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ABSTRACT

BuildIt allows users to write C++ programs that can execute in multiple stages, where the
output of one stage is the program source for the next stage, ending with some final output
produced. This is particularly useful for writing specialized code and generating code for
domain-specific languages. While there are other approaches to multi-stage programming,
BuildIt has several advantages: it takes a library-based approach (so it requires no modifica-
tions to the compiler and is thus highly portable), and it has excellent ease of use as all the
user has to do is change the declared types of variables in their C4++ program. The goal of
this thesis is to further improve BuildIt’s ease of use by simplifying this step: in particular,
by developing a tool that will automatically convert existing C and C++ programs to the
BuildIt framework. We show how to use Clang tooling in conjunction with modifications to
the Clang compiler to perform non-trivial modifications to source, namely type-modification,
to automatically convert code to its unstaged Buildlt equivalent. As the unstaged BuildIt
code can be specialized by staging certain variables, this tool will ultimately enable more
easily staging and optimizing C/C++ repositories with the Buildlt framework.

Thesis supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science






Acknowledgments

I would like to express my gratitude to my mentor and direct advisor, Ajay Brahmakshatriya.
He has sat through numerous meetings with me, helping me debug, answering my questions,
and teaching me what it means to be a researcher and truly be passionate about compilers.
His continual guidance throughout the research process has been instrumental in shaping
my work and helping me grow as a researcher. I would also like to extend my thanks to my
faculty supervisor, Professor Saman Amarasinghe, for first introducing me to the field of
compilers and performance engineering through his class 6.172 Performance Engineering, and
for accepting me into his lab. I have learned an incredible amount about this field of research
and I am grateful for the input he has provided on my research.

I am sincerely grateful to all the professors, teaching assistants, and researchers I have
met during my time at MIT. I entered MIT as a student eager to learn, and thanks to all of
these individuals I can say this goal has been successful. I have learned a great deal, have
been exposed to new fields, and have been continuously challenged. My time at MIT has
been a period of significant personal and academic growth, and I will always remember it
fondly.

Thank you to all of my friends for making my last four years enjoyable. From the late-night
problem-set sessions to our excursions into Boston, I have truly cherished our time together.
My friends’ support, laughter, and understanding have helped me grow as a person, and has
made my time here much more fulfilling.

Lastly, I would like to give my heartfelt thanks to my family. Thank you for always
believing in me, for providing me with the best opportunities, and for all of your sacrifices.
Without your unconditional support and encouragement, this thesis would not have been
possible.






Contents

List of Figures
List of Tables

1

Introduction

1.1
1.2

Problem and Motivation . . . . . . . . . . ..
Contributions . . . . . . .

1.3 Thesis Overview . . . . . . . . .

Background and Related Work

2.1
2.2
2.3

Clang . . . . . .
Buildlt . . . . .
Existing Solutions for Source Modifications . . . . . . . .. . ... ... ...

System Description

3.1
3.2
3.3

3.4

3.5

System Overview . . . . . . . ...
System Motivation . . . . . .. .. L
System Components . . . . . . . . ..
3.3.1 Clang Rewriter Tool . . . . . . . . ... ... ... ... ... ..
3.3.2  Modified Clang C/C++ Compiler . . . . . .. ... ... ... ....
3.3.3  Stub Generator Script . . . . . ...
334 Driver Code . . . . . . . .
Support for Various Features . . . . . . . . . .. ... L.
3.4.1 Structs . . . . ..
3.4.2 Variadic Functions . . . . . . . . ...
3.4.3 Recursive Functions . . . . . . . . ... oo
3.4.4 Global Variables . . . . . . . .. ...
Challenges and Limitations . . . . . .. .. .. ... ... ... ... ...

Results and Evaluation

4.1

4.2

Results . . . . . . o e
4.1.1 Example 1 . . . . . .
4.1.2 Example 2 . . . . .o
Evaluation . . . . . . . .



5 Conclusion

5.1 Future Work

5.2 Summary

References



List of Figures

1.1
2.1

2.2

3.1
3.2
3.3

3.4

3.5

3.6

3.7
3.8

3.9

The BuildIt conversion tool’s pipeline. . . . . . . .. ... ... .......

A simple C++ program and its generated AST shown below. The AST con-
sists of a FunctionDecl node, consisting of two children ParmVarDecl nodes
corresponding to function parameters a and b, a CompoundStmt node corre-
sponding to the first line of the function, and a ReturnStmt node corresponding
to the last line of the function. These children nodes themselves have children,
capturing further structure within the program. . . . . . . ... .. ... ..
A power function staged in Buildit is shown on the left, where the base is a
dynamic variable and the exponent is a static variable. The generated code
is shown on the right, with 15 passed as the static exponent argument. It is
important to note that the static variable exponent is no longer present, and
only the dynamic variable base remains in the generated code. . . . . . ..

System diagram of the BuildIt conversion tool. . . . . . . . .. ... ... ..
An add function along with its generated AST. . . . . . ... ... ... ..
The AST produced by running the Clang Plugin on the add function shown in
figure 3.2. . . . L
A BuildIt add function and its (truncated) generated AST. This is the intended
result of performing source-modifications on the code in figure 3.2. Note, minor
reformatting was performed to improve visualization. . . . . . . . ... ...
A simple power program is shown on the left, and the emitted source code
from running the Clang Tool on it is shown on the right. . . . . .. ... ..
A simple power program is shown on the left, and the emitted source code
from running the Clang Tool on it is shown on the right. Declaring multiple
variables in a single statement results in an error with the Clang Tool, as can
be seen in the first line of the function body on the right. . . . .. ... ..
The code contained inside dbd _support.h. . . . . . .. ... .. ... ...
A preprocessed program is shown on the left, and the result of running the
Clang Rewriter Tool on it is shown on the right. . . . .. .. ... ... ..
A simple program is shown on the left. The result of running the program
through the Rewriter Tool and modified Clang compiler produces an object file
for the code shown on the right. The puts() declaration’s types are changed to
match its function call, though it is missing a definition. . . . . . . .. . ..

18

20

24
26

27

28

29

30
32

33

37

3.10 An example of a linker error dumped from compiling the program shown in 3.9. 38



3.11
3.12

3.13

3.14

3.15

3.16
3.17

4.1

4.2

4.3

4.4

4.5

4.6

The header file generated by our script based on the linker error message in 3.10. 38
The driver code, used to generate code for functions, struct-types, and global
variables, is shown. . . . . . . ... oo oo 39
The left and right image show a program and its equivalent code in Buildlt,
respectively. This shows Buildlt’s treatment of struct types. . . . . ... .. 41
The result of applying the Rewriter Tool to the program shown on the left
in 313, . . . 42
The left shows a simple program that calls the variadic function printf.
The right shows the emitted output from running the Rewriting Tool on the
program on the left. . . . . . . . . ... 44
A recursive program and the result of performing source rewrites on it is shown. 45
A program with global variables, and the result of running the Rewriter Tool

A user program that calls the recursive function factorial, and makes use of
global variables, structs, and variadic functions. . . . . .. .. ... ... .. 50
The result of the preprocessing the program shown in 4.1. We have truncated
the code included from stdio.h header to only include the relevant printf

declaration, for display purposes. . . . . . . .. ... L. 50
The result of performing source rewrites to the program shown in 4.2. . . . . 51
The driver for the program in 4.1. . . . . . . . .. . ... ... .. ... .. 52
The generated code produced from the BuildIt program’s executable. This

should be equivalent to the codein4.1. . . . . . ... ... ... ....... 53

The time taken to compile the programs from example 1 and example 2 in
section 4.1, from a standard approach and from converting and compiling the
program with the BuildIt conversion tool. Note, no linker errors are thrown
when converting example 1 and 2 so no stubs need to be generated. . . . . . 63

10



List of Tables

4.1 Lines of Code at Different Stages in the Conversion Process

11



12



Chapter 1

Introduction

1.1 Problem and Motivation

As computation workloads from machine learning and data-science applications continue
to grow, it has become increasingly important for developers to write specialized, high-
performance code. Often, developers will need to write code that targets hardware features or
intrinsics to ensure good performance for their applications. Using domain-specific languages
(DSLs) is one way for developers to achieve this, as DSLs enable users to write optimized code
for specific use cases while still maintaining some programming generalizability. In particular,
DSLs abstract away many lower-level programming details, making them much simpler for
developers to use. Graphlt 1], Halide 2], and TensorFlow [3] are notable examples of DSLs
that have been released in recent years. Interestingly, these DSLs are simply multi-stage
programming frameworks with two stages, where the first stage corresponds to code in the
high-level DSL, and the second stage corresponds to high-performance code in C++/CUDA.
In the simplest sense, multi-stage programming refers to code that executes in several stages,
where the output of one stage is the code for the next stage. Multi-stage programming

provides a much more general way to generate specialized code, and can be used to implement

DSLs [4, 5].
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Buildlt [6] is a type-based programming framework that enables users to write multi-staged
C-++ programs. BuildIt’s support for writing multi-staged programs makes it particularly
useful for writing specialized, high-performance code and for generating code for DSLs. For
instance, BuildIt has been used to implement a Graphlt compiler [7]. While there are
other approaches to multi-stage programming, Buildlt has several advantages: it takes a
library-based approach, so it requires no modifications to the compiler and is thus highly
portable; and it has excellent ease-of-use. To use BuildIlt for multi-stage C+-+ programming,
all the user has to do is change the declared types of variables in their C++ program (by
wrapping it in the appropriate Buildlt template) so that BuildIt can determine what stage to
bind each VariableE

The goal of this thesis is to further improve BuildIt’s ease of use by enabling automatic
conversion of existing C and C++ programs to the Buildlt framework. Concretely, this thesis
demonstrates how to use Clang tools and modify the Clang C/C++ compiler to automatically
convert all types in a program to be a BuildIt compatible type, and thus produce BuildIt
code that is equivalent to the original source. The converted Buildlt code represents an
unstaged program that users can begin staging variables in to specialize their code. The
execution of the BuildIt program will then generate optimized C/C-++ code as output. Thus,
our conversion tool performs the tedious work needed to convert a program to its unstaged
BuildIt equivalent, so that users can then stage and optimize their code. We show that the
tool we develop can convert sample programs to the equivalent BuildIt code successfully,
demonstrating the viability of our conversion tool. We restrict support of our tool to C and
C-like C-++ programs to make the problem scope appropriate for a thesis.

