result.

2. Given v ⊗ w and a basis of other tensor expressions, we cannot easily represent the

term unless v ⊗ w is an explicit linear combination of basis entries. Thus, we must

utilize our freedom to choose some basis for v and w (e.g., the standard basis or a basis

that produces a simple formula for v), proceed as above, and then apply a change of

basis in the resulting formula. This is the freedom of the universal construction: any

basis built via ⊗ will do. Again see definition 3.1.4.
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3. Given v(w), evaluation of w against v, we can proceed similarly to our first case (replace

tensor product with tensor contraction) if we can represent w and v in a dual primal

pair (one is the dual basis of the other, or the other is the primal basis of the dual).

Otherwise, we will need to convert the basis of one of the terms. This is where the

greater freedom in universal terms below might be useful. A practical example of this

that occurs in many FEs is the evaluation of one term v in an image basis of a map J

via another term W in a product with the dual basis (this could represent a gradient

or Jacobian evaluated against a tangent vector); early conversion of either term to

the standard basis would force an unnecessary change of basis, leading to a generated

formula vJJ−W as opposed to the simpler vW .

4. Given an inner product, we can return an identity matrix if the basis is the standard

basis for the space; otherwise, we must convert to that basis. We have little freedom

due to the core connection between the inner product and certain bases.

Provided we have a change of basis, strategies like this work for all tensor expression construc-

tors. With these examples, the overall approach up to formula generation is to recursively

build formulas, exploiting where possible the freedom of some constructions to avoid un-

necessary change of basis and the corresponding accumulation of complex rational function

terms.

An algorithm for change of basis follows a similar structure. In particular, a conversion

to and from the standard basis can be computed recursively on the structure of a basis. If

we can convert b0 to and from b′0 and similarly for b1 and b′1, then we can make a formula

for the conversion to and from b0 ⊗ b1 and b′0 ⊗ b′1. For a dual or primal basis construction,

it is essentially that track conversions to and from a basis because converting such bases

involves an inversion, requiring either the to or from construct depending on context. A

similar argument holds for almost every basis except a basis of raw tensor expressions. We

note that the formula generator and basis conversion algorithm must be mutually recursive

on each other due to the presence of the raw basis. If a tensor expression in a raw basis
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cannot be realized in the standard basis, then the change of basis will fail at this point. If we

examine the expressions, almost all expressions are representable in the standard basis via

the bottom up approach given that the subterms are representable except for a variable with

a representation supplied externally (as opposed to one bound in an abstraction). Thus, the

algorithm for change of basis will succeed unless a basis utilizes an externally defined tensor

via a variable. To prevent this, we can simply require that any expression used in a basis

must be representable in the standard basis.

5.1.7.1 Important Formula Generation Example

We illuminate three examples of formula generation in greater detail to emphasize the inter-

action of this component with components defined above this. Suppose we have an injective

linear transformation F ∈ (R2)⋆ ⊗ R2 and a given representation in the standard basis:

F =

F00 F01

F10 F11

 . Then we can define V = Image(F,None,None, True, True), marking

that the mapping is injective and surjective. Suppose we have a vector v ∈ V represented

in the image basis as vR =

[
0 1

]
. In other words, v = 0F (e1) + F (e2) where {e1, e2} is the

standard basis for R2. Suppose we also have a v′ ∈ V ⋆ with a representation in the dual basis

of the image basis given by v′R =

[
1 0

]
. Via definition 3.1.1: v′ = F−T (e1) + 0F−T (e2). If

we want to represent the vector v′(v), the duality relationship between the bases means we

compute the representation as v′R · vR = 0. Now suppose in contrast that v was represented

in the projected basis so v = vR directly because the mapping is injective and surjective.

Then to compute v′(v), we need to convert one basis to another because one basis is not

the primal basis of the other. To write v in the image basis, we need to write v as some

other vector in the image of F . We can write this representation as vRR = F−1(vR) as then

F (vRR) = vR. In this situation, the representation of v′(v) is v′R · F−1(vR). A rough formula

for this situation is given by listing 5.5. Looking at this formula, the complex part is not

only the presence of the symbols but also the presence of the inverse. We note that if the
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situation was reversed and v′ was in the projected basis while the other was in the image

basis, we could have instead accumulated an F T .

1 from sympy import Matrix , MatrixSymbol , Inve r s e

2

3 # 1) 2x2 symbol ic array named F

4 F = MatrixSymbol ( ’F ’ , 2 , 2)

5

6 # 2) Symbolic i nv e r s e o f F

7 F_inv = Inve r s e (F)

8

9 # 3) Bas i s v e c t o r s e1 , e2

10 e1 = Matrix ( [ 1 , 0 ] )

11 e2 = Matrix ( [ 0 , 1 ] )

12

13 # 4) Compute e1 dot (F_inv dot e2 )

14 dot_val = ( e1 .T ∗ F_inv ∗ e2 )

Source Code Listing 5.5: A formula using an inverse due to a primal-dual basis mismatch.

This example was partially generated with ChatGPT.

5.1.8 Miscellaneous: Expressibility, Hacks, and Programmability

We quickly enumerate some helpful observations on the system. Clearly, any tensor operation

expressible with traditional Einstein summation notation is expressible within the language.

We further note that the tensor aspects of exterior calculus are completely expressible within

this framework, utilizing the kernel of the symmetrization operator to define Λk. The system

can express wedge products, inner products on forms, interior evaluation, Hodge stars, and

volume elements. For the Hodge star, though, an inverse is required in the naive approach,

which produces messy symbolics. Thus our system also supports a hack: we allow externally

defined tensors that are simply a space and a collection of bases formula pairs. This allows

us to add the Hodge star via the traditional formula on an orthonormal basis. Similarly, for

terms we have simpler representations of, we can always add in known collections of bases

and array pairs. Users will not use this feature, as it is a lower level interface to support easy
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x

Figure 5.1: Various tangent spaces and relationships available at a point x.

extendability without compromising formula generation. We also note the implementation

of this system is as an embedded DSL in Python, which allows for meta-programmability.

Thus, for example, we can define a general wedge product that produces the right tensor

expression via Python code.

5.2 Charts: Geometry for Tensor Expressions at a Point

5.2.1 Putting Geometry into Tensor Expressions: Charts

Our model of tensor expressions currently takes place without geometry, but in practice,

tensor calculations can occur at points that are within multiple related geometries. For

example, in fig. 5.1, a point x on the edge of a wedge could be used for four different tangent

spaces, on an edge, triangle, square, and the overall wedge. From this example, our language,

and earlier examples of FEM computation, we can synthesize several requirements: tangent

spaces, projections to and from Euclidean space or other tangent spaces, and Riemann

metrics (as all spaces must be inner product spaces). We add all of these to our language

with minor modifications.

We observe that in a special case of these nested geometries where each space is lo-

cally parametrized by some function (a chart in the language of differential geometry)
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F : Rm → Rn at a point x = F (y), our system can already produce and reason about

the required objects from a single external requirement: DFy. The tangent space is the

image space of DFy and cotangent space is the dual (which would be the inverse adjoint

image too). Such a space has a natural immersed metric, which corresponds to our choice

of inner product for the image space. We already have projections to and from Euclidean

space which can be chained together to get between spaces. We also note that mapping

from the parameterization tangent space to the parametrized tangent space can be captured

via the restriction of DFy (though we do not expose this to users as we do not want to ex-

pose the parameterizations; they are just convenient to supply geometry to tensors and our

generated formulas). Obviously, we will be supplying various DFy for the various geometric

regions (e.g., both DF□
y , DF

△
y in fig. 5.1). Overall, though, given a variable representing

DFy, our tensor expressions can represent all the required geometry at a point x = F (y).

Moreover, we then benefit from the formula generation infrastructure, especially the image

basis for the image space, which enables simplifications based on reference spaces (such as

the aforementioned WJJ−1v = Wv).

5.2.2 Charts for Users and Types of Cells

Though DFy is sufficient, we do not think users should deal with explicit parameterization

or geometries at a point because this encumbers the user and the automation capabilities

of our system. For the purposes of generating formulas, explicit parameterization would

constrain the usage of tensor expressions. By changing parameterization or geometries, we

can compute useful information about tensor expressions, such as how representations change

when we change geometries, which is critical to the FE transformation problem. Similarly,

users should not be writing code specialized to a particular parameterization; this flies in

the face of coordinate independence or natural ways of dealing with differential geometry.

Moreover, it prevents one from using DOFs that can be used in a variety of situations. In

the next section on pointwise tensor expressions, we will show how users actually access
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geometry without referring to a particular chart or geometry, but this will compile down to

tensor expression code that uses explicit parameterizations.

In the rest of this section, we will specify how to compute all the DFy that we need. Thus,

we must now specify the types of cells that we support, which is the start of the boundary

between user specification of geometric information and internal automated reasoning using

geometric information. To simplify the interface and the implementation effort to compute all

the DFy while supporting many geometries, we support cells that are products of simplices.

A grammar for these is depicted in fig. 5.2 and a formal definition for product of simplices

is definition 5.2.1.

Definition 5.2.1 (Simplex, Product of simplices, Entity). A simplex is a set of vertices V

with faces P (V ), where P (V ) is the power set of V , a partially ordered set under ⊂. Given

two simplices with vertices V1 and V2 as well as with faces F1 ⊂ P (V1) and F2 ⊂ P (V2),

we can define a product of simplices as a poset as follows. Note the real key to this

construction is that F1 and F2 are posets. Let V = {v1 ⊕ v2 : v1 ∈ V1, v2 ∈ V2}. The set of

faces is F = {{(v1 ⊕ v2) : v1 ∈ f1, v2 ∈ f2} : f1 ∈ F1, f2 ∈ F2}. The set of faces is ordered by

⊂ on P (V ), making (F,⊂) a poset, which corresponds to a product of simplices. An object

is an entity if it is either a simplex or product of simplices. Later, we will say an entity is

a mesh entity if it is part of some collection of entities called a mesh (see section 7.2.1).

To avoid dealing with actual simplices, we first use standard simplices and then we signify

their families with a type.

Definition 5.2.2 ((Geometric) Standard Entities). The standard d simplex uses the vertices

{0, e1, . . . , ed}. The standard product of simplices is the product of the standard simplices.

We note that in some cases, especially the discrete aspects of meshes and data on meshes,

we require a more topological representation of the standard entities that does not deal with

Euclidean space. We note this mainly to put the content in chapter 7 on a less geometric

foundation, but the two definitions are essentially the same:
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(topology type) C ::= ∆n | C1 × C2

n ∈ N≥0

Figure 5.2: The grammar for cells that we support. Since × is associative and commu-
tative, there are only seven possible primitives in dimension 3 or less. These are the sim-
plices: points (∆0), edges (∆1), triangles (∆2), and tetrahedra (∆3); and product cells:
quads (∆1,1 = ∆1 ×∆1), hexes (∆1,1,1 == ∆1 ×∆1 ×∆1), and triangular prisms (∆2,1).

Definition 5.2.3 ((Topological) Standard Entities). The standard d simplex uses the ver-

tices {0, 1, . . . , d}. The standard product of simplices is the product of the standard simplices.

Additionally, this gives us an easy way to say what the type of an entity is:

Definition 5.2.4 (Type of an Entity). An entity has a topological type (in the sense

of fig. 5.2) if and only if it is isomorphic (as a poset) to the unique standard entity of

that type.

With this definition, we can also formally define a chart for the purposes of our imple-

mentation.

Definition 5.2.5 (Chart, Topological Type of a Chart). A chart is a triple (S1, S2, F ) where

Si for i = 0, 1 are two entities whose vertices are either real numbers or formulas and F is

a formula describing an affine map between the vertices of S1 into the vertices of S2. In

particular, for every vertex v in S1, we require there be a vertex v′ in S2 so that F (v) = v′.

The usage of formulas for values and the transformation is clarified in section 5.2.3. The

topological type of a chart is the topological type of S1.

Definition 5.2.6 (Reference and World Space). Given a chart (S1, S2, F ), we call S1 the

reference space or domain while we call S2 the world space or domain.
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5.2.2.1 Topological Dimension and Type Ordering

Any entity has a topological dimension, defined recursively. The topological dimension of

a d simplex is d and the topological dimension of a product of simplices is the sum of

the dimensions of the constituent simplices. This allows us to partially order the topology

types via the dimensions of their standard entities. We will utilize this fact implicitly and

frequently.

5.2.3 Chart Internals: Symbolic and Numerical Charts

We wish to emphasize a critical consequence of supplying geometry at x via supplying various

DFy. In particular, if we supply an external tensor expression, we must provide a formula for

it. Thus, DFy can be any bit of code that fits into the grammar for the formula. Therefore,

DFy can be an array of numbers, which would allow us to simplify a formula based exactly

on those numbers, or DFy can be another input. For example, when we evaluate how a FE

behaves on a reference element or a permutation of it, we would use an array of numbers

since we know the exact geometry, but when we compute the symbolic Vandermonde matrix,

we obviously do not know the geometry, and DFy is just an array of symbols, waiting to be

bound to some numbers. Similarly, if we compute a matrix corresponding to an operator on

a reference element, we can get numerical values and use a numerical chart, but to generate

code to do this on a mesh, we need to generate a formula with symbolic values for the yet

unknown geometry. Thus, our choice of geometry interface allows for our tensor expression

to formula pipeline to be used for a wide variety of purposes.

5.2.4 Chart Internals: Computing All Charts Given a Cell Type

For the purposes of this paper, we still need to provide parameterizations for cells that are

products of simplices (i.e., products of affine maps). For simplices, we can easily compute

a mapping between any two given by a list of vertices. For a product of k simplices, we
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can compute k affine maps using facets and then take a product of the affine maps: given

F1(x) = A1x + b1 and F2(y) = A2y + b2, we can define F (z) =

A1 0

0 A2

 z +
b1
b2

 . Given

cell types, we can compute all the parameterizations that we need in advance. For every cell

type present in a mesh, we need a parameterization of it (to facilitate computations over any

type of cell) as well as a parameterization of all sub-cells in that cell (to facilitate reasoning

about a tangent space positioned inside another tangent space). Furthermore, to ensure

consistent calculations between shared cells, we need to consider every valid1 permutation

of the vertices of the cells. Computing these parameterizations allows us to figure out how

DOFs and operators change when cells are permuted to ensure shared cells are consistently

ordered. Finally, we need to compute a parameterization that is symbolic (uses symbolic

entries) and one that is the numeric chart of the reference cell. By enumerating all of these

possibilities, we can compute all parameterizations that we need in advance. We depict an

example of this in fig. 5.3 where we compute various parameterizations and the closure under

composition and pseudo-inverses yields all parameterizations that we need.

5.2.5 Chart Systems: Top Charts with Permutation Data

By enumerating all possible charts from one single chart or geometry, we simplify passing

around many possible parameterizations, but in some cases we want to pick out specific

subsets. In particular, we usually want to pick out specific permutations for each entity in

the initial geometry. Given a simple (V, F ), we can assign a particular permutation σf for

every f ∈ F . We can package these permutations into a chart and specify that when we

generate other charts, these entities should have that permutation applied to their reference

space. This is necessary for one system-specific automation, detailed in section 6.4, which

removes many conditions on the ordering of mesh entities
1For simplices, this is simply all permutations, but for products of k cells this is the semi-direct product

of the direct product of the permutations for each symmetry group with the group Z/kZ. For example,
the dihedral group of order 4 is the semi-direct product of Z/2Z and Z/2Z and the octahedral group is the
semi-direct product of (Z/2Z)3 with S3.
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(0,0) (1,0)

(0,1)

(0,0) (1,0)

Permuted Domains
Reference Domains

Symbolic Domains

Figure 5.3: An illustration of all the parameterization needed for a triangular mesh in R2,
modulo pseudo-inverses, composition, and vertices.

5.3 Pointwise Tensor Expressions and Fields on Mani-

folds

5.3.1 Design Rationale

To express virtually all DOFs and operators, users need to use tensor expressions point-

wise, operating directly on fields, derivatives, and pointwise-varying geometric quantities.

Mathematically, this is to say that most DOFs and operators utilize expressions of the form

F (x, u(x), Du(x), . . . , t(x), . . . ) where F only has tensor operations, x is a point, u is some

field, Du is the derivative, and t(x) is geometric information such as the tangent vector.

We will achieve a good balance between automation and expression by carefully reasoning

about the exposure of geometric content to the user (geometries and parameterization) in the

arguments, x, u,Du, t. To balance expression with automatic generation of formulas in our

tensor expression system, our model of pointwise expressions must ultimately produce tensor

expressions with explicit parameterizations utilized in x, u,Du, t, though allowing users to

produce these explicitly is undesirable for several reasons, including more verbose and dupli-

cated code. For example, automation of FEs gains from pointwise tensor expressions where

we can change the parameterizations, as the various options (e.g., symbolic vs numerical

charts) tend to correspond to different requirements for implementing an element. Similarly,

if a user defines a DOF for a tensor field defined on an edge, ideally automation should
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be able to lift that to a reasonable DOF for a field defined on a triangle or square. Also,

when there are multiple choices of geometries, enumeration of the possible options is useful.

For example, to write down a higher order Lagrange element on a triangle, it is convenient

to write down the DOFs defined on the edge only once as abstract DOFs defined on some

edge, as opposed to writing them down three times for each edge. Thus, our language for

pointwise tensor expressions exposes pointwise tensor expressions with only limited control

over the types of geometries and parameterizations involved while our system for reason-

ing about pointwise tensor expressions automatically enumerates the various ways pointwise

tensor expressions can utilize explicit geometries, parameterizations, and fields.

5.3.2 Grammar for Pointwise Tensor Expressions

Our grammar for pointwise tensor expressions is in listing 5.6 and seeks to offer an interface

to geometry for tensor expressions occurring at a point. The first nodes in the grammar

expose various types of geometries to the user: simplices or products of simplices as in

fig. 5.2.

The next node, the chart type, offers control over the types of geometries that might be

used, including the chart for a top cell (the largest topology types of entities in an unknown

mesh), a chart that could be a boundary of the largest topology types, a chart of an object

of a particular topological dimension, or a chart for a specific geometric object. These two

nodes summarize the extent to which users can explicitly pair a (part of) a pointwise tensor

expression to a geometry.

The rest of the grammar for pointwise tensor expressions seeks to provide geometric

objects and fields to tensor expressions based on the limited geometric interface, facilitating

the expression of DOFs and operators that utilize geometry pointwise without preventing

automation by tying implementations to a geometry. The grammar extends the tensor space

grammar with a tangent space and Euclidean space node that depend on a chart type so

that these can be utilized in field types. Field types take a chart type (the geometry on
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which the field is defined with a default choice of the cell), a tensor space that depends

only on that chart type (the default is a scalar field) and that makes limited use of spaces

that depend on vectors2, and a boolean indicating if derivatives of the field should be in

dual spaces of Euclidean spaces or cotangent spaces.3 Finally, a pointwise tensor expression

takes a list of arguments that are either fields or charts. We note that default arguments

are allowed via the fields described below, which is a useful convenience notion to access

geometric information computed earlier (such as cell size indicators). Tensor expressions are

extended to utilize these arguments to provide tangent vectors, cotangent vectors, normal

vectors, access to fields and their derivatives, and the point x. All of these, except for the

derivative and the point x, can be differentiated by the last optional integer argument, which

ensures the language is closed under differentiation. Since many tensor expressions utilize a

space argument, we also extend spaces to utilize these arguments (so the user can use the

tangent space associated to a chart argument) and add a utility to get the space that an

expression lives in.4. Finally, a pointwise tensor expression consumes a list of arguments,

linear and non-linear arguments, to produce a field with a particular tensor expression.5

⟨tdim⟩ = ⟨int⟩ ⟨topType⟩ = Simplex(⟨tdim⟩)

| Product(+⟨topType⟩) ⟨chartTy⟩ = TopChart

| BoundaryChart

| Chart(⟨tdim⟩)

| Chart(⟨topType⟩)

2Of the four, we only allow kernel, and the kernel cannot explicitly use any chart dependent spaces
except as the super space.

3Practically, this is the difference between a field defined on N ⊂ Rk taking values in a tensor space V
having a first derivative in in TxN⋆ ⊗ V vs (Rk)⋆ ⊗ V . This models derivatives defined multiply vs. singly
on shared mesh entities/internal boundaries

4In practice, the Python embedding implementation does not really need this, as we provide methods
to tensor expression objects such as dot and these query arguments with spaceOf. However, the availabil-
ity of such information is a tricky issue that deserves attention.

