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ABSTRACT

Modern code–generation LLMs can already solve a large fraction of programming prob-
lems, yet they still hallucinate subtle bugs that make their outputs unsafe for autonomous
deployment. We present functional clustering, a black-box wrapper that eliminates nearly all
hallucination-induced errors while providing a tunable confidence score. The wrapper samples
many candidate programs, executes each on a self-generated test suite, and clusters candidates
whose I/O behavior is identical; the empirical mass of the largest cluster serves as an exact
confidence estimate. A single scalar threshold on this estimate lets users trade coverage for
reliability with exponential guarantees. On LiveCodeBench our verifier preserves baseline
pass@1 on solvable tasks yet slashes the error rate of returned answers from ∼65% to 2%, and
drives it to 0% at a conservative threshold while still answering 15.6% of prompts. Manual
audits show that the few residual mistakes stem from prompt misinterpretation, not random
generation noise, narrowing future work to specification clarity. Because the method requires
only sampling and sandbox execution, it applies unchanged to closed-source APIs and future
models, offering a practical path toward dependable, autonomous code generation.
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Chapter 1

Introduction

Large language models (LLMs) have begun to write code at a level once thought exclusive
to experienced engineers: they pass university exams [1], solve competitive-programming
problems [2], and even draft patches that compile in production repositories [3]. Despite this
progress, practitioners hesitate to deploy them unsupervised [4]. A single off-by-one error or
mistyped logical operator can crash an application or leak sensitive data, and state-of-the-art
models still hallucinate such bugs with disconcerting frequency [5].

Most recent work therefore augments LLMs with confidence scores [6]. Token-level
likelihoods [7], calibrated logits [8], and semantic-embedding clustering [9] each offer partial
signals, yet all miss a fundamental aspect of code. Two snippets that differ syntactically–or
even occupy completely separate regions of embedding space–may be functionally identical.
At the same time, semantically similar code with just single-character edits (such changing a
< to ≤) flips correctness without appreciably moving the embedding. Treating sequences or
embeddings as the unit of analysis necessarily conflates these cases.

Our key observation is that software engineering already supplies an exact, model-agnostic
criterion for identity: behavior on test inputs. In practice, virtually every production program
is accepted not because it is formally proved but because it passes a finite test suite. We
leverage the same idea at generation time. For each coding prompt the LLM produces a
bag of candidate programs; the same model is then prompted to generate a diverse set of
inputs (only inputs—no labeled outputs). Executing every program on every input in a
sandbox yields an output vector; candidates whose vectors match exactly are placed in the
same functional equivalence class. The empirical probability that a random sample belongs
to the largest class, denoted ρ, becomes an exact confidence estimate (Figure 1.1).

This test-based clustering confers three immediate advantages. First, it aligns the score
with the real goal–correctness of behavior–rather than proxies such as token probability
or embedding distance. If the model assigns 30% probability to two syntactically different
but equivalent implementations, ρ correctly reports 60% confidence, whereas logit-based
metrics would cap the score at 30%. Second, the approach is entirely black-box: it requires
only sampling and sandbox execution, not internal logits, gradient access, or fine-tuning.
Consequently it wraps closed-source APIs as easily as open-weight models. Third, the statistic
separates failure modes. Random-chance hallucinations fall exponentially fast with sample size;
the rare high-confidence errors we observe stem exclusively from prompt misinterpretations.
By isolating misunderstandings, the method turns reliability into a research problem that is
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both narrower and more tractable.

1.1 Contributions

1. We frame uncertainty in code generation as density estimation over functional equiva-
lence classes–programs that produce identical outputs on an automatically-generated
test suite. This shifts the problem from approximate semantic similarity to exact
behavioral identity, giving a mathematically crisp confidence signal without learned
similarity models or log-probabilities.

2. The method requires only (i) sampling multiple programs and (ii) running them in
a sandbox. It attaches to any code LLM, including closed APIs, without fine-tuning,
auxiliary classifiers, or access to internal logits. It does not require any additional
knowledge beyond the prompt, as it generates its own test data.

3. By prompting the base model for inputs only (not labeled test cases), we create a
task-agnostic verifier that introduces no additional source of hallucination and zero
human overhead.

4. A universal threshold on dominant-cluster mass converts the LLM into a selective coder
that either returns a representative program or abstains, giving a very high confidence
of producing a correct solution when responding.

In short, functional clustering converts noisy LLM outputs into a confidence–based
response, bringing dependable, autonomous code generation within reach. Empirically,
wrapping a modern code LLM with our verifier preserves baseline pass@1 on solvable
benchmark tasks while slashing the error rate of returned answers from roughly 65% to
2%. Raising the acceptance threshold drives residual error to zero at the cost of additional
abstentions, giving users an explicit accuracy–coverage knob. Manual inspection confirms
that remaining failures are all specification misunderstandings—no random hallucinations
survive.

14



Figure 1.1: Functional-cluster pipeline. Starting from a natural-language task prompt
(1), the system (2) samples n candidate programs and (3) synthesizes m test inputs. Each
program is then (4) executed on every input, yielding a vector of outputs that acts as a
behavioral signature. Programs with identical signatures are (5) clustered together; the
verifier (6) selects the largest cluster as the hypothesized correct solution and reports its
relative size as the confidence score.
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Chapter 2

Related Works

Hallucinations in LLMs have attracted considerable attention, especially in precision-critical
domains like code generation. Current research seeks to understand and classify these
phenomena, mitigate their occurrence, and develop robust evaluation benchmarks. Below,
we survey key directions in this area, highlighting gaps that our approach aims to address.

2.1 Understanding hallucinations in LLMs

Research on hallucinations in LLMs has evolved rapidly, aiming to categorize and characterize
the various forms this phenomenon can take. Huang et al. provide a taxonomy that dissects
the diverse manifestations of hallucinations and the underlying causes driving them [10].
Similarly, Islam et al. present a structured analysis of mitigation techniques, reflecting the
complexity and multifaceted nature of the challenge [11].

