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ABSTRACT

With the rise of large language models, there have been efforts to optimize machine
learning inference to support a large volume of queries. Currently, the two main ways to do
this are running optimized kernels for computing the forward inference pass and distributing
computation across multiple GPUs or different cores in a GPU. Machine learning libraries
such as PyTorch produce dynamic computation graphs in order to represent the forward
pass of the model. PyTorch allows conversion of these dynamic graphs into static ones
through just-in-time (JIT) compilation. These graphs can then be optimized further by the
compiler. We propose an alternate way of optimizing these dynamic graphs. We convert the
dynamic computation graph of PyTorch to pipelines in Streamlt, a domain specific language
(DSL) for streaming applications, and use the multi-stage compilation property of Buildlt
to compile this pipeline in stages to inference code. We found that, while the inference
latencies of models compiled in this way are slightly higher, they are still comparable to
those of PyTorch models and are open to future optimizations.
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Chapter 1

Introduction

As machine learning model sizes get bigger and Moore’s law comes to an end, there is
an increasing need to split computation between several GPUs in a distributed fashion in
order to maintain low latencies. This can be done in several different ways, one such way
being pipeline parallelism. In pipeline parallelism, each GPU holds one layer of the model
and performs the corresponding computations in a pipelined manner, improving the overall
inference throughput. This improvement is especially noticeable in the case of large language

model (LLM) inference.

1.1 Related Work

We discuss a few ways in which high-performance machine-learning applications are currently

built.

1.1.1 PyTorch Tracing vs Scripting

PyTorch is a Python library that provides GPU-accelerated tensor computation and the
ability to use these operations for building deep neural networks (DNNs) [1]. PyTorch can

execute a trace of a model to determine the sequence of operations performed on an input.
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This trace could then be exported and used in other non-Python contexts. However, the
major disadvantage is that tracing only follows one possible control flow path and eliminates
all control flows by choosing a particular branch.

PyTorch scripting solves this problem by statically analyzing the model and all its
branches, producing a TorchScript model that captures the control flow behavior of the
model on various attributes. However, having control flow as part of the model can make it

slow, so tracing and scripting can be used together to fine-tune a model’s definition.

1.1.2 PyTorch compile

PyTorch has a built-in just-in-time (JIT) compiler that can be used to generate optimized
kernels on the fly. Previously, the only way to access this compiler was through tracing and
scripting as described above. The new torch.compile function introduced in PyTorch 2.0 can
now be used to JIT compile the model where necessary to speed up execution with minimal
code changes. Generally, first-time execution times can be longer than simply interpreting
the Python code, even though it pays off eventually after subsequent inferences. This is
because JIT compilation into optimal kernels takes some time the first time it is run, leading

to cold-start delays.

1.1.3 Other Optimization Methods

There are a number of other methods people currently use to optimize inference. Intel’s open
source platform, Open Visual Inference and Neural Network Optimization (OpenVINO), is
commonly used to deploy optimized inference models [5]. OpenVINO uses techiques such as

fusion of multiple layers and removing unnecessary layers to speed up inference.
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1.2 Using Streamlt for Machine Learning

This thesis proposes using Streamlt to enable more static graph optimizations in an easier
manner. Streamlt is a language originally intended for signal processing applications [6].
However, the structure of Streamlt graphs makes it well suited for pipeline parallelism of
machine learning models, where streams of tensors flow between various compute nodes in
the graph. Each node can be either a Filter or a SplitJoin. A filter converts a stream from
one channel to another, while a SplitJoin distributes streams between multiple nodes and
joins them back into a single node. Each Streamlt filter has a work() function responsible
for performing the node’s computation. A SplitJoin can be useful in splitting work between
different GPU cores for parallel processing or in distributing work across multiple GPUs over

a network.

1.2.1 PyTorch To Streamlt

A previous project with the group aimed to compile PyTorch models to Streamlt graphs
for inference [3]. The project made use of PyTorch FX’s symbolic_trace method to capture
the function call graph of the PyTorch model. This graph is then converted to a Streamlt
pipeline graph preserving its inference behavior. This resulting Streamlt code can then be
compiled with Streamlt libraries and the resulting code could be linked with LibTorch. Since
in inference the model’s weights are already known, they can be expanded at compile time

and all conditions based on the weights can be pre-evaluated.

1.3 Contributions

The objective of this work is to make end-to-end machine learning inference possible via
Streamlt graphs. Prior work used in this process is elaborated on in chapter 2. My contri-

bution to the field is in two parts:
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1. Linking a Streamlt machine learning pipeline with the actual LibTorch API functions
to be able compile it into an executable. This involves adding new types and constructs
to Streamlt to be able to describe machine learning layers. This also includes adding
functionality for loading the model weights onto certain filters in the Streamlt pipeline

(chapter 3).

2. Building on prior work of converting a PyTorch model to a StreamlIt pipeline definition.
This includes auto-generating Streamlt filter and type definitions for different layer

types while still allowing for manual overriding through a configuration file (chapter 4).
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Chapter 2

Background and Prior Work

2.1 PyTorch and LibTorch

PyTorch API functions are wrappers of LibTorch kernel code written in C++. Depending on
certain properties like tensor sparsity, use of GPUs, and the datatype, PyTorch dynamically
dispatches to one of multiple kernels optimized for that set of inputs.

PyTorch is built around the ATen tensor library augmented with Autograd to allow
automatic differentiation required for ML training. This involves recording gradients for
every operation during the forward pass and traversing the call graph backwards to update
them during the backward pass. The backward pass is not required during inference as the
weights are not being updated, so users can turn off automatic differentiation when it is not
needed to avoid unnecessary overhead.

PyTorch also provides constructs for specifying various distributed paradigms. Users can
also choose the collective communications backend that suits their needs. The currently
supported backends are Microsoft’s Message Passing Interface (MPI), Gloo, and the Nvidia
Collective Communications Library (NCCL).