5In actuality, this is Python code and not just a tensor expression. These will be equivalent if the code
strictly uses an interface that simply elaborates on our grammars. In practice this means that one has a
bit more flexibility, though. We also distinguish linear arguments and non-linear ones via position and
keyword only arguments.
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⟨TensorSpace⟩ = TangentSpace(⟨chartTy⟩)

| TangentSpace(⟨str⟩)

| EuclideanSpace(⟨chartTy⟩)

| EuclideanSpace(⟨str⟩)

| spaceOf(⟨tensorExpr⟩)

⟨fieldTy⟩ = field(?⟨chartType⟩, ?⟨tensorSpace⟩, ?⟨bool⟩)

⟨argTy⟩ = ⟨fieldTy⟩

| ⟨chartTy⟩ ⟨arg⟩ = ⟨str⟩ : ⟨argTy⟩

| ⟨str⟩ : ⟨argTy⟩ = ⟨defaultArg⟩

⟨TensorExpr⟩ = TangentVectorBasis(⟨str⟩, ⟨int⟩, ?⟨int⟩)

| CoTangentVectorBasis(⟨str⟩, ⟨int⟩, ?⟨int⟩)

| NormalVector(⟨str⟩, ⟨int⟩, ?⟨int⟩)

| CoNormalVector(⟨str⟩, ⟨int⟩, ?⟨int⟩)

| D(⟨TensorExpr⟩)

| X()

| FieldAccess(⟨str⟩, ?⟨int⟩)

⟨PointwiseTensorExpr⟩ = Pointwise(*⟨arg⟩, *⟨arg⟩, ?⟨fieldTy⟩, ⟨TensorExpr⟩)

Source Code Listing 5.6: A grammar to describe pointwise tensor expressions on mani-
folds, operating on tensor fields.

5.3.3 Fields: Reference and World Space Formula Queries

At this stage a field is a rather simple interface intended to ensure that formulas can be

generated and that the simplest possible information can be supplied to the pointwise tensor

expression for the formula pipeline. For fields, we achieve this aim with two means, old and

new: nu supplying tensors, formulas and bases so simplifications can occur, and by, utilizing
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both reference and world space coordinates to simplify the outputs. For an example of the

latter means, many polynomial spaces can best be sampled via reference space followed by

a tensor pullback on the outputs whereas some inputs can only be sampled in world space.

Thus a field must satisfy a simple interface: given a chart c of the right type, and a formula

for the reference space and world space of a point x, called xr and c(xr), and some number

of derivatives, a field should supply the field values and derivative values at x. In particular,

these values should be supplied either as a formula and basis pair or as a tensor expression,

both of which should only depend on xr, c(xr), and the chart. We stress that this interface

is really no more than that and that this facilitates other upstream methods to provide fields

of their own: e.g., externally defined functions, compiled pointwise expressions with no field

inputs, or basis functions defined with FEs.

5.3.4 Single Compilation of Pointwise Tensor Expression

We now have all the ingredients to compile a pointwise tensor expression down to a formula at

some point x (supplied as xr, c(xr) as we could always supply a formula for one or the other),

but we must precisely match fields to field arguments chart arguments to charts. Given a

pointwise tensor expression, suppose that for each argument we provided the following data:

1. If the argument is a chart type, we supply a chart that matches this in the sense

of definition 5.2.5.

2. If the argument is a field, we supply a chart that matches a chart type and use this to

provide the data of a field.

With this information, we can almost convert a pointwise tensor expression into a tensor

expression and then a formula. However, we must work in stages to deal with points and

the derivatives. In particular, we must proceed as follows:

1. Using the chart for each argument, we can create a tensor space for it.
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2. We can now replace every tangent space or Euclidean space in the pointwise tensor

expression with a pure tensor expression space.

3. Using a symbolic differentiation procedure, we can now apply all derivatives, pushing

all derivatives down to derivatives of the pointwise tensor expression values (i.e., to

derivatives to tensor expressions in listing 5.6 but not listing 5.1).

4. Using xr and every chart c′, we can provide a formula for a point xr,c′ that represents

x in the reference coordinates of that chart.

5. We can now collect the derivatives that we require from each argument and use them

with the charts and {xr,c′} to query fields for tensor expressions or formulas plus bases

for each argument.

6. With the required inputs, our pointwise tensor expression can become a standard tensor

expression by substituting information from the previous step for each argument. For

linear arguments, we use abstractions and evaluation to introduce the value, whereas

for non-linear arguments, we introduce a free variable bound with a definition in terms

of the formula and basis in an environment for tensor expression evaluation.

7. The pointwise tensor expression has become a tensor expression that can be compiled

down to a formula.

Our single compilation procedure is fine for producing a formula, but it requires too

much from the user: matching a chart and field precisely to every argument. We now

simplify things via two automations: adapting pointwise tensor expressions to new fields and

automatically matching charts to arguments in reasonable ways via topological enumeration.

5.3.5 Adapting Pointwise Tensor Expressions to Fields

To facilitate reuse of tensor expressions in different contexts, we provide a way to auto-

matically adapt a tensor expression to take a different field input. We can change a tensor
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expression to use a new field input by changing the field type in two ways:

1. The tangent and Euclidean spaces in a field type can be arbitrarily interchanged.

2. The chart types in the field type (including the tensor space in the field type) can be

replaced with a larger chart type.

The first change can be accomplished by replacing the old field accesses with a new one

followed by a generalized pullback (as specified in section 5.1.4). The second change can be

accomplished by adding a new chart argument for the old chart type, replacing the field type

to use the new chart type, and then replacing old field accesses to new ones with pullbacks

that map the new tensor spaces to the old tensor spaces.

5.3.6 Topological Enumeration of Pointwise Tensor Expressions

We can now explicitly define topological enumeration of pointwise tensor expressions. Point-

wise tensor expressions are associated to a number of chart types via their arguments. If we

are given a collection of charts, we can use these to supply actual geometric information and

make a tensor expression by pairing each argument with a chart. A simple principle defines

the valid pairings and therefore the enumeration: since a pointwise expression takes the form

F (x, u(x), Du(x), . . . , t(x), . . . ), then x must be in all the charts. For example, in the case

of F (x, u(x), v(x)), then x should be in the domain of both u and v. By formalizing this

notion into a constraint on pairs of chart types from a pointwise tensor expression to charts,

we define validity of a pairing and the enumeration, which is the essence of the automation

that we offer for interpreting pointwise tensor expressions as collections of formulas.

Definition 5.3.1 (Valid Pairings of Pointwise Arguments to charts). Suppose we are given a

simplex S0 and a chart (Sr0 , S0, F0), which we call the top chart. Suppose we have a collection

of charts Ci = (Sri , Si, Fi) with Si ∩ S0 ̸= ∅ for i = 1, . . . , C. (In other words, the charts all

parametrize geometries inside or related to S0). Further, suppose we are given a pointwise

tensor expression whose K arguments each use (or are) a chart type ci. Finally, suppose the
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pointwise tensor expression has an output that uses an argument cC+1. A pairing of chart

arguments to charts is a mapping f : {1, . . . , K} → {0, . . . , C} such that the type of Sf(i) is

ci. For the top chart and the boundary charts, this is defined by the type of S0. A pairing

is valid if

1. whenever ci = cj and ci < cC+1, then Sf(i) = Sf(j)

2. whenever i ̸= i′, either Sf(i) ⊆ Sf(i′) or Sf(i′) ⊆ Sf(i).

In other words, though different charts might be used for the same simplex/product of

simplices, arguments of the same chart type should target the same simplex or product of

simplices whenever these charts use topological types less than the output topological type

(the domain of x). The content of this restriction is that whenever two arguments of the

same type appear and are less than the output type, the fields they define have the exact

same domains.

We consider four rough examples.

1. Suppose we are given an operator on the top chart with arguments from the top chart

with only one chart for the top chart. Then we only get one output, which makes sense

for the assembly of operators.

2. Suppose we are given a pointwise tensor expression that utilizes just an edge field (e.g.,

a Lagrange DOF or a boundary integral) which we attempt to pair with a chart for

every entity in a triangle. We get three implementations, which is how we would like

to replicate a DOF for an edge Lagrange element in a triangle. Another interpretation

of this can be gleaned from our adaptation of field types to larger charts: if we have

an expression that consumes an edge field, we can adapt it to the face field and also

add an edge chart so that we must enumerate ways that face fields could interact with

an edge chart.
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3. Suppose we are given a pointwise tensor expression that utilizes a vertex, edge, and

triangle chart, which we attempt to pair with a chart for every entity in a triangle: we

get six implementations. These represent the six ways a vector field on a cell could

be paired with an edge tangent vector and a vertex position. Though this example

feels unnecessary, this situation can occur: a cell field might be restricted to an edge

tangent to be evaluated at a vertex in exterior calculus DOFs, and there are six valid

ways to do this (e.g., in Nédélec DOFs of the second kind).

4. Suppose we are given a pointwise tensor expression that utilizes an edge chart and

two triangle charts, but the output is an edge. Suppose we provide the charts for two

triangles that share one edge. Then we enumerate four possible options; this closely

mirrors the structure of DG edge integrals.

5.3.7 Full Pipeline for Compilation of Pointwise Tensor Expressions

We now have all the ingredients to spell out the full pipeline of producing all relevant formulas

from a pointwise tensor expression and a single chart parameterization of the local cell where

the computation should occur. We describe this graphically in fig. 5.4. The essential strength

of this pipeline is the ability to take minimal inputs, restricted to coordinate-free tensor

expressions with fairly unrestricted geometric information, and then generate exactly the

collection of expression that various downstream automation tasks require.

5.3.7.1 Example

We now present an example that aims to illustrate concretely the essentials of each process

without focusing on needless details. In particular, we are going to present fields and point-

wise expressions as concrete and specific here though they are not. Similarly, we will return

a more abstract expression rather than the specific pointwise tensor expression. We seek to

emphasize and accurately present how these move through the pipeline. Let us enumerate

three inputs:
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Input Pointwise Tensor Expression

Adapt Pointwise 
Tensor Expressions

Input Field

Input Top Chart

Enumerate Charts

Topological 
Enumeration

Symbolic 
Differenitation

Query Fields/Chart
and Substitute

Tensor Expressions
For Formula Generation

(with u de�ned on edges)

For i =1,2,3

Introduce World and
Reference queries

For i =1,2,3

Figure 5.4: A pointwise expression goes through the pointwise expression compilation
pipeline given input fields and a chart. The expression takes an edge chart, an edge field,
and some geometry. Since the field is defined on an entire triangle, the expression adds a
new chart and projects a triangle field to the edge chart. After charts are generated from
the top chart, we enumerate all the pairings of pointwise expressions with charts via topo-
logical enumeration. Then we apply symbolic differentiation, resulting in some derivative
queries. Finally, we query expressions, formulas, and bases from the input fields and charts
to create tensor expressions for formula generation.
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Figure 5.5: An example of enumerated charts for an example.

1. Suppose we have a pointwise tensor expression on an unknown edge: F (x, u(x)) =

x ∗ (∇u(x))2. Note that since we are on an edge, we can square the derivative since it

is in a one dimensional space. Further, this is associated to an unknown edge with a

chart e(xr) = Axr + b where xr ∈ [0, 1], A is a vector and b is a vector.

2. Now for our other inputs, we suppose that u(a, b) = ab on a triangle.

3. Finally, our top chart is the triangle of the unit triangle: a very concrete geometry,

parameterized by itself via T (x) = I(x) + 0.

To get visual intuition, we first consider the chart enumeration. We have visually depicted

this in fig. 5.5. Therein we see the triangle as well as parameterizations of each edge,

ei(x) = Aix+ bi for i = 1, 2, 3. We can practically compute:

1. A1 =

[
0 1

]
and b1 =

[
0 0

]
.

2. A2 =

[
1 −1

]
and b2 =

[
0 1

]
.

3. A3 =

[
1 0

]
and b3 =

[
0 0

]
.
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Now, we consider adapting the expression F to the triangle. This means we have to use

the yet unknown edge chart to rewrite F to

Fe(e(xr), xr, u(e(xr))) = e(xr) ∗ (∇u(e(xr)))2.

Note that we add a point xr in the reference interval [0, 1], get the point x as e(xr) in the

triangle and since u is defined on a triangle, use the point in the triangle to evaluate u. Now,

we topologically enumerate. Since there are three edges in a triangle, we must consider all

of them for i = 1, 2, 3. We get

Fei(ei(xr), xr, u(ei(xr))) = e(xr) ∗ (∇u(ei(xr)))2.

Then we symbolically differentiate, which is to say we write the expression so it takes in the

derivatives separately. With one application of the chain rule and one lifting to an argument,

we get

Fei(xr, ei(xr), Dei(xr), u(ei(xr)),∇u(ei(xr)) = e(xr) ∗ (Dei(xr) · ∇u(ei(xr)))2.

Then to prepare to query fields, we add queries to the reference and world space of the inputs.

To do this, we need to use the reference space of the triangle (in this case, trivially the original

space) so that we can query u in its reference space. We introduce xr,i = T−1(ei(xr)), the

reference position of the point ei(xr) and rewrite arguments to u:

Fei(xr, ei(xr), xi,r, Dei(xr), u(ei(xr), xi,r),∇u(ei(xr), xi,r)) = e(xr)∗(Dei(xr)·∇u(ei(xr), xi,r))2.

Finally, we can substitute in the actual charts and values to get something that depends on

just x and charts:
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F (xr, Ai, bi, I) = (Ai(xr) + bi) ∗ (ATi ·

0 1

1 0

 · I−1(Ai(xr) + bi))
2

where we used that ∇u(a, b) = (b, a) as u(a, b) = ab.

5.4 Integrated Pointwise Tensor Expressions on Mani-

folds (IPTEM)

5.4.1 Design Rationale and Semantics

Given pointwise tensor expressions on manifolds, DOFs and operators are missing one com-

ponent: integration. We augment this concept via reductions as a general mechanism to

combine many pointwise evaluations to a single scalar and then store that scalar appro-

priately. With these concepts, we are primarily concerned with expression, though the

implementation of integration requires some care. Our mechanism facilitates many useful

utilities beyond integration: pointwise evaluations (for DOFs), combinations of topologically

enumerated expressions (e.g., summing expressions of volumes across boundaries to produce

perimeters for cell size indicators or a DOF defined on the boundary of a cell), and DOFs of

different continuities (for DG spaces).

Our grammar is provided in listing 5.7. We provide integrals or pointwise evaluations

on topologies of a known type via a barycentric coordinate. For the purposes of topological

enumeration, the integral counts as another chart argument, similar to augmenting pointwise

tensor expressions with fields. This leads to the need for reductions.

We observe that topological enumeration could create multiple integrals per integration

domain so a default reduction is chosen to produce one integral: sum for integrals and

choiceAllEq6 for pointwise evaluations. However, we allow users to override this behavior
6Pick one value out of the possible options, but check that they are all identical.
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with reductions as this has utility (e.g., a DOF combining the midpoints of every boundary

face of a cell via some linear reduction). Moreover, we find that this allows users to control

how expressions should be treated on a mesh. A reduction combines multiple values that

emerge from topological enumeration, from multiple field inputs (e.g., from a FEM basis),

or even from multiple geometries/basis functions on a mesh (e.g., in section 2.4). A specific

reduction with a specified operation can apply to multiple values emerging from a single

argument (or by default from multiple integrals) to a pointwise expression or from all values.

Integrated pointwise tensor expressions can take multiple reductions and apply them in order.

Finally, to support DG or permitter calculations, integrated pointwise tensor expressions

can specify a final chart type that indicates if a value should be computed uniquely per this

chart type. For the purposes of topological enumeration, this is yet another chart, though

we require it to be greater than or equal to all other charts in our expression, but we mainly

provide it to enable DG methods in a context insensitive manner.

⟨integral⟩ = PointEval(⟨topTy⟩, +⟨float⟩)

| Integral(⟨chartTy⟩)

⟨op⟩ = min

| max

| sum

| difference

| avg

| choice

| choiceAllEq

⟨over⟩ = LocalTop

| LocalBasis

| GlobalTop

| GlobalBasis
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| Top

| Basis

| ALL

⟨argref ⟩ = ⟨str⟩

| ALL

| ⟨chartTy⟩

⟨reduction⟩ = Argument(⟨argref ⟩, ⟨op⟩, ?⟨over⟩)

⟨IntegratedPointwiseTensorExpr⟩ = IPTX(⟨PointwiseTensorExpr⟩, ⟨integral⟩,

*⟨reduction⟩, ?⟨chartTy⟩)

Source Code Listing 5.7: A grammar to describe integrated pointwise tensor expressions
with reductions.

5.4.2 Implementation of Integration

We implement all integrals via quadrature that can integrate d degree polynomials exactly7.

For simplicity of implementation, this is quite appealing. For a given chart c with a domain

that we assume is numeric, a quadrature rule gives us points xi and weights wi. With these,

we can evaluate the integral of a formula via

∑
wi| detDc(xi)|F (xi, c(xi), . . . ).

For some symbolic programs, we might symbolically compute this sum (in particular if

we are computing Vandermonde matrices or if all the formula return values happen to be

numeric), but for other purposes we might place this sum in generated code. However, all

of this requires us to choose a quadrate degree d, which is potentially error prone and not

ergonomic.
7For product simplices, it is a product of degrees
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5.4.3 Quadrature Degree Estimation

Given a formula acting on inputs8 that all have some polynomial dependence on the point

x, we can estimate the polynomial dependence of the output of the formula on the point. To

do so is fairly trivial for any formulas that are polynomial. For non-polynomial functions, we

rely on one important simplification or else we just fail: for 0 degree dependence, non-linear

functions still have 0 degree dependence. This simplification means that formulas for all

operators and DOFs can determine quadrature degrees automatically on affine geometries.

When quadrature estimation fails, users at a higher level on the interface (section 7.6) must

specify the polynomial dependence of some inputs or simply specify the quadrature degree.

We note that this analysis can be interpreted via a simple lattice, N ∪ {∞} with ∞ also

being our fail state.

5.4.4 Integration of Forms

Integration typically assumes that a function is scalar, but we will integrate the appropriate

forms correctly too. We simply apply the theory of forms as in section 3.1.4, constructing

the appropriate tensor expressions for relevant exterior calculus operations. This alleviates

the specification of some DOFs. In this case, though, we modify the tensor expression so

that simplifications based on this definition of integration can occur.

5.5 Complete Pipeline and Output Formats

5.5.1 Input and Output Format

In presenting the complete pipeline that handles integration, we also offer additional exten-

sions. An easy extension is multiple formulas with the same input and output signatures9,
8A simple extension to the field interface provides an optional polynomial degree estimate.
9Input signatures are the arguments and their types modulo default arguments. Output signatures

correspond to reductions over these inputs.
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but a more important extension is to operate on collections of fields. The final input is

multiple IPTEMs with reductions operating on collections of input fields per argument and

with a top chart10 to generate a collection of parameterizations. The final output is a for-

mula for a tensor that has a dimension to index the formulas, a dimension for each input

argument that is not reduced over, and a dimension for each chart type that is not reduced

over. Additionally, for the purposes of global code generation, we maintain some metadata:

1. for each input argument, the derivatives, points, and charts that we sampled at;

2. the quadrature rule and weights corresponding to each formula;

3. and the integration and storage charts that were used for a given formula.

5.5.2 Complete Pipeline

Encapsulating our pointwise pipeline, we can now provide a complete pipeline for a single

formula with an integral and reduction, acting on a collection of input fields. The overall

pipeline for a single formula and batched inputs is depicted in fig. 5.6, and we discuss it

here. The pipeline can simply be batched over multiple formulas. For the first part of the

pipeline, we assume that the field collection can be summarized via a single field in the sense

that we can provide a formula and basis for the values and derivatives at some symbolic

point, potentially depending on other symbolic values such as a reference space value of a

field. This is always the case in ElementForge. By using a single representative field, we

can then do quadrature degree estimation using integral specification and make a symbolic

quadrature sum. Then we can query the fields and charts at all the actual quadrature points

to get formulas for each field to substitute into our formula for the pointwise expression. For

certain tasks, such as implementing an element, we would symbolically evaluate this formula

down so the formula output a rational function, but for other tasks such as computations

of operators on meshes, we would generate code that uses Einstein summation notation to
10This could be replaced with an arbitrary collection of chart inputs.
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perform the sum at runtime. Similarly, we can then apply the reductions, potentially by

manipulating the formula or doing the reduction in generated code. Our output is a formula

for a tensor with a dimension for each non-reduced over input and each non-reduced over

chart type.