Focusing on code generation, Liu et al. introduced the HalluCode benchmark, identifying
unique types of code-specific hallucinations, including mapping errors and resource misinter-
pretations [5]. Building on this, Tian et al. developed the CodeHalu benchmark, proposing a
taxonomy of four primary code hallucination categories—mapping, naming, resource, and
logic—and underscoring the difficulty of ensuring both functional correctness and user intent
adherence [12]. Collectively, these works not only diagnose the nature of hallucinations but
also highlight gaps in model reasoning and understanding, setting the stage for more targeted
solutions.

2.2 Mitigation strategies

Multiple methods attempt to avoid these errors. One proposed method is to let the LLM
grade its own answer. Kadavath et al. [13] prompt GPT-3 to output a verbal probability
“P(True)” and find that the statement is better calibrated than raw token likelihoods, while
Tian et al. [14] attach a value head fine-tuned with RLHF to supply confidence scores; both
approaches improve in-domain calibration but generalize poorly to unseen tasks according to
the broad empirical audit of Xiong et al. [6].

A second method calibrates the token distribution itself Desai and Durrett [8] show that
simple temperature scaling tightens expected calibration error for BERT-style classifiers,
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and Ma et al. [7] extend the idea to text generators by analyzing logit dispersion. Because
token-based scores regard every distinct sequence as a different outcome, they must apportion
probability mass across all syntactic variants of the same behaviour. If two programs that
return identical outputs appear with 0.3 likelihood each, the model reports only 0.3 confidence
for either one instead of 0.6 for the underlying solution. Thresholds or calibration curves built
on that deflated score will wrongly flag many correct answers as “low-confidence,” forcing
users to accept lower coverage or loosen the threshold and let more real errors slip through.

Supervised confidence heads trade label cost for sharper selectivity. Lin et al. [15] fine-tune
GPT-3 to express its uncertainty in words; Liu et al. [16] train a lightweight linear adapter
over the last hidden layer to predict a bias term that rescales logits. Though fine-tuned heads
produce sharp confidence curves where they are trained, each new domain or model demands
fresh annotated triples of prompt, candidate code, correctness. Collecting those labels is costly,
often impossible for proprietary APIs, and must be repeated whenever the base model is
updated—so the approach cannot serve as a drop-in wrapper across tasks or providers.

Embedding-based clustering targets semantic rather than lexical similarity. Farquhar et al.
[17] introduce semantic entropy: they embed multiple generations, cluster by cosine similarity,
and measure entropy to flag uncertainty, while Kuhn and Gal [18] and Qiu and Miikkulainen
[9] refine the notion with invariance-aware kernels and density estimates. For natural language
these groupings align with meaning, but for code the mapping from embedding space to
behavior is loose. In code, moving from < to <=, a one-token change that may leave the
embedding almost unchanged, can flip every test outcome, while two implementations with
totally different variable names and control flow may sit far apart in the vector space yet
return identical results. Relying on that geometry therefore blurs the line between correct
and buggy solutions.

A recent code-specific variant by Sharma and David [19] executes symbolic traces to decide
whether two programs match, then applies an entropy measure over trace clusters. Symbolic
traces compare the exact sequence of states a program visits, so any change in control flow—a
loop unrolled one extra time, a recursive call replaced by iteration—yields a different trace
even if the outputs on all inputs are identical. As a result, probability mass that ought to
accumulate on one correct solution is scattered across several trace “modes,” lowering the
reported confidence for each and again driving overly cautious abstention thresholds.

Selective-answer frameworks build reliability guarantees on top of any base score. Abbasi
Yadkori et al. [20] adapt conformal prediction to language models, proving error-rate bounds
when the model abstains below a threshold, and Ye et al. [21] benchmark twenty UQ metrics
across tasks, confirming that abstention policies can dominate naive always-answer baselines
if the underlying score is well-aligned with correctness.

Despite this progress no existing signal is simultaneously behavioral, exact and black-box.
Our functional-clustering verifier fills the gap by treating “produces identical outputs on an
automatically generated test suite” as the atomic equivalence relation, merging syntactically
diverse but behaviorally identical implementations and concentrating probability mass where
it belongs. Because it needs only sampling and sandbox execution, the method plugs directly
into the abstention frameworks above and wraps either open-weight or proprietary models
without retraining or logit access.
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2.3 Evaluation benchmarks for code generation LLMs

Evaluating LLM performance in code generation often involves benchmarks emphasizing
functional correctness, efficiency, and robustness. HumanEval [22] provides a set of 164 coding
problems that test fundamental capabilities, while LiveCodeBench [23] poses more complex,
real-time constraints. Beyond these, APPS (Automated Programming Progress Standard) [24]
presents 10,000 diverse coding problems from competitive programming platforms, assessing
both basic and advanced reasoning skills.

Other benchmarks like CodeContests [25] push models to solve complex, time-sensitive
tasks inspired by actual coding competitions. AlphaCode’s performance on recent Codeforces
events demonstrated that LLMs can achieve competitive results, placing in the top half of
participants [26]. Beyond correctness, these benchmarks can be integrated with coverage
metrics, fuzz testing, and incremental difficulty scaling to ensure the model’s robustness
against subtle forms of hallucination.
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Chapter 3

Methodology

This section lays out the full technical scaffold behind our verifier. We begin by formalizing
the task and the notion of functional equivalence (Section 3.1). We then derive an exact—but
usually intractable—confidence metric based on the probability mass of an equivalence class
and show how it can be estimated from finite samples (Section 3.2). Next, we replace
undecidable equivalence with a test-based proxy and analyze the resulting error bounds
(Section 3.4). Finally, we assemble these pieces into a practical inference algorithm and
discuss its computational profile (Section 3.5).

3.1 Problem statement

Let X and Y denote the input and output domains of a programming task described by
natural-language prompt p. Conditioned on p, an auto-regressive LLM defines a predictive
distribution P over syntactically valid programs ϕ ∈ P. For a concrete program ϕ ∈ P its
semantics is the deterministic function fϕ : X → Y .