While PyTorch’s structure works for most workloads, ones that demand low latencies are

LCredit: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/
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Figure 2.1: PyTorch forward and backward graphs!

slowed down by Python’s interpreted nature. While individual kernels are highly optimized,
there is still room for further optimizations such as operator fusion, where multiple operations
are optimized together. This project explores alternative ways of optimizing machine learning
algorithms by using an intermediate representation in Streamlt, a language for streaming

applications, that is conducive to further optimizations and easy distributed scheduling.

2.2 BuildIt

Buildlt is a framework that allows for easy specification of multi-stage compilation and
is used to develop optimized compilers for domain specific languages (DSLs) [2]. Buildlt
eliminates complex hierarchies like classes, virtual functions, and inheritance, and produces
C code as a flattened version without the overhead. This makes it well-suited for optimizing
library calls which often involve several layers of intermediate function calls to choose the

right kernel code to execute. Since the Streamlt compiler is written using BuildIt, we can
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use BuildIt constructs to generate more optimal code.

2.3 Streamlt

Streamlt uses the multi-stage compilation features of BuildIt to generate optimized code
from pipelines. We will use the Streamlt graph in Figure 2.2 to discuss the various Streamlt

features that can be used to represent machine learning computation.

Split
Pipeline I |
\ 4
4 I
Filter v
. J
Filter
Y
4 I
Filter
. J

Join

Figure 2.2: An example Streamlt Graph

Pipeline

A pipeline in Streamlt consists of a sequence of other Streamlt constructs like Streams,
Filters, or SplitJoins that are logically connected one after the other. Inputs enter the
pipeline at the topmost Stream and outputs leave at the bottommost Stream.

This sequential structure of Streamlt pipelines makes it well-suited to represent individual

layers in machine learning models, since the activations in these models also follow a similar

19



pattern.

SplitJoin

There are two main kinds of SplitJoins in StreamlIt: Duplicate and RoundRobin. Dupli-
cate SplitJoins create copies of elements in the input channel to feed to each split, while
RoundRobin SplitJoins distribute elements from the input channel among the splits in a
round-robin manner.

SplitJoins are used whenever there is a split in the computation graph. This could be a
single layer’s output being passed into two separate layers and the results being combined
into a single stream again. This typically happens in residual networks like ResNet which
learn the weights of the function F(x)+x rather than just F(x) [4]. This leads to a split
graph with the layers computing F(x) on one split and the identity function on the other,

joining at a graph node computing the addition of two tensors.

Filter

This represents a transformation of data in the graph. A Filter has a user-specifiable work
function associated with it to describe the filter operation. We can thus use Filters in machine
learning computation to transform an input channel of tensors into an output channel of

tensors.

2.4 Converting PyTorch Graphs to Streamlt Pipelines

The lab has done prior work using the StreamlIt framework as an alternative to torch.compile
for PyTorch graphs [3]. We can use Streamlt constructs such as Filters, Channels, Streams,
Pipelines, and SplitJoins to describe an ML model. The computation graph of a PyTorch
model is structured as a directed acyclic graph (DAG), which enforces a partial order on the

nodes. This structure is very similar to that of a Streamlt pipeline, as discussed above.

20



2.4.1 The torch.fx API

PyTorch exposes the torch.fx API to trace through a PyTorch model and extract the dynamic
layer call graph from it. It extracts this graph by passing Proxy class objects as inputs to
the forward function of a model. It then records the operations performed on this object
and constructs the dynamic graph. It is possible to extract the generated IR code out of
this generated graph.

We will walk through the process of how this prior work extracts the IR from this graph
through an example. Figure 2.3 contains PyTorch code for an MNIST model which has the

same layers as the Streamlt pipeline we discussed in the previous chapter in Figure 3.13.

class MNIST (nn.Module):
def init__(self):

super (MNIST, self).__init__()

self.conv_layers = nn.Sequential(
nn.Conv2d (1, 32, kernel_size=(3, 4)),
nn.RelLU(),
nn.Conv2d (32, 64, kernel_size=3),
nn.RelLU() ,
nn.Conv2d (64, 64, kernel_size=3),
nn.ReLU ()

)

self.fc_layers = nn.Sequential(

nn.Flatten (),
nn.Linear (64 *x 22 x 22, 10)
)
def forward(self, x):
x = self.conv_layers (x)

x = self.fc_layers(x)
return Xx

Figure 2.3: PyTorch MNIST code

Using the torch.fx API to extract the dynamic call graph of this model results in the
output in Table 2.1. PyTorch has its own internal representation of the graph which it can
use to generate better-optimized code and eliminate unused layers. An example of this IR
is given in Figure 2.4.

PyTorch calls each point of computation in this graph a “Node” instance. A 2-dimensional

21



opcode

name

target

placeholder
call _module
call module
call module
call module
call _module
call _module
call module
call module
output

Table 2.1: MNIST torch.fx symbolic trace tabular output

convolutional layer in the example, say conv_layers_0 has a node associated with it, with the
name consistent with the fully qualified identifier of the layer registered by PyTorch. This

node is of type “call_module”. There are 6 main opcodes of nodes depending on its function.

X
conv_layers 0
conv_layers 1
conv_layers 2
conv_layers 3
conv_layers 4
conv_layers 5
fc_layers 0
fc_layers 1
output

2.4.2 Node opcodes

1. call_function:

describe operations like the rectified linear unit (ReLU) activation function, but it also

X
conv_ layers.0
conv_ layers.1
conv_ layers.2
conv_ layers.3
conv_ layers.4
conv_ layers.5
fc_layers.0
fc_layers.1
output

This node describes a function call.

(conv_layers 0,)
(conv_layers 1,
(conv_layers 2
(conv_ layers 3
(conv_ layers 4
(conv_layers 5
(fc_layers 0,)
(fc_layers 1,)

Y
Y
Y
Y

)
)
)
)
)

includes PyTorch functions from the torch.nn.functional module.