5.5.2.1 Extension of Pointwise Example

We extend section 5.3.7.1. In particular, suppose that we actually evaluate fields uj(a, b) =

cjab for real constants cj. Suppose also that our integral is a simple point evaluation at the

midpoint of each edge, associated to the point 0.5 ∈ [0, 1]. Then our final output would

become, after integration and usage over all fields, Ai,k = (Ai(0.5) + bi) ∗ (ATi ·

0 1

1 0

 ·

cjI
−1(Ai(0.5)+ bi))

2, where i runs over the edges and k runs over the incoming fields. Either

index could be eliminated via a reduction over the charts or a reduction over the incoming

fields.
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Input IPTEM
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Apply Reductions (Optionally Symbolically)

Query 
Polynomial
Degree

Figure 5.6: Overall compilation flow for IPTEM.
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Chapter 6

Software Representation of Finite

Elements

6.1 Overall Specification

Our software definition of a FE naturally mirrors the Ciarlet Triple definition, but our

definition is carefully constructed to balance expressing many elements against the automatic

generation of formulas, specifically via the problem specified in definition 3.2.4. Indeed, our

software construct (section 6.1) takes three objects resembling a domain, a function space,

and a dual basis, but to solve definition 3.2.4, our software construct represents a class of

FEs parametrized by a domain.

1 class FiniteElement :

2 V: TopType

3 P: PSpace

4 Sigma : Sequence [IPTEM]

Source Code Listing 6.1: Interface for constructing finite elements.

Our construct contains two familiar objects that represent classes of objects parametrized

by a domain: a topological type for the domain and a list of IPTEM for the dual basis

functions. While our infrastructure for IPTEM handles many of the problems of representing
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many dual basis functions and generating formulas for them on symbolic domains, we must

resolve similar problems for spaces of functions, especially as they relate to the problems set

out in definition 3.2.4. In particular, two function spaces defined similarly on two domains

are unlikely to be isomorphic via pullback, which makes computing the Vandermonde matrix

impossible or symbolically messy. To understand our representation of classes of polynomial

function spaces for FEs (PSpace), we first detail a software interface and algorithms for using

the finite element, solving definition 3.2.4. Then we can discuss the requirements on (PSpace)

and other useful utilities for elements.

6.1.1 PSpace Interface

Our interface to polynomial spaces parametrized by domains is given in section 6.1.1. At

the core, the interface is simple: on a given domain (specified via a parameterization), a

given set of points, and a given basis at each point, we can sample some unknown basis of

functions and its derivatives.

We are not given the precise set of basis functions for the entire space, but just the basis

of the output value at a point, i.e., just a basis for the value space.1

We will return to the question of what the basis of the entire space of functions is. For

now, the main purpose of this interface is to provide fields as arguments to our compiler,

which is why we also include a maximum polynomial degree.

1 class PSpace :

2 def tabulateChart ( self , chart : Chart , d e r i v a t i v e s : int , r e fPo i n t s : NDArray , b a s i s :

Optional [ Bas i s ] = None) −> Tuple [ Formula , Bas i s ] : . . .

3 def valueSpace ( self , chart : Chart ) −> Space : . . .

4 def dim( se l f ) −> int : . . .

5 def maxDegree ( se l f ) −> int : . . .

6 def a sF i e l d s ( se l f ) −> L i s t [ F i e l d s ]

7 def val idChartTypes ( se l f ) −> L i s t [ ChartType ] : . . .

Source Code Listing 6.2: Interface that local spaces, PSpaces, must provide.

1(Derivatives are taken in the tangent space and thus utilize the image basis featured in listing 5.4).
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6.2 Inverse Vandermonde Formula Generation

We now solve definition 3.2.4 up to the details of the space representation. The overall

algorithm is depicted in section 6.2. The algorithm consumes a FE, a reference chart, and

a symbolic domain given by a chart. The algorithm conducts some validity checks (sec-

tion 6.2.1), checking that the symbolic chart maps from the range of the reference chart

and that the FE type checks. Then the algorithm constructs a Vandermonde matrix (sec-

tion 6.2.2) and uses this to construct basis functions that can be used on the symbolic chart,

exploiting that the matrix is numerical and the basis functions are code. Then using the

Vandermonde algorithm again, the algorithm can construct a symbolic Vandermonde ma-

trix from the symbolic chart and the reference function basis functions. Then, a symbolic

inversion routine (section 6.2.3) exploits the expected structure of this matrix to produce a

formula representing the inverse. The symbolic output matrix provides the symbolic Vander-

monde matrix problem (definition 3.2.4), expressing the FE basis functions on the symbolic

domain in terms of the reference domain. We prove the correctness of this approach up to an

assumption on the space (section 6.2.4) and sketch an alternative approach (section 6.2.4.2)

that illuminates the expected output structure.

1 def vandermondeInverse ( do f s : FiniteElement , re fChart : Chart , symbolicChart : Chart ) −>

Formula :

2 checkVal id ( re fChart , symbolicChart , do f s )

3 refVander = vandermoneAlgo ( do f s . Sigma , re fChart , do f s . space . a sF i e l d s ( ) )

4 VRef = refVander . asNumericArray ( )

5 assert VRef . dtype = np . f l o a t 6 4

6 vanderInv = np . l i n a l g . inv (VRef )

7 assert vanderInv . shape == ( do f s .P . dim ( ) , do f s .P . dim ( ) )

8 r e f F i e l d s = vanderInv .T. dot ( do f s . space . a sF i e l d s ( ) )

9 symbolicVander = vandermoneAlgo ( do f s . Sigma , symbolicChart , r e f F i e l d s )

10 symbolicVanderInv = symbo l i c Inve r s e ( symbolicVander )

11 return symbolicVanderInv

Source Code Listing 6.3: Overall Algorithm for Vandermonde Calculation.
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6.2.1 Validity

For a finite element, E=FiniteElement(V,P, Sigma) to be valid, the DOFs must consume elements

of E.P.valueSpace() and must not use any chart types larger than the chart type E.V. Similarly,

the chart type E.V must be in E.P.validChartTypes(). And naturally the DOFs must all be linear

in a single non-default argument. The function checkValid checks all of this and further checks

that the two chart inputs are compatible: they must both map between domains of type E.V

and the range of the reference space chart should be the domain of the symbolic chart.

6.2.2 Vandermonde Algorithm

The Vandermonde Algorithm is the compilation procedure for a list of IPTEM. The function

vandermoneAlgo(dofs, chart, fields) runs the procedure outlined in section 5.5. The result will be a

matrix that is the number of DOFs2 by the dimension of the polynomial space, which should

match. This illustrates a convenient bit of reuse as this function will be reused in global

code generation.

6.2.3 Symbolic Inversion

Our second Vandermonde matrix is symbolic, meaning the formula returns an array of ratio-

nal numbers, potentially depending on other statements. However, we expect that that this

matrix will be roughly block triangular. We will recursively exploit the Schur complement

to invert such a matrix:

A 0

C D


−1

=

 A−1 0

−D−1CA−1 D−1

 . (6.1)

A very close sketch of the algorithm is depicted in section 6.2.3. The algorithm directly

inverts small matrices, though it potentially introduces intermediate variables for non-zero
2Note that the actual DOFs are defined via topological enumeration.
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entries if the rational expressions are too large. The algorithm tries to find a choice for A

and C that maximizes the size of the zero block. Then the algorithm recuses on the blocks

and recombines them, potentially introducing intermediates for non-zeros in the triple matrix

multiplication to avoid very large rational functions. For the complexity of rational functions,

we can use the number of non-zero terms in the numerator and the denominator degree. The

actual implementation features a few other features: an environmental variable to time out

and use a direct inverse (we do not need this for any of our results) and other options to

potentially use small linear algebra operations or to tune when rational functions are too

complex to directly manipulate. We include these features for the case where an element does

not yield a reasonable symbolic Vandermonde matrix so we can fall back to the inefficient

option - numerically inverting the Vandermonde C matrix for each cell, with a warning to

tell the users that this is going to happen. Inverting such Vandermonde-like matrices per

cell is an established practice for some methods where this is the case - such as in polygonal

FEMs or virtual element methods [124], [125].

1 def symbo l i c Inver s e (V: Formula ) :

2 (mat , stmts ) = V

3 N = mat . shape [ 0 ]

4 i f N <= 6 : # l a r g e s t r ea sonab l e symbol ic i nv e r s e

5 (matInv , stmtsp ) = d i r e c tSymbo l i c Inve r s e (mat , stmts )

6 # Depending on the complexity o f r a t i o n a l func t i ons , we might in t roduce in t e rmed ia t e

v a r i a b l e s

7 return Formula (matInv , stmtsp )

8 else :

9 ( blockP , blockQ ) = choosePQ (mat)

10 A = mat [ 0 : blockP , : ] [ : , 0 : blockQ ]

11 B = mat [ 0 : blockP , : ] [ : , blockQ : ]

12

13 D = mat [ blockP : , : ] [ : , blockQ : ]

14 C = mat [ blockP : , : ] [ : , 0 : blockQ ]

15 assert a l lSymbo l i cZero (B)

16 (Ainv , AinvStmts ) = symbo l i c Inve r s e ( Formula (A) )

17 (Dinv , DinvStmts ) = symbo l i c Inver s e ( Formula (D) )

18 ( schur , schurStmts ) = tripleMatMul (Dinv ,C, Ainv )

19 matInv = bmat ( [ [ Ainv , np . z e r o s ( blockP , blockQ ) ] , [−schur , Dinv ] ] )
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20 return Formula (matInv , stmts + AinvStmts + DinvStmts + schurStmts )

Source Code Listing 6.4: Symbolic Inverse Algorithm

6.2.4 Correctness

We now seek to show mathematically what our algorithm does and under what conditions

it is correct, specifically with respect to the function spaces. First, we link the formalism

of definition 3.2.4 to our code, roughly: Suppose we are given a FE E := (K,V, P,Σ), a

reference element, and another element E ′ := (K ′, V ′, P ′,Σ′) such that K is diffeomorphic

to K ′. In the language of definition 3.2.4, we are computing the pullback of the primal basis

functions of E ′ in terms of E. Our algorithm, depicted in section 6.2 pulls the reference

space basis functions of E to the world element E ′ via the creation of the reference space

basis (lines 3-8), enabling the sampling of these fields from the world space (in line 9). This

is to say we use the pullback of the reference space basis as a basis for the world space

function space. Then in the last call to the Vandermonde matrix creation algorithm (line 9),

we evaluate the world space dual basis on this basis. The inverse transpose then represents

the pullback of the world space basis in terms of the reference space basis.

We now prove that we solve definition 3.2.4 under certain conditions, and our proof

mirrors the above steps exactly, precisely revealing the ambiguities leading to requirements

on our polynomial spaces. We now need some intermediate results, the proofs of which are

simple elaborations on ideas in section 3.1.

Proposition 6.2.1. Let E := (K,V, P,Σ) and E ′ = (K ′, V ′, P ′,Σ′) be finite elements where

V and V ′ are compatible (p, q) tensor spaces, i.e., that they are subspaces of T (K)(p,q) and

T (K ′)(p,q) respectively. Let T ∈ C1(K,K ′) have an inverse in C1(K ′, K). Then the following

are true in F(K,V ):

1. T⋆ ◦ T−1
⋆ = Id
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2. T ⋆ ◦ (T−1)⋆ = Id

Further, if T ⋆|P is an isomorphism onto P ′, then

1. T⋆|P ⋆ is an isomorphism onto (P ′)⋆.

2. For any ϕ ∈ P ⋆ and any f ∈ P ,

T⋆(ϕ)((T
−1)⋆(f)) = ϕ(f). (6.2)

This says the pushforward is analogous to a transpose of a pullback.

3. Given any primal-dual basis pair ({fa}, {ϕb}) for P (i.e ϕb(fa) = δab), we have that

({T ⋆fa}, {T⋆ϕb)}) is a primal-dual basis pair for P ′.

4. Similarly any primal-dual basis pair ({f ′
a}, {ϕ′

b}) for P ′ (i.e ϕ′
b(f

′
a) = δab), we have that

({(T−1)⋆f ′
a}, {(T−1)⋆ϕ

′
b)}) is a primal-dual basis pair for P .

Our core result, theorem 6.2.1.1, is our ability to solve definition 3.2.4. This result now

closely mirrors our algorithm and provides the main condition on the spaces.

Theorem 6.2.1.1. Let E := (K,V, P,Σ) and E ′ = (K ′, V ′, P ′,Σ′) be finite elements where

V and V ′ are compatible (p, q) tensor spaces, i.e., that they are subspaces of T (K)(p,q) and

T (K ′)(p,q) respectively. Let T ∈ C1(K,K ′) have an inverse in C1(K ′, K). Let Σ = {ϕb} and

Σ′ = {ϕ′
b}. Let {fb} and {f ′

b} be the associated primal bases. Further, suppose

1. T ⋆|P is an isomorphism onto P ′.

2. There exist points xb,q ∈ K and rational functions wb,q such that for any f ∈ P ,

ϕ′
b(T

⋆f) =
∑
q

wb,q(DT (xb,q))(T
⋆f)(xbq).

This boils down to the existence of a quadrature rule for integrating functions f ∈ P

on K.

126



Then there exists a matrix P of shape |Σ| × |Σ′| such that

1. Pb,b′ is a rational function in the values {DT (xb,q)},

2. the matrix P is a representation of the pullback (Ti)
⋆ in a particular basis so that

(f ′
b′)(T (x)) =

∑
b

Pbb′(x)(T
−1)⋆(fb)((x)). (6.3)

Proof. Solving the problem symbolically requires a basis for P ′, for which there is only

one choice3, the primal basis for E under the image of (T−1
i )⋆. We call this basis fTb :=

((T−1)⋆(fb))). We also have the dual basis ϕTb := T⋆(ϕb). We can compute ϕTb in terms of ϕ′
b′

by setting

Cb′b := (T−1)⋆(ϕ
′
b)(fb′) = ϕ′

b((T
−1)⋆fb′) = ϕ′

b(f
T
b′ ) (6.4)

as in a generalized Vandermonde matrix. Finally, via duality, a representation of a dual basis

in terms of another dual basis yields a representation of a primal basis in terms of another

primal basis via an inverse transpose:

P = C−T . (6.5)

Thus, we simply need to invert and transpose C to yield a representation of f ′
b in terms

of fTb . Then, since T ⋆ is the identity matrix, as a mapping from fb to fTb , this yields a

representation of f ′
b in terms of fb as desired. This also shows that P is a representation of

(T−1
i )⋆ from the basis fb to the basis f ′

b.

By the definition of pullback, we observe that for y = T (x), then fTb′ (y) is a polynomial

in the coefficients DT (x) and DT−1(y). By the conditions of the theorem, ϕ′
b will evaluate

fTb′ at points {wbq} and will weight each value by a rational function in DT (xb,q). Thus,

each entry of C is a rational function {DT (xb,q)}. Since the inverse of a matrix of rational

functions is a matrix of rational functions, this completes the proof.
3If we have the primal basis from the element E′ already, we would not be doing this.

127



The core extra step is that T ⋆|P is an isomorphism onto P ′. Thus, our representation

of function spaces must provide this or something that serves an equivalent function. We

discuss this the next section after two additional matters.

6.2.4.1 Relation to prior work

We note that a key difference between our methods here and those employed by hand in [34] is

that our methods operate on P (K ′, V ′)⋆ rather than Ck(K ′, V ′)⋆; in [34], certain definitions4

to facilitate manipulations of DOFs by hand arise out of concerns about DOFs’ behaviors

as objects in Ck(K ′, V ′)⋆ whereas we avoid this at the cost of having to use fb explicitly

to manipulate objects in P (K ′, V ′)⋆. In particular, we note that the Morley DOFs on a

physical element cannot be expressed as linear combinations of push-forwarded DOFs if we

consider them as objects in Ck(K ′, V ′)⋆, but this is the case for the Morley DOFs as objects

in P (K ′, V ′)⋆

6.2.4.2 Structure of Vandermonde Matrices

Another proof this results can validate our earlier claim that matrices should expose a lower

triangular block structure, making them amenable to recursive inversion via Schur comple-

ments (section 6.2.3). We present this alternative as theorem A.0.2.1 in appendix A. This

alternative computes P directly without an inverse at the end. The core idea is that the sup-

port of a basis function and its derivatives tends not to be changed too much by pullback.

Thus, based on the structure of the original proof, we expect world space DOFs and refer-

ence space DOFs to only relate if their basis functions and relevant derivatives have similar

supports. Thus, if we partially order DOFs by the topological supports and dimensions asso-

ciated to their integrals, we reasonably expect that the transformed DOFs are only non-zero

on the basis functions associated to DOFs that come earlier in the order. Our alternative

inversion strategy formalizes this with more machinery, neatly separating out aspects of the
4Mainly compatible nodal completion, which is a stronger and harder to construct facility than our

basis cover.
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structure of the matrix determined by the sparsity patterns in basis functions (the triangular

pattern of blocks) and the parts determined by the pointwise structure of DOFs (structure

within the blocks, such as diagonal vs. non-diagonal blocks or numerical entry or a symbolic

entry).

6.3 Specification of Polynomial Spaces

Our specification of polynomial spaces must satisfy the following requirements:

1. provide a tabulate function as in the interface depicted in section 6.1.1.

2. ensure that two polynomial spaces P and P ′ instantiated at two different isomorphic

domains K and K ′ are isomorphic under pullback5, allowing theorem 6.2.1.1.

3. be expressive enough to capture a wide variety of polynomial spaces, such as the affine

invariant exterior calculus spaces (proposition 3.1.13).

The most challenging issue is balancing the first and last against the middle. To see

why, we first recall the analysis from section 3.1.3: though all finite-dimensional spaces of

a given dimension are isomorphic, rarely are function spaces constructed through similar

mechanisms isomorphic via the pullback. If we want to express many types of functions, we

exploit a trick that risks making our formulas much more complex: any finite-dimensional

space of polynomial tensor fields is a subspace that is naturally isomorphic under pullback,

typically polynomials of a certain degree and a tensor sum of tensor products of tangent

spaces. With this idea, the same proofs and algorithms go through with an extra symbolic

formula included to extra the subspace that we actually want from the one that is preserved.

Of course, this formula might get in the way of simplification. Thus, our compromise is a

grammar for tensor-valued polynomials parameterized via a chart where we can easily find
5or something that lets us write world space functions in terms of pullbacks of reference spae functions
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an appropriate super space and where some options provide tricks to reduce the complexity

of extracting the appropriate space.

⟨degree⟩ = Pure(⟨int⟩)

| Range(⟨int⟩, ⟨int⟩)

| Tensor(+⟨int⟩) ⟨PSpace⟩ = Pure(⟨topType⟩, ⟨degree⟩, ⟨tensorSpace⟩)

| Sum(+⟨PSpace⟩)

| Kernel(+⟨IPTEM ⟩, ⟨PSpace⟩)

| InvariantKernel(+⟨IPTEM ⟩, ⟨PSpace⟩, ⟨PSpace⟩)

| DofsKernel(+⟨IPTEM ⟩, +⟨IPTEM ⟩, ⟨PSpace⟩)

Source Code Listing 6.5: A grammar to tensor-valued polynomial spaces, parameterized by
an unknown geometry.

Our overall grammar is in listing 6.5. Polynomial degrees come in three kinds, up to

and including a given degree, a range of degrees, and a product of degrees. For pure tensor-

valued polynomial spaces, the first two degrees only work with a topological type that is not

a product and the product degree only works for the product. A sum of polynomial spaces

is simply a direct sum again. The flexibility comes for the options of expressing a kernel,

which can be expressed as:

1. a kernel of a collection of DOFs, requiring the kernel to be computed via an SVD or

QR in the code,

2. a kernel of a collection of DOFs that we promise is invariant, as a hack,

3. an effective intermediate (due to [34]), where we provide a full dual basis for the target

space and DOFs that identify the null space that we want to use, allowing us to extract

the subspace via our preexisting infrastructure.

Lastly, we note that the range degree construct is actually not affine invariant and defaults
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to the middle case, as we mainly intend this as a hack. From this grammar, it is straight-

forward to compute the super space recursively and to implement tabulate recursively. We

handle the base case via orthogonal polynomials, as in [8].