Two programs are functionally equivalent when they return the same output on every
possible input:

ϕ1 ≡ ϕ2 ⇐⇒ ∀x ∈ X , fϕ1(x) = fϕ2(x). (3.1)

Throughout the paper we assume that each task has a single correct output for any given
input. That is, if two programs differ in their behavior on even one test case they cannot
both be fully correct. Some benchmark problems violate this assumption–for example, tasks
that accept any permutation, any tie-breaking order, or any string that matches a regular
expression. We treat such tasks as out of scope, but note that a similar method as ours could
be used to determine equivalency in such problems.

Our aim is to (i) estimate the probability mass that P assigns to the equivalence class of
the program we ultimately return and (ii) output that program only when the mass exceeds
a user-chosen threshold τ ∈ (0, 1]; otherwise we abstain. Equivalence classes are defined by
Eq. 3.1. The intuition is that genuine solutions tend to coalesce: there are many syntactic
ways to implement the same correct algorithm, so correct programs accumulate probability
in a shared equivalence class. By contrast, hallucinated errors are essentially random and
therefore split their probability mass across many small, disjoint classes. A large observed
class is thus strong evidence of correctness, whereas a small class signals either rarity or error.
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Because universal equivalence is undecidable, we approximate it with agreement on a finite,
automatically generated test set and show that the resulting estimator inherits exponential
reliability guarantees.

3.2 Empirical confidence

The exact confidence of ϕ̂ is
C(ϕ̂) = Pr

Φ∼P

[
Φ ≡ ϕ̂

]
, (3.2)

i.e. the total probability mass of its equivalence class. Calculating C according to Eq. 3.2 is
typically intractable, so we resort to Monte-Carlo:

Ĉn(ϕ̂) =
1

n

n∑
i=1

1
[
Φi ≡ ϕ̂

]
, Φi

i.i.d.∼ P. (3.3)

The indicator in Eq. 3.3 is Bernoulli with mean C(ϕ̂), hence Ĉn is unbiased and its variance
scales as C(1− C)/n.

3.3 Abstention rule and its reliability

Our verifier answers when the empirical mass of the dominant cluster exceeds a user–chosen
threshold1 τ ∈ (0, 1], and abstains otherwise. Formally,

answer ⇐⇒ Ĉn(ϕ̂) ≥ τ ⇐⇒ Sn =
n∑

i=1

1
[
Φi ≡ ϕ̂

]
≥ nτ,

where Sn = nĈn counts the in-cluster samples. If the true class mass is C = C(ϕ̂) < τ ,
answering would be a mistake. The harmful-accept probability is the upper tail of a
Binomial(n,C):

Pr[Sn ≥ nτ | C] =
n∑

k=⌈nτ⌉

(
n

k

)
Ck(1− C)n−k. (3.4)

The next result shows that this tail is exponentially small.

Theorem 1 (Chernoff upper bound). Let X1, . . . , Xn
i.i.d.∼ Bernoulli(C) with mean C ∈ (0, 1),

and set Ĉn = 1
n

∑n
i=1Xi. For any threshold τ ∈ (C, 1),

Pr
[
Ĉn ≥ τ

]
≤ exp

[
−nDKL(τ ∥ C)

]
, (3.5)

where DKL(τ ∥ C) = τ ln τ
C
+ (1− τ) ln 1−τ

1−C
is the binary KL divergence.

1Typical choices are τ ∈ {0.34, 0.45, 0.57} on LiveCodeBench and τ ∈ {0.70, 0.76, 0.84} on HumanEval;
see Section 4.
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Proof. Write Sn = nĈn. For any λ > 0, Markov’s inequality gives

Pr[Sn ≥ nτ ] = Pr
[
eλSn ≥ eλnτ

]
≤ e−λnτ E

[
eλSn

]
.

Independence factorizes the moment-generating function: E[eλSn ] =
(
(1−C) +Ceλ

)n. Hence

1

n
ln Pr[Sn ≥ nτ ] ≤ −λτ + ln

(
(1− C) + Ceλ

)
.

Minimizing the right-hand side over λ > 0 (“Chernoff’s trick”) yields the stated exponent
−DKL(τ∥ C).

Equation (3.5) reveals an appealing knob: doubling the sample size n roughly squares the
failure bound. With n = 100 and a modest gap τ − C = 0.2, we have DKL(τ∥ C) ≈ 0.14 so
that Pr[Sn ≥ nτ ] ≤ e−14 ≈ 10−6, already sufficient for practical deployment. Larger n or a
wider gap tighten the guarantee at the expense of extra LLM queries.

The concentration in n combines multiplicatively with the test-oracle guarantee in m
(Eq. 3.7); increasing either budget amplifies overall reliability without hidden interactions.
We therefore obtain a selective coder whose residual error probability can be driven arbitrarily
low using only black-box sampling and sandbox execution.

3.4 Practical equivalence via testing

Exact functional equivalence is coNP-hard in general, and undecidable when programs may
not halt. Mirroring real-world software developmental practice, we use a test-based oracle.
Let S = {x1, . . . , xm} be a set of test inputs drawn from a task-dependent distribution D.
We declare

ϕ1 ≡S ϕ2 ⇐⇒ fϕ1(xj) = fϕ2(xj) for all j. (3.6)

Suppose two programs disagree on a measurable subset B ⊆ X with D(B) = δ > 0. The
oracle defined in Eq. 3.6 only fails to expose this difference precisely when none of the test
inputs S are in B. The probability of that occurring is

Pr[ϕ1 ≡S ϕ2] = (1− δ)m. (3.7)

Thus, with only hundreds of random tests, the probability in Eq. 3.7 is exponentially unlikely
unless the behavioral divergence itself is vanishingly small. In practice most real defects
(off-by-one errors, edge-case branches, etc.) affect a sizable slice of the input space, so such a
guarantee suffices. The outer Chernoff exponent in n from Eq. 3.5 and the inner detection
exponent in m from Eq. 3.7 compound multiplicatively: increasing either budget tightens
overall guarantees without hidden interactions. Consequently our procedure inherits the best
of both worlds—statistical rigor from concentration inequalities and engineering practicality
from black-box testing—while remaining compatible with modern LLM pipelines that already
generate large candidate batches for re-ranking or self-consistency.
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3.5 Function clustering routine

Algorithm 1 summarizes the complete pipeline executed at inference time. The routine is
parameter-free except for three user-visible knobs: the number of candidate programs n, the
number of automatically generated test inputs m, and the acceptance threshold τ .