2. call_module: This node describes a call to a registered module’s forward method. Mod-
ules are used to describe the neural network layers that have state. For example, the

Linear module holds the linear layer’s weights and biases. These modules also compute

This node is typically used to

the backward graph gradients automatically unless explicitly turned off.

3. call_method: This node describes a call to a method on the tensor class.

4. get_attr: This node describes an attribute access on a Python class. However, it should
be noted that PyTorch will not convert explicit calls to the get_attr function to this

type. These “call_function” nodes will then need to be manually converted to this

type on parsing the dynamic graph.
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10

graph () :

%x : [num_users=1] = placeholder[target=x]
%hconv_layers_O : [num_users=1] = call_module[target=conv_layers.0](

args = (%x,),

kwargs = {})

%conv_layers_1 : [num_users=1] = call_module[target=conv_layers.1](
args = (%conv_layers_0,), kwargs = {})
%conv_layers_2 : [num_users=1] = call_module[target=conv_layers.2](
args = (Jconv_layers_1,), kwargs = {})
%hconv_layers_3 : [num_users=1] = call_module[target=conv_layers.3](
args = (J%conv_layers_2,), kwargs = {})
%conv_layers_4 : [num_users=1] = call_module[target=conv_layers.4](
args = (%conv_layers_3,), kwargs = {})
%conv_layers_5 : [num_users=1] = call_module[target=conv_layers.5](

args = (Jyconv_layers_4,), kwargs = {})

%fc_layers_O

[num_users=1] = call_module[target=fc_layers.0] (args

(%conv_layers_5,), kwargs = {})

%fc_layers_1

[num_users=1] = call_module[target=fc_layers.1] (args

(%hfc_layers_0,), kwargs = {})
return fc_layers_1

Figure 2.4: PyTorch MNIST generated IR

5. placeholder: This is a node representing an argument passed to a layer.

6. output: This is a node containing the outputs of the model.

2.4.3 Functions vs Modules

While “call_function”, “call_method”, and “get_attr’ are straightforward, we need to convert

“call_module” to its equivalent “call_function”. Almost all PyTorch modules have pure func-

tional equivalents defined in the torch.nn.functional Python module. Modules handle their

state internally, while functionals need to have their state manually passed to them.

While most of the options passed to both versions are similar, there are still some differ-

ences. For example, the Linear module takes in the in_channels and out_channels as options,

while the functional equivalent infers these from the state that is passed in. This prior work

handled this by hardcoding which parameters are read from each layer as part of the parser

code.

We can extract the options for a call_function node by looking at the entries in node.

23



kwargs. However, this is trickier in the case of modules. As we can see in Table 2.1, none of the
nodes representing convolutional layers have any information on hyperparameters like stride
or kernel size. This is because these options are constructor parameters to these call_module
layers. We will discuss how to handle this in a more generalizable way in chapter 4.

Since the computation graphs of most non-recurrent models can be described as a directed
acyclic graph (DAG), we simply perform a depth-first search (DFS) through the entire graph
to get the order of computations. For each node, node.args is a tuple consisting of the nodes
which provide the input to this node. We first iterate though all nodes in the graph and
maintain a separate structure to map a node to a list of other nodes. Every time a node is

encountered in node.args, the current node is added to that node entry’s successors.
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Chapter 3

Compiling StreamlIt with LibTorch

While the prior work was sufficient to convert PyTorch graphs to Streamlt pipelines, it
was still limited in 2 main ways: the PyTorch to StreamlIt conversion relied on hardcoded
hyperparameter extraction, and linking the generated code to the LibTorch library functions
was not done. We will discuss how we generalized the former in chapter 4. The rest of
this chapter talks about the changes we made to the first stage of the StreamlIt compilation

process.

3.1 Outline of Compilation Process

At a high level, a PyTorch model file will go through 3 main stages of compilation: conversion
from a PyTorch model to a Streamlt pipeline, first-stage compilation to generated C-++
code, and second-stage compilation to an optimized executable. This process is outlined in
Figure 3.1.

In addition to the basic framework that already existed, we also generate the options
and filter definitions at the first conversion stage. The filter definitions are used in the first
stage of compilation to write the Streamlt pipeline layers. For example, a generated conv2d
filter can be used to create a 2-dimensional convolutional layer in the Streamlt pipeline. The

generated code on second-stage compilation will make use of the generated hyperparameter
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PyTorch Model File
model.py

Streamlt Conversion

\ 4

Generated Options Streamlt Pipeline Generated Filters
libtorch_api.h model_streamit.cpp TorchFilters.h

iStage 1 Compilation

Generated Code
model_gen.cpp

lStage 2 Compilation

Compiled Executable
model

Figure 3.1: Compilation Process of a Model

options to generate an executable binary.

3.2 The StatefulFilter Construct

One main feature of Streamlt filters is that they don’t have state and are hence called “pure”
filters; they simply read inputs from the input stream and push their outputs to the output
stream. In machine learning computation, most layers have some state associated with them
like weights and biases. However, the existing Streamlt Filter definition is Stateless and
doesn’t allow an easy way to access these variables from the work() function. Hence, we
create a new StatefulFilter construct that extends the Filter class and holds state.
Stateful filters extend regular Streamlt filters in 2 major ways: they store state, and
they use this state in combination with the input channel to compute the output in the
work function. From the implementation in Figure 3.2, we see that this class has two main

methods: init() and work(). While all Streamlt constructs have a work function, Stateful
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1 template <typename I, typename 0, typename S>
class StatefulFilter : public Filter <I, 0> {

2

3
3

!

stateful_init_t <S> init_impl;
stateful _work_t<I, 0, S> work_impl;
dyn_var <S> state;

std::string state_name;

public:

};

StatefulFilter (rate_t popRate, rate_t peekRate, rate_t pushRate,
stateful_init_t <S> init_impl,
stateful _work_t<I, 0, S> work_impl, std::string state)
init_impl(init_impl), work_impl (work_impl), state(builder::with_name (
state)), state_name(state),
Filter<I, 0>(popRate, peekRate, pushRate) {}

StatefulFilter (rate_t popRate, rate_t pushRate, stateful_init_t<S>
init_impl, stateful_work_t<I, 0, S> work_impl,
std::string state)
init_impl(init_impl), work_impl (work_impl), state(builder::with_name(
state)), state_name(state),
Filter<I, 0>(popRate, pushRate) {}

void init (dyn_var<HashMap<std::string, S>> states) {
this->state = states.at(state_name);

3

void work () {

work_impl (this->getInputBuffer (), this->getOutputBuffer (), this->state
)3
}

Figure 3.2: The StatefulFilter class

filters uniquely have a user-customizable init function that is used to store state as a builder

::dyn_var field.