6.4 Permutations

A final task that our software representation of FEs must handle is computing how elements

respond to permutations of vertices on the reference cell. We follow an approach similar

to [126], but with a greater degree of automation. For a given way of permuting a mesh

element, drawn by selecting parameterizations from our description in section 5.2.5, we

simply rerun our algorithm for computing our symbolic Vandermonde inverse matrices, but

with the world space chart now a numerical chart with a permuted domain.
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Chapter 7

Global FEM Data and Computation

1

2

3 See example 3.4.1:

4 outSca la r = 0

5 for c e l l in c e l l s :

6 # Setup c e l l geometry

7 geometry = setupGeometry ( c e l l )

8 # Setup quadrature po in t s

9 points , weights = quadrature ( c e l l , geometry )

10 # Load ba s i s func t i on va lue s

11 # Based on element

12 b f v a l s = computeVals ( geometry , po in t s )

13 # Load func t i on data :

14 # Based on data o f func t i on repre s en ted in element :

15 fdata = computeVals ( c e l l )

16 f v a l s = b f v a l s @ fdata

17 # Compute F

18 f unc t i onVa l s = map(F , f v a l s )

19 # Int eg r a t e :

20 outSca la r += weights @ funct i onVa l s

21

22 See example 3.4.2:

23

24 outSca larPerEdgeCel l = np . z e r o s ( nedges , 2)

25 ou t I nd i c i e s = np . z e r o s ( nedges , 2)

26 for edge in edges :
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27 edgeGometry = setupGeometry ( edge )

28 # Load c e l l s on t h i s edge

29 c e l l s = i n c i d e n tC e l l s ( edge )

30 assert 1 <= len ( c e l l s ) <= 2

31 # Setup quadrature :

32 points , weights = quadrature ( edge , edgeGometry )

33 for ( c e l l I dx , c e l l ) in c e l l s :

34 edgePoints = edgeToCell ( po in t s )

35 geometry = setupGeometry ( c e l l )

36 # Load ba s i s func t i on va lue s

37 # Based on element

38 b f v a l s = computeVals ( geometry , po in t s )

39 # Load func t i on data :

40 # Based on data o f func t i on repre s en ted in element :

41 fdata = computeVals ( c e l l )

42 f v a l s = b f v a l s @ fdata

43 # Compute F

44 f unc t i onVa l s = map(F , f v a l s )

45 # Int eg r a t e :

46 outSca larPerEdgeCel l [ edge , c e l l I d x ] += weights @ funct i onVa l s

47 ou t I nd i c i e s [ edge , c e l l I d x ] = c e l l

48

49 See example 3.4.3:

50 exte rna lFunct ion = lambda x : . . .

51 outputFunction = np . array ( nver t s + nedges + n fac e s ) :

52 for ver tex in v e r t i c e s :

53 geometry = setupGeometry ( ver tex )

54

55 outputFunction [ ver tex ] = f ( geometry . po int )

56

57 for edge in edges :

58 geometry = setupGeometry ( edge )

59

60 outputFunction [ nver t s + edge ] = f ( geometry . midpoint )

61

62 for c e l l in c e l l s :

63 geometry = setupGeometry ( c e l l )

64

65 outputFunction [ nver t s + nedge + c e l l ] = f ( geometry . midpoint )
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Source Code Listing 7.1: Three different global kernel structures (sketches of the codes)

that many FEM systems implement as three (or more) different kernels. See section 3.4 for

corresponding reasons for these structures to exist

Many FE systems offer a wide variety of global data constructions and kernels or code

generation paths. This is due to a wide variety of important capabilities needed in FEM

systems, as described in section 3.3 and section 3.4. In particular, global FE spaces have

a great deal of variety, and, when combined with the variety of operators, lead to many

different capabilities, many of which require different global loop structures. For example,

for each of the three examples in section 3.4, we have a different loop structure described

roughly in listing 7.1. We reproduce these capabilities with one common code generation

path corresponding to a single versatile global object and a minimal collection of other global

objects that interact with it. Moreover, we do so in a way that improves the malleability

or adaptability of our system: since we have one common code generation path targeting

one versatile object, changing something and rerunning it often produces the desired result

without further downstream code changes.

Our global model of data is built around a mathematical solution to the problems around

multivalued quantities raised in section 3.4. By solving this problem first, we yield an idea

that addresses our challenges parsimoniously:

1. the quantity is always defined so changes to code still yield something mathematically

reasonable,

2. a relatively small collection of global objects is needed to construct the object,

3. and most FEM quantities can be computed via reasonable post-processing of the object.

This confluence is perhaps expected: the many different types of FEM kernels often deal with

different ways quantities can be multiply defined (as detailed in section 3.3 and section 3.4).
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To go along this path, we first deduce our notion of a global output mathematically. Then

we develop a discrete infrastructure to build the various inputs/related global quantities and

a code generation infrastructure to compute the output from the inputs.

7.1 Design Rationale

We now mathematically develop a single global output for our code generation process. To

do this, we solve the problem of multiply defined quantities in FEM. From this, a single code

pipeline that is malleable and parsimonious will follow.

First, we consider a class of functions that closely resemble IPTEMs.

Definition 7.1.1 (Integrated Pointwise Operator). Suppose we have a domain S and N+M

finite-dimensional function spaces Pk, each of which is defined on some set that includes S.

Then an N +M pointwise operator is a N linear function with M non-linear arguments

given by

a(u1 : P1, . . . , uN : PN ;uN+1 : PN+1, . . . , uN+M : PN+M) =∫
S

F (x, u1, . . . , uN ;uN+1, . . . , uN+M)dS(x)

where

1. dS(x) is an appropriate measure for the set S such as a delta measure for a point or

Lebesgue measure for a surface or domain, and

2. F is a function such that F depends pointwise on all its arguments and derivatives;
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more formally, this is to say that F takes the form

F (x, u1, . . . , uN ;uN+1, . . . , uN+M)

= G(x, u1(x), Du1(x), D
2u1(x), . . . ,

u2(x), Du2(x), D
2u1(x), . . . ,

. . . ,

uN+M(x), DuN+M(x), D2uN+M(x) . . . ).

for some function G.

These can be extended to multiples, mirroring that IPTEMs can be grouped when their

arguments are similar and that they can be topologically enumerated.

Definition 7.1.2 (Integrated Pointwise Operators). Suppose we have a collection of labels

L and for each label ℓ ∈ S, we have a collection of sets {Sℓi}. Suppose for each ℓ ∈ L, we

have a pointwise function Fℓ. Suppose we have N+M finite dimensional function spaces Pk,

each of which is defined on some set that includes all Sℓi. A collection of pointwise operators

is a list of pointwise operators aℓi of the form

aℓi(u1 : P1, . . . , uN : PN ;uN+1 : PN+1, . . . , uN+M : PN+M) =∫
Sℓi

Fℓ(x, u1, . . . , uN ;uN+1, . . . , uN+M)dSℓi(x).

The primary FEM task with such computations is to assemble them into sparse matri-

ces/tensors, which we can formalize as follows:

Definition 7.1.3 (Assembled Pointwise Operator). Given an N +M multilinear pointwise

operator a defined on spaces Pk with bases {pmk
} ⊂ Pk for 1 ≤ k ≤ N , and a list of M

functions uk ∈ Pk for N ≤ k ≤ N +M , then an assembled pointwise operator is an array of
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numbers of shape dimP1 × · · · × dimPN given by:

Fm1,...,mN
= a(pm1 , . . . , pmN

;uN+1, . . . , uN+M). (7.1)

However, as we saw in section 3.4, this operation might not be reasonably defined due

to the structure of the FEM space, or we might want to compute various quantities such as

interpolation or a boundary that do not quite fit this model. We solve by overcoming the

discontinuity of FEM spaces. As described in section 3.3, given a multilinear form a with a

domain set S = ∪Ki where the Ki correspond to FEs used to define the input spaces, then we

can decompose the computation of the assembled form onto each element Ki. However, if S

does not decompose along the elements used to define the function spaces, then we need some

more sophisticated machinery because a function or its derivatives might be discontinuous

along some part of S. In particular, we label the combinations of single values that need to

be computed and store them in a large assembled object, which can be reduced to recover

an assembled form or other things. We call this construction the Single Valued Assembled

Operators.

Definition 7.1.4 (Single Valued Assembled Operators). Let Ω ⊂ Rn. Suppose we are given

N+M spaces Pk wherein functions are C∞ on sets Kjk. Let Lk = |{Ekj}| and Kk := ∪jKkj.

Suppose we are given corresponding N +M multilinear pointwise operators aℓi over domain

sets Sℓi with ∪ℓiSℓi ⊂ Kj for all j. Let L be the number of operators, the range of ℓ, and

let I be the maximum range of i for all ℓ. Define SKk1,...,kM+N ,ℓ,i = ∩j=1,...,N+MKkjj ∩ Sℓi,

the intersections of the domains used for each FE space and the domains of some pointwise

operator. We note that either Sℓi ⊂ SKk1,...,kM+N ,ℓ,i or the set is empty. Then the single valued

assembled operator is an array F of size dimP1 × · · · × dimPN × L1 × · · · × LN+M × L× I
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given by:

Fm1,...,mN ,k1,...,kN+M
= aℓi(pm1 |Kk1,1

, . . . , pmN
|KkN ,1

;

uN+1|KkN+1,N+1
, . . . , uN+M |KkN+M,N+M

).

Each entry of the array can be computed via integral over the domain SKk1,...,kM+N ,ℓ,i.

Critically, definition 7.1.4 provides an object to compute using the ideas of section 3.3,

i.e., it can be computed per combination of cell interiors, which is where DOFs and derivatives

are continuous and singly defined. And even better: we can recover the various other FEM

quantities from this. Given definition 7.1.4, we can recover an assembled operator as defined

in definition 7.1.3 by reducing along equivalence classes of basis functions when this makes

sense. This could also produce scalar or vector quantities with similar meanings. We can

recover other objects via other procedures: we can use slicing to isolate parts with certain

meanings, or we can use other reductions to build other quantities (such as the original input

fields), or we can filter one input based on the entire tensor to identify certain subsets of

the inputs. These ideas can aid with DG methods, interpolation, boundary elimination, or

boundary identification respectively. More generally, we need the following common sparse

array primitives: general reduction across axes, slicing out a matrix, setting a slice to a value

or array of values, and a where construct (as in np.where) for filtering other constructs with

the sparse array.

Our core interface and loop for doing global FEM computation is similar to the above

structure, using it to support a wide variety of FEM operations. IPTEMs and global fields are

turned into SVAO over some mesh. The SVAO can be turned into other objects that capture

operators, sub meshes, spaces, sub-spaces, other global fields, and more These are used to

construct or filter more SVAO. This loop supports a single path for many FEM operations:

assemble a SAVO and then post-process it with sparse array operations. In what follows,

we develop the machinery necessary to specify a discrete SAVO and the various other global
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objects that we can turn it into. We develop this machinery in sufficient abstraction that it

is easily adapted to a variety of changes, making our codes malleable.

7.2 Global Meshes

7.2.1 Definition

We have already mathematically modeled local mesh geometry, entities, as simplices or

products of simplices (via definition 5.2.1). In particular, we modeled these as posets over

some set of vertices. Software-wise, this model is very close to an implementation, module

some ordering of the posets for array based storage. Mathematically, our global meshes are

also posets with a regularity condition that makes them meshes of entities.

Definition 7.2.1 (Mesh Topology). Let V be an abstract finite set called the vertices of a

mesh topology. Let F ⊂ P (V ) be a poset under ⊂, called the set of faces. Then (V, F ) is a

mesh topology if

1. For every v ∈ V , {v} ∈ F ,

2. and if for every f ∈ F , Ff := {f ′ ∈ F : w ⊆ f}, a sub-poset of P (V ), is isomorphic to

either a simplex or a product of simplices as a poset.

For the software model aspect, we observe that storing this is achieved by storing a

vertex list, a list of facets of each type, and a list of isomorphisms to a chosen standard

entity ( definition 5.2.3) for every face.

7.2.2 Orientations

Given a mesh topology (V, F ), an orientation of an element f ∈ F is an ordering of the

vertices of f . There are several orientations that we store. The orientation on each top

level entity given by the input to our process is often geometrically relevant for computing
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outwards normals or similar information. The orientation induced by a global ordering of

vertices allows DOFs to be correctly ordered between cells. (To see that these two are

different, see [70]). Finally, each standard entity (definition 5.2.3) has a natural ordering of

the vertices so for every pair of faces f1, f2 ∈ F where f1 ⊂ f2, then f2 induces an orientation

on f1 via the ordering of the vertices of f2. In particular, we are interested in the induced

orientation in the case of the ordering of f1 according to the isomorphism to a standard

entity that stores f2. We store the first orientation and the second is trivial to store. For the

latter orientations, we can compute how induced ones compare to the global orientation on-

demand to determine how degrees of freedom need to be permuted when transforming them

between world and reference spaces. These orientations would be supplied to the process

specified in section 6.4 through the global field interface specified in section 7.4.3.

7.2.3 Implementation Aspects

7.2.3.1 Construction

Our mesh topologies seem to require much more than the typical face to vertex map that

determines a Tri or a Tet mesh, but a process, known in the literature as topological inter-

polation [127], can automatically construct a global discrete topology from analogous data.

In particular, given a mapping from the top level cells of a mesh to vertices and given a

choice of isomorphism to the standard entities of each top level cell, we can construct new

identifiers for intermediate topological objects corresponding to unique sets of vertices. This

is analogous to the quotient/group-by procedure used in the construction of a global FE

space as in definition 3.3.4. Once we have all the new topological objects and their vertices,

we can construct all the isomorphisms as they are determined by comparing vertices in an

entity map to the vertices in the standard entity.
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7.2.3.2 Different Mesh Formats

Meshes can be stored with a variety of local orderings for vertices in facets, edges in faces,

vertices in edges, etc. Our system allows users to specify these orderings via arrays that list

automorphisms standard entities. Our system then uses these orderings to determine the

orientations of reference entities so that any properties of these orderings are available. The

most common example of such a property is the orientation of normal vectors.

7.2.3.3 Entity Storage and Relationships

We store entities as a uniform list of numbers (e.g., if we store vertices and edges, vertices

will be identifiers 0 through |V | and edges |V | through |V | + |E|). This choice simplifies

isomorphism storage as multiple types of entities in an array cannot be confused. This

choice also simplifies storing entity relationships. Since entities are subsets of vertices, the

most important entity relationships are the ⊂ and ⊃ relationship between vertices. Our

mesh stores two matrices for these relations, computed from the isomorphism arrays, that

capture these relationships for all types of entities all at once. Two key uses of these relations

are the computation of boundary entities (especially in meshes involving product cells with

multiple types of boundary entities) and the computation of maps from interior boundary

edges to cells.

7.2.3.4 External Mesh Data

We can load external data on any class of mesh entities via the association between vertices

and entities. If we preserve vertex identifiers in construction1, then in a simple search

procedure can convert incoming lists of entities as vertices to entity identifiers. This facilitates

the interface in section 2.7.
1or at least store the re-orderings created by processes such as RCM
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7.3 Sections: Usage and Storage of Global Fields

Our IPTEM compilation process presumed field inputs ( section 5.3.3) which, given a pa-

rameterization of an entity, produce values and derivatives at points. And these field inputs

could be given as a collection, representing a basis of fields that would be supplied to an

IPTEM. However, we cannot model global FE spaces in this manner. The idea of a field or

basis of them fails to model a key discrete aspect of global FE spaces: how basis functions

and coefficients on basis functions relate to the mesh topology, which is critical to how we

define the SVAO. We introduce a new concept, sections2, that captures the discrete essence

of a global FE spaces and enables us to model global fields constructed in global FE spaces as

well discrete assembled FEM operators and basically all other data that we store on meshes

7.3.1 Sections: Data on Meshes for Global Finite Element Spaces

Just as meshes model a structure similar to an entity and that locally literally is an entity,

sections model data placed on meshes that locally conforms to a specific structure. Our model

of local structure, definition 7.3.1, neatly matches with outputs of the IPTEM compilation

process, section 5.5.1, and enables a global structure for global spaces (or other mesh data).

Definition 7.3.1 (Schema for data on a mesh). Let L be an abstract set of labels (ideally

IPTEMs). Let T be the collection of all topology types, defined by the grammar fig. 5.2.

A function f : L → T 2 is a schema for a mesh if for all l ∈ L then (t1, t2) = f(l) satisfies

t1 ≤ t2.

A schema indicates that data with a given label should be placed on all pairs of entities

of two given types where one entity is completely included in the other. Given a list of

IPTEMs, we can automatically construct a schema via mapping from the IPTEMs to their

integration topological type and their storage topological type.
2named for a similar construct in PETSc’s DMPLEX library
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Schema give rise to sections when paired with a mesh topology. Sections have the prop-

erty that sections made with the same schema are isomorphic iff the mesh topologies are

isomorphic. Thus, a section on an entity over a schema is always isomorphic to a section on

the standard entity.

Definition 7.3.2 (Section, Isomorphism of Sections). Let T be the set of topology types

and let L be an abstract set of labels. Further, let f : L → T 2 be a schema. If (V, F ) is

a mesh topology, let Ty: F → T be a mapping from faces to the topology types corre-

sponding to the standard entities a given face is isomorphic to. A section SV,F,f is the set

SV,F,f := {(l, h, g) : l ∈ L, h ∈ F, g ∈ F, h ⊂ g, (t1, t2) = (f(l)),Ty(h) = t1,Ty(g) = t2}. An

isomorphism between two sections with the same underlying schema and vertices, SV,F,f and

SV,G,f , is a mapping i((l, f, g)) = (l, i′(f), i′(g)) where i′ is an isomorphism between posets

F and G.

7.3.1.1 Representing Global Finite Element Spaces

Sections can represent global FE spaces. In particular, the elements of a section correspond

to global basis function after DOFs have been quotiented based on their identification as a

unique DOF type (a label) and a correspondence with a pair of nested facets. We can even

directly construct an equivalent to the broken FE space and the equivalence relationship

construction of the global space (See section 3.3). We do this explicitly in the case of a

mesh of a single largest cell type, for simplicity. Given a schema f : L→ T 2 and the largest

topological type T , we can construct f ′(l) = (t1, T ) where (t1, t2) = f(l). This generates a

section SV,F,f ′ where for every q ∈ F where Ty(q) = T , the subsets Lq = SV,{h∈F : h⊂q},f ′} are a

partition of SV,F,f ′ . This is the broken FE space where pairs of labels and faces identify local

DOFs. We can then define an equivalence relationship on SV,F,f ′ where (l1, t1, t2) ∼ (l′1, t
′
1, t

′
2)

if and only if l1 = l′1, t1 = t′1, and there is some t ∈ F such that (Ty(t1),Ty(t)) = f(l) and

such that t ⊂ t2 and t ⊂ t′2. Then SV,F,f ′/ ∼∼= SV,F,f , meaning we have recreated the global

FE space via a similar quotienting process, provided the equivalence relationship relies on
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glue DOFs based on their relationship to specific topological entities (such as the support of

a DOF (definition B.0.2)).

7.3.1.2 Software Representation and Computation of Sections

Sections are stored in a manner similar to how meshes are stored, mainly via isomorphisms

to standard entities. Suppose a mesh (V, F ), that we represent via storing an isomorphism

ie for every e ∈ F to some standard entity chosen per topological type. Given a mesh

(V, F ) and a section SV,F,f over some schema f , then every entity e ∈ F corresponds to a

subset Se,{f∈F : f⊂e},f and this will be isomorphic to Sie(e),{ie(f) : f⊂e,},f . This essentially creates

standard sections per standard entity, and we store the isomorphisms to the standard section.

To realize this as arrays requires ordering everything via a dictionary ordering induced via

some ordering on L (typically the order in which IPTEM were supplied). These arrays are

the typical cell to node mappings of FE systems.

Sections additionally can store mappings that relate the section to and from the mesh.

In particular, a section can store two mesh entity to section maps, defined rather obviously

via converting the section definition to CSR tensors. And similarly, a section can store two

section to entity maps, also defined rather obviously as arrays.

Sections are also computed similarly to meshes and along the lines the quotienting proce-

dure for global FE spaces. Given a schema and a mesh, a standard section is constructed per

each top level topological type. We create an isomorphic copy of this section for every top

level entity. Then we quotient the like entities based on the definition of a section (exactly

as in the construction used to model the global space). Then, we generate isomorphisms for

all entities that are not of top level topological type. Finally, we create the section to entity

maps by iterating over the isomorphism maps. Entity to section maps can be created on

demand.
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7.4 Global Fields

A global field is analogous to a local field input in an IPTEM. However, unlike the local field

input, the global field is for more than just code generation. Our global fields must provide

local fields to generate code via IPTEMs, and they must be a container for the global data

on the mesh, such as sections and arrays representing coefficients. They must also represent

a single field as well as a collection or basis of fields. We provide a core global field interface

that serves as a clear semantics of a global field and then separately indicate the data and

code generation aspects of the interface. These must be separable to facilitate generating

code independently of the underlying data.

7.4.1 Global Field: Core

In the context of global FE spaces, the semantics of a global field are very intuitive: they are

the semantics of a tensor field (or collection of fields) that you can sample at a point after

restricting it to an appropriate part of the mesh. We capture this idea with an interface

(section 7.4.1) that offers a field type, a mesh topology, the number of fields involved locally,

and the ability to sample on appropriate cells. The main contract is that the topological type

of the field is present in the mesh and that we can only sample entities of that topological

type.