At a high-level, the tool converts code to Buildlt through a combination of source rewrites
and modified parsing by a Clang compiler. The rewriting process prepares the code for
parsing by the modified compiler, and is crucial for supporting conversion of many C language
features. The modified compilation process changes types in the program to Buildlt types.

The conversion pipeline is shown in figure 1.1.

14
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Figure 1.1: The BuildIlt conversion tool’s pipeline.
1.2 Contributions

We make two main contributions in this thesis. First, this work details how to use Clang tooling
in conjunction with modifications to the Clang compiler to perform structural modifications
to C and C-++ source. In doing so, we highlight limitations of different Clang tooling and
also share insights that may be useful for performing source modifications in other works.
Secondly, this work demonstrates how to convert existing C and C+-+ programs to the
equivalent BuildIt code. We support converting C and C++ programs with various features,
including variables, functions, structs, and global variables, leaving support for C++ features
such as classes and templates for future work. This conversion is useful because there are
multiple steps required to optimize a program with Buildlt: it must first be converted to
the equivalent Buildlt code, and then certain variables must be staged and specialized. This
thesis completes the first step, and its work can be extended to allow users to stage/specialize
certain variables when automatically converting their code to BuildIt, thus enabling users to
stage and specialize their code with the BuildIlt multi-stage framework. Ultimately, our tool
brings us one step closer to the goal of being able to automatically stage and optimize large

C and C+-+ codebases with BuildlIt.

1.3 Thesis Overview

Chapter 2 provides relevant background on Clang and Buildit, and also discusses existing
approaches to source code modifications, particularly for programs written in C and C+-+.

Chapter 3 discusses the design and implementation of our Buildlt conversion tool. We

15



discuss the various components—including the Clang Rewriter tool, our modifications to the
Clang compiler, and the driver code—along with particular work done to support standard
C programming features. In chapter 4, we apply the BuildIt conversion tool to sample C
programs, and show that our tool produces equivalent BuildIt code. Chapter 5 describes
future directions of this work, particularly how the conversion tool can be extended to enable
automatic staging and optimization of large C/C-++ code-bases with BuildIt. Chapter 5 also

concludes the thesis.
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Chapter 2

Background and Related Work

In this chapter, we provide relevant background on Clang and Buildlt, and cover related

works on source modifications.

2.1 Clang

Unlike Python programs which are interpreted live at runtime, C and C++ programs must
first be compiled into an executable, which can then be run by the machine. Clang [8] is an
open-source C/C++ compiler that is available as part of the LLVM-project, with significant
tooling built around it. The Clang compiler works by running several passes through the
source code. In the first few passes, Clang parses and constructs an abstract-syntax-tree
(AST) representation of the code. The AST captures the hierarchical structure of the code, as
can be seen in Figure 2.1, where the higher-level node corresponds to a function declaration
and the children nodes correspond to the parameters and statements within the function
body.

Clang exposes many tools that can act on the AST representation to perform either intro-
spection or modifications on the code. For example, Clang provides a RecursiveASTVisitor
Class whose methods can be overridden to visit certain AST nodes and perform custom

actions on them. This can be utilized by user-written Clang tools [9] (stand-alone code that
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1 // function returns the sum of two numbers
2 int add(int a, int b) {

3 int sum_of_numbers = a + b;

] return sum_of_numbers;

5}

7 *-FunctionDecl add ’int (int, int)?
8 | -ParmVarDecl used a ’int’

9 | -ParmVarDecl used b ’int’
[4

10 -CompoundStmt
11 | -DeclStmt
12 | ¢-VarDecl used sum_of_numbers ’int’
| ‘-BinaryOperator ’int’ 2+
| | -ImplicitCastExpr ’int’ <LValueToRValue>
| | ¢-DeclRefExpr ’int’ lvalue ParmVar ’a’ ’int’
16 | ‘-ImplicitCastExpr ’int’ <LValueToRValue >
| ‘-DeclRefExpr ’int’ lvalue ParmVar ’b’ ’int?’
18 ‘-ReturnStmt
19 ‘-ImplicitCastExpr ’int’ <LValueToRValue>
20 ‘-DeclRefExpr ’int’ lvalue Var ’sum_of_numbers’ ’int’

Figure 2.1: A simple C++ program and its generated AST shown below. The AST consists of
a FunctionDecl node, consisting of two children ParmVarDecl nodes corresponding to function
parameters a and b, a CompoundStmt node corresponding to the first line of the function,
and a ReturnStmt node corresponding to the last line of the function. These children nodes
themselves have children, capturing further structure within the program.

can perform user-defined actions on a program) or Clang Plugins [10] (code which can be
loaded in during compilation to perform user-defined actions on a program). For instance,
a particularly powerful Clang tool combines a Clang Rewriter with a Recursive AST Visitor
to visit specific AST nodes in a program and perform rewrites to their source. Internally,
Clang’s code also uses the AST structure to parse, analyze, and compile the code.

After the AST is constructed, Clang’s next set of passes optimize the code. The Clang
compiler at this stage may restructure control flow, perform constant folding, function inlining,
etc. It is important to note, however, that Clang does not change the original behavior of
the code while optimizing. Finally, in the last stage, Clang generates an executable for the

program which can actually run on the target machine.
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2.2 Buildlt

As previously stated, BuildIt [6] is a type-based programming framework that allows users
to write multi-staged C+-+ programs. This enables users to generate specialized code and
implement DSLs. Whereas other approaches to multi-stage programming require esoteric
compiler modifications, Buildlt takes a library-based approach, requiring simple modifications
to the code rather than the compiler. This results in BuildIt code being easier to write and
being more portable.

The BuildIt framework requires all types in a program to have the type static_var<T> or
dyn_var<T>, corresponding to BuildIt’s two main stages, the static (first) stage and dynamic
(second) stage. Variables with type static_var<T> have type T in the static stage, and any
control flow or statements comprising of variables of this type are resolved. Buildlt uses
repeated execution of the static stage to produce an AST to generate code for the next stage.
At the end of the static stage, no static_var variables exist, and the code is passed to
the dynamic stage. At this point, any variables with type dyn_var<T> have type T and the
program can execute like any standard C or C++ program. Figure 2.2 shows an example
taken from [6] of a simple power function staged in BuildIt. It is worth noting that BuildIt
can execute code in more than two stages by wrapping the Buildlt types static_var<T> and
dyn_var<T> with dyn_var.

To convert a program to the equivalent BuildIt program, all the types must be wrapped
in dyn_var. Thus, in this thesis we focus on automatically wrapping all types of variables,
functions, structs, etc. with the dyn_var type. However, for a user to begin optimizing their
program, they must further specify certain variables to have the static_var type in order
to specialize the program, and generate optimized code. We leave enabling this to be an
extension project of our BuildIt conversion tool.

It is also worth differentiating BuildIt from the compile-time features of C++-, such as
templating and constant-folding. Buildlt allows users to view the generated code, whereas

Clang produces an object-file with no introspection capabilities. In addition, Buildlt is a
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1 dyn_var<int> power (dyn_var<int> 1 int power_15(int base){

base, static_var<int> exp){ 2 int res = 1;
2 dyn_var<int> x=base, res=1; 3 int x = base;
3 while (exp > 0) { | res = res * X;
1 if (exp % 2 == 1) 5 X = X * X;
5 res = res * Xx; 6 res = res * Xx;
6 X = X * X; 7 X = X * X;
7 exp = exp / 2; 8 res = res * Xx;
8 T 9 X = X * X;
9 return res; 10 return res;
w0 ¥} 1}

Figure 2.2: A power function staged in Buildit is shown on the left, where the base is a
dynamic variable and the exponent is a static variable. The generated code is shown on the
right, with 15 passed as the static exponent argument. It is important to note that the static
variable exponent is no longer present, and only the dynamic variable base remains in the
generated code. E

much more general multi-stage programming framework, where code can execute in more

than two stages.

2.3 Existing Solutions for Source Modifications

There is an ample amount of literate on performing modifications to source code in C/C++.
For instance, Clang provides various types of tooling such as Clang Plugins and Clang tools.
The tools” API enable performing user-defined actions on the code, such as syntax-checking or
minor modifications to the source like reformatting [9, 10]|. However, there is little available
in the Clang API that enables readily making structural changes to code.

A number of academic projects have also focused on modifying C/C++ source through
Clang. Wright et al. discusses using the Map-Reduce framework to efficiently refactor large
amounts of code in parallel [11]. The authors use Clang tooling to perform source rewrites,
though their work mostly focuses on using Map-Reduce to parallelize the refactoring workload.
Their work performs source modifications similar to Clang-Tidy [12], a Clang tool used for

linting code.
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There are also works that make more substantial changes than refactoring to source.
Antal et al. use Clang Matchers and other Clang tooling to backport code from C-++11 to
C++03 |13]. Their approach involves writing Clang tools to match specific features in C++-11
and replace it with the equivalent C++03 code in the source. Balogh et al. [14] also utilize
Clang AST Matchers. Their work focuses on building OP2-Clang, a translator from high-level
C/C++ source to efficient parallel code in a target language (such as CUDA, OpenMP, etc).
In general, Clang’s infrastructure supports generating high-performance code from a higher
level abstraction. A notable such example is OpenCilk [15] which uses LLVM-IR to generate
efficient, parallel code for the Cilk C++ library.

This work thus largely deviates from the focus of prior works on source modification, as
we do not focus on making minor changes to source for the purposes of refactoring or attempt
to generate optimized lower-level code. Rather, we focus on using Clang’s tooling along with
modifications to the Clang compiler to make significant structural modifications to C and
C++ source. Specifically, we show how to modify all of the types in a program to convert it

to the Buildlt framework.
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Chapter 3

System Description

3.1 System Overview

The BuildIt conversion tool we develop enables converting C and C-like C++ programs to
the equivalent BuildIt code. Specifically, our conversion tool appropriately wraps all types in
a source program with the Buildlt dyn_var<T> type. The result is a BuildIt program that
will generate source code equivalent to the original program.