The verifier proceeds in three steps. An LLM is first queried n times for candidate
programs φ1:n and m times for test inputs x1:m. We then execute every program on every
input in a sandbox, recording the output vectors oi = (oi1, . . . , oim). Candidates whose
vectors match exactly are grouped; if the largest group contains at least τn elements we
return any representative (all are functionally equivalent on the tests), otherwise we output
abstain. Exact I/O equality replaces embedding or logit heuristics with a behavioral notion
of equivalence.

3.5.1 Computational cost.

The procedure issues n+m LLM calls, so TLLM = O(n+m) dominates wall-clock time. Local
sandbox evaluation performs nm runs, Texec = O(nm), but those runs are fast relative to the
LLM calls. Memory is linear in n+m because each vector component is constant-size. The
computational cost, therefore, is mainly determined by the LLM inferences in Steps 1 and 2.

Algorithm 1 Functional Clustering
Require: task description p (string); sample budgets n (programs) and m (inputs) threshold

τ ∈ (0, 1]
Ensure: abstain or a high-confidence program φ̂

Step 1: Candidate program sampling
1: for i← 1 to n do
2: φi ← LLMGenerateProgram(p)

Step 2: Test-input generation
3: for j ← 1 to m do
4: xj ← LLMGenerateInput(p)

Step 3: Behavioural execution
5: for i← 1 to n do
6: for j ← 1 to m do
7: oij ← SandboxRun(φi, xj)

8: oi ← (oi1, . . . , oim) ▷ output vector
Step 4: Equivalence clustering

9: Partition {φi}ni=1 into classes C1, . . . , CK where oa = ob iff a, b ∈ Ck
10: smax ← maxk |Ck|

Step 5: Decision
11: if smax ≥ ⌈τn⌉ then
12: return any φ ∈ argmaxk |Ck| ▷ high-confidence answer
13: else
14: return abstain
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Chapter 4

Experiments

We evaluate our verifier on HumanEval and LiveCodeBench using two code LLMs:
GPT-4o [27] and Claude-3-Haiku [28]. For each task we sample 50 candidate programs
from each model (100 total) with chain-of-thought plus code prompting; all prompts are
reproduced verbatim in Appendix A. The self-generated test suites are produced by GPT-4o
alone. We then cluster the 100 programs by exact I/O behavior and apply the thresholding
rules introduced in Section 3. Unless stated otherwise, metrics on HumanEval use only
GPT-4o generations, while LiveCodeBench results use the full 100-sample pool.

4.1 HumanEval

Figure 4.1 plots correctness versus estimated confidence Ĉn on HumanEval. The two
step-shaped traces labeled Cum. Wrong and Cum. Correct summarize the scatter: at every
x-axis value they report, respectively, the percentage of incorrect and of correct submissions
whose confidence is greater than that value. Reading the curves from right to left therefore
shows how residual error (red curve) and retained coverage (green curve) evolve as one lowers
a single acceptance threshold. The baseline pass@1 of GPT-4o is 84.9%. With functional
clustering we achieve 85.2% accuracy at the τ2% operating point. Only four tasks lie above
the threshold with incorrect code; manual inspection shows that every one of them stems
from a prompt misunderstanding rather than a hallucinated bug.

To probe these outliers we rewrote each problematic specification, adding a single clarifying
sentence. An example of one of these rewrites is shown in Figure 4.2. After the rewrites the
model produces high-confidence correct solutions for all four tasks, confirming that the verifier
pinpoints specification ambiguity rather than generation noise. Full rewrites are included in
Appendix B.

4.2 LiveCodeBench

Figure 4.3 shows the same analysis for LiveCodeBench. Confidence again cleanly sep-
arates regimes: below Ĉn = 0.34 wrong answers dominate; between 0.34 and 0.57 the
accuracy–coverage trade-off follows the exponential tail predicted by Eq. 3.5; above 0.57
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Figure 4.1: Correctness versus estimated confidence for HumanEval. Colors encode
correctness; Each point is a response that is either correct or wrong, with its x position
denoting the model’s confidence in the response, and its y position meaningless. Dashed
lines mark confidence thresholds, each guaranteeing an empirical error rate of at most the
indicated percentage for returned answers. The Cum. Wrong / Cum. Correct step curves
plot the cumulative percentage of incorrect and correct programs whose confidence lies above
each point on the x-axis.

we observe no errors. At τ2% the verifier returns 36.8% of tasks with a 2% residual error,
while τ0% answers 15.6% of tasks with zero observed errors. Together, these observations
confirm that a single scalar threshold gives practitioners a transparent knob to dial coverage
versus reliability, with the conservative choice τ0% guaranteeing zero observed errors in our
evaluation.

Table 4.1 generalizes that idea across models. We test on three variants of GPT-4.1 [29],
in addition to the GPT-4o and Claude-3-Haiku testing we have done previously. For each
model we first locate the confidence cut-off that yields its raw expected accuracy, then report
the remaining error rate, i.e. the percentage of tasks on which the model both predicts and
is wrong. A lower value therefore signals better calibrated abstention at the model’s own
accuracy level. GPT-4o is the clear winner: at its expected accuracy of 36.9% it incurs
only a 4.1% error rate, less than half that of any GPT-4.1 variant and one-third that of
Claude-3-Haiku. In short, strong confidence separation is not merely a property of our verifier;
it is also a competitive axis on which base models differ.