1 class GlobalFie ldCore :

2 f l d : f i e ldType

3 def tabu la t e ( en t i t y : MeshEntity , po in t s : NDArray , d e r i v a t i v e s : int , b a s i s : Optional [

Bas i s ] = None) −> Tuple [ NDArray , ba s i s ] : . . .

4 localDim : Optional [ int ]

Source Code Listing 7.2: Semantic interface for global fields
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7.4.2 Global Field: Data

Global fields also hold global data, which can be semi-systematically categorized. We can

assume that input arrays to global fields should be paired with a section though we might

have a section without an array. However, for other inputs, we might have closures or really

arbitrary other arrays (for extensibility).

1 class GlobalFie ldData :

2 s e c t i o n : Optional [ Sec t i on ]

3 data : Optional [ NDArray ]

4 c a l l a b l e s : Optional [ L i s t [ Ca l l ab l e ] ]

5 other : Any

6 mesh : Mesh

7

8 def i s C o l l e c t i o n ( se l f ) :

9 return se l f . s e c t i o n is not None and se l f . data is None

10

11 def i sRep r e r s en t a t i on ( se l f ) :

12 return se l f . s e c t i o n is None and se l f . data is notNone

Source Code Listing 7.3: Runtime data that a global field must supply

7.4.3 Global Field: Code Generation

To generate global code on a global field, we will need to plug into our code from IPTEMs,

but we also need to supply information and get information for a global field. To plug into

IPTEMs, we just need to provide an appropriate symbolic field, but to plug that generated

code into the global context, we need to wire in information such as the current mesh entity

and so forth. Additionally, in the case of data with a section, we need to know the section

for the standard entity of the field (to keep code generation independent of data). This

interchange of information between a global field and code generation is hard to understand

out of context so here we provide a more abstracted interface.

1 class GlobalFie ldCode :
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2 def symbo l i cF i e ld ( se l f ) −> Fie ld | L i s t [ F i e ld ] : . .

3 def queryCode ( self , inputEnv : FieldCodeQuery ) −> Fie ldCodeResults : . . .

4 def l o c a l S e c t i o n ( self , s tandardEnt i ty ) −> Optional [ Sec t i on ] : . . .

Source Code Listing 7.4: Data provided by a global field at code generation time.

In particular, our code query interface supplies a FieldCodeQuery, which provides many values

that are used in code generation such as the number of derivatives we require and the

symbolic charts in use, but more importantly abstractly provides code for (at least):

• the world and reference positions that a field is being sampled at,

• the mesh entities (indices) that the samples live in,

• code for the parameterization of these entities (associated to symbolic charts),

• the orientations of the entities in terms of the relationship between the induced orien-

tation and global orientation,

• code to access any input global section via the given mesh indices,

• and the code to access the relevant parts of the field data with the global section

indices.

To be clear, by code we mean literal code as a data structure that cannot be executed but

is part of a code generation process; the indices of mesh entities are not literal, but some

snippet of code which when executed as part of a large program will be that value. The code

query interface then returns code for:

1. values of the fields at the given positions,

2. the global section indices (if they exist) corresponding to the field.

In addition to this code query interface, the interface also supplies a section, a standard

section (the same schema on the standard entity associated to the topological type of the
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field), that can be used to construct a global section on a yet unknown mesh. This allows

the code generation process to figure out how to access the global section data.

7.4.4 Global Field: Examples

We roughly sketch a few possible global fields that our system offers. These use the internal

infrastructure of IPTEM as well as the machinery described above and code generation

infrastructure described later ( section 7.8). We do not describe them in great detail, just to

sketch how they can conform to our above interface. These interfaces are highly extensible,

but would be hard to extend without extensive internal knowledge.

7.4.4.1 DOFs

Given a software representation of a FE, we can build a global field representing the basis.

The core comes directly from the definition and the data is the section you get from com-

piling the DOFs (section 5.5.1). The code generation interface uses the geometry (charts,

mesh entities) to generate code that constructs the Vandermonde inverse matrix. The code

generation interface simply makes use of the orientations to emit code to construct a matrix

to adjust the DOFs for re-orderings of the vertices of mesh entities. Finally, the code gener-

ation interface combines these with tabulations of values in a reference space to supply the

desired values. The code generation interface also returns access to the global section based

on the section, which will be supplied in the context of the code.

7.4.4.2 DofFunction

Naturally, in addition to the FE basis functions, we want arbitrary linear combinations of

these. A DofFunction is like DOFs with an array to specify the linear combination and

with a slight change to the code generation process: we must also emit code to access the

coefficients and then contract these against the sampled basis functions.
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7.4.4.3 Pointwise Function

Given an arbitrary Python function and a field type, we can construct a pointwise function

(provided that the field only deals in Euclidean spaces). The core is the field type and the

ability to sample the pointwise function. The code generation simply emits code to call the

function at world points. Obviously, no section is outputted.

7.4.4.4 Pointwise Fields from Other Fields

Given other global fields that represent a single field (as opposed to a basis), we can utilize

pointwise tensor expressions on manifolds to make another global field. We do this to support

taking a gradient of a global field outside of an integral, facilitating code reuse, The code

generation will compile the pointwise tensor expression to determine how to query the input

fields, use the query in the pointwise tensor expression, and then supply the output pointwise

values. We again exploit the idea of pointwise here so that when we query the field at some

pointwise values the values are simply propagated back to the inputs, along with any required

geometry/index information.

7.4.4.5 Vector Functions

Piecewise constant fields are sufficiently important that we highlight them. These are useful

for defining lots of mesh quantities such as cell permitter or cell size indicators or cell normals.

We need to realize some of these on the mesh to compute them as some quantities are averages

across cells, most notably cell size indicators, which can be useful for DG methods, Nitsche’s

method, and measuring convergence. Given an IPTEM with no non-default field arguments

and a Euclidean tensor output, we essentially have a mechanism to specify a vector on the

associated mesh entity, and these vectors can be reduced (listing 5.7). The core is simply

the field type of the output of the IPTEM. The data has an output section describing where

vectors are on the mesh and an array describing the vectors. The code generation simply

emits code to access the appropriate vector depending on the mesh entities.
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7.5 Sub-Meshes and Sub-Sections

Meshes and sections have subsets, representing sub meshes (including boundaries) and sub-

spaces. These are simple to define and our main focus is on constructing subsets, as this is

where our generality shines.

Definition 7.5.1 (Sub-Mesh). Given a mesh (V, F ), a sub-mesh is simply some other mesh

(V ′, F ′) with V ′ ⊂ V and F ′ ⊂ F .

We note that this is differently from simply a subset of mesh:

Definition 7.5.2 (Mesh Subset). Given a mesh (V, F ), a mesh subset is simply a subset

F ′ ⊂ F .

For sections, sub-sections are like mesh subsets:

Definition 7.5.3 (Sub-Section). Suppose we have a mesh (V, F ) and a schema f : L→ T 2,

generating a section SV,F,f . A sub-section is simply a subset of SV,F,f .

Sub-sections and sub-meshes can be constructed in a variety of ways, showcasing how

various global aspects of the system come together. We depict the situation in fig. 7.1. Sub-

meshes and sub-sections can be constructed from external data or the special case of the

topological boundary constructed from the relationships between mesh entities. Critically,

a sub-mesh (V ′, F ′) can be propagated to a sub-section:

Definition 7.5.4 (Propagation). Given a sub-mesh (V ′, F ′) and a section SV,F,f , the prop-

agation of the sub-mesh to a sub-section is given by

{(l, t1, t2) : (l, t1, t2) ∈ SV,F,f , t1 ∈ F ′}.

This simply extracts the portion of the section where the entities are on the sub-mesh;

this captures the usual boundary basis functions of a FE space. However, critically, we can
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also go the other way sometimes. If we have a schema f : L → T 2 where π1 ◦ f is injective,

then any section over f can be converted into a sub-mesh.

Definition 7.5.5 (Submersion). Given a subset S of a section SV,F,f where π1◦f is injective,

we can define a subset mesh via first defining a subset F ′ ⊂ F via:

F ′ = {f ∈ F : ∃!(l, t1, t2) ∈ SV,F,f s.t.t1 = f}.

and then we can define a sub-mesh (V ′, F ′′) as the smallest mesh such that F ′ ⊂ F ′′. We

call this sub-mesh a submersion.

This little bit of topological ingenuity allows all sorts of data to be transported to sub-

meshes, such as using Lagrange elements to identify a boundary. Finally, assembled outputs

with a given section can be used with a predicate to filter a section or sub-section, via a where

constructed to be discussed in section 7.6.2. Additionally, we note that subsections and sub-

meshes can be trivially combined with boolean operations, including and/or/complement,

as they are simply masks. We now proceed to discuss the assembled outputs, the runtime

output of generated code, which can be used to create these sub-meshes via filtering or global

fields using reductions. We will see that these can also be sliced and filtered via sub-meshes

and subsections, facilitating the construction of many algorithms, such as elimination of

boundary DOFs.

7.6 Global Assembly Interface and Semantics

With the necessary global discrete machinery in place, we can produce our global interface.

We do this in two stages, the combination of which will yield many possible global compu-

tations. First, we discuss the genericAssembly function, which produces SVAO (definition 7.1.4)

like objects. Then we discuss operations on these.
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Figure 7.1: Mechanisms for constructing sub-meshes and sub-sections
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7.6.1 Generic Assembly

The signature of genericAssembly is depicted in listing 7.5.

1

2 def gener icAssembly (

3 mesh : mesh ,

4 exp r e s s i on s : L i s t [ In t eg ra tedPo in tw i s eExpre s s i on ] | FiniteElement ,

5 l i n e a r I npu t s : L i s t [ Globa lF ie ld ] ,

6 nonLinearInputs : L i s t [ Globa lF ie ld ] | dict [ str , [ G loba lF ie ld ] ] ,

7 ) −> AssemblyOutput :

Source Code Listing 7.5: The Generic Assembly Interface

The interface mirrors the requirements for a SVAO: a mesh, IPTEMs (potentially from an

element), a list of global fields that match the linear inputs of all IPTEMs, and a list of

non-linear functions that match arguments via keywords in various IPTEM. The output,

AssemblyOutput, is essentially a high dimensional COO tensor with some meta-data per dimen-

sion. An AssemblyOutput has dimensions that closely mirror those of a SVAO:

1. The first three dimensions, corresponding to a schema over the IPTEMs, the integration

domains (mesh entities) of the IPTEMs, and the section generated by the IPTEMs over

a mesh.

2. The next dimension is associated to the mesh entity in which the calculation was

performed (the top chart in our IPTEM).

3. Then there are three dimensions per linear input that has a section, mirroring those

of the first three dimensions (the mesh entity used to sample the field, the global

section index, and the local index of the global section index according to the section

isomorphism on the mesh entity).

4. Finally, for each linear input without a section or non-linear, we include a dimension

for the mesh entity where the input was sampled.

153



The meaning of an entry of this tensor closely mirrors that of an entry of a SVAO. The only

major deviation is the second dimension, which is an implementation aspect: we seek to

compute the IPTEMs together so for example a group of edge and cell integrals for a cell

field can be computed on a cell together, which we can record. However, this turns out to

be more computable than the SVAO because our meshes are conforming and functions are

C∞ on certain faces; in particular, this means that the intersection of integration domains

and the domains where inputs are smooth is always a given mesh entity. In particular,

by construction of the IPTEM, the integration domain must be a subset of all incoming

domains (see section 5.4). Thus, the generic assembly interface produces a SVAO with some

additional metadata and where every known domain is exactly represented by a discrete mesh

entity.

To be a bit more precise semantically, we can exactly write down the sparsity pattern

with a bit of machinery and provide meaning to each entry. Suppose the mesh is (V, F ).

And suppose that the output schema is f so we have a section SV,F,f . Further suppose we

also have input schema fi with SV,F,fi for i = 1, . . . , N . Finally, since each input has a field

type, we know it is sampled on a domain of a given type tyi for i = 1 . . . , N +M , and we

call the corresponding subset Fi = {f : f ∈ F,Ty(f) = tyi}. For the linear inputs, we know

that the section SV,F,fi grants us, for each ci ∈ Fi, an isomorphism Sci from the section on

the standard entity of ci to the section SV,ci,fi . Finally, let ty be the largest type of all inputs

and let F ′ = {f : f ∈ F,Ty(f) = ty}. Now we define:

Definition 7.6.1 (Subset-N relationship). Given a mesh topology (V, F ), we say that

(f1, . . . , fN) ∈⊂N
V,F if and only if there is a 1 ≤ j ≤ N such that fj = ∩ifi.
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The sparsity pattern of the assembly routine is given by:

P = {(l, t0, s0, t, t1, s1, li . . . , tN , sN , lN , tN+1, . . . , tN+M) :

s0 = (l, t0, t
′
0) = t0 ∈ SV,F,f , si ∈ SV,F,fi , ti ∈ Fi, t ∈ F ′,

(t, t0, . . . , tN+M) ∈⊂1+N+M (V, F )

ci(li) = si

}.

And the meaning of each entry can be made precise: the semantics of global fields plus the

semantics of IPTEM give us a recipe to calculate an entry. As a final note on semantics, we

note that at a call to generic assembly, the system:

1. Generates code that is independent of the underlying mesh or data or sections of the

input fields. The code depends only on their code aspects, section 7.4.3.

2. For the given mesh, computes the output section.

3. Calls the generated code, producing the sparsity pattern and values for each non-zero.

We note this to state that code generation is appropriately separated from the input data.

We also note this to state that the construction of sections occurs via generic assembly and

thus emerges naturally rather than through a separate construction process.

7.6.2 AssemblyOutput Operations

The output to generic assembly, AssemblyOutput, supports a variety of post-processing methods:

reductions, where, slice, and slice-set. Additionally, meta-data from the IPTEMs allow

sensible defaults on these. In particular, the choice of reductions can be indicated in the

IPTEM and good defaults exist if they are not specified which produce the usually desired

behavior for operators and DOFs. We now outline the interface to each operation in turn. For
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reductions, we support reduction over the non-specified axes and the reduction can be chosen

up to indices from the specified axes. The defaults are inferred from the IPTEM’s default

reductions, which can be overridden in the global case (see listing 5.7). Via the metadata

for reductions and IPTEMs included, we support (when possible) automatic conversion to

a global field (e.g., for interpolation) or automatic conversion to a scalar or dense vector or

sparse matrix. The interfaces are summarized in listing 7.6. Slicing functionality is similar

to slicing in numpy except that dimensions are sliced with our global constructions: sub-

sections, sub-meshes, list of IPTEM, or indices for local linear inputs. Slicing can simply

extract a slice, but the non-zeros of a slice can also be set. As a convenience, we offer

an option to set the diagonal over two axes, useful for boundary conditions. Slicing is

detailed in listing 7.7. Finally, we offer a where-functionality that allows us to construct

subsections, sub-meshes or just lists of indices. The interface is detailed in listing 7.8. As a

final addendum, we note that users can extract the output section and dimension information,

which is how we expect users to get such information. This is detailed in listing 7.9.

1 # Reduction op t i o n a l l y us ing i n d i c e s and/ or the number o f non−ze ro s in the reduct i on reg i on .

2 Reducer = Ca l l ab l e [ [ NDArray ] , NDArray ] | Ca l l ab l e [ [ int , NDArray ] , NDArray ] | Ca l l ab l e [ [

NDArray , NDArray ] , NDArray ] | Ca l l ab l e [ [ int , NDArray , NDArray ] , NDArray ]

3

4 def reduce ( ao : AssemblyOutput , axes : Optional [ L i s t [ str ] ] = None, r educer : Optional [ Reducer ]

= None) −> AssemblyOutput : . . .

5 def a sSca l a r ( ao : AssemblyOutput ) −> Optional [ f loat ] : . . .

6 def asDenseVector ( ao : AssemblyOutput ) −> Optional [ NDArray ] : . . .

7 def asSc ipySparseMatr ix ( ao : AssemblyOutput , format : str = "coo" ) −> AssemblyOutput : . . .

Source Code Listing 7.6: Reduction Interfaces

1

2 s l i c e I n d e x = L i s t [IPTEM] | SubSect ion | SubMesh | NDArray | IPTEM | int

3

4 def s l i ce ( ao : AssemblyOutput , dimensions : L i s t [ str ] , subs e t s : L i s t [ s l i c e I n d e x ] ) −>

AssemblyOutput

5

6 Se t t e r = Zero | f l a t | Ca l l ab l e [ [ NDArray , NDArray , NDArray ] , NDArray ] | AssemblyOutput
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7 # The second to l a s t opt ion takes s l i c e i nd i c e s , cur r ent va lue s o f the s l i c e , and the non−

ze ro s o f the s l i c e .

8 # The l a s t opt ion must have been s l i c e d on the appropr ia t e dimensions with the same subse t s .

9

10 def s e t S l i c e ( ao : AssemblyOutput , dimensions : L i s t [ str ] , subs e t s : L i s t [ s l i c e I n d e x ] , s e t t e r :

S e t t e r = Zero ) −> AssemblyOutput : . . .

11

12 def se tDiagona l ( ao : AssemblyOutput , dimension1 : str , dimension2 : str , subset1 : s l i c e I nd ex ,

subset2 : s l i c e I ndex , va l : f loat | NDArray) −> AssemblyOutput : . . .

Source Code Listing 7.7: Slice Interfaces

1

2 s l i c e I n d e x = L i s t [IPTEM] | SubSect ion | SubMesh | NDArray | IPTEM | int

3

4 Fi l t e rTy = a l l Z e r o | a l lNonZero | Ca l l ab l e [ [ int , NDArray , NDArray ] , bool ]

5

6 def where ( ao : AssemblyOutput , f i l t e r : Optional [ F i l t e rTy ] = None) −> s l i c e I n d e x : . . .

Source Code Listing 7.8: Where Interfaces

1

2 def shape ( ao : AssemblyOutput , dim : str ) −> int : . . .

3

4 def outSect ion ( ao : AssemblyOutput ) −> Sect i on : . . .

Source Code Listing 7.9: Metadata Interfaces

7.7 Overall User Workflow

We depict an overall user workflow in fig. 7.2. As stated previously, the idea is to start with

a few bespoke objects and then use IPTEMs and assembly to progressively build others that

various post-processing operations convert to more objects to build or post-process further

global objects. In this version, we also suggest how this would interact with a full pipeline,

involving solvers and other external user code.
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Figure 7.2: Overall Global Work Flow
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7.8 Code Generation

We provide a parsimonious global abstraction for a wide variety of FEM computations

through our modeling and decomposition of global FEM objects and through code gen-

eration to produce a SAVO like object from meshes and global fields. In particular, our

code generation system leverages the IPTEM pipeline to generate the local part of the code

while the stitching the rest together through a demand driven query system where the code

generation models of the inputs are queried from the IPTEM local code to generate code

to supply the IPTEMs with inputs and to stitch together the outputs into an appropriate

sparsity pattern. By design, this code generation process finishes the process of address-

ing the main challenges of global code generation (section 3.4), demonstrating our system’s

ability to adapt various FEM computations to different FEM spaces or other FEM inputs.

Additionally, our code generation process ensures a careful separation between runtime and

compile-time data: facilitated by the IPTEM compiler, the standard mesh entities, and the

code portions of global fields, we can compile and reuse code on multiple meshes/arrays/etc.

Before detailing our demand driven code generation process, we quickly detail the target.

7.8.1 Code Generation Target

In practice, we target Jax [128]. Jax supported a fair variety of COO operations via its

BCOO tensor, making it suitable for the runtime. For the code generation target, we needed

the ability to compile formulas (listing 5.2) as well as loops, a few numpy-like operations

(meshgrid, ones, zeros, selection, shape management), and gather operations. Additionally,

forward mode automatic differentiation is not strictly needed, but useful for querying the

derivatives of global fields provided by pointwise operations. Jax provides all of this. We

could re-target the backend to other projects such as Codon or PyTorch 2 in the future [129],

[130].

159



7.8.2 Overall Pipeline

The overall code generation process is summarized via fig. 7.3 and listing 7.10. The former

figure depicts our demand driven pipeline for adapting IPTEM, meshes, and global fields to

compute our AssembledOutput, producing several different bits of data to facilitate this. The

latter figure depicts how the output of the demand driven pipelines is stitched together into

code that computes the SAVO. We do not go into detail as most of the steps are not that

revealing - they are mainly glue; rather it is their arrangement in this manner that facilitates

a single pipeline for all the various FEM tasks. We describe them abstractly, showing the

information flow adopting to the inputs. Perhaps the best way to understand this is that

first we set up a symbolic context for local computation, and then we extrapolate back from

the compiled local computation to a global loop nest, generating code backwards from the

order in which it appears.

