
Applied Compiler Optimizations for Proving Code

by

Ricardo Ruiz

S.B., Massachusetts Institute of Technology (2024)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2025

© 2025 Ricardo Ruiz. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Ricardo Ruiz
Department of Electrical Engineering and Computer Science
August 8, 2025

Certified by: Saman Amarasinghe
Professor of Electrical Engineering and Computer Science, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair, Master of Engineering Thesis Committee

2

Applied Compiler Optimizations for Proving Code

by

Ricardo Ruiz

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 2025 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

ABSTRACT

The recent popularity of massively distributed, trustless systems has created a demand
for cryptographic proofs: systems to prove that a piece of data is a valid output for a given
program. These systems exist, but face very high runtimes for the generation of proofs.
Significant effort has been invested in optimizing the prover systems, but relatively less has
been focused on optimizing the code that gets read as an input. This paper proposes a new
approach to optimizing prover systems by modifying the compiler to produce proof-ready
code. It proposes a benchmarking framework for comparing the relative proof costs of RISC-V
instructions; the resulting analyis find that shift instructions do not offer heavy savings over
multiplication. The finding suggests that strength reduction, a fundamental optimization in
modern compilers, can sabotage end-to-end performance. The paper proposes methods for
applying this knowledge to better optimize code, leaving the door open for future researchers
to continue to make code proofs more performant and accessible.

Thesis supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Contents

List of Figures 7

1 Introduction 9

2 SP1 Infrastructure 13
2.1 Compiler Toolchain . 14
2.2 The SP1 zkVM . 15
2.3 SP1 Proofs . 16
2.4 zk-STARK Proof Generation . 18
2.5 zk-SNARK Proof Generation . 20

3 Experimental Design 21

4 Strength Reduction 23
4.1 Benchmark Design . 23

4.1.1 Strength Reduction Background . 23
4.1.2 Benchmark Implementation . 24

4.2 Benchmark Results . 25
4.2.1 Core Proofs . 25
4.2.2 PLONK Proofs . 28

4.3 Applications . 29

5 Instruction Benchmarking 35
5.1 Benchmark Design . 35
5.2 Results . 36

5.2.1 Exprimentation Bug . 36
5.2.2 Adjusted Results . 36

6 Register Loading 41
6.1 Background . 41
6.2 Benchmark Design . 43

6.2.1 Overview . 43
6.2.2 Steiner Sets . 43

5

6.2.3 Implementation . 44
6.3 Results . 45

7 Conclusion and Future Work 51
7.1 Future Work . 51

7.1.1 Benchmarking Regular Execution . 51
7.1.2 Benchmarking a Custom Compiler 51
7.1.3 Further Register Benchmarking . 52

7.2 Conclusion . 52

A Sample Benchmark 53

References 55

6

List of Figures

2.1 Map of SP1 prover infrastructure . 13
2.2 Dataflow visualization for SP1 compiler toolchain 14
2.3 Dataflow visualization for the SP1 zkVM . 15
2.4 Zero-knowledge proof verification system . 16
2.5 Differences between zk-STARK and zk-SNARK proofs 17
2.6 Dataflow visualization for the zk-STARK proof generator 18
2.7 Dataflow visualization for zk-SNARK proof generation 19

3.1 End-to-end costs for a three binaries . 21

4.1 Multiplication degree table . 24
4.2 Executed zkVM cycles by benchmark size for various degrees 26
4.3 zk-STARK proof generation time by benchmark size 27
4.4 Prove-to-execute ratio for multiplications . 28
4.5 Example of optimizable code snippet . 29
4.6 PLONK proof generation time by benchmark size; left column shows times for

strength-reduced multiplies, right column shows raw multiplication instruction
results . 33

5.1 Prover chips and their representative RISC-V instructions 35
5.2 Results from buggy benchmark implementation 37
5.3 Prove costs for various prove chips, using the shift cost adjustment 38
5.4 Adjusted relative proof costs of each AIR chip 39
5.5 Prove-to-execute ratio for AIR chips . 40

6.1 Comparison of explicit and implicit register loads 41
6.2 Example of incorrect block implementation 44
6.3 Required registers by benchmark degree . 45
6.4 Pseudocode for block with k = 3, n = 6 . 45
6.5 Cycle cost for SP1 zkVM execution . 47
6.6 End-to-end Core proof generation time . 48
6.7 Average prove time per load . 49

7

8

Chapter 1

Introduction

The recent growth of massively distributed systems has enabled the development of increasingly

complex user-facing applications. Given the low trust model inherent to these systems, the

burden falls on to the application code to prove the results of their computation. Frameworks

for building these proofs exist: Succint Labs’ SP1 is one of them. The SP1 toolchain [1]

allows developers to write and generate proofs for arbitrary Rust code. With it, developers

can innovate on novel applications in the growing Web3 space.

Code proof performance places a significant constraint on this story. Binaries that

hundreds of microseconds to run on a developer’s machine can take minutes or even hours

to prove locally. There is work being done to mitigate this: SP1 remains under active

development, and Succint Labs has built out a prover network to share costs among a pool of

machines. This understanding of code as a black box, seeks to modify the prover architecture

to improve proof performance on a fixed binary. This paper explores the opposite approach:

treating the prover as a black box and modifying the incoming code instead.

The key to this approach lies in the Rust compiler. Modern compilers are very good at

optimizing code for runtime performance, eliminating unnecessary cycles wherever possible.

In specific contexts, these optimizations can be an example of overfitting and detract from the

developers goals. A common example is the GPU context: GPUs have fundamentally different

9

strengths and weaknesses compared to a CPU, to the point where GPU-specific compilers

have become their own field. This paper suggests that this overfitting problem is happening

in the context of code proofs. Certain compiler optimizations (namely strength reduction)

done with the goal of saving microseconds at runtime may end up costing the develop hours

of prove time. This paper documents these findings to facilitate saving developer time from

over-compiled code.