The Stateful filter constructor takes in the name of the layer as exported in the pytorch

weights file. This is used in combination with the Buildlt with_name construct to initialize
the state field. On code generation, the states will be declared separately as global variables,
and the with_name links these global variables as states for the layers.

In addition to the state field, the Stateful filter also accepts a stateful_init_t implemen-
tation, which is a function that copies its second argument into its first. This allows the

program to customize the initialization of its state if needed. We currently do not make use
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of this feature.

3.3 BuildIlt Custom types

We also needed to add some Buildlt custom types to represent the types of hyperparameters

and other inputs to each layer.

3.3.1 ExpandingArray

template<size_t D, typename T=int64_t>

struct ExpandingArray {
std::vector<T> vals;
ExpandingArray (): vals(std::vector<T>()) {}
ExpandingArray(std::initializer_list<T> vals): vals(vals) {}
ExpandingArray (T val): vals(std::vector<T>(val, D)) {}
T operator[](size_t idx) const { return vals[idx]; }

};

Figure 3.3: The ExpandingArray type

LibTorch has its own types defined for convenience. The ExpandingArray type in particular
is useful when passing options to layers. For example, a convolutional layer needs to be
configured with the size of the kernel, padding, and stride. A 2-dimensional convolution
needs 2 numbers for each of these, corresponding to the 2 axes, and it is often the case that
both these numbers will be equal. The ExpandingArray type can hence be initialized with
either a single number that is replicated across all its dimensions or a vector of numbers.

The BuildIt custom type definition reflects this by also providing both types of construc-
tors.

We also need a structure in the second stage of BuildIt compilation to describe an Ex-
pandingArray. However, at this stage, we already know all the elements of the ExpandingArray
, so a simple container that behaves like a C++ std::vector is sufficient. The LibTorch

ExpandingArray type is constructible from an std: :vector.
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We still need to write Buildlt code to copy over each element individually from the
ExpandingArray on the Streamlt side to this new std::vector container. We accomplish this
by writing a Buildlt static loop in the copy_expanding_array function that copies over each

element of the array.

template<typename T>
struct vector: builder::custom_type<T> {
static constexpr const char*x type_name = "std::vector";
builder::dyn_var<void(T)> push_back = builder::as_member ("push_back");
};
template <size_t D, typename T=int64_t>
void copy_expanding_array(builder::dyn_var<vector<T>>& x, ExpandingArray<D
, T> const& w) {
for (builder::static_var<T> i = 0; i < D; i++) {
x.push_back (w[il);

¥
}

Figure 3.4: Copying an ExpandingArray into a vector

In Figure 3.4, the copy_expanding_array function can be used to copy elements from the
ExpandingArray W to the vector x. The generated code for such a call is given in Figure 3.5.
In this example, the ExpandingArray w was initialized with the values {1, 1}. As is evident,
the generated code only has the std::vector type, and all values in the array were expanded

out at compile-time.

// written code
builder::dyn_var<vector<int64_t>> x;
ExpandingArray<2> w(1);
copy_expanding_array (x, w);

// generated code
std::vector<long int> varl2;
varl2.push_back (111);
varl2.push_back (111);

Figure 3.5: Generated code for copying an ExpandingArray into a vector

3.3.2 Tensor
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class Tensor: public builder::custom_type<> {

public:
static constexpr const char *type_name = "torch::Tensor";
dyn_var<bool()> contiguous = builder::as_member ("contiguous");
dyn_var<Tensor (int)> split = builder::as_member ("split");
dyn_var<Tensor () > transpose = builder::as_member ("transpose");
dyn_var<Tensor ()> view = builder::as_member ("view");

//

Figure 3.6: The BuildIt Tensor type

LibTorch uses the ATen library’s Tensor class to represent the weights and activations.
This class also has member functions like transpose () and contiguous() that perform certain
operations on the Tensor.

The Tensor custom type is implemented to have all the fields and methods a typical
LibTorch Tensor has, but in the form of Buildlt specifications. The fields in the custom Ten-
sor type can be used to write the filter work() function code. After all stages of compilation,

these calls will be converted to the LibTorch Tensor type’s method calls.

3.3.3 LayerState

struct LayerState : builder::custom_type<> {

static constexpr const char*x type_name = "LayerState";
builder::dyn_var<libtorch::Tensor> weight = builder::as_member ("weight")
builder::dyn_var<libtorch::Tensor> bias = builder::as_member ("bias");

// additional state for batch norm

builder::dyn_var<libtorch::Tensor> mean = builder::as_member ("mean");
builder::dyn_var<libtorch::Tensor> variance = builder::as_member ("
variance") ;

};

Figure 3.7: LayerState struct definition

This custom type is used to store the weights and biases of LibTorch model layers. The
state of a layer in a StreamIt ML pipeline is represented by weight and bias tensors. However,

there are certain layers, like the batch normalization layer, which keep track of additional
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state. The batch normalization module in PyTorch keeps a running mean and variance of
all batches that it encountered during training. At the time of inference, these values are
then used to normalize the inputs. Since these are also part of the state of certain layers,
they are included in the LayerState struct.