The Buildlt conversion tool consists of four core components: a Clang Rewriter tool, a
modified Clang C/C++ compiler, a script that generates stubs from linker errors, and finally
driver code. The bulk of the code transformation is performed with the first two components.
The Clang Rewriter tool performs source rewrites on the code. It includes in the appropriate
BuildIt headers; performs source rewrites necessary to convert features like structs, recursive
functions, global variables, and variadic functions; and finally it encapsulates the user’s
program in a namespace, so the modified Clang compiler knows what code to transform. The
Clang Rewriter tool is essentially run as the first step in the conversion process, completing
the necessary preparation before the modified Clang compiler can run.

The modified Clang compiler performs the type modifications in the source, wrapping all

types of variables, functions, etc. with the Buildlt dyn_var<T> type. As Clang internally
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Figure 3.1: System diagram of the BuildIt conversion tool.

parses a program and assigns types, we modified the compiler to replace the assigned type
T with dyn_var<T> and instantiate the dyn_var<T> template if needed. Importantly, the
types must be modified as Clang parses them, since Clang very soon solidifies the AST and
all types in the program.

After the Rewriter tool and modified compiler have run their transformations over the
code, the code can be compiled and linked. However, user programs often call functions from
standard C headers, and these function calls and their declarations have been modified to
now take dyn_var arguments and return dyn_var types. The stub generator script produces
definitions for such functions, simply returning a call to the original function in its body.
Finally, the driver represents the last step in the BuildIt conversion process. The driver uses
BuildIt’s API to generate code for a specific function, typically the main function, and also
to generate code for any global variables or user-defined types (e.g. structs) that were present
in the original program.

The result of the BuildIlt conversion tool is a program where all types are wrapped in
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dyn_var, with an accompanying driver to generate code. Running the executable generates
standard C/C++ code that is equivalent to the original source. A system diagram of the
conversion tool is shown in figure 3.1.

We summarize the process for converting a program to BuildIt as follows:

1. Preprocessed files are generated from the original source files. This can be done by
using the -E flag in Clang. This resolves any pre-processing directives in the code,

including in code from header files.

2. The Clang rewriter tool is run on each of the pre-proccessed files, generating rewritten

files.

3. The modified Clang compiler is used to produce object files for each of the rewritten files

and the driver code. The object files are then linked together to produce an executable.

4. At the linking step, errors may be emitted due to missing definitions for functions from
header files. A Python script is fed the linker errors to produce a header file with

generated stubs.

5. The modified Clang compiler is used to produce an object file for the driver code with
the generated header file force included in. Clang supports force including headers

using the -include flag.

6. All of the object files are linked together to produce an executable. The executable
contains the result of converting the original program to BuildIt (by wrapping all of the
types with dyn_var). The executable can be run to generate C/C-+-+ code equivalent

to the original source.

3.2 System Motivation

It is worth discussing why we take this complicated approach to source modifications rather

than just using a Clang Plugin or Clang Rewriter tool. Indeed, using Clang’s tooling
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1 int add(int x, int y){
2 int res = x + y;
3 return res;

7 FunctionDecl add ’int (int, int)?
8 | -ParmVarDecl used x ’int’
9 | -ParmVarDecl used y ’int’
10 ¢-CompoundStmt
11 | -DeclStmt
12 | ¢-VarDecl used res ’int’ cinit
| ‘-BinaryOperator ’int’ ’+?
I | -ImplicitCastExpr <LValueToRValue>
15 | | ¢-DeclRefExpr ’int’ lvalue ParmVar ’x’ ’int’
| ‘-ImplicitCastExpr ’int’ <LValueToRValue>
| ‘-DeclRefExpr ’int’ lvalue ParmVar ’y’ ’int’

18 ‘-ReturnStmt
19 ‘-ImplicitCastExpr’int’ <LValueToRValue>
20 ‘-DeclRefExpr ’int’ lvalue Var ’res’ ’int’

Figure 3.2: An add function along with its generated AST.

would be much simpler than making modifications to the internals of the Clang compiler,
which requires significant knowledge of Clang’s extensive code-base. We briefly discuss prior
approaches taken with Clang tooling, and why the tooling is inadequate to perform our
desired modifications to the source.

A Clang Plugin enables running user-defined actions on a program during its compilation.
Our first approach relied on writing a Clang Plugin that used a RecursiveAST Visitor Class to
visit variable and function declaration nodes in the program’s AST. The Plugin code wrapped
these nodes’ type with dyn_var. Figures 3.2, 3.3, and 3.4 show the original, transformed,
and intended AST for a simple add program that the Clang Plugin transforms.

While the Clang Plugin does successfully change the type of the function’s parameters
and return value in 3.3, the AST nodes in the function body do not change to reflect the
parameters’ new type. For instance, the function body’s AST nodes still refer to parameter
x and y’s type as int. In fact, the result of the Plugin’s AST modification shown in 3.3
differs from the intended result shown in 3.4. We found that while the Clang Plugin does

successfully wrap types with dyn_var, Clang has already produced a solidified AST at this
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1 FunctionDecl add ’builder::dyn_var<int> (builder::dyn_var<int>, builder
::dyn_var<int>)’

2 | -ParmVarDecl used x ’int’
3 | -ParmVarDecl used y ’int’
4 ¢-CompoundStmt
| -DeclStmt
6 | ¢-VarDecl used res ’int’ cinit
7 | ‘-BinaryOperator ’int’ ’+?
8 I | -ImplicitCastExpr ’int’ <LValueToRValue>
9 | | ¢-DeclRefExpr ’int’ lvalue ParmVar ’x’ ’int’
10 | ‘-ImplicitCastExpr ’int’ <LValueToRValue>
11 | ‘-DeclRefExpr ’int’ lvalue ParmVar ’y’ ’int’
12 ‘-ReturnStmt
13 ‘-ImplicitCastExpr ’int’ <LValueToRValue>
14 ‘-DeclRefExpr ’int’ lvalue Var ’res’ ’int’

Figure 3.3: The AST produced by running the Clang Plugin on the add function shown in
figure 3.2.

point in the compilation process. Changes to specific nodes have an isolated effect, where
other AST nodes are not updated to reflect the new template types of variables. In fact,
replacing primitive types with the dyn_var template type necessitates the creation of new
AST nodes, as can be seen in 3.4, which is not possible with a Clang Plugin. Thus, using
simply a Clang Plugin is infeasible to perform our desired source modifications.

In our second approach, we utilized a Clang Tool—a stand-alone program that can perform
user-defined actions on code. Our Clang Tool was composed of a RecursiveAST Visitor Class
and a Source Rewriter Class, enabling the program to visit specific AST nodes and perform
source rewrites to their contents. As this Clang Tool directly modifies and emits source text
as output, it does not encounter the same issue with the Clang Plugin. The Clang Tool
simply wraps the dyn_var text around types in the source text, and then emits rewritten
source text which can then be compiled.

The flow of our Clang Tool concretely looks as follows: Clang parses the program and
produces an AST; the RecursiveAST Visitor visits the VarDecl and FunctionDecl AST nodes
(corresponding to variable and function declarations, respectively); the Rewriter extracts the
type in the AST node and replaces it with the text "dyn_var<T>" where T refers to the original

type; the tool then emits the modified C/C++ source text, which can be compiled. While

27



1

dyn_var<int> add(dyn_var<int> x,
int res = x + y;
return res;

}

FunctionDecl add ’dyn_var<int> (dyn_var<int>,

dyn_var<int> y){

dyn_var<int>)’

nrvo cinit

| -ParmVarDecl used x ’dyn_var<int>’:’dyn_var<int>’ destroyed
| -ParmVarDecl used y ’dyn_var<int>’:’dyn_var<int>’ destroyed
‘-CompoundStmt
| -DeclStmt
| ¢-VarDecl used res ’dyn_var<int>’:’dyn_var<int>’
destroyed

| ‘-ExprWithCleanups ’dyn_var<int>’:’dyn_var<int>?
| ‘-ImplicitCastExpr ’dyn_var<int>’:’dyn_var<int>’
<ConstructorConversion>

| ¢-CXXConstructExpr

’dyn_var<int>’:’dyn_var<int>’

(const builder &)’ noexcept(false)

| ‘-ImplicitCastExpr
’const dyn_var<int>’

| ‘-DeclRefExpr
lvalue ParmVar ’x’ ’dyn_var<int>’

| ‘-ImplicitCastExpr
’const dyn_var<int>’

| ‘-DeclRefExpr
lvalue ParmVar ’y’ ’dyn_var<int>’

‘-ReturnStmt

’const dyn_var<int>’:
lvalue <NoOp>

’void

’dyn_var<int>’:’dyn_var<int>’

’const dyn_var<int>’:
lvalue <NoOp>

’dyn_var<int>’:’dyn_var<int>’

‘-CXXConstructExpr ’dyn_var<int>’:’dyn_var<int>’

(const dyn_var<int> &)’

’void

‘-ImplicitCastExpr ’const dyn_var<int>’:’const dyn_var<int>’

xvalue <NoOp>

‘-DeclRefExpr ’dyn_var<int>’:

’dyn_var<int>’

lvalue Var ’res’ ’dyn_var<int>’

Figure 3.4: A BuildIt add function and its (truncated) generated AST. This is the intended
result of performing source-modifications on the code in figure 3.2. Note, minor reformatting

was performed to improve visualization.
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1 int power (int base, int exponent){ 1 #include "builder/dyn_var.h"

2 int res = 1; 2 builder::dyn_var<int> power (

3 int x = base; 3 builder::dyn_var<int> base,

| | builder::dyn_var<int> exponent){
5 while (exponent > 0){

6 if (expomnent % 2 == 1){ 6 builder::dyn_var<int> res = 1;
7 res = res * X; 7 builder::dyn_var<int> x = base;
8 } 8 while (exponent > 0){

9 9 if (exponent % 2 == 1){

10 X = X * x; 10 res = res * X;

11 exponent = exponent / 2; 11 }

12 } 12 X = X * X;

13 13 exponent = exponent / 2;

14 return res; 14 }

15 F 15 return res;

1€ 1€ }

Figure 3.5: A simple power program is shown on the left, and the emitted source code from
running the Clang Tool on it is shown on the right.

this approach does correctly rewrite basic C/C++ code as shown in figure 3.5, numerous edge
cases quickly arise as is shown in figure 3.6. In the latter example, there are two variables
res and x declared in the same statement. Since both variables’ type comes from the same
text "int", this text gets wrapped with dyn_var twice.