Reasons for Error. For every task whose dominant cluster was still wrong, we manually
inspected the generated programs and grouped the failures into five categories:

(O) Out-of-scope tasks. A handful of LiveCodeBench problems permit multiple
equally valid outputs (e.g. any permutation, either traversal order). Because our verifier
presumes a single correct equivalence class, such tasks cannot be resolved by clustering
alone.
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def order_by_points(nums):
"""
Write a function which sorts the
given list of integers in ascending
order according to the sum of their
digits.
"""

(a) Excerpt from the original specification

def order_by_points(nums):
"""
Write a function which sorts the
given list of integers in ascending
order according to the sum of their
digits.

If an integer is negative, its
first digit is treated as negative
and the remaining digits as
positive.
"""

(b) Clarified excerpt

Figure 4.2: Manual rewrite of HumanEval/145. Only the relevant portion of the
docstring is shown. Adding the clarification resolves the model’s ambiguity and moves the
solution into the high-confidence region.

Table 4.1: Error rate when each model is thresholded to the confidence level that achieves
its expected accuracy on LiveCodeBench. Lower error rates indicate better calibrated
abstention.

Model Expected accuracy (%) Error rate (%)

GPT-4.1-mini 67.76 11.90
GPT-4.1 66.48 9.52
GPT-4.1-nano 45.95 9.52
GPT-4o 36.93 4.11
Claude-3-Haiku 21.71 12.33

(I) Incomplete response. Trivial syntactic slips, such as omitting a final print, never
calling main, or leaving “# TODO” stubs, that a human would not commit.

(S) Simple one-line mistakes. The algorithm is conceptually correct but a one-line error
(< vs. <=, off-by-one, misplaced modulo) breaks edge cases. These are slips a novice
programmer might make.

(HC) Hard mistakes (missing constraint). The model overlooks a specification detail
(array bounds, divisibility, . . . ) producing a coherent yet wrong algorithm. Many such
variants agree with each other, so they can persist into medium-confidence clusters;
clarifying examples or rewriting the prompt would likely fix them.

(HA) Hard mistakes (wrong algorithm). The chosen approach itself is invalid (e.g. greedy
instead of dynamic programming). This mirrors errors an experienced programmer
might make on a tricky problem.
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Figure 4.3: Correctness versus estimated confidence for LiveCodeBench. Similar to
Figure 4.1.

(TL) Time limit exceeded. The approach is valid, but is inefficient, taking too long on the
provided test cases. These errors are not ones that our method is specifically designed
to catch, as it looks for correctness not efficiency.

Table 4.2 reports six accuracy metrics after successively removing each error category
(letters are cumulative; e.g., O+HC drops out-of-scope tasks and hard mistakes caused by
missing a constraint). Threshold accuracies are measured after clustering with τ tuned so
that the returned-answer error rate does not exceed 0%, 1%, or 2%; tasks falling below the
threshold are returned as unknown. Expected accuracy is the average probability of emitting
a correct program across 100 generations per task, while clustered accuracy always returns
the majority-cluster program with no thresholding. Maximum accuracy is an oracle upper
bound that counts a task as solved if any of the 100 generations is correct.

Comparing the rows shows how aggressive filtering tightens guarantees. Dropping only
out-of-scope tasks already lifts τ2% accuracy above the expected baseline, offering better
precision with just a 2% residual error. Achieving the same edge over expected accuracy at
τ1% requires removing tasks where the model ignores a constraint (HC); a zero-error policy
demands also eliminating wrong-algorithm cases (HA). These observations confirm that
residual errors originate from semantic misunderstanding—either of the prompt (HC) or of
the algorithmic requirements (HA). Random hallucinations and syntactic slips are effectively
eliminated by the verifier; addressing the remaining hard cases will require better specification
clarity or interactive disambiguation.

After filtering out the three semantic categories–out-of-scope (O), missing-constraint hard
mistakes (HC), and wrong-algorithm hard mistakes (HA)–only 181 genuinely algorithmic
problems remain. Figure 4.4 visualizes their outcome distribution. Compared to the unfiltered
plot, the mass of wrong outcomes no longer has outliers past the τ0% threshold, with all
remaining errors having a low confidence. Accuracy jumps from 15% in the unfiltered case to
43% after the filter, making explicit how removing specification-level failures amplifies the
reliability of our verifier.
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Table 4.2: LiveCodeBench accuracy after removing successive error categories. The
full table of results containing all combinations of error categories can be found in Appendix
C.

Dropped set (remaining) τ0% τ1% τ2% Expected Clustered Max

Baseline (219) 15.07 16.44 31.05 33.97 49.32 66.67
Out of Scope (212) 15.57 25.47 36.79 35.09 50.94 68.87
O+HC (198) 27.27 39.39 39.90 37.21 54.55 71.21
O+HC+HA (181) 43.09 45.86 50.83 40.25 59.67 74.59
O+HC+HA+I+S (159) 67.30 67.30 67.30 44.53 67.30 78.62
O+HC+HA+I+S+TL (107) 100 100 100 64.20 100 100

Figure 4.4: LiveCodeBench after eliminating out of scope and hard errors. Similar to
Figure 4.3, but with tasks whose errors arise from out-of-scope prompts, hard errors involving
the model ignoring a constraint, or hard errors involving a wrong algorithm removed.
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Chapter 5

Discussion

Functional clustering draws a sharp line between two error sources. Once candidate pro-
grams are grouped by exact I/O behavior on an automatically generated test suite, random
hallucinations nearly vanish. Almost every residual failure can now be traced to the model
misreading, under-specifying, or over-constraining the natural-language prompt. Diversity
among base models helps further: the few hard mistakes that remain generally occur when
one LLM concentrates its probability mass on a single flawed interpretation, whereas an
ensemble tends to disagree and thus abstains.