My specific contributions are:

• Discovering that the strength reduction of constant integer multiplication can have

significant negative effect on prove time.

• Proposing tools and solutions to fix the problem of overcompilation, specifically of

strength reduction.

• Finding a relative proof cost for instructions in the RISC-V ISA to inform which

instructions to use and to avoid.

• Investigating the efficacy of explicit vs. implicit memory loads to determine if staged

compilation is worthwhile.

The rest of this thesis is organized as follows:

Chapter 2 - SP1 Infrastructure gives a brief explanation of code proofs being generated

and provides a walkthrough of all the relevant SP1 system components.

Chapter 3 - Experimental Design describes the high-level approach for benchmarking

the individual instructions of the RISC-V ISA.

Chapter 4 - Strength Reduction describes the main positive result of the paper:

strength reduction is suboptimal for proof performance. The section also describes attempts

at applying this finding.

Chapter 5 - Instruction Benchmarking proposes a relative prove cost table for the

arithmetic instructions of the RISC-V ISA. The chapter describes a major bug which pollutes

10

these findings, efforts to account for the bug in the experimental results, and whether these

results agree with Chapter 3.

Chapter 6 - Register Loading investigates how register loads impact prove performance.

It explores the difference between implicit and explicit loading, but the experimental data for

this section is ultimately inconclusive.

Chapter 7 - Conclusions andn Future Work concludes with potential avenues for

future work on this topic.

11

12

Chapter 2

SP1 Infrastructure

Figure 2.1: Map of SP1 prover infrastructure

13

This chapter provides an end-to-end analysis of components of the SP1 prover system.

It starts with a brief explanation of the Rust compiler, continues into the execution virtual

machine, and then explores the different proofs that can be generated from program traces.

The diagram in Fig. 2.1 gives a visual overview of this process from start to finish. Each of

the following sections covers a component of this prover system and includes a more detailed

dataflow diagram. These diagrams use the same legend as Fig. 2.1 and show time flowing

from left to right.

Unless explicitly stated otherwise, all zkVM executions and proof generations are run on

a single thread of a 2.4 GHz Intel Xeon E5-2695 v2 machine with an allowance of 96 GB of

main memory. All physical hardware benchmarks run on the same machine, with the RISC-V

instructions translated into x86 equivalents.

2.1 Compiler Toolchain

Figure 2.2: Dataflow visualization for SP1 compiler toolchain

The SP1 prover toolchain (Fig. 2.2) compiles Rust code into a statically linked RISC-V

executable and linkable (ELF) file. This includes the program and all its dependencies in a

single file, which can be read by the zkVM (Section 2.2).

SP1 CLI provides the cargo prove build command to compile programs into the RISC-

V ELF format. This command invokes a custom build of the rustc compiler using the

14

riscv32-im-succint-zkvm-elf compilation target. The Rust compiler works by lowering

Rust code into MIR, a mid-level representation which simplifies many of the language’s

high-level constructs. This MIR code is then transformed into LLVM, at which point the

LLVM compiler infrastructure is used to generate the final assembly.

The command itself does not specify an optimization level to the compiler and only requires

the lower-atomic LLVM pass. This LLVM pass replaces all atomic intrinsic instructions

with their non-atomic equivalents. Since the zkVM does not virtualize a multi-threaded

execution environment, the atomic instructions would only add unnecesssary synchonization

overhead.

2.2 The SP1 zkVM

Figure 2.3: Dataflow visualization for the SP1 zkVM

SP1 provides a zero-knowledge virtual machine (zkVM) for the execution of binaries. The

dataflow diagram for the zkVM is shown in Fig. 2.3. In a standard execution environment, the

machine is free to discard the internal state of the computation as the program advances. This

is not the case in the context of proof generation. Proof generation requires an underlying

15

execution trace to log the internal state of the computer thoguhout code execution. The zkVM

tracks this internal state by keeping track of tables corresponding to instruction execution,

control flow branches, memory accesses, etc. These tables are critical for the translation of

RISC-V code into arithmetic circuits (AIR) as detailed in the next section.

The use of a zkVM instead of a physical execution machine has several implications for

the performance of binaries. The first of these concerns the memory system. In hardware,

memory fetches have to navigate the memory hierachy to fetch data from disk. The latency

of any particular fetch depends is variable and depends on both the machine’s cache and the

program’s access patterns. The zkVM virtualizes the memory system, creating much more

constant patterns for fetch latency. This is explored further in Chapter 6. At the individual

instruction level, the zkVM might incur different latencies for instructions compared to

hardware. Exploting gaps in these patterns can provide opportunities for optimization.

2.3 SP1 Proofs

Figure 2.4: Zero-knowledge proof verification system

The SP1 prover toolchain is designed to produce non-interactive zero-knowledge proofs.

These proofs assume two parties: the prover and the verifier. The prover possesses some

statement which the verifier wants to check, and the proof allows the verifier to do so. SP1

proofs are characterized as:

• Non-Interactive: the prover and verifier only need to communicate once

16

zk-STARK zk-SNARK
Proof Size Scales with input Constant

Trusted Setup Not required Required

Figure 2.5: Differences between zk-STARK and zk-SNARK proofs

• Zero-Knowledge: the verifier only learns the statement is valid

In the context of programs, the statements being proved are the executions of compiled

binaries. The prover party runs their computation using a combination of public and private

values to generate a code proof (Fig 2.1). The verifier can then use this proof and the public

input values (Fig 2.4) to verify the computation, without ever learning the private input

data. In practice, this verification step is orders of magnitude faster than the execution of

the original binary.

Zero-knowledge non-interactive proofs are particularly attractive for blockchain applica-

tions that run in low-trust distributed environments. In lieu of a central trusted authority,

code proofs allow independent actors to do trusted computations. Non-interactive proofs

reduce the overhead required for communication between two parties, and zero-knowledge

proofs allow the prover to hide information from the verifier. This allows the proof of

computations involving secret data, such as passwords or wallet addresses. Systems like

ZCash [2] use this property to put transaction verifications on a blockchain while protecting

sensitive transaction details.