Though this edge-case was simple to fix, it highlights the delicate nature of source-rewrites
and that other patches will likely be needed to fix similar issues. For instance, we find the

text "int x, *y;"

also needs special care as variable y’s type appears in two locations, so
the rewrite "dyn_var<int> x, *y;" would be incorrect. We found the number of edge cases
(involving global variables, unnamed structs, etc.) quickly blows up, rendering this Clang
Rewriting Tool approach hacky and infeasible.

We therefore conclude that Clang tooling is insufficient to perform our type-based source
modifications. This motivates our desire to modify the Clang compiler, as it enables modifying
the types internally as they are parsed, avoiding the issue the Clang Plugin faced with types
being modified too late or the Clang Rewriting Tool’s issue with modifying types through

complicated source-rewrites. The BuildIt conversion tool will still need additional components

though. Namely, the conversion tool will utilize a Clang Rewriter Tool to perform source-
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1 int power (int base, int exponent){ 1 #include "builder/dyn_var.h"

2 int res = 1, x = base; 2 builder::dyn_var<int> power (

3 3 builder::dyn_var<int> base,

1 while (exponent > 0){ y builder::dyn_var<int> exponent){
5 if (expomnent % 2 == 1){

6 res = res * Xx; 6 builder::dyn_var<int>lder::

7 T dyn_var<int> res = 1, x = base;
8 7 while (exponent > 0){

9 X = X * X; 8 if (exponent % 2 == 1){
10 exponent = exponent / 2; 9 res = res * X;
11 } 10 }
12 11 X = X * X;
13 return res; 12 exponent = exponent / 2;
14} 13 }
15 14 return res;
16 5 F

Figure 3.6: A simple power program is shown on the left, and the emitted source code from
running the Clang Tool on it is shown on the right. Declaring multiple variables in a single
statement results in an error with the Clang Tool, as can be seen in the first line of the
function body on the right.

rewrites to support features like recursive functions, structs, and global variables for which
the conversion process involves more than just wrapping types with dyn_var.
Now that we have provided the motivation for our system’s design, we can discuss its

implementation in the following sections.

3.3 System Components

3.3.1 Clang Rewriter Tool

The Buildlt conversion process begins with a Clang Rewriter Tool that performs source
rewrites on the user’s original code. Like the Clang Tool described earlier, this Rewriter
Tool combines a RecursiveASTVisitor with a Rewriter class. The RecursiveAST Visitor class
enables visiting specific nodes in the user program’s AST. These AST nodes can correspond
to things such as variable declarations, function declarations, or struct members, and are
represented by Clang classes which store a significant amount of metadata, such as the node’s

source location, identifier name, etc. The Clang Rewriter class uses this information to insert,
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modify, or delete parts of the source text corresponding to the AST node. The Rewriter Tool
finally emits the modified C/C++ source as output.
To prepare the user’s code for the modified Clang compiler, the Rewriter Tool performs

four main transformations:

e [t includes in the dbd support.h header at the top of the code. The header file is shown
in figure 3.7. dbd_support.h includes in the BuildIt headers, so that the Buildlt dyn_var
type will be defined when it is later used by the modified Clang compiler. The header also
contains the declaration extern dyn_var<int> __dummy_dynamic_by_default, so
that the modified Clang compiler can extract the dyn_var template class from a dummy
variable while parsing. Lastly, dbd support.h defines a struct register_function.
This struct is used to generate code for functions in the driver. In particular, we
instantiate a struct register_function variable with a function and its name. At
runtime, this adds the function to the registered_functions list defined in the driver,

allowing the driver to generate code for those functions.

e [t encapsulates the original code in the buildit_application namespace. While the
types in a user’s program and user-included headers should be modified, the BuildIt
headers inserted by the Rewriter Tool must not be altered by the modified Clang
compiler. Thus, we denote the code to be altered by the modified Clang compiler with

the buildit_application namespace.
e [t registers the main function to be generated by the driver.

e It performs additional rewrites to support conversion of structs, global variables, etc.

This is discussed in a later section.

Figure 3.8 shows the result of running the Rewriter Tool on a program. The Rewriter
Tool is implemented as follows. First, it visits the FunctionDecl AST nodes using the

RecursiveAST Visitor Class. If the node corresponds to the main function, it inserts an
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1 #ifndef DBD_SUPPORT_H
#define DBD_SUPPORT_H

N}

4 #include "builder/dyn_var.h"

5 #include "builder/builder.h"

¢ #include "builder/builder_context.h"

7 #include "blocks/c_code_generator.h"

g extern builder::dyn_var<int> __dummy_dynamic_by_default;

10 extern std::vector<std::function<block::block::Ptr(void)>> *
registered_functions;

11 struct register_function {

12 template <typename T>

13 register_function(T fimpl, std::string fname) {

14 auto f = [=] (void) -> auto {

15 builder::builder_context context;

16 context.run_rce = true;

17 return context.extract_function_ast(fimpl, fname);

18 }s

19 if (registered_functions == nullptr) {

20 registered_functions = new std::vector<std::function<block::
block::Ptr(void) >>();

21 }

22 registered_functions ->push_back(f);

23 }

21}

26 #endif

Figure 3.7: The code contained inside dbd support.h.

instantiation of struct register_function (with main passed as argument) immediately
after the main function’s definition using the Clang Rewriter class. This registers the main
function to have its code generated in the driver. After performing the rewrites, the Rewriting
Tool emits an include statement for dbd support.h, the text "buildit_application {",
followed by the modified source, and finally emits a "}" to close the buildit_application
namespace. This includes the desired header and encapsulates the user-program and any
user-included headers inside the buildit_application namespace. The result is modified
C/C++ source code that is prepared to be compiled and altered by the modified Clang

compiler in the next step.
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1 "thesis_example.cpp" 1 #include "dbd_support.h"
1 "<built-in>" 1
1 "<built-in>" 3

#

#

# namespace buildit_application {
4 # 482 "<built-in>" 3

#

#

#

# 1 "thesis_example.cpp"
# 1 "<built-in>" 1
1 "<built-in>" 2 ¢ # 1 "<built-in>" 3
1 "thesis_example.cpp" 2 7 # 482 "<built-in>" 3
#
#
#

2
3
4

1 "<command line>" 1 5

1 "<command line>" 1

o int power (int base, 9 1 "<built-in>" 2

10 int exponent) { 10 1 "thesis_example.cpp" 2

11 int res = 1; 1

12 for (int i = 0; i < exponent; 12 int power (int base, int exponent) {
i++) { 13 int res = 1;

13 res *= base; 14 for (int i = 0; i < exponent; i

14 } ++) Ao

15 return res; 15 res *= base;

6 } 16 }

17 17 return res;

18 int main(int argc, 15}

19 char*x argv[]) { 19

20 int x = power (5, 2); 20 int main(int argc, char* argv[]) {

21 return O0; 21 int x = power (5, 2);

22 } 22 return O0;

23 23}

24 24 static register_function regO(main,

25 "main") ;

26 25 }

Figure 3.8: A preprocessed program is shown on the left, and the result of running the Clang
Rewriter Tool on it is shown on the right.

3.3.2 Modified Clang C/C+-+ Compiler

After performing rewrites to the source code, the next step is to modify all the types in the
user program during compilation. In this subsection, we describe the changes we make to
the Clang compiler’s semantic analysis phase—where type checking and type assignment
occurs—in order to wrap all types with the dyn var template, as the code is parsed.
During the parsing of a declaration, the Clang compiler constructs a Declarator and calls
Sema: : GetTypeForDeclarator (), which computes a preliminary QualType (qualified-type)
and produces a TypeSourcelInfo capturing the fully elaborated type (including pointers,
qualifiers, etc) along with the source-location data. The function returns the TypeSourceInfo

object. By using LLDB, Clang’s version of GDB, we were able to step through Clang’s
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parsing and verify that this function is responsible for assigning types for all declarations.
Therefore, our modifications to the compiler focus on this function, particularly with the goal
of changing the type stored in the TypeSourceInfo object.

Before the Sema::GetTypeForDeclarator() function can wrap types with BuildIt’s
dyn_var template, it must first extract the template’s information. The function is first
modified to extract the dyn_var template name and template class from the declaration
extern builder::dyn_var<int> __dummy_dynamic_by_default inserted by the Rewriter
Tool. As the function parses declarations, it checks if it is parsing a variable with reserved
identifier name __dummy_dynamic_by_default, extracting the template information if so.
As this inserted declaration appears prior to the buildit_application namespace in the
rewritten code, the function will be able to extract the dyn_var template information before
it needs to modify any type.

Sema: : GetTypeForDeclarator() is then modified to wrap the types in declarations
with dyn_var. After the TypeSourceInfo (which contains the full-type information) is
computed inside the function, we extract the declaration’s original type from it. It is
used to first instantiate the dyn_var<T> class template with the original type passed as
template argument, and then create the desired dyn_var type by using the dyn_var template
name, original type as template argument, and the new template instantiation. The new
dyn_var type is used to override the original type present in the TypeSourceInfo object.
As Sema: :GetTypeForDeclarator() is responsible for type-assignment for all declarations,
correct modification of this function results in all types in a program being wrapped with
dyn_var.

The examples below show the changes made by the compiler to the type of various

declarations:

e int x becomes dyn_var<int> x

e int power(int, int) becomesdyn_var<int> power (dyn_var<int>, dyn_var<int>).

Notice that the function’s arguments and return type are wrapped with dyn_var
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e struct myType* x becomes dyn_var<struct myType*>. Notice the entire compound

type is wrapped with dyn_var

Type modification is not always performed on a declaration. In particular, it is only per-
formed in Sema: : GetTypeForDeclarator () if the declaration is in the buildit_application
namespace. This can be determined by iterating over the declarator contexts encapsulating
the declaration, and checking each for the buildit_application namespace. In addition,
type-modification is not performed for void types, types from the builder namespace (this
is BuildIt’s namespace for its types and functions), the register_function struct type, or
variable’s with the name type_name. The void type is treated specially in BuildIt and does
not need to be wrapped with dyn_var. In the latter three cases, no type-modification is
performed as they are produced from source rewrites in the previous phase and should be
left as is.