Specification refinements are an immediate lever. Rewriting a handful of ambiguous
HumanEval tasks boosts both confidence and accuracy, echoing the way human programmers
pose follow-up questions when requirements are vague. A natural next step is to let LLMs
propose such clarifications automatically, or to iteratively rewrite the prompt until confidence
stabilizes.

Time-limit exceedance dominates the harder LiveCodeBench tasks. Because functional
clustering already verifies behavioral equivalence, we can safely ask the model for optimized
variants and accept them only if they match the reference on the full test suite and finish
within budget, automating a significant slice of performance tuning.

5.1 Limitations

The approach rests on two core assumptions: each task admits a single functionally correct
equivalence class, and behavioral agreement on a finite, auto-generated test set is a faithful
proxy for universal correctness. Tasks with multiple valid outputs or hidden edge cases
violate these assumptions; the verifier therefore fails on such inputs, and future work should
investigate coverage-guided or property-based testing.

Reliability depends on the number of sampled programs n, the number of test inputs m,
and the acceptance threshold τ . Smaller n or m, or highly peaked sampling, weakens the
Chernoff-style guarantees, whereas larger values raise wall time and cost roughly as O(nm).
Parallelization, caching, and distilled student models help but do not remove the overhead.

Experiments are limited to Python problems from HumanEval and LiveCodeBench
using two English-language LLMs. Extending to other programming languages will require
language-specific sandboxes, new input generators, and fresh validation. Even with sand-
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boxing, sophisticated escape or resource-exhaustion attacks remain possible and must be
mitigated with stricter isolation. Because abstentions may correlate with under-represented
domains, downstream systems should monitor for disparate coverage and adjust thresholds
or training data accordingly.

32



Chapter 6

Future Work

Because the verifier now localizes nearly every residual failure to a misunderstanding of the
task description rather than to random code hallucinations, the most immediate research
frontier is interactive disambiguation. One promising workflow is to run functional clustering
once, and—when the dominant-cluster mass Ĉn falls below the user-chosen threshold τ—ask
the language model to pose a clarifying question to the human author, merge the answer
into an amended prompt, and re-run the verifier. Early prototypes on HumanEval reduce
abstentions by roughly one-third with no uptick in error, suggesting that a conversational
loop could translate statistical uncertainty into simple follow-up questions that even non-
experts can answer. A natural extension is automatic prompt repair: many of our successful
hand-edits follow recognizable patterns such as specifying units, disallowing empty inputs,
or pinning down edge-case behavior. Mining (ambiguous to clarified) prompt pairs from
developer forums and training a contrastive retriever would allow the system to recommend
or even apply such patches when low confidence is detected, turning an abstention into an
autonomous self-fix.

Another promising direction is multi-model consensus. The experiments in Section 4
showed that using two heterogeneous language models already halves the residual error at
fixed coverage; scaling that idea to k generators, and returning an answer only when at least
m of them agree, compounds the exponential Chernoff guarantee over both the sample size n
and the model count k. There is an open engineering problem in finding the sweet spot for
(k,m) once parallel inference, GPU batching, and monetary cost are taken into account. Once
a single high-confidence candidate emerges from the ensemble, classical program-analysis
techniques become tractable: lightweight symbolic execution, bounded-model checking, or
SMT queries can verify memory-safety and API contracts in milliseconds, yielding a hybrid
pipeline that combines statistical evidence with formal proof.

Scaling the verifier itself beyond toy settings is equally important. Although the current
study focuses on Python functions, the method is language-agnostic so long as execution can
be sandboxed. Extending it to C++, Rust, or Java—and to multi-file projects whose behavior
depends on interactions among several modules—will require clever caching of intermediate
results and perhaps speculative compilation to keep the n ×m runtime manageable. For
latency-sensitive applications such as mobile inference or embedded control, one could envisage
a performance-optimization loop that iterates “generate → verify → benchmark” until the
Pareto frontier over latency, energy, and memory stabilizes; the behavioral guarantee provided
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by functional clustering ensures that speed-ups never regress on correctness.
Finally, two orthogonal strands merit attention. First, open-world testing: all current

benchmarks assume that the hidden evaluation set shares the same distribution as the
automatically generated test cases. Incorporating adaptive input generators—fuzzers, rein-
forcement learners, or even adversarial humans—would expose corner cases and tighten safety
bounds, especially for security-critical code. Second, human factors: integrating the verifier
into IDEs raises questions of trust calibration and cognitive overhead. When should the tool
silently abstain, when should it display a confidence bar, and how can it unobtrusively request
clarifications from a developer who is “in the flow”? Controlled user studies that measure
productivity, error avoidance, and perceived reliability will round out the purely technical
advances and determine how widely functional-clustering verification is adopted in practice.
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Chapter 7

Conclusion

We introduced functional clustering, a lightweight wrapper that turns any black-box code
LLM into a selective coder with rigorously bounded error. The method samples multiple
candidate programs, groups them by exact I/O behavior on an automatically generated test
suite, and interprets the empirical mass of the dominant equivalence class as a confidence score.
A single scalar threshold allows users to trade coverage for reliability: raising the threshold
shrinks the fraction of tasks answered but drives the residual error rate exponentially toward
zero, in line with our Chernoff-style analysis.

On LiveCodeBench, the wrapper preserves baseline pass@1 on solvable tasks yet cuts the
error rate of returned answers from roughly 65% to under 2%. At a more conservative threshold
the error rate falls to 0% while still solving 15.6% of benchmark problems. Manual audits
reveal that the remaining failures stem from prompt misinterpretation rather than random
hallucination, narrowing future work to specification clarity and cross-model consensus.