1. First, from all the inputs, we compute the topological type and symbolic chart where

computation will occur and where various fields will be queried. We just gather all

topological types used in input fields and the IPTEM. Naturally we check this against

the types of entities that a mesh has. However, there is one subtle decision process

that must occur here: if there is an IPTEM with an integration topological type that

is smaller than the topological type associated to the inputs, then for the other inputs,

we might need charts to represent nearby cells; in particular, we only need them if the

reduction is not choice (as in choice we can just pick one value for multiple fields).

For every chart type present in an input above the integration chart, we must add

one external chart that the topological enumeration process can use to represent the

possible other mesh element that also includes the integration domain. See section 5.3.6

for the accompanying details on topological enumeration.

2. Second, from the inputs, we can query for symbolic field(s).

3. Third, with the charts and the symbolic fields that global fields provide, we can call
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our IPTEM pipeline, providing us the local code that we will call in the innermost

loop of our global code. We do this favoring the non-simplifying mode discussed in

(section 5.5.2) - in other words, we maintain an output representation that looks like

Einstein summation notation plus a pointwise function.

4. Fourth, from the local code, we can infer a section on a standard mesh entity, which

can be used to generate the global section for the output data ( section 5.5.1). In

particular, we use the meta-data produced in the IPTEM process to build a schema

and to track how the various output formulas map to the schema. This will be used to

build the output section and to determine how to assign local outputs global section

indices.

5. Fifth, also from the local code and its metadata, we can see what fields and derivatives

are queried in what charts at what points, which allows us to query the tabulation

interface for the code of global fields. This gets us code that computes fields and

derivative values depending on the mesh entities (for indices, chart data) and other

global input arrays. In some sense, this step is simply piping metadata from the IPTEM

compilation to the field code generation interface.

6. Sixth, we also query the field interface for code to query the sections (where applicable)

on input fields so these can be placed into the indices of the output appropriately.

7. Seventh, we can examine the usage of charts in the compiled IPTEMs and in the field

code queries to determine what mesh entities and mesh relationships are queried. We

can use this to set up the outermost loop that goes over some collection of mesh entities

and inner loops that go over queries of mesh entities that are related via ⊂ to the entity

from the outermost loop. The inner loops over entities only exist in the case where

back in step 1 we had to query inputs from neighboring cells.

8. Eighth, with the code to query mesh entities, input sections, and output sections, we
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can generate code for the indices of the output.

9. Ninth, from the input fields and the required mesh relationships/entities, we can de-

termine the various input arguments to our generated code.

10. Tenth, we can now stitch all of this together into a single output template listing 7.10.

We have code for output values, output indices (mesh, sections), field queries, mesh loop

structures, and arguments to the field. These are all glued together in the template.

.

1

2 def outputSect ion (mesh : Mesh , l o c a l S e c t i o n : Sect ion , l o c a t i o n : TopType) −> Sect i on :

3 . . . # U t i l i z e (1 ) and s e c t i o n con s t ruc t i on from schema and meshes

4

5 def compute ( outSect ionArrays , # (1)

6 meshTopologyArrays , # (6)

7 meshVertices ,

8 meshRelat ionships ,

9 nTopCell ,

10 i nputF i e ldSec t i on s , inputFie ldArrays , inputFie ldOtherArgs , # (4)

11 ) −> Tuple [ Array , Array ] :

12 for topCe l l in range ( nTopCell ) : # vmap

13 # Use (6 ) to get v e r t i c e / t op o l o g i e s o f mesh

14 # Use (6 ) to loop other r e l a t e d c e l l s :

15 for o th e rCe l l s in . . . : # vmap

16 # Use (6 , 5 ) to s e t up geometry data

17 # (6 ,5 , 2) to s e t up quadrature r u l e s / po in t s

18 # (6 ,5 , 3) to query f i e l d s

19 # (0 , 5 ,4) to compute block o f output va lue s

20 # Use (1 , 4 , 6 ) to compute block o f i n d i c e s o f output va lue s

21 # Return a l l b locks o f va lue s and i n d i c e s

22

23 def outputCode (mesh , inputL inearF i e ld s , inputNonLinearGlobalFie lds ) :

24 l o c a l S e c t i o n = # Use (1 )

25 topType = # Use 1

26 outputSect ion = outputSect ion (mesh , l o c a l S e c t i on , topType )

27 # Do setup f o r mesh

28 meshTopologyArrays = # From mesh and (5 )

29 meshVert ices = mesh . v e r t i c e s
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Figure 7.3: Our global code generation pipeline up to the final stitching together of the
code.
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30 meshRelat ionsh ips = # From mesh and (5 )

31 nTopCell = # From mesh and (5)

32 # For each input , s e t up , c r e a t i n g a s e c t i o n i f i t doesn ’ t e x i s t :

33 i npu tF i e l dSe c t i on s = [ ]

34 inputFie ldArrays = [ ]

35 inputFie ldOtherArgs = [ ]

36 for f i e l d in i npu tL inea rF i e l d s :

37 # Append args

38 for f i e l d in inputNonLinearGlobalFie lds :

39 # Append args

40 ( va l s , i n d i c i e s ) = compute ( outSect ionArrays , meshTopologyArrays , meshVertices ,

meshRelat ionships , nTopCell , i nputF i e ldSec t i on s , inputFie ldArrays ,

inputFie ldOtherArgs )

41 return ( outputSect ion , va l s , i n d i c e s ) # To be wrapped in AssembledOutput with metadata .

Source Code Listing 7.10: A visual depiction of how the various intermediate outputs

of our global code generation process are stitched togeather to produce a global kernel

function.

7.9 Applications

As an application of our infrastructure and evidence of its adaptability and expressivity,

we show how to use it to accomplish various tasks. Some tasks, such as interpolation for

general elements or assembly of general operators, emerge straightforwardly from our in-

terface. Interpolation can always be accomplished via genericAssembly(mesh, finiteElement, [inputField

]) .asInput() and operator assembly via genericAssembly(mesh, operatorIPTEM, [inputDofsField1, inputDofsField])

.asScipyMatrix(format="csr"). A more impressive task is general boundary conditions, as we ex-

plained in section 2.6. We can chain our interface to build a boundary condition enforcement

infrastructure that can adapt to the incoming mesh and element. To demonstrate this, we

provide a version of assembleConstraints that detects a set of boundary conditions for elimination.

See listing 7.11. Our algorithm uses the idea from Nitsche’s method described in sec-

tion 2.4; we observe that enforcing a boundary condition Bu = f via an elimination method
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requires that the term,
∫
∂Ω
BvBu, be zero on DOFs not associated to the boundary. When

this is the case, we expect the extra terms in a weak formulation associated to BCs to van-

ish. Thus, we can assemble the operator on the boundary and use our where functionality

to extract the DOFs that impact boundary integrals. Then we can compare this to the

DOFs that are associated to the boundary topologically, using propagation of a sub-mesh

to a section to create a subsection. If the relevant DOFs are all topologically associated to

the boundary, we can eliminate them, returning the subsection; otherwise, we must return

None. The assembleConstraints function uses this subsection or lack-thereof to provide an object

users can interrogate to enforce BCs.

1

2

3 def assembleConstra intsFindSubSect ion (mesh , meshSubset , operatorPointwise , do f s ) :

4

5 # Form Boundary operator :

6 i n t e g r a l = I n t e g r a l ( BoundaryChart )

7 operatorPre = Pointwise ( [ ( "u" , do f s . f i e l d ( ) ) , ( "v" , do f s . f i e l d ( ) ) ] , lambda u , v :

operatorPo intwi se (u) . dot ( operatorPo intwi se ( v ) ) )

8 IPTEM = IntegratedPointwiseTensorExpr ( operatorPre , i n t e g r a l , BoundaryChart )

9

10 # Assembly boundary matrix

11 oper = gener icAssembly (mesh , IPTEM, [ dofs , do f s ] ) . reduce ( [ " InputDofs0 " , " InputDofs1 " , "

IntegrationDomain " ] )

12 # Set a l l non−boundary i n t e g r a l s to zero .

13 oper [ : , : , ~meshSubset ] = 0 .0

14 # Extract boundary DOFs that impact boundary i n t e g r a l :

15 oper = oper . reduce ( [ " InputDofs0 " , " InputDofs1 " ] )

16 us edEnt i t i e s = oper . where ( [ " inputDofs0 " ] )

17 # Propagate Dofs to get the Dofs based on the sub−mesh .

18 standardBoundaryDofs = propagate ( meshSubset , oper . i nputSec t i on s [ 0 ] )

19 # an e l im ina t i on method r e qu i r e s that every en t i t y that impacts boundary cond i t i on i s on

the boundary

20 i f us edEnt i t i e s <= standardBoundaryDofs : :

21 return us edEnt i t i e s

22 else :

23 return None
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Source Code Listing 7.11: An algorithm to determine if the DOFs that influence a

boundary condition are associated to the boundary, allowing them to be eliminated from

the linear system.
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Chapter 8

Evaluation

To evaluate our system, we construct several applications of interest to computer graph-

ics where we can utilize a variety of elements: a biharmonic smoothing energy, a Hodge

Decomposition, and a Stokes flow. For each application and relevant element, we validate

the application via convergence plots and we also supply a simplistic analysis of some of

the trade-offs between elements. Thus, these applications demonstrate the potential utility

of changing elements to computer graphics applications. In some cases, these results are

known, though they have never been achieved in a truly automated fashion and are not

widely available to the graphics community.

To evaluate how our system achieves the above, we conduct three experiments to show

that:

1. Our system can specify FEs concisely compared to other systems, in large part due to

our automatic capabilities.

2. Our system can specify FEs in a malleable manner: the code required to implement

new elements given the infrastructure of old elements is small, so the code to vary

elements is small.

3. Our system’s automation does not cost us when it comes to the FE transformation
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theory - the code generated by our system require roughly the same work as compared

to the transformation theory deduced by hand.

Through the variety of applications, we hope to demonstrate that our system is sufficiently

expressive to specify most elements that are available in the world.

Taken together with the applications we believe these demonstrate that:

1. Our system offers a complete and concise mathematical specification of a FE.

2. Through our system’s specification of FEs and operators, we can achieve novel au-

tomation of the use of FEs for a variety of problems.

3. Our system creates simulations of broader interest to a variety of communities.

8.1 Applications

8.1.1 Biharmonic Energies

8.1.1.1 Problem Setup

Fourth-order problems are a central motivator for the development of scalar elements beyond

the Lagrange element. The model fourth-order problem is the biharmonic equation:

∆2u = f. (8.1)

The biharmonic equation emerges in many contexts, and we study several representing ge-

ometry processing and simulation concerns. Our contexts include a variety of BCs, including

Dirichlet conditions:

u|∂Ω = h and
∂u

∂n
= g (8.2)
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for some given scalar functions h, g. In simulation contexts, these are sometimes known as

clamped plate BCs. Simulation contexts also utilize a form of natural BC given by

∂u

∂n
= g and

∂∆u

∂n
= h. (8.3)

However, we also study the natural BCs, which occur in smoothing applications [20], [58]:

nHun = 0 and
∂∆u

∂n
+

∂u

∂ntn
= 0 (8.4)

where t is a vector tangent to the boundary. In smoothing applications, we also see interpo-

lation constraints:

u(xi) = fi (8.5)

where xi ∈ Ω (typically vertices of the mesh) and fi ∈ R.

Finally, any of these BCs could be combined with a biharmonic eigenvalue problem:

∆2u = λu. (8.6)

For example, the solution to the eigenvalue problem under the Dirichlet conditions provides

the vibrational modes of a surface clamped at its boundaries.

8.1.1.2 Operators

Using our system, we implement the following operators to represent the biharmonic equa-

tion. We have discussed these before in the examples, so we will not provide code here. We

use a Hessian-Hessian inner product for the equation:

aH(u, v) :=

∫
Ω

(Hu, Hv). (8.7)
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Naturally, for the right hand side or the eigenvalue problem, we need a mass operator:

m(u, v) =

∫
Ω

uv. (8.8)

To implement various BCs variationally (Neumann or Dirichlet via Nitsche’s method [131]),

we utilize terms from the following operator:

aB(u, v) :=

∫
∂Ω

v
∂∆u

∂n
+

∫
∂Ω

∂v

∂n
∆u+

∫
∂Ω

uv +

∫
∂Ω

∂u

∂n

∂v

∂n
. (8.9)

For natural BCs in smoothing, we do not need operators to enforce them. To enforce

point constraints, we need linear operators that correspond to point evaluation at a fixed set

of points {xi}Ni=1:

P (u) = (u(x1), . . . , u(xN)) ∈ RN . (8.10)

Also, to validate the BCs numerically1, it is useful to have the following non-linear operator:

eB(u) =

∫
∂Ω

(nHun)
2 + (

∂∆u

∂n
+

∂u

∂ntn
)2. (8.11)

Similarly, to check if an element is valid to use for a biharmonic problem on a given mesh

(some unconditionally work, but others do not), it is useful to consider the patch test operator

that operates on the interior edges ∪ei ⊂ Ω with the notation that K0,i and K1,i are the two

cells that include ei:

t(u, v) =
∑
i

∫
ei

(∇u|K0,i
−∇u|K1,i

) · v. (8.12)

If v is drawn from discontinuous piecewise linear functions defined the set of edges, then

t ≡ 0 when u is drawn from a given global finite element space is a necessary condition to

use an element to solve a biharmonic problem.

Since we wish to compare to prior work, mainly [20], [132], we need operators to imple-
1As a minor note, we used this to provide the first numerical validation of the BC offered in [20]
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ment a mixed method for the biharmonic equation. These come from the Laplace equation

except for smoothing, where we need a few additional operators, including an inner product

on matrix-valued functions that represent Hessians and an integration of the divergence of

a matrix against the gradient of a scalar function:

aDiv,∇(Λ, u) =

∫
Ω

∇ · Λ · ∇u. (8.13)

8.1.1.3 Elements

We use the following elements on this problem: affine Lagrange, Morley, Hermite, Bell,

Argyris. For the purpose of later analysis, we provide code. The Lagrange element in our

system is:

1 cty0 = ChartType (0 )

2 @pointwiseEval ( , barycent r i cCoord inate =0.0)

3 def vertexEval (u : f i e l d ( cty0 , R) ) :

4 return u (0)

5 LagrangeTri = Syb i l .FE(2 , 1 , [ vertexEval ] )

Source Code Listing 8.1: Affine Lagrange DOFs

The Morley element uses quadratic polynomials, the affine Lagrange DOFs, and evalua-

tions of the gradient normal at midpoints. We note that the normal direction is computed

with a global Hodge star on Euclidean space to ensure the value is consistent on edges

examined from different cells:

1 cty1 = ChartType (1 ) # On ob j e c t s o f dimension 0

2 @pointwiseEval ( cty1 , barycent r i cCoord inate =(0.5 , 0 . 5 )

3 def morleyDof ( c : cty1 , u : f i e l d ( cty , R, 1 , eu c l i d eanDe r i va t i v e=True) ) :

4 return P. hodge (u (1 ) ) . dot ( c .E( c . tangentVectorBas i s (0 ) ) )

5 Morley = EF.FE(2 , 2 , [ vertexEval , morleyDof ] )

Source Code Listing 8.2: Morley DOFs

Hermite DOFs are cubic and use Lagrange DOFs plus edge gradients and a center eval-
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uation.

1 f l d = f i e l d ( cty0 , R, 1 , eu c l i d eanDer i va t i v e=True)

2 @pointwiseEval ( cty0 , barycent r i cCoord inate =0.0)

3 def xDervDof (u : f l d ) :

4 return u (1) [ 0 ]

5 @pointwiseEval ( cty0 , barycent r i cCoord inate =0.0)

6 def yDervDof (u : f l d ) :

7 return u (1) [ 1 ]

8 cty2 = ChartType (2 )

9 @pointwiseEval ( cty2 , barycent r i cCoord inate =(1/3 , 1/3 , 1/3) )

10 def centerDof (u : f i e l d ( cty2 , R, 0) ) :

11 return u (0)

12 HermiteDofs = EF.FE(2 , 3 , [ vertexEval , xDervDof , yDervDof , centerDof ] )

Source Code Listing 8.3: Hermite Dofs

The Argyris DOFs utilize the Hermite gradient DOFs plus the Morley DOFs and three

additional Hessian DOFs per vertex:

1 f l d = f i e l d ( cty0 , R, 2 , eu c l i d eanDer i va t i v e=True)

2 @pointwiseEval ( cty0 , barycent r i cCoord inate =0.0)

3 def xxDervDof (u : f l d ) :

4 return u (2) [ 0 , 0 ]

5 @pointwiseEval ( cty0 , barycent r i cCoord inate =0.0)

6 def yyDervDof (u : f l d ) :

7 return u (2) [ 1 , 1 ]

8 @pointwiseEval ( cty0 , barycent r i cCoord inate =0.0)

9 def xyDervDof (u : f l d ) :

10 return u (2) [ 0 , 1 ]

11

12 ArgyrisDof = EF.FE(2 , 5 , [ vertexEval , xDervDof , yDervDof , morleyDof , xxDervDof , yyDervDof ,

xyDervDof ] )

Source Code Listing 8.4: Argyris DOFs

Finally, the Bell DOFs uses the Argyris DOFs except the Morley DOF. Instead, the Bell

space consists in quintic polynomials whose normal gradients are cubic polynomials on each

edges. To enforce this, we add Morley-like DOF that use the Legendre DOFs to the space:
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1 @po intw i s e In teg ra l ( cty1 )

2 def be l lSpaceDof ( c : cty1 ,

3 u : f i e l d ( cty1 , R, 1 , eu c l i d eanDe r i va t i v e=True) ,

4 v = legendreDof s (5 ) . bas i sFunct ion (4 ) ) :

5 return u (1) . dot ( c . normalBasisVector (0 ) ) ∗ v (0 )

6 Bel lDo f s = EF.FE(2 , P(5 , nu l lDo f s =[ be l lSpaceDof ] ) , [ vertexEval , xDervDof , yDervDof ,

xxDervDof , yyDervDof , xyDervDof ] )

Source Code Listing 8.5: Bell Dofs

The Legendre DOFs are just L2 duals of the monomials:

1 def l egendreDof s ( deg : int ) :

2 do f s = [ ]

3 for d in range ( deg + 1) :

4 @po intw i s e In teg ra l (ChartType (1 ) )

5 def l egendreDof ( c : ChartType (1 ) , u : f i e l d (1 , R) ) :

6 return ( c . x∗∗d) ∗ u (0 )

7 do f s . append ( legendreDof )

8 return EF.FE(1 , P( deg ) , do f s )

Source Code Listing 8.6: Legendre DOFs

8.1.1.4 Validation

To validate our system, we provide a convergence study on a model problem: the biharmonic

equation with homogeneous Dirichlet BCs on the unit square. We use the analytical solution

u(x, y) = (x(x − 1)y(y − 1))2. We compared the mixed method from [20], [132] to an

implementation using the operators in (8.7) and (8.8) with boundaries enforced by querying

our system for the nodes corresponding to the Dirichlet BCs. This amounts to a few lower

level calls made automatically in the system to the last two terms of the operator in (8.9).

By comparing to other literature [63], we have validated that the DOFs selected for the BCs

are correct. Since our particular variation of the Argyris and Bell elements only supports

BCs on certain types of meshes (compare to [133], [134]), we also provide convergence data

for a Nitsche method formulation [131] that utilizes all of the terms in (8.9). The results are
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Figure 8.1: Convergence data for fig. 8.2.

depicted in fig. 8.2 and fig. 8.1. The results validate the system, as convergence is in line

with theoretical predictions.

To validate the system on a more realistic mesh, we provide the first six eigenvectors of

the Hessian operator with natural BCs, allowing a visual comparison with [20]. To make the

comparison possible here, we also provide the first six eigenvectors via the mixed method

described in [20]. The results in fig. 8.3 show that the first six eigenvectors have roughly

the expected structure on a more complex mesh. We also include Hermite elements in this

example to show that they provide visually reasonable results, although they do not pass

the patch test and do not converge on meshes used in our convergence validation.