We encountered numerous bugs while implementing changes to the Clang compiler. This

included:

e Not instantiating the dyn_var template class. We presumed creating a template type
with a template name and template arguments would be sufficient, though it requires

an explicit template instantiation beforehand.

e Wrapping the QualType (qualified-type) computed in the body of Sema: : GetTypeForDeclarator ()
with dyn_var. This type is incomplete, not capturing elements of compound types such

as pointers or arrays.

e Replacing TypeSourceInfo’s original type with the new dyn_var type without updating
the meta-data. The TypeSourceInfo class captures not only the type, but the type’s
source-location information as well. Since the original type is replaced with a type that
does not exist in the source, the source-location information becomes invalid. In a later
pass, Clang traverses the constructed AST and accesses the invalid source-information,

leading it to crash. As source-location metadata is only utilized to provide additional
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information to the user (e.g. for debugging), we omit the code that accesses it without

affecting the compiler’s parsing.

We ran into many bugs because the Clang compiler’s internal passes are not designed
for modification, with little documentation for functions or an API available to perform
user-defined actions. This makes modifying the Clang compiler incredibly difficult and
error-prone, which was only exacerbated by the size and inter-dependency of the codebase.
Changes require significant care, knowledge, and debugging effort on the part of the developer.
Nevertheless, simple changes to Clang’s compiler are incredibly powerful, as in our case
modifications to a single function altered type-assignment of an entire program.

To summarize, the modified Clang compiler is used to parse the rewritten C/C-++
programs, and produce object files where the types in the program have been converted to
the BuildIt dyn_var type. This is the main goal of the conversion tool, and the remaining

steps focus on generating stubs (for missing definitions) and code generation.

3.3.3 Stub Generator Script

User programs frequently include standard C and C++ library headers. Since types in the
user program will be wrapped in dyn_var, arguments to external function calls will also
change in type. This necessitates new function declarations and definitions for functions
from C/C++ headers. The former is already accomplished by the first two steps of the
conversion process. This is because the Rewriter Tool wraps any user-included header in
the buildit_application namespace, so the modified Clang compiler will automatically
change the header function’s declarations to have dyn_var parameters and return type. This
is shown in figure 3.9. However, we are still missing the corresponding function definitions
for the new function declarations. Upon linking, this results in missing function definition
errors thrown for any external functions called by the user program.

The purpose of the stub generator script is to create the necessary function definitions

from the dumped linker errors. The stub generator script is specifically a Python program
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1 // declaration included from 1 #include "dbd_support.h"
<stdio.h> 9

2 int puts(const char *); 3 namespace buildit_application {

3 4 // declaration included from

4+ int main() { 5 // <stdio.h>

5 char message[] = "Hello"; s dyn_var<int> puts (dyn_var<const char
6 puts (message) ; *>)

7 return O;

oo
—
vel ~

dyn_var<int> main() {
9 9 dyn_var<char []> message = "Hello
10 "
11 10 puts (message) ;
12 11 return O;
13 12 T
14 13 static register_function regO(main, "
15 main") ;
16 14}

Figure 3.9: A simple program is shown on the left. The result of running the program through
the Rewriter Tool and modified Clang compiler produces an object file for the code shown on
the right. The puts() declaration’s types are changed to match its function call, though it is
missing a definition.

that uses regular expression matching to extract all the functions (and their associated
arguments) with a missing definition in the linker errors. For each such function, it creates
a definition that simply returns a call to buildit_runtime: :{function_name}. The script
then defines buildit_runtime::{function_name} using Buildlt’s as_global, informing
BuildIlt to replace calls to buildit_runtime::{func_name} with some given text when
generating code. The script’s generated definitions are outputted in a header file. Figure 3.9
produces the linker error shown in figure 3.10 regarding the puts() function. From this, the
stub generator script produces the header file shown in figure 3.11. In this example, the call to
buildit_application::puts() will now resolve as there is a matching function definition.
Moreover, during Buildlt’s code generation phase, buildit_runtime: :puts is replaced with
the text "puts", so a call to buildit_application: :puts() will simply return a call to
puts(). Any external function calls in the program will thus link and produce a call to the

original external function in the generated code.
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1 1d: Undefined symbols:

2 buildit_application::puts(builder::dyn_var<char const*>), referenced
3 from:

1 buildit_application::power (builder::dyn_var<int>,

5 builder::dyn_var<int>) in power_rewriter.o

¢ clang: error: linker command failed with exit code 1 (use -v to see

7 invocation)

Figure 3.10: An example of a linker error dumped from compiling the program shown in 3.9.

1 #include "builder/dyn_var.h"
2 #include "blocks/c_code_generator.h"
3 using builder::dyn_var;

5 // Generated stubs for undefined linker symbols

7 namespace buildit_runtime {

s static dyn_var<int(const char*)> puts = builder::as_global("puts");
9 }

11 namespace buildit_application {

12 dyn_var<int> puts (dyn_var<const char*> x0) {
13 return buildit_runtime::puts(x0);

3
X

Figure 3.11: The header file generated by our script based on the linker error message in 3.10.
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1 #include "builder/dyn_var.h"

2 #include "blocks/c_code_generator.h"

3
4 using builder::dyn_var;

6 std::vector<std::function<block::block::Ptr(void)>> x*

registered_functions;

7 int main(int argc, charx argv[]) {

8 // manually print out any headers

) std::cout << "#include <stdio.h>\n\n";
10 // manually print any global variable definitions

11 std::cout << "int x;\n";

12 // manually print any struct definitions

13 std::cout << "struct my_type {\nint z;\n};\n";
15 for (auto f: *registered_functions) {

16 auto ast = f();

17 block::c_code_generator::generate_code(ast, std::cout, 0);
18 }

19 return O;

20 }

Figure 3.12: The driver code, used to generate code for functions, struct-types, and global
variables, is shown.

3.3.4 Driver Code

The driver is the last component of the BuildIt conversion tool. The driver generates code
for functions and user-defined types in the user’s program, after all types in the program
have been wrapped with Buildlt’s dyn_var. The driver invokes BuildIt’s generate_code
function to do so, producing C/C++ code resulting from execution of BuildIt’s static stage.
Figure 3.12 shows the contents of the driver.

The registered functions list stores all of the functions to generate code for. Functions
are registered by declaring a register_function struct (defined in dbd _support.h) with
the function provided as argument. At runtime, the struct’s constructor is called, which
appends the function to the registered_functions list in the driver. The driver generates
code for each function in this list. By default, code will be generated for the main function
as the Rewriter Tool automatically registers it. The user can specify additional functions to

generate code for by simply adding an annotate("buildit outline") attribute to the given
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function’s declarations and definition in the user program. Alternatively, the driver code can
be modified to invoke generate code on additional functions.

The driver also generates code for struct definitions and global variables present in the
user program. Currently, the user must print definitions for global variables and structs
manually in the driver. However, there is work being done in BuildIt to support automatically
generating struct and global variable definitions. The driver must also manually print out

any headers the program needs.

3.4 Support for Various Features

In this section, we discuss changes made to the Rewriter Tool to support various C/C++
language features. These features require special treatment, as they cannot simply be wrapped

with the dyn_var type.

3.4.1 Structs

Struct types are a commonly used programming construct in C and C++ programs, enabling
users to group multiple variables into a single type. A struct type must first be defined
in a program, and can then be used to instantiate variables of that type. BuildIt handles
struct types specially. In addition to wrapping any variables with struct type, the struct
definition also needs to be modified. This latter modification is necessary as Buildlt generates
code for user-defined types. The necessary modifications are illustrated in figure 3.13. In
particular, the struct definition is modified to include a static member type_name which
is initialized to the struct’s name. This ensures that the struct retains its original name
when BuildIt generates code for it. (BuildIt otherwise generates an arbitrary name for the
struct). Each struct member’s type is also wrapped with dyn_var, and the member is set to
builder: :with_name (member_name). This ensures the struct member has the same name

in the generated code.
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I struct my_type { I struct my_type {

2 int *x; 2 static constexpr const char* type_name =
3 }; 3 "my_type";

4 | dyn_var<int*> x =

5 int main () { 5 builder::with_name ("x") ;

6 struct my_type hello; ¢ };

7 return O; 7

s } s dyn_var<int> main() {

9 9 dyn_var<struct my_type> hello;
10 10 return O0;

11 11}

Figure 3.13: The left and right image show a program and its equivalent code in Buildlt,
respectively. This shows BuildIt’s treatment of struct types.

The conversion tool supports converting structs to BuildIt as follows. In the first phase,
the Rewriter Tool inserts the static member type_name and initializes each struct member
to builder: :with_name (member_name). In the second phase, the modified Clang compiler
automatically wraps the type of struct members with the dyn_var template. It also wraps
the type of any variables with struct type with dyn_var. However, this approach runs into
an issue when transforming recursively defined structs (i.e. structs that have a member with
type pointing to the same struct). When BuildIt attempts to generate code for a recursively
defined struct, it will parse each of the struct’s members, including the struct member with
type pointing to the same struct. BuildIt errors here as the struct member’s type appears
incomplete to it (since Buildlt is still in the process of parsing the struct).

Therefore, the approach for converting structs needs to be modified. In the new approach,

The Rewriter Tool performs the following source modifications for each struct it traverses:
e It first initializes each struct member to builder: :with_name (member_name).

e Immediately after each struct’s first declaration or definition in a file, it closes the
buildit_application namespace, opens the builder namespace, and creates a struct
external_type_namer with a static member type_name. The external_type_namer
interface was specifically added to BuildIt to avoid code generation issues for recursive

struct definitions, as it changes Buildlt’s parsing and registry of structs.
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#include "dbd_support.h"

1
3 namespace buildit_application {
1 struct my_type {

5 int* x = builder::with_name("x");

6 };

7 }

s namespace builder {

9 template <>

10 struct external_type_namer<buildit_application::my_type> {
11 static constexpr const char* type_name = "struct my_type";
12 };

13 }

14+ namespace buildit_application {

16 int main () {
17 struct my_type hello;

18 return O;

19 }

20 static register_function regO(main, "main");
21

22 }

Figure 3.14: The result of applying the Rewriter Tool to the program shown on the left
in 3.13.

e The builder namespace is closed and the original buildit_application namespace

is opened.

The new approach is depicted in figure 3.14. After the rewrites, the modified Clang
compiler further transforms the rewritten code, wrapping the types of struct members and
any variables with struct type with the dyn_var template. Finally, the driver generates code
for struct definitions seen in the user program.