Each layer has its own set of hyperparameter options, as discussed in the ExpandingArray
section. These options are initialized once but used many times, so they should be stored
in the LayerState type too. Each layer in LibTorch that takes options has a separate struct
defined for that particular layer. For example, the options for the 2-dimensional convolutional
layer is given by the torch::nn::functional::Conv2dFuncOptions struct, while those for the
dropout layer is given by the torch::nn::functional: :DropoutFuncOptions. Since these options
are for different layers, they don’t have a common base class. This would require us to make
the options field into a template type parameter in the LayerState struct and instantiate the
LayerState with the options type corresponding to that layer type. We do not tackle this
problem in this thesis work. Instead, we simply create a new options struct just before a

layer is called during the forward pass and immediately pass it into the call.

3.4 Generated code

The generated code for all models compiled via Streamlt are implementations of two common
header file functions: init() and forward(). This way, the interfaces for all models are

common, and we can swap out the C+- implementations if the model needs to be changed.

void init (std::unordered_map<std::string, LayerState> state_dict);

3 void forward(streamit::deque<torch::Tensor>* &argl, streamit::deque<torch

::Tensor >* &arg?2) ;

Figure 3.8: init() and forward() declarations
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3.4.1 init()

We need a way to initialize the weights and biases of each stateful Filter in the StreamlIt ma-
chine learning code from an external source like a saved model file. This was implemented
through an init() function. The init function takes in a transformed state-dictionary of
the model’s weights and biases and initializes each layer with their corresponding parame-
ters. This dictionary maps the fully-qualified identifier of each layer to a LayerState struct

available at runtime with the weight and bias as fields.

for(static_var<int> k = 0; k < repeats; k++) {
for(static_var<int> i = 0; i < scheduleSteady.size(); i++) {
autox filter = dynamic_cast<StatefulFilter<I, 0, S>*>(scheduleSteadyl[i
1) g
if (filter != nullptr) {
filter->init(state_dict);
}
}
}

Figure 3.9: Buildlt code for init()

BuildIt expands the static for loop into a sequence of calls to StatefulFilter init()

functions, each of which initializes its state by reading from the state-dictionary.

3.4.2 forward()

The forward function performs the actual forward-pass inference computation of the model.
This function contains a while-loop that continuously reads from the input channel and
writes the computed result to the output channel after doing one inference pass.

Similar to the init () function, Buildlt expands the static for loop in the case of the forward
O function. However, it retains a while loop that is not expanded at compile-time, since

there can be more than one inference request, and this number is not known at compile-time.
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1 while (1) {

2 for(static_var<int> k = 0; k < repeats; k++) {
for(static_var<int> i = 0; i < scheduleSteady.size(); i++) {

| scheduleSteady [i]->work () ;

5 }

6 }

7}

Figure 3.10: BuildIt code for forward|()

3.5 LibTorch API

PyTorch layers in Python are constructed in the constructor method of a module, with
hyperparameters such as kernel size and stride passed in directly as constructor parameters.
Since these constructor parameters are generally passed in as keyword arguments, they can
be ordered in any way, or some can even be omitted in favor of default values. The forward()
method of the module can then use these constructed submodules in its inference pass.
Since the LibTorch API is written in C-++-, parameters cannot be reordered in the con-
structor. Because of this, the hyperparameters of each layer are passed in as a C+-+ structure

constructed using the builder pattern, which we will call “options” in this thesis.

I auto options = F::Conv2dFuncOptions ()
2 .stride(stride)

3 .padding (padding)

| .dilation(dilation)

5 .groups (groups)

6 .bias(bias);

Figure 3.11: Creating an options instance for a Conv2d layer

3.5.1 Modules vs Functionals

In addition to the difference above, we also need to convert all modules to function calls.
Almost all built-in PyTorch modules have functional equivalents in torch.nn.functional.
PyTorch modules handle their state internally. This includes the layers’ weights and

biases. While this is useful from an abstraction point-of-view, hiding away state robs us of
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potential optimization opportunities. Modules also compute the backward gradients unless
explicitly turned off, which is an additional unnecessary overhead for inference-only models.
The functional equivalents of modules need to have their state passed to them on every

function call. For example, a 2-dimensional convolutional functional in Figure 3.12 needs a

weight instance passed to it.
torch::Tensor res = F::conv2d(input, weight, options);

Figure 3.12: Computing a Conv2d result

These functionals are stateless themselves, and a given set of inputs, weights, and biases
will always produce the same outputs. Thus, converting module calls to functionals allows us

more avenues of optimization in the future by retaining more control over the computation

and state.

3.6 MNIST Model Compilation process

We will use the example of an MNIST model to illustrate the build process starting from

a Streamlt pipeline definition to the generated init() and forward() code. The Streamlt

pipeline definition for the model is given in Figure 3.13.

auto p = pipeline<libtorch::Tensor, libtorch::Tensor >([&] (auto pipe) {
pipe->add(libtorch::conv2d("conv_layers_O", {1, 1}, {0, 0}, {1, 1}, 1,
zeros", {0, 0}, {3, 41}));
pipe->add(libtorch::relu("conv_layers_1", false));
pipe->add(libtorch::conv2d("conv_layers_2", {1, 1}, {0, o0}, {1, 1}, 1,
zeros", {0, 0}, {3, 3}));
pipe->add(libtorch::relu("conv_layers_3", false));
pipe->add(libtorch::conv2d("conv_layers_4", {1, 1}, {0, 0}, {1, 1}, 1,
zeros", {0, 0}, {3, 3}));
pipe->add(libtorch::relu("conv_layers_5", false));
pipe->add(libtorch::flatten("fc_layers_0", 1));
pipe->add(libtorch::linear("fc_layers_1"));
191

Figure 3.13: Streamlt pipeline code for an MNIST model
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Here, each pipe->add () call takes as argument a filter that has the corresponding layer op-
eration as its work () function. This way, an input flowing through a pipeline gets transformed

into the inference result. The filter definition for the Linear layer is given in Figure 3.14.