We are concerned with two zero-knowledge proof classes produced by SP1: Scalable

Transparent Argument of Knowledge (zk-STARK) and Succint Non-interactive Argument of

Knowledge (zk-SNARK). The table in Fig 2.5 summarizes the differences between the proofs.

The large size of zk-STARK proofs makes them less practical for real-world applications

than zk-SNARKs; the former is often measured in tens or hundreds kB while the latter is

measured in tens or hundreds of bytes [3]. The SP1 toolchain generates a zk-STARK proof

in the process of generating zk-SNARK proof, so zk-SNARK prove times will be longer. This

chapter explores the generation of both.

17

2.4 zk-STARK Proof Generation

Figure 2.6: Dataflow visualization for the zk-STARK proof generator

The generation of Core zk-STARK proofs (Fig. 2.6) starts with a trace of the program

execution. This trace is split into shards, with a separate zk-STARK proof generated for

each shard. Within the shard, the RISC-V assembly instructions are translated into an

arithmetic intermediate representation (AIR) which encodes the code logic into an arithmetic

relationship between data. The data points used by an AIR instruction are nodes, and the

AIR describes how to relate the nodes to each other.

Each broad class of AIR instruction corresponds an SP1 prover chip. For example, the

add, addi, sub, and subi instructions are all represented by the AddSub prover chip. These

prover chips are virtual circuits used to encode the relationship between nodes in a way the

18

Figure 2.7: Dataflow visualization for zk-SNARK proof generation

prover can understand. The total area used in the prover circuit greatly determines the cost

of the proof generation, so keeping area down is desirable. The area of a given prover chip is

a product of two variables: width and height.

The width of a prover chip is independent of the execution trace and generally corresponds

to the complexity of the underlying AIR instruction. More complex instructions – such as

divisions and control flow branches – have wider chips.

The height of a prover chip depends on the execution trace. Each prover chip can be

thought of as a matrix with width described above. New invocations of AIR instructions

correspond to rows in this matrix, so larger binaries will have taller prover chips.

The task of optimizing the proof generation time is done by minimizing the total area of

the prover circuit. Operations like strength reductions, loop unrolling, and hoisting affect the

way these circuits are built, but the compiler’s cost model may not be consistent with the

prover chip dimensions. For example: the compiler may substitute one wide instruction with

several narrow instructions. If the total area of the narrow instructions adds up to more than

the area of the single wide instruction, prove time will suffer.

19

2.5 zk-SNARK Proof Generation

Given the sharding process described in the previous section, the Core zk-STARK proofs are

often impractical for scalable deployment. To address this issue, SP1 provides a process to

turn generate zk-SNARK proofs using the Plonky3 [4] toolchain, which uses the PLONK

proof construction to optimize for low prover overheads [5]. This process has five named

phases, visualized in Fig. 2.7:

• prove_core: generation of sharded zk-STARK proof (Fig. 2.6)

• compress: compression into single proof

• shrink: cleanup on large zk-STARK proof

• wrap_bn254: change underlying proof field

• wrap_plonk_bn254: PLONK proof generation

The prove_core phase is simply the process described in Section 2.4, generating a sharded

zk-STARK proof. The compress phase uses the prover to combine the shards into a single,

large zk-STARK proof. This is done by recursively invoking the prover over the proof shards.

These types of recursive proof protocols allow for incremental verification of large binaries,

improving proof efficiency [6]. The resulting zk-STARK proof is massaged a bit with the

shrink function. The time cost of this process is dominated by the number of shards in the

execution trace: compress time is linearly related with shard number with shrink inducing

a small constant-time cost at the end.

The zk-STARK proof generated from the prove_core process uses the BabyBear prime

finite field. This field is relatively small, using only 31 bits to encode possible values. The

small size of the field and choice of constitutent primes facilitate the Reed-Solomon proofs

used by SP1 to maximize proving efficiency. Once the proof has been wrapped into the larger

field, the PLONK prover can generate a zk-SNARK proof.

20

Chapter 3

Experimental Design

This chapter briefly covers the ways that the SP1 architecture can be leveraged to optimize

code at compile-time for proof performance.

The cost of proving a binary is often orders of magnitude more expensive then execution

within the zkVM. Given that zkVM execution incurs additional overhead on top of code

execution for witness generation (Section 2.2), the proof cost for a binary will dominate the

execution cost on physical hardware. Generating a zk-SNARK proof on top of a zk-STARK

proof further increases end-to-end times. As an example, the table in Fig. 3.1 shows how

dramatically the costs for execution and proving compare for a sample binary from Chapter 4.

All times are in seconds.

Size x86 Exec Time zkVM Exec Time zk-STARK Time zk-SNARK Time
Small 0.000358 0.218 2158 9323

Medium 0.000601 0.293 2156 9340
Large 0.000881 0.415 4708 12488

Figure 3.1: End-to-end costs for a three binaries

One way to reduce the proof cost of code is simply to use less of it. Smaller binaries

induce smaller execution traces and require less overhead. During execution (a prerequisite to

any proof), the zkVM must track the internal state of the machine. Larger binaries (and by

extent, traces) tend to have more variables and internal state to keep track of. This methods

21

is particularly important for generating small, user-friendly PLONK proofs. These proofs use

recursive proving to combine zk-STARK proofs into a single output: larger execution traces

and more shards directly correpond to greater prove times for this phase.

The other way to reduce the proof cost is to minimizes the total area footprint of the

prover circuit. Using smaller traces already takes a step in this direction: less assembly

instructions translate to less AIR instructions, which occupy less prover chip height. Prover

area can also be optimized by cleverly balancing the width of prover chips. If a single, wide

chip can be replaced by many narrow chips (or vice-versa) such that the total circuit area

decreases, the prove time should fall. This is especially true for Core zk-STARK proofs,

where less external variables contribute to prove times.