8.1.1.5 Trade-Offs

To visually motivate our discussion of the trade-offs between elements for Biharmonic prob-

lems, we consider the interpolation problems from [20]. We replicate the mixed method

described in [20] and utilize a direct method via (8.7) with four elements: Morley, Hermite,
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Figure 8.2: Visualization of Solutions to the Biharmonic equation on the square with dif-
ferent elements and meshes. Meshes were refined by subdividing into squares and convert-
ing each square into four triangles. Methods labeled M are mixed, N use Nitsche, and D
use standard Dirichlet boundary conditions. All function were rendered via evaluating at
vertex values and linearly interpolating between these.
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Figure 8.3: The first six eigenfunction of the Hessian energy operator with natural bound-
ary conditions as described in [20]. All functions were rendered via evaluating at vertex
values and linearly interpolating between these.
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Figure 8.4: Biharmonic interpolation on a low poly mesh via different elements. The five
points on the figure were interpolated from top to bottom to the values 1, 0, 1, 0, 1. All
functions were rendered via evaluating at vertex values and linearly interpolating between
these.

Bell, and Argyris. We apply all methods to a low-resolution mesh (210 elements). We note

that constructing a low-resolution mesh that worked on the mixed method was a struggle,

as the mixed method fails when two edges of a triangle are on the boundary. In contrast,

the Morley, Bell, and Argyris elements are valid on any conforming meshes for this problem.

The results are depicted in fig. 8.4, where all are visualized by evaluating the solution at each

vertex (so all solutions are still rendered as linear functions). Visually, we see that distortions

due to low poly count disappear as we use higher-order elements. What is striking about

this result is that via various machine-independent metrics, several higher-order elements

were cheaper: they used fewer DOFs per element and thus required smaller sparse matrices.

Of course, this is just one problem; the results are much more striking than the standard

convergence results in fig. 8.2; there, the cost calculation might be more complex, especially

if we explore variations of BCs. There are many vicissitudes to explore, but to tease and

conserve space, we summarize some trade-offs between elements for biharmonic problems in

table 8.1.
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Table 8.1: A table of various trade-offs between elements. The first three rows give the
number of DOFs used per triangle to solve certain types of problems. Then come rows in-
dicating which formulations are supported (e.g., mixed methods, naive forms, IPO). The
next three rows concern enforcement of boundary conditions. Transform NNZ is the num-
ber of non-zeros in the transform matrix.

Trade Off/Element Lagrange
1

Lagrange
2

Lagrange
3

Morley Hermite
V1

Hermite
V2

Bell Argyris

DOFs Per Tri 3 6 10 6 10 10 18 21
DOFs Per Tri BiLaplce 6 12 10 6 10 10 18 21
DOFs Per Tri Hessian 15 30 10 6 10 10 18 21
Supports Form (Mixed, IPO, Naive) Mixed Mixed IPO Naive All,

but
Naive
de-
pends
on ge-
ometry

All,
but
Naive
de-
pends
on ge-
ometry

All All

Supports Homogeneous Dirichlet BCs Naively Yes Yes Yes Yes Depends
on ge-
ometry

Only
u = 0,
but
not
∂u
∂n

=
0

Depends
on ge-
ometry

Depends
on ge-
ometry

Supports In-Homogeneous Dirichlet BCs Naively Unknown No No Yes Depends
on ge-
ometry

No Depends
on ge-
ometry

Depends
on ge-
ometry

Supports In-Homogeneous Dirichlet BCs via Nitsche No No Yes Yes Yes No Yes Yes
Transform NNZ 3 6 10 12 16 10 45 63
Continuity C0 C0 C0 Minimal

ele-
ment
that
passes
the
patch
test

C1 at
verts

C1 at
edges

C1 C1

Ideal Conv Rate h2 Unknown h4 h2 h4 h4 h5 h6

Convergence Defects Fails
on
meshes
with
corners

Unknown Unknown Fails
patch
test on
some
meshes

Fails
patch
test on
some
meshes

8.1.2 Hodge Decomposition

8.1.2.1 Problem Setup

To set up this problem, we must freely utilize the language of exterior calculus. Beyond

what we have already discussed, we need two additional notions, the Hodge star and the

co-differential. These build on two notions described in prior sections: the volume form and

the inner product on forms.

Definition 8.1.1 (Hodge Star, Co-Differential). Let V be an n-dimensional vector space

and 0 ≤ k ≤ n. Let w ∈ ΛkV be given. Let dV ∈ ΛnV be the volume form. The Hodge

star of w, ⋆w is an element of Λn−kV such that for all v ∈ ΛkV ,

v ∧ ⋆w =< v,w > dV. (8.14)
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If N is an n surface, then for ω ∈ C1(N,ΛkT N), the Hodge star is given by

(⋆ω)(x) := ⋆(w(x)). (8.15)

Finally, the co-differential of a k form is a k − 1 form given by:

δω = ⋆d ⋆ w. (8.16)

These notions are sufficient to allow us to define the Hodge decomposition on a manifold

with and without boundary. The former is sometimes called the five term decomposition

while the latter is sometimes called the three term decomposition. Further variations on

these decompositions are available when more complex varieties of BCs are used [135], but

we stick to the standard variations.

Definition 8.1.2 (Hodge Decomposition). Suppose N is an n manifold without boundary.

Let ω be a k form with 0 ≤ k ≤ n. The Hodge decomposition of ω is a triple of k forms,

α, β, η, such that

1. dα = δβ = (dδ + δd)η = 0,

2. and ω = α + β + η.

If N has boundary, then the Hodge decomposition is a tuple of 5 k forms, α, β, ηt, ηn, η such

that

1. dα = δβ = (dδ + δd)η = (dδ + δd)ηt = (dδ + δd)ηn = 0,

2. and ω = α + β + ηt + ηn + η,

3. and α|∂Ω = ⋆β|∂Ω = ηt|∂Ω = ⋆ηn|∂Ω = 0.

Computing the Hodge decomposition has many applications, most notably as a primitive

for solving many PDEs in fluids and electromagnetics [136]. Additionally, the operators used

to define the Hodge decomposition are at the core of vector field design problems [137].
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8.1.2.2 Operators

Traditionally, each Hodge decomposition amounts to the solution of two vector Poisson

equations and two vector Poisson eigenvalue problems. The Poisson equations allow us to

compute the α and β terms while the eigenvalue problems allow us to compute ηt, ηn, η by

projecting ω−α−β to the null space of the two vector Poisson equations. Further, we need

two differential operators to set up the right hand side of these equations (dω, δω) and two of

the same differential operators to process the results to form α and β. A recent example of

such an approach is [138]. However, this involves a huge array of operators because for each

choice of k and n, a variety of differential operators might be involved. We will avoid this

complexity by simply specifying the operators involved using only d and the inner product

on forms. We need only four operators that operate on pairs of either two k forms, or k and

k − 1 forms, or two k − 1 forms:

m(u, v) =

∫
N

< u, v > (8.17)

m⋆,d(u, v) =

∫
N

< u, dv > (8.18)

md,⋆(u, v) =

∫
N

< du, v > (8.19)

md,d(u, v) =

∫
N

< du, dv > . (8.20)

With the right choice of element, the BCs are Dirichlet or natural. Next, we need to use

d and δ pointwise to set up the right hand sides. Since the first four are similar, we provide

code for md,d:

1 def ddoperator ( formDeg : int , c e l l : int ) :

2 f l d = f i e l d (ChartType ( c e l l ) , Lambda( formDeg , c e l l ) )
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3 @po intw i s e In teg ra l (ChartType ( c e l l ) )

4 def mdd(u : f l d , v : f l d ) :

5 return P. antiSymmeter ize (u (1 ) ) . dot (P. antiSymmeter ize ( v (1 ) ) )

6 return mdd

Source Code Listing 8.7: Example operator for FEEC

We also provide an example with δ:

1 def de l taOperator ( formDeg : int , c e l l : int ) :

2 f l d = f i e l d (ChartType ( c e l l ) , Lambda( formDeg , c e l l ) )

3 f l dp = f i e l d (ChartType ( c e l l ) , Lambda( formDeg − 1 , c e l l ) )

4 @pointwise (ChartType ( c e l l ) )

5 def de l t a (u : f l d ) −> f ldp :

6 return P. hodge (P. antiSymmetrize (P.D(P. hodge (u (0 ) ) ) ) )

7 return de l t a

Source Code Listing 8.8: Implementation of a pointwise delta operator.

8.1.2.3 Elements

Just as with operators, there are elements for different choices of k and n. Also as with

operators, these can be succinctly unified into a few choices, parametrized by dimension of

the space/surface N , form degree (k), polynomial degree (r), Hodge duality (⋆), and trim

(−). These elements are labeled PrΛk(N), P−
r Λ

k(T N), P ⋆
r Λ

k(N), P−⋆
r Λk(N). Together these

capture Lagrange elements, discontinuous Lagrange elements, Nedelec (type one and two)

(face and edge) elements, Brezzi-Douglas-Marini elements, and Raviart Thomas elements.

We first describe these mathematically. To describe the spaces, we need the Koszul

operator κ and also the space of homogeneous polynomials (all terms have the same degree

except 0) Hr. The latter gives rise to the space of homogeneous polynomial form spaces

HrΛ
k. The first polynomial space was defined in the background, and we provide the other

three here:

1. P−
r Λ

k(T N) := Pr−1Λ
k(T N) + kerHr+1Λk−1(T N) κ, the degree r − 1 k forms plus the
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kernel of the Koszul derivative on the homogeneous polynomial degree r + 1 k − 1

forms. These are the so called trimmed spaces.

2. P ⋆
r Λ

k(T N) := ⋆PrΛ
n−k(T N), the space of k forms represented via Hodge stars of n−k

forms.

3. P−⋆
r Λk(T N) := ⋆P−

r Λ
n−k(T N), similar to the above but using trimmed spaces.

For each of these elements, the DOFs can be defined via mutual recursion. The base case

is the Lagrange elements. We can define the DOFs on k forms and simplices f of dimension

d using forms of smaller degree defined on smaller simplices:

1. PrΛk(T f): for every face f ′ ⊂ f , let {ηf ′,i} be a basis for P−
r+k−dim f ′Λ

dim f ′−k(T f ′).

The DOFs are

ϕf ′,i(u) =

∫
f ′
(u|f ′) ∧ ηf ′,i

for all f ′ ⊂ f and all valid i.

2. P−
r Λ

k(T f): for every face f ′ ⊂ f , let {ηf ′,i} be a basis for Pr+k−dim f ′−1Λ
dim f ′−k(T f ′).

The DOFs are

ϕf ′,i(u) =

∫
f ′
(u|f ′) ∧ ηf ′,i

for all f ′ ⊂ f and all valid i.

3. P ⋆
r Λ

k(T f) or P−⋆
r Λk(T f): Similar to the previous formula but

ϕf ′,i(u) =

∫
f ′
(⋆u|f ′) ∧ ⋆ηf ′,i

The first two spaces capture the tangential components with forms, while the latter two

capture the orthogonal complements of the tangent space. (Practically, the first two favor

Dirichlet BCs on u, while the latter two favor Dirichlet BCs on ⋆u). The trimmed spaces

provide smaller, more economical versions that are harder to interpret.
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We provide code to capture all of these cases in stages. First, we provide the DOFs to

define the Koszul space.

1 def koszu lDofs ( formDeg : int , degree : int , dim : int ) :

2 eva l s = [ ]

3 ds f = f i l t e r (

4 lambda x : sum( x ) == degree + 1 ,

5 product ( ∗ [ range ( degree + 2) for _ in range (dim) ] ) ,

6 )

7 for ds in d s f l :

8 for k in range ( int ( binom(dim , formDegree − 1) ) ) :

9 @P. po in tw i s e In t e g r a t e ( CellType (dim) )

10 def koszul_eval ( c : ChartType (dim) , f : f i e l d (dim , Lambda( formDegree , dim) ) :

11 x = c .P( ) ( c . x )

12 xx = np . prod ( [ c . x [ j ] ∗∗ ds [ j ] for j in (range (dim) ) ] )

13 r = P. i n t e r i o rEva l ( f ( 0 ) , [ 0 ] , [ x ] )

14 return (

15 r [ ( k , ) ] ∗ xx ∗ c .dV( )

16 )

17 eva l s . append ( koszul_eval )

18 return eva l s

Source Code Listing 8.9: Implementation of Koszul DOFs.

We define the Koszul DOFs to isolate the kernel of the Koszul operator. We do this by

testing the Koszul operator with every relevant monomial and form component. Then, we

can define our spaces:

1 def f e ecSpace ( formDeg : int , degree : int , dim : int , hodge : bool , tr im : bool ) :

2 i f not tr im :

3 i f not hodge :

4 return PImpl (dim , degree , Lambda( formDeg , dim) )

5 else :

6 return PImpl (dim , degree , Lambda(dim−formDeg , dim) )

7 else :

8 Prm1 = feecSpace ( formDeg i f not hodge else dim − formDeg , max( degree − 1 , 0) , dim ,

hodge , tr im )

9 i f formDegree == 0 or formDegree == dim :

10 return Prm1

11 kdofs = koszu lDofs ( formDeg i f not hodge else dim − formDeg , degree , dim)
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12 return Prm1 + NullSpace (dim , degree , minDegree=degree , nu l lDo f s=kdofs )

Source Code Listing 8.10: Implementation of FEEC spaces, utilizing Koszul DOFs for the

Koszul space.

Finally, we can define our elements modulo a few lines of code to specify the base cases:

1 def f e e c ( formDeg : int , degree : int , dim : int , hodge : bool , tr im : bool ) :

2 i f formDeg == 0 or formDegree = dim and hodge :

3 return langrangeDofs (dim , degree i f not tr im else degree − 1)

4 assert dim >= formDeg >=0 and degree >=0

5 space = feecSpace ( formDeg , degree , dim , hodge , tr im )

6 md = min(dim , formDegree + degree − 1)

7 eva l s = [ ]

8 for j in range ( formDegree , md + 1) :

9 ct = ChartType ( j )

10 f i e l d = f i e l d ( j , P . Lambda( formDegree , c t )

11 recDegree = degree − j + formDegree − 1 i f tr im else degree − j + formDegree

12 recDofs = f e e c ( j , recDegree , j − formDegree , tr im=not trim , hodge=hodge )

13 for basisFunc in recDofs :

14 i f not hodge :

15 @P. po in tw i s e In t e g r a t e (ChartType ( j ) , r educt i on=cho i c e )

16 def form_eval (u : f i e l d , v : recDofs . f i e l d ( ) = basisFunc ) :

17 return P. hodge (P. wedge ( [ u (0 ) , v (0 ) ] ) )

18 else :

19 @P. po in tw i s e In t e g r a t e (ChartType ( j ) , r educt i on=cho i c e )

20 def form_eval (u : f i e l d , v : recDofs . f i e l d ( ) = basisFunc ) :

21 return P. hodge (P. wedge ( [P . hodge (u (0 ) ) , P . hodge (v (0 ) ) ] ) )

22 eva l s . append ( form_eval )

23 return Dofs ( space , e va l s )

Source Code Listing 8.11: Implementation of FEEC elements.

For our base case, we must also provide arbitrary order Lagrange DOFs. We provide

these in the Stokes section.
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8.1.2.4 Validation

We use two problems to validate our solvers and provide convergence data. First, we consider

a flat annulus of outer radius 2 and inner radius 1. We decompose the vector field:

ω(x, y) = (2(x− y) + 1, 2(x+ y) + 1). (8.21)

The analytical form of the Hodge decomposition is known. Set vx(x, y) = x
||(x,y)||2 and

vy(x, y) = y
||(x,y)||2 . Then we can write the decomposition via

dα(x, y) = (2x− 15

log 4
vx(x, y), 2y − 15

log 4
vy(x, y)) (8.22)

and

dβ(x, y) =

0 −1

1 0

 dα(x, y) (8.23)

and

hn(x, y) = (
15

log 4
vx(x, y),

15

log 4
vy(x, y)) (8.24)

and

ht(x, y) =

0 −1

1 0

hn(x, y) (8.25)

and finally,

η(x, y) = (1, 1). (8.26)

Second, we consider a cylinder of radius 1 and height 1. We further specify that this is a

manifold with a metric inherited from R3. To write this down with clarity, we use two bits of

notation. We utilize cylindrical coordinates, (θ, z), and Cartesian, (x, y, z), simultaneously.

We also utilize an orthonormal frame for the tangent space via

tu(θ, z) = (− sin θ, cos θ, 0) (8.27)
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and

tv(θ, z) = (0, 0, 1). (8.28)

Then the vector field

ω(θ, z) = (θ2 + θ − z2 + 2z)tu(θ, z)− 2(z + zθ)tv(θ, z) (8.29)

has a decomposition as follows:

dα(θ, z) = (0, 0, z − 0.5). (8.30)

and

dβ(θ, z) = (−2y(z − 0.5), 2x(z − 0.5), 0) (8.31)

and

hn(θ, z) = −tv(θ, z) (8.32)

and

ht(θ, z) = (−4y, 4x, 0), (8.33)

and finally we can infer eta from the rest.

For both cases, we must utilize the theory of variational crimes to temper the validation

experiments; we should not expect convergence higher than second order because we are

using a linear approximation of the geometry [139]. We provide convergence plots for the

annulus scenario in fig. 8.5. For the convergence in the cylinder scenario, we need a further

proviso. Literature on convergence in the surface scenario of individual components of the

algorithm is sparse, and most articles on the decomposition do not perform this analysis,

sometimes reporting a difficulty in the convergence of the individual components of the

harmonic part of the decomposition [135], [138], [140]–[143]. This might be a Babus̆ka

paradox type situation [144], but it might also be that the convergence in the theory applies
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to the PDEs but not the classic Hodge decomposition algorithms. Thus, in this scenario

we report the error in the overall harmonic part, which does converge. Further, we checked

that each component has the correct angle with an interpolation of the true solution (zero to

machine precision). These indicate that the elements and solvers are sound, but the steps to

produce the five term Hodge decomposition (as found in many places) are not sound. With

these provisos, convergence is reported in fig. 8.6.

We also provide samples of the lowest and highest resolution solution for the five com-

ponents and for a few elements. True solutions are in fig. 8.7 and fig. 8.8.

8.1.2.5 Trade Offs

The trade-offs for higher order representations of forms have been noted throughout the

literature [27], [28], [56], [145], including applications such as vector field design, parameter-

ization (fixed boundary, seamless), vector heat methods, and solutions to fluidic equations.

In each of these, the story is roughly the same: higher-order elements provide smoother and

more accurate solutions that benefit downstream applications at the expense of more costly

elements. We can provide another data point by computing one of the zero eigenvectors of

the Hodge Laplacian on a low resolution mesh via a variety of elements. We compare this

to a higher resolution mesh and low order element scenario in fig. 8.9. We follow [145] in

this comparison. We note that not only are there visual distortions due to the lower order

elements (jumps in color), but that topology of the vector field is not accurately represented:

the lowest orders do not capture the critical point in the center of the field and heavily distort

the flow along the lines of the coarse geometry.
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Figure 8.5: Convergence plots for the exact, co-exact, harmonic exact, harmonic co-exact,
and eta components on an annulus geometry.
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Figure 8.5: Convergence plots for the exact, co-exact, harmonic exact, harmonic co-exact,
and eta components on an annulus geometry (continued).
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Figure 8.5: Convergence plots for the exact, co-exact, harmonic exact, harmonic co-exact,
and eta components on an annulus geometry (continued).
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Figure 8.6: Convergence plots for the exact, co-exact, harmonic exact, harmonic co-exact,
eta, and total harmonic components on a cylinder geometry.
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Figure 8.6: Convergence plots for the exact, co-exact, harmonic exact, harmonic co-exact,
eta, and total harmonic components on a cylinder geometry (continued).
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Figure 8.6: Convergence plots for the exact, co-exact, harmonic exact, harmonic co-exact,
eta, and total harmonic components on a cylinder geometry (continued).
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Figure 8.7: True solutions in the annulus scenario, for the exact, co-exact, harmonic exact,
harmonic co-exact, and fully harmonic components.
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Figure 8.7: True solutions in the annulus scenario, for the exact, co-exact, harmonic exact,
harmonic co-exact, and fully harmonic components (continued).
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8.1.3 Stokes Flow

8.1.3.1 Problem Setup

Let d = 2 or d = 3 and Ω ⊂ Rd. Suppose we have a forcing function f : [0,∞)×Ω → R3 and

a viscosity parameter ν ∈ R. The Stokes equations seek a velocity field u : [0,∞)× Ω → Rd

and a pressure field p : [0,∞)× Ω → R such that

ut − ν∆u+∇p = f (8.34)

and

∇ · u = 0. (8.35)

We are primarily interested in no-slip BCs and other proscribed time-varying velocities:

u|∂Ω = 0 (8.36)

or

u|∂Ω = w (8.37)

for some w : [0,∞)× ∂Ω → Rd. We additionally enforce that the pressure is mean zero, i.e.,∫
Ω
p = 0 for all time t.