Unlike prior methods that rely on token-level likelihoods, embedding distances, or privi-
leged logits, functional clustering requires only two black-box capabilities—generating code
and running it—making it immediately applicable to closed APIs and future models. Because
the same test-oracle infrastructure can validate optimized rewrites, incremental debugging, or
ensemble voting, we view functional clustering as a modular building block for dependable,
autonomous software pipelines.
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Appendix A

LLM prompts

When generating function completions, we require the response to be in a specific format.
For each model the format is slightly different, so we use the system prompt to describe
the format of the response to the model. The following is the system prompt for function
completions for GPT-4o:

1 You are an expert Python programmer and coding assistant. Your
2 task is to solve the given problem in Python, providing both a
3 detailed explanation of your reasoning and the code. Think
4 through the problem step by step, considering any edge cases and
5 ensuring the code meets the requirements. If the problem contains
6 any examples, simulate running those examples against your code
7 to verify whether your reasoning about the problem is correct.
8 Make sure to not have any misunderstandings about the problem.

The following is the system prompt for Claude-3-Haiku:

1 You are an expert Python programmer and coding assistant. Your
2 goal is to generate a response **strictly** in JSON format with
3 exactly two top-level fields: "explanation" and "code". Both
4 fields must be valid JSON strings that include all necessary
5 escape characters.
6

7 - The "explanation" field should provide a detailed, step-by-step
8 reasoning of how you derived your solution.
9 - The "code" field must contain **only** valid Python code that

10 can be copied and run directly in a Python file without
11 modifications or additional text.
12 - Do not include any fields other than "explanation" and "code".
13 - Do not include any text before or after the JSON object.
14 - Do not include markdown formatting (like triple backticks).
15

16 Your output should look like:
17

18 {
19 "explanation": "...",
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20 "code": "..."
21 }
22

23 And nothing else.
24

25 Follow these instructions carefully to ensure the output is in
26 the correct format.

Additionally, we have prompts for each dataset. HumanEval and LiveCodeBench provide
their tasks in different formats. For HumanEval, the task is provided as a docstring for a
function that the model is expected to complete. For LiveCodeBench, the task is provided
as a text description scraped from a competitive programming website. So, in the user
prompt, we describe the task and provide the input and output formats that the model
should follow. The following is the user prompt for HumanEval:

1 Complete the function ’{entry_point}’ in the following code
2 snippet. Provide a detailed explanation of your reasoning in the
3 ’explanation’ field, and the complete code in the ’code’ field.
4 Think carefully about the problem, considering edge cases and the
5 best approach to implement the function. If the code snippet
6 contains any examples, think through those examples to verify
7 whether your reasoning about the problem is correct. Use those
8 examples to correct any misunderstandings you may have about the
9 problem. Do not add new imports or define any new functions that

10 were not included in the provided snippet. Output your response
11 as a JSON object with fields ’explanation’ and ’code’.
12

13 ‘‘‘{function_docstring}‘‘‘

The following is the user prompt for LiveCodeBench:

1 Write Python code to solve the following problem. Read from
2 standard input and output to standard output. Provide a detailed
3 explanation of your reasoning in the ’explanation’ field, and the
4 complete code in the ’code’ field. Think carefully about the
5 problem, considering edge cases and the best approach to
6 implement the function. If the provided problem contains any
7 examples, think through those examples to verify whether your
8 reasoning about the problem is correct. Use those examples to
9 correct any misunderstandings you may have about the problem.

10 Output your response as a JSON object with fields ’explanation’
11 and ’code’.
12

13 ### Problem Statement:
14 {question_content}

We additionally prompt the LLM to generate test cases. In this case, we use a single LLM,
GPT-4o. The following is the prompt used to generate test cases for HumanEval:

1 Generate a comprehensive list of valid input test cases for the
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2 function ’{entry_point}’ in the following code. The test cases
3 should cover all possible valid scenarios, including edge cases
4 and typical use cases. Provide only the inputs to each test case.
5 Each set of inputs should be a string that can be parsed with
6 json.loads into a valid dictionary with the function parameter
7 names as keys:
8

9 ‘‘‘{function_docstring}‘‘‘

The following is the prompt used to generate test cases for LiveCodeBench:

1 Generate a comprehensive list of valid input test cases for the
2 given problem statement. The test cases should cover all possible
3 valid scenarios, including edge cases and typical use cases.
4 Provide only the inputs to each test case. Each input should be a
5 string in the provided test format that will be passed into a
6 program through standard input.
7

8 ### Problem Statement:
9 {question_content}
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Appendix B

Problem rewrites

The following is a list of all rewritten problems from HumanEval.

HumanEval/145

1 # original snippet
2 def order_by_points(nums):
3 """
4 Write a function which sorts the given list of integers
5 in ascending order according to the sum of their digits.
6 Note: if there are several items with similar sum of their
7 digits, order them based on their index in original list.
8

9 For example:
10 >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11]
11 >>> order_by_points([]) == []
12 """
13

14 # clarified version
15 def order_by_points(nums):
16 """
17 Write a function which sorts the given list of integers
18 in ascending order according to the sum of their digits.
19 **If an integer is negative, its first digit should be treated
20 as negative and the remaining digits as positive.**
21 Note: if there are several items with similar sum of their
22 digits, order them based on their index in original list.
23

24 For example:
25 >>> order_by_points([1, 11, -1, -11, -12, -111]) == [-1, -11, 1, -12, -111, 11]
26 >>> order_by_points([]) == []
27 """

HumanEval/127
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1 # original snippet
2 def intersection(interval1, interval2):
3 """
4 You are given two intervals, where each interval is a pair of
5 integers. For example, interval = (start, end) = (1, 2). The
6 given intervals are closed which means that the interval
7 (start, end) includes both start and end. For each given
8 interval, it is assumed that its start is less or equal its
9 end. Your task is to determine whether the length of

10 intersection of these two intervals is a prime number.
11

12 Example, the intersection of the intervals (1, 3), (2, 4) is
13 (2, 3) which its length is 1, which not a prime number. If
14 the length of the intersection is a prime number, return
15 "YES", otherwise, return "NO". If the two intervals don’t
16 intersect, return "NO".
17

18 [input/output] samples:
19 intersection((1, 2), (2, 3)) ==> "NO"
20 intersection((-1, 1), (0, 4)) ==> "NO"
21 intersection((-3, -1), (-5, 5)) ==> "YES"
22 """
23