Optimizing compilers already make both these changes to minimize the run time of a

program. Strength reduction is a key example of this technique, replacing one expensive

instruction (multiplication) with more, cheaper instructions (shifts and adds). These opti-

mization are tuned for execution time in hardware instead of the much larger proving time.

This chapter aims to establish a relative cost model in the context of proof generation to

inform a properly tuned suite of compiler optimizations.

This paper measures the impact of compiler optimizations by manually implementing

individual optimizations and writing benchmarks in inline assembly code. The Rust compiler

adds special annotations to inline assembly to ensure it passes through compilation as-is,

without any further optimizations on top, allowing full control over code generation and

control flow. These benchmark functions are written in C-style to hook into the SP1 prover

system. For an example of how to integrate raw assembly into SP1, see Appendix A.

22

Chapter 4

Strength Reduction

This section explores how the strength reduction of constant integer multiplications affects

the proof performance characteristics of compiled binaries.

4.1 Benchmark Design

This section provides a quick overview of multiplication and explains how to build benchmarks

that contain multiplication instructions without getting optimized away.

4.1.1 Strength Reduction Background

I define the degree of a multiplicaion to be the number of strength-reduced instructions

produced by the compiler. For constant integer multiplications, the degree depends entirely

on the constant multiplicand. A power-of-two multiplication can be implemented in a single

shift, so this multiplicand has degree one. The table in Fig 4.1 gives a few examples of

multiplication degrees. The middle column of the table gives a generic templace for the

multiplication y = c∗x, expressing the coefficient c in terms of power-of-two multiplications to

illustrate how to strength reduce using shifts. The variables m and n here are placeholders for

arbitrary integers. The right column gives a concrete example of each type of multiplication,

23

providing constants for the right-hand side of the middle column. For example, the right

column of the degree-3 row instantiates the middle column with m = 4, n = 2.

Degree Code Equivalent Sample Multiplicand
1 y = x ∗ 2m y = 16x
2 y = x ∗ 2m − x y = 15x
3 y = x ∗ 2m − x ∗ 2n y = 12x

Figure 4.1: Multiplication degree table

Though any arbitrary integral multiplicand can be represented with adds and shifts, the

compiler only peforms strength reductions for degrees up to 3. The definition of multiplication

degree offered in this section applies throughout the entire chapter, as multiplication degree

is an important parameter for benchmarking.

4.1.2 Benchmark Implementation

To generate a benchmark that directly uses the RISC-V multiplication instruction, the compiler

must be subverted. Even with all LLVM optimizations disabled (using the opt-level flag for

the Rust compiler), the compiler will still strength reduce multiplications to shifts whenever

possible. These optimizations happen in the InstCombine LLVM transformation, which

applies even at the most basic optimization level.

In the benchmark, an accumulator variable is repeatedly multiplied by random temporary

variables, implemented by hand as either a multiplication instruction or a series of shifts and

adds. To prevent the prover from doing constant propagation on the multiplicands, each

multiplication instruction is interspersed with an XOR. These break the associativity and

commutativity properties of the multiplication, preventing shortcuts. A Python script is

used to programatically generate these scrips with hundreds of thousands of multiplication

instructions.

24

4.2 Benchmark Results

This section details the results for the generation of both the Core, sharded SP1 proofs and

the user-friendly, smaller PLONK proofs given the same binaries. Binaries are evaluated for

end-to-end prove time, execution cycle cost in the SP1 zkVM, and instruction count.

4.2.1 Core Proofs

The results from this investigation suggest that strength reduction on high-degree multipli-

cation has a negative performance impact on the generation of Core zk-STARK proofs. At

the individual level, both instructions have comparable latencies. Fig. 4.2 shows the total

executed cycles for each benchmark. The degree-1 case in graph (a) makes the parity clear:

in this case, both binaries execute exactly one instruction per power-of-two multiplication

and have the same total cost. Once additional instructions get compiled for higher-degree

multiplications, the total cost increases even further.

The increase in the number of executed cycles appears to cause an increase in Core proof

generation time, as seen in Fig. 4.3. This likely means that even if the prover chip for left

shift is narrower than multiplication, the addition of more total height to the prover system

causes a net increase in prover area and an increase in proof time. The effect is particularly

pronoucned for the degree-3 case in graph (c), where prove times more than double for the

largest benchmark sizes.

In summary, the data suggests that raw multiplications instructions are more efficient

than strength reduction. The graph in Fig. 4.4 shows that despite sometimes requiring more

execution time (the blue points tend more right), the multiplications require consistently less

prove time relative to their execution cost. Since the graph axes are orders of magnitude

apart, this graph makes the case that for zk-STARK proofs, the compiler is overfitting to

CPU execution time by doing strength reduction optimizations. The only clear advantage of

strength reduction is in the sharding. The strength reduced execution trace emit one less

25

(a) Cycles for degree-1 multiplicands

(b) Cycles for degree-2 multiplicands

(c) Cycles for degree-3 multiplicands

Figure 4.2: Executed zkVM cycles by benchmark size for various degrees

26

(a) Prove times for degree-1 multiplicands

(b) Prove times for degree-2 multiplicands

(c) Prove times for degree-3 multiplicands

Figure 4.3: zk-STARK proof generation time by benchmark size

27

shard for the degree-1 and degree-2 cases with more than 200,000 multiplications. This fact

increases the size of the zk-STARK proof, but becomes a bigger issue for zk-SNARK proving

in the next section.

Figure 4.4: Prove-to-execute ratio for multiplications

4.2.2 PLONK Proofs

For this benchmark suite, differences in proof time come down to different durations of

the prove_core zk-SNARK proof generation time and compress recursive proof phase; the

remaining phases of the zk-SNARK proof generation were consistent between the optimized

and unoptimized binaries. This reaffirms the findings from the degree-1 case in Section 4.2.1:

at the individual instruction level, shift and multiply have comparable proof costs.

That section explores the difference in zk-STARK proof generation time that contribute

to prove_core differences. To restate, strength reduction has a negative effect on these proof

generation times, becoming more drastic as multiplicand degree increases.