builder::dyn_var<libtorch::Tensor (libtorch::Tensor, libtorch::Tensor,
libtorch::Tensor)> _linear = builder::as_global("F::1linear");

std::shared_ptr<Stream<libtorch::Tensor, libtorch::Tensor>>
linear(std::string node_name) {
auto filter = makeStatefulFilter<libtorch::Tensor,libtorch::Tensor,
LayerState>(1, 1,
[I](auto state, auto init_state) {
state = init_state;
Y
[=] Cauto in, auto out, auto state) {
out->push(_linear (in->pop(), state.weight, state.bias));
},
node_name) ;
filter ->setName (node_name) ;
return filter;

5}

Figure 3.14: Streamlt code for a Linear layer

Note that we create a StatefulFilter instance for the Linear layer. This is because the
layer has an associated weight and bias. The work function calls _1inear(), which is defined
as a BuildIt as_global construct, by passing in state.weight and state.bias as the appropriate
arguments. This signifies that the definition for this type will be provided during the second
stage of the multi-stage compilation process as the F::1linear() function.

After the second stage of the compilation process, the linear layer of the MNIST model
generates the code in Figure 3.15. Here, varg[0] contains the tensor output from the layer
before the linear layer, and the output of the model’s forward pass is pushed onto an output

deque outputWorkerO.
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torch::Tensor var64 = var8I[0];

torch::Tensor var65
bias) ;

var9 [0] = var65;

torch::Tensor var69 var9 [0] ;

outputWorkerO.push(var69) ;

F::linear (var64,

fc_layers_1.weight,

fc_layers_1.

Figure 3.15: Generated MNIST Linear layer forward() code

36



Chapter 4

PyTorch Graphs to Streamlt

We now have a way to write machine learning models as Streamlt pipelines which can
generate working code, and we talked about how PyTorch models can be converted to these
Streamlt pipelines in chapter 2. We extend this framework to make adding new layer types

to the PyTorch converter easier.

4.1 Extracting options from torcn.tx nodes

As we discussed earlier, the constructor parameters are not readily available for PyTorch
modules. We retrieve these values by looking for the option names in module.__constants__
for that particular module. It is possible that certain options might be extraneous, so we
deal with these cases by allowing a manual configuration override that we discuss later in

this chapter.

4.2 Autogenerating necessary types and functions

In the previous chapter, we discussed that the prior work used manually written filter-making
functions for each type of layer. While these functions can be written by hand, it is better

to automate their generation to the maximum extent possible, since their basic structures
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are similar to each other. To aid this, we parse each node in the PyTorch IR graph to a
StreamitFilter type, which can be an instance of either a StreamitLayer for “call_function

7 and “call_module” node types, or a StreamitGetAttr for “get_attr” or “call_module” node

types.

4.2.1 StreamitFilter

The sStreamitFilter type has three main methods that each of its subtypes implement:
generate_buildit_decl, generate_options_builder,EMld generate_streamit_filter. We will il-

lustrate these using a Dropout layer as an example.

generate buildit decl()

This method generates the Buildlt type information required for the first stage compila-
tion. This includes builder::dyn_var declarations for the LibTorch layer functional and the

LibTorch options struct.

constexpr char dropout_options_name[] = "F::DropoutFuncOptions";

3 using dropout_options_t = typename builder::name<dropout_options_name >;

~

builder::dyn_var<dropout_options_t (float ,bool ,bool)> make_dropout_options
= builder::as_global ("make_dropout_options");

builder::dyn_var<libtorch::Tensor (libtorch::Tensor, libtorch::Tensor,

libtorch::Tensor, dropout_options_t)> _dropout = builder::as_global("F
::dropout") ;

Figure 4.1: Sample BuildIt type declaration

The generated code snippet in Figure 4.1 creates two main BuildIt dynamic variables:
make_dropout_options and _dropout. _dropout corresponds to the actual filter implementation
provided by the LibTorch API, torch::nn::functional::dropout. We abbreviate torch::nn::
functional:: to simply F:: in these examples.

make_dropout_options creates the options struct populated with the hyperparameters of

the layer. We will discuss the actual implementation of this function in the next part.
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generate options builder()

This method generates a function that constructs the options struct for a given layer that

takes configurable hyperparameters.

inline F::DropoutFuncOptions

3 make_dropout_options(float p, bool training, bool inplace) {

return F::DropoutFuncOptions ()

.p(p)
.training(training)
.inplace (inplace) ;

Figure 4.2: Sample Buildlt type declaration

The generated code snippet in Figure 4.2 constructs the LibTorch options struct, F::
DropoutFuncOptions, corresponding to the dropout layer. This header file will be linked during

the second-stage compilation process of the Streamlt pipeline.

generate streamit filter()

This method generates the filter-making function that returns either a Filter or a StatelessFilter
with the work() function as the layer computation.

The generated function in Figure 4.3 returns a Streamit StatefulFilter instance with the
work function set to the dropout layer’s operation. This header file is linked during the

first-stage first stage compilation of the Streamlt pipeline.

4.2.2 The JSON Configuration File

We discussed previously that there are certain differences in the API of modules and func-
tionals. There are also small differences between the PyTorch and LibTorch versions of
certain layer types. In order to provide an easy way to tweak the generated filters and

options manually if needed, we implement a configuration file and update it accordingly.
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std::shared_ptr<Stream<libtorch::Tensor, libtorch::Tensor>>
dropout (std::string node_name, float p, bool training, bool inplace) {
auto filter = makeStatefulFilter<libtorch::Tensor,libtorch::Tensor,
LayerState>(1, 1,
[J](auto state, auto init_state) {

state = init_state;
1,
[=] (auto in, auto out, auto state) {

auto options = make_dropout_options(p, training, inplace);

out ->push (_dropout (in->pop (), state.weight, state.bias, options));
3,

node_name) ;
filter ->setName (node_name) ;
return filter;

Figure 4.3: Sample BuildIt type declaration

We use a JSON file to store information about the filters and options from other models.
This file contains an entry for each type of filter encountered during the PyTorch to Streamlt
conversion process. The entries are auto-generated if they are not already present in the file.
We also use this file to override the options parsed from the PyTorch model in the case of
differences between the PyTorch and LibTorch versions of the same layer. The format of an

entry is shown in Figure 4.4.