We are primarily interested in the contrast between cases where ν ≈ O(1) and ν ≈ O(h)

where h is the characteristic edge length of the mesh. The former resembles the case of a

fluid like water while the latter resembles the case of a superfluid.
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8.1.3.2 Operators and Time Stepping

The standard weak formulation for stationary stokes is to find a u and p such that for all

v : Ω → R3 and q : Ω → R:

F (u, p, q, v, f) =

∫
Ω

∇ut · ∇v −
∫
Ω

p∇ · v +
∫
Ω

q∇ · u−
∫
Ω

fv (8.38)

We considered implicit Euler and Crank Nicholson time stepping. For a time step size

dt and a θ ∈ [0, 1], we solve for un+1, pn+1 at time tn+1 in terms of un and pn at time tn via

finding un+1 and pn+1 such that

∫
Ω

v(un+1 − un)/dt+ θF (un+1, pn+1, v, q, f(tn+1)) + (1− θ)F (un, pn, v, q, f(tn)) = 0 (8.39)

holds for all v, q. Since the resulting discrete system is a saddle point system, we must be

careful with the solver. For all purposes in this section, we get away with PETSc’ GMRES

with LU (via MUMMPS) as a pre-conditioner [146]–[148].

8.1.3.3 Elements

We follow the element choices offered in the experiments in [149], including various pairings of

Lagrange elements (Taylor-Hood and Scott-Vogelius), mini elements, and Crouzeix-Raviart

elements. The Taylor-Hood (TH) element is simply the use of a k-degree vector Lagrange

element for the velocity space and a k − 1-degree scalar Lagrange element for the pressure

space. This requires a more general bit of code for the Lagrange element, which we provide

here; this version allows for Lagrange elements on arbitrary Euclidean-like spaces and for

discontinuous spaces:

1 def l agrangeDofs (dim : int , degree : int , space = P.R, dg : bool = False ) :

2 PSpace = PImpl (dim , degree , space )

3 do f s = [ ]

4 for dimp in range (dim + 1) :

5 for point in equ i spacedBarycent r i c ( degree , boundary=False ) :
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6 for vec to r in s tdEuc l ideanBas i s ( space ) :

7 @pointwiseEval ( barycent r i cCoord inate=point , s toreAt=dimp i f not dg else dim)

8 def dof (u : f i e l d (dimp , space ) ) : return u (0) . dot ( vec to r )

9 do f s . append ( dof )

10 return Dofs (PSpace , do f s )

Source Code Listing 8.12: Tensor Lagrange Elements

Scott-Vogelius (SV) can be characterized as a Taylor-Hood element where the pressure

space is discontinuous, but this characterization is facile due to the circumstances under

which the element works. In particular, the SV element requires that there are no singular

vertices (vertices incident to edges that all lie on two lines (or three planes)) and so the SV

element is sometimes phrased as TH with discontinuous pressure on a barycentrically refined

or macro triangle/tetrahedral meshes [150]–[153]. In the future, we will model with these

explicit macro elements, but for now we model this by just refining the mesh barycentrically.

A bubble element is a Lagrange element where we include extra basis functions that are zero

on the boundary of the geometry. The mini element on a d-dimensional space uses linear

Lagrange for the pressure and the sum of linear Lagrange plus a d-degree bubble element for

the velocity. We can define a mini space similarly:

1 def mini (dim : int , degree : int , bdegree : int , space = P.R, dg : bool = False ) :

2 assert bdegree > degree and bdegree >= dim + 1

3 PSpace , BSpace = PImpl (dim , degree , space ) , PImpl (dim , bdegree , space )

4 i d o f s = [ ]

5 ndofs = [ ]

6 do f s = [ ]

7 for dimp in range (dim + 1) :

8 for point in equ i spacedBarycent r i c ( bdegree , boundary=False ) :

9 for vec to r in s tdEuc l ideanBas i s ( space ) :

10 @pointwiseEval ( barycent r i cCoord inate=point , s toreAt=dimp i f not dg else dim)

11 def dof (u : f i e l d (dimp , space ) ) : return u (0) . dot ( vec to r )

12 i f dim == dimp :

13 i d o f s . append ( dof )

14 else :

15 ndofs . append ( dof )

16 PSpace = PImpl (dim , degree , space ) + NullSpace (dim , bdegree , space , nu l lDo f s=ndofs )
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17 return Dofs (PSpace , lagrangeDofs (dim , degree , space ) . do f s + i d o f s )

Source Code Listing 8.13: Mini Elements

Finally, we do not bother with the CR element as it is very similar to the Lagrange element.

8.1.3.4 Validation and Trade-Offs

We set up two analytical problems to test our solver, which is sufficient to reveal a trade-

off. In particular, we follow [149] to show that cheaper elements (fewer DOFs) tend to be

non-robust to low viscosities, sometimes inducing locking behaviors similar to those found

in elasticity simulation.

In two dimensions, we consider analytical velocities and pressures given by

u(x, y, t) = (cos(y), sin(x))(1 + t) (8.40)

and

p(x, y, t) = sin(x+ y)− (2 sin(1)− sin(2)). (8.41)

In three dimensions, we consider

u(x, y, z, t) = (cos(y), sin(z), cos(x))(1 + t) (8.42)

and

p(x, y, z, t) = sin(x+ y + z)− 8(1 + 2 cos(1) sin(
1

2
)4. (8.43)

We use these to construct a forcing function according to the Stokes equations and solve

until time 0.01 in ten time steps on the unit square or unit cube. We enforce Dirichlet

conditions on the velocity while for the pressure we require that
∫
p = 0. We do this for

ν = 1 and ν = 10−6. We use the Taylor-Hood elements and the Scott-Vogelius elements

at order k = 2. In 2D, we use Crank-Nicolson time stepping with θ = 0.5 whereas in
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3D we used Euler. Convergence results for velocities and pressures in 2D are plotted in

fig. 8.10. We immediately observe that the convergence in velocity of the Taylor-Hood

elements is massively impacted by lowering the viscosity while Scott-Vogelius is not impacted.

Interestingly, we observe that the pressure convergence is not impacted. As it turns out in

the analysis of [149], as viscosity gets smaller, the error in velocity becomes dominated by

the error in the gradient of pressure if an element is not discretely divergence free in a specific

sense. This theory is borne out in the velocity and pressure plots in fig. 8.10, noting that

convergence of a gradient is typically an order lower than convergence of the function. In

this example, we do not bear this out visually (velocities at the start and final times are

plotted in fig. 8.11), but it is perhaps worth noting that there is a visual price in the pressure

for good convergence in velocity: check-boarding patterns (See fig. 8.12).

Though [149] does not show results for the Stokes equation in 3D, we show that similar

results hold in 3D via fig. 8.13. We use k = 3 order elements.

Finally, to show that this difference can produce visually striking results, we set up a

simulation on the Bob mesh. We start from zero initial conditions. We add inflow at the

top of a head that looks like

u(x, y, z, t) = (0, 0,−1)(1 + 10t)2 (8.44)

and an outflow that looks like

u(x, y, z, t) = (0, 1, 0)(1 + 10t)2. (8.45)

We assume a force due to gravity. We compute 200 time steps starting at t = 0 and ending

at t = 0.2. We compare the mini element to the Scott-Vogelius element of order k = 3. We

note that the former uses 12 velocity DOFs per element while the latter uses 60. We again

contrast the behavior for ν = 1 vs ν = 10−6.

The results are seen in fig. 8.14. When ν = 1, both simulations show reasonable results.
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We observe that for Scott-Vogelius, the simulation changes dramatically with ν, which is

expected. When ν is small, the fluid responds slowly to nearby changes in velocity so

the inflow and outflows are slow to spread to the inner regions of the geometry. For Scott-

Vogelius, we can plainly see that away from the inflow/outflow, the fluid is mainly responding

to gravity. However, for the mini element, changing ν has little qualitative impact. We can

see this in a more quantitative manner in fig. 8.13 by showing how the velocity norms change

over time for ν = 1 vs. ν = 10−6. In fig. 8.15, we see that the mini element’s velocity norm

grows dramatically irrespective of the velocity whereas the Scott-Vogelius element responds

at a slower pace.

8.2 Claim: Finite elements are specified concisely due to

automation

See table 8.2. In particular, we show that we are able to dramatically improve on the SOTA

for specifying FEs within systems capable of assembling FE matrices. We do not compare

against systems like the symbolic finite elements library as not all of their specifications (e.g.,

Morley) can be used on multiple domains [79]. Moreover, our improvements in lines of code

come from two of our automations. First, our efforts to automatically deduce transformations

by simplifying formulas and symbolically inverting matrices represents non-trivial portions of

code counts for many elements. Not only does this portion represent a non-trivial number of

lines, but these lines are hard to produce, requiring manual mathematical reasoning. Second,

our efforts to build a high-level language for IPTEMs, open in particular to the automation

of topological enumeration, also dramatically reduce the lines of code for all elements. This

is best shown for Lagrange and FEEC elements: though the transformation is trivial, we

still make the specification smaller by relying on topological enumeration and our high-level

language for tensor expressions.
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Figure 8.7: True solutions in the annulus scenario, for the exact, co-exact, harmonic exact,
harmonic co-exact, and fully harmonic components (continued).

Element Sybil SLOC FINAT/FIAT SLOC
(Transform)

Morley ∼10 84 (31)
Hermite ∼17 88 (23)
Argyris ∼31 221 (117)
Bell ∼44 138 (63)
(RT + Nédéc (first kind) + DG Volume La-
grange) + (BDM + Nédéc (second kind))

∼52 756 (0)

Lagrange ∼10 80 (0)
Mini ∼17 28 (0)

Table 8.2: SLOC to specify all the elements used in our experiments and available in both
FINAT, currently the most comprehensive practical system for using different FEs. Note
that for our system, RT, Nédéc (first kind), and DG Volume Lagrange all share an imple-
mentation and so do BDM + Nédéc (second kind), so we group these together.
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Figure 8.8: True solutions in the cylinder scenario, for the exact, co-exact, harmonic exact,
harmonic co-exact, and fully harmonic components.
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Figure 8.8: True solutions in the cylinder scenario, for the exact, co-exact, harmonic exact,
harmonic co-exact, and fully harmonic components (continued).
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Figure 8.8: True solutions in the cylinder scenario, for the exact, co-exact, harmonic exact,
harmonic co-exact, and fully harmonic components (continued).

coarse input

fine input

Figure 8.9: Zero eigenvectors of the Hodge Laplacian on a low-resolution mesh with a va-
riety of elements and a comparison to a lower order element on a highly refined mesh (282
vertices vs. 29,000 vertices).
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Figure 8.10: Velocity and pressure convergence for a 2D analytical Stokes problem using
two different elements and two different viscosities.
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Figure 8.10: Velocity and pressure convergence for a 2D analytical Stokes problem using
two different elements and two different viscosities (continued).
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Figure 8.11: Computed pressures on tested meshes with different elements and viscosities
at start and end times.
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Figure 8.11: Computed velocity on tested meshes with different elements and viscosities at
start and end times (continued).
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Figure 8.12: Computed pressure on tested meshes with different elements and viscosities at
start and end times.
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Figure 8.12: Computed pressure on tested meshes with different elements and viscosities at
start and end times (continued).
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Figure 8.13: Velocity and pressure convergence for a 3D analytical Stokes problem using
two different elements and two different viscosities.

Figure 8.13: Velocity and pressure convergence for a 3D analytical Stokes problem using
two different elements and two different viscosities (continued).
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Figure 8.14: Bob Stokes simulation at the 50th time step with different elements and vis-
cosities. The mesh is shown on the left. Columns are elements (SV vs. Mini) and rows are
viscosities (ν = 1 vs ν = 10−6).

8.2.1 Claim: The automation produces optimal implementations of

the finite element transformation theory.

In [34], a key measure of the cost of using a more complex element is the number of non-zeros

in the transformation. Our automations and saved lines of code would not be as useful if the

transformations were considerably more expensive. While a direct comparison of runtime is

not reasonable, a suitable proxy is to symbolically count the number of non-zeros. We do

this in table 8.3, where we find that we have the number of non-zeros in matrices computed

by hand in the literature. Additionally, this shows that our inversion procedure does not

default to a matrix inverse: ElementForge enables the inverse to be computed more like a

formula and with the optimal sparsity pattern visible at compile time.
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Figure 8.15: Velocity norm over time for both elements, first with ν = 1 then with ν =
10−6

Element Transformation NNZ
Morley 12
Hermite 16
Argyris 81
Bell 42
(RT + Nédéc (first kind) + DG Volume La-
grange) + (BDM + Nédéc (second kind))

O(N)

Lagrange O(N)
Mini O(N)

Table 8.3: Transformation DOFs
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Element Additional LOC
Morley 4
Hermite 11
Argyris 11
Bell 13

Table 8.4: Extra LOCs for biharmonic elements against affine Lagrange

Element Additional LOC
Mini 10
CR 1

Table 8.5: Extra LOCs for Stokes elements against general Lagrange

8.3 Claim: Finite element specifications and usage are

malleable

To evaluate malleability, we ask: how many extra lines of code are required to change

elements? First, to literally add the element in the two simulations where the code changes,

we find that the number of lines of code is modest (table 8.4 and table 8.5). Similarly, in

the case of the FEEC elements, we have a much more succinct implementation, especially

for trimmed elements where we more directly translate the math than compared to other

systems [8]. Second, we ask how much do programs change when we change elements? The

answer is that they do not unless an element requires a different formulation (e.g., the mixed

Lagrange method in the biharmonic equation). Compared to other systems, our advantage

here lies in our construction of the front end; no other systems that we know of support

interpolation into elements such as Hermite, Morley, or Argyris2, but this naturally emerges

in our front end. Similarly, ElementForge supports direct enforcement of Dirichlet BCs when

possible on these spaces, whereas that is typically a special case in other systems [63].

2See https://www.firedrakeproject.org/interpolation.html
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Appendix A

Alternative Analysis of Finite Element

Transformations

We now prove a variant of theorem 6.2.1.1 that does not require a symbolic matrix inversion

and that illuminates the structure of the Vandermonde matrices, to justify our symbolic

inversion algorithm. We need two definitions to start.

Definition A.0.1 (Dual Basis Cover). For each i, fix a basis {wd} for the tangent space of

Ki and a basis {vk} for the dual space of V ⋆
i . The former implies a basis {wd,m} for ⊗mTy

for each m ≥ 0. Given a point y = Ti(x), an element wd,m ∈ ⊗mTy, and an element vk for

V ⋆
i , then define a functional on Cm(Ki, Vi)

γKi
x,m,d,k(p) = vk((D

mp)(Ti(y))(wd,m)). (A.1)

A dual basis cover for our collection of elementsEi is a collection of tuples L = {(xq,mq, dq, kq)}q

such that for all i,

1. {γKi
l }l∈L, span the space P (Ki, Vi)

⋆,

2. and for every xq and mq, {(xq,mq, d, k) : wd,m, vk} ⊂ L.
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The second condition mandates that the at each point xq, we include enough γ to model

every element of the tensor corresponding to any relevant derivatives, Dmq .

For a collection of finite elements {Ei} relative to E that satisfy the conditions of the-

orem 6.2.1.1, a natural choice of dual basis cover exists: use the quadrature points at each

relevant derivative against a Euclidean basis and pair them against elements of a Euclidean

basis or derived basis thereof. To make a claim about the sparsity of matrices for these

problems, it helps to have a notion of support for functionals:

Definition A.0.2 (Support of a Dual Basis Function). Given a functional f of a function

space P (K,V ), the support is the minimal non-empty set S ⊂ K such that S ⊂ {x ∈

K : g(x) ̸= 0} for all g ∈ P (K,V ) where f(g) ̸= 0. We write S = Support(f).

We now state our main theorem:

Theorem A.0.2.1. Assume the conditions of theorem 6.2.1.1. Given a dual basis cover L,

then for any i, there are three matrices:

1. E of size |Σ| × |L|, representing the dual basis of Ei in terms of the dual basis cover

in the space P (Ki, Vi)
⋆,

2. F of size |L| × |L|, representing the action of T−1
⋆ on the dual basis cover of E in the

space C∞(Ki, Vi),

3. and G of size |L| × |Σ|, representing the dual basis cover in terms of the dual basis of

E in the space P (K,V )⋆

such that PKi = (EFG)T i.e., the representation of the push-forward of the DOFs by T−1
i

is decomposed into the above three stages. Furthermore, F can be written as a block diag-

onal matrix and E can be written as a sparse block triangular matrix where the blocks are

determined by the supports of the dual basis functions.
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This theorem gives us an alternative algorithm that involves no direct symbolic inverse

and it also gives us a way to analyze the structure of PKi ; if G has a sparse triangular

structure, then we expect PKi to have one as well. Similarly, the sparsity of G will highly

influence the sparsity of PKi , which then controls the overhead of using a given element.

Proof of theorem A.0.2.1. By definition, the dual basis cover L automatically supplies a

matrix E that satisfies

ϕKi
b (f) =

∑
l∈L

Eblγ
Ki
l . (A.2)

We observe that Ebl can be organized as a sparse triangular matrix if we topologically sort

the set L using the dictionary order with points partially ordered based on membership in

support(ϕKi
b ).

Next, we observe that (T−1
⋆ ) is easily computed on γKi

(x,m,d,v)(f) in terms of all γK(x,m,d′,v′)(f)

via the chain rule for any valid f ∈ C(Ki, Vi) because a basis cover includes all entries of

a given derivative a point. Thus (T−1
⋆ ), represented as an operator on the span sets of the

basis covers, is a block matrix, which we call F . In the simplest cases, the matrix F will be

block diagonal, consisting of tensor products of DTi and DT−1
i .

Next, we observe that we can use fKb to compute γKj in terms of ϕKb , via solving for G

such that

γKj (f) =
∑
j

Gbjϕ
K
b (f) (A.3)

for all f ∈ P (K,V ), which is guaranteed to exist because ϕKb is a basis for P (K,V )⋆ and γKj

is a spanning set for P (K,V )⋆.

Finally, since via theorem 6.2.1.1, PKi is a representation of the pullback, we observe that

we have PKi = (EFG)T because EFG represents (T−1
i )⋆ via the above constructions.

For the purposes of our original proof, the most important aspect of this proof is the

sparsity pattern. In particular, the matrices E and G have sparsity patterns defined based

on interactions between the dual basis cover and the original dual bases. For example, dual
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basis functions can only share a relationship with a dual basis cover function if they have

intersecting supports. And vice-versa for G. Thus, the sparsity pattern of E and G is built

on the sparsity pattern of the supports of dual basis functions and dual basis cover functions.

Since we expect supports to coincide with entities in simplices, we expect the supports to

interact in a triangular pattern. Thus, we get a triangular blocked pattern in E and G.
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Appendix B

Additional Details on Global Function

Spaces

If we group DOFs in the broken space, we can produce FE spaces such as the global linear

Lagrange space. To group basis functions, we need an inverse restriction operator, which

requires another definition and motivates restrictions on how we group DOFs:

Definition B.0.1 (Group Extension Operator). Given a finite set of bounded domains Ti

such that ∪Ti is connected and T ◦
j ∩T ◦

i = ∅ and Tj∩Ti ̸= ∅ if i ̸= j. Further, suppose we have

a vector space V and a a collection of continuous functions fi : Ti → V . Then g := |−1{fi}

is an integrable function1 such that for all i, g(x)|Ti = fi(x) for all x ∈ T ◦
i and g(x) = 0 if

x ̸∈ ∪iTi. We call g the extension of the set of functions {fi} and |−1 the group extension

operator.

We phrase the group extension operator as |−1 to encourage thinking about this as an

inverse of the restriction. The idea of a global FE space is to group the basis functions into

groups to apply |−1 to. To ensure we do so validly in the general case, we must meet the

conditions to use |−1, which requires another definition:
1Even Riemannian integrability restricts us to functions that are only discontinuous on sets of measure

zero; technically though for uniqueness in this definition, we want functions in the space L1(Ω, V ), the
space of equivalence classes of integrable Lebesgue measurable functions
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Definition B.0.2 (Support of a Dual Basis Function). Given a domain T and a vector space

V , the support of a function f : T → V is the non-zero set:

Support f := {x : x ∈ T, f(x) ̸= 0}

Given a function space Q ⊂ C0(T, V ) and a dual vector ϕ ∈ Q⋆, the support of ϕ is the

largest set T ′ ⊂ T such that if f ∈ Q satisfies ϕ(f) ̸= 0 then T ′ ∩ Support f is an open

non-empty subset of T ′. We denote this support as SupportQ f

We note that for any point evaluation dual vector, the support will be the point, and the

support of dual vectors defined via integration will tend to be the domain of integration.
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