The second source of proof time difference comes from the compress phase of the proof

generation. As Section 2.5 explains, this part involves recursively calling the zk-STARK

prover in a tree structure on the proof shards. The cost of this process is thus determined

28

by the number of shards produced from the zkVM execution trace. This is where strength

reduction sees an advantage: even though strength reduction often produces binaries that

cost more cycles to execute in the zkVM (Fig. 4.2), these larger binaries tend to shard less.

This could be due to the increased width of the multiplication prover chip, or poor estimation

by the sharding code. Further investigation is needed to understand why the number of

shards differs between versions.

In general, the effect of strength reduction on zk-SNARK proof generation is the cost

of extra zk-STARK prove time in prove_core subtracted from the savings of less recursive

shard combinations in compress. The graphs in Fig. 4.6 visualize this combined effect.

4.3 Applications

Given the positive results found from the investigation, the next step would be to integrate

the findings into more realistic code. Optimizing constant integer multiplications can already

prove useful for calculating array access offsets based on dynamic data within a hot loop. The

most basic example of this type of pattern is seen in a snippet like Fig. 4.5: the calculation

of the outer array offset into B can be optimized.

1 char A[N];
2 char B[M][N];
3 int N;
4

5 char gen();
6

7 for (int i = 0; i < N; ++i) {
8 B[A[i]][i] = gen();
9 }

10

Figure 4.5: Example of optimizable code snippet

Using the compilation dataflow from Fig. 2.2, there are three possible approaches to undo

the strength reduction

29

1. At Rust source code: any time that a degree-2 multiplication would be done, replace

it with handwritten inline assembly

2. In the Rust compile: modify the compilation process such that compiled binaries no

longer contain strength reductions

3. In the RISC-V ELF: transform the raw bytes of compiled binaries to undo the

optimizations in-place

Manually editing all Rust source code before compilation is not desirable. For user-

written code, this solution does not scale well and is prone to bugs. De-optimizing external

dependencies would require forking libraries or convincing maintainers to publish alternate

versions. Neither approach is very scalable.

The Rust compiler does not expose an API to toggle specific LLVM passes. Even if it did,

InstCombine is too broad a transformation to completely disable. It provides optimizations

like constant folding and combination of redundant instructions that would benefit prove

times by keeping execution traces short. This leaves two options for modifying the compiler:

• Intercept LLVM-IR in the compilation pipeline

• Disable strength reduction in InstCombine code of LLVM

The first option has the compiler generate LLVM-IR, intercepts it, modifies the code, and

then links it back into the ELF binary. This relies on a wrapper script for the Rust compiler

to capture the LLVM-IR and metadata for each compiled program dependency. I was able

to successfully intercept and edit the LLVM code to prevent strength reduction by marking

all multiplications as inline assembly: the compiler cannot make optimizations on inline

assembly code. This code successfully compiled to object files using the llc LLVM compiler,

but could not be linked back into Rust’s .rlib archives for library packages. The modified

object files were not discoverable by other programs, rendering this approach ineffective.

30

The second option involves editing the source code for the Rust compiler itself. At the time

of writing, the current release of the SP1 toolchain depends on the succinct-1.88.0 release

of the SP1 fork of the Rust compiler. Within the fork, the file InstCombineMulDivRem.cpp

has a function visitMul that implements multiplication strength reduction. Removing this

code and forking the dependencies should build a Rust compiler which does not perform

strength reduction. This discovery was made late in the research project, and there was not

enough time to test the approach. Testing this new compiler is left as future work.

In-place binary editing was the approach taken for this paper. Since the SP1 prover gener-

ates statically linked binary objects, iterating over a single file and replacing all the strength

reductions with multiplications would cover both user code and all external dependencies.

I wrote a Python script to do this, using a state machine over the patterns multiplication

degree table in Fig. 4.1 to edit the raw binary in place.

This script was tested on select program binaries from the Rust compiler benchmarking

suite [7] with detected reduced multiplications: a raytracer, physics simulation, and svg

parser. Unfortunately, none of these saw significant speedups after modification by the script.

A few immediate explanations for the lack of speedup stand out:

1. Few multiplications are in a hot code block. There might be some savings, but the

performance bottleneck is elsewhere

2. There are enough multiplications to achieve savings, but the script cannot detect them

reduction. A single multiplication is compiled into multiple, non-adjacent instructions

within the same code block and is not detected by the script.

3. There are enough multiplications and they are replced, but they are in a hot loop.

Within a hot loop, a raw multiplication instrution is at its most efficient when the

constant multiplicand can be loaded into a register outside the loop (hoisted). The script

does not current implement this behavior because it only does local line replacements,

and does not know which registers can be safely clobbered or where to do so.

31

Other potential optimization areas suffer from the same problem and from better competing

solutions. In the domain of hashing, where integer multiplications are common, SP1 already

provides precompiled prover circuits that perform better than raw multiplication. Smaller,

multiplication-based hash functions like SDBM may see some benefits from this technique,

but even optimized SDBM falls short of modern hash functions like Rust’s native FXHash.

As such, the application of this project’s findings to real-world programs is left as future

work.

32

(a) Prove times for degree-1 multiplicands

(b) Prove times for degree-2 multiplicands

(c) Prove times for degree-3 multiplicands

Figure 4.6: PLONK proof generation time by benchmark size; left column shows times for
strength-reduced multiplies, right column shows raw multiplication instruction results

33

34

Chapter 5

Instruction Benchmarking

5.1 Benchmark Design

A naive approach to benchmarking would profile a test binary for each of the possible

instructions in the instruction set. This immediately stands out as an inefficient design due

to the inherent similarities between some instructions; for example, addition has a register-

to-register (add) instruction and a register-to-immediate (addi) variant. Benchmarking

both would be redundant. Likewise, each RISC-V instruction gets translated into an AIR

equivalent when the execution trace is turned into a zk-STARK proof. The benchmark only

needs to cover one representative sample from the arithmetic prover chips. The table in

Fig. 5.1 lists which RISC-V instructions were chosen for each prover chip.