The Rewriter Tool is able to make the modifications described above by traversing
RecordDecl AST nodes and checking if the node corresponds to a struct. If so, it iterates over
the struct’s members and inserts the text corresponding to their initializations, and finally

emits text at the end of the struct’s definition for creating the struct external_type_namer.
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3.4.2 Variadic Functions

Variadic functions—functions with an unspecified number of arguments—are frequently
called by user programs. A notable example of a variadic function defined in a standard
C/C++ header is printf (). While BuildIt does not allow users to define variadic functions
themselves, it does allow for calling externally defined variadic functions (such as printf).
However, Buildlt cannot simply take a declaration of the form int printf (const char * ,
...) and produce the equivalent BuildIlt declaration by wrapping the arguments and return
type with dyn_var.

The solution for supporting variadic functions is the following. The Rewriter Tool deletes
all variadic function declarations in the user program. After performing source rewrites, the
Rewriter Tool emits the variadic function names defined with builder: :as_global at the top
of the buildit_application namespace, along with the usually emitted text. An example
of the source rewrites performed by the tool is shown in figure 3.15. These changes enable the
user program to successfully call external variadic functions. Deleting the variadic function
declarations ensures the modified Clang compiler does not crash from wrapping the ellipsis
argument with dyn_var. Furthermore, any calls to external variadic functions will resolve
as these functions have an as_global declaration. During code generation, BuildIt replaces
calls to these external functions with the text passed to as_global (i.e. the function’s name).
This results in the generated code successfully calling the external variadic function with no
issues.

The Rewriter tool makes the described changes by visiting the FunctionDecl node and
checking if the declaration is variadic. If so, it deletes the declaration and adds the function’s
name to a set. At the end of the rewriting process, it emits a definition with Buildlt’s

as_global for each function in this set.
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// included in from stdio.h 1 #include "dbd_support.h"

1

2 int printf (const char * , ...); =2

3 3 namespace buildit_application {

4 int main () { 4 // included in from stdio.h

5 printf ("Hello"); 5 builder::dyn_var<void(void)> printf =
6 return O; 6 builder::as_global ("printf");

7} T

9 o int main () {
10 10 printf ("Hello");
11 11 return O;

12 12 }

13 13 static register_function regO(main,

14 14 "main") ;
15 15 F

Figure 3.15: The left shows a simple program that calls the variadic function printf. The
right shows the emitted output from running the Rewriting Tool on the program on the left.

3.4.3 Recursive Functions

Recursive functions express complicated computation as solving a number of easier sub-
problems, making them a particularly powerful programming tool. However, BuildIt cannot
generate code for recursive functions with the usual approach. As BuildIt explores all control
flow paths through repeated execution, this leads it to become stuck in infinite recursion
when evaluating the recursive function.

Hence, recursive functions are treated specially. The user must first add a buildit_outline
annotation attribute to any recursive function declarations or definitions in their user program.

The Rewriter Tool then performs the following modifications to source:

e It appends the text "_buildit_impl" to the recursive function’s name in all function

declarations and definitions. This effectively renames the recursive function.

e Immediately before the first declaration or definition for a recursive function in each file,
it inserts a static definition for the function with BuildIt’s as_global. This ensures calls
to the originally-named function still resolve, as the function’s declarations/definitions

have all been renamed.
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1 int attribute__ ((annotate(" 1 #include "dbd_support.h"

buildit_outline"))) 2

2 factorial (int x) { 3 namespace buildit_application {
3 if (x == 0) return 1; 4 static builder::dyn_var<int (int)>
4 return x * factorial(x - 5 factorial =

1) 6 builder::as_global("factorial");
5 F 7
5 s int __attribute__ (())
7 int main(int argc, factorial_buildit_impl(int x) {
8 char*x argv[]) { 9 if (x == 0) return 1;
9 int x = factorial (5); 10 return x * factorial(x - 1);
10 return O; 1}
11} 12 static register_function regO(
12 factorial_buildit_impl, "factorial");
13 13
14 12 int main(int argc, char*x argv[]) {
15 15 int x = factorial (5) ;
16 16 return O0;
17 17}
18 18 static register_function regl (main,
19 19 "main") ;
20 20 }

Figure 3.16: A recursive program and the result of performing source rewrites on it is shown.

e Immediately after a recursive function’s definition, it inserts a static struct register_function
initialized with the function. This registers the recursive function to have its code

generated in the driver.

The Rewriter makes these changes by visiting the FunctionDecl node and checking if it
has the buildit_outline annotation. If so, it renames the function and inserts any text
before/after the node if necessary. Figure 3.16 shows the result of performing rewrites on a
program with a recursive function.

When the final BuildIt code is executed, any calls to the originally-named recursive
function resolve due to its as_global definition. Importantly, BuildIt does not try to further
evaluate the call and instead replaces it with the text in as_global’s argument. This produces
a call to the originally-named function in the generated code. The driver generates code for

the recursive function’s definition using its original name, thus resulting in a valid program.
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1 1 #include "dbd_support.h"

2 int x; 2

3 double z = 5, *y; 3 namespace buildit_application {

i+ char ¢ = ’a’; 1

5 5 int x = builder::as_global("x"

6 ¢ double z = builder::as_global("z"

7 7 *y = builder::as_global("y");
8 s char ¢ = builder::as_global("c");

9 o}

Figure 3.17: A program with global variables, and the result of running the Rewriter Tool on
it.

3.4.4 Global Variables

Global variables have the greatest possible scope in a program. To support this programming
feature, BuildIlt allows declaring variables with as_global in the global scope. During
compilation of the BuildIt program, this resolves all references to the variable. In the
generated code, Buildlt replaces use of the variable with the text passed as argument to

as_global. Thus, the solution for supporting global variables is relatively straightforward:

e The Rewriter Tool visits the VarDecl AST nodes. If the variable is defined in the global
scope, we insert an initialization for it using as_global (with the name of the variable
passed as argument). The original initialization is deleted if it exists. This ensures
BuildlIt can resolve references to the global variable during compilation, and BuildIt
generates code where references to the global variable are replaced with the same text.

Note, we skip extern variable declarations in the global scope.

e The driver generates definitions for global variables in the generated code. Declaring
a variable with as_global only resolves references to it in the BuildIt code, but does
not produce a definition for it in the generated code. The driver must therefore
generate definitions for global variables (which it does so currently by printing them

out manually).

Figure 3.17 shows an example of the source-rewrites performed on a global variable.
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3.5 Challenges and Limitations

Although Clang’s infrastructure was crucial to the development of the Buildlt conversion
tool, it imposed a significant bottleneck on our project. First and foremost, Clang tooling’s
API exposes very limited methods for making significant source modifications. The API
mostly enables performing checks on code or making surface level modifications, such as
refactoring. Since the Clang API was insufficient, our approach shifted to modifying the
compiler. However, this was an incredibly esoteric process due to the little documentation,
large size and interdependency of the compiler’s codebase. It becomes readily apparent
that the Clang’s compiler is not designed to be modified and that in general, it is quite
difficult to perform actions not intended by the Clang developers. Having greater Clang
support for performing source modifications in the future would greatly improve our ability
to systematically convert code to the Buildlt framework.

There are also limitations to our current conversion approach. Namely, we use source
rewrites for each programming feature the conversion tool supports. As discussed previously,
source rewrites are quite tricky to perform due to the numerous edge cases they induce,
increasing the likelihood of bugs in our conversion process. This becomes an even greater
issue as each subsequent C or C++ programming feature we add support for will require
performing additional rewrites. While using source rewrites are unideal, it is necessary as
converting most programming features to BuildIt requires most substantial changes than just
wrapping types with dyn_var. It is also worth mentioning that while our Buildlt conversion
tool does save significant effort on the part of the user, it still requires some manual changes
to convert code to BuildIt. In particular, users must add annotations to recursive functions,
and manually print out global variable and struct definitions along with any required headers
in the driver. Lastly, the BuildIt conversion tool currently only supports a subset of the C
and C++ programming language. It can not convert programs with classes, templates, and

union types to the BuildIt framework.
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Chapter 4

Results and Evaluation

In this chapter, we show the step-by-step conversion of sample programs to BuildIt using the

conversion tool, and then conclude with a brief evaluation.

4.1 Results

4.1.1 Example 1

Figure 4.1 shows a user program that contains a struct, global variable, and a call to the
variadic function printf. The user program also contains the recursive function factorial,
that the user has added the buildit outline annotation attribute to. As the first step, the
user’s code is preprocessesed to produce the program shown in figure 4.2.

Then, the Rewriter Tool is run on the preprocessed program to produce the code shown in
figure 4.3. This code is then compiled with the modified Clang compiler to produce an object
file. The accompanying driver code shown in figure 4.4 is similarly compiled to produce an
object file.

Finally, both object files are linked together to produce an executable. Note there are
no linker errors since the user program does not make any external function calls to any

non-variadic functions. Running the executable generates the code shown in figure 4.5, which
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1 #include <stdio.h>

2

3 int x;

+ struct my_type {

5 int z;

6 F;

s int __attribute__((annotate ("buildit_outline"))) factorial (int y) {
9 if (y == 0) returmn 1;

10 return y * factorial(y - 1);
11}

12

13 int main () {

14 x = factorial (5);

15 my_type structl;

16 structl.z = x;

17 printf ("Jd", structl.z);

18 return O0;

19 }

Figure 4.1: A user program that calls the recursive function factorial, and makes use of global
variables, structs, and variadic functions.