{
"dropout": {
"body_overrides": {},

"dests": 1,
"filter_name": "dropout",
"libtorch_name": "F::dropout",
"options": [

"p float",

"training bool",
"inplace bool"

1,

"options_name": "F::DropoutFuncOptions",
"srcs": 1,

"state": 2,

"type": "call_module"

Figure 4.4: A sample Dropout layer JSON entry
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e srcs and dests: The number of layers pushing outputs into this layer and the number

of layers reading from the output of this layer respectively.
e filter_name: The name of the generated Streamlt filter-making function.
e libtorch_name: The name of the LibTorch API layer.

e options: A list of strings, each corresponding to a hyperparameter. Each string contains
two parts separated by a space. The first part is the name of the parameter, while the
second part is the C++ datatype. Since identifiers cannot contain spaces, the type

information can contain as many spaces as needed.

e options_name: The name of the LibTorch API options struct corresponding to this layer.
If the options field is present but this field is absent, the options are directly passed to

the layer call.

e state: The number of distinct tensors used to represent the state associated with this

layer.
e type: The opcode of the layer.

® body_overrides: This field is used if the actual LibTorch implementation of a layer is
very different from the PyTorch version. If this object contains the entry "work": true,
then the StreamlIt filter-making function and its related BuildIt types are not generated.
Hence, we can write our own implementation of the filter-maker in a different header
file that isn’t auto-generated. This field can also contain the entry "options": true, in

which case the options builder is not generated.

4.3 ResNet Model Conversion

To illustrate the conversion from a PyTorch model to a StreamlIt pipeline definition, we’ll look

at a section of a more complicated ResNet18 model from the torchvision Python module.
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Since the code is not readily available, Figure 4.5 contains the traced code outputted by
torch.fx. After performing a DFS of the PyTorch graph, we generate Streamlt code along

with a DOT graph. A small snippet of both are shown in Figure 4.6 and Figure 4.7.

# ...
layerl_O_convl = getattr(self.layerl, "0").convl(maxpool)

3 layer1_0_bnl = getattr(self.layerl, "O0").bnl(layerl_O_convl);

layerl_O_convl = None
layerl_O_relu = getattr(self.layerl, "0").relu(layerl_ O_bnl);
layer1_0_bnl = None

5 layerl_O_conv2 = getattr(self.layerl, "0").conv2(layerl_ O_relu);

layer1_O_relu = None
layer1_0_bn2 = getattr(self.layerl, "O0").bn2(layerl_O_conv2);
layer1_O_conv2 = None

add = layer1_0_bn2 + maxpool; 1layerl_0_bn2 = maxpool = None
layerl_O_relu_1 = getattr(self.layerl, "0").relu(add); add = None
#...

Figure 4.5: PyTorch ResNet18 torch.fx traced code snippet

ResNet models work on the basis of residual activations [4]. This means that, instead
of learning a function f(z), a block learns the difference f(x) — z. This solves the problem
of exploding and vanishing gradients, a phenomenon where the weights of a neural network
either vanish to 0 or explode to a large value during training. This branching structure of a
ResNet model thus necessitates the use of a Streamlt SplitJoin construct, as we can see from
both figures. A Duplicate SplitJoin is generated here because we need to make two copies

of the tensor z.
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2> pipe->add(

3 duplicateSplitJoin<libtorch::Tensor, libtorch::Tensor>([&] (auto sj) {
sj->add (1,

5 pipeline<libtorch::Tensor, libtorch::Tensor>([&] (auto pipe) {

6 pipe->add(libtorch::conv2d("layerl_O_convi", {1, 1}, {1, 1}, {1,
1}, 1, "zeros", {0, 0}, {3, 3}));

7 pipe->add(libtorch::batchnorm2d ("layerl_O_bnl", true, 0.1, 1e-05))

8 pipe->add(libtorch::relu("layerl_O_relu", true));

9 pipe->add(libtorch::conv2d ("layerl_O_conv2", {1, 1}, {1, 1}, {1,
1}, 1, "zeros", {0, 0}, {3, 3}));

10 pipe->add(libtorch::batchnorm2d ("layerl_O_bn2", true, 0.1, 1e-05))

11 i)

12 )

13 sj->add (1, libtorch::identity<libtorch::Tensor>());
14 1)

15 ) ;

16 pipe->add(libtorch::add ("add"));

17 pipe->add(libtorch::relu("layerl_O_relu_1", true));

18 //...

Figure 4.6: PyTorch ResNet18 generated Streamlt pipeline code snippet
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Chapter 5

Experiments and Future Work

The performed experiments measure the difference in runtimes of a PyTorch model, an
inference-optimized version of the same model in LibTorch with a call to torch::jit::
optimize_for_inference, and the Streamlt-compiled version of the model generated by the
methods put forth in this thesis.

We use the version of ResNet with the ImageNet1k v1 weights provided by the torchvision
package to run the experiments. All the experiments are performed on Lanka v3 nodes.
Lanka is a 24-node Intel Xeon E5-2695 v2 @ 2.40GHz Infiniband cluster with two sockets
per node, each with 12 cores, for a total of 576 cores and a theoretical peak computational
rate of 11059 GFlop/s. Each node has 128GB of memory, of which 120GB is safely usable.

Each experiment involves passing 100 randomly generated tensors of shape 1 x 3 x 224
x 224 to each model and measuring the overall time taken for these 100 inference queries.
These images are of dimensions 224 x 224, with 3 channels for color. The images are input
in batches of 1.