Prover Chip RISC-V Instruction
AddSub addi
Bitwise xori

Mul mul
DivRem div
ShiftLeft slli

ShiftRight srli

Figure 5.1: Prover chips and their representative RISC-V instructions

Similar to the strength reduction benchmarks in Section 4.1.2, inline assembly is used

35

to maximally restrict compiler behavior. The assembly code itself is generated using a

Python script. This script simply loads random values into registers and combines them into

accumulators using the target instruction. Each line generated by the script combines the

random value loaded into the t0 with the running accumulator in a0.

5.2 Results

5.2.1 Exprimentation Bug

The results from the benchmarks are shown in Fig. 5.2. These results would suggest that

bit-shifts are significantly more expensive than multiplication in the zkVM. However, notice

that graph (b) shows a 4x gap in the number of instructions executed by the zkVM in some

of the benchmarks. The ShiftLeft and ShiftRight chips are the only two plots colinear on

the upper line; this suggests a bug in the benchmark design where the compiler added extra

instructions and polluted the data collection. Investigating the execution report reveals that

these extra instructions were adds and lws.

5.2.2 Adjusted Results

One possible approach to factor in this bug is to adjust the effective prover time for the

ShiftLeft and ShiftRight prover chips. This can be done by dividing the marginal increases

in prove time (difference between adjacent datapoints) by four. This division by itself is

inaccurate - it ignores any constant overhead from the SP1 prover shared by all the binaries.

Several observations about the graphs in Fig. 5.2 suggest that SP1 has a constant proof

overhead:

• The plots in graph (b) exhibit a linear relationship with R2 = 1. Despite different

slopes, both lines intersect the vertical axis at approximately the same value, 47875

instructions.

36

(a) Prove costs for various prove chips

(b) Execution trace size for various prove chips

Figure 5.2: Results from buggy benchmark implementation

• The plots in graph (a) exhibit flatten out to approximately the same value, well above

the horizontal axis.

• The plots in graph (a) have almost the same prove time for very small benchmark sizes.

These observations suggest that the constant overhead is approximately 170 seconds.

At the smallest benchmark size, the test binaries contain 4096 deliberate test instructions.

However, the correct benchmark binares execute 52000 instructions. The difference (SP1

37

overhead) would account for more than 10 times the number of target instruction executions,

and should dominate proof time. At this smallest benchmark size, all the binaries prove in

about 170 seconds.

The graph in Fig. 5.3 applies this adjustement to plot (a) from Fig. 5.2. This is only a

rough approximation of what the data should look like, as it assumes that the extra prove

compiler instructions have the same prove cost as a shift and that the SP1 imposes a constant

170 second overhead independent of the binary to prove.

Figure 5.3: Prove costs for various prove chips, using the shift cost adjustment

The table in Fig. 5.4 normalizes the results into a relative cost index for each instruction.

As expected, the cost of basic addition and subtraction arithmetic ranks lowest on this list.

Bitwise logical operations and shift have comparable proof costs, with multiplication slightly

higher. Fig. 5.5 plots the adjusted result of proof times compared to execution times for

each chip. Divisions still pay an incredibly high prove cost relative to their execution time.

Bitwise combinations instructions are slightly more efficient than both multiplication and

38

shift instructions.

Prover Chip Relative Proof Cost
AddSub 1.00
Bitwise 1.51
ShiftLeft 1.28

ShiftRight 1.82
Mul 2.69

DivRem 5.61

Figure 5.4: Adjusted relative proof costs of each AIR chip

This adjusted result deviates slightly from the results of Chapter 4. That chapter finds

that multiplications and shift instructions should have a much closer per-instruction proof

cost, as evidenced by the similar performance of the degree-1 and multiplication cases. This

table would suggest that multiplication has more prove cost than a combined addition and

shift, which seems unlikely given the results of the degree-2 case. The degree-3 case does

agree with these findings, as a multiplication has less prove cost than the combination of two

left shifts and an addition.

39

Figure 5.5: Prove-to-execute ratio for AIR chips

40

Chapter 6

Register Loading

Loading data into registers is a fundamental building block of any assembled program. A

register can be loaded explicitly with a memory load (lw) or implicitly as the destination

register of an operation (add, xor, etc). Fig 6.1 gives examples of both types of loads. This

section explores the impact of this choice on end-to-end prove times.

1 .rodata
2 constant:
3 .word 12345
4 .text
5 main:
6 // implicit load
7 addi t0 , zero , 12345
8 // explicit load
9 la t2 , constant

10 lw t1 , 0(t2)
11

Figure 6.1: Comparison of explicit and implicit register loads

6.1 Background

Modern compilers almost always prefer to do implicit loads whenever possible. In standard

hardware, an implicit load costs less than 10 cycles.

41

By loading a register using an immediate instruction, an implicit load minimizes latency

by executing an ALU operation in few cycles. Explicit loads can have significantly higher

latencies. These must fetch data from memory addresses; if the target address is not in

the cache, this instruction can spend tens or hundreds of cycles waiting for the data to be

retrieved from main memory. Explicit loads also suffer from inducing more register pressure

than implicit loads. When using explicit loads, compilers avoid this worst-case behavior

through instruction-level parallelism, data prefetching, and better cache utilization patterns.

While implicit memory loads might have better worst-case performance, they are not

always available to the compiler. Implicit loads can only be output when the desired data is

known at compile-time and can be baked into the final binary. The particular implementation

of these loads also depends on the size of the data in question. If the data uses up to 12 bits,

a single-instruction implicit load (such as Fig. 6.1) can be used. Otherwise, an additional

instruction (such as lui) is required to set the upper bits of the data. Aggressive use of

implicit loads can be achived using staged compilation [8], where extra data can be provided

at further stages of the compilation to insert into the final output binary.