24 # clarified version
25 def intersection(interval1, interval2):
26 """
27 You are given two intervals, where each interval is a pair of
28 integers. For example, interval = (start, end) = (1, 2). The
29 given intervals are closed which means that the interval
30 (start, end) includes both start and end. For each given
31 interval, it is assumed that its start is less or equal its
32 end. **The length of an interval (a, b) is defined as b - a.**
33 Your task is to determine whether the length of
34 intersection of these two intervals is a prime number.
35

36 Example: the intersection of the intervals (1, 3), (2, 4) is
37 (2, 3), whose length is 3 - 2 = 1, which is not a prime
38 number. If the length of the intersection is a prime number,
39 return "YES", otherwise, return "NO". If the two intervals
40 don’t intersect, return "NO".
41

42 [input/output] samples:
43 intersection((1, 2), (2, 3)) ==> "NO"
44 intersection((-1, 1), (0, 4)) ==> "NO"
45 intersection((-3, -1), (-5, 5)) ==> "YES"
46 """
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HumanEval/134

1 # original snippet
2 def check_if_last_char_is_a_letter(txt):
3 """
4 Create a function that returns True if the last character
5 of a given string is an alphabetical character and is not
6 a part of a word, and False otherwise.
7 Note: "word" is a group of characters separated by space.
8

9 Examples:
10 check_if_last_char_is_a_letter("apple pie") => False
11 check_if_last_char_is_a_letter("apple pi e") => True
12 check_if_last_char_is_a_letter("apple pi e ") => False
13 check_if_last_char_is_a_letter("") => False
14 """
15

16 # clarified version
17 def check_if_last_char_is_a_letter(txt):
18 """
19 Create a function that returns True if the very last character
20 of a given string is an alphabetical character and is not
21 a part of a word, and False otherwise.
22 Note: ""word"" is a group of characters separated by space.
23 **Do not trim any trailing spaces.**
24

25 Examples:
26 check_if_last_char_is_a_letter("apple pie") => False
27 check_if_last_char_is_a_letter("apple pi e") => True
28 check_if_last_char_is_a_letter("apple pi e ") => False
29 check_if_last_char_is_a_letter("") => False
30 """

HumanEval/160

1 # original snippet
2 def do_algebra(operator, operand):
3 """
4 Given two lists operator, and operand. The first list has
5 basic algebra operations, and the second list is a list of
6 integers. Use the two given lists to build the algebric
7 expression and return the evaluation of this expression.
8

9 The basic algebra operations:
10 Addition ( + )
11 Subtraction ( - )
12 Multiplication ( * )
13 Floor division ( // )
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14 Exponentiation ( ** )
15

16 Example:
17 operator[’+’, ’*’, ’-’]
18 array = [2, 3, 4, 5]
19 result = 2 + 3 * 4 - 5
20 => result = 9
21

22 Note:
23 The length of operator list is equal to the length of
24 operand list minus one. Operand is a list of of non-
25 negative integers. Operator list has at least one
26 operator, and operand list has at least two operands.
27 """
28

29 # clarified version
30 def do_algebra(operator, operand):
31 """
32 Given two lists operator, and operand. The first list has
33 basic algebra operations, and the second list is a list of
34 integers. Use the two given lists to build the algebric
35 expression and return the evaluation of this expression. **Do
36 not just apply each of the operations in the order they are
37 given, make sure to keep order of operations in mind.**
38

39 The basic algebra operations:
40 Addition ( + )
41 Subtraction ( - )
42 Multiplication ( * )
43 Floor division ( // )
44 Exponentiation ( ** )
45

46 Example:
47 operator[’+’, ’*’, ’-’]
48 array = [2, 3, 4, 5]
49 result = 2 + 3 * 4 - 5
50 => result = 9
51

52 Note:
53 The length of operator list is equal to the length of
54 operand list minus one. Operand is a list of of non-
55 negative integers. Operator list has at least one
56 operator, and operand list has at least two operands.
57 """
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Appendix C

Dropped problem sets

Table C.1 shows the full table of accuracies. Out of scope (O) and Time limit exceeded (TL)
errors are treated separate as both are not error categories that our method is meant to deal
with. The other four categories are simple mistakes (S), incomplete response (I), missing
constraint (HC), and wrong algorithm (HA). For these categories, all combinations of the
categories are shown to be removed.
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Table C.1: Full table of LiveCodeBench accuracies after removing successive error categories.

Dropped set (remaining) τ0% τ1% τ2% Expected Clustered Max

Baseline (219) 15.07 16.44 31.05 33.97 49.32 66.67
O (212) 15.57 25.47 36.79 35.09 50.94 68.87
O+S (202) 16.34 26.73 38.61 36.14 52.97 68.81
O+I (200) 16.50 27.00 39.00 36.86 54.00 71.50
O+HC (198) 27.27 39.39 39.90 37.21 54.55 71.21
O+HA (195) 16.92 18.46 40.00 37.72 55.38 71.79
O+I+S (190) 17.37 18.95 35.79 38.07 56.32 71.58
O+S+HC (188) 28.72 41.49 43.62 38.46 56.91 71.28
O+I+HC (186) 29.03 41.94 42.47 39.25 58.06 74.19
O+S+HA (185) 17.84 19.46 44.86 39.01 57.84 71.89
O+I+HA (183) 18.03 19.67 42.62 39.83 59.02 74.86
O+HC+HA (181) 43.09 45.86 50.83 40.25 59.67 74.59
O+I+S+HC (176) 30.68 44.32 46.59 40.70 60.80 74.43
O+I+S+HA (173) 19.08 20.81 50.29 41.33 61.85 75.14
O+S+HC+HA (171) 48.54 57.89 60.23 41.79 62.57 74.85
O+I+HC+HA (169) 46.15 53.25 55.62 42.71 63.91 78.11
O+I+S+HC+HA (159) 67.30 67.30 67.30 44.53 67.30 78.62
O+I+S+HC+HA+TL (107) 100 100 100 64.20 100 100
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