1 // included from stdio.h

2 int printf (const char * , ...) __attribute__((__format__ (__printf__,
1, 2)));

3 //

1

5 int x;

6 struct my_type {

7 int z;

s}

9

10 int __attribute__ ((annotate("buildit_outline"))) factorial(int y) {

11 if (y == 0) return 1;

12 return y * factorial(y - 1);

15 int main () {

16 x = factorial (5);

17 my_type structl;

18 structl.z = x;

19 printf ("d", structl.z);
20 return O;

Figure 4.2: The result of the preprocessing the program shown in 4.1. We have truncated the
code included from stdio.h header to only include the relevant printf declaration, for display
purposes.
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1

#include "dbd_support.h"

namespace buildit_application {
builder::dyn_var<void(void)> printf = builder::as_global ("printf");

int x = builder::as_global ("x"
struct my_type {
int z = builder::with_name("z"
+s
}
namespace builder {
template <>
struct external_type_namer<buildit_application::my_type> {
static constexpr const char* type_name = "struct my_type";
T
}

namespace buildit_application {

static builder::dyn_var<int (int)> factorial = builder::as_global ("
factorial");

int __attribute__(()) factorial_buildit_impl (int y) {
if (y == 0) return 1;
return y * factorial(y - 1);

3

static register_function regO(factorial_buildit_impl, "factorial");

int main() {
x = factorial(h);
my_type structl;
structl.z = x;
printf ("Jd", structl.z);
return O;
b
static register_function regl(main, "main");

}

Figure 4.3: The result of performing source rewrites to the program shown in 4.2.
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1 #include "builder/dyn_var.h"

2 #include "blocks/c_code_generator.h"

3

4 using builder::dyn_var;

6 std::vector<std::function<block::block::Ptr(void)>> x*
registered_functions;

7 int main(int argc, charx argv[]) {

8 // manually print out any headers

9 std::cout << "#include <stdio.h>\n\n";

10 // manually print any global variable definitions

11 std::cout << "int x;\n";

12 // manually print any struct definitions

13 std::cout << "struct my_type {\nint z;\n};\n";

15 for (auto f: *registered_functions) {

16 auto ast = f();

17 block::c_code_generator::generate_code(ast, std::cout, 0);

18 }

19 return O;

20 }

Figure 4.4: The driver for the program in 4.1.

is equivalent to the code shown in figure 4.1.

4.1.2 Example 2

In this example, we convert an interpreter for the BF language [16] to Buildlt. The BF
language consists of 8 characters in its grammer, and a sequence of these 8 characters
constitutes a BF program. Our BF interpreter reads a program as input and sequentially
executes each character according to the BF language. This simple interpreter is adapted
from [17], and contains global variables, structs, and a call to the variadic function printf.
We show the original program, the result of preprocessing and rewriting it, its driver, and
the final generated code below.

We choose to convert a BF interpreter to Buildlt as it is an ideal candidate for special-
ization. [6] shows that if the input program and program counter are set as static variables
in a Buildlt BF interpreter, the generated program will be a BF compiler. In our case, the

conversion tool automatically converts the BF interpreter to BuildIt (with all variables set to
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1 #include <stdio.h>

3 int x;

1 struct my_type {

5 int z;

6 };

7 int factorial (int arg0O) {
8 if (argd == 0) {

9 return 1;

10 }

11 int var2 = arg0 * factorial(arg0 - 1);
12 return var?2;

13 }

15 int main (void) {

16 x = factorial(h);

17 struct my_type varO;
18 var0.z = x;

19 printf ("%d", var0.z);
20 return O;

Figure 4.5: The generated code produced from the BuildIt program’s executable. This should
be equivalent to the code in 4.1.

execute in the dynamic stage). Thus, with some manual user effort or through an extension
to this project, the appropriate variables in the Buildlt BF interpreter can be staged (by
setting them as static) to produce a BF compiler. This shows both the power of specialization

and the usefulness of our tool.

1 // Original BF Interpreter
2 #include <stdio.h>

. #define MAX_PROG 65536
5 #define MAX_CELLS 65536

7 struct BFInst {

8 char cmd ;
9 BFInst* next;
10 BFInst* jmp;
R

13 struct Mem {

14 char val;
15 Mem* next;
16 Mem* prev;

17 };
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// zero-initialized pools
static BFInst prog_pool [MAX_PROG];
static int prog_count = 0;

static Mem cell_pool [MAX_CELLS];
static int cell_count = 0;

26 static BFInst* alloc_inst () {

return (prog_count < MAX_PROG)
? &prog_pool[prog_count++]
NULL;
}

static Mem* alloc_cell () {

return (cell_count < MAX_CELLS)
? &cell_pool[cell_count++]

; NULL ;

T

int main(int argc, charx argv[]) {
if (arge < 2) {
printf ("Usage: %s \"<bf-program>\"\n", argv[0]);
return 1;

}

// 1) Read program from argv[1]
const char *program = argv[1];

// 2) Build the linked list of instructions

BFInst *p = NULL, *n = NULL, %j = NULL, *pgm = NULL;
for (const char *src = program; *src; ++src) {
char ch = *src;
int valid = (ch==’<’ || ch==’>’ || ch==’+’ || ch==’-’ ||
ch==",> || ch==>." || ch=="[’ || (ch=="]’&&j));

if (!'valid) continue;

n = alloc_inst () ;

if (In) {
printf ("Error: program too large\n");
return 1;

}

// link into list

if (p) p->next = n; else pgm = n;

n->cmd = ch;

n->next = NULL;

n->jmp = NULL;

P = 1n;

if (ch == 2 [’) {
n->jmp = j;
J = 1n;

}

else if (ch == ’]°) {
n->jmp =3
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” J = j->jmp;

74 n->jmp->jmp S m3g

75 }

76 T

77 // discard unmatched [’

78 while (j) {

79 p =3

] = j->jmp;

81 p->jmp = NULL;

82 p->cmd = > 7

83 T

84

85 // 3) Allocate the initial tape cell

86 Mem *m = alloc_cell();

87 if (!'m) {

88 printf ("Error: tape out of memory\n");
89 return 1;

90 }

91 // m->val == 0, m->next == m->prev == NULL by zero-init

93 // 4) Execute, printing output with printf

94 for (n = pgm; n; n = n->next) {
95 if (n->cmd == ’+°) {

96 ++m->val;

97 } else if (n->cmd == ’-7) {
98 --m->val;

99 } else if (n->cmd 9,9)
100 printf ("Jc", m->val);

101 } else if (n->cmd == 2,?) A

102 continue;

103 } else if (n->cmd == ’[’) {

104 if (m->val == 0) n = n->jmp;
105 } else if (n->cmd == °]°) {

106 if (m->val != 0) n = n->jmp;
107 } else if (n->cmd == ’<?) {

108 if (!(m = m->prev)) {

109 printf ("Error: at start of tape\n");
110 return 1;

111 }

112 } else if (n->cmd == ’>’) {

113 if (!'m->next) {

114 Mem *c = alloc_cell();
115 if (tc) {

116 printf ("Error: tape out of memory\n");
117 return 1;

118 }

119 c->prev = m;

120 c->next = NULL;

121 m->next = c;

122 }

123 m = m->next;

124 }

125 T
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return O;

// Preprocessed and Rewritten BF Interpreter
#include "dbd_support.h"

namespace buildit_application {

7

builder::dyn_var<void(void)> printf = builder::as_global ("printf");
44 s

struct BFInst {

char cmd = builder::with_name("cmd") ;
BFInst* next = builder::with_name("next");
BFInst* jmp = builder::with_name("jmp");
};
}

namespace builder {
template <>
struct external_type_namer<buildit_application::BFInst> {

r static constexpr const char* type_name = "struct BFInst";

}s
}

namespace buildit_application {

struct Mem {

3

char val = builder::with_name("val");

Mem* next = builder::with_name("next");

Mem* prev = builder::with_name ("prev");
}

namespace builder {

template <>

struct external_type_namer<buildit_application::Mem> {
static constexpr const char* type_name = "struct Mem";
};

¥

namespace buildit_application {

static BFInst prog_pool [65536] = builder::as_global("prog_pool");
static int prog_count = builder::as_global("prog_count");

static Mem cell_pool [65536] = builder::as_global("cell_pool");
static int cell_count = builder::as_global("cell_count");

static BFInst* alloc_inst () {
return (prog_count < 65536)
? &prog_pool[prog_count++]
_null;

}

static Mem* alloc_cell () {
return (cell_count < 65536)
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51 ? &cell_pool[cell_count++]
52 : _null;

53 F B

55 int main(int argc, charx argv([]) {

56 if (argc < 2) {

57 printf ("Usage: %s \"<bf-program>\"\n", argv[0]);
58 return 1;

59 }

60

61 const char *program = argv[1];

62

63 BFInst *p = __null, *n = __null, *j = __null, *pgm = __null;
64 for (const char *src = program; *src; ++src) {
65 char ch = *src;

66 int valid = (ch==’<’ || ch==">> || ch==’+’ || ch=="-’ ||
67 ch==?,7 || ch==2.7 || ch=="[’ || (ch==’]1°&&j));
68 if (!'valid) continue;

69

70 n = alloc_inst ();

71 if ('n) {

72 printf ("Error: program too large\n");
73 return 1;

74 }

76 if (p) p->next = n; else pgm = n;

77 n->cmd = ch;

78 n->next = __null;

79 n->jmp = __null;

80 p = n;

81

82 if (ch == > [?) {

83 n->jmp = j;

84 j = n;

85 }

86 else if (ch == °’]7’) {

87 n->jmp = j;

j = j->jmp;

89 n->jmp->jmp = n;

90 }

91 }

92

03 while (j) A{

94 P = J;

95 j = j->jmp;

96 p->jmp = __null;

97 p->cmd = > 7

98 }

99

100 Mem *m = alloc_cell();

101 if (!'m) {

102 printf ("Error: tape out of memory\n");

103 return 1;

104 }
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105
106
107
108
109

110

130

9

10

11

for (n = pgm; n; n = n->next) {
if (n->cmd == ’+7) {
++m->val;

} else if (n->cmd == >-°) {
--m->val;
} else if (n->cmd == ’.°) {

printf ("Jc", m->val);

} else if (n->cmd == °,’) {
continue;
} else if (n->cmd == ’[’) {
if (m->val == 0) n = n->jmp;
} else if (n->cmd == °]°) {
if (m->val != 0) n = n->jmp;
} else if (n->cmd == °’<’) {

if (!'(m = m->prev)) {
printf ("Error: at start of tape\n");
return 1;

} else if (n->cmd == ’>?) {
if (!'m->next) {

Mem *c = alloc_cell();

if (te) {
printf ("Error: tape out of memory\n");
return 1;

}

c->prev

c->next

m->next = c;

(T
8
=}
c
'—l
'_l

}
m

= m->next;

return O;

3

static register_function regO(main, "main");

}

// Driver for BF interpreter
#include "builder/dyn_var.h"
#include "blocks/c_code_generator.h"

using builder::dyn_var;

std::vector<std::function<block::block::Ptr(void)>> *
registered_functions;
int main(int argc, char* argv[]) {
std::cout << "#include <stdio.h>\n\n";

std::cout << "struct BFInst {\nchar cmd ;\nBFInst* next;\nBFInstx*
jmp;\n};\n";
std::cout << "struct Mem {\nchar val ; \nMemx* next ; \nMem* prev;\n
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};\n\n";