The SP1 zkVM is not a standard execution environment. As a virtual machine, it does

not suffer from the same worst-case performance as standard hardware. If the virtual memory

allows for single-cycle explicit loads, it might be possible to get better end-to-end prove time

by substituting for implicit loads. A single cycle would be preferable in the prove context for

the following reasons:

• A single-instruction lw would have less latency than multi-cycle ALU instructions. This

reduces the work done in the zkVM trace before Core proof generation

• An explicit load is guaranteed to be a single instruction, whereas implicit loads might

need multiply (lui + addi) for large constants. Reducing the number of instructions

reduces the size of the execution trace, minimizing the number of proof shards for

prove_core

42

Even though these savings might be small for each individual instruction, they could add

to a significant amount given how fundamental register loads are to most programs. The total

amount of savings would be determined by the width for the prover chips of both instructions

and the overhead of simulating virtual memory in the zkVM.

6.2 Benchmark Design

This section describes the design of a benchmark suite to measure the average cost of proving

individual explicit and implicit memory loads.

6.2.1 Overview

Benchmarks are written in raw RISC-V using Rust’s inline assembly macros. Each benchmark

binary consists of many blocks, concatenated into a single function. There are no jump or

branch instructions to avoid polluting the results.

Each block is a workflow with three steps:

1. Load values into registers

2. Combine values togther using a binary register-register operation

3. Write into an array of accumulator registers

To measure the impact of memory loads on the prove time, control the ratio of instruc-

tion loads (1) to useful instructions (2) is varied across benchmark binaries. The ratio of

instructions to loads is the degree of a block; each benchmark binary is standardized such

that all its blocks have the same degree.

6.2.2 Steiner Sets

The blocks must be designed to avoid repeating common subexpressions. These patterns allow

the compiler to optimize using common subexpression elimination (CSE), moving common

43

subexpressions to their own temporary and propagating it in the code. The code in Fig. 6.2

gives an example of this kind of block. The subexpression t0 + t1 can be factored into its

own temporary and added to both accumulators, removing one line of code. This problem

only becomes more apparent as blocks grow larger and copies can propagate further.

1 benchmark:
2 li t0 , 0xCAB
3 li t1 , 0xFAD
4 addi a0 , t0
5 addi a0 , t1
6 addi a1 , t0
7 addi a1 , t1
8

Figure 6.2: Example of incorrect block implementation

Even if the compiler cannot implement CSE (this can be forced using inline assembly), the

prover might still be able to make optimizations under the hood. This problem is prevented

entirely using a Steiner system to guarantee no common subexpressions between accumulator

updates. A Steiner system S(t, k, n) describes how to create k-size groups of from a set of n

distinct points points such that the largest common subset between any two distinct groups

has size t. The setting of t = 2 models the constraint from above: no pair of registers may be

operands for multiple distinct accumulator updates.

6.2.3 Implementation

Each benchmark is parameterized by the total number of loads (l) and block degree (k). The

Steiner constraint forces the indirect parameter of register overhead (n): this value measures

both the size of the accumulator array and the number of loads per block. This means that

the number of blocks (b) is given by the equation l = nb. The table in Fig. 6.3 gives the value

of n for each of the possible settings of k. Note that this table implies k > 4 is impossible:

RISC-V only provides 32 registers, and the benchmark requires 2n registes to run correctly.

The largest case of k = 4 is achieveable using caller-saved registers.

44

Degree (k) Registers (n)
1 1
2 2
3 6
4 13

Figure 6.3: Required registers by benchmark degree

The pseudocode snippet in Fig. 6.4 gives an example of a single block with degree k = 3.

Note the use of the t-series registers for loading temporaries and a-series as accumulators.

Longer benchmark functions are be programatically generated as concatenations of these

blocks using a Python script.

1 benchmark:
2 li t0
3 li t1
4 ...
5 li t5
6 addi a0 , a0, t0
7 addi a0 , a0, t1
8 addi a0 , a0, t3
9 addi a1 , a1, t1

10 addi a1 , a1, t2
11 addi a1 , a1, t4
12 ...
13 addi a5 , a5, t5
14 addi a5 , a5, t0
15 addi a5 , a5, t2
16

Figure 6.4: Pseudocode for block with k = 3, n = 6

6.3 Results

The data from this investigation proved inconclusive. As expected, the zkVM’s memory

system saves cycles on explicit loads over register operations. The graphs in Fig. 6.5 show

this effect.

Each graph has the total number of executed combination instructions bk on the horizontal

45

axis. Subtracting the k = 2 cycle count from the k = 1 count and dividing by half the

benchmark size yields the average cycle cost per load instruction in the zkVM. This comes

out to 1.5 cycles per implicit load and 1 cycle per explicit load. The result suggests that

explicit loading always saves zkVM execution cycles over implicit loading.

The savings in executed zkVM cycles do not cleanly equate to savings in proof generation

time. The graphs in Fig. 6.6 show the total proof time for a binary executing bk combination

instructions.

The results from Fig. 6.5 would suggest that explicit load instructions should see shorter

prove times than implicit load instructions; this is not the case. This can be verified by

measuring the average proof time per marginal load instruction for each benchmark size. For

each benchmark executing c combination instructions:

1. Find the marginal prove time increase by subtracting the prove time in the k = 2 case

from the k = 1 case.

2. Find the total number of additional loads between the degree cases. Since a k = 2

benchmark does 2 combination instructions per load, this value is simply c/2.

3. Divide the value from (1) by the value from (2) to get the average proof time per

marginal load.

The graph in Fig: 6.7 plots this value for each of the benchmark sizes c. If one plot were

consistenly higher than the other, that memory load technique would by superior for proving.

Unfortunately, no clear trend is observable from the graph.