We vary the number of layers of the ResNet model among 18, 34, 50, 101, and 152, which
are the sizes used by the authors of the ResNet paper [4]. Each block in a ResNet18 and
ResNet334 model has 2 3x3 convolutional layers. ResNetl8 has 8 blocks, while ResNet34

has 16 blocks. The 3x3 here refers to the kernel size. In ResNets 50 onwards, there are 3
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convolutional layers per block of sizes 1x1, 3x3, and 1x1. ResNet 50 has 16 blocks, while
the bigger models have more blocks. The descriptions of blocks in the ResNet models are

summarized in Figure 5.1.

layer name | output size 18-layer ‘ 34-layer | 50-layer | 101-layer l 152-1ayer
convl 112x112 Tx7, 64, stride 2
33 max pool, stride 2
1x1,64 1x1,64 ] 1x1,64 ]
conv2x | 3636 [ ixg gi ] 2 { gxg’g‘j }x3 3x3,64 | x3 3x3,64 | x3 3x3,64 | x3
o e 1x1,256 1x1,256 | 1x1,256 |
- ; - ; 1x1,128 1x1,128 ] 1x1,128 ]
comv3x | 28x28 ;i; 32 2 gig };g x4 | | 3x3,128 3x3,128 | x4 3x3, 128 | x8
L 272 220 ] L 27 1o ] 1x1,512 1x1,512 | 11,512 |
- . - ; 1x1,256 1x1,256 | 1x1,256 |
convd x | 14x14 gig;gg 2 gii;gg X6 {3><3 256 ]xé {3x3,256 x23 [ 3x3,256 | %36
L 27220 ] L 27520 ] L 1x1, 1024J L 1x1,1024 | [ 1x1,1024 |
- . - . 1x1,512 1x1,512 1x1,512
comvSx | 7x7 ii;gg x2 giggg x3 || 3x3,512 |x3 3x3,512 | x3 3x3,512 | x3
L 272202 ] L 27520 ] 1x1,2048 1x1,2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 18x10° | 3.6x10° ] 3.8x10° | 7.6x10° | 113x10°
Figure 5.1: ResNet Model Architectures!
Version / Model Size | 18 | 34 | 50 | 101 | 152

Streamlt runtime 7.78943 | 14.0211 | 18.1437 | 31.3938 | 45.0847
PyTorch runtime 6.8626 | 12.7964 | 14.1468 | 25.4368 | 36.6504
LibTorch runtime | 6.86867 | 12.3459 | 14.0023 | 25.0262 | 36.03

Table 5.1: Results of runtime experiments (runtime in seconds)

5.1 Discussion of Results

The results in Figure 5.2 and Table 5.1 show that both the PyTorch and LibTorch versions of
the model outperform the StreamlIt model for all model sizes, while optimizing for inference
in the LibTorch version did not change the latencies by much. Since the base PyTorch
model with gradient computations turned off and in eval() mode outperforms the Streamlt

generated code, we can conclude that this difference is due to the overhead of copying tensors.

!Credit: The ResNet paper [4]
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Performance of PyTorch and LibTorch vs Streamit generated code

45 4 —— Streamit

PyTorch in eval() mode

40 { —— Inference-optimized LibTorch
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Figure 5.2: Performances of the PyTorch and StreamlIt ResNet models

It is also clear that all 3 versions of the model show a higher latency for larger models.
This is because increasing the number of layers linearly increases the amount of computation
done for a single inference pass.

It is also interesting to note that the difference in latencies between the Streamlt and
PyTorch versions becomes more prominent when the layer size is 50 or up. The Streamlt
version of the model linearly increases with layer size, while the PyTorch and LibTorch
versions seem to stabilize in latency between the 34-50 region. Since the number of layers
per block changes from 2 to 3 in this region, this lack of meaningful difference in latencies can
be attributed to a change in model architecture. Adding more convolutional layers makes the
latencies scale differently than adding more blocks which adds other layers like BatchNorm2d
and ReLLU. This means that the latency of convolutional layers has more of an impact in the
Streamlt pipeline.

This thesis work puts forth a way to convert PyTorch models to static StreamlIt pipelines.
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As future work, several optimization passes can be added to the generated static Streamlt
pipeline to make it faster than the PyTorch and LibTorch models. The generated code could
also be made more optimized with lesser instances of copying the elements in the stream,

possibly by using references to the tensors instead.

5.2 Future Work

The StatefulFilter class can be used to store arbitrary state information associated with
the filter. Since we only need to initialize the layer’s options once during initialization of
the LibTorch layer, storing the options as part of the state should lead to performance
improvements in the generated code. However, this is not handled as past of this thesis
work.

The Streamlt compiler can be extended to larger models like GPT2. However, there are
still some issues with the implementation of certain layers and functionality that need to
be addressed. The current implementation of the PyTorch to Streamlt conversion does not
handle tensor constants. These are predefined tensors stored as attributes of the module.
These would ideally need to be constants in the Streamlt static graph, but there is no easy
way to determine whether an attribute is a tensor constant or simply a property of a tensor.

Another issue is that the implementation currently only allows tensor instances to flow
through the Streamlt graph. However, some intermediate data can be of other datatypes
too which we don’t handle as of now. A solution to this is by creating a superclass for all
objects that could flow through the graph, but this will eliminate the possibility of certain
optimizations that rely on the type of the object.

A major benefit of a StreamlIt computation graph is the possibility of scheduling work on
machines with multiple computation units in a distributed pipeline-parallel fashion. While
we do not explore this in this work, this is the potential next step in the work presented in

this thesis.
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5.3 Conclusion

In this work, we have implemented a PyTorch to StreamlIt compiler that can generate code
through an optimizable static graph. According to the results, the generated Streamlt
pipeline has a higher latency than the PyTorch version of that model without any opti-

mizations. However, there is still room for more optimizations to be added to the Streamlt

pipeline.
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