29

std::cout << "static BFInst prog_pool[65536];\n";
std::cout << "static int prog_count = 0;\n";
std::cout << "static Mem cell_pool [65536];\n";
std::cout << "static int cell_count = 0;\n";
for (auto f: *registered_functions) {
auto ast = £();
block::c_code_generator::generate_code(ast, std::cout
}
return O;
¥
// Generated code for BF Interpreter
#include <stdio.h>
struct BFInst {
char cmd ;
BFInst* next;
BFInst* jmp;
};
struct Mem {
char val ;
Mem * next;
Mem * prev;
};
static BFInst prog_pool [65536];
static int prog_count = 0;
 static Mem cell_pool [65536];
static int cell_count = 0;
int main (int argO, char* argl[]) {
struct BFInst* varlil;
struct Mem* varil3;
struct Mem* varil6;
if (argd < 2) {
printf ("Usage: %s \"<bf-program>\"\n", argl[0]);
return 1;
¥
struct BFInst* var4 = 011;
struct BFInst* varb5 = 011;
struct BFInst* var6 = 011;
struct BFInst*x var7 = 011;
char const* var8 = argl[1];
while (var8[0]) {
char var9 = var8[0];
if (PO CCCC((((var9 == 60) || (var9 == 62)) || (var9 ==
var9 == 45)) || (var9 == 44)) || (var9 == 46)) || (var9
((var9 == 93) && var6)))) {
if (prog_count < 65536) {
varll = (&(prog_pool[(prog_count = prog_count + 1)
} else {

>

0);



varll = 011;
}
varb = varlil;
if (!(var5)) {
printf ("Error:
return 1;
¥
if (var4d) {
var4 ->next = v
} else {
var7 = varb;
¥
varb5->cmd = var9
var5->next = 011
var5->jmp = 011;
var4 = varb;
if (var9 == 91)
var5->jmp = va
var6 = varb;
} else {
if (var9 == 93
var5->jmp =
var6 = var6 -
(var5->jmp) -
}

}
var8 = var8 + 1;

¥

while (var6) {
var4d = var6;
var6 = var6->jmp;
var4->jmp = 011;
var4->cmd = 32;

}

if (cell_count < 655

program too large\n");

arb;

>

H

{

r6;

) A

varé6 ;
>Jjmp;
>jmp = varb;

36) {

varl3 = (&(cell_pool[(cell_count

} else {

varl3 = 011;
}
if (V(var13)) {

cell_count + 1)

printf ("Error: tape out of memory\n");

return 1;

}
varb5 = var7;
while (varb5) {
if (var5->cmd == 43) {
varl3->val = varl3->val + 1;
} else {
if (var5->cmd == 45) {
varl3->val = varl3->val - 1;
} else {
if (varb5->cmd == 46) {

printf ("%c",

varl3->val) ;
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92 } else {

93 if (!'(var5->cmd == 44)) {

94 if (var5->cmd == 91) {

95 if (var13->val == 0) {
96 varb = varb5->jmp;

97 }

08 } else {

99 if (var5->cmd == 93) {
100 if (vari13->val != 0) {
101 varb5 = varb5->jmp;

102 }

103 } else {

104 if (var5->cmd == 60) {

105 if (!(var13 = varl3->prev)) {
106 printf ("Error: at start of tape\n");

107 return 1;

108 }

109 } else {

110 if (var5->cmd == 62) {

111 if (!(vari13->next)) {

112 if (cell_count < 65536) {

113 varl6 = (&(cell_pool[(cell_count = cell_count +
1) - 11));

114 } else {

115 varle = 011;

116 }

117 if ('(vari16)) {

118 printf ("Error: tape out of memory\n");

119 return 1;

120 }

121 varl6é->prev = varil3;

122 varl6->next = 011;

123 varl3->next = varl6;

124 }

125 varl3 = varl3->next;

126 }

127 }

128 }

129 }

130 }

131 }

132 }

133 }

134 varb5 = var5->next;

135 }

136 return O;

137 }

Notice that in the generated code, there is no call to the helper functions alloc_cell()
or alloc_inst(). In general, when Buildlt generates code for any function, it will further

explore any function calls it makes and effectively inline that code. The only exception to
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Table 4.1: Lines of Code at Different Stages in the Conversion Process

Program  Original Source Preprocessed Source Rewritten Source Generated Source

Example 1 19 609 735 21
Example 2 128 716 843 137

this is for recursive function calls. Calls to recursive functions still appear in the generated

code due to our special treatment of them.

4.2 FEvaluation

To evaluate our Buildlt conversion tool, we consider its impact on compilation performance,
debugging, and code formatting. As converting and compiling a program with the BuildIt
conversion tool is a multi-step process, it does increase the time it takes to compile a program
and produce an executable. In fact, our changes to the Clang compiler result in additional
code being executed for each declaration in the program. A comparison of the time taken
to compile a program with a standard approach versus with the conversion tool is shown
in figure 4.6. We find the time taken by the overall conversion process is significantly more
than the time taken to normally compile a program, with much of the overhead coming
from the modified Clang compiler. This partially stems from the fact that all types in the
user program are parsed and modified, including code from large header files. Table 4.1
shows the length of the rewritten code that the modified Clang compiler parses. Future
work could attempt to mitigate the conversion tool’s overhead, particularly by optimizing the
compiler’s type-modification process. However, the runtime of the generated program—which
is considerably more important in most applications—remains unchanged.

The BuildIt conversion tool also affects the formatting and debugging of the intermediate
code. Throughout the conversion process, the tool inserts types and text that do not exist in
the original code, resulting in incorrect source location information for much of the program.

If Clang crashes while compiling the rewritten program, it will use the invalid source location
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Compilation Time Comparison

2.5 Compiling Generated Code
§ @ Running Executable
[=]

S 20 M Linking

ol

£ B Modified Compiling
E 1.5 -

= Rewriting

E, 10 B FPreprocessing

w

i B Standard Compiling
.

o 0.5

L)

o

=

b 00 — [ ]

f_% Example 1 - Example 1 - Example 2 - Example 2 -

L Standard Converted and Standard Converted and

Compilation  Compiled by Tool  Compilation  Compiled by Tool

Program and Compilation Method

Figure 4.6: The time taken to compile the programs from example 1 and example 2 in section
4.1, from a standard approach and from converting and compiling the program with the
BuildIt conversion tool. Note, no linker errors are thrown when converting example 1 and 2
so no stubs need to be generated.

information to emit error messages. Furthermore, the Rewriter Tool often inserts text that is
not properly indented into the code. This makes debugging the intermediate programs more
challenging. However, this is not a problem in actuality. C and C++ programs should be
compiling properly before they are provided to the conversion tool, so there should be no
compilation issues during the conversion process. Additionally, the final generated code is
in standard C/C++ and is compiled with a standard compiler. Therefore, any runtime or
compile time errors from the generated program produce standard error messages.

Based on our testing of the BuildIt conversion tool, it should very much be considered
in development. While the tool does reliably convert sample programs (consisting of a
few hundred lines of code) to Buildlt, it sometimes runs into issues when converting larger
programs with many header files to BuildIt. Header files in particular present an issue, as they
may consist of thousands of lines of code and utilize less-common C and C-+ programming

constructs. In addition, the conversion tool does not yet support many common C and C++
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features such as union types, classes, and templates. This means user programs can not
directly use these features or include headers that use these features. Thus, there is much
ongoing work on this project.

Lastly, it is worth noting that the conversion tool produces the equivalent BuildIt program
in an object file format. This means that a user can not directly edit the converted BuildIt
program and begin staging variables to specialize the code. The generated code from BuildIt’s
execution will thus be unoptimized code equivalent to the original source. We will therefore
need to extend the tool to allow the user to specify variables to stage when converting their

code to BuildIt. This is discussed in the future work section.
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Chapter 5

Conclusion

5.1 Future Work

Our conversion tool currently supports converting C and C++ programs with a subset of the
language features. Future work can extend the tool’s support to converting broader C and
C—++ programs, including programs with classes, templates, and union types. Support for
these features will likely involve source rewrites, since converting these features to Buildlt
requires more substantial changes than simply wrapping types with dyn_var. Union types
can most likely be converted in a similar manner to structs. However, the rewriting process
for classes and templates is likely to be much more complicated.

In keeping with the original goal of enabling staging and specialization of programs, future
work can be done to allow users to stage certain variables when automatically converting
their code to BuildIt. In this case, the conversion tool will wrap user-specified variables
with the BuildIt static_var type and the remaining types with dyn_var when converting
code. The resulting program executes in two stages, with the static stage executing first
to produce code for the dynamic stage. Users can thus make use of BuildIt’s multi-stage
framework to optimize and specialize their code. Supporting this in the conversion tool will

likely require changes to the modified Clang compiler to check and wrap certain variables
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with the static_var type, and also require changes in the driver to provide values for the
staged variables when generating code.

If the previously described work is completed, it should be possible to automatically
stage and specialize large C and C++ programs, including repositories. There are many
widely-used C and C+-+ repositories like nginx [18] and memcached [19] that are developed
with performance in mind. Future work could attempt to stage and optimize these repositories

with BuildIt, which would be incredibly impactful if successful.

5.2 Summary

In this thesis, we discussed the development of a tool that automatically converts C and
C+-+ source code to the Buildlt multi-stage programming framework. This was achieved
by wrapping every type in a program with BuildIt’s dyn_var type, producing equivalent
BuildIt code. Our approach combined a Clang Rewriter tool with a modified Clang compiler,
demonstrating how to use and extend Clang to perform non-trivial source transformations.
Along the way, we highlighted limitations to Clang’s tooling and shared practical insights into
Clang’s internals. We demonstrated our conversion tool’s viability by successfully converting
and compiling example programs, showing the generated code is equivalent to the original
code. We also showed how to convert various key C languages features—including structs,
global variables, recursive functions, and more—to Buildlt, enabling conversion of a broad
host of C and C++ programs. As our tool automatically converts a program to its (unstaged)
Buildit equivalent, it performs the tedious work necessary before a user can begin staging
variables and specializing their code with Buildlt. Ultimately, we hope it brings us closer to
the broader goal of being able to automatically stage and optimize C and C+-+ repositories

with the BuildIt framework.
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