46

(a) Executed cycles for k = 1

(b) Executed cycles for k = 2

Figure 6.5: Cycle cost for SP1 zkVM execution

47

(a) Prove time for k = 1

(b) Prove time for k = 2

Figure 6.6: End-to-end Core proof generation time

48

Figure 6.7: Average prove time per load

49

50

Chapter 7

Conclusion and Future Work

7.1 Future Work

7.1.1 Benchmarking Regular Execution

This paper did not benchmark execution of the RISC-V ELF binaries in a standard execution

environment - either on physical hardware or through virtualization. Benchmarking in a

regular execution environment would allow for a more nuanced evaluation of the results in

this paper. As discussed in Chapter 5, the generation of a proof only needs to happen when

a binary is distributed. The only recurring cost to a user of the binary is proof verification,

which is designed to the fast. If the prove cost of a program (or even of individual instructions)

can be weighed against the execution time, this would allow the user and developer to make

more meaningful tradeoffs and maximize efficiency of their workflows.

7.1.2 Benchmarking a Custom Compiler

Chapter 4 found a positive result in the detrimental impact of strength reduction optimizations

for constant integer multiplication, but did not find any compelling practical uses for it.

Section 4.3 describes a process to build a custom Rust compiler from source that does not do

strength reduction. Building this compiler would allow for direct A/B testing against the

51

standard compiler from the SP1 toolchain on production binaries. This approach should yield

better results than the Python script, as instruction to load the multiplication coefficient can

be re-ordered within the compiled code to maximize efficiency (e.g. through loop hoisting).

7.1.3 Further Register Benchmarking

The results from Chapter 6 were inconclusive as to the comparison between explicit and implicit

data loads into registers. More targeted benchmarking might yield a more specific result to

this question. The benchmarks in this paper only deal with loads of 12-bit immediate values.

Implicit loads of immediate values with more than 12 bits would require more instructions

to function, as large values cannot fit in the immediate addi or xori instructions used to

implement the li pseudoinstructions. These extra instructions could certainly contribute to

an increase in prove time over small, single-instruction loads. If a program was known to

only use these large immediates (for example, when loading floats or strings), a definitive

result for prover performance would be helpful.

7.2 Conclusion

In this paper I have shown how the compiler tends to overfit optimizations for the CPU

computing environment. When these assumptions clash with the needs of the prover archi-

tecture, the overwhelming costs of code proof time create strong performance bottlenecks.

This finding suggests that more work is needed in tailoring compilers to the specific domain

of code proofs.

52

Appendix A

Sample Benchmark

1 #![no_main]

2 sp1_zkvm :: entrypoint!(main);

3

4 global_asm!(r#’’

5 .globl benchmark

6 .type benchmark , @function

7 benchmark:

8 li a0 , 0xCAB

9 ret

10 ‘‘#);

11

12 extern ‘‘C’’ {

13 fn benchmark () -> u32;

14 }

15

16 fn main() {

17 let result = unsafe {

18 benchmark ()

19 };

20 sp1_zkvm ::io:: commit (& result);

21 }

53

54

References

[1] SP1. https://github.com/succinctlabs/sp1. Succinct Labs, 2025.

[2] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.

Zerocash: Decentralized Anonymous Payments from Bitcoin. Cryptology ePrint Archive,

Paper 2014/349. 2014. url: https://eprint.iacr.org/2014/349.

[3] A. M. Pinto. “An Introduction to the Use of zk-SNARKs in Blockchains.” In: Mathematical

Research for Blockchain Economy. Ed. by P. Pardalos, I. Kotsireas, Y. Guo, and W.

Knottenbelt. Cham: Springer International Publishing, 2020, pp. 233–249. isbn: 978-3-

030-37110-4.

[4] Plonky3: A toolkit for polynomial IOPs (PIOPs). https://github.com/Plonky3/Plonky3.

Polygon Labs, 2025.

[5] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over Lagrange-

bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint

Archive, Paper 2019/953. 2019. url: https://eprint.iacr.org/2019/953.

[6] S. Bowe, J. Grigg, and D. Hopwood. Recursive Proof Composition without a Trusted

Setup. Cryptology ePrint Archive, Paper 2019/1021. 2019. url: https://eprint.iacr.org/

2019/1021.

[7] rustc-perf: Website for graphing the performance of rustc. https://github.com/rust-

lang/rustc-perf. The Rust Foundation, 2025.

55

https://github.com/succinctlabs/sp1
https://eprint.iacr.org/2014/349
https://github.com/Plonky3/Plonky3
https://eprint.iacr.org/2019/953
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://github.com/rust-lang/rustc-perf
https://github.com/rust-lang/rustc-perf

[8] A. Brahmakshatriya and S. Amarasinghe. “BuildIt: A Type-Based Multi-stage Pro-

gramming Framework for Code Generation in C++.” In: 2021 IEEE/ACM Interna-

tional Symposium on Code Generation and Optimization (CGO). 2021, pp. 39–51. doi:

10.1109/CGO51591.2021.9370333.

56

https://doi.org/10.1109/CGO51591.2021.9370333

	Title page
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	2 SP1 Infrastructure
	2.1 Compiler Toolchain
	2.2 The SP1 zkVM
	2.3 SP1 Proofs
	2.4 zk-STARK Proof Generation
	2.5 zk-SNARK Proof Generation

	3 Experimental Design
	4 Strength Reduction
	4.1 Benchmark Design
	4.1.1 Strength Reduction Background
	4.1.2 Benchmark Implementation

	4.2 Benchmark Results
	4.2.1 Core Proofs
	4.2.2 PLONK Proofs

	4.3 Applications

	5 Instruction Benchmarking
	5.1 Benchmark Design
	5.2 Results
	5.2.1 Exprimentation Bug
	5.2.2 Adjusted Results

	6 Register Loading
	6.1 Background
	6.2 Benchmark Design
	6.2.1 Overview
	6.2.2 Steiner Sets
	6.2.3 Implementation

	6.3 Results

	7 Conclusion and Future Work
	7.1 Future Work
	7.1.1 Benchmarking Regular Execution
	7.1.2 Benchmarking a Custom Compiler
	7.1.3 Further Register Benchmarking

	7.2 Conclusion

	A Sample Benchmark
	References

